Sample records for functional limit theorems

  1. Zero-Bounded Limits as a Special Case of the Squeeze Theorem for Evaluating Single-Variable and Multivariable Limits

    ERIC Educational Resources Information Center

    Gkioulekas, Eleftherios

    2013-01-01

    Many limits, typically taught as examples of applying the "squeeze" theorem, can be evaluated more easily using the proposed zero-bounded limit theorem. The theorem applies to functions defined as a product of a factor going to zero and a factor that remains bounded in some neighborhood of the limit. This technique is immensely useful…

  2. The Implicit Function Theorem and Non-Existence of Limit of Functions of Several Variables

    ERIC Educational Resources Information Center

    dos Santos, A. L. C.; da Silva, P. N.

    2008-01-01

    We use the Implicit Function Theorem to establish a result of non-existence of limit to a certain class of functions of several variables. We consider functions given by quotients such that both the numerator and denominator functions are null at the limit point. We show that the non-existence of the limit of such function is related with the…

  3. Lindeberg theorem for Gibbs-Markov dynamics

    NASA Astrophysics Data System (ADS)

    Denker, Manfred; Senti, Samuel; Zhang, Xuan

    2017-12-01

    A dynamical array consists of a family of functions \\{ fn, i: 1≤slant i≤slant k_n, n≥slant 1\\} and a family of initial times \\{τn, i: 1≤slant i≤slant k_n, n≥slant 1\\} . For a dynamical system (X, T) we identify distributional limits for sums of the form for suitable (non-random) constants s_n>0 and an, i\\in { R} . We derive a Lindeberg-type central limit theorem for dynamical arrays. Applications include new central limit theorems for functions which are not locally Lipschitz continuous and central limit theorems for statistical functions of time series obtained from Gibbs-Markov systems. Our results, which hold for more general dynamics, are stated in the context of Gibbs-Markov dynamical systems for convenience.

  4. Some functional limit theorems for compound Cox processes

    NASA Astrophysics Data System (ADS)

    Korolev, Victor Yu.; Chertok, A. V.; Korchagin, A. Yu.; Kossova, E. V.; Zeifman, Alexander I.

    2016-06-01

    An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.

  5. Some functional limit theorems for compound Cox processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korolev, Victor Yu.; Institute of Informatics Problems FRC CSC RAS; Chertok, A. V.

    2016-06-08

    An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.

  6. Restoring the consistency with the contact density theorem of a classical density functional theory of ions at a planar electrical double layer.

    PubMed

    Gillespie, Dirk

    2014-11-01

    Classical density functional theory (DFT) of fluids is a fast and efficient theory to compute the structure of the electrical double layer in the primitive model of ions where ions are modeled as charged, hard spheres in a background dielectric. While the hard-core repulsive component of this ion-ion interaction can be accurately computed using well-established DFTs, the electrostatic component is less accurate. Moreover, many electrostatic functionals fail to satisfy a basic theorem, the contact density theorem, that relates the bulk pressure, surface charge, and ion densities at their distances of closest approach for ions in equilibrium at a smooth, hard, planar wall. One popular electrostatic functional that fails to satisfy the contact density theorem is a perturbation approach developed by Kierlik and Rosinberg [Phys. Rev. A 44, 5025 (1991)PLRAAN1050-294710.1103/PhysRevA.44.5025] and Rosenfeld [J. Chem. Phys. 98, 8126 (1993)JCPSA60021-960610.1063/1.464569], where the full free-energy functional is Taylor-expanded around a bulk (homogeneous) reference fluid. Here, it is shown that this functional fails to satisfy the contact density theorem because it also fails to satisfy the known low-density limit. When the functional is corrected to satisfy this limit, a corrected bulk pressure is derived and it is shown that with this pressure both the contact density theorem and the Gibbs adsorption theorem are satisfied.

  7. The spectral method and the central limit theorem for general Markov chains

    NASA Astrophysics Data System (ADS)

    Nagaev, S. V.

    2017-12-01

    We consider Markov chains with an arbitrary phase space and develop a modification of the spectral method that enables us to prove the central limit theorem (CLT) for non-uniformly ergodic Markov chains. The conditions imposed on the transition function are more general than those by Athreya-Ney and Nummelin. Our proof of the CLT is purely analytical.

  8. Entropy Inequalities for Stable Densities and Strengthened Central Limit Theorems

    NASA Astrophysics Data System (ADS)

    Toscani, Giuseppe

    2016-10-01

    We consider the central limit theorem for stable laws in the case of the standardized sum of independent and identically distributed random variables with regular probability density function. By showing decay of different entropy functionals along the sequence we prove convergence with explicit rate in various norms to a Lévy centered density of parameter λ >1 . This introduces a new information-theoretic approach to the central limit theorem for stable laws, in which the main argument is shown to be the relative fractional Fisher information, recently introduced in Toscani (Ricerche Mat 65(1):71-91, 2016). In particular, it is proven that, with respect to the relative fractional Fisher information, the Lévy density satisfies an analogous of the logarithmic Sobolev inequality, which allows to pass from the monotonicity and decay to zero of the relative fractional Fisher information in the standardized sum to the decay to zero in relative entropy with an explicit decay rate.

  9. Logical errors on proving theorem

    NASA Astrophysics Data System (ADS)

    Sari, C. K.; Waluyo, M.; Ainur, C. M.; Darmaningsih, E. N.

    2018-01-01

    In tertiary level, students of mathematics education department attend some abstract courses, such as Introduction to Real Analysis which needs an ability to prove mathematical statements almost all the time. In fact, many students have not mastered this ability appropriately. In their Introduction to Real Analysis tests, even though they completed their proof of theorems, they achieved an unsatisfactory score. They thought that they succeeded, but their proof was not valid. In this study, a qualitative research was conducted to describe logical errors that students made in proving the theorem of cluster point. The theorem was given to 54 students. Misconceptions on understanding the definitions seem to occur within cluster point, limit of function, and limit of sequences. The habit of using routine symbol might cause these misconceptions. Suggestions to deal with this condition are described as well.

  10. Quantization of Chirikov Map and Quantum KAM Theorem.

    NASA Astrophysics Data System (ADS)

    Shi, Kang-Jie

    KAM theorem is one of the most important theorems in classical nonlinear dynamics and chaos. To extend KAM theorem to the regime of quantum mechanics, we first study the quantum Chirikov map, whose classical counterpart provides a good example of KAM theorem. Under resonance condition 2pihbar = 1/N, we obtain the eigenstates of the evolution operator of this system. We find that the wave functions in the coherent state representation (CSR) are very similar to the classical trajectories. In particular, some of these wave functions have wall-like structure at the locations of classical KAM curves. We also find that a local average is necessary for a Wigner function to approach its classical limit in the phase space. We then study the general problem theoretically. Under similar conditions for establishing the classical KAM theorem, we obtain a quantum extension of KAM theorem. By constructing successive unitary transformations, we can greatly reduce the perturbation part of a near-integrable Hamiltonian system in a region associated with a Diophantine number {rm W}_{o}. This reduction is restricted only by the magnitude of hbar.. We can summarize our results as follows: In the CSR of a nearly integrable quantum system, associated with a Diophantine number {rm W}_ {o}, there is a band near the corresponding KAM torus of the classical limit of the system. In this band, a Gaussian wave packet moves quasi-periodically (and remain close to the KAM torus) for a long time, with possible diffusion in both the size and the shape of its wave packet. The upper bound of the tunnelling rate out of this band for the wave packet can be made much smaller than any given power of hbar, if the original perturbation is sufficiently small (but independent of hbar). When hbarto 0, we reproduce the classical KAM theorem. For most near-integrable systems the eigenstate wave function in the above band can either have a wall -like structure or have a vanishing amplitude. These conclusions agree with the numerical results of the quantum Chirikov map.

  11. Sanov and central limit theorems for output statistics of quantum Markov chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horssen, Merlijn van, E-mail: merlijn.vanhorssen@nottingham.ac.uk; Guţă, Mădălin, E-mail: madalin.guta@nottingham.ac.uk

    2015-02-15

    In this paper, we consider the statistics of repeated measurements on the output of a quantum Markov chain. We establish a large deviations result analogous to Sanov’s theorem for the multi-site empirical measure associated to finite sequences of consecutive outcomes of a classical stochastic process. Our result relies on the construction of an extended quantum transition operator (which keeps track of previous outcomes) in terms of which we compute moment generating functions, and whose spectral radius is related to the large deviations rate function. As a corollary to this, we obtain a central limit theorem for the empirical measure. Suchmore » higher level statistics may be used to uncover critical behaviour such as dynamical phase transitions, which are not captured by lower level statistics such as the sample mean. As a step in this direction, we give an example of a finite system whose level-1 (empirical mean) rate function is independent of a model parameter while the level-2 (empirical measure) rate is not.« less

  12. Illustrating the Central Limit Theorem through Microsoft Excel Simulations

    ERIC Educational Resources Information Center

    Moen, David H.; Powell, John E.

    2005-01-01

    Using Microsoft Excel, several interactive, computerized learning modules are developed to demonstrate the Central Limit Theorem. These modules are used in the classroom to enhance the comprehension of this theorem. The Central Limit Theorem is a very important theorem in statistics, and yet because it is not intuitively obvious, statistics…

  13. Four Theorems on the Psychometric Function

    PubMed Central

    May, Keith A.; Solomon, Joshua A.

    2013-01-01

    In a 2-alternative forced-choice (2AFC) discrimination task, observers choose which of two stimuli has the higher value. The psychometric function for this task gives the probability of a correct response for a given stimulus difference, . This paper proves four theorems about the psychometric function. Assuming the observer applies a transducer and adds noise, Theorem 1 derives a convenient general expression for the psychometric function. Discrimination data are often fitted with a Weibull function. Theorem 2 proves that the Weibull “slope” parameter, , can be approximated by , where is the of the Weibull function that fits best to the cumulative noise distribution, and depends on the transducer. We derive general expressions for and , from which we derive expressions for specific cases. One case that follows naturally from our general analysis is Pelli's finding that, when , . We also consider two limiting cases. Theorem 3 proves that, as sensitivity improves, 2AFC performance will usually approach that for a linear transducer, whatever the actual transducer; we show that this does not apply at signal levels where the transducer gradient is zero, which explains why it does not apply to contrast detection. Theorem 4 proves that, when the exponent of a power-function transducer approaches zero, 2AFC performance approaches that of a logarithmic transducer. We show that the power-function exponents of 0.4–0.5 fitted to suprathreshold contrast discrimination data are close enough to zero for the fitted psychometric function to be practically indistinguishable from that of a log transducer. Finally, Weibull reflects the shape of the noise distribution, and we used our results to assess the recent claim that internal noise has higher kurtosis than a Gaussian. Our analysis of for contrast discrimination suggests that, if internal noise is stimulus-independent, it has lower kurtosis than a Gaussian. PMID:24124456

  14. Quantum calculus of classical vortex images, integrable models and quantum states

    NASA Astrophysics Data System (ADS)

    Pashaev, Oktay K.

    2016-10-01

    From two circle theorem described in terms of q-periodic functions, in the limit q→1 we have derived the strip theorem and the stream function for N vortex problem. For regular N-vortex polygon we find compact expression for the velocity of uniform rotation and show that it represents a nonlinear oscillator. We describe q-dispersive extensions of the linear and nonlinear Schrodinger equations, as well as the q-semiclassical expansions in terms of Bernoulli and Euler polynomials. Different kind of q-analytic functions are introduced, including the pq-analytic and the golden analytic functions.

  15. Does Conceptual Understanding of Limit Partially Lead Students to Misconceptions?

    NASA Astrophysics Data System (ADS)

    Mulyono, B.; Hapizah

    2017-09-01

    This article talks about the result of preliminary research of my dissertation, which will investigate student’s retention of conceptual understanding. In my preliminary research, I surveyed 73 students of mathematics education program by giving some questions to test their retention of conceptual understanding of limits. Based on the results of analyzing of students’ answers I conclude that most of the students have problems with their retention of conceptual understanding and they also have misconception of limits. The first misconception I identified is that students always used the substitution method to determine a limit of a function at a point, but they did not check whether the function is continue or not at the point. It means that they only use the substitution theorem partially, because they do not consider that the substitution theorem \\mathop{{lim}}\\limits\\text{x\\to \\text{c}}f(x)=f(c) works only if f(x) is defined at χ = c. The other misconception identified is that some students always think there must be available of variables χ in a function to determine the limit of the function. I conjecture that conceptual understanding of limit partially leads students to misconceptions.

  16. Four theorems on the psychometric function.

    PubMed

    May, Keith A; Solomon, Joshua A

    2013-01-01

    In a 2-alternative forced-choice (2AFC) discrimination task, observers choose which of two stimuli has the higher value. The psychometric function for this task gives the probability of a correct response for a given stimulus difference, Δx. This paper proves four theorems about the psychometric function. Assuming the observer applies a transducer and adds noise, Theorem 1 derives a convenient general expression for the psychometric function. Discrimination data are often fitted with a Weibull function. Theorem 2 proves that the Weibull "slope" parameter, β, can be approximated by β(Noise) x β(Transducer), where β(Noise) is the β of the Weibull function that fits best to the cumulative noise distribution, and β(Transducer) depends on the transducer. We derive general expressions for β(Noise) and β(Transducer), from which we derive expressions for specific cases. One case that follows naturally from our general analysis is Pelli's finding that, when d' ∝ (Δx)(b), β ≈ β(Noise) x b. We also consider two limiting cases. Theorem 3 proves that, as sensitivity improves, 2AFC performance will usually approach that for a linear transducer, whatever the actual transducer; we show that this does not apply at signal levels where the transducer gradient is zero, which explains why it does not apply to contrast detection. Theorem 4 proves that, when the exponent of a power-function transducer approaches zero, 2AFC performance approaches that of a logarithmic transducer. We show that the power-function exponents of 0.4-0.5 fitted to suprathreshold contrast discrimination data are close enough to zero for the fitted psychometric function to be practically indistinguishable from that of a log transducer. Finally, Weibull β reflects the shape of the noise distribution, and we used our results to assess the recent claim that internal noise has higher kurtosis than a Gaussian. Our analysis of β for contrast discrimination suggests that, if internal noise is stimulus-independent, it has lower kurtosis than a Gaussian.

  17. Random Walks on Cartesian Products of Certain Nonamenable Groups and Integer Lattices

    NASA Astrophysics Data System (ADS)

    Vishnepolsky, Rachel

    A random walk on a discrete group satisfies a local limit theorem with power law exponent \\alpha if the return probabilities follow the asymptotic law. P{ return to starting point after n steps } ˜ Crhonn-alpha.. A group has a universal local limit theorem if all random walks on the group with finitely supported step distributions obey a local limit theorem with the same power law exponent. Given two groups that obey universal local limit theorems, it is not known whether their cartesian product also has a universal local limit theorem. We settle the question affirmatively in one case, by considering a random walk on the cartesian product of a nonamenable group whose Cayley graph is a tree, and the integer lattice. As corollaries, we derive large deviations estimates and a central limit theorem.

  18. Math Majors' Visual Proofs in a Dynamic Environment: The Case of Limit of a Function and the ?-d Approach

    ERIC Educational Resources Information Center

    Caglayan, Günhan

    2015-01-01

    Despite few limitations, GeoGebra as a dynamic geometry software stood as a powerful instrument in helping university math majors understand, explore, and gain experiences in visualizing the limits of functions and the ?-d formalism. During the process of visualizing a theorem, the order mattered in the sequence of constituents. Students made use…

  19. Optimal Keno Strategies and the Central Limit Theorem

    ERIC Educational Resources Information Center

    Johnson, Roger W.

    2006-01-01

    For the casino game Keno we determine optimal playing strategies. To decide such optimal strategies, both exact (hypergeometric) and approximate probability calculations are used. The approximate calculations are obtained via the Central Limit Theorem and simulation, and an important lesson about the application of the Central Limit Theorem is…

  20. Understanding band gaps of solids in generalized Kohn-Sham theory.

    PubMed

    Perdew, John P; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K U; Scheffler, Matthias; Scuseria, Gustavo E; Henderson, Thomas M; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas

    2017-03-14

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn-Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations.

  1. Understanding band gaps of solids in generalized Kohn–Sham theory

    PubMed Central

    Perdew, John P.; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K. U.; Scheffler, Matthias; Scuseria, Gustavo E.; Henderson, Thomas M.; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas

    2017-01-01

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn–Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations. PMID:28265085

  2. Visualizing the Central Limit Theorem through Simulation

    ERIC Educational Resources Information Center

    Ruggieri, Eric

    2016-01-01

    The Central Limit Theorem is one of the most important concepts taught in an introductory statistics course, however, it may be the least understood by students. Sure, students can plug numbers into a formula and solve problems, but conceptually, do they really understand what the Central Limit Theorem is saying? This paper describes a simulation…

  3. On Leighton's comparison theorem

    NASA Astrophysics Data System (ADS)

    Ghatasheh, Ahmed; Weikard, Rudi

    2017-06-01

    We give a simple proof of a fairly flexible comparison theorem for equations of the type -(p (u‧ + su)) ‧ + rp (u‧ + su) + qu = 0 on a finite interval where 1 / p, r, s, and q are real and integrable. Flexibility is provided by two functions which may be chosen freely (within limits) according to the situation at hand. We illustrate this by presenting some examples and special cases which include Schrödinger equations with distributional potentials as well as Jacobi difference equations.

  4. On the addition theorem of spherical functions

    NASA Astrophysics Data System (ADS)

    Shkodrov, V. G.

    The addition theorem of spherical functions is expressed in two reference systems, viz., an inertial system and a system rigidly fixed to a planet. A generalized addition theorem of spherical functions and a particular addition theorem for the rigidly fixed system are derived. The results are applied to the theory of a planetary potential.

  5. Central Limit Theorem for Exponentially Quasi-local Statistics of Spin Models on Cayley Graphs

    NASA Astrophysics Data System (ADS)

    Reddy, Tulasi Ram; Vadlamani, Sreekar; Yogeshwaran, D.

    2018-04-01

    Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs taking values in a countable space, but under the stronger assumptions of α -mixing (for local statistics) and exponential α -mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.

  6. A Note on a Sampling Theorem for Functions over GF(q)n Domain

    NASA Astrophysics Data System (ADS)

    Ukita, Yoshifumi; Saito, Tomohiko; Matsushima, Toshiyasu; Hirasawa, Shigeichi

    In digital signal processing, the sampling theorem states that any real valued function ƒ can be reconstructed from a sequence of values of ƒ that are discretely sampled with a frequency at least twice as high as the maximum frequency of the spectrum of ƒ. This theorem can also be applied to functions over finite domain. Then, the range of frequencies of ƒ can be expressed in more detail by using a bounded set instead of the maximum frequency. A function whose range of frequencies is confined to a bounded set is referred to as bandlimited function. And a sampling theorem for bandlimited functions over Boolean domain has been obtained. Here, it is important to obtain a sampling theorem for bandlimited functions not only over Boolean domain (GF(q)n domain) but also over GF(q)n domain, where q is a prime power and GF(q) is Galois field of order q. For example, in experimental designs, although the model can be expressed as a linear combination of the Fourier basis functions and the levels of each factor can be represented by GF(q)n, the number of levels often take a value greater than two. However, the sampling theorem for bandlimited functions over GF(q)n domain has not been obtained. On the other hand, the sampling points are closely related to the codewords of a linear code. However, the relation between the parity check matrix of a linear code and any distinct error vectors has not been obtained, although it is necessary for understanding the meaning of the sampling theorem for bandlimited functions. In this paper, we generalize the sampling theorem for bandlimited functions over Boolean domain to a sampling theorem for bandlimited functions over GF(q)n domain. We also present a theorem for the relation between the parity check matrix of a linear code and any distinct error vectors. Lastly, we clarify the relation between the sampling theorem for functions over GF(q)n domain and linear codes.

  7. Math majors' visual proofs in a dynamic environment: the case of limit of a function and the ɛ-δ approach

    NASA Astrophysics Data System (ADS)

    Caglayan, Günhan

    2015-08-01

    Despite few limitations, GeoGebra as a dynamic geometry software stood as a powerful instrument in helping university math majors understand, explore, and gain experiences in visualizing the limits of functions and the ɛ - δ formalism. During the process of visualizing a theorem, the order mattered in the sequence of constituents. Students made use of such rich constituents as finger-hand gestures and cursor gestures in an attempt to keep a record of visual demonstration in progress, while being aware of the interrelationships among these constituents and the transformational aspect of the visually proving process. Covariational reasoning along with interval mapping structures proved to be the key constituents in the visualizing and sense-making of a limit theorem using the delta-epsilon formalism. Pedagogical approaches and teaching strategies based on experimental mathematics - mindtool - consituential visual proofs trio would permit students to study, construct, and meaningfully connect the new knowledge to the previously mastered concepts and skills in a manner that would make sense for them.

  8. The distribution of the zeros of the Hermite-Padé polynomials for a pair of functions forming a Nikishin system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakhmanov, E A; Suetin, S P

    2013-09-30

    The distribution of the zeros of the Hermite-Padé polynomials of the first kind for a pair of functions with an arbitrary even number of common branch points lying on the real axis is investigated under the assumption that this pair of functions forms a generalized complex Nikishin system. It is proved (Theorem 1) that the zeros have a limiting distribution, which coincides with the equilibrium measure of a certain compact set having the S-property in a harmonic external field. The existence problem for S-compact sets is solved in Theorem 2. The main idea of the proof of Theorem 1 consists in replacing a vector equilibrium problem in potentialmore » theory by a scalar problem with an external field and then using the general Gonchar-Rakhmanov method, which was worked out in the solution of the '1/9'-conjecture. The relation of the result obtained here to some results and conjectures due to Nuttall is discussed. Bibliography: 51 titles.« less

  9. Thermal transport in the Falicov-Kimball model

    NASA Astrophysics Data System (ADS)

    Freericks, J. K.; Zlatić, V.

    2001-12-01

    We prove the Jonson-Mahan theorem for the thermopower of the Falicov-Kimball model by solving explicitly for correlation functions in the large dimensional limit. We prove a similar result for the thermal conductivity. We separate the results for thermal transport into the pieces of the heat current that arise from the kinetic energy and those that arise from the potential energy. Our method of proof is specific to the Falicov-Kimball model, but illustrates the near cancellations between the kinetic- and potential-energy pieces of the heat current implied by the Jonson-Mahan theorem.

  10. Power-law exponent of the Bouchaud-Mézard model on regular random networks

    NASA Astrophysics Data System (ADS)

    Ichinomiya, Takashi

    2013-07-01

    We study the Bouchaud-Mézard model on a regular random network. By assuming adiabaticity and independency, and utilizing the generalized central limit theorem and the Tauberian theorem, we derive an equation that determines the exponent of the probability distribution function of the wealth as x→∞. The analysis shows that the exponent can be smaller than 2, while a mean-field analysis always gives the exponent as being larger than 2. The results of our analysis are shown to be in good agreement with those of the numerical simulations.

  11. The Lyapunov-Krasovskii theorem and a sufficient criterion for local stability of isochronal synchronization in networks of delay-coupled oscillators

    NASA Astrophysics Data System (ADS)

    Grzybowski, J. M. V.; Macau, E. E. N.; Yoneyama, T.

    2017-05-01

    This paper presents a self-contained framework for the stability assessment of isochronal synchronization in networks of chaotic and limit-cycle oscillators. The results were based on the Lyapunov-Krasovskii theorem and they establish a sufficient condition for local synchronization stability of as a function of the system and network parameters. With this in mind, a network of mutually delay-coupled oscillators subject to direct self-coupling is considered and then the resulting error equations are block-diagonalized for the purpose of studying their stability. These error equations are evaluated by means of analytical stability results derived from the Lyapunov-Krasovskii theorem. The proposed approach is shown to be a feasible option for the investigation of local stability of isochronal synchronization for a variety of oscillators coupled through linear functions of the state variables under a given undirected graph structure. This ultimately permits the systematic identification of stability regions within the high-dimensionality of the network parameter space. Examples of applications of the results to a number of networks of delay-coupled chaotic and limit-cycle oscillators are provided, such as Lorenz, Rössler, Cubic Chua's circuit, Van der Pol oscillator and the Hindmarsh-Rose neuron.

  12. Chemical Equilibrium and Polynomial Equations: Beware of Roots.

    ERIC Educational Resources Information Center

    Smith, William R.; Missen, Ronald W.

    1989-01-01

    Describes two easily applied mathematical theorems, Budan's rule and Rolle's theorem, that in addition to Descartes's rule of signs and intermediate-value theorem, are useful in chemical equilibrium. Provides examples that illustrate the use of all four theorems. Discusses limitations of the polynomial equation representation of chemical…

  13. Virtual continuity of measurable functions and its applications

    NASA Astrophysics Data System (ADS)

    Vershik, A. M.; Zatitskii, P. B.; Petrov, F. V.

    2014-12-01

    A classical theorem of Luzin states that a measurable function of one real variable is `almost' continuous. For measurable functions of several variables the analogous statement (continuity on a product of sets having almost full measure) does not hold in general. The search for a correct analogue of Luzin's theorem leads to a notion of virtually continuous functions of several variables. This apparently new notion implicitly appears in the statements of embedding theorems and trace theorems for Sobolev spaces. In fact it reveals the nature of such theorems as statements about virtual continuity. The authors' results imply that under the conditions of Sobolev theorems there is a well-defined integration of a function with respect to a wide class of singular measures, including measures concentrated on submanifolds. The notion of virtual continuity is also used for the classification of measurable functions of several variables and in some questions on dynamical systems, the theory of polymorphisms, and bistochastic measures. In this paper the necessary definitions and properties of admissible metrics are recalled, several definitions of virtual continuity are given, and some applications are discussed. Bibliography: 24 titles.

  14. A Microsoft® Excel Simulation Illustrating the Central Limit Theorem's Appropriateness for Comparing the Difference between the Means of Any Two Populations

    ERIC Educational Resources Information Center

    Moen, David H.; Powell, John E.

    2008-01-01

    Using Microsoft® Excel, several interactive, computerized learning modules are developed to illustrate the Central Limit Theorem's appropriateness for comparing the difference between the means of any two populations. These modules are used in the classroom to enhance the comprehension of this theorem as well as the concepts that provide the…

  15. Cosmological singularity theorems and splitting theorems for N-Bakry-Émery spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolgar, Eric, E-mail: ewoolgar@ualberta.ca; Wylie, William, E-mail: wwylie@syr.edu

    We study Lorentzian manifolds with a weight function such that the N-Bakry-Émery tensor is bounded below. Such spacetimes arise in the physics of scalar-tensor gravitation theories, including Brans-Dicke theory, theories with Kaluza-Klein dimensional reduction, and low-energy approximations to string theory. In the “pure Bakry-Émery” N = ∞ case with f uniformly bounded above and initial data suitably bounded, cosmological-type singularity theorems are known, as are splitting theorems which determine the geometry of timelike geodesically complete spacetimes for which the bound on the initial data is borderline violated. We extend these results in a number of ways. We are able tomore » extend the singularity theorems to finite N-values N ∈ (n, ∞) and N ∈ (−∞, 1]. In the N ∈ (n, ∞) case, no bound on f is required, while for N ∈ (−∞, 1] and N = ∞, we are able to replace the boundedness of f by a weaker condition on the integral of f along future-inextendible timelike geodesics. The splitting theorems extend similarly, but when N = 1, the splitting is only that of a warped product for all cases considered. A similar limited loss of rigidity has been observed in a prior work on the N-Bakry-Émery curvature in Riemannian signature when N = 1 and appears to be a general feature.« less

  16. Cosmological singularity theorems and splitting theorems for N-Bakry-Émery spacetimes

    NASA Astrophysics Data System (ADS)

    Woolgar, Eric; Wylie, William

    2016-02-01

    We study Lorentzian manifolds with a weight function such that the N-Bakry-Émery tensor is bounded below. Such spacetimes arise in the physics of scalar-tensor gravitation theories, including Brans-Dicke theory, theories with Kaluza-Klein dimensional reduction, and low-energy approximations to string theory. In the "pure Bakry-Émery" N = ∞ case with f uniformly bounded above and initial data suitably bounded, cosmological-type singularity theorems are known, as are splitting theorems which determine the geometry of timelike geodesically complete spacetimes for which the bound on the initial data is borderline violated. We extend these results in a number of ways. We are able to extend the singularity theorems to finite N-values N ∈ (n, ∞) and N ∈ (-∞, 1]. In the N ∈ (n, ∞) case, no bound on f is required, while for N ∈ (-∞, 1] and N = ∞, we are able to replace the boundedness of f by a weaker condition on the integral of f along future-inextendible timelike geodesics. The splitting theorems extend similarly, but when N = 1, the splitting is only that of a warped product for all cases considered. A similar limited loss of rigidity has been observed in a prior work on the N-Bakry-Émery curvature in Riemannian signature when N = 1 and appears to be a general feature.

  17. Central Limit Theorems for Linear Statistics of Heavy Tailed Random Matrices

    NASA Astrophysics Data System (ADS)

    Benaych-Georges, Florent; Guionnet, Alice; Male, Camille

    2014-07-01

    We show central limit theorems (CLT) for the linear statistics of symmetric matrices with independent heavy tailed entries, including entries in the domain of attraction of α-stable laws and entries with moments exploding with the dimension, as in the adjacency matrices of Erdös-Rényi graphs. For the second model, we also prove a central limit theorem of the moments of its empirical eigenvalues distribution. The limit laws are Gaussian, but unlike the case of standard Wigner matrices, the normalization is the one of the classical CLT for independent random variables.

  18. A simple low-computation-intensity model for approximating the distribution function of a sum of non-identical lognormals for financial applications

    NASA Astrophysics Data System (ADS)

    Messica, A.

    2016-10-01

    The probability distribution function of a weighted sum of non-identical lognormal random variables is required in various fields of science and engineering and specifically in finance for portfolio management as well as exotic options valuation. Unfortunately, it has no known closed form and therefore has to be approximated. Most of the approximations presented to date are complex as well as complicated for implementation. This paper presents a simple, and easy to implement, approximation method via modified moments matching and a polynomial asymptotic series expansion correction for a central limit theorem of a finite sum. The method results in an intuitively-appealing and computation-efficient approximation for a finite sum of lognormals of at least ten summands and naturally improves as the number of summands increases. The accuracy of the method is tested against the results of Monte Carlo simulationsand also compared against the standard central limit theorem andthe commonly practiced Markowitz' portfolio equations.

  19. Fluctuation theorem: A critical review

    NASA Astrophysics Data System (ADS)

    Malek Mansour, M.; Baras, F.

    2017-10-01

    Fluctuation theorem for entropy production is revisited in the framework of stochastic processes. The applicability of the fluctuation theorem to physico-chemical systems and the resulting stochastic thermodynamics were analyzed. Some unexpected limitations are highlighted in the context of jump Markov processes. We have shown that these limitations handicap the ability of the resulting stochastic thermodynamics to correctly describe the state of non-equilibrium systems in terms of the thermodynamic properties of individual processes therein. Finally, we considered the case of diffusion processes and proved that the fluctuation theorem for entropy production becomes irrelevant at the stationary state in the case of one variable systems.

  20. On Euler's Theorem for Homogeneous Functions and Proofs Thereof.

    ERIC Educational Resources Information Center

    Tykodi, R. J.

    1982-01-01

    Euler's theorem for homogenous functions is useful when developing thermodynamic distinction between extensive and intensive variables of state and when deriving the Gibbs-Duhem relation. Discusses Euler's theorem and thermodynamic applications. Includes six-step instructional strategy for introducing the material to students. (Author/JN)

  1. Characterization of Generalized Young Measures Generated by Symmetric Gradients

    NASA Astrophysics Data System (ADS)

    De Philippis, Guido; Rindler, Filip

    2017-06-01

    This work establishes a characterization theorem for (generalized) Young measures generated by symmetric derivatives of functions of bounded deformation (BD) in the spirit of the classical Kinderlehrer-Pedregal theorem. Our result places such Young measures in duality with symmetric-quasiconvex functions with linear growth. The "local" proof strategy combines blow-up arguments with the singular structure theorem in BD (the analogue of Alberti's rank-one theorem in BV), which was recently proved by the authors. As an application of our characterization theorem we show how an atomic part in a BD-Young measure can be split off in generating sequences.

  2. Symmetry for the duration of entropy-consuming intervals.

    PubMed

    García-García, Reinaldo; Domínguez, Daniel

    2014-05-01

    We introduce the violation fraction υ as the cumulative fraction of time that a mesoscopic system spends consuming entropy at a single trajectory in phase space. We show that the fluctuations of this quantity are described in terms of a symmetry relation reminiscent of fluctuation theorems, which involve a function Φ, which can be interpreted as an entropy associated with the fluctuations of the violation fraction. The function Φ, when evaluated for arbitrary stochastic realizations of the violation fraction, is odd upon the symmetry transformations that are relevant for the associated stochastic entropy production. This fact leads to a detailed fluctuation theorem for the probability density function of Φ. We study the steady-state limit of this symmetry in the paradigmatic case of a colloidal particle dragged by optical tweezers through an aqueous solution. Finally, we briefly discuss possible applications of our results for the estimation of free-energy differences from single-molecule experiments.

  3. Some limit theorems for ratios of order statistics from uniform random variables.

    PubMed

    Xu, Shou-Fang; Miao, Yu

    2017-01-01

    In this paper, we study the ratios of order statistics based on samples drawn from uniform distribution and establish some limit properties such as the almost sure central limit theorem, the large deviation principle, the Marcinkiewicz-Zygmund law of large numbers and complete convergence.

  4. Bayesian Probability Theory

    NASA Astrophysics Data System (ADS)

    von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo

    2014-06-01

    Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.

  5. Limit Theorems for Dispersing Billiards with Cusps

    NASA Astrophysics Data System (ADS)

    Bálint, P.; Chernov, N.; Dolgopyat, D.

    2011-12-01

    Dispersing billiards with cusps are deterministic dynamical systems with a mild degree of chaos, exhibiting "intermittent" behavior that alternates between regular and chaotic patterns. Their statistical properties are therefore weak and delicate. They are characterized by a slow (power-law) decay of correlations, and as a result the classical central limit theorem fails. We prove that a non-classical central limit theorem holds, with a scaling factor of {sqrt{nlog n}} replacing the standard {sqrt{n}} . We also derive the respective Weak Invariance Principle, and we identify the class of observables for which the classical CLT still holds.

  6. Does the central limit theorem always apply to phase noise? Some implications for radar problems

    NASA Astrophysics Data System (ADS)

    Gray, John E.; Addison, Stephen R.

    2017-05-01

    The phase noise problem or Rayleigh problem occurs in all aspects of radar. It is an effect that a radar engineer or physicist always has to take into account as part of a design or in attempt to characterize the physics of a problem such as reverberation. Normally, the mathematical difficulties of phase noise characterization are avoided by assuming the phase noise probability distribution function (PDF) is uniformly distributed, and the Central Limit Theorem (CLT) is invoked to argue that the superposition of relatively few random components obey the CLT and hence the superposition can be treated as a normal distribution. By formalizing the characterization of phase noise (see Gray and Alouani) for an individual random variable, the summation of identically distributed random variables is the product of multiple characteristic functions (CF). The product of the CFs for phase noise has a CF that can be analyzed to understand the limitations CLT when applied to phase noise. We mirror Kolmogorov's original proof as discussed in Papoulis to show the CLT can break down for receivers that gather limited amounts of data as well as the circumstances under which it can fail for certain phase noise distributions. We then discuss the consequences of this for matched filter design as well the implications for some physics problems.

  7. The Variation Theorem Applied to H-2+: A Simple Quantum Chemistry Computer Project

    ERIC Educational Resources Information Center

    Robiette, Alan G.

    1975-01-01

    Describes a student project which requires limited knowledge of Fortran and only minimal computing resources. The results illustrate such important principles of quantum mechanics as the variation theorem and the virial theorem. Presents sample calculations and the subprogram for energy calculations. (GS)

  8. Generalized virial theorem and pressure relation for a strongly correlated Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shina

    2008-12-15

    For a two-component Fermi gas in the unitarity limit (i.e., with infinite scattering length), there is a well-known virial theorem, first shown by J.E. Thomas et al. A few people rederived this result, and extended it to few-body systems, but their results are all restricted to the unitarity limit. Here I show that there is a generalized virial theorem for FINITE scattering lengths. I also generalize an exact result concerning the pressure to the case of imbalanced populations.

  9. Aspects of AdS/CFT: Conformal Deformations and the Goldstone Equivalence Theorem

    NASA Astrophysics Data System (ADS)

    Cantrell, Sean Andrew

    The AdS/CFT correspondence provides a map from the states of theories situated in AdSd+1 to those in dual conformal theories in a d-dimensional space. The correspondence can be used to establish certain universal properties of some theories in one space by examining the behave of general objects in the other. In this thesis, we develop various formal aspects of AdS/CFT. Conformal deformations manifest in the AdS/CFT correspondence as boundary conditions on the AdS field. Heretofore, double-trace deformations have been the primary focus in this context. To better understand multitrace deformations, we revisit the relationship between the generating AdS partition function for a free bulk theory and the boundary CFT partition function subject to arbitrary conformal deformations. The procedure leads us to a formalism that constructs bulk fields from boundary operators. We independently replicate the holographic RG flow narrative to go on to interpret the brane used to regulate the AdS theory as a renormalization scale. The scale-dependence of the dilatation spectrum of a boundary theory in the presence of general deformations can be thus understood on the AdS side using this formalism. The Goldstone equivalence theorem allows one to relate scattering amplitudes of massive gauge fields to those of scalar fields in the limit of large scattering energies. We generalize this theorem under the framework of the AdS/CFT correspondence. First, we obtain an expression of the equivalence theorem in terms of correlation functions of creation and annihilation operators by using an AdS wave function approach to the AdS/CFT dictionary. It is shown that the divergence of the non-conserved conformal current dual to the bulk gauge field is approximately primary when computing correlators for theories in which the masses of all the exchanged particles are sufficiently large. The results are then generalized to higher spin fields. We then go on to generalize the theorem using conformal blocks in two and four-dimensional CFTs. We show that when the scaling dimensions of the exchanged operators are large compared to both their spins and the dimension of the current, the conformal blocks satisfy an equivalence theorem.

  10. Steady states of OQBM: Central Limit Theorem, Gaussian and non-Gaussian behavior

    NASA Astrophysics Data System (ADS)

    Petruccione, Francesco; Sinayskiy, Ilya

    Open Quantum Brownian Motion (OQBM) describes a Brownian particle with an additional internal quantum degree of freedom. Originally, it was introduced as a scaling limit of Open Quantum Walks (OQWs). Recently, it was noted, that for the model of free OQBM with a two-level system as an internal degree of freedom and decoherent coupling to a dissipative environment, one could use weak external driving of the internal degree of freedom to manipulate the steady-state position of the walker. This observation establishes a useful connection between controllable parameters of the OQBM, e.g. driving strengths and magnitude of detuning, and its steady state properties. Although OQWs satisfy a central limit theorem (CLT), it is known, that OQBM, in general, does not. The aim of this work is to derive steady states for some particular OQBMs and observe possible transitions from Gaussian to non-Gaussian behavior depending on the choice of quantum coin and as a function of diffusion coefficient and dissipation strength.

  11. Generalized Browder's and Weyl's theorems for Banach space operators

    NASA Astrophysics Data System (ADS)

    Curto, Raúl E.; Han, Young Min

    2007-12-01

    We find necessary and sufficient conditions for a Banach space operator T to satisfy the generalized Browder's theorem. We also prove that the spectral mapping theorem holds for the Drazin spectrum and for analytic functions on an open neighborhood of [sigma](T). As applications, we show that if T is algebraically M-hyponormal, or if T is algebraically paranormal, then the generalized Weyl's theorem holds for f(T), where f[set membership, variant]H((T)), the space of functions analytic on an open neighborhood of [sigma](T). We also show that if T is reduced by each of its eigenspaces, then the generalized Browder's theorem holds for f(T), for each f[set membership, variant]H([sigma](T)).

  12. On Nonlinear Functionals of Random Spherical Eigenfunctions

    NASA Astrophysics Data System (ADS)

    Marinucci, Domenico; Wigman, Igor

    2014-05-01

    We prove central limit theorems and Stein-like bounds for the asymptotic behaviour of nonlinear functionals of spherical Gaussian eigenfunctions. Our investigation combines asymptotic analysis of higher order moments for Legendre polynomials and, in addition, recent results on Malliavin calculus and total variation bounds for Gaussian subordinated fields. We discuss applications to geometric functionals like the defect and invariant statistics, e.g., polyspectra of isotropic spherical random fields. Both of these have relevance for applications, especially in an astrophysical environment.

  13. Statistical Mechanics and Applications in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Di Castro, Carlo; Raimondi, Roberto

    2015-08-01

    Preface; 1. Thermodynamics: a brief overview; 2. Kinetics; 3. From Boltzmann to Gibbs; 4. More ensembles; 5. The thermodynamic limit and its thermodynamic stability; 6. Density matrix and quantum statistical mechanics; 7. The quantum gases; 8. Mean-field theories and critical phenomena; 9. Second quantization and Hartree-Fock approximation; 10. Linear response and fluctuation-dissipation theorem in quantum systems: equilibrium and small deviations; 11. Brownian motion and transport in disordered systems; 12. Fermi liquids; 13. The Landau theory of the second order phase transitions; 14. The Landau-Wilson model for critical phenomena; 15. Superfluidity and superconductivity; 16. The scaling theory; 17. The renormalization group approach; 18. Thermal Green functions; 19. The microscopic foundations of Fermi liquids; 20. The Luttinger liquid; 21. Quantum interference effects in disordered electron systems; Appendix A. The central limit theorem; Appendix B. Some useful properties of the Euler Gamma function; Appendix C. Proof of the second theorem of Yang and Lee; Appendix D. The most probable distribution for the quantum gases; Appendix E. Fermi-Dirac and Bose-Einstein integrals; Appendix F. The Fermi gas in a uniform magnetic field: Landau diamagnetism; Appendix G. Ising and gas-lattice models; Appendix H. Sum over discrete Matsubara frequencies; Appendix I. Hydrodynamics of the two-fluid model of superfluidity; Appendix J. The Cooper problem in the theory of superconductivity; Appendix K. Superconductive fluctuations phenomena; Appendix L. Diagrammatic aspects of the exact solution of the Tomonaga Luttinger model; Appendix M. Details on the theory of the disordered Fermi liquid; References; Author index; Index.

  14. A Spectral Approach for Quenched Limit Theorems for Random Expanding Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Dragičević, D.; Froyland, G.; González-Tokman, C.; Vaienti, S.

    2018-06-01

    We prove quenched versions of (i) a large deviations principle (LDP), (ii) a central limit theorem (CLT), and (iii) a local central limit theorem for non-autonomous dynamical systems. A key advance is the extension of the spectral method, commonly used in limit laws for deterministic maps, to the general random setting. We achieve this via multiplicative ergodic theory and the development of a general framework to control the regularity of Lyapunov exponents of twisted transfer operator cocycles with respect to a twist parameter. While some versions of the LDP and CLT have previously been proved with other techniques, the local central limit theorem is, to our knowledge, a completely new result, and one that demonstrates the strength of our method. Applications include non-autonomous (piecewise) expanding maps, defined by random compositions of the form {T_{σ^{n-1} ω} circ\\cdotscirc T_{σω}circ T_ω}. An important aspect of our results is that we only assume ergodicity and invertibility of the random driving {σ:Ω\\toΩ} ; in particular no expansivity or mixing properties are required.

  15. Limit Theory for Panel Data Models with Cross Sectional Dependence and Sequential Exogeneity.

    PubMed

    Kuersteiner, Guido M; Prucha, Ingmar R

    2013-06-01

    The paper derives a general Central Limit Theorem (CLT) and asymptotic distributions for sample moments related to panel data models with large n . The results allow for the data to be cross sectionally dependent, while at the same time allowing the regressors to be only sequentially rather than strictly exogenous. The setup is sufficiently general to accommodate situations where cross sectional dependence stems from spatial interactions and/or from the presence of common factors. The latter leads to the need for random norming. The limit theorem for sample moments is derived by showing that the moment conditions can be recast such that a martingale difference array central limit theorem can be applied. We prove such a central limit theorem by first extending results for stable convergence in Hall and Hedye (1980) to non-nested martingale arrays relevant for our applications. We illustrate our result by establishing a generalized estimation theory for GMM estimators of a fixed effect panel model without imposing i.i.d. or strict exogeneity conditions. We also discuss a class of Maximum Likelihood (ML) estimators that can be analyzed using our CLT.

  16. A Spectral Approach for Quenched Limit Theorems for Random Expanding Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Dragičević, D.; Froyland, G.; González-Tokman, C.; Vaienti, S.

    2018-01-01

    We prove quenched versions of (i) a large deviations principle (LDP), (ii) a central limit theorem (CLT), and (iii) a local central limit theorem for non-autonomous dynamical systems. A key advance is the extension of the spectral method, commonly used in limit laws for deterministic maps, to the general random setting. We achieve this via multiplicative ergodic theory and the development of a general framework to control the regularity of Lyapunov exponents of twisted transfer operator cocycles with respect to a twist parameter. While some versions of the LDP and CLT have previously been proved with other techniques, the local central limit theorem is, to our knowledge, a completely new result, and one that demonstrates the strength of our method. Applications include non-autonomous (piecewise) expanding maps, defined by random compositions of the form {T_{σ^{n-1} ω} circ\\cdotscirc T_{σω}circ T_ω} . An important aspect of our results is that we only assume ergodicity and invertibility of the random driving {σ:Ω\\toΩ} ; in particular no expansivity or mixing properties are required.

  17. The dynamics of a harvested predator-prey system with Holling type IV functional response.

    PubMed

    Liu, Xinxin; Huang, Qingdao

    2018-05-31

    The paper aims to investigate the dynamical behavior of a predator-prey system with Holling type IV functional response in which both the species are subject to capturing. We mainly consider how the harvesting affects equilibria, stability, limit cycles and bifurcations in this system. We adopt the method of qualitative and quantitative analysis, which is based on the dynamical theory, bifurcation theory and numerical simulation. The boundedness of solutions, the existence and stability of equilibrium points of the system are further studied. Based on the Sotomayor's theorem, the existence of transcritical bifurcation and saddle-node bifurcation are derived. We use the normal form theorem to analyze the Hopf bifurcation. Simulation results show that the first Lyapunov coefficient is negative and a stable limit cycle may bifurcate. Numerical simulations are performed to make analytical studies more complete. This work illustrates that using the harvesting effort as control parameter can change the behaviors of the system, which may be useful for the biological management. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. RATIONAL APPROXIMATIONS TO GENERALIZED HYPERGEOMETRIC FUNCTIONS.

    DTIC Science & Technology

    Under weak restrictions on the various free parameters, general theorems for rational representations of the generalized hypergeometric functions...and certain Meijer G-functions are developed. Upon specialization, these theorems yield a sequency of rational approximations which converge to the

  19. Two Universality Properties Associated with the Monkey Model of Zipf's Law

    NASA Astrophysics Data System (ADS)

    Perline, Richard; Perline, Ron

    2016-03-01

    The distribution of word probabilities in the monkey model of Zipf's law is associated with two universality properties: (1) the power law exponent converges strongly to $-1$ as the alphabet size increases and the letter probabilities are specified as the spacings from a random division of the unit interval for any distribution with a bounded density function on $[0,1]$; and (2), on a logarithmic scale the version of the model with a finite word length cutoff and unequal letter probabilities is approximately normally distributed in the part of the distribution away from the tails. The first property is proved using a remarkably general limit theorem for the logarithm of sample spacings from Shao and Hahn, and the second property follows from Anscombe's central limit theorem for a random number of i.i.d. random variables. The finite word length model leads to a hybrid Zipf-lognormal mixture distribution closely related to work in other areas.

  20. Exploiting structure: Introduction and motivation

    NASA Technical Reports Server (NTRS)

    Xu, Zhong Ling

    1994-01-01

    This annual report summarizes the research activities that were performed from 26 Jun. 1993 to 28 Feb. 1994. We continued to investigate the Robust Stability of Systems where transfer functions or characteristic polynomials are affine multilinear functions of parameters. An approach that differs from 'Stability by Linear Process' and that reduces the computational burden of checking the robust stability of the system with multilinear uncertainty was found for low order, 2-order, and 3-order cases. We proved a crucial theorem, the so-called Face Theorem. Previously, we have proven Kharitonov's Vertex Theorem and the Edge Theorem by Bartlett. The detail of this proof is contained in the Appendix. This Theorem provides a tool to describe the boundary of the image of the affine multilinear function. For SPR design, we have developed some new results. The third objective for this period is to design a controller for IHM by the H-infinity optimization technique. The details are presented in the Appendix.

  1. Wave function for harmonically confined electrons in time-dependent electric and magnetostatic fields.

    PubMed

    Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht

    2014-01-14

    We derive via the interaction "representation" the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field-the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement - the uniform electron gas - the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.

  2. Improving Conceptions in Analytical Chemistry: The Central Limit Theorem

    ERIC Educational Resources Information Center

    Rodriguez-Lopez, Margarita; Carrasquillo, Arnaldo, Jr.

    2006-01-01

    This article describes the central limit theorem (CLT) and its relation to analytical chemistry. The pedagogic rational, which argues for teaching the CLT in the analytical chemistry classroom, is discussed. Some analytical chemistry concepts that could be improved through an understanding of the CLT are also described. (Contains 2 figures.)

  3. Understanding the Sampling Distribution and the Central Limit Theorem.

    ERIC Educational Resources Information Center

    Lewis, Charla P.

    The sampling distribution is a common source of misuse and misunderstanding in the study of statistics. The sampling distribution, underlying distribution, and the Central Limit Theorem are all interconnected in defining and explaining the proper use of the sampling distribution of various statistics. The sampling distribution of a statistic is…

  4. CONTRIBUTIONS TO RATIONAL APPROXIMATION,

    DTIC Science & Technology

    Some of the key results of linear Chebyshev approximation theory are extended to generalized rational functions. Prominent among these is Haar’s...linear theorem which yields necessary and sufficient conditions for uniqueness. Some new results in the classic field of rational function Chebyshev...Furthermore a Weierstrass type theorem is proven for rational Chebyshev approximation. A characterization theorem for rational trigonometric Chebyshev approximation in terms of sign alternation is developed. (Author)

  5. Aspects of Higher-Spin Conformal Field Theories and Their Renormalization Group Flows

    NASA Astrophysics Data System (ADS)

    Diab, Kenan S.

    In this thesis, we study conformal field theories (CFTs) with higher-spin symmetry and the renormalization group flows of some models with interactions that weakly break the higher-spin symmetry. When the higher-spin symmetry is exact, we will present CFT analogues of two classic results in quantum field theory: the Coleman-Mandula theorem, which is the subject of chapter 2, and the Weinberg-Witten theorem, which is the subject of chapter 3. Schematically, our Coleman-Mandula analogue states that a CFT that contains a symmetric conserved current of spin s > 2 in any dimension d > 3 is effectively free, and our Weinberg-Witten analogue states that the presence of certain short, higher-spin, "sufficiently asymmetric" representations of the conformal group is either inconsistent with conformal symmetry or leads to free theories in d = 4 dimensions. In both chapters, the basic strategy is to solve certain Ward identities in convenient kinematical limits and thereby show that the number of solutions is very limited. In the latter chapter, Hofman-Maldacena bounds, which constrain one-point functions of the stress tensor in general states, play a key role. Then, in chapter 4, we will focus on the particular examples of the O(N) and Gross-Neveu model in continuous dimensions. Using diagrammatic techniques, we explicitly calculate how the coefficients of the two-point function of a U(1) current and the two-point function of the stress tensor (CJ and CT, respectively) are renormalized in the 1/N and epsilon expansions. From the higher-spin perspective, these models are interesting since they are related via the AdS/CFT correspondence to Vasiliev gravity. In addition to checking and extending a number of previously-known results about CT and CJ in these theories, we find that in certain dimensions, CJ and CT are not monotonic along the renormalization group flow. Although it was already known that certain supersymmetric models do not satisfy a "CJ"- or " CT"-theorem, this shows that such a theorem is unlikely to hold even under more restrictive assumptions.

  6. Invertibility of retarded response functions for Laplace transformable potentials: Application to one-body reduced density matrix functional theory.

    PubMed

    Giesbertz, K J H

    2015-08-07

    A theorem for the invertibility of arbitrary response functions is presented under the following conditions: the time dependence of the potentials should be Laplace transformable and the initial state should be a ground state, though it might be degenerate. This theorem provides a rigorous foundation for all density-functional-like theories in the time-dependent linear response regime. Especially for time-dependent one-body reduced density matrix (1RDM) functional theory, this is an important step forward, since a solid foundation has currently been lacking. The theorem is equally valid for static response functions in the non-degenerate case, so can be used to characterize the uniqueness of the potential in the ground state version of the corresponding density-functional-like theory. Such a classification of the uniqueness of the non-local potential in ground state 1RDM functional theory has been lacking for decades. With the aid of presented invertibility theorem presented here, a complete classification of the non-uniqueness of the non-local potential in 1RDM functional theory can be given for the first time.

  7. Quality correction factors of composite IMRT beam deliveries: theoretical considerations.

    PubMed

    Bouchard, Hugo

    2012-11-01

    In the scope of intensity modulated radiation therapy (IMRT) dosimetry using ionization chambers, quality correction factors of plan-class-specific reference (PCSR) fields are theoretically investigated. The symmetry of the problem is studied to provide recommendable criteria for composite beam deliveries where correction factors are minimal and also to establish a theoretical limit for PCSR delivery k(Q) factors. The concept of virtual symmetric collapsed (VSC) beam, being associated to a given modulated composite delivery, is defined in the scope of this investigation. Under symmetrical measurement conditions, any composite delivery has the property of having a k(Q) factor identical to its associated VSC beam. Using this concept of VSC, a fundamental property of IMRT k(Q) factors is demonstrated in the form of a theorem. The sensitivity to the conditions required by the theorem is thoroughly examined. The theorem states that if a composite modulated beam delivery produces a uniform dose distribution in a volume V(cyl) which is symmetric with the cylindrical delivery and all beams fulfills two conditions in V(cyl): (1) the dose modulation function is unchanged along the beam axis, and (2) the dose gradient in the beam direction is constant for a given lateral position; then its associated VSC beam produces no lateral dose gradient in V(cyl), no matter what beam modulation or gantry angles are being used. The examination of the conditions required by the theorem lead to the following results. The effect of the depth-dose gradient not being perfectly constant with depth on the VSC beam lateral dose gradient is found negligible. The effect of the dose modulation function being degraded with depth on the VSC beam lateral dose gradient is found to be only related to scatter and beam hardening, as the theorem holds also for diverging beams. The use of the symmetry of the problem in the present paper leads to a valuable theorem showing that k(Q) factors of composite IMRT beam deliveries are close to unity under specific conditions. The theoretical limit k(Q(pcsr),Q(msr) ) (f(pcsr),f(msr) )=1 is determined based on the property of PCSR deliveries to provide a uniform dose in the target volume. The present approach explains recent experimental observations and proposes ideal conditions for IMRT reference dosimetry. The result of this study could potentially serve as a theoretical basis for reference dosimetry of composite IMRT beam deliveries or for routine IMRT quality assurance.

  8. Limit Theory for Panel Data Models with Cross Sectional Dependence and Sequential Exogeneity

    PubMed Central

    Kuersteiner, Guido M.; Prucha, Ingmar R.

    2013-01-01

    The paper derives a general Central Limit Theorem (CLT) and asymptotic distributions for sample moments related to panel data models with large n. The results allow for the data to be cross sectionally dependent, while at the same time allowing the regressors to be only sequentially rather than strictly exogenous. The setup is sufficiently general to accommodate situations where cross sectional dependence stems from spatial interactions and/or from the presence of common factors. The latter leads to the need for random norming. The limit theorem for sample moments is derived by showing that the moment conditions can be recast such that a martingale difference array central limit theorem can be applied. We prove such a central limit theorem by first extending results for stable convergence in Hall and Hedye (1980) to non-nested martingale arrays relevant for our applications. We illustrate our result by establishing a generalized estimation theory for GMM estimators of a fixed effect panel model without imposing i.i.d. or strict exogeneity conditions. We also discuss a class of Maximum Likelihood (ML) estimators that can be analyzed using our CLT. PMID:23794781

  9. A uniform Tauberian theorem in dynamic games

    NASA Astrophysics Data System (ADS)

    Khlopin, D. V.

    2018-01-01

    Antagonistic dynamic games including games represented in normal form are considered. The asymptotic behaviour of value in these games is investigated as the game horizon tends to infinity (Cesàro mean) and as the discounting parameter tends to zero (Abel mean). The corresponding Abelian-Tauberian theorem is established: it is demonstrated that in both families the game value uniformly converges to the same limit, provided that at least one of the limits exists. Analogues of one-sided Tauberian theorems are obtained. An example shows that the requirements are essential even for control problems. Bibliography: 31 titles.

  10. Tree-manipulating systems and Church-Rosser theorems.

    NASA Technical Reports Server (NTRS)

    Rosen, B. K.

    1973-01-01

    Study of a broad class of tree-manipulating systems called subtree replacement systems. The use of this framework is illustrated by general theorems analogous to the Church-Rosser theorem and by applications of these theorems. Sufficient conditions are derived for the Church-Rosser property, and their applications to recursive definitions, the lambda calculus, and parallel programming are discussed. McCarthy's (1963) recursive calculus is extended by allowing a choice between call-by-value and call-by-name. It is shown that recursively defined functions are single-valued despite the nondeterminism of the evaluation algorithm. It is also shown that these functions solve their defining equations in a 'canonical' manner.

  11. On the symmetry foundation of double soft theorems

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Zhong; Lin, Hung-Hwa; Zhang, Shun-Qing

    2017-12-01

    Double-soft theorems, like its single-soft counterparts, arises from the underlying symmetry principles that constrain the interactions of massless particles. While single soft theorems can be derived in a non-perturbative fashion by employing current algebras, recent attempts of extending such an approach to known double soft theorems has been met with difficulties. In this work, we have traced the difficulty to two inequivalent expansion schemes, depending on whether the soft limit is taken asymmetrically or symmetrically, which we denote as type A and B respectively. The soft-behaviour for type A scheme can simply be derived from single soft theorems, and are thus non-perturbatively protected. For type B, the information of the four-point vertex is required to determine the corresponding soft theorems, and thus are in general not protected. This argument can be readily extended to general multi-soft theorems. We also ask whether unitarity can be emergent from locality together with the two kinds of soft theorems, which has not been fully investigated before.

  12. Large deviation theory for the kinetics and energetics of turnover of enzyme catalysis in a chemiostatic flow.

    PubMed

    Das, Biswajit; Gangopadhyay, Gautam

    2018-05-07

    In the framework of large deviation theory, we have characterized nonequilibrium turnover statistics of enzyme catalysis in a chemiostatic flow with externally controllable parameters, like substrate injection rate and mechanical force. In the kinetics of the process, we have shown the fluctuation theorems in terms of the symmetry of the scaled cumulant generating function (SCGF) in the transient and steady state regime and a similar symmetry rule is reflected in a large deviation rate function (LDRF) as a property of the dissipation rate through boundaries. Large deviation theory also gives the thermodynamic force of a nonequilibrium steady state, as is usually recorded experimentally by a single molecule technique, which plays a key role responsible for the dynamical symmetry of the SCGF and LDRF. Using some special properties of the Legendre transformation, here, we have provided a relation between the fluctuations of fluxes and dissipation rates, and among them, the fluctuation of the turnover rate is routinely estimated but the fluctuation in the dissipation rate is yet to be characterized for small systems. Such an enzymatic reaction flow system can be a very good testing ground to systematically understand the rare events from the large deviation theory which is beyond fluctuation theorem and central limit theorem.

  13. Large deviation theory for the kinetics and energetics of turnover of enzyme catalysis in a chemiostatic flow

    NASA Astrophysics Data System (ADS)

    Das, Biswajit; Gangopadhyay, Gautam

    2018-05-01

    In the framework of large deviation theory, we have characterized nonequilibrium turnover statistics of enzyme catalysis in a chemiostatic flow with externally controllable parameters, like substrate injection rate and mechanical force. In the kinetics of the process, we have shown the fluctuation theorems in terms of the symmetry of the scaled cumulant generating function (SCGF) in the transient and steady state regime and a similar symmetry rule is reflected in a large deviation rate function (LDRF) as a property of the dissipation rate through boundaries. Large deviation theory also gives the thermodynamic force of a nonequilibrium steady state, as is usually recorded experimentally by a single molecule technique, which plays a key role responsible for the dynamical symmetry of the SCGF and LDRF. Using some special properties of the Legendre transformation, here, we have provided a relation between the fluctuations of fluxes and dissipation rates, and among them, the fluctuation of the turnover rate is routinely estimated but the fluctuation in the dissipation rate is yet to be characterized for small systems. Such an enzymatic reaction flow system can be a very good testing ground to systematically understand the rare events from the large deviation theory which is beyond fluctuation theorem and central limit theorem.

  14. Three Lectures on Theorem-proving and Program Verification

    NASA Technical Reports Server (NTRS)

    Moore, J. S.

    1983-01-01

    Topics concerning theorem proving and program verification are discussed with particlar emphasis on the Boyer/Moore theorem prover, and approaches to program verification such as the functional and interpreter methods and the inductive assertion approach. A history of the discipline and specific program examples are included.

  15. Classroom Research: Assessment of Student Understanding of Sampling Distributions of Means and the Central Limit Theorem in Post-Calculus Probability and Statistics Classes

    ERIC Educational Resources Information Center

    Lunsford, M. Leigh; Rowell, Ginger Holmes; Goodson-Espy, Tracy

    2006-01-01

    We applied a classroom research model to investigate student understanding of sampling distributions of sample means and the Central Limit Theorem in post-calculus introductory probability and statistics courses. Using a quantitative assessment tool developed by previous researchers and a qualitative assessment tool developed by the authors, we…

  16. Circulant Matrices and Affine Equivalence of Monomial Rotation Symmetric Boolean Functions

    DTIC Science & Technology

    2015-01-01

    definitions , including monomial rotation symmetric (MRS) Boolean functions and affine equivalence, and a known result for such quadratic functions...degree of the MRS is, we have a similar result as [40, Theorem 1.1] for n = 4p (p prime), or squarefree integers n, which along with our Theorem 5.2

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yong, E-mail: 83229994@qq.com; Ge, Hao, E-mail: haoge@pku.edu.cn; Xiong, Jie, E-mail: jiexiong@umac.mo

    Fluctuation theorem is one of the major achievements in the field of nonequilibrium statistical mechanics during the past two decades. There exist very few results for steady-state fluctuation theorem of sample entropy production rate in terms of large deviation principle for diffusion processes due to the technical difficulties. Here we give a proof for the steady-state fluctuation theorem of a diffusion process in magnetic fields, with explicit expressions of the free energy function and rate function. The proof is based on the Karhunen-Loève expansion of complex-valued Ornstein-Uhlenbeck process.

  18. Critical Behavior of the Annealed Ising Model on Random Regular Graphs

    NASA Astrophysics Data System (ADS)

    Can, Van Hao

    2017-11-01

    In Giardinà et al. (ALEA Lat Am J Probab Math Stat 13(1):121-161, 2016), the authors have defined an annealed Ising model on random graphs and proved limit theorems for the magnetization of this model on some random graphs including random 2-regular graphs. Then in Can (Annealed limit theorems for the Ising model on random regular graphs, arXiv:1701.08639, 2017), we generalized their results to the class of all random regular graphs. In this paper, we study the critical behavior of this model. In particular, we determine the critical exponents and prove a non standard limit theorem stating that the magnetization scaled by n^{3/4} converges to a specific random variable, with n the number of vertices of random regular graphs.

  19. Analytical study of bound states in graphene nanoribbons and carbon nanotubes: The variable phase method and the relativistic Levinson theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miserev, D. S., E-mail: d.miserev@student.unsw.edu.au, E-mail: erazorheader@gmail.com

    2016-06-15

    The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely described by their relative phase, which is the foundation of the variable phase method (VPM) developed herein. Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reducedmore » to the nonrelativistic and semiclassical limits. The limit of a small momentum p{sub y} of transverse quantization is applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.« less

  20. Analogues of Chernoff's theorem and the Lie-Trotter theorem

    NASA Astrophysics Data System (ADS)

    Neklyudov, Alexander Yu

    2009-10-01

    This paper is concerned with the abstract Cauchy problem \\dot x=\\mathrm{A}x, x(0)=x_0\\in\\mathscr{D}(\\mathrm{A}), where \\mathrm{A} is a densely defined linear operator on a Banach space \\mathbf X. It is proved that a solution x(\\,\\cdot\\,) of this problem can be represented as the weak limit \\lim_{n\\to\\infty}\\{\\mathrm F(t/n)^nx_0\\}, where the function \\mathrm F\\colon \\lbrack 0,\\infty)\\mapsto\\mathscr L(\\mathrm X) satisfies the equality \\mathrm F'(0)y=\\mathrm{A}y, y\\in\\mathscr{D}(\\mathrm{A}), for a natural class of operators. As distinct from Chernoff's theorem, the existence of a global solution to the Cauchy problem is not assumed. Based on this result, necessary and sufficient conditions are found for the linear operator \\mathrm{C} to be closable and for its closure to be the generator of a C_0-semigroup. Also, we obtain new criteria for the sum of two generators of C_0-semigroups to be the generator of a C_0-semigroup and for the Lie-Trotter formula to hold. Bibliography: 13 titles.

  1. Prediction of HR/BP response to the spontaneous breathing trial by fluctuation dissipation theory

    NASA Astrophysics Data System (ADS)

    Chen, Man

    2014-03-01

    We applied the non-equilibrium fluctuation dissipation theorem to predict how critically-ill patients respond to treatment, based on both heart rate data and blood pressure data collected by standard hospital monitoring devices. The non-equilibrium fluctuation dissipation theorem relates the response of a system to a perturbation to the fluctuations in the stationary state of the system. It is shown that the response of patients to a standard procedure performed on patients, the spontaneous breathing trial (SBT), can be predicted by the non-equilibrium fluctuation dissipation approach. We classify patients into different groups according to the patients' characteristics. For each patient group, we extend the fluctuation dissipation theorem to predict interactions between blood pressure and beat-to-beat dynamics of heart rate in response to a perturbation (SBT), We also extract the form of the perturbation function directly from the physiological data, which may help to reduce the prediction error. We note this method is not limited to the analysis of the heart rate dynamics, but also can be applied to analyze the response of other physiological signals to other clinical interventions.

  2. Implications of the Corotation Theorem on the MRI in Axial Symmetry

    NASA Astrophysics Data System (ADS)

    Montani, G.; Cianfrani, F.; Pugliese, D.

    2016-08-01

    We analyze the linear stability of an axially symmetric ideal plasma disk, embedded in a magnetic field and endowed with a differential rotation. This study is performed by adopting the magnetic flux function as the fundamental dynamical variable, in order to outline the role played by the corotation theorem on the linear mode structure. Using some specific assumptions (e.g., plasma incompressibility and propagation of the perturbations along the background magnetic field), we select the Alfvénic nature of the magnetorotational instability, and, in the geometric optics limit, we determine the dispersion relation describing the linear spectrum. We show how the implementation of the corotation theorem (valid for the background configuration) on the linear dynamics produces the cancellation of the vertical derivative of the disk angular velocity (we check such a feature also in the standard vector formalism to facilitate comparison with previous literature, in both the axisymmetric and three-dimensional cases). As a result, we clarify that the unstable modes have, for a stratified disk, the same morphology, proper of a thin-disk profile, and the z-dependence has a simple parametric role.

  3. Squared eigenvalue condition numbers and eigenvector correlations from the single ring theorem

    NASA Astrophysics Data System (ADS)

    Belinschi, Serban; Nowak, Maciej A.; Speicher, Roland; Tarnowski, Wojciech

    2017-03-01

    We extend the so-called ‘single ring theorem’ (Feinberg and Zee 1997 Nucl. Phys. B 504 579), also known as the Haagerup-Larsen theorem (Haagerup and Larsen 2000 J. Funct. Anal. 176 331). We do this by showing that in the limit when the size of the matrix goes to infinity a particular correlator between left and right eigenvectors of the relevant non-hermitian matrix X, being the spectral density weighted by the squared eigenvalue condition number, is given by a simple formula involving only the radial spectral cumulative distribution function of X. We show that this object allows the calculation of the conditional expectation of the squared eigenvalue condition number. We give examples and provide a cross-check of the analytic prediction by the large scale numerics.

  4. The Power of Doing: A Learning Exercise That Brings the Central Limit Theorem to Life

    ERIC Educational Resources Information Center

    Price, Barbara A.; Zhang, Xiaolong

    2007-01-01

    This article demonstrates an active learning technique for teaching the Central Limit Theorem (CLT) in an introductory undergraduate business statistics class. Groups of students carry out one of two experiments in the lab, tossing a die in sets of 5 rolls or tossing a die in sets of 10 rolls. They are asked to calculate the sample average of each…

  5. Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories

    NASA Astrophysics Data System (ADS)

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-04-01

    In the context of the Einstein-scalar-Gauss-Bonnet theory, with a general coupling function between the scalar field and the quadratic Gauss-Bonnet term, we investigate the existence of regular black-hole solutions with scalar hair. Based on a previous theoretical analysis, which studied the evasion of the old and novel no-hair theorems, we consider a variety of forms for the coupling function (exponential, even and odd polynomial, inverse polynomial, and logarithmic) that, in conjunction with the profile of the scalar field, satisfy a basic constraint. Our numerical analysis then always leads to families of regular, asymptotically flat black-hole solutions with nontrivial scalar hair. The solution for the scalar field and the profile of the corresponding energy-momentum tensor, depending on the value of the coupling constant, may exhibit a nonmonotonic behavior, an unusual feature that highlights the limitations of the existing no-hair theorems. We also determine and study in detail the scalar charge, horizon area, and entropy of our solutions.

  6. Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams

    NASA Technical Reports Server (NTRS)

    Steely, Sidney L.

    1993-01-01

    The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.

  7. Quality correction factors of composite IMRT beam deliveries: Theoretical considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchard, Hugo

    2012-11-15

    Purpose: In the scope of intensity modulated radiation therapy (IMRT) dosimetry using ionization chambers, quality correction factors of plan-class-specific reference (PCSR) fields are theoretically investigated. The symmetry of the problem is studied to provide recommendable criteria for composite beam deliveries where correction factors are minimal and also to establish a theoretical limit for PCSR delivery k{sub Q} factors. Methods: The concept of virtual symmetric collapsed (VSC) beam, being associated to a given modulated composite delivery, is defined in the scope of this investigation. Under symmetrical measurement conditions, any composite delivery has the property of having a k{sub Q} factor identicalmore » to its associated VSC beam. Using this concept of VSC, a fundamental property of IMRT k{sub Q} factors is demonstrated in the form of a theorem. The sensitivity to the conditions required by the theorem is thoroughly examined. Results: The theorem states that if a composite modulated beam delivery produces a uniform dose distribution in a volume V{sub cyl} which is symmetric with the cylindrical delivery and all beams fulfills two conditions in V{sub cyl}: (1) the dose modulation function is unchanged along the beam axis, and (2) the dose gradient in the beam direction is constant for a given lateral position; then its associated VSC beam produces no lateral dose gradient in V{sub cyl}, no matter what beam modulation or gantry angles are being used. The examination of the conditions required by the theorem lead to the following results. The effect of the depth-dose gradient not being perfectly constant with depth on the VSC beam lateral dose gradient is found negligible. The effect of the dose modulation function being degraded with depth on the VSC beam lateral dose gradient is found to be only related to scatter and beam hardening, as the theorem holds also for diverging beams. Conclusions: The use of the symmetry of the problem in the present paper leads to a valuable theorem showing that k{sub Q} factors of composite IMRT beam deliveries are close to unity under specific conditions. The theoretical limit k{sub Q{sub p{sub c{sub s{sub r,Q{sub m{sub s{sub r}{sup f{sub p}{sub c}{sub s}{sub r},f{sub m}{sub s}{sub r}}}}}}}}}=1 is determined based on the property of PCSR deliveries to provide a uniform dose in the target volume. The present approach explains recent experimental observations and proposes ideal conditions for IMRT reference dosimetry. The result of this study could potentially serve as a theoretical basis for reference dosimetry of composite IMRT beam deliveries or for routine IMRT quality assurance.« less

  8. Causal electric charge diffusion and balance functions in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Kapusta, Joseph I.; Plumberg, Christopher

    2018-01-01

    We study the propagation and diffusion of electric charge fluctuations in high-energy heavy-ion collisions using the Cattaneo form for the dissipative part of the electric current. As opposed to the ordinary diffusion equation this form limits the speed at which charge can propagate. Including the noise term in the current, which arises uniquely from the fluctuation-dissipation theorem, we calculate the balance functions for charged hadrons in a simple 1+1-dimensional Bjorken hydrodynamical model. Limiting the speed of propagation of charge fluctuations increases the height and reduces the width of these balance functions when plotted versus rapidity. We also estimate the numerical value of the associated diffusion time constant from anti-de Sitter-space/conformal-field theory.

  9. A Polarimetric Extension of the van Cittert-Zernike Theorem for Use with Microwave Interferometers

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.; Simon, N. K.

    2004-01-01

    The van Cittert-Zernike theorem describes the Fourier-transform relationship between an extended source and its visibility function. Developments in classical optics texts use scalar field formulations for the theorem. Here, we develop a polarimetric extension to the van Cittert-Zernike theorem with applications to passive microwave Earth remote sensing. The development provides insight into the mechanics of two-dimensional interferometric imaging, particularly the effects of polarization basis differences between the scene and the observer.

  10. Volumes of critical bubbles from the nucleation theorem

    NASA Astrophysics Data System (ADS)

    Wilemski, Gerald

    2006-09-01

    A corollary of the nucleation theorem due to Kashchiev [Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, 2000)] allows the volume V* of a critical bubble to be determined from nucleation rate measurements. The original derivation was limited to one-component, ideal gas bubbles with a vapor density much smaller than that of the ambient liquid. Here, an exact result is found for multicomponent, nonideal gas bubbles. Provided a weak density inequality holds, this result reduces to Kashchiev's simple form which thus has a much broader range of applicability than originally expected. Limited applications to droplets are also mentioned, and the utility of the pT,x form of the nucleation theorem as a sum rule is noted.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindgren, Ingvar; Salomonson, Sten

    The locality theorem in density-functional theory (DFT) states that the functional derivative of the Hohenberg-Kohn universal functional can be expressed as a local multiplicative potential function, and this is the basis of DFT and of the successful Kohn-Sham model. Nesbet has in several papers [Phys. Rev. A 58, R12 (1998); ibid.65, 010502 (2001); Adv. Quant. Chem, 43, 1 (2003)] claimed that this theorem is in conflict with fundamental quantum physics, and as a consequence that the Hohenberg-Kohn theory cannot be generally valid. We have commented upon these works [Comment, Phys. Rev. A 67, 056501 (2003)] and recently extended the argumentsmore » [Adv. Quantum Chem. 43, 95 (2003)]. We have shown that there is no such conflict and that the locality theorem is inherently exact. In the present work we have furthermore verified this numerically by constructing a local Kohn-Sham potential for the 1s2s{sup 3}S state of helium that generates the many-body electron density and shown that the corresponding 2s Kohn-Sham orbital eigenvalue agrees with the ionization energy to nine digits. Similar result is obtained with the Hartree-Fock density. Therefore, in addition to verifying the locality theorem, this result also confirms the so-called ionization-potential theorem.« less

  12. Laws of Large Numbers and Langevin Approximations for Stochastic Neural Field Equations

    PubMed Central

    2013-01-01

    In this study, we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson–Cowan equation can be obtained as the limit in uniform convergence on compacts in probability for a sequence of microscopic models when the number of neuron populations distributed in space and the number of neurons per population tend to infinity. This result also allows to obtain limits for qualitatively different stochastic convergence concepts, e.g., convergence in the mean. Further, we present a central limit theorem for the martingale part of the microscopic models which, suitably re-scaled, converges to a centred Gaussian process with independent increments. These two results provide the basis for presenting the neural field Langevin equation, a stochastic differential equation taking values in a Hilbert space, which is the infinite-dimensional analogue of the chemical Langevin equation in the present setting. On a technical level, we apply recently developed law of large numbers and central limit theorems for piecewise deterministic processes taking values in Hilbert spaces to a master equation formulation of stochastic neuronal network models. These theorems are valid for processes taking values in Hilbert spaces, and by this are able to incorporate spatial structures of the underlying model. Mathematics Subject Classification (2000): 60F05, 60J25, 60J75, 92C20. PMID:23343328

  13. Approximation of functions and their conjugates in variable Lebesgue spaces

    NASA Astrophysics Data System (ADS)

    Volosivets, S. S.

    2017-01-01

    One-sided Steklov means are used to introduce moduli of continuity of natural order in variable Lp(\\cdot)2π-spaces. A direct theorem of Jackson- Stechkin type and an inverse theorem of Salem-Stechkin type are given. Similar results are obtained for the conjugate functions. Bibliography: 24 titles.

  14. Recovering a function from its trigonometric integral

    NASA Astrophysics Data System (ADS)

    Sworowska, Tat'yana A.

    2010-09-01

    The approximate symmetric Henstock-Kurzweil integral is shown as solving the problem of the recovery of a function from its trigonometric integral. This being so, we generalize Offord's theorem, which is an analogue of de la Vallée Poussin's theorem for trigonometric series. A new condition for a function to be representable by a singular Fourier integral is also obtained.Bibliography: 10 titles.

  15. Trust Method for Multi-Agent Consensus

    DTIC Science & Technology

    2012-03-22

    irreducible10 and by Lemma 1, is also stochastic. And according to the Perron - Frobenius theorem, the fact that has an eigenvalue of 1 with a positive...if the limit lim→∞ exists. According to the Perron - Frobenius theorem, this limit exists for primitive matrices and according to Lemma 2, ...and > 0. Here, is known as the Perron matrix of graph with parameter . If we substitute the normalized Laplacian for in

  16. Computer-Enriched Instruction (CEI) Is Better for Preview Material Instead of Review Material: An Example of a Biostatistics Chapter, the Central Limit Theorem

    ERIC Educational Resources Information Center

    See, Lai-Chu; Huang, Yu-Hsun; Chang, Yi-Hu; Chiu, Yeo-Ju; Chen, Yi-Fen; Napper, Vicki S.

    2010-01-01

    This study examines the timing using computer-enriched instruction (CEI), before or after a traditional lecture to determine cross-over effect, period effect, and learning effect arising from sequencing of instruction. A 2 x 2 cross-over design was used with CEI to teach central limit theorem (CLT). Two sequences of graduate students in nursing…

  17. The geometric Mean Value Theorem

    NASA Astrophysics Data System (ADS)

    de Camargo, André Pierro

    2018-05-01

    In a previous article published in the American Mathematical Monthly, Tucker (Amer Math Monthly. 1997; 104(3): 231-240) made severe criticism on the Mean Value Theorem and, unfortunately, the majority of calculus textbooks also do not help to improve its reputation. The standard argument for proving it seems to be applying Rolle's theorem to a function like Although short and effective, such reasoning is not intuitive. Perhaps for this reason, Tucker classified the Mean Value Theorem as a technical existence theorem used to prove intuitively obvious statements. Moreover, he argued that there is nothing obvious about the Mean Value Theorem without the continuity of the derivative. Under so unfair discrimination, we felt the need to come to the defense of this beautiful theorem in order to clear up these misunderstandings.

  18. A Stochastic Version of the Noether Theorem

    NASA Astrophysics Data System (ADS)

    González Lezcano, Alfredo; Cabo Montes de Oca, Alejandro

    2018-06-01

    A stochastic version of the Noether theorem is derived for systems under the action of external random forces. The concept of moment generating functional is employed to describe the symmetry of the stochastic forces. The theorem is applied to two kinds of random covariant forces. One of them generated in an electrodynamic way and the other is defined in the rest frame of the particle as a function of the proper time. For both of them, it is shown the conservation of the mean value of a random drift momentum. The validity of the theorem makes clear that random systems can produce causal stochastic correlations between two faraway separated systems, that had interacted in the past. In addition possible connections of the discussion with the Ives Couder's experimental results are remarked.

  19. Trivial constraints on orbital-free kinetic energy density functionals

    NASA Astrophysics Data System (ADS)

    Luo, Kai; Trickey, S. B.

    2018-03-01

    Approximate kinetic energy density functionals (KEDFs) are central to orbital-free density functional theory. Limitations on the spatial derivative dependencies of KEDFs have been claimed from differential virial theorems. We identify a central defect in the argument: the relationships are not true for an arbitrary density but hold only for the minimizing density and corresponding chemical potential. Contrary to the claims therefore, the relationships are not constraints and provide no independent information about the spatial derivative dependencies of approximate KEDFs. A simple argument also shows that validity for arbitrary v-representable densities is not restored by appeal to the density-potential bijection.

  20. Quantitative Voronovskaya and Grüss-Voronovskaya type theorems for Jain-Durrmeyer operators of blending type

    NASA Astrophysics Data System (ADS)

    Kajla, Arun; Deshwal, Sheetal; Agrawal, P. N.

    2018-05-01

    In the present paper we introduce a Durrmeyer variant of Jain operators based on a function ρ (x) where ρ is a continuously differentiable function on [0,∞), ρ (0)=0 and \\inf ρ '(x)≥ a, a >0, x \\in [0,∞) . For these new operators, some indispensable auxiliary results are established first. Then, the degree of approximation with the aid of Ditzian-Totik modulus of smoothness and the rate of convergence for functions whose derivatives are of bounded variation, is obtained. Further, we focus on the study of a Voronovskaja type asymptotic theorem, quantitative Voronovskaya and Grüss-Voronovskaya type theorems.

  1. Exact infinite-time statistics of the Loschmidt echo for a quantum quench.

    PubMed

    Campos Venuti, Lorenzo; Jacobson, N Tobias; Santra, Siddhartha; Zanardi, Paolo

    2011-07-01

    The equilibration dynamics of a closed quantum system is encoded in the long-time distribution function of generic observables. In this Letter we consider the Loschmidt echo generalized to finite temperature, and show that we can obtain an exact expression for its long-time distribution for a closed system described by a quantum XY chain following a sudden quench. In the thermodynamic limit the logarithm of the Loschmidt echo becomes normally distributed, whereas for small quenches in the opposite, quasicritical regime, the distribution function acquires a universal double-peaked form indicating poor equilibration. These findings, obtained by a central limit theorem-type result, extend to completely general models in the small-quench regime.

  2. A fermionic de Finetti theorem

    NASA Astrophysics Data System (ADS)

    Krumnow, Christian; Zimborás, Zoltán; Eisert, Jens

    2017-12-01

    Quantum versions of de Finetti's theorem are powerful tools, yielding conceptually important insights into the security of key distribution protocols or tomography schemes and allowing one to bound the error made by mean-field approaches. Such theorems link the symmetry of a quantum state under the exchange of subsystems to negligible quantum correlations and are well understood and established in the context of distinguishable particles. In this work, we derive a de Finetti theorem for finite sized Majorana fermionic systems. It is shown, much reflecting the spirit of other quantum de Finetti theorems, that a state which is invariant under certain permutations of modes loses most of its anti-symmetric character and is locally well described by a mode separable state. We discuss the structure of the resulting mode separable states and establish in specific instances a quantitative link to the quality of the Hartree-Fock approximation of quantum systems. We hint at a link to generalized Pauli principles for one-body reduced density operators. Finally, building upon the obtained de Finetti theorem, we generalize and extend the applicability of Hudson's fermionic central limit theorem.

  3. Central Limit Theorems for the Shrinking Target Problem

    NASA Astrophysics Data System (ADS)

    Haydn, Nicolai; Nicol, Matthew; Vaienti, Sandro; Zhang, Licheng

    2013-12-01

    Suppose B i := B( p, r i ) are nested balls of radius r i about a point p in a dynamical system ( T, X, μ). The question of whether T i x∈ B i infinitely often (i.o.) for μ a.e. x is often called the shrinking target problem. In many dynamical settings it has been shown that if diverges then there is a quantitative rate of entry and for μ a.e. x∈ X. This is a self-norming type of strong law of large numbers. We establish self-norming central limit theorems (CLT) of the form (in distribution) for a variety of hyperbolic and non-uniformly hyperbolic dynamical systems, the normalization constants are . Dynamical systems to which our results apply include smooth expanding maps of the interval, Rychlik type maps, Gibbs-Markov maps, rational maps and, in higher dimensions, piecewise expanding maps. For such central limit theorems the main difficulty is to prove that the non-stationary variance has a limit in probability.

  4. A Cameron-Storvick Theorem for Analytic Feynman Integrals on Product Abstract Wiener Space and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jae Gil, E-mail: jgchoi@dankook.ac.kr; Chang, Seung Jun, E-mail: sejchang@dankook.ac.kr

    In this paper we derive a Cameron-Storvick theorem for the analytic Feynman integral of functionals on product abstract Wiener space B{sup 2}. We then apply our result to obtain an evaluation formula for the analytic Feynman integral of unbounded functionals on B{sup 2}. We also present meaningful examples involving functionals which arise naturally in quantum mechanics.

  5. Thermal Density Functional Theory: Time-Dependent Linear Response and Approximate Functionals from the Fluctuation-Dissipation Theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron

    We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.

  6. Thermal Density Functional Theory: Time-Dependent Linear Response and Approximate Functionals from the Fluctuation-Dissipation Theorem

    DOE PAGES

    Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron

    2016-06-08

    We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.

  7. Perturbation corrections to Koopmans' theorem. V - A study with large basis sets

    NASA Technical Reports Server (NTRS)

    Chong, D. P.; Langhoff, S. R.

    1982-01-01

    The vertical ionization potentials of N2, F2 and H2O were calculated by perturbation corrections to Koopmans' theorem using six different basis sets. The largest set used includes several sets of polarization functions. Comparison is made with measured values and with results of computations using Green's functions.

  8. Asynchronous networks: modularization of dynamics theorem

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Field, Michael

    2017-02-01

    Building on the first part of this paper, we develop the theory of functional asynchronous networks. We show that a large class of functional asynchronous networks can be (uniquely) represented as feedforward networks connecting events or dynamical modules. For these networks we can give a complete description of the network function in terms of the function of the events comprising the network: the modularization of dynamics theorem. We give examples to illustrate the main results.

  9. A Perron-Frobenius Type of Theorem for Quantum Operations

    NASA Astrophysics Data System (ADS)

    Lagro, Matthew; Yang, Wei-Shih; Xiong, Sheng

    2017-10-01

    We define a special class of quantum operations we call Markovian and show that it has the same spectral properties as a corresponding Markov chain. We then consider a convex combination of a quantum operation and a Markovian quantum operation and show that under a norm condition its spectrum has the same properties as in the conclusion of the Perron-Frobenius theorem if its Markovian part does. Moreover, under a compatibility condition of the two operations, we show that its limiting distribution is the same as the corresponding Markov chain. We apply our general results to partially decoherent quantum random walks with decoherence strength 0 ≤ p ≤ 1. We obtain a quantum ergodic theorem for partially decoherent processes. We show that for 0 < p ≤ 1, the limiting distribution of a partially decoherent quantum random walk is the same as the limiting distribution for the classical random walk.

  10. On the Feynman-Hellmann theorem in quantum field theory and the calculation of matrix elements

    DOE PAGES

    Bouchard, Chris; Chang, Chia Cheng; Kurth, Thorsten; ...

    2017-07-12

    In this paper, the Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation functions determined with functional derivatives of the partition function. Using this insight, we fully develop an improved method for computing matrix elements of external currents utilizing only two-point correlation functions. Our method applies to matrix elements of any external bilinear current, including nonzero momentum transfer, flavor-changing, and two or more current insertion matrix elements. The ability to identify and control all the systematic uncertainties in the analysis of the correlation functions stems from the unique time dependence of the ground-state matrix elements and the fact that all excited states and contact terms are Euclidean-time dependent. We demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-flowed domain-wall valence quarks on themore » $$N_f=2+1+1$$ MILC highly improved staggered quark ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively. We show full control over excited-state systematics with the new method and obtain a value of $$g_A = 1.213(26)$$ with a quark-mass-dependent renormalization coefficient.« less

  11. Heat flow in chains driven by thermal noise

    NASA Astrophysics Data System (ADS)

    Fogedby, Hans C.; Imparato, Alberto

    2012-04-01

    We consider the large deviation function for a classical harmonic chain composed of N particles driven at the end points by heat reservoirs, first derived in the quantum regime by Saito and Dhar (2007 Phys. Rev. Lett. 99 180601) and in the classical regime by Saito and Dhar (2011 Phys. Rev. E 83 041121) and Kundu et al (2011 J. Stat. Mech. P03007). Within a Langevin description we perform this calculation on the basis of a standard path integral calculation in Fourier space. The cumulant generating function yielding the large deviation function is given in terms of a transmission Green's function and is consistent with the fluctuation theorem. We find a simple expression for the tails of the heat distribution, which turns out to decay exponentially. We, moreover, consider an extension of a single-particle model suggested by Derrida and Brunet (2005 Einstein Aujourd'hui (Les Ulis: EDP Sciences)) and discuss the two-particle case. We also discuss the limit for large N and present a closed expression for the cumulant generating function. Finally, we present a derivation of the fluctuation theorem on the basis of a Fokker-Planck description. This result is not restricted to the harmonic case but is valid for a general interaction potential between the particles.

  12. Non-algebraic integrability of the Chew-Low reversible dynamical system of the Cremona type and the relation with the 7th Hilbert problem (non-resonant case)

    NASA Astrophysics Data System (ADS)

    Rerikh, K. V.

    A smooth reversible dynamical system (SRDS) and a system of nonlinear functional equations, defined by a certain rational quadratic Cremona mapping and arising from the static model of the dispersion approach in the theory of strong interactions (the Chew-Low equations for p- wave πN- scattering) are considered. This SRDS is splitted into 1- and 2-dimensional ones. An explicit Cremona transformation that completely determines the exact solution of the two-dimensional system is found. This solution depends on an odd function satisfying a nonlinear autonomous 3-point functional equation. Non-algebraic integrability of SRDS under consideration is proved using the method of Poincaré normal forms and the Siegel theorem on biholomorphic linearization of a mapping at a non-resonant fixed point. The proof is based on the classical Feldman-Baker theorem on linear forms of logarithms of algebraic numbers, which, in turn, relies upon solving the 7th Hilbert problem by A.I. Gel'fond and T. Schneider and new powerful methods of A. Baker in the theory of transcendental numbers. The general theorem, following from the Feldman-Baker theorem, on applicability of the Siegel theorem to the set of the eigenvalues λ ɛ Cn of a mapping at a non-resonant fixed point which belong to the algebraic number field A is formulated and proved. The main results are presented in Theorems 1-3, 5, 7, 8 and Remarks 3, 7.

  13. Consciousness, crosstalk, and the mereological fallacy: An evolutionary perspective

    NASA Astrophysics Data System (ADS)

    Wallace, Rodrick

    2012-12-01

    The cross-sectional decontextualization afflicting contemporary neuroscience - attributing to ‘the brain’ what is the province of the whole organism - is mirrored by an evolutionary decontextualization exceptionalizing consciousness. The living state is characterized by cognitive processes at all scales and levels of organization. Many can be associated with dual information sources that ‘speak’ a ‘language’ of behavior-in-context. Shifting global broadcasts analogous to consciousness, albeit far slower - wound healing, tumor control, immune function, gene expression, etc. - have emerged through repeated evolutionary exaptation of the crosstalk and noise inherent to all information transmission. These recruit ‘unconscious’ cognitive modules into tunable arrays as needed to meet threats and opportunities across multiple frames of reference. The development is straightforward, based on the powerful necessary conditions imposed by the asymptotic limit theorems of communication theory, in the same sense that the Central Limit Theorem constrains sums of stochastic variates. Recognition of information as a form of free energy instantiated by physical processes that consume free energy permits analogs to phase transition and nonequilibrium thermodynamic arguments, leading to ‘dynamic regression models’ useful for data analysis.

  14. About the best approximations with trigonometric polynomials on the class W0Hω¯ of the space L, part II

    NASA Astrophysics Data System (ADS)

    Nikolova, Yanka

    2013-12-01

    In this paper we obtain estimation for the best approximation En(W0Hω¯) in the L-metric, where W0Hω¯ is the conjugate of the class W0Hω, i.e. W0Hω¯ =def {f¯,f∈W0Hω}. Our results concern evaluations of the function Φ(\\overlineG\\overline;x), where Φ(G;x) is the so-called ∑-representation of the function G, as defined in [2, p.144], and \\overlineG\\overline(x) denotes the conjugate of the function G(x). After some preliminaries, we formulate three basic theorems (Theorems 2, 3, 4) from the first part of this work [9], necessary for the estimation of the functional Fω(g¯) = supf∈Hω ∫ 02πf(t)ṡg¯(t)dt. Specially, in Theorem 4 we prove an inequality for this functional and show that the estimation is exact, i.e. the inequality becomes equality for some specific conjugate functions. Next, the new results in this paper are given as Theorems 5 and 6, with detailed proofs. Furthermore, in our work we prove the following estimation: f¯n,0‖L≤En(W0Hω¯)L≤2f¯n,0‖L.

  15. An efficient sampling technique for sums of bandpass functions

    NASA Technical Reports Server (NTRS)

    Lawton, W. M.

    1982-01-01

    A well known sampling theorem states that a bandlimited function can be completely determined by its values at a uniformly placed set of points whose density is at least twice the highest frequency component of the function (Nyquist rate). A less familiar but important sampling theorem states that a bandlimited narrowband function can be completely determined by its values at a properly chosen, nonuniformly placed set of points whose density is at least twice the passband width. This allows for efficient digital demodulation of narrowband signals, which are common in sonar, radar and radio interferometry, without the side effect of signal group delay from an analog demodulator. This theorem was extended by developing a technique which allows a finite sum of bandlimited narrowband functions to be determined by its values at a properly chosen, nonuniformly placed set of points whose density can be made arbitrarily close to the sum of the passband widths.

  16. WASP (Write a Scientific Paper) using Excel - 8: t-Tests.

    PubMed

    Grech, Victor

    2018-06-01

    t-Testing is a common component of inferential statistics when comparing two means. This paper explains the central limit theorem and the concept of the null hypothesis as well as types of errors. On the practical side, this paper outlines how different t-tests may be performed in Microsoft Excel, for different purposes, both statically as well as dynamically, with Excel's functions. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Inverse Problems and Imaging (Pitman Research Notes in Mathematics Series Number 245)

    DTIC Science & Technology

    1991-01-01

    Multiparamcter spectral theory in Hilbert space functional differential cquations B D Sleeman F Kappel and W Schappacher 24 Mathematical modelling...techniques 49 Sequence spaces R Aris W 11 Ruckle 25 Singular points of smooth mappings 50 Recent contributions to nonlinear C G Gibson partial...of convergence in the central limit T Husain theorem 86 Hamilton-Jacobi equations in Hilbert spaces Peter Hall V Barbu and G Da Prato 63 Solution of

  18. Special ergodic theorems and dynamical large deviations

    NASA Astrophysics Data System (ADS)

    Kleptsyn, Victor; Ryzhov, Dmitry; Minkov, Stanislav

    2012-11-01

    Let f : M → M be a self-map of a compact Riemannian manifold M, admitting a global SRB measure μ. For a continuous test function \\varphi\\colon M\\to R and a constant α > 0, consider the set Kφ,α of the initial points for which the Birkhoff time averages of the function φ differ from its μ-space average by at least α. As the measure μ is a global SRB one, the set Kφ,α should have zero Lebesgue measure. The special ergodic theorem, whenever it holds, claims that, moreover, this set has a Hausdorff dimension less than the dimension of M. We prove that for Lipschitz maps, the special ergodic theorem follows from the dynamical large deviations principle. We also define and prove analogous result for flows. Applying the theorems of Young and of Araújo and Pacifico, we conclude that the special ergodic theorem holds for transitive hyperbolic attractors of C2-diffeomorphisms, as well as for some other known classes of maps (including the one of partially hyperbolic non-uniformly expanding maps) and flows.

  19. The Cr dependence problem of eigenvalues of the Laplace operator on domains in the plane

    NASA Astrophysics Data System (ADS)

    Haddad, Julian; Montenegro, Marcos

    2018-03-01

    The Cr dependence problem of multiple Dirichlet eigenvalues on domains is discussed for elliptic operators by regarding C r + 1-smooth one-parameter families of C1 perturbations of domains in Rn. As applications of our main theorem (Theorem 1), we provide a fairly complete description for all eigenvalues of the Laplace operator on disks and squares in R2 and also for its second eigenvalue on balls in Rn for any n ≥ 3. The central tool used in our proof is a degenerate implicit function theorem on Banach spaces (Theorem 2) of independent interest.

  20. Extended optical theorem in isotropic solids and its application to the elastic radiation force

    NASA Astrophysics Data System (ADS)

    Leão-Neto, J. P.; Lopes, J. H.; Silva, G. T.

    2017-04-01

    In this article, we derive the extended optical theorem for the elastic-wave scattering by a spherical inclusion (with and without absorption) in a solid matrix. This theorem expresses the extinction cross-section, i.e., the time-averaged power extracted from the incoming beam per its intensity, regarding the partial-wave expansion coefficients of the incident and scattered waves. We also establish the connection between the optical theorem and the elastic radiation force by a plane wave in a linear and isotropic solid. We obtain the absorption, scattering, and extinction efficiencies (the corresponding power per characteristic incident intensity per sphere cross-section area) for a plane wave and a spherically focused beam. We discuss to which extent the radiation force theory for plane waves can be used to the focused beam case. Considering an iron sphere embedded in an aluminum matrix, we numerically compute the scattering and elastic radiation force efficiencies. The radiation force on a stainless steel sphere embedded in a tissue-like medium (soft solid) is also computed. In this case, resonances are observed in the force as a function of the sphere size parameter (the wavenumber times the sphere radius). Remarkably, the relative difference between our findings and previous lossless liquid models is about 100% in the long-wavelength limit. Regarding some applications, the obtained results have a direct impact on ultrasound-based elastography techniques and ultrasonic nondestructive testing, as well as implantable devices activated by ultrasound.

  1. Ignoring the Innocent: Non-combatants in Urban Operations and in Military Models and Simulations

    DTIC Science & Technology

    2006-01-01

    such a model yields is a sufficiency theorem , a single run does not provide any information on the robustness of such theorems . That is, given that...often formally resolvable via inspection, simple differentiation, the implicit function theorem , comparative statistics, and so on. The only way to... Pythagoras , and Bactowars. For each, Grieger discusses model parameters, data collection, terrain, and other features. Grieger also discusses

  2. Linear and quadratic static response functions and structure functions in Yukawa liquids.

    PubMed

    Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I

    2014-08-01

    We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.

  3. Slow Lévy flights

    NASA Astrophysics Data System (ADS)

    Boyer, Denis; Pineda, Inti

    2016-02-01

    Among Markovian processes, the hallmark of Lévy flights is superdiffusion, or faster-than-Brownian dynamics. Here we show that Lévy laws, as well as Gaussian distributions, can also be the limit distributions of processes with long-range memory that exhibit very slow diffusion, logarithmic in time. These processes are path dependent and anomalous motion emerges from frequent relocations to already visited sites. We show how the central limit theorem is modified in this context, keeping the usual distinction between analytic and nonanalytic characteristic functions. A fluctuation-dissipation relation is also derived. Our results may have important applications in the study of animal and human displacements.

  4. Central limit theorems under special relativity

    PubMed Central

    McKeague, Ian W.

    2015-01-01

    Several relativistic extensions of the Maxwell–Boltzmann distribution have been proposed, but they do not explain observed lognormal tail-behavior in the flux distribution of various astrophysical sources. Motivated by this question, extensions of classical central limit theorems are developed under the conditions of special relativity. The results are related to CLTs on locally compact Lie groups developed by Wehn, Stroock and Varadhan, but in this special case the asymptotic distribution has an explicit form that is readily seen to exhibit lognormal tail behavior. PMID:25798020

  5. Central limit theorems under special relativity.

    PubMed

    McKeague, Ian W

    2015-04-01

    Several relativistic extensions of the Maxwell-Boltzmann distribution have been proposed, but they do not explain observed lognormal tail-behavior in the flux distribution of various astrophysical sources. Motivated by this question, extensions of classical central limit theorems are developed under the conditions of special relativity. The results are related to CLTs on locally compact Lie groups developed by Wehn, Stroock and Varadhan, but in this special case the asymptotic distribution has an explicit form that is readily seen to exhibit lognormal tail behavior.

  6. The derivative-free Fourier shell identity for photoacoustics.

    PubMed

    Baddour, Natalie

    2016-01-01

    In X-ray tomography, the Fourier slice theorem provides a relationship between the Fourier components of the object being imaged and the measured projection data. The Fourier slice theorem is the basis for X-ray Fourier-based tomographic inversion techniques. A similar relationship, referred to as the 'Fourier shell identity' has been previously derived for photoacoustic applications. However, this identity relates the pressure wavefield data function and its normal derivative measured on an arbitrary enclosing aperture to the three-dimensional Fourier transform of the enclosed object evaluated on a sphere. Since the normal derivative of pressure is not normally measured, the applicability of the formulation is limited in this form. In this paper, alternative derivations of the Fourier shell identity in 1D, 2D polar and 3D spherical polar coordinates are presented. The presented formulations do not require the normal derivative of pressure, thereby lending the formulas directly adaptable for Fourier based absorber reconstructions.

  7. A theorem about Hamiltonian systems.

    PubMed

    Case, K M

    1984-09-01

    A simple theorem in Hamiltonian mechanics is pointed out. One consequence is a generalization of the classical result that symmetries are generated by Poisson brackets of conserved functionals. General applications are discussed. Special emphasis is given to the Kadomtsev-Petviashvili equation.

  8. Differentiability of correlations in realistic quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabrera, Alejandro; Faria, Edson de; Pujals, Enrique

    2015-09-15

    We prove a version of Bell’s theorem in which the locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumedmore » to be twice differentiable at the origin, then we arrive at a version of Bell’s theorem. On the one hand, we are showing that any realistic theory of quantum mechanics which incorporates the kinematic aspects of relativity must lead to this type of rough correlation function that is once but not twice differentiable. On the other hand, this study brings us a single degree of differentiability away from a relativistic von Neumann no hidden variables theorem.« less

  9. A rapid-pressure correlation representation consistent with the Taylor-Proudman theorem materially-frame-indifferent in the 2D limit

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.; Lumley, J. L.; Abid, R.

    1994-01-01

    A nonlinear representation for the rapid-pressure correlation appearing in the Reynolds stress equations, consistent with the Taylor-Proudman theorem, is presented. The representation insures that the modeled second-order equations are frame-invariant with respect to rotation when the flow is two-dimensional in planes perpendicular to the axis of rotation. The representation satisfies realizability in a new way: a special ansatz is used to obtain analytically, the values of coefficients valid away from the realizability limit: the model coefficients are functions of the state of the turbulence that are valid for all states of the mechanical turbulence attaining their constant limiting values only when the limit state is achieved. Utilization of all the mathematical constraints are not enough to specify all the coefficients in the model. The unspecified coefficients appear as free parameters which are used to insure that the representation is asymptotically consistent with the known equilibrium states of a homogeneous sheared turbulence. This is done by insuring that the modeled evolution equations have the same fixed points as those obtained from computer and laboratory experiments for the homogeneous shear. Results of computations of the homogeneous shear, with and without rotation, and with stabilizing and destabilizing curvature, are shown. Results are consistently better, in a wide class of flows which the model not been calibrated, than those obtained with other nonlinear models.

  10. Using Agent-Based Distillations to Explore Logistics Support to Urban, Humanitarian Assistance/Disaster Relief Operations

    DTIC Science & Technology

    2003-09-01

    environments is warranted. The author’s initial concept was to set up the same scenario in three different PA agent-based programs, MANA, PYTHAGORAS ...of the consolidation as the result for that particular set of runs. This technique also allowed us to invoke the Central Limit Theorem . D...capabilities in the SOCRATES modeling environment. We encourage MANA and PYTHAGORAS to add this functionality to their products as well. We

  11. Coincidence degree and periodic solutions of neutral equations

    NASA Technical Reports Server (NTRS)

    Hale, J. K.; Mawhin, J.

    1973-01-01

    The problem of existence of periodic solutions for some nonautonomous neutral functional differential equations is examined. It is an application of a basic theorem on the Fredholm alternative for periodic solutions of some linear neutral equations and of a generalized Leray-Schauder theory. Although proofs are simple, the results are nontrivial extensions to the neutral case of existence theorems for periodic solutions of functional differential equations.

  12. A theorem about Hamiltonian systems

    PubMed Central

    Case, K. M.

    1984-01-01

    A simple theorem in Hamiltonian mechanics is pointed out. One consequence is a generalization of the classical result that symmetries are generated by Poisson brackets of conserved functionals. General applications are discussed. Special emphasis is given to the Kadomtsev-Petviashvili equation. PMID:16593515

  13. Stochastic stability

    NASA Technical Reports Server (NTRS)

    Kushner, H. J.

    1972-01-01

    The field of stochastic stability is surveyed, with emphasis on the invariance theorems and their potential application to systems with randomly varying coefficients. Some of the basic ideas are reviewed, which underlie the stochastic Liapunov function approach to stochastic stability. The invariance theorems are discussed in detail.

  14. Existence and discrete approximation for optimization problems governed by fractional differential equations

    NASA Astrophysics Data System (ADS)

    Bai, Yunru; Baleanu, Dumitru; Wu, Guo-Cheng

    2018-06-01

    We investigate a class of generalized differential optimization problems driven by the Caputo derivative. Existence of weak Carathe ´odory solution is proved by using Weierstrass existence theorem, fixed point theorem and Filippov implicit function lemma etc. Then a numerical approximation algorithm is introduced, and a convergence theorem is established. Finally, a nonlinear programming problem constrained by the fractional differential equation is illustrated and the results verify the validity of the algorithm.

  15. A Hybrid Common Fixed Point Theorem under Certain Recent Properties

    PubMed Central

    Imdad, Mohammad

    2014-01-01

    We prove a common fixed point theorem for a hybrid pair of occasionally coincidentally idempotent mappings via common limit range property. Our result improves some results from the existing literature, especially the ones contained in Sintunavarat and Kumam (2009). Some illustrative and interesting examples to highlight the realized improvements are also furnished. PMID:24592191

  16. Real World Cognitive Multi-Tasking and Problem Solving: A Large Scale Cognitive Architecture Simulation Through High Performance Computing-Project Casie

    DTIC Science & Technology

    2008-03-01

    computational version of the CASIE architecture serves to demonstrate the functionality of our primary theories. However, implementation of several other...following facts. First, based on Theorem 3 and Theorem 5, the objective function is non -increasing under updating rule (6); second, by the criteria for...reassignment in updating rule (7), it is trivial to show that the objective function is non -increasing under updating rule (7). A Unified View to Graph

  17. The spectral theorem for quaternionic unbounded normal operators based on the S-spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpay, Daniel, E-mail: dany@math.bgu.ac.il; Kimsey, David P., E-mail: dpkimsey@gmail.com; Colombo, Fabrizio, E-mail: fabrizio.colombo@polimi.it

    In this paper we prove the spectral theorem for quaternionic unbounded normal operators using the notion of S-spectrum. The proof technique consists of first establishing a spectral theorem for quaternionic bounded normal operators and then using a transformation which maps a quaternionic unbounded normal operator to a quaternionic bounded normal operator. With this paper we complete the foundation of spectral analysis of quaternionic operators. The S-spectrum has been introduced to define the quaternionic functional calculus but it turns out to be the correct object also for the spectral theorem for quaternionic normal operators. The lack of a suitable notion ofmore » spectrum was a major obstruction to fully understand the spectral theorem for quaternionic normal operators. A prime motivation for studying the spectral theorem for quaternionic unbounded normal operators is given by the subclass of unbounded anti-self adjoint quaternionic operators which play a crucial role in the quaternionic quantum mechanics.« less

  18. Limit cycles and conformal invariance

    NASA Astrophysics Data System (ADS)

    Fortin, Jean-François; Grinstein, Benjamín; Stergiou, Andreas

    2013-01-01

    There is a widely held belief that conformal field theories (CFTs) require zero beta functions. Nevertheless, the work of Jack and Osborn implies that the beta functions are not actually the quantites that decide conformality, but until recently no such behavior had been exhibited. Our recent work has led to the discovery of CFTs with nonzero beta functions, more precisely CFTs that live on recurrent trajectories, e.g., limit cycles, of the beta-function vector field. To demonstrate this we study the S function of Jack and Osborn. We use Weyl consistency conditions to show that it vanishes at fixed points and agrees with the generator Q of limit cycles on them. Moreover, we compute S to third order in perturbation theory, and explicitly verify that it agrees with our previous determinations of Q. A byproduct of our analysis is that, in perturbation theory, unitarity and scale invariance imply conformal invariance in four-dimensional quantum field theories. Finally, we study some properties of these new, "cyclic" CFTs, and point out that the a-theorem still governs the asymptotic behavior of renormalization-group flows.

  19. Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle, and Popov theorems and their application to robust stability

    NASA Technical Reports Server (NTRS)

    Haddad, Wassim M.; Bernstein, Dennis S.

    1991-01-01

    Lyapunov function proofs of sufficient conditions for asymptotic stability are given for feedback interconnections of bounded real and positive real transfer functions. Two cases are considered: (1) a proper bounded real (resp., positive real) transfer function with a bounded real (resp., positive real) time-varying memoryless nonlinearity; and (2) two strictly proper bounded real (resp., positive real) transfer functions. A similar treatment is given for the circle and Popov theorems. Application of these results to robust stability with time-varying bounded real, positive real, and sector-bounded uncertainty is discussed.

  20. The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Tzioufas, Achillefs

    2018-04-01

    We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.

  1. The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Tzioufas, Achillefs

    2018-06-01

    We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.

  2. The scalar glueball operator, the a-theorem, and the onset of conformality

    NASA Astrophysics Data System (ADS)

    Nunes da Silva, T.; Pallante, E.; Robroek, L.

    2018-03-01

    We show that the anomalous dimension γG of the scalar glueball operator contains information on the mechanism that leads to the onset of conformality at the lower edge of the conformal window in a non-Abelian gauge theory. In particular, it distinguishes whether the merging of an UV and an IR fixed point - the simplest mechanism associated to a conformal phase transition and preconformal scaling - does or does not occur. At the same time, we shed light on new analogies between QCD and its supersymmetric version. In SQCD, we derive an exact relation between γG and the mass anomalous dimension γm, and we prove that the SQCD exact beta function is incompatible with merging as a consequence of the a-theorem; we also derive the general conditions that the latter imposes on the existence of fixed points, and prove the absence of an UV fixed point at nonzero coupling above the conformal window of SQCD. Perhaps not surprisingly, we then show that an exact relation between γG and γm, fully analogous to SQCD, holds for the massless Veneziano limit of large-N QCD. We argue, based on the latter relation, the a-theorem, perturbation theory and physical arguments, that the incompatibility with merging may extend to QCD.

  3. Generalization of the Bogoliubov-Zubarev Theorem for Dynamic Pressure to the Case of Compressibility

    NASA Astrophysics Data System (ADS)

    Rudoi, Yu. G.

    2018-01-01

    We present the motivation, formulation, and modified proof of the Bogoliubov-Zubarev theorem connecting the pressure of a dynamical object with its energy within the framework of a classical description and obtain a generalization of this theorem to the case of dynamical compressibility. In both cases, we introduce the volume of the object into consideration using a singular addition to the Hamiltonian function of the physical object, which allows using the concept of the Bogoliubov quasiaverage explicitly already on a dynamical level of description. We also discuss the relation to the same result known as the Hellmann-Feynman theorem in the framework of the quantum description of a physical object.

  4. Some constructions of biharmonic maps and Chen’s conjecture on biharmonic hypersurfaces

    NASA Astrophysics Data System (ADS)

    Ou, Ye-Lin

    2012-04-01

    We give several construction methods and use them to produce many examples of proper biharmonic maps including biharmonic tori of any dimension in Euclidean spheres (Theorem 2.2, Corollaries 2.3, 2.4 and 2.6), biharmonic maps between spheres (Theorem 2.9) and into spheres (Theorem 2.10) via orthogonal multiplications and eigenmaps. We also study biharmonic graphs of maps, derive the equation for a function whose graph is a biharmonic hypersurface in a Euclidean space, and give an equivalent formulation of Chen's conjecture on biharmonic hypersurfaces by using the biharmonic graph equation (Theorem 4.1) which paves a way for the analytic study of the conjecture.

  5. One-range addition theorems for derivatives of Slater-type orbitals.

    PubMed

    Guseinov, Israfil

    2004-06-01

    Using addition theorems for STOs introduced by the author with the help of complete orthonormal sets of psi(alpha)-ETOs (Guseinov II (2003) J Mol Model 9:190-194), where alpha=1, 0, -1, -2, ..., a large number of one-range addition theorems for first and second derivatives of STOs are established. These addition theorems are especially useful for computation of multicenter-multielectron integrals over STOs that arise in the Hartree-Fock-Roothaan approximation and also in the Hylleraas function method, which play a significant role for the study of electronic structure and electron-nuclei interaction properties of atoms, molecules, and solids. The relationships obtained are valid for arbitrary quantum numbers, screening constants and location of STOs.

  6. Out-of-time-order fluctuation-dissipation theorem

    NASA Astrophysics Data System (ADS)

    Tsuji, Naoto; Shitara, Tomohiro; Ueda, Masahito

    2018-01-01

    We prove a generalized fluctuation-dissipation theorem for a certain class of out-of-time-ordered correlators (OTOCs) with a modified statistical average, which we call bipartite OTOCs, for general quantum systems in thermal equilibrium. The difference between the bipartite and physical OTOCs defined by the usual statistical average is quantified by a measure of quantum fluctuations known as the Wigner-Yanase skew information. Within this difference, the theorem describes a universal relation between chaotic behavior in quantum systems and a nonlinear-response function that involves a time-reversed process. We show that the theorem can be generalized to higher-order n -partite OTOCs as well as in the form of generalized covariance.

  7. Some theorems and properties of multi-dimensional fractional Laplace transforms

    NASA Astrophysics Data System (ADS)

    Ahmood, Wasan Ajeel; Kiliçman, Adem

    2016-06-01

    The aim of this work is to study theorems and properties for the one-dimensional fractional Laplace transform, generalize some properties for the one-dimensional fractional Lapalce transform to be valid for the multi-dimensional fractional Lapalce transform and is to give the definition of the multi-dimensional fractional Lapalce transform. This study includes: dedicate the one-dimensional fractional Laplace transform for functions of only one independent variable with some of important theorems and properties and develop of some properties for the one-dimensional fractional Laplace transform to multi-dimensional fractional Laplace transform. Also, we obtain a fractional Laplace inversion theorem after a short survey on fractional analysis based on the modified Riemann-Liouville derivative.

  8. A Meinardus Theorem with Multiple Singularities

    NASA Astrophysics Data System (ADS)

    Granovsky, Boris L.; Stark, Dudley

    2012-09-01

    Meinardus proved a general theorem about the asymptotics of the number of weighted partitions, when the Dirichlet generating function for weights has a single pole on the positive real axis. Continuing (Granovsky et al., Adv. Appl. Math. 41:307-328, 2008), we derive asymptotics for the numbers of three basic types of decomposable combinatorial structures (or, equivalently, ideal gas models in statistical mechanics) of size n, when their Dirichlet generating functions have multiple simple poles on the positive real axis. Examples to which our theorem applies include ones related to vector partitions and quantum field theory. Our asymptotic formula for the number of weighted partitions disproves the belief accepted in the physics literature that the main term in the asymptotics is determined by the rightmost pole.

  9. Charged particle layers in the Debye limit.

    PubMed

    Golden, Kenneth I; Kalman, Gabor J; Kyrkos, Stamatios

    2002-09-01

    We develop an equivalent of the Debye-Hückel weakly coupled equilibrium theory for layered classical charged particle systems composed of one single charged species. We consider the two most important configurations, the charged particle bilayer and the infinite superlattice. The approach is based on the link provided by the classical fluctuation-dissipation theorem between the random-phase approximation response functions and the Debye equilibrium pair correlation function. Layer-layer pair correlation functions, screened and polarization potentials, static structure functions, and static response functions are calculated. The importance of the perfect screening and compressibility sum rules in determining the overall behavior of the system, especially in the r--> infinity limit, is emphasized. The similarities and differences between the quasi-two-dimensional bilayer and the quasi-three-dimensional superlattice are highlighted. An unexpected behavior that emerges from the analysis is that the screened potential, the correlations, and the screening charges carried by the individual layers exhibit a marked nonmonotonic dependence on the layer separation.

  10. The detailed balance principle and the reciprocity theorem between photocarrier collection and dark carrier distribution in solar cells

    NASA Astrophysics Data System (ADS)

    Rau, Uwe; Brendel, Rolf

    1998-12-01

    It is shown that a recently described general relationship between the local collection efficiency of solar cells and the dark carrier concentration (reciprocity theorem) directly follows from the principle of detailed balance. We derive the relationship for situations where transport of charge carriers occurs between discrete states as well as for the situation where electronic transport is described in terms of continuous functions. Combining both situations allows to extend the range of applicability of the reciprocity theorem to all types of solar cells, including, e.g., metal-insulator-semiconductor-type, electrochemical solar cells, as well as the inclusion of the impurity photovoltaic effect. We generalize the theorem further to situations where the occupation probability of electronic states is governed by Fermi-Dirac statistics instead of Boltzmann statistics as underlying preceding work. In such a situation the reciprocity theorem is restricted to small departures from equilibrium.

  11. Aging Wiener-Khinchin theorem and critical exponents of 1/f^{β} noise.

    PubMed

    Leibovich, N; Dechant, A; Lutz, E; Barkai, E

    2016-11-01

    The power spectrum of a stationary process may be calculated in terms of the autocorrelation function using the Wiener-Khinchin theorem. We here generalize the Wiener-Khinchin theorem for nonstationary processes and introduce a time-dependent power spectrum 〈S_{t_{m}}(ω)〉 where t_{m} is the measurement time. For processes with an aging autocorrelation function of the form 〈I(t)I(t+τ)〉=t^{Υ}ϕ_{EA}(τ/t), where ϕ_{EA}(x) is a nonanalytic function when x is small, we find aging 1/f^{β} noise. Aging 1/f^{β} noise is characterized by five critical exponents. We derive the relations between the scaled autocorrelation function and these exponents. We show that our definition of the time-dependent spectrum retains its interpretation as a density of Fourier modes and discuss the relation to the apparent infrared divergence of 1/f^{β} noise. We illustrate our results for blinking-quantum-dot models, single-file diffusion, and Brownian motion in a logarithmic potential.

  12. A Guided Tour of Mathematical Methods

    NASA Astrophysics Data System (ADS)

    Snieder, Roel

    2009-04-01

    1. Introduction; 2. Dimensional analysis; 3. Power series; 4. Spherical and cylindrical co-ordinates; 5. The gradient; 6. The divergence of a vector field; 7. The curl of a vector field; 8. The theorem of Gauss; 9. The theorem of Stokes; 10. The Laplacian; 11. Conservation laws; 12. Scale analysis; 13. Linear algebra; 14. The Dirac delta function; 15. Fourier analysis; 16. Analytic functions; 17. Complex integration; 18. Green's functions: principles; 19. Green's functions: examples; 20. Normal modes; 21. Potential theory; 22. Cartesian tensors; 23. Perturbation theory; 24. Asymptotic evaluation of integrals; 25. Variational calculus; 26. Epilogue, on power and knowledge; References.

  13. Randomized central limit theorems: A unified theory.

    PubMed

    Eliazar, Iddo; Klafter, Joseph

    2010-08-01

    The central limit theorems (CLTs) characterize the macroscopic statistical behavior of large ensembles of independent and identically distributed random variables. The CLTs assert that the universal probability laws governing ensembles' aggregate statistics are either Gaussian or Lévy, and that the universal probability laws governing ensembles' extreme statistics are Fréchet, Weibull, or Gumbel. The scaling schemes underlying the CLTs are deterministic-scaling all ensemble components by a common deterministic scale. However, there are "random environment" settings in which the underlying scaling schemes are stochastic-scaling the ensemble components by different random scales. Examples of such settings include Holtsmark's law for gravitational fields and the Stretched Exponential law for relaxation times. In this paper we establish a unified theory of randomized central limit theorems (RCLTs)-in which the deterministic CLT scaling schemes are replaced with stochastic scaling schemes-and present "randomized counterparts" to the classic CLTs. The RCLT scaling schemes are shown to be governed by Poisson processes with power-law statistics, and the RCLTs are shown to universally yield the Lévy, Fréchet, and Weibull probability laws.

  14. Randomized central limit theorems: A unified theory

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Klafter, Joseph

    2010-08-01

    The central limit theorems (CLTs) characterize the macroscopic statistical behavior of large ensembles of independent and identically distributed random variables. The CLTs assert that the universal probability laws governing ensembles’ aggregate statistics are either Gaussian or Lévy, and that the universal probability laws governing ensembles’ extreme statistics are Fréchet, Weibull, or Gumbel. The scaling schemes underlying the CLTs are deterministic—scaling all ensemble components by a common deterministic scale. However, there are “random environment” settings in which the underlying scaling schemes are stochastic—scaling the ensemble components by different random scales. Examples of such settings include Holtsmark’s law for gravitational fields and the Stretched Exponential law for relaxation times. In this paper we establish a unified theory of randomized central limit theorems (RCLTs)—in which the deterministic CLT scaling schemes are replaced with stochastic scaling schemes—and present “randomized counterparts” to the classic CLTs. The RCLT scaling schemes are shown to be governed by Poisson processes with power-law statistics, and the RCLTs are shown to universally yield the Lévy, Fréchet, and Weibull probability laws.

  15. Geometric Demonstration of the Fundamental Theorems of the Calculus

    ERIC Educational Resources Information Center

    Sauerheber, Richard D.

    2010-01-01

    After the monumental discovery of the fundamental theorems of the calculus nearly 350 years ago, it became possible to answer extremely complex questions regarding the natural world. Here, a straightforward yet profound demonstration, employing geometrically symmetric functions, describes the validity of the general power rules for integration and…

  16. Noether's Theorem and its Inverse of Birkhoffian System in Event Space Based on Herglotz Variational Problem

    NASA Astrophysics Data System (ADS)

    Tian, X.; Zhang, Y.

    2018-03-01

    Herglotz variational principle, in which the functional is defined by a differential equation, generalizes the classical ones defining the functional by an integral. The principle gives a variational principle description of nonconservative systems even when the Lagrangian is independent of time. This paper focuses on studying the Noether's theorem and its inverse of a Birkhoffian system in event space based on the Herglotz variational problem. Firstly, according to the Herglotz variational principle of a Birkhoffian system, the principle of a Birkhoffian system in event space is established. Secondly, its parametric equations and two basic formulae for the variation of Pfaff-Herglotz action of a Birkhoffian system in event space are obtained. Furthermore, the definition and criteria of Noether symmetry of the Birkhoffian system in event space based on the Herglotz variational problem are given. Then, according to the relationship between the Noether symmetry and conserved quantity, the Noether's theorem is derived. Under classical conditions, Noether's theorem of a Birkhoffian system in event space based on the Herglotz variational problem reduces to the classical ones. In addition, Noether's inverse theorem of the Birkhoffian system in event space based on the Herglotz variational problem is also obtained. In the end of the paper, an example is given to illustrate the application of the results.

  17. Direct and inverse theorems on approximation by root functions of a regular boundary-value problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radzievskii, G V

    2006-08-31

    One considers the spectral problem x{sup (n)}+ Fx={lambda}x with boundary conditions U{sub j}(x)=0, j=1,...,n, for functions x on [0,1]. It is assumed that F is a linear bounded operator from the Hoelder space C{sup {gamma}}, {gamma} element of [0,n-1), into L{sub 1} and the U{sub j} are bounded linear functionals on C{sup k{sub j}} with k{sub j} element of {l_brace}0,...,n- 1{r_brace}. Let P{sub {zeta}} be the linear span of the root functions of the problem x{sup (n)}+ Fx={lambda}x, U{sub j}(x)=0, j=1,...,n, corresponding to the eigenvalues {lambda}{sub k} with |{lambda}{sub k}|<{zeta}{sup n}, and let E{sub {zeta}}(f){sub W{sub p}{sup l}}:=inf{l_brace}||f-g||{sub W{sub p}{supmore » l}}:g element of P{sub {zeta}}{r_brace}. An estimate of E{sub {zeta}}(f){sub W{sub p}{sup l}} is obtained in terms of the K-functional K({zeta}{sup -m},f;W{sub p}{sup l},W{sub p,U}{sup l+m}):= inf{l_brace}||f-x||{sub W{sub p}{sup l}}+{zeta}{sup -m}||x||{sub W{sub p}{sup l}{sup +}{sup m}}:x element of W{sub p}{sup l+m}, U{sub j}(x)=0 for k{sub j}

  18. Violation of the zero-force theorem in the time-dependent Krieger-Li-Iafrate approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundt, Michael; Kuemmel, Stephan; Leeuwen, Robert van

    2007-05-15

    We demonstrate that the time-dependent Krieger-Li-Iafrate approximation in combination with the exchange-only functional violates the zero-force theorem. By analyzing the time-dependent dipole moment of Na{sub 5} and Na{sub 9}{sup +}, we furthermore show that this can lead to an unphysical self-excitation of the system depending on the system properties and the excitation strength. Analytical aspects, especially the connection between the zero-force theorem and the generalized-translation invariance of the potential, are discussed.

  19. A mathematical theorem as the basis for the second law: Thomson's formulation applied to equilibrium

    NASA Astrophysics Data System (ADS)

    Allahverdyan, A. E.; Nieuwenhuizen, Th. M.

    2002-03-01

    There are several formulations of the second law, and they may, in principle, have different domains of validity. Here a simple mathematical theorem is proven which serves as the most general basis for the second law, namely the Thomson formulation (“cyclic changes cost energy”), applied to equilibrium. This formulation of the second law is a property akin to particle conservation (normalization of the wave function). It has been strictly proven for a canonical ensemble, and made plausible for a micro-canonical ensemble. As the derivation does not assume time-inversion invariance, it is applicable to situations where persistent currents occur. This clear-cut derivation allows to revive the “no perpetuum mobile in equilibrium” formulation of the second law and to criticize some assumptions which are widespread in literature. The result puts recent results devoted to foundations and limitations of the second law in proper perspective, and structurizes this relatively new field of research.

  20. Bi-centenary of successes of Fourier theorem: its power and limitations in optical system designs

    NASA Astrophysics Data System (ADS)

    Roychoudhuri, Chandrasekhar

    2007-09-01

    We celebrate the two hundred years of successful use of the Fourier theorem in optics. However, there is a great enigma associated with the Fourier transform integral. It is one of the most pervasively productive and useful tool of physics and optics because its foundation is based on the superposition of harmonic functions and yet we have never declared it as a principle of physics for valid reasons. And, yet there are a good number of situations where we pretend it to be equivalent to the superposition principle of physics, creating epistemological problems of enormous magnitude. The purpose of the paper is to elucidate the problems while underscoring the successes and the elegance of the Fourier theorem, which are not explicitly discussed in the literature. We will make our point by taking six major engineering fields of optics and show in each case why it works and under what restricted conditions by bringing in the relevant physics principles. The fields are (i) optical signal processing, (ii) Fourier transform spectrometry, (iii) classical spectrometry of pulsed light, (iv) coherence theory, (v) laser mode locking and (vi) pulse broadening. We underscore that mathematical Fourier frequencies, not being physical frequencies, cannot generate real physical effects on our detectors. Appreciation of this fundamental issue will open up ways to be innovative in many new optical instrument designs. We underscore the importance of always validating our design platforms based on valid physics principles (actual processes undergoing in nature) captured by an appropriate hypothesis based on diverse observations. This paper is a comprehensive view of the power and limitations of Fourier Transform by summarizing a series of SPIE conference papers presented during 2003-2007.

  1. Adiabatic Theorem for Quantum Spin Systems

    NASA Astrophysics Data System (ADS)

    Bachmann, S.; De Roeck, W.; Fraas, M.

    2017-08-01

    The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.

  2. New strings for old Veneziano amplitudes. II. Group-theoretic treatment

    NASA Astrophysics Data System (ADS)

    Kholodenko, A. L.

    2006-09-01

    In this part of our four parts work we use theory of polynomial invariants of finite pseudo-reflection groups in order to reconstruct both the Veneziano and Veneziano-like (tachyon-free) amplitudes and the generating function reproducing these amplitudes. We demonstrate that such generating function and amplitudes associated with it can be recovered with help of finite dimensional exactly solvableN=2 supersymmetric quantum mechanical model known earlier from works of Witten, Stone and others. Using the Lefschetz isomorphism theorem we replace traditional supersymmetric calculations by the group-theoretic thus solving the Veneziano model exactly using standard methods of representation theory. Mathematical correctness of our arguments relies on important theorems by Shepard and Todd, Serre and Solomon proven respectively in the early 50s and 60s and documented in the monograph by Bourbaki. Based on these theorems, we explain why the developed formalism leaves all known results of conformal field theories unchanged. We also explain why these theorems impose stringent requirements connecting analytical properties of scattering amplitudes with symmetries of space-time in which such amplitudes act.

  3. Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goryainov, V V

    2015-01-31

    The paper is concerned with evolution families of conformal mappings of the unit disc to itself that fix an interior point and a boundary point. Conditions are obtained for the evolution families to be differentiable, and an existence and uniqueness theorem for an evolution equation is proved. A convergence theorem is established which describes the topology of locally uniform convergence of evolution families in terms of infinitesimal generating functions. The main result in this paper is the embedding theorem which shows that any conformal mapping of the unit disc to itself with two fixed points can be embedded into a differentiable evolution familymore » of such mappings. This result extends the range of the parametric method in the theory of univalent functions. In this way the problem of the mutual change of the derivative at an interior point and the angular derivative at a fixed point on the boundary is solved for a class of mappings of the unit disc to itself. In particular, the rotation theorem is established for this class of mappings. Bibliography: 27 titles.« less

  4. Quantum regression theorem and non-Markovianity of quantum dynamics

    NASA Astrophysics Data System (ADS)

    Guarnieri, Giacomo; Smirne, Andrea; Vacchini, Bassano

    2014-08-01

    We explore the connection between two recently introduced notions of non-Markovian quantum dynamics and the validity of the so-called quantum regression theorem. While non-Markovianity of a quantum dynamics has been defined looking at the behavior in time of the statistical operator, which determines the evolution of mean values, the quantum regression theorem makes statements about the behavior of system correlation functions of order two and higher. The comparison relies on an estimate of the validity of the quantum regression hypothesis, which can be obtained exactly evaluating two-point correlation functions. To this aim we consider a qubit undergoing dephasing due to interaction with a bosonic bath, comparing the exact evaluation of the non-Markovianity measures with the violation of the quantum regression theorem for a class of spectral densities. We further study a photonic dephasing model, recently exploited for the experimental measurement of non-Markovianity. It appears that while a non-Markovian dynamics according to either definition brings with itself violation of the regression hypothesis, even Markovian dynamics can lead to a failure of the regression relation.

  5. A Functional Central Limit Theorem for the Becker-Döring Model

    NASA Astrophysics Data System (ADS)

    Sun, Wen

    2018-04-01

    We investigate the fluctuations of the stochastic Becker-Döring model of polymerization when the initial size of the system converges to infinity. A functional central limit problem is proved for the vector of the number of polymers of a given size. It is shown that the stochastic process associated to fluctuations is converging to the strong solution of an infinite dimensional stochastic differential equation (SDE) in a Hilbert space. We also prove that, at equilibrium, the solution of this SDE is a Gaussian process. The proofs are based on a specific representation of the evolution equations, the introduction of a convenient Hilbert space and several technical estimates to control the fluctuations, especially of the first coordinate which interacts with all components of the infinite dimensional vector representing the state of the process.

  6. Factorization and resummation of Higgs boson differential distributions in soft-collinear effective theory

    NASA Astrophysics Data System (ADS)

    Mantry, Sonny; Petriello, Frank

    2010-05-01

    We derive a factorization theorem for the Higgs boson transverse momentum (pT) and rapidity (Y) distributions at hadron colliders, using the soft-collinear effective theory (SCET), for mh≫pT≫ΛQCD, where mh denotes the Higgs mass. In addition to the factorization of the various scales involved, the perturbative physics at the pT scale is further factorized into two collinear impact-parameter beam functions (IBFs) and an inverse soft function (ISF). These newly defined functions are of a universal nature for the study of differential distributions at hadron colliders. The additional factorization of the pT-scale physics simplifies the implementation of higher order radiative corrections in αs(pT). We derive formulas for factorization in both momentum and impact parameter space and discuss the relationship between them. Large logarithms of the relevant scales in the problem are summed using the renormalization group equations of the effective theories. Power corrections to the factorization theorem in pT/mh and ΛQCD/pT can be systematically derived. We perform multiple consistency checks on our factorization theorem including a comparison with known fixed-order QCD results. We compare the SCET factorization theorem with the Collins-Soper-Sterman approach to low-pT resummation.

  7. A Guided Tour of Mathematical Methods for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; van Wijk, Kasper

    2015-05-01

    1. Introduction; 2. Dimensional analysis; 3. Power series; 4. Spherical and cylindrical coordinates; 5. Gradient; 6. Divergence of a vector field; 7. Curl of a vector field; 8. Theorem of Gauss; 9. Theorem of Stokes; 10. The Laplacian; 11. Scale analysis; 12. Linear algebra; 13. Dirac delta function; 14. Fourier analysis; 15. Analytic functions; 16. Complex integration; 17. Green's functions: principles; 18. Green's functions: examples; 19. Normal modes; 20. Potential-field theory; 21. Probability and statistics; 22. Inverse problems; 23. Perturbation theory; 24. Asymptotic evaluation of integrals; 25. Conservation laws; 26. Cartesian tensors; 27. Variational calculus; 28. Epilogue on power and knowledge.

  8. Computability, Gödel's incompleteness theorem, and an inherent limit on the predictability of evolution

    PubMed Central

    Day, Troy

    2012-01-01

    The process of evolutionary diversification unfolds in a vast genotypic space of potential outcomes. During the past century, there have been remarkable advances in the development of theory for this diversification, and the theory's success rests, in part, on the scope of its applicability. A great deal of this theory focuses on a relatively small subset of the space of potential genotypes, chosen largely based on historical or contemporary patterns, and then predicts the evolutionary dynamics within this pre-defined set. To what extent can such an approach be pushed to a broader perspective that accounts for the potential open-endedness of evolutionary diversification? There have been a number of significant theoretical developments along these lines but the question of how far such theory can be pushed has not been addressed. Here a theorem is proven demonstrating that, because of the digital nature of inheritance, there are inherent limits on the kinds of questions that can be answered using such an approach. In particular, even in extremely simple evolutionary systems, a complete theory accounting for the potential open-endedness of evolution is unattainable unless evolution is progressive. The theorem is closely related to Gödel's incompleteness theorem, and to the halting problem from computability theory. PMID:21849390

  9. Mixing rates and limit theorems for random intermittent maps

    NASA Astrophysics Data System (ADS)

    Bahsoun, Wael; Bose, Christopher

    2016-04-01

    We study random transformations built from intermittent maps on the unit interval that share a common neutral fixed point. We focus mainly on random selections of Pomeu-Manneville-type maps {{T}α} using the full parameter range 0<α <∞ , in general. We derive a number of results around a common theme that illustrates in detail how the constituent map that is fastest mixing (i.e. smallest α) combined with details of the randomizing process, determines the asymptotic properties of the random transformation. Our key result (theorem 1.1) establishes sharp estimates on the position of return time intervals for the quenched dynamics. The main applications of this estimate are to limit laws (in particular, CLT and stable laws, depending on the parameters chosen in the range 0<α <1 ) for the associated skew product; these are detailed in theorem 3.2. Since our estimates in theorem 1.1 also hold for 1≤slant α <∞ we study a second class of random transformations derived from piecewise affine Gaspard-Wang maps, prove existence of an infinite (σ-finite) invariant measure and study the corresponding correlation asymptotics. To the best of our knowledge, this latter kind of result is completely new in the setting of random transformations.

  10. Morera-type theorems in the hyperbolic disc

    NASA Astrophysics Data System (ADS)

    Volchkov, V. V.; Volchkov, V. V.

    2018-02-01

    Let G be the group of conformal automorphisms of the unit disc {D}=\\{z\\in{C}\\colon \\vert z\\vert<1\\}. We study the problem of the holomorphicity of functions f on {D} satisfying the equation where γ\\varrho=\\{z\\in{C}\\colon \\vert z\\vert=\\varrho\\} and ρ\\in(0,1) is fixed. We find exact conditions for holomorphicity in terms of the boundary behaviour of such functions. A by-product of our work is a new proof of the Berenstein-Pascuas two-radii theorem.

  11. Resolution of the EPR Paradox for Fermion Spin Correlations

    NASA Astrophysics Data System (ADS)

    Close, Robert

    2011-10-01

    The EPR paradox addresses the question of whether a physical system can have a definite state independent of its measurement. Bell's Theorem places limits on correlations between local measurements of particles whose properties are established prior to measurement. Experimental violation of Bell's theorem has been regarded as evidence against the existence of a definite state prior to measurement. We model fermions as having a spatial distribution of spin values, so that a Stern-Gerlach device samples the spin distribution differently at different orientations. The computed correlations agree with quantum mechanical predictions and experimental observations. Bell's Theorem is not applicable because for any sampling of angles, different points on the sphere have different density of states.

  12. On the analogues of Szegő's theorem for ergodic operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirsch, W; Pastur, L A

    2015-01-31

    Szegő's theorem on the asymptotic behaviour of the determinants of large Toeplitz matrices is generalized to the class of ergodic operators. The generalization is formulated in terms of a triple consisting of an ergodic operator and two functions, the symbol and the test function. It is shown that in the case of the one-dimensional discrete Schrödinger operator with random ergodic or quasiperiodic potential and various choices of the symbol and the test function this generalization leads to asymptotic formulae which have no analogues in the situation of Toeplitz operators. Bibliography: 22 titles.

  13. Generalised Central Limit Theorems for Growth Rate Distribution of Complex Systems

    NASA Astrophysics Data System (ADS)

    Takayasu, Misako; Watanabe, Hayafumi; Takayasu, Hideki

    2014-04-01

    We introduce a solvable model of randomly growing systems consisting of many independent subunits. Scaling relations and growth rate distributions in the limit of infinite subunits are analysed theoretically. Various types of scaling properties and distributions reported for growth rates of complex systems in a variety of fields can be derived from this basic physical model. Statistical data of growth rates for about 1 million business firms are analysed as a real-world example of randomly growing systems. Not only are the scaling relations consistent with the theoretical solution, but the entire functional form of the growth rate distribution is fitted with a theoretical distribution that has a power-law tail.

  14. Does the Coase theorem hold in real markets? An application to the negotiations between waterworks and farmers in Denmark.

    PubMed

    Abildtrup, Jens; Jensen, Frank; Dubgaard, Alex

    2012-01-01

    The Coase theorem depends on a number of assumptions, among others, perfect information about each other's payoff function, maximising behaviour and zero transaction costs. An important question is whether the Coase theorem holds for real market transactions when these assumptions are violated. This is the question examined in this paper. We consider the results of Danish waterworks' attempts to establish voluntary cultivation agreements with Danish farmers. A survey of these negotiations shows that the Coase theorem is not robust in the presence of imperfect information, non-maximising behaviour and transaction costs. Thus, negotiations between Danish waterworks and farmers may not be a suitable mechanism to achieve efficiency in the protection of groundwater quality due to violations of the assumptions of the Coase theorem. The use of standard schemes or government intervention (e.g. expropriation) may, under some conditions, be a more effective and cost efficient approach for the protection of vulnerable groundwater resources in Denmark. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. A Formally-Verified Decision Procedure for Univariate Polynomial Computation Based on Sturm's Theorem

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.

    2014-01-01

    Sturm's Theorem is a well-known result in real algebraic geometry that provides a function that computes the number of roots of a univariate polynomial in a semiopen interval. This paper presents a formalization of this theorem in the PVS theorem prover, as well as a decision procedure that checks whether a polynomial is always positive, nonnegative, nonzero, negative, or nonpositive on any input interval. The soundness and completeness of the decision procedure is proven in PVS. The procedure and its correctness properties enable the implementation of a PVS strategy for automatically proving existential and universal univariate polynomial inequalities. Since the decision procedure is formally verified in PVS, the soundness of the strategy depends solely on the internal logic of PVS rather than on an external oracle. The procedure itself uses a combination of Sturm's Theorem, an interval bisection procedure, and the fact that a polynomial with exactly one root in a bounded interval is always nonnegative on that interval if and only if it is nonnegative at both endpoints.

  16. Optimization of an exchange-correlation density functional for water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Michelle; Fernández-Serra, Marivi; Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794-3800

    2016-06-14

    We describe a method, that we call data projection onto parameter space (DPPS), to optimize an energy functional of the electron density, so that it reproduces a dataset of experimental magnitudes. Our scheme, based on Bayes theorem, constrains the optimized functional not to depart unphysically from existing ab initio functionals. The resulting functional maximizes the probability of being the “correct” parameterization of a given functional form, in the sense of Bayes theory. The application of DPPS to water sheds new light on why density functional theory has performed rather poorly for liquid water, on what improvements are needed, and onmore » the intrinsic limitations of the generalized gradient approximation to electron exchange and correlation. Finally, we present tests of our water-optimized functional, that we call vdW-DF-w, showing that it performs very well for a variety of condensed water systems.« less

  17. Limit theorems for Lévy walks in d dimensions: rare and bulk fluctuations

    NASA Astrophysics Data System (ADS)

    Fouxon, Itzhak; Denisov, Sergey; Zaburdaev, Vasily; Barkai, Eli

    2017-04-01

    We consider super-diffusive Lévy walks in d≥slant 2 dimensions when the duration of a single step, i.e. a ballistic motion performed by a walker, is governed by a power-law tailed distribution of infinite variance and finite mean. We demonstrate that the probability density function (PDF) of the coordinate of the random walker has two different scaling limits at large times. One limit describes the bulk of the PDF. It is the d-dimensional generalization of the one-dimensional Lévy distribution and is the counterpart of the central limit theorem (CLT) for random walks with finite dispersion. In contrast with the one-dimensional Lévy distribution and the CLT this distribution does not have a universal shape. The PDF reflects anisotropy of the single-step statistics however large the time is. The other scaling limit, the so-called ‘infinite density’, describes the tail of the PDF which determines second (dispersion) and higher moments of the PDF. This limit repeats the angular structure of the PDF of velocity in one step. A typical realization of the walk consists of anomalous diffusive motion (described by anisotropic d-dimensional Lévy distribution) interspersed with long ballistic flights (described by infinite density). The long flights are rare but due to them the coordinate increases so much that their contribution determines the dispersion. We illustrate the concept by considering two types of Lévy walks, with isotropic and anisotropic distributions of velocities. Furthermore, we show that for isotropic but otherwise arbitrary velocity distributions the d-dimensional process can be reduced to a one-dimensional Lévy walk. We briefly discuss the consequences of non-universality for the d  >  1 dimensional fractional diffusion equation, in particular the non-uniqueness of the fractional Laplacian.

  18. Surpassing the no-cloning limit with a heralded hybrid linear amplifier for coherent states

    PubMed Central

    Haw, Jing Yan; Zhao, Jie; Dias, Josephine; Assad, Syed M.; Bradshaw, Mark; Blandino, Rémi; Symul, Thomas; Ralph, Timothy C.; Lam, Ping Koy

    2016-01-01

    The no-cloning theorem states that an unknown quantum state cannot be cloned exactly and deterministically due to the linearity of quantum mechanics. Associated with this theorem is the quantitative no-cloning limit that sets an upper bound to the quality of the generated clones. However, this limit can be circumvented by abandoning determinism and using probabilistic methods. Here, we report an experimental demonstration of probabilistic cloning of arbitrary coherent states that clearly surpasses the no-cloning limit. Our scheme is based on a hybrid linear amplifier that combines an ideal deterministic linear amplifier with a heralded measurement-based noiseless amplifier. We demonstrate the production of up to five clones with the fidelity of each clone clearly exceeding the corresponding no-cloning limit. Moreover, since successful cloning events are heralded, our scheme has the potential to be adopted in quantum repeater, teleportation and computing applications. PMID:27782135

  19. Theoretical and Empirical Studies on Using Program Mutation to Test the Functional Correctness of Programs.

    DTIC Science & Technology

    1980-02-01

    implemented to test ANSI FORTRAN set D3. Using theorem 6 we then have programs. In building real testing tools for Theorem 18 : The recursion constructors...constants, scalar in theorems 10, 15, 16, and 18 , then Q must be variables, and array references) times the number equivalent to P. of unique data...for j,,rd1s longer thlan a fixed .1; 0. erot 2., .12.’Ie 1). Ullman2. li21122 arnd isolates and plrints each telegram along hI 2 .. 222.2.J~12.2.1 It

  20. Thermodynamic phase transitions for Pomeau-Manneville maps

    NASA Astrophysics Data System (ADS)

    Venegeroles, Roberto

    2012-08-01

    We study phase transitions in the thermodynamic description of Pomeau-Manneville intermittent maps from the point of view of infinite ergodic theory, which deals with diverging measure dynamical systems. For such systems, we use a distributional limit theorem to provide both a powerful tool for calculating thermodynamic potentials as also an understanding of the dynamic characteristics at each instability phase. In particular, topological pressure and Rényi entropy are calculated exactly for such systems. Finally, we show the connection of the distributional limit theorem with non-Gaussian fluctuations of the algorithmic complexity proposed by Gaspard and Wang [Proc. Natl. Acad. Sci. USA10.1073/pnas.85.13.4591 85, 4591 (1988)].

  1. Analyzing Mathematics Textbooks through a Constructive-Empirical Perspective on Abstraction: The Case of Pythagoras' Theorem

    ERIC Educational Resources Information Center

    Yang, Kai-Lin

    2016-01-01

    This study aims at analyzing how Pythagoras' theorem is handled in three versions of Taiwanese textbooks using a conceptual framework of a constructive-empirical perspective on abstraction, which comprises three key attributes: the generality of the object, the connectivity of the subject and the functionality of diagrams as the focused semiotic…

  2. A Complete Set for the Maass Laplacians on the Pseudosphere

    NASA Astrophysics Data System (ADS)

    Oshima, K.

    1989-02-01

    We obtain a completeness relation from eigenfunctions of the Maass laplacians in terms of the pseudospherical polar coordinates. We derive addition theorems of ``generalized'' associated Legendre functions. With the help of the addition theorems, we get a simple path integral picture for a charged particle on the Poincaré upper half plane with a constant magnetic field.

  3. From Bethe–Salpeter Wave functions to Generalised Parton Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.

    2016-06-06

    We review recent works on the modelling of Generalised Parton Distributions within the Dyson-Schwinger formalism. We highlight how covariant computations, using the impulse approximation, allows one to fulfil most of the theoretical constraints of the GPDs. A specific attention is brought to chiral properties and especially the so-called soft pion theorem, and its link with the Axial-Vector Ward-Takahashi identity. The limitation of the impulse approximation are also explained. Beyond impulse approximation computations are reviewed in the forward case. Finally, we stress the advantages of the overlap of lightcone wave functions, and possible ways to construct covariant GPD models within thismore » framework, in a two-body approximation« less

  4. Coagulation-Fragmentation Model for Animal Group-Size Statistics

    NASA Astrophysics Data System (ADS)

    Degond, Pierre; Liu, Jian-Guo; Pego, Robert L.

    2017-04-01

    We study coagulation-fragmentation equations inspired by a simple model proposed in fisheries science to explain data for the size distribution of schools of pelagic fish. Although the equations lack detailed balance and admit no H-theorem, we are able to develop a rather complete description of equilibrium profiles and large-time behavior, based on recent developments in complex function theory for Bernstein and Pick functions. In the large-population continuum limit, a scaling-invariant regime is reached in which all equilibria are determined by a single scaling profile. This universal profile exhibits power-law behavior crossing over from exponent -2/3 for small size to -3/2 for large size, with an exponential cutoff.

  5. Generalization of Jacobi's Decomposition Theorem to the Rotation and Translation of a Solid in a Fluid.

    NASA Astrophysics Data System (ADS)

    Chiang, Rong-Chang

    Jacobi found that the rotation of a symmetrical heavy top about a fixed point is composed of the two torque -free rotations of two triaxial bodies about their centers of mass. His discovery rests on the fact that the orthogonal matrix which represents the rotation of a symmetrical heavy top is decomposed into a product of two orthogonal matrices, each of which represents the torque-free rotations of two triaxial bodies. This theorem is generalized to the Kirchhoff's case of the rotation and translation of a symmetrical solid in a fluid. This theorem requires the explicit computation, by means of theta functions, of the nine direction cosines between the rotating body axes and the fixed space axes. The addition theorem of theta functions makes it possible to decompose the rotational matrix into a product of similar matrices. This basic idea of utilizing the addition theorem is simple but the carry-through of the computation is quite involved and the full proof turns out to be a lengthy process of computing rather long and complex expressions. For the translational motion we give a new treatment. The position of the center of mass as a function of the time is found by a direct evaluation of the elliptic integral by means of a new theta interpretation of Legendre's reduction formula of the elliptic integral. For the complete solution of the problem we have added further the study of the physical aspects of the motion. Based on a complete examination of the all possible manifolds of the steady helical cases it is possible to obtain a full qualitative description of the motion. Many numerical examples and graphs are given to illustrate the rotation and translation of the solid in a fluid.

  6. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  7. Matching factorization theorems with an inverse-error weighting

    NASA Astrophysics Data System (ADS)

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; Pisano, Cristian; Signori, Andrea

    2018-06-01

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections to the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H0 boson and Drell-Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins-Soper-Sterman subtraction scheme. It is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.

  8. Matching factorization theorems with an inverse-error weighting

    DOE PAGES

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; ...

    2018-04-03

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections tomore » the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H 0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. In conclusion, it is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.« less

  9. Matching factorization theorems with an inverse-error weighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections tomore » the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H 0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. In conclusion, it is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.« less

  10. Generalized Fourier slice theorem for cone-beam image reconstruction.

    PubMed

    Zhao, Shuang-Ren; Jiang, Dazong; Yang, Kevin; Yang, Kang

    2015-01-01

    The cone-beam reconstruction theory has been proposed by Kirillov in 1961, Tuy in 1983, Feldkamp in 1984, Smith in 1985, Pierre Grangeat in 1990. The Fourier slice theorem is proposed by Bracewell 1956, which leads to the Fourier image reconstruction method for parallel-beam geometry. The Fourier slice theorem is extended to fan-beam geometry by Zhao in 1993 and 1995. By combining the above mentioned cone-beam image reconstruction theory and the above mentioned Fourier slice theory of fan-beam geometry, the Fourier slice theorem in cone-beam geometry is proposed by Zhao 1995 in short conference publication. This article offers the details of the derivation and implementation of this Fourier slice theorem for cone-beam geometry. Especially the problem of the reconstruction from Fourier domain has been overcome, which is that the value of in the origin of Fourier space is 0/0. The 0/0 type of limit is proper handled. As examples, the implementation results for the single circle and two perpendicular circle source orbits are shown. In the cone-beam reconstruction if a interpolation process is considered, the number of the calculations for the generalized Fourier slice theorem algorithm is O(N^4), which is close to the filtered back-projection method, here N is the image size of 1-dimension. However the interpolation process can be avoid, in that case the number of the calculations is O(N5).

  11. Glueball spectrum and hadronic processes in low-energy QCD

    NASA Astrophysics Data System (ADS)

    Frasca, Marco

    2010-10-01

    Low-energy limit of quantum chromodynamics (QCD) is obtained using a mapping theorem recently proved. This theorem states that, classically, solutions of a massless quartic scalar field theory are approximate solutions of Yang-Mills equations in the limit of the gauge coupling going to infinity. Low-energy QCD is described by a Yukawa theory further reducible to a Nambu-Jona-Lasinio model. At the leading order one can compute glue-quark interactions and one is able to calculate the properties of the σ and η-η mesons. Finally, it is seen that all the physics of strong interactions, both in the infrared and ultraviolet limit, is described by a single constant Λ arising in the ultraviolet by dimensional transmutation and in the infrared as an integration constant.

  12. Factorization and resummation of Higgs boson differential distributions in soft-collinear effective theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantry, Sonny; Petriello, Frank

    We derive a factorization theorem for the Higgs boson transverse momentum (p{sub T}) and rapidity (Y) distributions at hadron colliders, using the soft-collinear effective theory (SCET), for m{sub h}>>p{sub T}>>{Lambda}{sub QCD}, where m{sub h} denotes the Higgs mass. In addition to the factorization of the various scales involved, the perturbative physics at the p{sub T} scale is further factorized into two collinear impact-parameter beam functions (IBFs) and an inverse soft function (ISF). These newly defined functions are of a universal nature for the study of differential distributions at hadron colliders. The additional factorization of the p{sub T}-scale physics simplifies themore » implementation of higher order radiative corrections in {alpha}{sub s}(p{sub T}). We derive formulas for factorization in both momentum and impact parameter space and discuss the relationship between them. Large logarithms of the relevant scales in the problem are summed using the renormalization group equations of the effective theories. Power corrections to the factorization theorem in p{sub T}/m{sub h} and {Lambda}{sub QCD}/p{sub T} can be systematically derived. We perform multiple consistency checks on our factorization theorem including a comparison with known fixed-order QCD results. We compare the SCET factorization theorem with the Collins-Soper-Sterman approach to low-p{sub T} resummation.« less

  13. Sampling and Reconstruction of the Pupil and Electric Field for Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Dean, Bruce; Smith, Jeffrey; Aronstein, David

    2012-01-01

    This technology is based on sampling considerations for a band-limited function, which has application to optical estimation generally, and to phase retrieval specifically. The analysis begins with the observation that the Fourier transform of an optical aperture function (pupil) can be implemented with minimal aliasing for Q values down to Q = 1. The sampling ratio, Q, is defined as the ratio of the sampling frequency to the band-limited cut-off frequency. The analytical results are given using a 1-d aperture function, and with the electric field defined by the band-limited sinc(x) function. Perfect reconstruction of the Fourier transform (electric field) is derived using the Whittaker-Shannon sampling theorem for 1

  14. Closed-form solutions and scaling laws for Kerr frequency combs

    PubMed Central

    Renninger, William H.; Rakich, Peter T.

    2016-01-01

    A single closed-form analytical solution of the driven nonlinear Schrödinger equation is developed, reproducing a large class of the behaviors in Kerr-comb systems, including bright-solitons, dark-solitons, and a large class of periodic wavetrains. From this analytical framework, a Kerr-comb area theorem and a pump-detuning relation are developed, providing new insights into soliton- and wavetrain-based combs along with concrete design guidelines for both. This new area theorem reveals significant deviation from the conventional soliton area theorem, which is crucial to understanding cavity solitons in certain limits. Moreover, these closed-form solutions represent the first step towards an analytical framework for wavetrain formation, and reveal new parameter regimes for enhanced Kerr-comb performance. PMID:27108810

  15. Constraints on the symmetry noninheriting scalar black hole hair

    NASA Astrophysics Data System (ADS)

    Smolić, Ivica

    2017-01-01

    Any recipe to grow black hole hair has to circumvent no-hair theorems by violating some of their assumptions. Recently discovered hairy black hole solutions exist due to the fact that their scalar fields don't inherit the symmetries of the spacetime metric. We present here a general analysis of the constraints which limit the possible forms of such a hair, for both the real and the complex scalar fields. These results can be taken as a novel piece of the black hole uniqueness theorems or simply as a symmetry noninheriting Ansätze guide. In addition, we introduce new classification of the gravitational field equations which might prove useful for various generalizations of the theorems about spacetimes with symmetries.

  16. Dissipative controller designs for second-order dynamic systems

    NASA Technical Reports Server (NTRS)

    Morris, K. A.; Juang, J. N.

    1990-01-01

    The passivity theorem may be used to design robust controllers for structures with positive transfer functions. This result is extended to more general configurations using dissipative system theory. A stability theorem for robust, model-independent controllers of structures which lack collocated rate sensors and actuators is given. The theory is illustrated for non-square systems and systems with displacement sensors.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flego, S.P.; Plastino, A.; Universitat de les Illes Balears and IFISC-CSIC, 07122 Palma de Mallorca

    We explore intriguing links connecting Hellmann-Feynman's theorem to a thermodynamics information-optimizing principle based on Fisher's information measure. - Highlights: > We link a purely quantum mechanical result, the Hellmann-Feynman theorem, with Jaynes' information theoretical reciprocity relations. > These relations involve the coefficients of a series expansion of the potential function. > We suggest the existence of a Legendre transform structure behind Schroedinger's equation, akin to the one characterizing thermodynamics.

  18. Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories

    NASA Astrophysics Data System (ADS)

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-03-01

    We consider a general Einstein-scalar-Gauss-Bonnet theory with a coupling function f (ϕ ) . We demonstrate that black-hole solutions appear as a generic feature of this theory since a regular horizon and an asymptotically flat solution may be easily constructed under mild assumptions for f (ϕ ). We show that the existing no-hair theorems are easily evaded, and a large number of regular black-hole solutions with scalar hair are then presented for a plethora of coupling functions f (ϕ ).

  19. Compact exponential product formulas and operator functional derivative

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    1997-02-01

    A new scheme for deriving compact expressions of the logarithm of the exponential product is proposed and it is applied to several exponential product formulas. A generalization of the Dynkin-Specht-Wever (DSW) theorem on free Lie elements is given, and it is used to study the relation between the traditional method (based on the DSW theorem) and the present new scheme. The concept of the operator functional derivative is also proposed, and it is applied to ordered exponentials, such as time-evolution operators for time-dependent Hamiltonians.

  20. Geometry and physics of pseudodifferential operators on manifolds

    NASA Astrophysics Data System (ADS)

    Esposito, Giampiero; Napolitano, George M.

    2016-09-01

    A review is made of the basic tools used in mathematics to define a calculus for pseudodifferential operators on Riemannian manifolds endowed with a connection: existence theorem for the function that generalizes the phase; analogue of Taylor's theorem; torsion and curvature terms in the symbolic calculus; the two kinds of derivative acting on smooth sections of the cotangent bundle of the Riemannian manifold; the concept of symbol as an equivalence class. Physical motivations and applications are then outlined, with emphasis on Green functions of quantum field theory and Parker's evaluation of Hawking radiation.

  1. Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories.

    PubMed

    Antoniou, G; Bakopoulos, A; Kanti, P

    2018-03-30

    We consider a general Einstein-scalar-Gauss-Bonnet theory with a coupling function f(ϕ). We demonstrate that black-hole solutions appear as a generic feature of this theory since a regular horizon and an asymptotically flat solution may be easily constructed under mild assumptions for f(ϕ). We show that the existing no-hair theorems are easily evaded, and a large number of regular black-hole solutions with scalar hair are then presented for a plethora of coupling functions f(ϕ).

  2. Photoelectric effect from observer's mathematics point of view

    NASA Astrophysics Data System (ADS)

    Khots, Boris; Khots, Dmitriy

    2014-12-01

    When we consider and analyze physical events with the purpose of creating corresponding models we often assume that the mathematical apparatus used in modeling is infallible. In particular, this relates to the use of infinity in various aspects and the use of Newton's definition of a limit in analysis. We believe that is where the main problem lies in contemporary study of nature. This work considers Physical aspects in a setting of arithmetic, algebra, geometry, analysis, topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided. In particular, we prove the following Theorems, which give Observer's Mathematics point of view on Einstein photoelectric effect theory and Lamb-Scully and Hanbury-Brown-Twiss experiments: Theorem 1. There are some values of light intensity where anticorrelation parameter A ∈ [0,1). Theorem 2. There are some values of light intensity where anticorrelation parameter A = 1. Theorem 3. There are some values of light intensity where anticorrelation parameter A > 1.

  3. Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Jian-Guo; Lu, Jianfeng

    2017-10-01

    We propose in this work a fractional stochastic differential equation (FSDE) model consistent with the over-damped limit of the generalized Langevin equation model. As a result of the `fluctuation-dissipation theorem', the differential equations driven by fractional Brownian noise to model memory effects should be paired with Caputo derivatives, and this FSDE model should be understood in an integral form. We establish the existence of strong solutions for such equations and discuss the ergodicity and convergence to Gibbs measure. In the linear forcing regime, we show rigorously the algebraic convergence to Gibbs measure when the `fluctuation-dissipation theorem' is satisfied, and this verifies that satisfying `fluctuation-dissipation theorem' indeed leads to the correct physical behavior. We further discuss possible approaches to analyze the ergodicity and convergence to Gibbs measure in the nonlinear forcing regime, while leave the rigorous analysis for future works. The FSDE model proposed is suitable for systems in contact with heat bath with power-law kernel and subdiffusion behaviors.

  4. Generalized fluctuation-dissipation theorem as a test of the Markovianity of a system

    NASA Astrophysics Data System (ADS)

    Willareth, Lucian; Sokolov, Igor M.; Roichman, Yael; Lindner, Benjamin

    2017-04-01

    We study how well a generalized fluctuation-dissipation theorem (GFDT) is suited to test whether a stochastic system is not Markovian. To this end, we simulate a stochastic non-equilibrium model of the mechanosensory hair bundle from the inner ear organ and analyze its spontaneous activity and response to external stimulation. We demonstrate that this two-dimensional Markovian system indeed obeys the GFDT, as long as i) the averaging ensemble is sufficiently large and ii) finite-size effects in estimating the conjugated variable and its susceptibility can be neglected. Furthermore, we test the GFDT also by looking only at a one-dimensional projection of the system, the experimentally accessible position variable. This reduced system is certainly non-Markovian and the GFDT is somewhat violated but not as drastically as for the equilibrium fluctuation-dissipation theorem. We explore suitable measures to quantify the violation of the theorem and demonstrate that for a set of limited experimental data it might be difficult to decide whether the system is Markovian or not.

  5. Final Report on Scientific Activities Pursuant to the Provisions of AFOSR Grant 79-0018-A during the Period November 1, 1982 to October 31, 1983.

    DTIC Science & Technology

    1983-10-31

    nonparallel line segments, itand it2’ with unit exterior normals vIand v 2- Proceeding as before we can show, applying the Rolmgren theorem together...application of (2.7) readily shows that z) le -tg(t) , Re(z) > P. (2.9) Re(z)-A L 2 [0 0) Let rr,p denote the positively oriented D-shaped contour consisting of...dedness of p in strips I le (z) 4- p . Proof of Theorem 4.6. From Theorem 4.3 the functions ezkt form a Schauder basis for L2 [-,wJ; equivalently, the

  6. Central Limit Theorem: New SOCR Applet and Demonstration Activity

    PubMed Central

    Dinov, Ivo D.; Christou, Nicolas; Sanchez, Juana

    2011-01-01

    Modern approaches for information technology based blended education utilize a variety of novel instructional, computational and network resources. Such attempts employ technology to deliver integrated, dynamically linked, interactive content and multifaceted learning environments, which may facilitate student comprehension and information retention. In this manuscript, we describe one such innovative effort of using technological tools for improving student motivation and learning of the theory, practice and usability of the Central Limit Theorem (CLT) in probability and statistics courses. Our approach is based on harnessing the computational libraries developed by the Statistics Online Computational Resource (SOCR) to design a new interactive Java applet and a corresponding demonstration activity that illustrate the meaning and the power of the CLT. The CLT applet and activity have clear common goals; to provide graphical representation of the CLT, to improve student intuition, and to empirically validate and establish the limits of the CLT. The SOCR CLT activity consists of four experiments that demonstrate the assumptions, meaning and implications of the CLT and ties these to specific hands-on simulations. We include a number of examples illustrating the theory and applications of the CLT. Both the SOCR CLT applet and activity are freely available online to the community to test, validate and extend (Applet: http://www.socr.ucla.edu/htmls/SOCR_Experiments.html and Activity: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem). PMID:21833159

  7. Central Limit Theorem: New SOCR Applet and Demonstration Activity.

    PubMed

    Dinov, Ivo D; Christou, Nicolas; Sanchez, Juana

    2008-07-01

    Modern approaches for information technology based blended education utilize a variety of novel instructional, computational and network resources. Such attempts employ technology to deliver integrated, dynamically linked, interactive content and multifaceted learning environments, which may facilitate student comprehension and information retention. In this manuscript, we describe one such innovative effort of using technological tools for improving student motivation and learning of the theory, practice and usability of the Central Limit Theorem (CLT) in probability and statistics courses. Our approach is based on harnessing the computational libraries developed by the Statistics Online Computational Resource (SOCR) to design a new interactive Java applet and a corresponding demonstration activity that illustrate the meaning and the power of the CLT. The CLT applet and activity have clear common goals; to provide graphical representation of the CLT, to improve student intuition, and to empirically validate and establish the limits of the CLT. The SOCR CLT activity consists of four experiments that demonstrate the assumptions, meaning and implications of the CLT and ties these to specific hands-on simulations. We include a number of examples illustrating the theory and applications of the CLT. Both the SOCR CLT applet and activity are freely available online to the community to test, validate and extend (Applet: http://www.socr.ucla.edu/htmls/SOCR_Experiments.html and Activity: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem).

  8. Testing ground for fluctuation theorems: The one-dimensional Ising model

    NASA Astrophysics Data System (ADS)

    Lemos, C. G. O.; Santos, M.; Ferreira, A. L.; Figueiredo, W.

    2018-04-01

    In this paper we determine the nonequilibrium magnetic work performed on a Ising model and relate it to the fluctuation theorem derived some years ago by Jarzynski. The basic idea behind this theorem is the relationship connecting the free energy difference between two thermodynamic states of a system and the average work performed by an external agent, in a finite time, through nonequilibrium paths between the same thermodynamic states. We test the validity of this theorem by considering the one-dimensional Ising model where the free energy is exactly determined as a function of temperature and magnetic field. We have found that the Jarzynski theorem remains valid for all the values of the rate of variation of the magnetic field applied to the system. We have also determined the probability distribution function for the work performed on the system for the forward and reverse processes and verified that predictions based on the Crooks relation are equally correct. We also propose a method to calculate the lag between the current state of the system and that of the equilibrium based on macroscopic variables. We have shown that the lag increases with the sweeping rate of the field at its final value for the reverse process, while it decreases in the case of the forward process. The lag increases linearly with the size of the chain and with a slope decreasing with the inverse of the rate of variation of the field.

  9. Heuristic analogy in Ars Conjectandi: From Archimedes' De Circuli Dimensione to Bernoulli's theorem.

    PubMed

    Campos, Daniel G

    2018-02-01

    This article investigates the way in which Jacob Bernoulli proved the main mathematical theorem that undergirds his art of conjecturing-the theorem that founded, historically, the field of mathematical probability. It aims to contribute a perspective into the question of problem-solving methods in mathematics while also contributing to the comprehension of the historical development of mathematical probability. It argues that Bernoulli proved his theorem by a process of mathematical experimentation in which the central heuristic strategy was analogy. In this context, the analogy functioned as an experimental hypothesis. The article expounds, first, Bernoulli's reasoning for proving his theorem, describing it as a process of experimentation in which hypothesis-making is crucial. Next, it investigates the analogy between his reasoning and Archimedes' approximation of the value of π, by clarifying both Archimedes' own experimental approach to the said approximation and its heuristic influence on Bernoulli's problem-solving strategy. The discussion includes some general considerations about analogy as a heuristic technique to make experimental hypotheses in mathematics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Darboux theorems and Wronskian formulas for integrable systems I. Constrained KP flows

    NASA Astrophysics Data System (ADS)

    Oevel, W.

    1993-05-01

    Generalizations of the classical Darboux theorem are established for pseudo-differential scattering operators of the form L = limit∑i=0N u i∂ i + limitΣi=1m Φ i∂ -1limitΨi†i. Iteration of the Darboux transformations leads to a gauge transformed operator with coefficients given by Wronskian formulas involving a set of eigenfunctions of L. Nonlinear integrable partial differential equations are associated with the scattering operator L which arise as a symmetry reduction of the multicomponent KP hierarchy. With a suitable linear time evolution for the eigenfunctions the Darboux transformation is used to obtain solutions of the integrable equations in terms of Wronskian determinants.

  11. More on Weinberg's no-go theorem in quantum gravity

    NASA Astrophysics Data System (ADS)

    Nagahama, Munehiro; Oda, Ichiro

    2018-05-01

    We complement Weinberg's no-go theorem on the cosmological constant problem in quantum gravity by generalizing it to the case of a scale-invariant theory. Our analysis makes use of the effective action and the BRST symmetry in a manifestly covariant quantum gravity instead of the classical Lagrangian density and the G L (4 ) symmetry in classical gravity. In this sense, our proof is very general since it does not depend on details of quantum gravity and holds true for general gravitational theories which are invariant under diffeomorphisms. As an application of our theorem, we comment on an idea that in the asymptotic safety scenario the functional renormalization flow drives a cosmological constant to zero, solving the cosmological constant problem without reference to fine tuning of parameters. Finally, we also comment on the possibility of extending the Weinberg theorem in quantum gravity to the case where the translational invariance is spontaneously broken.

  12. The Riesz-Radon-Fréchet problem of characterization of integrals

    NASA Astrophysics Data System (ADS)

    Zakharov, Valerii K.; Mikhalev, Aleksandr V.; Rodionov, Timofey V.

    2010-11-01

    This paper is a survey of results on characterizing integrals as linear functionals. It starts from the familiar result of F. Riesz (1909) on integral representation of bounded linear functionals by Riemann-Stieltjes integrals on a closed interval, and is directly connected with Radon's famous theorem (1913) on integral representation of bounded linear functionals by Lebesgue integrals on a compact subset of {R}^n. After the works of Radon, Fréchet, and Hausdorff, the problem of characterizing integrals as linear functionals took the particular form of the problem of extending Radon's theorem from {R}^n to more general topological spaces with Radon measures. This problem turned out to be difficult, and its solution has a long and rich history. Therefore, it is natural to call it the Riesz-Radon-Fréchet problem of characterization of integrals. Important stages of its solution are associated with such eminent mathematicians as Banach (1937-1938), Saks (1937-1938), Kakutani (1941), Halmos (1950), Hewitt (1952), Edwards (1953), Prokhorov (1956), Bourbaki (1969), and others. Essential ideas and technical tools were developed by A.D. Alexandrov (1940-1943), Stone (1948-1949), Fremlin (1974), and others. Most of this paper is devoted to the contemporary stage of the solution of the problem, connected with papers of König (1995-2008), Zakharov and Mikhalev (1997-2009), and others. The general solution of the problem is presented in the form of a parametric theorem on characterization of integrals which directly implies the characterization theorems of the indicated authors. Bibliography: 60 titles.

  13. Quantum Field Theory on Spacetimes with a Compactly Generated Cauchy Horizon

    NASA Astrophysics Data System (ADS)

    Kay, Bernard S.; Radzikowski, Marek J.; Wald, Robert M.

    1997-02-01

    We prove two theorems which concern difficulties in the formulation of the quantum theory of a linear scalar field on a spacetime, (M,g_{ab}), with a compactly generated Cauchy horizon. These theorems demonstrate the breakdown of the theory at certain base points of the Cauchy horizon, which are defined as 'past terminal accumulation points' of the horizon generators. Thus, the theorems may be interpreted as giving support to Hawking's 'Chronology Protection Conjecture', according to which the laws of physics prevent one from manufacturing a 'time machine'. Specifically, we prove: Theorem 1. There is no extension to (M,g_{ab}) of the usual field algebra on the initial globally hyperbolic region which satisfies the condition of F-locality at any base point. In other words, any extension of the field algebra must, in any globally hyperbolic neighbourhood of any base point, differ from the algebra one would define on that neighbourhood according to the rules for globally hyperbolic spacetimes. Theorem 2. The two-point distribution for any Hadamard state defined on the initial globally hyperbolic region must (when extended to a distributional bisolution of the covariant Klein-Gordon equation on the full spacetime) be singular at every base point x in the sense that the difference between this two point distribution and a local Hadamard distribution cannot be given by a bounded function in any neighbourhood (in M 2 M) of (x,x). In consequence of Theorem 2, quantities such as the renormalized expectation value of J2 or of the stress-energy tensor are necessarily ill-defined or singular at any base point. The proof of these theorems relies on the 'Propagation of Singularities' theorems of Duistermaat and Hörmander.

  14. An Estimation of the Logarithmic Timescale in Ergodic Dynamics

    NASA Astrophysics Data System (ADS)

    Gomez, Ignacio S.

    An estimation of the logarithmic timescale in quantum systems having an ergodic dynamics in the semiclassical limit, is presented. The estimation is based on an extension of the Krieger’s finite generator theorem for discretized σ-algebras and using the time rescaling property of the Kolmogorov-Sinai entropy. The results are in agreement with those obtained in the literature but with a simpler mathematics and within the context of the ergodic theory. Moreover, some consequences of the Poincaré’s recurrence theorem are also explored.

  15. Exponential Thurston maps and limits of quadratic differentials

    NASA Astrophysics Data System (ADS)

    Hubbard, John; Schleicher, Dierk; Shishikura, Mitsuhiro

    2009-01-01

    We give a topological characterization of postsingularly finite topological exponential maps, i.e., universal covers g\\colon{C}to{C}setminus\\{0\\} such that 0 has a finite orbit. Such a map either is Thurston equivalent to a unique holomorphic exponential map λ e^z or it has a topological obstruction called a degenerate Levy cycle. This is the first analog of Thurston's topological characterization theorem of rational maps, as published by Douady and Hubbard, for the case of infinite degree. One main tool is a theorem about the distribution of mass of an integrable quadratic differential with a given number of poles, providing an almost compact space of models for the entire mass of quadratic differentials. This theorem is given for arbitrary Riemann surfaces of finite type in a uniform way.

  16. Quantum interval-valued probability: Contextuality and the Born rule

    NASA Astrophysics Data System (ADS)

    Tai, Yu-Tsung; Hanson, Andrew J.; Ortiz, Gerardo; Sabry, Amr

    2018-05-01

    We present a mathematical framework based on quantum interval-valued probability measures to study the effect of experimental imperfections and finite precision measurements on defining aspects of quantum mechanics such as contextuality and the Born rule. While foundational results such as the Kochen-Specker and Gleason theorems are valid in the context of infinite precision, they fail to hold in general in a world with limited resources. Here we employ an interval-valued framework to establish bounds on the validity of those theorems in realistic experimental environments. In this way, not only can we quantify the idea of finite-precision measurement within our theory, but we can also suggest a possible resolution of the Meyer-Mermin debate on the impact of finite-precision measurement on the Kochen-Specker theorem.

  17. Wealth distribution on complex networks

    NASA Astrophysics Data System (ADS)

    Ichinomiya, Takashi

    2012-12-01

    We study the wealth distribution of the Bouchaud-Mézard model on complex networks. It is known from numerical simulations that this distribution depends on the topology of the network; however, no one has succeeded in explaining it. Using “adiabatic” and “independent” assumptions along with the central-limit theorem, we derive equations that determine the probability distribution function. The results are compared to those of simulations for various networks. We find good agreement between our theory and the simulations, except for the case of Watts-Strogatz networks with a low rewiring rate due to the breakdown of independent assumption.

  18. Scattering General Analysis; ANALISIS GENERAL DE LA DISPERSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tixaire, A.G.

    1962-01-01

    A definition of scattering states is given. It is shown that such states must belong to the absolutely continuous part of the spectrum of the total hamiltonian whenever scattering systems are considered. Such embedding may be proper unless the quantum system is physically admissible. The Moller wave operators are analyzed using Abel- and Cesaro-limit theoretical arguments. Von Neumann s ergodic theorem is partially generalized. A rigorous derivation of the Gell-Mann and Goldberger and Lippmann and Schwinger equations is obtained by making use of results on spectral theory, wave function, and eigendifferential concepts contained. (auth)

  19. Compact exponential product formulas and operator functional derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, M.

    1997-02-01

    A new scheme for deriving compact expressions of the logarithm of the exponential product is proposed and it is applied to several exponential product formulas. A generalization of the Dynkin{endash}Specht{endash}Wever (DSW) theorem on free Lie elements is given, and it is used to study the relation between the traditional method (based on the DSW theorem) and the present new scheme. The concept of the operator functional derivative is also proposed, and it is applied to ordered exponentials, such as time-evolution operators for time-dependent Hamiltonians. {copyright} {ital 1997 American Institute of Physics.}

  20. About normal distribution on SO(3) group in texture analysis

    NASA Astrophysics Data System (ADS)

    Savyolova, T. I.; Filatov, S. V.

    2017-12-01

    This article studies and compares different normal distributions (NDs) on SO(3) group, which are used in texture analysis. Those NDs are: Fisher normal distribution (FND), Bunge normal distribution (BND), central normal distribution (CND) and wrapped normal distribution (WND). All of the previously mentioned NDs are central functions on SO(3) group. CND is a subcase for normal CLT-motivated distributions on SO(3) (CLT here is Parthasarathy’s central limit theorem). WND is motivated by CLT in R 3 and mapped to SO(3) group. A Monte Carlo method for modeling normally distributed values was studied for both CND and WND. All of the NDs mentioned above are used for modeling different components of crystallites orientation distribution function in texture analysis.

  1. The Holographic F Theorem

    NASA Astrophysics Data System (ADS)

    Taylor, Marika; Woodhead, William

    2017-12-01

    The F theorem states that, for a unitary three dimensional quantum field theory, the F quantity defined in terms of the partition function on a three sphere is positive, stationary at fixed point and decreases monotonically along a renormalization group flow. We construct holographic renormalization group flows corresponding to relevant deformations of three-dimensional conformal field theories on spheres, working to quadratic order in the source. For these renormalization group flows, the F quantity at the IR fixed point is always less than F at the UV fixed point, but F increases along the RG flow for deformations by operators of dimension between 3/2 and 5/2. Therefore the strongest version of the F theorem is in general violated.

  2. Viewing the Roots of Polynomial Functions in Complex Variable: The Use of Geogebra and the CAS Maple

    ERIC Educational Resources Information Center

    Alves, Francisco Regis Vieira

    2013-01-01

    Admittedly, the Fundamental Theorem of Calculus-TFA holds an important role in the Complex Analysis-CA, as well as in other mathematical branches. In this article, we bring a discussion about the TFA, the Rouché's theorem and the winding number with the intention to analyze the roots of a polynomial equation. We propose also a description for a…

  3. On direct theorems for best polynomial approximation

    NASA Astrophysics Data System (ADS)

    Auad, A. A.; AbdulJabbar, R. S.

    2018-05-01

    This paper is to obtain similarity for the best approximation degree of functions, which are unbounded in L p,α (A = [0,1]), which called weighted space by algebraic polynomials. {E}nH{(f)}p,α and the best approximation degree in the same space on the interval [0,2π] by trigonometric polynomials {E}nT{(f)}p,α of direct wellknown theorems in forms the average modules.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatesan, R.C., E-mail: ravi@systemsresearchcorp.com; Plastino, A., E-mail: plastino@fisica.unlp.edu.ar

    The (i) reciprocity relations for the relative Fisher information (RFI, hereafter) and (ii) a generalized RFI–Euler theorem are self-consistently derived from the Hellmann–Feynman theorem. These new reciprocity relations generalize the RFI–Euler theorem and constitute the basis for building up a mathematical Legendre transform structure (LTS, hereafter), akin to that of thermodynamics, that underlies the RFI scenario. This demonstrates the possibility of translating the entire mathematical structure of thermodynamics into a RFI-based theoretical framework. Virial theorems play a prominent role in this endeavor, as a Schrödinger-like equation can be associated to the RFI. Lagrange multipliers are determined invoking the RFI–LTS linkmore » and the quantum mechanical virial theorem. An appropriate ansatz allows for the inference of probability density functions (pdf’s, hereafter) and energy-eigenvalues of the above mentioned Schrödinger-like equation. The energy-eigenvalues obtained here via inference are benchmarked against established theoretical and numerical results. A principled theoretical basis to reconstruct the RFI-framework from the FIM framework is established. Numerical examples for exemplary cases are provided. - Highlights: • Legendre transform structure for the RFI is obtained with the Hellmann–Feynman theorem. • Inference of the energy-eigenvalues of the SWE-like equation for the RFI is accomplished. • Basis for reconstruction of the RFI framework from the FIM-case is established. • Substantial qualitative and quantitative distinctions with prior studies are discussed.« less

  5. Stable sequential Kuhn-Tucker theorem in iterative form or a regularized Uzawa algorithm in a regular nonlinear programming problem

    NASA Astrophysics Data System (ADS)

    Sumin, M. I.

    2015-06-01

    A parametric nonlinear programming problem in a metric space with an operator equality constraint in a Hilbert space is studied assuming that its lower semicontinuous value function at a chosen individual parameter value has certain subdifferentiability properties in the sense of nonlinear (nonsmooth) analysis. Such subdifferentiability can be understood as the existence of a proximal subgradient or a Fréchet subdifferential. In other words, an individual problem has a corresponding generalized Kuhn-Tucker vector. Under this assumption, a stable sequential Kuhn-Tucker theorem in nondifferential iterative form is proved and discussed in terms of minimizing sequences on the basis of the dual regularization method. This theorem provides necessary and sufficient conditions for the stable construction of a minimizing approximate solution in the sense of Warga in the considered problem, whose initial data can be approximately specified. A substantial difference of the proved theorem from its classical same-named analogue is that the former takes into account the possible instability of the problem in the case of perturbed initial data and, as a consequence, allows for the inherited instability of classical optimality conditions. This theorem can be treated as a regularized generalization of the classical Uzawa algorithm to nonlinear programming problems. Finally, the theorem is applied to the "simplest" nonlinear optimal control problem, namely, to a time-optimal control problem.

  6. Inflation in Flatland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinterbichler, Kurt; Joyce, Austin; Khoury, Justin, E-mail: kurt.hinterbichler@case.edu, E-mail: austin.joyce@columbia.edu, E-mail: jkhoury@sas.upenn.edu

    We investigate the symmetry structure of inflation in 2+1 dimensions. In particular, we show that the asymptotic symmetries of three-dimensional de Sitter space are in one-to-one correspondence with cosmological adiabatic modes for the curvature perturbation. In 2+1 dimensions, the asymptotic symmetry algebra is infinite-dimensional, given by two copies of the Virasoro algebra, and can be traced to the conformal symmetries of the two-dimensional spatial slices of de Sitter. We study the consequences of this infinite-dimensional symmetry for inflationary correlation functions, finding new soft theorems that hold only in 2+1 dimensions. Expanding the correlation functions as a power series in themore » soft momentum q , these relations constrain the traceless part of the tensorial coefficient at each order in q in terms of a lower-point function. As a check, we verify that the O( q {sup 2}) identity is satisfied by inflationary correlation functions in the limit of small sound speed.« less

  7. Generalized Langevin equation with a three parameter Mittag-Leffler noise

    NASA Astrophysics Data System (ADS)

    Sandev, Trifce; Tomovski, Živorad; Dubbeldam, Johan L. A.

    2011-10-01

    The relaxation functions for a given generalized Langevin equation in the presence of a three parameter Mittag-Leffler noise are studied analytically. The results are represented by three parameter Mittag-Leffler functions. Exact results for the velocity and displacement correlation functions of a diffusing particle are obtained by using the Laplace transform method. The asymptotic behavior of the particle in the short and long time limits are found by using the Tauberian theorems. It is shown that for large times the particle motion is subdiffusive for β-1<αδ<β, and superdiffusive for β<αδ. Many previously obtained results are recovered. Due to the many parameters contained in the noise term, the model considered in this work may be used to improve the description of data and to model anomalous diffusive processes in complex media.

  8. Autonomous quantum to classical transitions and the generalized imaging theorem

    NASA Astrophysics Data System (ADS)

    Briggs, John S.; Feagin, James M.

    2016-03-01

    The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. Here we prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Currently, the quantum to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.

  9. Autonomous quantum to classical transitions and the generalized imaging theorem

    DOE PAGES

    Briggs, John S.; Feagin, James M.

    2016-03-16

    The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. We prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Now, the quantummore » to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.« less

  10. About the best approximations with trigonometric polynomials on the class W0Hω¯ of the space L, part I

    NASA Astrophysics Data System (ADS)

    Nikolova, Yanka

    2012-11-01

    In this paper we obtain estimation for the best approximation En(W0Hω)¯ in the L-metric, where W0Hω¯ is the conjugate of the class W0Hω, i.e. W0Hω¯def = {f¯,f∈W0Hω}. Our results concern evaluations of the function Φ(Ḡ; x) where Φ(G; x) is the so-called Σ-representation of the function G, as defined in [2, p. 144], and Ḡ(x) denotes the conjugate of the function G(x). We prove three theorems, necessary for the estimation of the functional Fω(ḡ) = sup/f∈Hω ∫ 02πf(t).ḡ(t)dt. Specially, in Theorem 4 we prove an inequality for this functional and show that estimation is exact, i.e. the inequality becomes equality for some specific conjugate functions.

  11. Environment-induced decoherence II. Effect of decoherence on Bell's inequality for an EPR pair

    NASA Astrophysics Data System (ADS)

    Venugopalan, A.; Kumar, Deepak; Ghosh, R.

    1995-02-01

    According to Bell's theorem, the degree of correlation between spatially separated measurements on a quantum system is limited by certain inequalities if one assumes the condition of locality. Quantum mechanics predicts that this limit can be exceeded, making it nonlocal. We analyse the effect of an environment modelled by a fluctuating magnetic field on the quantum correlations in an EPR singlet as seen in the Bell inequality. We show that in an EPR setup, the system goes from the usual ‘violation’ of Bell's inequality to a ‘non-violation’ for times larger than a characteristic time scale which is related to the parameters of the fluctuating field. We also look at these inequalities as a function of the spatial separation between the EPR pair.

  12. Quantitative analysis of the correlations in the Boltzmann-Grad limit for hard spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulvirenti, M.

    2014-12-09

    In this contribution I consider the problem of the validity of the Boltzmann equation for a system of hard spheres in the Boltzmann-Grad limit. I briefly review the results available nowadays with a particular emphasis on the celebrated Lanford’s validity theorem. Finally I present some recent results, obtained in collaboration with S. Simonella, concerning a quantitative analysis of the propagation of chaos. More precisely we introduce a quantity (the correlation error) measuring how close a j-particle rescaled correlation function at time t (sufficiently small) is far from the full statistical independence. Roughly speaking, a correlation error of order k, measuresmore » (in the context of the BBKGY hierarchy) the event in which k tagged particles form a recolliding group.« less

  13. The Coast Artillery Journal. Volume 57, Number 6, December 1922

    DTIC Science & Technology

    1922-12-01

    theorems ; Chapter III, to application; Chapters IV, V and VI, to infinitesimals and differentials, trigonometric functions, and logarithms and...taneously." There are chapters on complex numbers with simple and direct discussion of the roots of unity; on elementary theorems on the roots of an...through the centuries from the time of Pythagoras , an interest shared on the one extreme by nearly every noted mathematician and on the other extreme by

  14. Boundedness and almost Periodicity in Time of Solutions of Evolutionary Variational Inequalities

    NASA Astrophysics Data System (ADS)

    Pankov, A. A.

    1983-04-01

    In this paper existence theorems are obtained for the solutions of abstract parabolic variational inequalities, which are bounded with respect to time (in the Stepanov and L^\\infty norms). The regularity and almost periodicity properties of such solutions are studied. Theorems are also established concerning their solvability in spaces of Besicovitch almost periodic functions. The majority of the results are obtained without any compactness assumptions. Bibliography: 30 titles.

  15. Automated Real Proving in PVS via MetiTarski

    NASA Technical Reports Server (NTRS)

    Denman, William; Munoz, Cesar

    2014-01-01

    This paper reports the development of a proof strategy that integrates the MetiTarski theorem prover as a trusted external decision procedure into the PVS theorem prover. The strategy automatically discharges PVS sequents containing real-valued formulas, including transcendental and special functions, by translating the sequents into first order formulas and submitting them to MetiTarski. The new strategy is considerably faster and more powerful than other strategies for nonlinear arithmetic available to PVS.

  16. Generalized Optical Theorem Detection in Random and Complex Media

    NASA Astrophysics Data System (ADS)

    Tu, Jing

    The problem of detecting changes of a medium or environment based on active, transmit-plus-receive wave sensor data is at the heart of many important applications including radar, surveillance, remote sensing, nondestructive testing, and cancer detection. This is a challenging problem because both the change or target and the surrounding background medium are in general unknown and can be quite complex. This Ph.D. dissertation presents a new wave physics-based approach for the detection of targets or changes in rather arbitrary backgrounds. The proposed methodology is rooted on a fundamental result of wave theory called the optical theorem, which gives real physical energy meaning to the statistics used for detection. This dissertation is composed of two main parts. The first part significantly expands the theory and understanding of the optical theorem for arbitrary probing fields and arbitrary media including nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The proposed formalism addresses both scalar and full vector electromagnetic fields. The second contribution of this dissertation is the application of the optical theorem to change detection with particular emphasis on random, complex, and active media, including single frequency probing fields and broadband probing fields. The first part of this work focuses on the generalization of the existing theoretical repertoire and interpretation of the scalar and electromagnetic optical theorem. Several fundamental generalizations of the optical theorem are developed. A new theory is developed for the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. The bounded media context is essential for applications such as intrusion detection and surveillance in enclosed environments such as indoor facilities, caves, tunnels, as well as for nondestructive testing and communication systems based on wave-guiding structures. The developed scalar optical theorem theory applies to arbitrary lossless backgrounds and quite general probing fields including near fields which play a key role in super-resolution imaging. The derived formulation holds for arbitrary passive scatterers, which can be dissipative, as well as for the more general class of active scatterers which are composed of a (passive) scatterer component and an active, radiating (antenna) component. Furthermore, the generalization of the optical theorem to active scatterers is relevant to many applications such as surveillance of active targets including certain cloaks, invisible scatterers, and wireless communications. The latter developments have important military applications. The derived theoretical framework includes the familiar real power optical theorem describing power extinction due to both dissipation and scattering as well as a reactive optical theorem related to the reactive power changes. Meanwhile, the developed approach naturally leads to three optical theorem indicators or statistics, which can be used to detect changes or targets in unknown complex media. In addition, the optical theorem theory is generalized in the time domain so that it applies to arbitrary full vector fields, and arbitrary media including anisotropic media, nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The second component of this Ph.D. research program focuses on the application of the optical theorem to change detection. Three different forms of indicators or statistics are developed for change detection in unknown background media: a real power optical theorem detector, a reactive power optical theorem detector, and a total apparent power optical theorem detector. No prior knowledge is required of the background or the change or target. The performance of the three proposed optical theorem detectors is compared with the classical energy detector approach for change detection. The latter uses a mathematical or functional energy while the optical theorem detectors are based on real physical energy. For reference, the optical theorem detectors are also compared with the matched filter approach which (unlike the optical theorem detectors) assumes perfect target and medium information. The practical implementation of the optical theorem detectors is based for certain random and complex media on the exploitation of time reversal focusing ideas developed in the past 20 years in electromagnetics and acoustics. In the final part of the dissertation, we also discuss the implementation of the optical theorem sensors for one-dimensional propagation systems such as transmission lines. We also present a new generalized likelihood ratio test for detection that exploits a prior data constraint based on the optical theorem. Finally, we also address the practical implementation of the optical theorem sensors for optical imaging systems, by means of holography. The later is the first holographic implementation the optical theorem for arbitrary scenes and targets.

  17. Algorithms for the Equilibration of Matrices and Their Application to Limited-Memory Quasi-Newton Methods

    DTIC Science & Technology

    2010-05-01

    irreducible, by the Perron - Frobenius theorem (see, for example, Theorem 8.4.4 in [28]), the eigenvalue 1 is simple. Next, the rank-one matrix Q has the...We refer to (2.1) as the scaling equation. Although algorithms must use A, existence and unique- ness theory need consider only the nonnegative matrix...B. If p = 1 and A is nonnegative , then A = B. We reserve the term binormalization for the case p = 2. We say A is scalable if there exists x > 0

  18. Generalized parametric down conversion, many particle interferometry, and Bell's theorem

    NASA Technical Reports Server (NTRS)

    Choi, Hyung Sup

    1992-01-01

    A new field of multi-particle interferometry is introduced using a nonlinear optical spontaneous parametric down conversion (SPDC) of a photon into more than two photons. The study of SPDC using a realistic Hamiltonian in a multi-mode shows that at least a low conversion rate limit is possible. The down converted field exhibits many stronger nonclassical phenomena than the usual two photon parametric down conversion. Application of the multi-particle interferometry to a recently proposed many particle Bell's theorem on the Einstein-Podolsky-Rosen problem is given.

  19. Weak interaction probes of light nuclei

    NASA Astrophysics Data System (ADS)

    Towner, I. S.

    1986-03-01

    Experimental evidence for pion enhancement in axial charge transitions as predicted by softpion theorems is reviewed. Corrections from non-soft-pion terms seem to be limited. For transitions involving the space part of the axial-vector current, soft-pion theorems are powerless. Meson-exchange currents then involve a complicated interplay among competing process. Explicit calculations in the hard-pion model for closed-shell-plus (or minus)-one nuclei, A=15 and A= =17, are in reasonable agreement with experiment. Quenching in the off-diagonal spin-flip matrix element is larger than in the diagonal matrix element.

  20. A model of high-rate indentation of a cylindrical striking pin into a deformable body

    NASA Astrophysics Data System (ADS)

    Zalazinskaya, E. A.; Zalazinsky, A. G.

    2017-12-01

    Mathematical modeling of an impact and high-rate indentation to a significant depth of a flat-faced hard cylindrical striking pin into a massive deformable target body is carried out. With the application of the kinematic extreme theorem of the plasticity theory and the kinetic energy variation theorem, the phase trajectories of the striking pin are calculated, the initial velocity of the striking pin in the body, the limit values of the inlet duct length, and the depth of striking pin penetration into the target are determined.

  1. Singlet-triplet splittings from the virial theorem and single-particle excitation energies

    NASA Astrophysics Data System (ADS)

    Becke, Axel D.

    2018-01-01

    The zeroth-order (uncorrelated) singlet-triplet energy difference in single-particle excited configurations is 2Kif, where Kif is the Coulomb self-energy of the product of the transition orbitals. Here we present a non-empirical, virial-theorem argument that the correlated singlet-triplet energy difference should be half of this, namely, Kif. This incredibly simple result gives vertical HOMO-LUMO excitation energies in small-molecule benchmarks as good as the popular TD-B3LYP time-dependent approach to excited states. For linear acenes and nonlinear polycyclic aromatic hydrocarbons, the performance is significantly better than TD-B3LYP. In addition to the virial theorem, the derivation borrows intuitive pair-density concepts from density-functional theory.

  2. A Geometrical Approach to Bell's Theorem

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2000-01-01

    Bell's theorem can be proved through simple geometrical reasoning, without the need for the Psi function, probability distributions, or calculus. The proof is based on N. David Mermin's explication of the Einstein-Podolsky-Rosen-Bohm experiment, which involves Stern-Gerlach detectors which flash red or green lights when detecting spin-up or spin-down. The statistics of local hidden variable theories for this experiment can be arranged in colored strips from which simple inequalities can be deduced. These inequalities lead to a demonstration of Bell's theorem. Moreover, all local hidden variable theories can be graphed in such a way as to enclose their statistics in a pyramid, with the quantum-mechanical result lying a finite distance beneath the base of the pyramid.

  3. A theorem regarding roots of the zero-order Bessel function of the first kind

    NASA Technical Reports Server (NTRS)

    Lin, X.-A.; Agrawal, O. P.

    1993-01-01

    This paper investigates a problem on the steady-state, conduction-convection heat transfer process in cylindrical porous heat exchangers. The governing partial differential equations for the system are obtained using the energy conservation law. Solution of these equations and the concept of enthalpy lead to a new approach to prove a theorem that the sum of inverse squares of all the positive roots of the zero order Bessel function of the first kind equals to one-forth. As a corollary, it is shown that the sum of one over pth power (p greater than or equal to 2) of the roots converges to some constant.

  4. Cancellation of spurious arrivals in Green's function extraction and the generalized optical theorem

    USGS Publications Warehouse

    Snieder, R.; Van Wijk, K.; Haney, M.; Calvert, R.

    2008-01-01

    The extraction of the Green's function by cross correlation of waves recorded at two receivers nowadays finds much application. We show that for an arbitrary small scatterer, the cross terms of scattered waves give an unphysical wave with an arrival time that is independent of the source position. This constitutes an apparent inconsistency because theory predicts that such spurious arrivals do not arise, after integration over a complete source aperture. This puzzling inconsistency can be resolved for an arbitrary scatterer by integrating the contribution of all sources in the stationary phase approximation to show that the stationary phase contributions to the source integral cancel the spurious arrival by virtue of the generalized optical theorem. This work constitutes an alternative derivation of this theorem. When the source aperture is incomplete, the spurious arrival is not canceled and could be misinterpreted to be part of the Green's function. We give an example of how spurious arrivals provide information about the medium complementary to that given by the direct and scattered waves; the spurious waves can thus potentially be used to better constrain the medium. ?? 2008 The American Physical Society.

  5. Modular design and implementation of field-programmable-gate-array-based Gaussian noise generator

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Ping; Lee, Ta-Sung; Hwang, Jeng-Kuang

    2016-05-01

    The modular design of a Gaussian noise generator (GNG) based on field-programmable gate array (FPGA) technology was studied. A new range reduction architecture was included in a series of elementary function evaluation modules and was integrated into the GNG system. The approximation and quantisation errors for the square root module with a first polynomial approximation were high; therefore, we used the central limit theorem (CLT) to improve the noise quality. This resulted in an output rate of one sample per clock cycle. We subsequently applied Newton's method for the square root module, thus eliminating the need for the use of the CLT because applying the CLT resulted in an output rate of two samples per clock cycle (>200 million samples per second). Two statistical tests confirmed that our GNG is of high quality. Furthermore, the range reduction, which is used to solve a limited interval of the function approximation algorithms of the System Generator platform using Xilinx FPGAs, appeared to have a higher numerical accuracy, was operated at >350 MHz, and can be suitably applied for any function evaluation.

  6. Geometrical and quantum mechanical aspects in observers' mathematics

    NASA Astrophysics Data System (ADS)

    Khots, Boris; Khots, Dmitriy

    2013-10-01

    When we create mathematical models for Quantum Mechanics we assume that the mathematical apparatus used in modeling, at least the simplest mathematical apparatus, is infallible. In particular, this relates to the use of "infinitely small" and "infinitely large" quantities in arithmetic and the use of Newton Cauchy definitions of a limit and derivative in analysis. We believe that is where the main problem lies in contemporary study of nature. We have introduced a new concept of Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. We prove that Euclidean Geometry works in sufficiently small neighborhood of the given line, but when we enlarge the neighborhood, non-euclidean Geometry takes over. We prove that the physical speed is a random variable, cannot exceed some constant, and this constant does not depend on an inertial coordinate system. We proved the following theorems: Theorem A (Lagrangian). Let L be a Lagrange function of free material point with mass m and speed v. Then the probability P of L = m 2 v2 is less than 1: P(L = m 2 v2) < 1. Theorem B (Nadezhda effect). On the plane (x, y) on every line y = kx there is a point (x0, y0) with no existing Euclidean distance between origin (0, 0) and this point. Conjecture (Black Hole). Our space-time nature is a black hole: light cannot go out infinitely far from origin.

  7. Likelihood-based confidence intervals for estimating floods with given return periods

    NASA Astrophysics Data System (ADS)

    Martins, Eduardo Sávio P. R.; Clarke, Robin T.

    1993-06-01

    This paper discusses aspects of the calculation of likelihood-based confidence intervals for T-year floods, with particular reference to (1) the two-parameter gamma distribution; (2) the Gumbel distribution; (3) the two-parameter log-normal distribution, and other distributions related to the normal by Box-Cox transformations. Calculation of the confidence limits is straightforward using the Nelder-Mead algorithm with a constraint incorporated, although care is necessary to ensure convergence either of the Nelder-Mead algorithm, or of the Newton-Raphson calculation of maximum-likelihood estimates. Methods are illustrated using records from 18 gauging stations in the basin of the River Itajai-Acu, State of Santa Catarina, southern Brazil. A small and restricted simulation compared likelihood-based confidence limits with those given by use of the central limit theorem; for the same confidence probability, the confidence limits of the simulation were wider than those of the central limit theorem, which failed more frequently to contain the true quantile being estimated. The paper discusses possible applications of likelihood-based confidence intervals in other areas of hydrological analysis.

  8. Non-linear programming in shakedown analysis with plasticity and friction

    NASA Astrophysics Data System (ADS)

    Spagnoli, A.; Terzano, M.; Barber, J. R.; Klarbring, A.

    2017-07-01

    Complete frictional contacts, when subjected to cyclic loading, may sometimes develop a favourable situation where slip ceases after a few cycles, an occurrence commonly known as frictional shakedown. Its resemblance to shakedown in plasticity has prompted scholars to apply direct methods, derived from the classical theorems of limit analysis, in order to assess a safe limit to the external loads applied on the system. In circumstances where zones of plastic deformation develop in the material (e.g., because of the large stress concentrations near the sharp edges of a complete contact), it is reasonable to expect an effect of mutual interaction of frictional slip and plastic strains on the load limit below which the global behaviour is non dissipative, i.e., both slip and plastic strains go to zero after some dissipative load cycles. In this paper, shakedown of general two-dimensional discrete systems, involving both friction and plasticity, is discussed and the shakedown limit load is calculated using a non-linear programming algorithm based on the static theorem of limit analysis. An illustrative example related to an elastic-plastic solid containing a frictional crack is provided.

  9. Two-time correlation function of an open quantum system in contact with a Gaussian reservoir

    NASA Astrophysics Data System (ADS)

    Ban, Masashi; Kitajima, Sachiko; Shibata, Fumiaki

    2018-05-01

    An exact formula of a two-time correlation function is derived for an open quantum system which interacts with a Gaussian thermal reservoir. It is provided in terms of functional derivative with respect to fictitious fields. A perturbative expansion and its diagrammatic representation are developed, where the small expansion parameter is related to a correlation time of the Gaussian thermal reservoir. The two-time correlation function of the lowest order is equivalent to that calculated by means of the quantum regression theorem. The result clearly shows that the violation of the quantum regression theorem is caused by a finiteness of the reservoir correlation time. By making use of an exactly solvable model consisting of a two-level system and a set of harmonic oscillators, it is shown that the two-time correlation function up to the first order is a good approximation to the exact one.

  10. The motion behind the symbols: a vital role for dynamism in the conceptualization of limits and continuity in expert mathematics.

    PubMed

    Marghetis, Tyler; Núñez, Rafael

    2013-04-01

    The canonical history of mathematics suggests that the late 19th-century "arithmetization" of calculus marked a shift away from spatial-dynamic intuitions, grounding concepts in static, rigorous definitions. Instead, we argue that mathematicians, both historically and currently, rely on dynamic conceptualizations of mathematical concepts like continuity, limits, and functions. In this article, we present two studies of the role of dynamic conceptual systems in expert proof. The first is an analysis of co-speech gesture produced by mathematics graduate students while proving a theorem, which reveals a reliance on dynamic conceptual resources. The second is a cognitive-historical case study of an incident in 19th-century mathematics that suggests a functional role for such dynamism in the reasoning of the renowned mathematician Augustin Cauchy. Taken together, these two studies indicate that essential concepts in calculus that have been defined entirely in abstract, static terms are nevertheless conceptualized dynamically, in both contemporary and historical practice. Copyright © 2013 Cognitive Science Society, Inc.

  11. Log-Gamma Polymer Free Energy Fluctuations via a Fredholm Determinant Identity

    NASA Astrophysics Data System (ADS)

    Borodin, Alexei; Corwin, Ivan; Remenik, Daniel

    2013-11-01

    We prove that under n 1/3 scaling, the limiting distribution as n → ∞ of the free energy of Seppäläinen’s log-Gamma discrete directed polymer is GUE Tracy-Widom. The main technical innovation we provide is a general identity between a class of n-fold contour integrals and a class of Fredholm determinants. Applying this identity to the integral formula proved in Corwin et al. (Tropical combinatorics and Whittaker functions. http://arxiv.org/abs/1110.3489v3 [math.PR], 2012) for the Laplace transform of the log-Gamma polymer partition function, we arrive at a Fredholm determinant which lends itself to asymptotic analysis (and thus yields the free energy limit theorem). The Fredholm determinant was anticipated in Borodin and Corwin (Macdonald processes. http://arxiv.org/abs/1111.4408v3 [math.PR], 2012) via the formalism of Macdonald processes yet its rigorous proof was so far lacking because of the nontriviality of certain decay estimates required by that approach.

  12. An introduction to generalized functions with some applications in aerodynamics and aeroacoustics

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1994-01-01

    In this paper, we start with the definition of generalized functions as continuous linear functionals on the space of infinitely differentiable functions with compact support. The concept of generalization differentiation is introduced next. This is the most important concept in generalized function theory and the applications we present utilize mainly this concept. First, some of the results of classical analysis, such as Leibniz rule of differentiation under the integral sign and the divergence theorem, are derived using the generalized function theory. It is shown that the divergence theorem remains valid for discontinuous vector fields provided that the derivatives are all viewed as generalized derivatives. This implies that all conservation laws of fluid mechanics are valid as they stand for discontinuous fields with all derivatives treated as generalized deriatives. Once these derivatives are written as ordinary derivatives and jumps in the field parameters across discontinuities, the jump conditions can be easily found. For example, the unsteady shock jump conditions can be derived from mass and momentum conservation laws. By using a generalized function theory, this derivative becomes trivial. Other applications of the generalized function theory in aerodynamics discussed in this paper are derivation of general transport theorems for deriving governing equations of fluid mechanics, the interpretation of finite part of divergent integrals, derivation of Oswatiitsch integral equation of transonic flow, and analysis of velocity field discontinuities as sources of vorticity. Applications in aeroacoustics presented here include the derivation of the Kirchoff formula for moving surfaces,the noise from moving surfaces, and shock noise source strength based on the Ffowcs Williams-Hawkings equation.

  13. Shrunk loop theorem for the topology probabilities of closed Brownian (or Feynman) paths on the twice punctured plane

    NASA Astrophysics Data System (ADS)

    Giraud, O.; Thain, A.; Hannay, J. H.

    2004-02-01

    The shrunk loop theorem proved here is an integral identity which facilitates the calculation of the relative probability (or probability amplitude) of any given topology that a free, closed Brownian (or Feynman) path of a given 'duration' might have on the twice punctured plane (plane with two marked points). The result is expressed as a 'scattering' series of integrals of increasing dimensionality based on the maximally shrunk version of the path. Physically, this applies in different contexts: (i) the topology probability of a closed ideal polymer chain on a plane with two impassable points, (ii) the trace of the Schrödinger Green function, and thence spectral information, in the presence of two Aharonov-Bohm fluxes and (iii) the same with two branch points of a Riemann surface instead of fluxes. Our theorem starts from the Stovicek scattering expansion for the Green function in the presence of two Aharonov-Bohm flux lines, which itself is based on the famous Sommerfeld one puncture point solution of 1896 (the one puncture case has much easier topology, just one winding number). Stovicek's expansion itself can supply the results at the expense of choosing a base point on the loop and then integrating it away. The shrunk loop theorem eliminates this extra two-dimensional integration, distilling the topology from the geometry.

  14. Exact ground-state correlation functions of an atomic-molecular Bose–Einstein condensate model

    NASA Astrophysics Data System (ADS)

    Links, Jon; Shen, Yibing

    2018-05-01

    We study the ground-state properties of an atomic-molecular Bose–Einstein condensate model through an exact Bethe Ansatz solution. For a certain range of parameter choices, we prove that the ground-state Bethe roots lie on the positive real-axis. We then use a continuum limit approach to obtain a singular integral equation characterising the distribution of these Bethe roots. Solving this equation leads to an analytic expression for the ground-state energy. The form of the expression is consistent with the existence of a line of quantum phase transitions, which has been identified in earlier studies. This line demarcates a molecular phase from a mixed phase. Certain correlation functions, which characterise these phases, are then obtained through the Hellmann–Feynman theorem.

  15. Mechanics and statistics of the worm-like chain

    NASA Astrophysics Data System (ADS)

    Marantan, Andrew; Mahadevan, L.

    2018-02-01

    The worm-like chain model is a simple continuum model for the statistical mechanics of a flexible polymer subject to an external force. We offer a tutorial introduction to it using three approaches. First, we use a mesoscopic view, treating a long polymer (in two dimensions) as though it were made of many groups of correlated links or "clinks," allowing us to calculate its average extension as a function of the external force via scaling arguments. We then provide a standard statistical mechanics approach, obtaining the average extension by two different means: the equipartition theorem and the partition function. Finally, we work in a probabilistic framework, taking advantage of the Gaussian properties of the chain in the large-force limit to improve upon the previous calculations of the average extension.

  16. Boltzmann equations for a binary one-dimensional ideal gas.

    PubMed

    Boozer, A D

    2011-09-01

    We consider a time-reversal invariant dynamical model of a binary ideal gas of N molecules in one spatial dimension. By making time-asymmetric assumptions about the behavior of the gas, we derive Boltzmann and anti-Boltzmann equations that describe the evolution of the single-molecule velocity distribution functions for an ensemble of such systems. We show that for a special class of initial states of the ensemble one can obtain an exact expression for the N-molecule velocity distribution function, and we use this expression to rigorously prove that the time-asymmetric assumptions needed to derive the Boltzmann and anti-Boltzmann equations hold in the limit of large N. Our results clarify some subtle issues regarding the origin of the time asymmetry of Boltzmann's H theorem.

  17. Gravitational form factors and decoupling in 2D

    NASA Astrophysics Data System (ADS)

    Ribeiro, Tiago G.; Shapiro, Ilya L.; Zanusso, Omar

    2018-07-01

    We calculate and analyse non-local gravitational form factors induced by quantum matter fields in curved two-dimensional space. The calculations are performed for scalars, spinors and massive vectors by means of the covariant heat kernel method up to the second order in the curvature and confirmed using Feynman diagrams. The analysis of the ultraviolet (UV) limit reveals a generalized "running" form of the Polyakov action for a nonminimal scalar field and the usual Polyakov action in the conformally invariant cases. In the infrared (IR) we establish the gravitational decoupling theorem, which can be seen directly from the form factors or from the physical beta function for fields of any spin.

  18. STABILITY OF GAS CLOUDS IN GALACTIC NUCLEI: AN EXTENDED VIRIAL THEOREM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xian; Cuadra, Jorge; Amaro-Seoane, Pau, E-mail: xchen@astro.puc.cl, E-mail: jcuadra@astro.puc.cl, E-mail: Pau.Amaro-Seoane@aei.mpg.de

    2016-03-10

    Cold gas entering the central 1–10{sup 2} pc of a galaxy fragments and condenses into clouds. The stability of the clouds determines whether they will be turned into stars or can be delivered to the central supermassive black hole (SMBH) to turn on an active galactic nucleus (AGN). The conventional criteria to assess the stability of these clouds, such as the Jeans criterion and Roche (or tidal) limit, are insufficient here, because they assume the dominance of self-gravity in binding a cloud, and neglect external agents, such as pressure and tidal forces, which are common in galactic nuclei. We formulatemore » a new scheme for judging this stability. We first revisit the conventional Virial theorem, taking into account an external pressure, to identify the correct range of masses that lead to stable clouds. We then extend the theorem to further include an external tidal field, which is equally crucial for the stability in the region of our interest—in dense star clusters, around SMBHs. We apply our extended Virial theorem to find new solutions to controversial problems, namely, the stability of the gas clumps in AGN tori, the circum-nuclear disk in the Galactic Center, and the central molecular zone of the Milky Way. The masses we derive for these structures are orders of magnitude smaller than the commonly used Virial masses (equivalent to the Jeans mass). Moreover, we prove that these clumps are stable, contrary to what one would naively deduce from the Roche (tidal) limit.« less

  19. Generalized quantum no-go theorems of pure states

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ran; Luo, Ming-Xing; Lai, Hong

    2018-07-01

    Various results of the no-cloning theorem, no-deleting theorem and no-superposing theorem in quantum mechanics have been proved using the superposition principle and the linearity of quantum operations. In this paper, we investigate general transformations forbidden by quantum mechanics in order to unify these theorems. First, we prove that any useful information cannot be created from an unknown pure state which is randomly chosen from a Hilbert space according to the Harr measure. And then, we propose a unified no-go theorem based on a generalized no-superposing result. The new theorem includes the no-cloning theorem, no-anticloning theorem, no-partial-erasure theorem, no-splitting theorem, no-superposing theorem or no-encoding theorem as a special case. Moreover, it implies various new results. Third, we extend the new theorem into another form that includes the no-deleting theorem as a special case.

  20. Semi-classical analysis and pseudo-spectra

    NASA Astrophysics Data System (ADS)

    Davies, E. B.

    We prove an approximate spectral theorem for non-self-adjoint operators and investigate its applications to second-order differential operators in the semi-classical limit. This leads to the construction of a twisted FBI transform. We also investigate the connections between pseudo-spectra and boundary conditions in the semi-classical limit.

  1. Optical theorem for two-dimensional (2D) scalar monochromatic acoustical beams in cylindrical coordinates.

    PubMed

    Mitri, F G

    2015-09-01

    The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The probability density function (PDF) of Lagrangian Turbulence

    NASA Astrophysics Data System (ADS)

    Birnir, B.

    2012-12-01

    The statistical theory of Lagrangian turbulence is derived from the stochastic Navier-Stokes equation. Assuming that the noise in fully-developed turbulence is a generic noise determined by the general theorems in probability, the central limit theorem and the large deviation principle, we are able to formulate and solve the Kolmogorov-Hopf equation for the invariant measure of the stochastic Navier-Stokes equations. The intermittency corrections to the scaling exponents of the structure functions require a multiplicative (multipling the fluid velocity) noise in the stochastic Navier-Stokes equation. We let this multiplicative noise, in the equation, consists of a simple (Poisson) jump process and then show how the Feynmann-Kac formula produces the log-Poissonian processes, found by She and Leveque, Waymire and Dubrulle. These log-Poissonian processes give the intermittency corrections that agree with modern direct Navier-Stokes simulations (DNS) and experiments. The probability density function (PDF) plays a key role when direct Navier-Stokes simulations or experimental results are compared to theory. The statistical theory of turbulence is determined, including the scaling of the structure functions of turbulence, by the invariant measure of the Navier-Stokes equation and the PDFs for the various statistics (one-point, two-point, N-point) can be obtained by taking the trace of the corresponding invariant measures. Hopf derived in 1952 a functional equation for the characteristic function (Fourier transform) of the invariant measure. In distinction to the nonlinear Navier-Stokes equation, this is a linear functional differential equation. The PDFs obtained from the invariant measures for the velocity differences (two-point statistics) are shown to be the four parameter generalized hyperbolic distributions, found by Barndorff-Nilsen. These PDF have heavy tails and a convex peak at the origin. A suitable projection of the Kolmogorov-Hopf equations is the differential equation determining the generalized hyperbolic distributions. Then we compare these PDFs with DNS results and experimental data.

  3. A new approach for describing glass transition kinetics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasin, N. M.; Shchelkachev, M. G.; Vinokur, V. M.

    2010-04-01

    We use a functional integral technique generalizing the Keldysh diagram technique to describe glass transition kinetics. We show that the Keldysh functional approach takes the dynamical determinant arising in the glass dynamics into account exactly and generalizes the traditional approach based on using the supersymmetric dynamic generating functional method. In contrast to the supersymmetric method, this approach allows avoiding additional Grassmannian fields and tracking the violation of the fluctuation-dissipation theorem explicitly. We use this method to describe the dynamics of an Edwards-Anderson soft spin-glass-type model near the paramagnet-glass transition. We show that a Vogel-Fulcher-type dynamics arises in the fluctuation regionmore » only if the fluctuation-dissipation theorem is violated in the process of dynamical renormalization of the Keldysh action in the replica space.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meadows, B.T.; /Cincinnati U.

    A new approach to the analysis of three body decays is presented. Model-independent results are obtained for the S-wave K{pi} amplitude as a function of K{pi} invariant mass. These are compared with results from K{sup -}{pi}{sup +} elastic scattering, and the prediction of the Watson theorem, that the phase behavior be the same below K{eta}' threshold, is tested. Contributions from I = 1/2 and I = 3/2 are not resolved in this study. If I = 1/2 dominates, however, the Watson theorem does not describe these data well.

  5. Monterey Bay Geoid

    DTIC Science & Technology

    1994-03-01

    thought to be a flat disk. The first scientific hypothesis that the earth was spherical is credited to Thales of Milet in 600 B.C. or Pythagoras in 550...acceleration can be integrated over the surface, by Gauss’s theorem and gives: 35 v1 Wv2 <v3 Figure 12. Equipotential Surfaces and Gravity: V,, V2, V3 are...continuous derivatives where they satisfy Laplace’s equation. Stokes’ theorem states that a harmonic function outside a surface is uniquely determined by

  6. Separated-pair independent particle model and the generalized Brillouin theorem: ab initio calculations on the dissociation of polyatomic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundberg, Kenneth Randall

    1976-01-01

    A method is developed to optimize the separated-pair independent particle (SPIP) wave function; it is a special case of the separated-pair theory obtained by using two-term natural expansions of the geminals. The orbitals are optimized by a theory based on the generalized Brillouin theorem and iterative configuration interaction (CI) calculations in the space of the SPIP function and its single excitations. The geminal expansion coefficients are optimized by serial 2 x 2 CI calculations. Formulas are derived for the matrix elements. An algorithm to implement the method is presented, and the work needed to evaluate the molecular integrals is discussed.

  7. Uniqueness and characterization theorems for generalized entropies

    NASA Astrophysics Data System (ADS)

    Enciso, Alberto; Tempesta, Piergiulio

    2017-12-01

    The requirement that an entropy function be composable is key: it means that the entropy of a compound system can be calculated in terms of the entropy of its independent components. We prove that, under mild regularity assumptions, the only composable generalized entropy in trace form is the Tsallis one-parameter family (which contains Boltzmann-Gibbs as a particular case). This result leads to the use of generalized entropies that are not of trace form, such as Rényi’s entropy, in the study of complex systems. In this direction, we also present a characterization theorem for a large class of composable non-trace-form entropy functions with features akin to those of Rényi’s entropy.

  8. Calculational Schemes in GUTs

    NASA Astrophysics Data System (ADS)

    Kounnas, Costas

    The following sections are included: * Introduction * Mass Spectrum in a Spontaneously Broken-Theory SU(5) - Minimal Model * Renormalization and Renormalization Group Equation (R.G.E.) * Step Approximation and Decoupling Theorem * Notion of the Effective Coupling Constant * First Estimation of MX, α(MX) and sin2θ(MW) * Renormalization Properties and Photon-Z Mixing * β-Function Definitions * Threshold Functions and Decoupling Theorem * MX-Determination * Proton Lifetime * sin2θ(μ)-Determination * Quark-Lepton Mass Relations (mb/mτ) * Overview of the Conventional GUTs - Hierarchy Problem * Stability of Hierarchy - Supersymmetric GUTS * Cosmologically Acceptable SUSY GUT Models * Radiative Breaking of SU(2) × U(1) — MW/MX Hierarchy Generation * No Scale Supergravity Models^{56,57} Dynamical Determination of M_{B}-M_{F} * Conclusion * References

  9. Determination of the priority indexes for the oil refinery wastewater treatment process

    NASA Astrophysics Data System (ADS)

    Chesnokova, M. G.; Myshlyavtsev, A. V.; Kriga, A. S.; Shaporenko, A. P.; Markelov, V. V.

    2017-08-01

    The wastewater biological treatment intensity and effectiveness are influenced by many factors: temperature, pH, presence and concentration of toxic substances, the biomass concentration et al. Regulation of them allows controlling the biological treatment process. Using the Bayesian theorem the link between changes was determined and the wastewater indexes normative limits exceeding influence for activated sludge characteristics alteration probability was evaluated. The estimation of total, or aposterioric, priority index presence probability, which characterizes the wastewater treatment level, is an important way to use the Bayesian theorem in activated sludge swelling prediction at the oil refinery biological treatment unit.

  10. A Program Certification Assistant Based on Fully Automated Theorem Provers

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Fischer, Bernd

    2005-01-01

    We describe a certification assistant to support formal safety proofs for programs. It is based on a graphical user interface that hides the low-level details of first-order automated theorem provers while supporting limited interactivity: it allows users to customize and control the proof process on a high level, manages the auxiliary artifacts produced during this process, and provides traceability between the proof obligations and the relevant parts of the program. The certification assistant is part of a larger program synthesis system and is intended to support the deployment of automatically generated code in safety-critical applications.

  11. Soft theorems for shift-symmetric cosmologies

    NASA Astrophysics Data System (ADS)

    Finelli, Bernardo; Goon, Garrett; Pajer, Enrico; Santoni, Luca

    2018-03-01

    We derive soft theorems for single-clock cosmologies that enjoy a shift symmetry. These so-called consistency conditions arise from a combination of a large diffeomorphism and the internal shift symmetry and fix the squeezed limit of all correlators with a soft scalar mode. As an application, we show that our results reproduce the squeezed bispectrum for ultra-slow-roll inflation, a particular shift-symmetric, nonattractor model which is known to violate Maldacena's consistency relation. Similar results have been previously obtained by Mooij and Palma using background-wave methods. Our results shed new light on the infrared structure of single-clock cosmological spacetimes.

  12. Annealed Scaling for a Charged Polymer

    NASA Astrophysics Data System (ADS)

    Caravenna, F.; den Hollander, F.; Pétrélis, N.; Poisat, J.

    2016-03-01

    This paper studies an undirected polymer chain living on the one-dimensional integer lattice and carrying i.i.d. random charges. Each self-intersection of the polymer chain contributes to the interaction Hamiltonian an energy that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The focus is on the annealed free energy per monomer in the limit as the length of the polymer chain tends to infinity. We derive a spectral representation for the free energy and use this to prove that there is a critical curve in the parameter plane of charge bias versus inverse temperature separating a ballistic phase from a subballistic phase. We show that the phase transition is first order. We prove large deviation principles for the laws of the empirical speed and the empirical charge, and derive a spectral representation for the associated rate functions. Interestingly, in both phases both rate functions exhibit flat pieces, which correspond to an inhomogeneous strategy for the polymer to realise a large deviation. The large deviation principles in turn lead to laws of large numbers and central limit theorems. We identify the scaling behaviour of the critical curve for small and for large charge bias. In addition, we identify the scaling behaviour of the free energy for small charge bias and small inverse temperature. Both are linked to an associated Sturm-Liouville eigenvalue problem. A key tool in our analysis is the Ray-Knight formula for the local times of the one-dimensional simple random walk. This formula is exploited to derive a closed form expression for the generating function of the annealed partition function, and for several related quantities. This expression in turn serves as the starting point for the derivation of the spectral representation for the free energy, and for the scaling theorems. What happens for the quenched free energy per monomer remains open. We state two modest results and raise a few questions.

  13. On the Maxwellian distribution, symmetric form, and entropy conservation for the Euler equations

    NASA Technical Reports Server (NTRS)

    Deshpande, S. M.

    1986-01-01

    The Euler equations of gas dynamics have some very interesting properties in that the flux vector is a homogeneous function of the unknowns and the equations can be cast in symmetric hyperbolic form and satisfy the entropy conservation. The Euler equations are the moments of the Boltzmann equation of the kinetic theory of gases when the velocity distribution function is a Maxwellian. The present paper shows the relationship between the symmetrizability and the Maxwellian velocity distribution. The entropy conservation is in terms of the H-function, which is a slight modification of the H-function first introduced by Boltzmann in his famous H-theorem. In view of the H-theorem, it is suggested that the development of total H-diminishing (THD) numerical methods may be more profitable than the usual total variation diminishing (TVD) methods for obtaining wiggle-free solutions.

  14. Adaptive NN control for discrete-time pure-feedback systems with unknown control direction under amplitude and rate actuator constraints.

    PubMed

    Chen, Weisheng

    2009-07-01

    This paper focuses on the problem of adaptive neural network tracking control for a class of discrete-time pure-feedback systems with unknown control direction under amplitude and rate actuator constraints. Two novel state-feedback and output-feedback dynamic control laws are established where the function tanh(.) is employed to solve the saturation constraint problem. Implicit function theorem and mean value theorem are exploited to deal with non-affine variables that are used as actual control. Radial basis function neural networks are used to approximate the desired input function. Discrete Nussbaum gain is used to estimate the unknown sign of control gain. The uniform boundedness of all closed-loop signals is guaranteed. The tracking error is proved to converge to a small residual set around the origin. A simulation example is provided to illustrate the effectiveness of control schemes proposed in this paper.

  15. A brief history of partitions of numbers, partition functions and their modern applications

    NASA Astrophysics Data System (ADS)

    Debnath, Lokenath

    2016-04-01

    'Number rules the universe.' The Pythagoras 'If you wish to forsee the future of mathematics our course is to study the history and present conditions of the science.' Henri Poincaré 'The primary source (Urqell) of all mathematics are integers.' Hermann Minkowski This paper is written to commemorate the centennial anniversary of the Mathematical Association of America. It deals with a short history of different kinds of natural numbers including triangular, square, pentagonal, hexagonal and k-gonal numbers, and their simple properties and their geometrical representations. Included are Euclid's and Pythagorean's main contributions to elementary number theory with the main contents of the Euclid Elements of the 13-volume masterpiece of mathematical work. This is followed by Euler's new discovery of the additive number theory based on partitions of numbers. Special attention is given to many examples, Euler's theorems on partitions of numbers with geometrical representations of Ferrers' graphs, Young's diagrams, Lagrange's four-square theorem and the celebrated Waring problem. Included are Euler's generating functions for the partitions of numbers, Euler's pentagonal number theorem, Gauss' triangular and square number theorems and the Jacobi triple product identity. Applications of the theory of partitions of numbers to different statistics such as the Bose- Einstein, Fermi- Dirac, Gentile, and Maxwell- Boltzmann statistics are briefly discussed. Special attention is given to pedagogical information through historical approach to number theory so that students and teachers at the school, college and university levels can become familiar with the basic concepts of partitions of numbers, partition functions and their modern applications, and can pursue advanced study and research in analytical and computational number theory.

  16. Applying the multivariate time-rescaling theorem to neural population models

    PubMed Central

    Gerhard, Felipe; Haslinger, Robert; Pipa, Gordon

    2011-01-01

    Statistical models of neural activity are integral to modern neuroscience. Recently, interest has grown in modeling the spiking activity of populations of simultaneously recorded neurons to study the effects of correlations and functional connectivity on neural information processing. However any statistical model must be validated by an appropriate goodness-of-fit test. Kolmogorov-Smirnov tests based upon the time-rescaling theorem have proven to be useful for evaluating point-process-based statistical models of single-neuron spike trains. Here we discuss the extension of the time-rescaling theorem to the multivariate (neural population) case. We show that even in the presence of strong correlations between spike trains, models which neglect couplings between neurons can be erroneously passed by the univariate time-rescaling test. We present the multivariate version of the time-rescaling theorem, and provide a practical step-by-step procedure for applying it towards testing the sufficiency of neural population models. Using several simple analytically tractable models and also more complex simulated and real data sets, we demonstrate that important features of the population activity can only be detected using the multivariate extension of the test. PMID:21395436

  17. Inferring energy dissipation from violation of the fluctuation-dissipation theorem

    NASA Astrophysics Data System (ADS)

    Wang, Shou-Wen

    2018-05-01

    The Harada-Sasa equality elegantly connects the energy dissipation rate of a moving object with its measurable violation of the Fluctuation-Dissipation Theorem (FDT). Although proven for Langevin processes, its validity remains unclear for discrete Markov systems whose forward and backward transition rates respond asymmetrically to external perturbation. A typical example is a motor protein called kinesin. Here we show generally that the FDT violation persists surprisingly in the high-frequency limit due to the asymmetry, resulting in a divergent FDT violation integral and thus a complete breakdown of the Harada-Sasa equality. A renormalized FDT violation integral still well predicts the dissipation rate when each discrete transition produces a small entropy in the environment. Our study also suggests a way to infer this perturbation asymmetry based on the measurable high-frequency-limit FDT violation.

  18. A Perron-Frobenius type of theorem for quantum operations

    NASA Astrophysics Data System (ADS)

    Lagro, Matthew

    Quantum random walks are a generalization of classical Markovian random walks to a quantum mechanical or quantum computing setting. Quantum walks have promising applications but are complicated by quantum decoherence. We prove that the long-time limiting behavior of the class of quantum operations which are the convex combination of norm one operators is governed by the eigenvectors with norm one eigenvalues which are shared by the operators. This class includes all operations formed by a coherent operation with positive probability of orthogonal measurement at each step. We also prove that any operation that has range contained in a low enough dimension subspace of the space of density operators has limiting behavior isomorphic to an associated Markov chain. A particular class of such operations are coherent operations followed by an orthogonal measurement. Applications of the convergence theorems to quantum walks are given.

  19. Time Asymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bohm, Arno R.; Gadella, Manuel; Kielanowski, Piotr

    2011-09-01

    The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1) for states or the Heisenberg equation (6a) for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space) of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus) and observables (defined by a registration apparatus (detector)). If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence) one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.

  20. Universal Hitting Time Statistics for Integrable Flows

    NASA Astrophysics Data System (ADS)

    Dettmann, Carl P.; Marklof, Jens; Strömbergsson, Andreas

    2017-02-01

    The perceived randomness in the time evolution of "chaotic" dynamical systems can be characterized by universal probabilistic limit laws, which do not depend on the fine features of the individual system. One important example is the Poisson law for the times at which a particle with random initial data hits a small set. This was proved in various settings for dynamical systems with strong mixing properties. The key result of the present study is that, despite the absence of mixing, the hitting times of integrable flows also satisfy universal limit laws which are, however, not Poisson. We describe the limit distributions for "generic" integrable flows and a natural class of target sets, and illustrate our findings with two examples: the dynamics in central force fields and ellipse billiards. The convergence of the hitting time process follows from a new equidistribution theorem in the space of lattices, which is of independent interest. Its proof exploits Ratner's measure classification theorem for unipotent flows, and extends earlier work of Elkies and McMullen.

  1. Are reconstruction filters necessary?

    NASA Astrophysics Data System (ADS)

    Holst, Gerald C.

    2006-05-01

    Shannon's sampling theorem (also called the Shannon-Whittaker-Kotel'nikov theorem) was developed for the digitization and reconstruction of sinusoids. Strict adherence is required when frequency preservation is important. Three conditions must be met to satisfy the sampling theorem: (1) The signal must be band-limited, (2) the digitizer must sample the signal at an adequate rate, and (3) a low-pass reconstruction filter must be present. In an imaging system, the signal is band-limited by the optics. For most imaging systems, the signal is not adequately sampled resulting in aliasing. While the aliasing seems excessive mathematically, it does not significantly affect the perceived image. The human visual system detects intensity differences, spatial differences (shapes), and color differences. The eye is less sensitive to frequency effects and therefore sampling artifacts have become quite acceptable. Indeed, we love our television even though it is significantly undersampled. The reconstruction filter, although absolutely essential, is rarely discussed. It converts digital data (which we cannot see) into a viewable analog signal. There are several reconstruction filters: electronic low-pass filters, the display media (monitor, laser printer), and your eye. These are often used in combination to create a perceived continuous image. Each filter modifies the MTF in a unique manner. Therefore image quality and system performance depends upon the reconstruction filter(s) used. The selection depends upon the application.

  2. Quantum identities for the action

    NASA Astrophysics Data System (ADS)

    Gozzi, E.

    2018-04-01

    In this paper we derive various identities involving the action functional which enters the path-integral formulation of quantum mechanics. They provide some kind of generalisations of the Ehrenfest theorem giving correlations between powers of the action and its functional derivatives.

  3. Kerr-de Sitter spacetime, Penrose process, and the generalized area theorem

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sourav

    2018-04-01

    We investigate various aspects of energy extraction via the Penrose process in the Kerr-de Sitter spacetime. We show that the increase in the value of a positive cosmological constant, Λ , always reduces the efficiency of this process. The Kerr-de Sitter spacetime has two ergospheres associated with the black hole and the cosmological event horizons. We prove by analyzing turning points of the trajectory that the Penrose process in the cosmological ergoregion is never possible. We next show that in this process both the black hole and cosmological event horizons' areas increase, and the latter becomes possible when the particle coming from the black hole ergoregion escapes through the cosmological event horizon. We identify a new, local mass function instead of the mass parameter, to prove this generalized area theorem. This mass function takes care of the local spacetime energy due to the cosmological constant as well, including that which arises due to the frame-dragging effect due to spacetime rotation. While the current observed value of Λ is quite small, its effect in this process could be considerable in the early Universe scenario where its value is much larger, where the two horizons could have comparable sizes. In particular, the various results we obtain here are also evaluated in a triply degenerate limit of the Kerr-de Sitter spacetime we find, in which radial values of the inner, the black hole and the cosmological event horizons are nearly coincident.

  4. Quantum computing without wavefunctions: time-dependent density functional theory for universal quantum computation.

    PubMed

    Tempel, David G; Aspuru-Guzik, Alán

    2012-01-01

    We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.

  5. The Law of Self-Acting Machines and Irreversible Processes with Reversible Replicas

    NASA Astrophysics Data System (ADS)

    Valev, Pentcho

    2002-11-01

    Clausius and Kelvin saved Carnot theorem and developed the second law by assuming that Carnot machines can work in the absence of an operator and that all the irreversible processes have reversible replicas. The former assumption restored Carnot theorem as an experience of mankind whereas the latter generated "the law of ever increasing entropy". Both assumptions are wrong so it makes sense to return to Carnot theorem (or some equivalent) and test it experimentally. Two testable paradigms - the system performing two types of reversible work and the system in dynamical equilibrium - suggest that perpetuum mobile of the second kind in the presence of an operator is possible. The deviation from the second law prediction, expressed as difference between partial derivatives in a Maxwell relation, measures the degree of structural-functional evolution for the respective system.

  6. The extinction properties of forest components

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.; Blanchard, A. J.; Nance, C. E.

    1988-01-01

    The effect of each forest component on the extinction of electromagnetic waves is investigated by modeling the branches with finite cylinders, deciduous leaves with elliptic disks, and coniferous leaves with needles. The inner field is estimated by the field inside an infinitely long cylinder of similar properties for the branches, and by the Shifrin approximation for the leaves. For each forest component analytic expressions were derived for the extinction cross section via the forward scattering theorem and for ohmic and scattered losses. For branches, the variation of the extinction cross section obtained via the forward scattering theorem is illustrated numerically as a function of the branch radius and the imaginery part of its dielectric constant. It is compared with the measurements from a single branch. For the leaves, the forward scattering theorem gives value for the extinction cross section equal to the ohmic cross section.

  7. Elementary solutions of coupled model equations in the kinetic theory of gases

    NASA Technical Reports Server (NTRS)

    Kriese, J. T.; Siewert, C. E.; Chang, T. S.

    1974-01-01

    The method of elementary solutions is employed to solve two coupled integrodifferential equations sufficient for determining temperature-density effects in a linearized BGK model in the kinetic theory of gases. Full-range completeness and orthogonality theorems are proved for the developed normal modes and the infinite-medium Green's function is constructed as an illustration of the full-range formalism. The appropriate homogeneous matrix Riemann problem is discussed, and half-range completeness and orthogonality theorems are proved for a certain subset of the normal modes. The required existence and uniqueness theorems relevant to the H matrix, basic to the half-range analysis, are proved, and an accurate and efficient computational method is discussed. The half-space temperature-slip problem is solved analytically, and a highly accurate value of the temperature-slip coefficient is reported.

  8. A Limit Theorem on the Cores of Large Standard Exchange Economies

    PubMed Central

    Brown, Donald J.; Robinson, Abraham

    1972-01-01

    This note introduces a new mathematical tool, nonstandard analysis, for the analysis of an important class of problems in mathematical economics—the relation between bargaining and the competitive price system. PMID:16591988

  9. Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling

    NASA Astrophysics Data System (ADS)

    Li, Huanan; Agarwalla, Bijay Kumar; Wang, Jian-Sheng

    2012-10-01

    Based on a two-time observation protocol, we consider heat transfer in a given time interval tM in a lead-junction-lead system taking coupling between the leads into account. In view of the two-time observation, consistency conditions are carefully verified in our specific family of quantum histories. Furthermore, its implication is briefly explored. Then using the nonequilibrium Green's function method, we obtain an exact formula for the cumulant generating function for heat transfer between the two leads, valid in both transient and steady-state regimes. Also, a compact formula for the cumulant generating function in the long-time limit is derived, for which the Gallavotti-Cohen fluctuation symmetry is explicitly verified. In addition, we briefly discuss Di Ventra's repartitioning trick regarding whether the repartitioning procedure of the total Hamiltonian affects the nonequilibrium steady-state current fluctuation. All kinds of properties of nonequilibrium current fluctuations, such as the fluctuation theorem in different time regimes, could be readily given according to these exact formulas.

  10. Superaging and Subaging Phenomena in a Nonequilibrium Critical Behavior of the Structurally Disordered Two-Dimensional XY Model

    NASA Astrophysics Data System (ADS)

    Prudnikov, V. V.; Prudnikov, P. V.; Popov, I. S.

    2018-03-01

    A Monte Carlo numerical simulation of the specific features of nonequilibrium critical behavior is carried out for the two-dimensional structurally disordered XY model during its evolution from a low-temperature initial state. On the basis of the analysis of the two-time dependence of autocorrelation functions and dynamic susceptibility for systems with spin concentrations of p = 1.0, 0.9, and 0.6, aging phenomena characterized by a slowing down of the relaxation system with increasing waiting time and the violation of the fluctuation-dissipation theorem (FDT) are revealed. The values of the universal limiting fluctuation-dissipation ratio (FDR) are obtained for the systems considered. As a result of the analysis of the two-time scaling dependence for spin-spin and connected spin autocorrelation functions, it is found that structural defects lead to subaging phenomena in the behavior of the spin-spin autocorrelation function and superaging phenomena in the behavior of the connected spin autocorrelation function.

  11. BPS/CFT Correspondence III: Gauge Origami Partition Function and qq-Characters

    NASA Astrophysics Data System (ADS)

    Nekrasov, Nikita

    2018-03-01

    We study generalized gauge theories engineered by taking the low energy limit of the Dp branes wrapping {X × {T}^{p-3}}, with X a possibly singular surface in a Calabi-Yau fourfold Z. For toric Z and X the partition function can be computed by localization, making it a statistical mechanical model, called the gauge origami. The random variables are the ensembles of Young diagrams. The building block of the gauge origami is associated with a tetrahedron, whose edges are colored by vector spaces. We show the properly normalized partition function is an entire function of the Coulomb moduli, for generic values of the {Ω} -background parameters. The orbifold version of the theory defines the qq-character operators, with and without the surface defects. The analytic properties are the consequence of a relative compactness of the moduli spaces M({ěc n}, k) of crossed and spiked instantons, demonstrated in "BPS/CFT correspondence II: instantons at crossroads, moduli and compactness theorem".

  12. On deriving the Maxwell stress tensor method for calculating the optical force and torque on an object in harmonic electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Ye, Qian; Lin, Haoze

    2017-07-01

    Though extensively used in calculating optical force and torque acting on a material object illuminated by laser, the Maxwell stress tensor (MST) method follows the electromagnetic linear and angular momentum balance that is usually derived in most textbooks for a continuous volume charge distribution in free space, if not resorting to the application of Noether’s theorem in electrodynamics. To cast the conservation laws into a physically appealing form involving the current densities of linear and angular momentum, on which the MST method is based, the divergence theorem is employed to transform a volume integral into a surface integral. When a material object of finite volume is put into the field, it brings about a discontinuity of field across its surface, due to the presence of induced surface charge and surface current. Ambiguity arises among students in whether the divergence theorem can still be directly used without any justification. By taking into account the effect of the induced surface charge and current, we present a simple pedagogical derivation for the MST method for calculating the optical force and torque on an object immersed in monochromatic optical field, without resorting to Noether’s theorem. Although the results turn out to be identical to those given in the standard textbooks, our derivation avoids the direct use of the divergence theorem on a discontinuous function.

  13. Completeness of the Coulomb Wave Functions in Quantum Mechanics

    ERIC Educational Resources Information Center

    Mukunda, N.

    1978-01-01

    Gives an explicit and elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory. (Author/GA)

  14. Homoclinic orbits and critical points of barrier functions

    NASA Astrophysics Data System (ADS)

    Cannarsa, Piermarco; Cheng, Wei

    2015-06-01

    We interpret the close link between the critical points of Mather's barrier functions and minimal homoclinic orbits with respect to the Aubry sets on {{T}}n . We also prove a critical point theorem for barrier functions and the existence of such homoclinic orbits on {{T}}2 as an application.

  15. A No-Go Theorem for the Continuum Limit of a Periodic Quantum Spin Chain

    NASA Astrophysics Data System (ADS)

    Jones, Vaughan F. R.

    2018-01-01

    We show that the Hilbert space formed from a block spin renormalization construction of a cyclic quantum spin chain (based on the Temperley-Lieb algebra) does not support a chiral conformal field theory whose Hamiltonian generates translation on the circle as a continuous limit of the rotations on the lattice.

  16. Analytic boosted boson discrimination

    DOE PAGES

    Larkoski, Andrew J.; Moult, Ian; Neill, Duff

    2016-05-20

    Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, D 2, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between thesemore » limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted Z boson from massive QCD background jets. We compare our results with Monte Carlo predictions which allows for a detailed understanding of the extent to which these generators accurately describe the formation of two-prong QCD jets, and informs their usage in substructure analyses. In conclusion, our calculation also provides considerable insight into the discrimination power and calculability of jet substructure observables in general.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larkoski, Andrew J.; Moult, Ian; Neill, Duff

    Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, D 2, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between thesemore » limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted Z boson from massive QCD background jets. We compare our results with Monte Carlo predictions which allows for a detailed understanding of the extent to which these generators accurately describe the formation of two-prong QCD jets, and informs their usage in substructure analyses. In conclusion, our calculation also provides considerable insight into the discrimination power and calculability of jet substructure observables in general.« less

  18. Double-time correlation functions of two quantum operations in open systems

    NASA Astrophysics Data System (ADS)

    Ban, Masashi

    2017-10-01

    A double-time correlation function of arbitrary two quantum operations is studied for a nonstationary open quantum system which is in contact with a thermal reservoir. It includes a usual correlation function, a linear response function, and a weak value of an observable. Time evolution of the correlation function can be derived by means of the time-convolution and time-convolutionless projection operator techniques. For this purpose, a quasidensity operator accompanied by a fictitious field is introduced, which makes it possible to derive explicit formulas for calculating a double-time correlation function in the second-order approximation with respect to a system-reservoir interaction. The derived formula explicitly shows that the quantum regression theorem for calculating the double-time correlation function cannot be used if a thermal reservoir has a finite correlation time. Furthermore, the formula is applied for a pure dephasing process and a linear dissipative process. The quantum regression theorem and the the Leggett-Garg inequality are investigated for an open two-level system. The results are compared with those obtained by exact calculation to examine whether the formula is a good approximation.

  19. Memory-less response and violation of the fluctuation-dissipation theorem in colloids suspended in an active bath.

    PubMed

    Maggi, Claudio; Paoluzzi, Matteo; Angelani, Luca; Di Leonardo, Roberto

    2017-12-14

    We investigate experimentally and numerically the stochastic dynamics and the time-dependent response of colloids subject to a small external perturbation in a dense bath of motile E. coli bacteria. The external field is a magnetic field acting on a superparamagnetic microbead suspended in an active medium. The measured linear response reveals an instantaneous friction kernel despite the complexity of the bacterial bath. By comparing the mean squared displacement and the response function we detect a clear violation of the fluctuation dissipation theorem.

  20. Diagrams for the Free Energy and Density Weight Factors of the Ising Models.

    DTIC Science & Technology

    1983-01-01

    sum to zero . The associated R. A. Farrell, T. Morita, and P. H. E. Meijer, "Cluster Expan- also, "_ ratum: New Generating Functions and Results for the...given for the cubic lattices. We employ a theorem that states that a certain sum of diagrams is zero in order to obtain the density-dependent weight...these diagrams are given for the cubic lattices. We employ a theorem that states that a certain sum of diagrams is zero in order to obtain the density

  1. Generalization of the quasi-geostrophic Eliassen-Palm flux to include eddy forcing of condensation heating

    NASA Technical Reports Server (NTRS)

    Stone, P. H.; Salustri, G.

    1984-01-01

    A modified Eulerian form of the Eliassen-Palm flux which includes the effect of eddy forcing on condensation heating is defined. With the two-dimensional vector flux in the meridional plane which is a function of the zonal mean eddy fluxes replaced by the modified flux, both the Eliassen-Palm theorem and a modified but more general form of the nonacceleration theorem for quasi-geostrophic motion still hold. Calculations of the divergence of the modified flux and of the eddy forcing of the moisture field are presented.

  2. The limit distribution in the q-CLT for q\\,\\geqslant \\,1 is unique and can not have a compact support

    NASA Astrophysics Data System (ADS)

    Umarov, Sabir; Tsallis, Constantino

    2016-10-01

    In a paper by Umarov et al (2008 Milan J. Math. 76 307-28), a generalization of the Fourier transform, called the q-Fourier transform, was introduced and applied for the proof of a q-generalized central limit theorem (q-CLT). Subsequently, Hilhorst illustrated (2009 Braz. J. Phys. 39 371-9 2010 J. Stat. Mech. P10023) that the q-Fourier transform for q\\gt 1, is not invertible in the space of density functions. Indeed, using an invariance principle, he constructed a family of densities with the same q-Fourier transform and noted that ‘as a consequence, the q-CLT falls short of achieving its stated goal’. The distributions constructed there have compact support. We prove now that the limit distribution in the q-CLT is unique and can not have a compact support. This result excludes all the possible counterexamples which can be constructed using the invariance principle and fills the gap mentioned by Hilhorst.

  3. Noether symmetries and the Swinging Atwood Machine

    NASA Astrophysics Data System (ADS)

    Moreira, I. C.; Almeida, M. A.

    1991-07-01

    In this work we apply the Noether theorem with generalised symmetries for discussing the integrability of the Swinging Atwood Machine (SAM) model. We analyse also the limitations of this procedure and compare it with the Yoshida method.

  4. Limits of predictions in thermodynamic systems: a review

    NASA Astrophysics Data System (ADS)

    Marsland, Robert, III; England, Jeremy

    2018-01-01

    The past twenty years have seen a resurgence of interest in nonequilibrium thermodynamics, thanks to advances in the theory of stochastic processes and in their thermodynamic interpretation. Fluctuation theorems provide fundamental constraints on the dynamics of systems arbitrarily far from thermal equilibrium. Thermodynamic uncertainty relations bound the dissipative cost of precision in a wide variety of processes. Concepts of excess work and excess heat provide the basis for a complete thermodynamics of nonequilibrium steady states, including generalized Clausius relations and thermodynamic potentials. But these general results carry their own limitations: fluctuation theorems involve exponential averages that can depend sensitively on unobservably rare trajectories; steady-state thermodynamics makes use of a dual dynamics that lacks any direct physical interpretation. This review aims to present these central results of contemporary nonequilibrium thermodynamics in such a way that the power of each claim for making physical predictions can be clearly assessed, using examples from current topics in soft matter and biophysics.

  5. An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations

    NASA Astrophysics Data System (ADS)

    Drivas, Theodore D.; Eyink, Gregory L.

    2017-12-01

    We prove that bounded weak solutions of the compressible Euler equations will conserve thermodynamic entropy unless the solution fields have sufficiently low space-time Besov regularity. A quantity measuring kinetic energy cascade will also vanish for such Euler solutions, unless the same singularity conditions are satisfied. It is shown furthermore that strong limits of solutions of compressible Navier-Stokes equations that are bounded and exhibit anomalous dissipation are weak Euler solutions. These inviscid limit solutions have non-negative anomalous entropy production and kinetic energy dissipation, with both vanishing when solutions are above the critical degree of Besov regularity. Stationary, planar shocks in Euclidean space with an ideal-gas equation of state provide simple examples that satisfy the conditions of our theorems and which demonstrate sharpness of our L 3-based conditions. These conditions involve space-time Besov regularity, but we show that they are satisfied by Euler solutions that possess similar space regularity uniformly in time.

  6. The mechanical problems on additive manufacturing of viscoelastic solids with integral conditions on a surface increasing in the growth process

    NASA Astrophysics Data System (ADS)

    Parshin, D. A.; Manzhirov, A. V.

    2018-04-01

    Quasistatic mechanical problems on additive manufacturing aging viscoelastic solids are investigated. The processes of piecewise-continuous accretion of such solids are considered. The consideration is carried out in the framework of linear mechanics of growing solids. A theorem about commutativity of the integration over an arbitrary surface increasing in the solid growing process and the time-derived integral operator of viscoelasticity with a limit depending on the solid point is proved. This theorem provides an efficient way to construct on the basis of Saint-Venant principle solutions of nonclassical boundary-value problems for describing the mechanical behaviour of additively formed solids with integral satisfaction of boundary conditions on the surfaces expanding due to the additional material influx to the formed solid. The constructed solutions will retrace the evolution of the stress-strain state of the solids under consideration during and after the processes of their additive formation. An example of applying the proved theorem is given.

  7. Heat fluctuations of Brownian oscillators in nonstationary processes: Fluctuation theorem and condensation transition

    NASA Astrophysics Data System (ADS)

    Crisanti, A.; Sarracino, A.; Zannetti, M.

    2017-05-01

    We study analytically the probability distribution of the heat released by an ensemble of harmonic oscillators to the thermal bath, in the nonequilibrium relaxation process following a temperature quench. We focus on the asymmetry properties of the heat distribution in the nonstationary dynamics, in order to study the forms taken by the fluctuation theorem as the number of degrees of freedom is varied. After analyzing in great detail the cases of one and two oscillators, we consider the limit of a large number of oscillators, where the behavior of fluctuations is enriched by a condensation transition with a nontrivial phase diagram, characterized by reentrant behavior. Numerical simulations confirm our analytical findings. We also discuss and highlight how concepts borrowed from the study of fluctuations in equilibrium under symmetry-breaking conditions [Gaspard, J. Stat. Mech. (2012) P08021, 10.1088/1742-5468/2012/08/P08021] turn out to be quite useful in understanding the deviations from the standard fluctuation theorem.

  8. Entanglement conservation, ER=EPR, and a new classical area theorem for wormholes

    DOE PAGES

    Remmen, Grant N.; Bao, Ning; Pollack, Jason

    2016-07-11

    We consider the question of entanglement conservation in the context of the ER=EPR correspondence equating quantum entanglement with wormholes. In quantum mechanics, the entanglement between a system and its complement is conserved under unitary operations that act independently on each; ER=EPR suggests that an analogous statement should hold for wormholes. We accordingly prove a new area theorem in general relativity: for a collection of dynamical wormholes and black holes in a spacetime satisfying the null curvature condition, the maximin area for a subset of the horizons (giving the largest area attained by the minimal cross section of the multi-wormhole throatmore » separating the subset from its complement) is invariant under classical time evolution along the outermost apparent horizons. The evolution can be completely general, including horizon mergers and the addition of classical matter satisfying the null energy condition. In conclusion, this theorem is the gravitational dual of entanglement conservation and thus constitutes an explicit characterization of the ER=EPR duality in the classical limit.« less

  9. Entanglement conservation, ER=EPR, and a new classical area theorem for wormholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remmen, Grant N.; Bao, Ning; Pollack, Jason

    We consider the question of entanglement conservation in the context of the ER=EPR correspondence equating quantum entanglement with wormholes. In quantum mechanics, the entanglement between a system and its complement is conserved under unitary operations that act independently on each; ER=EPR suggests that an analogous statement should hold for wormholes. We accordingly prove a new area theorem in general relativity: for a collection of dynamical wormholes and black holes in a spacetime satisfying the null curvature condition, the maximin area for a subset of the horizons (giving the largest area attained by the minimal cross section of the multi-wormhole throatmore » separating the subset from its complement) is invariant under classical time evolution along the outermost apparent horizons. The evolution can be completely general, including horizon mergers and the addition of classical matter satisfying the null energy condition. In conclusion, this theorem is the gravitational dual of entanglement conservation and thus constitutes an explicit characterization of the ER=EPR duality in the classical limit.« less

  10. Chaotic trajectories in the standard map. The concept of anti-integrability

    NASA Astrophysics Data System (ADS)

    Aubry, Serge; Abramovici, Gilles

    1990-07-01

    A rigorous proof is given in the standard map (associated with a Frenkel-Kontorowa model) for the existence of chaotic trajectories with unbounded momenta for large enough coupling constant k > k0. These chaotic trajectories (with finite entropy per site) are coded by integer sequences { mi} such that the sequence bi = |m i+1 + m i-1-2m i| be bounded by some integer b. The bound k0 in k depends on b and can be lowered for coding sequences { mi} fulfilling more restrictive conditions. The obtained chaotic trajectories correspond to stationary configurations of the Frenkel-Kontorowa model with a finite (non-zero) photon gap (called gap parameter in dimensionless units). This property implies that the trajectory (or the configuration { ui}) can be uniquely continued as a uniformly continuous function of the model parameter k in some neighborhood of the initial configuration. A non-zero gap parameter implies that the Lyapunov coefficient is strictly positive (when it is defined). In addition, the existence of dilating and contracting manifolds is proven for these chaotic trajectories. “Exotic” trajectories such as ballistic trajectories are also proven to exist as a consequence of these theorems. The concept of anti-integrability emerges from these theorems. In the anti-integrable limit which can be only defined for a discrete time dynamical system, the coordinates of the trajectory at time i do not depend on the coordinates at time i - 1. Thus, at this singular limit, the existence of chaotic trajectories is trivial and the dynamical system reduces to a Bernoulli shift. It is well known that the KAM tori of symplectic dynamical originates by continuity from the invariant tori which exists in the integrible limit (under certain conditions). In a similar way, it appears that the chaotic trajectories of dynamical systems originate by continuity from those which exists at the anti-integrable limits (also under certain conditions).

  11. Higher-dimensional communication complexity problems: Classical protocols versus quantum ones based on Bell's theorem or prepare-transmit-measure schemes

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Żukowski, Marek

    2017-04-01

    Communication complexity problems (CCPs) are tasks in which separated parties attempt to compute a function whose inputs are distributed among the parties. Their communication is limited so that not all inputs can be sent. We show that broad classes of Bell inequalities can be mapped to CCPs and that a quantum violation of a Bell inequality is a necessary and sufficient condition for an enhancement of the related CCP beyond its classical limitation. However, one can implement CCPs by transmitting a quantum system, encoding no more information than is allowed in the CCP, and extracting information by performing measurements. We show that for a large class of Bell inequalities, the improvement of the CCP associated with a quantum violation of a Bell inequality can be no greater than the improvement obtained from quantum prepare-transmit-measure strategies.

  12. Relativity, nonextensivity, and extended power law distributions.

    PubMed

    Silva, R; Lima, J A S

    2005-11-01

    A proof of the relativistic theorem by including nonextensive effects is given. As it happens in the nonrelativistic limit, the molecular chaos hypothesis advanced by Boltzmann does not remain valid, and the second law of thermodynamics combined with a duality transformation implies that the parameter lies on the interval [0,2]. It is also proven that the collisional equilibrium states (null entropy source term) are described by the relativistic power law extension of the exponential Juttner distribution which reduces, in the nonrelativistic domain, to the Tsallis power law function. As a simple illustration of the basic approach, we derive the relativistic nonextensive equilibrium distribution for a dilute charged gas under the action of an electromagnetic field . Such results reduce to the standard ones in the extensive limit, thereby showing that the nonextensive entropic framework can be harmonized with the space-time ideas contained in the special relativity theory.

  13. Two proposed convergence criteria for Monte Carlo solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forster, R.A.; Pederson, S.P.; Booth, T.E.

    1992-01-01

    The central limit theorem (CLT) can be applied to a Monte Carlo solution if two requirements are satisfied: (1) The random variable has a finite mean and a finite variance; and (2) the number N of independent observations grows large. When these two conditions are satisfied, a confidence interval (CI) based on the normal distribution with a specified coverage probability can be formed. The first requirement is generally satisfied by the knowledge of the Monte Carlo tally being used. The Monte Carlo practitioner has a limited number of marginal methods to assess the fulfillment of the second requirement, such asmore » statistical error reduction proportional to 1/[radical]N with error magnitude guidelines. Two proposed methods are discussed in this paper to assist in deciding if N is large enough: estimating the relative variance of the variance (VOV) and examining the empirical history score probability density function (pdf).« less

  14. Stokes' theorem, gauge symmetry and the time-dependent Aharonov-Bohm effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macdougall, James, E-mail: jbm34@mail.fresnostate.edu; Singleton, Douglas, E-mail: dougs@csufresno.edu

    2014-04-15

    Stokes' theorem is investigated in the context of the time-dependent Aharonov-Bohm effect—the two-slit quantum interference experiment with a time varying solenoid between the slits. The time varying solenoid produces an electric field which leads to an additional phase shift which is found to exactly cancel the time-dependent part of the usual magnetic Aharonov-Bohm phase shift. This electric field arises from a combination of a non-single valued scalar potential and/or a 3-vector potential. The gauge transformation which leads to the scalar and 3-vector potentials for the electric field is non-single valued. This feature is connected with the non-simply connected topology ofmore » the Aharonov-Bohm set-up. The non-single valued nature of the gauge transformation function has interesting consequences for the 4-dimensional Stokes' theorem for the time-dependent Aharonov-Bohm effect. An experimental test of these conclusions is proposed.« less

  15. Accurate image-charge method by the use of the residue theorem for core-shell dielectric sphere

    NASA Astrophysics Data System (ADS)

    Fu, Jing; Xu, Zhenli

    2018-02-01

    An accurate image-charge method (ICM) is developed for ionic interactions outside a core-shell structured dielectric sphere. Core-shell particles have wide applications for which the theoretical investigation requires efficient methods for the Green's function used to calculate pairwise interactions of ions. The ICM is based on an inverse Mellin transform from the coefficients of spherical harmonic series of the Green's function such that the polarization charge due to dielectric boundaries is represented by a series of image point charges and an image line charge. The residue theorem is used to accurately calculate the density of the line charge. Numerical results show that the ICM is promising in fast evaluation of the Green's function, and thus it is useful for theoretical investigations of core-shell particles. This routine can also be applicable for solving other problems with spherical dielectric interfaces such as multilayered media and Debye-Hückel equations.

  16. [Longevity, disease, and duration of disability].

    PubMed

    Matsushita, S

    1996-12-01

    Disability and the resulting lowered quality of life are serious issues accompanying increased longevity. Active life expectancy #(8) can be to used to distinguish the number of years without disability from the number with disability; increases were found in both in longevity #(9, 19). With the same rate of age-related new disability in the cohorts between 1970 and 1990, the total disability increased three fold #(11). In elderly patients I showed that 1) the duration of disability of those at a specific age at death (predeath) #(1) increased with age, and it decreased in those who remained without disability, 2) the cumulative number of days of disability for patients who died at a specific age (a convolution function of predeath and mortality) #(2), approached a normal distribution, which is consistent with the central limit theorem, 3) competing risk with chronic disease in a patient greatly affects the incidence and duration of disability, 4) using the central limit theorem we can predict that preventing dementia will retard premature rectangularization of the disability-free survival curve, and will thus reduce the total disability, 5) disability is an example of how variation and selection of chronic diseases (disease Darwinism) can alter population structure. Insights into the evolution of senescence #(14-21), pleiotropy, and slower rates of molecular evolution in the core than at the border #(26, 27), reveal that the central nervous system is relatively robust and conservative for pleiotropy and may senesce relatively slowly, which support a new way of thinking #(3, 4) about old age. To minimize disability, public knowledge and education about an ideal lifestyle and the evolution of senescence is essential.

  17. The Great Emch Closure Theorem and a combinatorial proof of Poncelet's Theorem

    NASA Astrophysics Data System (ADS)

    Avksentyev, E. A.

    2015-11-01

    The relations between the classical closure theorems (Poncelet's, Steiner's, Emch's, and the zigzag theorems) and some of their generalizations are discussed. It is known that Emch's Theorem is the most general of these, while the others follow as special cases. A generalization of Emch's Theorem to pencils of circles is proved, which (by analogy with the Great Poncelet Theorem) can be called the Great Emch Theorem. It is shown that the Great Emch and Great Poncelet Theorems are equivalent and can be derived one from the other using elementary geometry, and also that both hold in the Lobachevsky plane as well. A new closure theorem is also obtained, in which the construction of closure is slightly more involved: closure occurs on a variable circle which is tangent to a fixed pair of circles. In conclusion, a combinatorial proof of Poncelet's Theorem is given, which deduces the closure principle for an arbitrary number of steps from the principle for three steps using combinatorics and number theory. Bibliography: 20 titles.

  18. Analyticity without Differentiability

    ERIC Educational Resources Information Center

    Kirillova, Evgenia; Spindler, Karlheinz

    2008-01-01

    In this article we derive all salient properties of analytic functions, including the analytic version of the inverse function theorem, using only the most elementary convergence properties of series. Not even the notion of differentiability is required to do so. Instead, analytical arguments are replaced by combinatorial arguments exhibiting…

  19. Feynman amplitudes and limits of heights

    NASA Astrophysics Data System (ADS)

    Amini, O.; Bloch, S. J.; Burgos Gil, J. I.; Fresán, J.

    2016-10-01

    We investigate from a mathematical perspective how Feynman amplitudes appear in the low-energy limit of string amplitudes. In this paper, we prove the convergence of the integrands. We derive this from results describing the asymptotic behaviour of the height pairing between degree-zero divisors, as a family of curves degenerates. These are obtained by means of the nilpotent orbit theorem in Hodge theory.

  20. Making Temporal Logic Calculational: A Tool for Unification and Discovery

    NASA Astrophysics Data System (ADS)

    Boute, Raymond

    In temporal logic, calculational proofs beyond simple cases are often seen as challenging. The situation is reversed by making temporal logic calculational, yielding shorter and clearer proofs than traditional ones, and serving as a (mental) tool for unification and discovery. A side-effect of unifying theories is easier access by practicians. The starting point is a simple generic (software tool independent) Functional Temporal Calculus (FTC). Specific temporal logics are then captured via endosemantic functions. This concept reflects tacit conventions throughout mathematics and, once identified, is general and useful. FTC also yields a reasoning style that helps discovering theorems by calculation rather than just proving given facts. This is illustrated by deriving various theorems, most related to liveness issues in TLA+, and finding strengthenings of known results. Educational issues are addressed in passing.

  1. Spheres, charges, instantons, and bootstrap: A five-dimensional odyssey

    NASA Astrophysics Data System (ADS)

    Chang, Chi-Ming; Fluder, Martin; Lin, Ying-Hsuan; Wang, Yifan

    2018-03-01

    We combine supersymmetric localization and the conformal bootstrap to study five-dimensional superconformal field theories. To begin, we classify the admissible counter-terms and derive a general relation between the five-sphere partition function and the conformal and flavor central charges. Along the way, we discover a new superconformal anomaly in five dimensions. We then propose a precise triple factorization formula for the five-sphere partition function, that incorporates instantons and is consistent with flavor symmetry enhancement. We numerically evaluate the central charges for the rank-one Seiberg and Morrison-Seiberg theories, and find strong evidence for their saturation of bootstrap bounds, thereby determining the spectra of long multiplets in these theories. Lastly, our results provide new evidence for the F-theorem and possibly a C-theorem in five-dimensional superconformal theories.

  2. Different approach to the modeling of nonfree particle diffusion

    NASA Astrophysics Data System (ADS)

    Buhl, Niels

    2018-03-01

    A new approach to the modeling of nonfree particle diffusion is presented. The approach uses a general setup based on geometric graphs (networks of curves), which means that particle diffusion in anything from arrays of barriers and pore networks to general geometric domains can be considered and that the (free random walk) central limit theorem can be generalized to cover also the nonfree case. The latter gives rise to a continuum-limit description of the diffusive motion where the effect of partially absorbing barriers is accounted for in a natural and non-Markovian way that, in contrast to the traditional approach, quantifies the absorptivity of a barrier in terms of a dimensionless parameter in the range 0 to 1. The generalized theorem gives two general analytic expressions for the continuum-limit propagator: an infinite sum of Gaussians and an infinite sum of plane waves. These expressions entail the known method-of-images and Laplace eigenfunction expansions as special cases and show how the presence of partially absorbing barriers can lead to phenomena such as line splitting and band gap formation in the plane wave wave-number spectrum.

  3. Estimation of time- and state-dependent delays and other parameters in functional differential equations

    NASA Technical Reports Server (NTRS)

    Murphy, K. A.

    1988-01-01

    A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.

  4. Canonical Structure and Orthogonality of Forces and Currents in Irreversible Markov Chains

    NASA Astrophysics Data System (ADS)

    Kaiser, Marcus; Jack, Robert L.; Zimmer, Johannes

    2018-03-01

    We discuss a canonical structure that provides a unifying description of dynamical large deviations for irreversible finite state Markov chains (continuous time), Onsager theory, and Macroscopic Fluctuation Theory (MFT). For Markov chains, this theory involves a non-linear relation between probability currents and their conjugate forces. Within this framework, we show how the forces can be split into two components, which are orthogonal to each other, in a generalised sense. This splitting allows a decomposition of the pathwise rate function into three terms, which have physical interpretations in terms of dissipation and convergence to equilibrium. Similar decompositions hold for rate functions at level 2 and level 2.5. These results clarify how bounds on entropy production and fluctuation theorems emerge from the underlying dynamical rules. We discuss how these results for Markov chains are related to similar structures within MFT, which describes hydrodynamic limits of such microscopic models.

  5. Statistical thermodynamics of a two-dimensional relativistic gas.

    PubMed

    Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood

    2009-03-01

    In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).

  6. Estimation of time- and state-dependent delays and other parameters in functional differential equations

    NASA Technical Reports Server (NTRS)

    Murphy, K. A.

    1990-01-01

    A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.

  7. On a theorem of existence for scaling problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmolovskii, V.G.

    1995-12-05

    The authors study the question of the existence of the global minimum of the functional over the set of functions where {Omega} {contained_in} R{sup n} is a bounded domain, and a fixed function K (x,y) = K (y,x) belongs to L{sub 2} ({Omega} x {Omega}). Such functionals arise in some mathematical models of economics and sociology.

  8. An asymptotic formula for polynomials orthonormal with respect to a varying weight. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komlov, A V; Suetin, S P

    2014-09-30

    This paper gives a proof of the theorem announced by the authors in the preceding paper with the same title. The theorem states that asymptotically the behaviour of the polynomials which are orthonormal with respect to the varying weight e{sup −2nQ(x)}p{sub g}(x)/√(∏{sub j=1}{sup 2p}(x−e{sub j})) coincides with the asymptotic behaviour of the Nuttall psi-function, which solves a special boundary-value problem on the relevant hyperelliptic Riemann surface of genus g=p−1. Here e{sub 1}

  9. Certain approximation problems for functions on the infinite-dimensional torus: Lipschitz spaces

    NASA Astrophysics Data System (ADS)

    Platonov, S. S.

    2018-02-01

    We consider some questions about the approximation of functions on the infinite-dimensional torus by trigonometric polynomials. Our main results are analogues of the direct and inverse theorems in the classical theory of approximation of periodic functions and a description of the Lipschitz spaces on the infinite-dimensional torus in terms of the best approximation.

  10. Enhancement effects in polarimetric radar returns: Phase difference statistics

    NASA Technical Reports Server (NTRS)

    Lang, R. H.; Khadr, N.

    1993-01-01

    The probability density functions (pdfs) of the co- and cross-polarized phase differences are derived for backscatter from vegetation using the coherent and incoherent scattering theories. Unlike previous derivations, no assumptions or observations other than the applicability of the Central Limit Theorem (CLT), the low fractional volume of the medium, the reciprocity of the scatterers, and the azimuthal symmetry of the scatterer's orientation statistics are employed. Everything else follows logically via the mathematics. The difference between the coherent theory and the incoherent theory is referred to as the backscatter enhancement effect. The influence of this enhancement effect on the phase difference pdfs is examined and found to be important under combined conditions of scatterer anisotropy and appropriate reflection coefficient values.

  11. Interaction-induced shift of the cyclotron resonance of graphene using infrared spectroscopy.

    PubMed

    Henriksen, E A; Cadden-Zimansky, P; Jiang, Z; Li, Z Q; Tung, L-C; Schwartz, M E; Takita, M; Wang, Y-J; Kim, P; Stormer, H L

    2010-02-12

    We report a study of the cyclotron resonance (CR) transitions to and from the unusual n=0 Landau level (LL) in monolayer graphene. Unexpectedly, we find the CR transition energy exhibits large (up to 10%) and nonmonotonic shifts as a function of the LL filling factor, with the energy being largest at half filling of the n=0 level. The magnitude of these shifts, and their magnetic field dependence, suggests that an interaction-enhanced energy gap opens in the n=0 level at high magnetic fields. Such interaction effects normally have a limited impact on the CR due to Kohn's theorem [W. Kohn, Phys. Rev. 123, 1242 (1961)], which does not apply in graphene as a consequence of the underlying linear band structure.

  12. Central Limit Theorem: New SOCR Applet and Demonstration Activity

    ERIC Educational Resources Information Center

    Dinov, Ivo D.; Christou, Nicholas; Sanchez, Juana

    2008-01-01

    Modern approaches for information technology based blended education utilize a variety of novel instructional, computational and network resources. Such attempts employ technology to deliver integrated, dynamically linked, interactive content and multi-faceted learning environments, which may facilitate student comprehension and information…

  13. Counting Penguins.

    ERIC Educational Resources Information Center

    Perry, Mike; Kader, Gary

    1998-01-01

    Presents an activity on the simplification of penguin counting by employing the basic ideas and principles of sampling to teach students to understand and recognize its role in statistical claims. Emphasizes estimation, data analysis and interpretation, and central limit theorem. Includes a list of items for classroom discussion. (ASK)

  14. The Existence of Periodic Orbits and Invariant Tori for Some 3-Dimensional Quadratic Systems

    PubMed Central

    Jiang, Yanan; Han, Maoan; Xiao, Dongmei

    2014-01-01

    We use the normal form theory, averaging method, and integral manifold theorem to study the existence of limit cycles in Lotka-Volterra systems and the existence of invariant tori in quadratic systems in ℝ3. PMID:24982980

  15. Connection of Scattering Principles: A Visual and Mathematical Tour

    ERIC Educational Resources Information Center

    Broggini, Filippo; Snieder, Roel

    2012-01-01

    Inverse scattering, Green's function reconstruction, focusing, imaging and the optical theorem are subjects usually studied as separate problems in different research areas. We show a physical connection between the principles because the equations that rule these "scattering principles" have a similar functional form. We first lead the reader…

  16. Unified quantum no-go theorems and transforming of quantum pure states in a restricted set

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun

    2017-12-01

    The linear superposition principle in quantum mechanics is essential for several no-go theorems such as the no-cloning theorem, the no-deleting theorem and the no-superposing theorem. In this paper, we investigate general quantum transformations forbidden or permitted by the superposition principle for various goals. First, we prove a no-encoding theorem that forbids linearly superposing of an unknown pure state and a fixed pure state in Hilbert space of a finite dimension. The new theorem is further extended for multiple copies of an unknown state as input states. These generalized results of the no-encoding theorem include the no-cloning theorem, the no-deleting theorem and the no-superposing theorem as special cases. Second, we provide a unified scheme for presenting perfect and imperfect quantum tasks (cloning and deleting) in a one-shot manner. This scheme may lead to fruitful results that are completely characterized with the linear independence of the representative vectors of input pure states. The upper bounds of the efficiency are also proved. Third, we generalize a recent superposing scheme of unknown states with a fixed overlap into new schemes when multiple copies of an unknown state are as input states.

  17. Exact Dynamics via Poisson Process: a unifying Monte Carlo paradigm

    NASA Astrophysics Data System (ADS)

    Gubernatis, James

    2014-03-01

    A common computational task is solving a set of ordinary differential equations (o.d.e.'s). A little known theorem says that the solution of any set of o.d.e.'s is exactly solved by the expectation value over a set of arbitary Poisson processes of a particular function of the elements of the matrix that defines the o.d.e.'s. The theorem thus provides a new starting point to develop real and imaginary-time continous-time solvers for quantum Monte Carlo algorithms, and several simple observations enable various quantum Monte Carlo techniques and variance reduction methods to transfer to a new context. I will state the theorem, note a transformation to a very simple computational scheme, and illustrate the use of some techniques from the directed-loop algorithm in context of the wavefunction Monte Carlo method that is used to solve the Lindblad master equation for the dynamics of open quantum systems. I will end by noting that as the theorem does not depend on the source of the o.d.e.'s coming from quantum mechanics, it also enables the transfer of continuous-time methods from quantum Monte Carlo to the simulation of various classical equations of motion heretofore only solved deterministically.

  18. Comments on Musha's theorem that an evanescent photon in the microtubule is a superluminal particle.

    PubMed

    Hari, Syamala D

    2014-07-01

    Takaaki Musha's research of high performance quantum computation in living systems is motivated by the theories of Penrose and Hameroff that microtubules in the brain function as quantum computers, and by those of Jibu and Yasue that the quantum states of microtubules depend upon boson condensates of evanescent photons. His work is based on the assumption that the evanescent photons described by Jibu et al. are superluminal and that they are tachyons defined and discussed by well-known physicists such as Sudarshan, Feinberg and Recami. Musha gives a brief justification for the assumption and sometimes calls it a theorem. However, the assumption is not valid because Jibu et al. stated that the evanescent photons have transmission speed smaller than that of light and that their mass is real and momentum is imaginary whereas a tachyon's mass is imaginary and momentum is real. We show here that Musha's proof of the "theorem" has errors and hence his theorem/assumption is not valid. This article is not meant to further discuss any biological aspects of the brain but only to comment on the consistency of the quantum-physical aspects of earlier work by Musha et al. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Cook-Levin Theorem Algorithmic-Reducibility/Completeness = Wilson Renormalization-(Semi)-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') REPLACING CRUTCHES!!!: Models: Turing-machine, finite-state-models, finite-automata

    NASA Astrophysics Data System (ADS)

    Young, Frederic; Siegel, Edward

    Cook-Levin theorem theorem algorithmic computational-complexity(C-C) algorithmic-equivalence reducibility/completeness equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited via Siegel FUZZYICS =CATEGORYICS = ANALOGYICS =PRAGMATYICS/CATEGORY-SEMANTICS ONTOLOGY COGNITION ANALYTICS-Aristotle ``square-of-opposition'' tabular list-format truth-table matrix analytics predicts and implements ''noise''-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics (1987)]-Sipser[Intro.Thy. Computation(`97)] algorithmic C-C: ''NIT-picking''(!!!), to optimize optimization-problems optimally(OOPO). Versus iso-''noise'' power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, ''NIT-picking'' is ''noise'' power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-''science''/SEANCE algorithmic C-C models: Turing-machine, finite-state-models, finite-automata,..., discrete-maths graph-theory equivalence to physics Feynman-diagrams are identified as early-days once-workable valid but limiting IMPEDING CRUTCHES(!!!), ONLY IMPEDE latter-days new-insights!!!

  20. Fractional cable model for signal conduction in spiny neuronal dendrites

    NASA Astrophysics Data System (ADS)

    Vitali, Silvia; Mainardi, Francesco

    2017-06-01

    The cable model is widely used in several fields of science to describe the propagation of signals. A relevant medical and biological example is the anomalous subdiffusion in spiny neuronal dendrites observed in several studies of the last decade. Anomalous subdiffusion can be modelled in several ways introducing some fractional component into the classical cable model. The Chauchy problem associated to these kind of models has been investigated by many authors, but up to our knowledge an explicit solution for the signalling problem has not yet been published. Here we propose how this solution can be derived applying the generalized convolution theorem (known as Efros theorem) for Laplace transforms. The fractional cable model considered in this paper is defined by replacing the first order time derivative with a fractional derivative of order α ∈ (0, 1) of Caputo type. The signalling problem is solved for any input function applied to the accessible end of a semi-infinite cable, which satisfies the requirements of the Efros theorem. The solutions corresponding to the simple cases of impulsive and step inputs are explicitly calculated in integral form containing Wright functions. Thanks to the variability of the parameter α, the corresponding solutions are expected to adapt to the qualitative behaviour of the membrane potential observed in experiments better than in the standard case α = 1.

  1. Adaptive Control via Neural Output Feedback for a Class of Nonlinear Discrete-Time Systems in a Nested Interconnected Form.

    PubMed

    Li, Dong-Juan; Li, Da-Peng

    2017-09-14

    In this paper, an adaptive output feedback control is framed for uncertain nonlinear discrete-time systems. The considered systems are a class of multi-input multioutput nonaffine nonlinear systems, and they are in the nested lower triangular form. Furthermore, the unknown dead-zone inputs are nonlinearly embedded into the systems. These properties of the systems will make it very difficult and challenging to construct a stable controller. By introducing a new diffeomorphism coordinate transformation, the controlled system is first transformed into a state-output model. By introducing a group of new variables, an input-output model is finally obtained. Based on the transformed model, the implicit function theorem is used to determine the existence of the ideal controllers and the approximators are employed to approximate the ideal controllers. By using the mean value theorem, the nonaffine functions of systems can become an affine structure but nonaffine terms still exist. The adaptation auxiliary terms are skillfully designed to cancel the effect of the dead-zone input. Based on the Lyapunov difference theorem, the boundedness of all the signals in the closed-loop system can be ensured and the tracking errors are kept in a bounded compact set. The effectiveness of the proposed technique is checked by a simulation study.

  2. TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannsen, Tim; Psaltis, Dimitrios, E-mail: timj@physics.arizona.ed, E-mail: dpsaltis@email.arizona.ed

    2010-07-20

    According to the no-hair theorem, all astrophysical black holes are fully described by their masses and spins. This theorem can be tested observationally by measuring (at least) three different multipole moments of the spacetimes of black holes. In this paper, we analyze images of black holes within a framework that allows us to calculate observables in the electromagnetic spectrum as a function of the mass, spin, and, independently, the quadrupole moment of a black hole. We show that a deviation of the quadrupole moment from the expected Kerr value leads to images of black holes that are either prolate ormore » oblate depending on the sign and magnitude of the deviation. In addition, there is a ring-like structure around the black hole shadow with a diameter of {approx}10 black hole masses that is substantially brighter than the image of the underlying accretion flow and that is independent of the astrophysical details of accretion flow models. We show that the shape of this ring depends directly on the mass, spin, and quadrupole moment of the black hole and can be used for an independent measurement of all three parameters. In particular, we demonstrate that this ring is highly circular for a Kerr black hole with a spin a {approx}< 0.9 M, independent of the observer's inclination, but becomes elliptical and asymmetric if the no-hair theorem is violated. Near-future very long baseline interferometric observations of Sgr A* will image this ring and may allow for an observational test of the no-hair theorem.« less

  3. A sharp interpolation between the Hölder and Gaussian Young inequalities

    NASA Astrophysics Data System (ADS)

    da Pelo, Paolo; Lanconelli, Alberto; Stan, Aurel I.

    2016-03-01

    We prove a very general sharp inequality of the Hölder-Young-type for functions defined on infinite dimensional Gaussian spaces. We begin by considering a family of commutative products for functions which interpolates between the pointwise and Wick products; this family arises naturally in the context of stochastic differential equations, through Wong-Zakai-type approximation theorems, and plays a key role in some generalizations of the Beckner-type Poincaré inequality. We then obtain a crucial integral representation for that family of products which is employed, together with a generalization of the classic Young inequality due to Lieb, to prove our main theorem. We stress that our main inequality contains as particular cases the Hölder inequality and Nelson’s hyper-contractive estimate, thus providing a unified framework for two fundamental results of the Gaussian analysis.

  4. Sufficient conditions for uniqueness of the weak value

    NASA Astrophysics Data System (ADS)

    Dressel, J.; Jordan, A. N.

    2012-01-01

    We review and clarify the sufficient conditions for uniquely defining the generalized weak value as the weak limit of a conditioned average using the contextual values formalism introduced in Dressel, Agarwal and Jordan (2010 Phys. Rev. Lett. 104 240401). We also respond to criticism of our work by Parrott (arXiv:1105.4188v1) concerning a proposed counter-example to the uniqueness of the definition of the generalized weak value. The counter-example does not satisfy our prescription in the case of an underspecified measurement context. We show that when the contextual values formalism is properly applied to this example, a natural interpretation of the measurement emerges and the unique definition in the weak limit holds. We also prove a theorem regarding the uniqueness of the definition under our sufficient conditions for the general case. Finally, a second proposed counter-example by Parrott (arXiv:1105.4188v6) is shown not to satisfy the sufficiency conditions for the provided theorem.

  5. Eigenvector method for umbrella sampling enables error analysis

    PubMed Central

    Thiede, Erik H.; Van Koten, Brian; Weare, Jonathan; Dinner, Aaron R.

    2016-01-01

    Umbrella sampling efficiently yields equilibrium averages that depend on exploring rare states of a model by biasing simulations to windows of coordinate values and then combining the resulting data with physical weighting. Here, we introduce a mathematical framework that casts the step of combining the data as an eigenproblem. The advantage to this approach is that it facilitates error analysis. We discuss how the error scales with the number of windows. Then, we derive a central limit theorem for averages that are obtained from umbrella sampling. The central limit theorem suggests an estimator of the error contributions from individual windows, and we develop a simple and computationally inexpensive procedure for implementing it. We demonstrate this estimator for simulations of the alanine dipeptide and show that it emphasizes low free energy pathways between stable states in comparison to existing approaches for assessing error contributions. Our work suggests the possibility of using the estimator and, more generally, the eigenvector method for umbrella sampling to guide adaptation of the simulation parameters to accelerate convergence. PMID:27586912

  6. Enabling quaternion derivatives: the generalized HR calculus

    PubMed Central

    Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C.; Mandic, Danilo P.

    2015-01-01

    Quaternion derivatives exist only for a very restricted class of analytic (regular) functions; however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables; however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra. To address this issue, we introduce the generalized HR (GHR) derivatives which employ quaternion rotations in a general orthogonal system and provide the left- and right-hand versions of the quaternion derivative of general functions. The GHR calculus also solves the long-standing problems of product and chain rules, mean-value theorem and Taylor's theorem in the quaternion field. At the core of the proposed GHR calculus is quaternion rotation, which makes it possible to extend the principle to other functional calculi in non-commutative settings. Examples in statistical learning theory and adaptive signal processing support the analysis. PMID:26361555

  7. Enabling quaternion derivatives: the generalized HR calculus.

    PubMed

    Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C; Mandic, Danilo P

    2015-08-01

    Quaternion derivatives exist only for a very restricted class of analytic (regular) functions; however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables; however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra. To address this issue, we introduce the generalized HR (GHR) derivatives which employ quaternion rotations in a general orthogonal system and provide the left- and right-hand versions of the quaternion derivative of general functions. The GHR calculus also solves the long-standing problems of product and chain rules, mean-value theorem and Taylor's theorem in the quaternion field. At the core of the proposed GHR calculus is quaternion rotation, which makes it possible to extend the principle to other functional calculi in non-commutative settings. Examples in statistical learning theory and adaptive signal processing support the analysis.

  8. Analytical and numerical analysis of inverse optimization problems: conditions of uniqueness and computational methods

    PubMed Central

    Zatsiorsky, Vladimir M.

    2011-01-01

    One of the key problems of motor control is the redundancy problem, in particular how the central nervous system (CNS) chooses an action out of infinitely many possible. A promising way to address this question is to assume that the choice is made based on optimization of a certain cost function. A number of cost functions have been proposed in the literature to explain performance in different motor tasks: from force sharing in grasping to path planning in walking. However, the problem of uniqueness of the cost function(s) was not addressed until recently. In this article, we analyze two methods of finding additive cost functions in inverse optimization problems with linear constraints, so-called linear-additive inverse optimization problems. These methods are based on the Uniqueness Theorem for inverse optimization problems that we proved recently (Terekhov et al., J Math Biol 61(3):423–453, 2010). Using synthetic data, we show that both methods allow for determining the cost function. We analyze the influence of noise on the both methods. Finally, we show how a violation of the conditions of the Uniqueness Theorem may lead to incorrect solutions of the inverse optimization problem. PMID:21311907

  9. A Decomposition Theorem for Finite Automata.

    ERIC Educational Resources Information Center

    Santa Coloma, Teresa L.; Tucci, Ralph P.

    1990-01-01

    Described is automata theory which is a branch of theoretical computer science. A decomposition theorem is presented that is easier than the Krohn-Rhodes theorem. Included are the definitions, the theorem, and a proof. (KR)

  10. Validity of virial theorem in all-electron mixed basis density functional, Hartree–Fock, and GW calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwahara, Riichi; Accelrys K. K., Kasumigaseki Tokyu Building 17F, 3-7-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013; Tadokoro, Yoichi

    In this paper, we calculate kinetic and potential energy contributions to the electronic ground-state total energy of several isolated atoms (He, Be, Ne, Mg, Ar, and Ca) by using the local density approximation (LDA) in density functional theory, the Hartree–Fock approximation (HFA), and the self-consistent GW approximation (GWA). To this end, we have implemented self-consistent HFA and GWA routines in our all-electron mixed basis code, TOMBO. We confirm that virial theorem is fairly well satisfied in all of these approximations, although the resulting eigenvalue of the highest occupied molecular orbital level, i.e., the negative of the ionization potential, is inmore » excellent agreement only in the case of the GWA. We find that the wave function of the lowest unoccupied molecular orbital level of noble gas atoms is a resonating virtual bound state, and that of the GWA spreads wider than that of the LDA and thinner than that of the HFA.« less

  11. An extension of the Laplace transform to Schwartz distributions

    NASA Technical Reports Server (NTRS)

    Price, D. R.

    1974-01-01

    A characterization of the Laplace transform is developed which extends the transform to the Schwartz distributions. The class of distributions includes the impulse functions and other singular functions which occur as solutions to ordinary and partial differential equations. The standard theorems on analyticity, uniqueness, and invertibility of the transform are proved by using the characterization as the definition of the Laplace transform. The definition uses sequences of linear transformations on the space of distributions which extends the Laplace transform to another class of generalized functions, the Mikusinski operators. It is shown that the sequential definition of the transform is equivalent to Schwartz' extension of the ordinary Laplace transform to distributions but, in contrast to Schwartz' definition, does not use the distributional Fourier transform. Several theorems concerning the particular linear transformations used to define the Laplace transforms are proved. All the results proved in one dimension are extended to the n-dimensional case, but proofs are presented only for those situations that require methods different from their one-dimensional analogs.

  12. Fuchsian triangle groups and Grothendieck dessins. Variations on a theme of Belyi

    NASA Astrophysics Data System (ADS)

    Cohen, Paula Beazley; Itzykson, Claude; Wolfart, Jürgen

    1994-07-01

    According to a theorem of Belyi, a smooth projective algebraic curve is defined over a number field if and only if there exists a non-constant element of its function field ramified only over 0, 1 and . The existence of such a Belyi function is equivalent to that of a representation of the curve as a possibly compactified quotient space of the Poincaré upper half plane by a subgroup of finite index in a Fuchsian triangle group. On the other hand, Fuchsian triangle groups arise in many contexts, such as in the theory of hypergeometric functions and certain triangular billiard problems, which would appear at first sight to have no relation to the Galois problems that motivated the above discovery of Belyi. In this note we review several results related to Belyi's theorem and we develop certain aspects giving examples. For preliminary accounts, see the preprint [Wo1], the conference proceedings article [BauItz] and the Comptes Rendus note [CoWo2].

  13. APPROXIMATION OF SOLUTIONS OF THE EQUATION \\overline\\partial^jf=0, j\\geq1, IN DOMAINS WITH QUASICONFORMAL BOUNDARY

    NASA Astrophysics Data System (ADS)

    Andrievskiĭ, V. V.; Belyĭ, V. I.; Maĭmeskul, V. V.

    1991-02-01

    This article establishes direct and inverse theorems of approximation theory (of the same type as theorems of Dzyadyk) that describe the quantitative connection between the smoothness properties of solutions of the equation \\overline\\partial^jf=0, j\\geq1, and the rate of their approximation by "module" polynomials of the form \\displaystyle P_N(z)=\\sum_{n=0}^{j-1}\\sum_{m=0}^{N-n}a_{m,n}z^m\\overline{z}^n,\\qquad N\\geq j-1.In particular, a constructive characterization is obtained for generalized Hölder classes of such functions on domains with quasiconformal boundary.Bibliography: 19 titles.

  14. A stability theorem for energy-balance climate models

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; North, G. R.

    1979-01-01

    The paper treats the stability of steady-state solutions of some simple, latitude-dependent, energy-balance climate models. For north-south symmetric solutions of models with an ice-cap-type albedo feedback, and for the sum of horizontal transport and infrared radiation given by a linear operator, it is possible to prove a 'slope stability' theorem, i.e., if the local slope of the steady-state iceline latitude versus solar constant curve is positive (negative) the steady-state solution is stable (unstable). Certain rather weak restrictions on the albedo function and on the heat transport are required for the proof, and their physical basis is discussed.

  15. An investigation of the forward scattering theorem

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1987-01-01

    The calculation of an EM wave's extinction loss during propagation within an inhomogeneous medium, as in active and passive remote sensing modeling, can be undertaken either through the summation of the scattering and absorption losses or through the use of the forward scattering theorem. Attention is presently given to the similarities and differences of these two approaches as a function of dielectric properties of a spherical scatterer and the incident frequency. Scattering loss is obtainable by integrating the magnitude-squared of the scattered field over a spherical surface surrounding the scatterer; the scattered field and the field within the scatterer are computed according to Mie theory.

  16. Generating Test Templates via Automated Theorem Proving

    NASA Technical Reports Server (NTRS)

    Kancherla, Mani Prasad

    1997-01-01

    Testing can be used during the software development process to maintain fidelity between evolving specifications, program designs, and code implementations. We use a form of specification-based testing that employs the use of an automated theorem prover to generate test templates. A similar approach was developed using a model checker on state-intensive systems. This method applies to systems with functional rather than state-based behaviors. This approach allows for the use of incomplete specifications to aid in generation of tests for potential failure cases. We illustrate the technique on the cannonical triangle testing problem and discuss its use on analysis of a spacecraft scheduling system.

  17. Sky Radiance Distributions for Thermal Imaging Backgrounds.

    DTIC Science & Technology

    1987-12-01

    background noise limited system. In infrared devices we have a spectral discrimination which is due to the spectral response of the detector /filter...cannot apply the central limit theorem [Ref.]- because the detector can capture only a few shots of the cloud form and the characteristics of the...objects most infrared systems can be used as detectors or target designators. Since infrared systems are passive the advantages of such systems are enormous

  18. Mathematical Features of the Calculus

    ERIC Educational Resources Information Center

    Sauerheber, Richard D.

    2010-01-01

    The fundamental theorems of the calculus describe the relationships between derivatives and integrals of functions. The value of any function at a particular location is the definite derivative of its integral and the definite integral of its derivative. Thus, any value is the magnitude of the slope of the tangent of its integral at that position,…

  19. Naïve Bayes classification in R.

    PubMed

    Zhang, Zhongheng

    2016-06-01

    Naïve Bayes classification is a kind of simple probabilistic classification methods based on Bayes' theorem with the assumption of independence between features. The model is trained on training dataset to make predictions by predict() function. This article introduces two functions naiveBayes() and train() for the performance of Naïve Bayes classification.

  20. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhua; Chen, Xun; Wu, Wei

    2013-04-01

    In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.

  1. Circularly-symmetric complex normal ratio distribution for scalar transmissibility functions. Part I: Fundamentals

    NASA Astrophysics Data System (ADS)

    Yan, Wang-Ji; Ren, Wei-Xin

    2016-12-01

    Recent advances in signal processing and structural dynamics have spurred the adoption of transmissibility functions in academia and industry alike. Due to the inherent randomness of measurement and variability of environmental conditions, uncertainty impacts its applications. This study is focused on statistical inference for raw scalar transmissibility functions modeled as complex ratio random variables. The goal is achieved through companion papers. This paper (Part I) is dedicated to dealing with a formal mathematical proof. New theorems on multivariate circularly-symmetric complex normal ratio distribution are proved on the basis of principle of probabilistic transformation of continuous random vectors. The closed-form distributional formulas for multivariate ratios of correlated circularly-symmetric complex normal random variables are analytically derived. Afterwards, several properties are deduced as corollaries and lemmas to the new theorems. Monte Carlo simulation (MCS) is utilized to verify the accuracy of some representative cases. This work lays the mathematical groundwork to find probabilistic models for raw scalar transmissibility functions, which are to be expounded in detail in Part II of this study.

  2. Second order accurate finite difference approximations for the transonic small disturbance equation and the full potential equation

    NASA Technical Reports Server (NTRS)

    Mostrel, M. M.

    1988-01-01

    New shock-capturing finite difference approximations for solving two scalar conservation law nonlinear partial differential equations describing inviscid, isentropic, compressible flows of aerodynamics at transonic speeds are presented. A global linear stability theorem is applied to these schemes in order to derive a necessary and sufficient condition for the finite element method. A technique is proposed to render the described approximations total variation-stable by applying the flux limiters to the nonlinear terms of the difference equation dimension by dimension. An entropy theorem applying to the approximations is proved, and an implicit, forward Euler-type time discretization of the approximation is presented. Results of some numerical experiments using the approximations are reported.

  3. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  4. Bandwidth efficient coding: Theoretical limits and real achievements. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Courturier, Servanne; Levy, Yannick; Mills, Diane G.; Perez, Lance C.; Wang, Fu-Quan

    1993-01-01

    In his seminal 1948 paper 'The Mathematical Theory of Communication,' Claude E. Shannon derived the 'channel coding theorem' which has an explicit upper bound, called the channel capacity, on the rate at which 'information' could be transmitted reliably on a given communication channel. Shannon's result was an existence theorem and did not give specific codes to achieve the bound. Some skeptics have claimed that the dramatic performance improvements predicted by Shannon are not achievable in practice. The advances made in the area of coded modulation in the past decade have made communications engineers optimistic about the possibility of achieving or at least coming close to channel capacity. Here we consider the possibility in the light of current research results.

  5. Index theorem and universality properties of the low-lying eigenvalues of improved staggered quarks.

    PubMed

    Follana, E; Hart, A; Davies, C T H

    2004-12-10

    We study various improved staggered quark Dirac operators on quenched gluon backgrounds in lattice QCD generated using a Symanzik-improved gluon action. We find a clear separation of the spectrum into would-be zero modes and others. The number of would-be zero modes depends on the topological charge as expected from the index theorem, and their chirality expectation value is large ( approximately 0.7). The remaining modes have low chirality and show clear signs of clustering into quartets and approaching the random matrix theory predictions for all topological charge sectors. We conclude that improvement of the fermionic and gauge actions moves the staggered quarks closer to the continuum limit where they respond correctly to QCD topology.

  6. Slowly changing potential problems in Quantum Mechanics: Adiabatic theorems, ergodic theorems, and scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishman, S., E-mail: fishman@physics.technion.ac.il; Soffer, A., E-mail: soffer@math.rutgers.edu

    2016-07-15

    We employ the recently developed multi-time scale averaging method to study the large time behavior of slowly changing (in time) Hamiltonians. We treat some known cases in a new way, such as the Zener problem, and we give another proof of the adiabatic theorem in the gapless case. We prove a new uniform ergodic theorem for slowly changing unitary operators. This theorem is then used to derive the adiabatic theorem, do the scattering theory for such Hamiltonians, and prove some classical propagation estimates and asymptotic completeness.

  7. Arbitrary nonlinearity is sufficient to represent all functions by neural networks - A theorem

    NASA Technical Reports Server (NTRS)

    Kreinovich, Vladik YA.

    1991-01-01

    It is proved that if we have neurons implementing arbitrary linear functions and a neuron implementing one (arbitrary but smooth) nonlinear function g(x), then for every continuous function f(x sub 1,..., x sub m) of arbitrarily many variables, and for arbitrary e above 0, we can construct a network that consists of g-neurons and linear neurons, and computes f with precision e.

  8. Functional thermo-dynamics: a generalization of dynamic density functional theory to non-isothermal situations.

    PubMed

    Anero, Jesús G; Español, Pep; Tarazona, Pedro

    2013-07-21

    We present a generalization of Density Functional Theory (DFT) to non-equilibrium non-isothermal situations. By using the original approach set forth by Gibbs in his consideration of Macroscopic Thermodynamics (MT), we consider a Functional Thermo-Dynamics (FTD) description based on the density field and the energy density field. A crucial ingredient of the theory is an entropy functional, which is a concave functional. Therefore, there is a one to one connection between the density and energy fields with the conjugate thermodynamic fields. The connection between the three levels of description (MT, DFT, FTD) is clarified through a bridge theorem that relates the entropy of different levels of description and that constitutes a generalization of Mermin's theorem to arbitrary levels of description whose relevant variables are connected linearly. Although the FTD level of description does not provide any new information about averages and correlations at equilibrium, it is a crucial ingredient for the dynamics in non-equilibrium states. We obtain with the technique of projection operators the set of dynamic equations that describe the evolution of the density and energy density fields from an initial non-equilibrium state towards equilibrium. These equations generalize time dependent density functional theory to non-isothermal situations. We also present an explicit model for the entropy functional for hard spheres.

  9. Fish: A New Computer Program for Friendly Introductory Statistics Help

    ERIC Educational Resources Information Center

    Brooks, Gordon P.; Raffle, Holly

    2005-01-01

    All introductory statistics students must master certain basic descriptive statistics, including means, standard deviations and correlations. Students must also gain insight into such complex concepts as the central limit theorem and standard error. This article introduces and describes the Friendly Introductory Statistics Help (FISH) computer…

  10. The Non-Signalling theorem in generalizations of Bell's theorem

    NASA Astrophysics Data System (ADS)

    Walleczek, J.; Grössing, G.

    2014-04-01

    Does "epistemic non-signalling" ensure the peaceful coexistence of special relativity and quantum nonlocality? The possibility of an affirmative answer is of great importance to deterministic approaches to quantum mechanics given recent developments towards generalizations of Bell's theorem. By generalizations of Bell's theorem we here mean efforts that seek to demonstrate the impossibility of any deterministic theories to obey the predictions of Bell's theorem, including not only local hidden-variables theories (LHVTs) but, critically, of nonlocal hidden-variables theories (NHVTs) also, such as de Broglie-Bohm theory. Naturally, in light of the well-established experimental findings from quantum physics, whether or not a deterministic approach to quantum mechanics, including an emergent quantum mechanics, is logically possible, depends on compatibility with the predictions of Bell's theorem. With respect to deterministic NHVTs, recent attempts to generalize Bell's theorem have claimed the impossibility of any such approaches to quantum mechanics. The present work offers arguments showing why such efforts towards generalization may fall short of their stated goal. In particular, we challenge the validity of the use of the non-signalling theorem as a conclusive argument in favor of the existence of free randomness, and therefore reject the use of the non-signalling theorem as an argument against the logical possibility of deterministic approaches. We here offer two distinct counter-arguments in support of the possibility of deterministic NHVTs: one argument exposes the circularity of the reasoning which is employed in recent claims, and a second argument is based on the inconclusive metaphysical status of the non-signalling theorem itself. We proceed by presenting an entirely informal treatment of key physical and metaphysical assumptions, and of their interrelationship, in attempts seeking to generalize Bell's theorem on the basis of an ontic, foundational interpretation of the non-signalling theorem. We here argue that the non-signalling theorem must instead be viewed as an epistemic, operational theorem i.e. one that refers exclusively to what epistemic agents can, or rather cannot, do. That is, we emphasize that the non-signalling theorem is a theorem about the operational inability of epistemic agents to signal information. In other words, as a proper principle, the non-signalling theorem may only be employed as an epistemic, phenomenological, or operational principle. Critically, our argument emphasizes that the non-signalling principle must not be used as an ontic principle about physical reality as such, i.e. as a theorem about the nature of physical reality independently of epistemic agents e.g. human observers. One major reason in favor of our conclusion is that any definition of signalling or of non-signalling invariably requires a reference to epistemic agents, and what these agents can actually measure and report. Otherwise, the non-signalling theorem would equal a general "no-influence" theorem. In conclusion, under the assumption that the non-signalling theorem is epistemic (i.e. "epistemic non-signalling"), the search for deterministic approaches to quantum mechanics, including NHVTs and an emergent quantum mechanics, continues to be a viable research program towards disclosing the foundations of physical reality at its smallest dimensions.

  11. Consistency of the adiabatic theorem.

    PubMed

    Amin, M H S

    2009-06-05

    The adiabatic theorem provides the basis for the adiabatic model of quantum computation. Recently the conditions required for the adiabatic theorem to hold have become a subject of some controversy. Here we show that the reported violations of the adiabatic theorem all arise from resonant transitions between energy levels. In the absence of fast driven oscillations the traditional adiabatic theorem holds. Implications for adiabatic quantum computation are discussed.

  12. Normal order and extended Wick theorem for a multiconfiguration reference wave function

    NASA Astrophysics Data System (ADS)

    Kutzelnigg, Werner; Mukherjee, Debashis

    1997-07-01

    A generalization of normal ordering and of Wick's theorem with respect to an arbitrary reference function Φ as some generalized "physical vacuum" is formulated in a different (but essentially equivalent) way than that suggested previously by one of the present authors. Guiding principles are that normal order operators with respect to any reference state must be expressible as linear combinations of those with respect to the genuine vacuum, that the vacuum expectation value of a normal order operator must vanish (with respect to the vacuum to which it is in normal order), and that the well-known formalism for a single Slater determinant as physical vacuum must be contained as a special case. The derivation is largely based on the concepts of "Quantum Chemistry in Fock space," which means that particle-number-conserving operators (excitation operators) play a central role. Nevertheless, the contraction rules in the frame of a generalized Wick theorem are derived, that hold for non-particle-number-conserving operators as well. The contraction rules are formulated and illustrated in terms of diagrams. The contractions involve the "residual n-particle density matrices" λ, which are the irreducible (non-factorizable) parts of the conventional n-particle density matrices γ, in the sense of a cumulant expansion for the density. A spinfree formulation is presented as well. The expression of the Hamiltonian in normal order with respect to a multiconfiguration reference function leads to a natural definition of a generalized Fock operator. MC-SCF-theory is easily worked out in this context. The paper concludes with a discussion of the excited configurations and the first-order interacting space, that underlies a perturbative coupled cluster type correction to the MCSCF function for an arbitrary reference function, and with general implications of the new formalism, that is related to "internally contracted multireference configuration interaction." The present generalization of normal ordering is not only valid for arbitrary reference functions, but also if the reference state is an ensemble state.

  13. Optimal no-go theorem on hidden-variable predictions of effect expectations

    NASA Astrophysics Data System (ADS)

    Blass, Andreas; Gurevich, Yuri

    2018-03-01

    No-go theorems prove that, under reasonable assumptions, classical hidden-variable theories cannot reproduce the predictions of quantum mechanics. Traditional no-go theorems proved that hidden-variable theories cannot predict correctly the values of observables. Recent expectation no-go theorems prove that hidden-variable theories cannot predict the expectations of observables. We prove the strongest expectation-focused no-go theorem to date. It is optimal in the sense that the natural weakenings of the assumptions and the natural strengthenings of the conclusion make the theorem fail. The literature on expectation no-go theorems strongly suggests that the expectation-focused approach is more general than the value-focused one. We establish that the expectation approach is not more general.

  14. The invariant of the stiffness filter function with the weight filter function of the power function form

    NASA Astrophysics Data System (ADS)

    Shang, Zhen; Sui, Yun-Kang

    2012-12-01

    Based on the independent, continuous and mapping (ICM) method and homogenization method, a research model is constructed to propose and deduce a theorem and corollary from the invariant between the weight filter function and the corresponding stiffness filter function of the form of power function. The efficiency in searching for optimum solution will be raised via the choice of rational filter functions, so the above mentioned results are very important to the further study of structural topology optimization.

  15. On the divergence of triangular and eccentric spherical sums of double Fourier series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karagulyan, G A

    We construct a continuous function on the torus with almost everywhere divergent triangular sums of double Fourier series. We also prove an analogous theorem for eccentric spherical sums. Bibliography: 14 titles.

  16. Decomposition Theory in the Teaching of Elementary Linear Algebra.

    ERIC Educational Resources Information Center

    London, R. R.; Rogosinski, H. P.

    1990-01-01

    Described is a decomposition theory from which the Cayley-Hamilton theorem, the diagonalizability of complex square matrices, and functional calculus can be developed. The theory and its applications are based on elementary polynomial algebra. (KR)

  17. Geometry and combinatorics of Julia sets of real quadratic maps

    NASA Astrophysics Data System (ADS)

    Barnsley, M. F.; Geronimo, J. S.; Harrington, A. N.

    1984-10-01

    For real λ a correspondence is made between the Julia set B λ for z→( z- λ)2, in the hyperbolic case, and the set of λ-chains λ±√(λ±√(λ±..., with the aid of Cremer's theorem. It is shown how a number of features of Bλ can be understood in terms of λ-chains. The structure of B λ is determined by certain equivalence classes of λ-chains, fixed by orders of visitation of certain real cycles; and the bifurcation history of a given cycle can be conveniently computed via the combinatorics of λ-chains. The functional equations obeyed by attractive cycles are investigated, and their relation to λ-chains is given. The first cascade of period-doubling bifurcations is described from the point of view of the associated Julia sets and λ-chains. Certain "Julia sets" associated with the Feigenbaum function and some theorems of Lanford are discussed.

  18. Nonequilibrium thermodynamics of restricted Boltzmann machines.

    PubMed

    Salazar, Domingos S P

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  19. The complete proof on the optimal ordering policy under cash discount and trade credit

    NASA Astrophysics Data System (ADS)

    Chung, Kun-Jen

    2010-04-01

    Huang ((2005), 'Buyer's Optimal Ordering Policy and Payment Policy under Supplier Credit', International Journal of Systems Science, 36, 801-807) investigates the buyer's optimal ordering policy and payment policy under supplier credit. His inventory model is correct and interesting. Basically, he uses an algebraic method to locate the optimal solution of the annual total relevant cost TRC(T) and ignores the role of the functional behaviour of TRC(T) in locating the optimal solution of it. However, as argued in this article, Huang needs to explore the functional behaviour of TRC(T) to justify his solution. So, from the viewpoint of logic, the proof about Theorem 1 in Huang has some shortcomings such that the validity of Theorem 1 in Huang is questionable. The main purpose of this article is to remove and correct those shortcomings in Huang and present the complete proofs for Huang.

  20. A Liouville type theorem for Lane-Emden systems involving the fractional Laplacian

    NASA Astrophysics Data System (ADS)

    Quaas, Alexander; Xia, Aliang

    2016-08-01

    We establish a Liouville type theorem for the fractional Lane-Emden system: {(-Δ)αu=vqin  RN,(-Δ)αv=upin  RN, where α \\in (0,1) , N>2α and p, q are positive real numbers and in an appropriate new range. To prove our result we will use the local realization of fractional Laplacian, which can be constructed as a Dirichlet-to-Neumann operator of a degenerate elliptic equation in the spirit of Caffarelli and Silvestre (2007 Commun. PDE 32 1245-60). Our proof is based on a monotonicity argument for suitable transformed functions and the method of moving planes in a half infinite cylinder ({IR}× S+N , where S+N is the half unit sphere in {{{R}}N+1} ) based on maximum principles which are obtained by barrier functions and a coupling argument using a fractional Sobolev trace inequality.

  1. The renormalization group and the implicit function theorem for amplitude equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkinis, Eleftherios

    2008-07-15

    This article lays down the foundations of the renormalization group (RG) approach for differential equations characterized by multiple scales. The renormalization of constants through an elimination process and the subsequent derivation of the amplitude equation [Chen et al., Phys. Rev. E 54, 376 (1996)] are given a rigorous but not abstract mathematical form whose justification is based on the implicit function theorem. Developing the theoretical framework that underlies the RG approach leads to a systematization of the renormalization process and to the derivation of explicit closed-form expressions for the amplitude equations that can be carried out with symbolic computation formore » both linear and nonlinear scalar differential equations and first order systems but independently of their particular forms. Certain nonlinear singular perturbation problems are considered that illustrate the formalism and recover well-known results from the literature as special cases.« less

  2. Quantum properties of supersymmetric theories regularized by higher covariant derivatives

    NASA Astrophysics Data System (ADS)

    Stepanyantz, Konstantin

    2018-02-01

    We investigate quantum corrections in \\mathscr{N} = 1 non-Abelian supersymmetric gauge theories, regularized by higher covariant derivatives. In particular, by the help of the Slavnov-Taylor identities we prove that the vertices with two ghost legs and one leg of the quantum gauge superfield are finite in all orders. This non-renormalization theorem is confirmed by an explicit one-loop calculation. By the help of this theorem we rewrite the exact NSVZ β-function in the form of the relation between the β-function and the anomalous dimensions of the matter superfields, of the quantum gauge superfield, and of the Faddeev-Popov ghosts. Such a relation has simple qualitative interpretation and allows suggesting a prescription producing the NSVZ scheme in all loops for the theories regularized by higher derivatives. This prescription is verified by the explicit three-loop calculation for the terms quartic in the Yukawa couplings.

  3. Using Pictures to Enhance Students' Understanding of Bayes' Theorem

    ERIC Educational Resources Information Center

    Trafimow, David

    2011-01-01

    Students often have difficulty understanding algebraic proofs of statistics theorems. However, it sometimes is possible to prove statistical theorems with pictures in which case students can gain understanding more easily. I provide examples for two versions of Bayes' theorem.

  4. A hierarchical generalization of the acoustic reciprocity theorem involving higher-order derivatives and interaction quantities.

    PubMed

    Lin, Ju; Li, Jie; Li, Xiaolei; Wang, Ning

    2016-10-01

    An acoustic reciprocity theorem is generalized, for a smoothly varying perturbed medium, to a hierarchy of reciprocity theorems including higher-order derivatives of acoustic fields. The standard reciprocity theorem is the first member of the hierarchy. It is shown that the conservation of higher-order interaction quantities is related closely to higher-order derivative distributions of perturbed media. Then integral reciprocity theorems are obtained by applying Gauss's divergence theorem, which give explicit integral representations connecting higher-order interactions and higher-order derivative distributions of perturbed media. Some possible applications to an inverse problem are also discussed.

  5. [Psychosomatics is "expensive"].

    PubMed

    Hnízdil, J; Savlík, J

    2005-01-01

    Experience shoves that number of diseases where recognition and treatment is without limits of classical medicine is rising, however it is fully within the competence of psychosomatic approach. It does not concern the classical classification into organic and functional defects, but it concerns the possibility of complex approach. The theorem of "diagnosis per exclusionem" is still valid, as well as it is true that the means of medicine end at its biological limitations. We consider stressing in our article that psychosomatic diseases or psychosomatic patients do not exist and psychosomatics is not and independent specialization. Psychosomatics is, as inseparable unity of psychic and somatic activities, each human being. Complex biopsychosocial (psychosomatic) approach is the way of thinking and work, which considers human in unrepeatable oneness and context of his life. It does not mean to underestimate objective biological findings and results of instrumentally investigation, but their implanting into the complex network of consequences of the patient's life in order to choose the most appropriate methods of the care of the individual in healthiness and disease.

  6. The leading term of the Plancherel-Rotach asymptotic formula for solutions of recurrence relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aptekarev, A I; Tulyakov, D N

    Recurrence relations generating Padé and Hermite-Padé polynomials are considered. Their coefficients increase with the index of the relation, but after dividing by an appropriate power of the scaling function they tend to a finite limit. As a result, after scaling the polynomials 'stabilize' for large indices; this type of asymptotic behaviour is called Plancherel-Rotach asymptotics. An explicit expression for the leading term of the asymptotic formula, which is valid outside sets containing the zeros of the polynomials, is obtained for wide classes of three- and four-term relations. For three-term recurrence relations this result generalizes a theorem Van Assche obtained for recurrence relations withmore » 'regularly' growing coefficients. Bibliography: 19 titles.« less

  7. Compounding approach for univariate time series with nonstationary variances

    NASA Astrophysics Data System (ADS)

    Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich

    2015-12-01

    A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.

  8. Corrected Mean-Field Model for Random Sequential Adsorption on Random Geometric Graphs

    NASA Astrophysics Data System (ADS)

    Dhara, Souvik; van Leeuwaarden, Johan S. H.; Mukherjee, Debankur

    2018-03-01

    A notorious problem in mathematics and physics is to create a solvable model for random sequential adsorption of non-overlapping congruent spheres in the d-dimensional Euclidean space with d≥ 2 . Spheres arrive sequentially at uniformly chosen locations in space and are accepted only when there is no overlap with previously deposited spheres. Due to spatial correlations, characterizing the fraction of accepted spheres remains largely intractable. We study this fraction by taking a novel approach that compares random sequential adsorption in Euclidean space to the nearest-neighbor blocking on a sequence of clustered random graphs. This random network model can be thought of as a corrected mean-field model for the interaction graph between the attempted spheres. Using functional limit theorems, we characterize the fraction of accepted spheres and its fluctuations.

  9. A CLT on the SNR of Diagonally Loaded MVDR Filters

    NASA Astrophysics Data System (ADS)

    Rubio, Francisco; Mestre, Xavier; Hachem, Walid

    2012-08-01

    This paper studies the fluctuations of the signal-to-noise ratio (SNR) of minimum variance distorsionless response (MVDR) filters implementing diagonal loading in the estimation of the covariance matrix. Previous results in the signal processing literature are generalized and extended by considering both spatially as well as temporarily correlated samples. Specifically, a central limit theorem (CLT) is established for the fluctuations of the SNR of the diagonally loaded MVDR filter, under both supervised and unsupervised training settings in adaptive filtering applications. Our second-order analysis is based on the Nash-Poincar\\'e inequality and the integration by parts formula for Gaussian functionals, as well as classical tools from statistical asymptotic theory. Numerical evaluations validating the accuracy of the CLT confirm the asymptotic Gaussianity of the fluctuations of the SNR of the MVDR filter.

  10. Compounding approach for univariate time series with nonstationary variances.

    PubMed

    Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich

    2015-12-01

    A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.

  11. The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) functions in the context of peak fitting X-ray photoelectron spectroscopy (XPS) narrow scans

    NASA Astrophysics Data System (ADS)

    Jain, Varun; Biesinger, Mark C.; Linford, Matthew R.

    2018-07-01

    X-ray photoelectron spectroscopy (XPS) is arguably the most important vacuum technique for surface chemical analysis, and peak fitting is an indispensable part of XPS data analysis. Functions that have been widely explored and used in XPS peak fitting include the Gaussian, Lorentzian, Gaussian-Lorentzian sum (GLS), Gaussian-Lorentzian product (GLP), and Voigt functions, where the Voigt function is a convolution of a Gaussian and a Lorentzian function. In this article we discuss these functions from a graphical perspective. Arguments based on convolution and the Central Limit Theorem are made to justify the use of functions that are intermediate between pure Gaussians and pure Lorentzians in XPS peak fitting. Mathematical forms for the GLS and GLP functions are presented with a mixing parameter m. Plots are shown for GLS and GLP functions with mixing parameters ranging from 0 to 1. There are fundamental differences between the GLS and GLP functions. The GLS function better follows the 'wings' of the Lorentzian, while these 'wings' are suppressed in the GLP. That is, these two functions are not interchangeable. The GLS and GLP functions are compared to the Voigt function, where the GLS is shown to be a decent approximation of it. Practically, both the GLS and the GLP functions can be useful for XPS peak fitting. Examples of the uses of these functions are provided herein.

  12. STUDIES IN RESEARCH METHODOLOGY. IV. A SAMPLING STUDY OF THE CENTRAL LIMIT THEOREM AND THE ROBUSTNESS OF ONE-SAMPLE PARAMETRIC TESTS,

    DTIC Science & Technology

    iconoclastic . Even at N=1024 these departures were quite appreciable at the testing tails, being greatest for chi-square and least for Z, and becoming worse in all cases at increasingly extreme tail areas. (Author)

  13. Similarity and Congruence.

    ERIC Educational Resources Information Center

    Herman, Daniel L.

    This instructional unit is an introduction to the common properties of similarity and congruence. Manipulation of objects leads to a recognition of these properties. The ASA, SAS, and SSS theorems are not mentioned. Limited use is made in the application of the properties of size and shape preserved by similarity or congruence. A teacher's guide…

  14. BAT - The Bayesian analysis toolkit

    NASA Astrophysics Data System (ADS)

    Caldwell, Allen; Kollár, Daniel; Kröninger, Kevin

    2009-11-01

    We describe the development of a new toolkit for data analysis. The analysis package is based on Bayes' Theorem, and is realized with the use of Markov Chain Monte Carlo. This gives access to the full posterior probability distribution. Parameter estimation, limit setting and uncertainty propagation are implemented in a straightforward manner.

  15. A Unifying Probability Example.

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.

    2002-01-01

    Presents an example from probability and statistics that ties together several topics including the mean and variance of a discrete random variable, the binomial distribution and its particular mean and variance, the sum of independent random variables, the mean and variance of the sum, and the central limit theorem. Uses Excel to illustrate these…

  16. The Importance of Introductory Statistics Students Understanding Appropriate Sampling Techniques

    ERIC Educational Resources Information Center

    Menil, Violeta C.

    2005-01-01

    In this paper the author discusses the meaning of sampling, the reasons for sampling, the Central Limit Theorem, and the different techniques of sampling. Practical and relevant examples are given to make the appropriate sampling techniques understandable to students of Introductory Statistics courses. With a thorough knowledge of sampling…

  17. Discrete Time Rescaling Theorem: Determining Goodness of Fit for Discrete Time Statistical Models of Neural Spiking

    PubMed Central

    Haslinger, Robert; Pipa, Gordon; Brown, Emery

    2010-01-01

    One approach for understanding the encoding of information by spike trains is to fit statistical models and then test their goodness of fit. The time rescaling theorem provides a goodness of fit test consistent with the point process nature of spike trains. The interspike intervals (ISIs) are rescaled (as a function of the model’s spike probability) to be independent and exponentially distributed if the model is accurate. A Kolmogorov Smirnov (KS) test between the rescaled ISIs and the exponential distribution is then used to check goodness of fit. This rescaling relies upon assumptions of continuously defined time and instantaneous events. However spikes have finite width and statistical models of spike trains almost always discretize time into bins. Here we demonstrate that finite temporal resolution of discrete time models prevents their rescaled ISIs from being exponentially distributed. Poor goodness of fit may be erroneously indicated even if the model is exactly correct. We present two adaptations of the time rescaling theorem to discrete time models. In the first we propose that instead of assuming the rescaled times to be exponential, the reference distribution be estimated through direct simulation by the fitted model. In the second, we prove a discrete time version of the time rescaling theorem which analytically corrects for the effects of finite resolution. This allows us to define a rescaled time which is exponentially distributed, even at arbitrary temporal discretizations. We demonstrate the efficacy of both techniques by fitting Generalized Linear Models (GLMs) to both simulated spike trains and spike trains recorded experimentally in monkey V1 cortex. Both techniques give nearly identical results, reducing the false positive rate of the KS test and greatly increasing the reliability of model evaluation based upon the time rescaling theorem. PMID:20608868

  18. Discrete time rescaling theorem: determining goodness of fit for discrete time statistical models of neural spiking.

    PubMed

    Haslinger, Robert; Pipa, Gordon; Brown, Emery

    2010-10-01

    One approach for understanding the encoding of information by spike trains is to fit statistical models and then test their goodness of fit. The time-rescaling theorem provides a goodness-of-fit test consistent with the point process nature of spike trains. The interspike intervals (ISIs) are rescaled (as a function of the model's spike probability) to be independent and exponentially distributed if the model is accurate. A Kolmogorov-Smirnov (KS) test between the rescaled ISIs and the exponential distribution is then used to check goodness of fit. This rescaling relies on assumptions of continuously defined time and instantaneous events. However, spikes have finite width, and statistical models of spike trains almost always discretize time into bins. Here we demonstrate that finite temporal resolution of discrete time models prevents their rescaled ISIs from being exponentially distributed. Poor goodness of fit may be erroneously indicated even if the model is exactly correct. We present two adaptations of the time-rescaling theorem to discrete time models. In the first we propose that instead of assuming the rescaled times to be exponential, the reference distribution be estimated through direct simulation by the fitted model. In the second, we prove a discrete time version of the time-rescaling theorem that analytically corrects for the effects of finite resolution. This allows us to define a rescaled time that is exponentially distributed, even at arbitrary temporal discretizations. We demonstrate the efficacy of both techniques by fitting generalized linear models to both simulated spike trains and spike trains recorded experimentally in monkey V1 cortex. Both techniques give nearly identical results, reducing the false-positive rate of the KS test and greatly increasing the reliability of model evaluation based on the time-rescaling theorem.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchard, Chris; Chang, Chia Cheng; Kurth, Thorsten

    In this paper, the Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation functions determined with functional derivatives of the partition function. Using this insight, we fully develop an improved method for computing matrix elements of external currents utilizing only two-point correlation functions. Our method applies to matrix elements of any external bilinear current, including nonzero momentum transfer, flavor-changing, and two or more current insertion matrix elements. The ability to identify and control all the systematic uncertainties in the analysis of the correlation functions stems from the unique time dependence of the ground-state matrix elements and the fact that all excited states and contact terms are Euclidean-time dependent. We demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-flowed domain-wall valence quarks on themore » $$N_f=2+1+1$$ MILC highly improved staggered quark ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively. We show full control over excited-state systematics with the new method and obtain a value of $$g_A = 1.213(26)$$ with a quark-mass-dependent renormalization coefficient.« less

  20. Approaching Cauchy's Theorem

    ERIC Educational Resources Information Center

    Garcia, Stephan Ramon; Ross, William T.

    2017-01-01

    We hope to initiate a discussion about various methods for introducing Cauchy's Theorem. Although Cauchy's Theorem is the fundamental theorem upon which complex analysis is based, there is no "standard approach." The appropriate choice depends upon the prerequisites for the course and the level of rigor intended. Common methods include…

  1. Anomalous diffusion due to the non-Markovian process of the dust particle velocity in complex plasmas

    NASA Astrophysics Data System (ADS)

    Ghannad, Z.; Hakimi Pajouh, H.

    2017-12-01

    In this work, the motion of a dust particle under the influence of the random force due to dust charge fluctuations is considered as a non-Markovian stochastic process. Memory effects in the velocity process of the dust particle are studied. A model is developed based on the fractional Langevin equation for the motion of the dust grain. The fluctuation-dissipation theorem for the dust grain is derived from this equation. The mean-square displacement and the velocity autocorrelation function of the dust particle are obtained in terms of the Mittag-Leffler functions. Their asymptotic behavior and the dust particle temperature due to charge fluctuations are studied in the long-time limit. As an interesting result, it is found that the presence of memory effects in the velocity process of the dust particle as a non-Markovian process can cause an anomalous diffusion in dusty plasmas. In this case, the velocity autocorrelation function of the dust particle has a power-law decay like t - α - 2, where the exponent α take values 0 < α < 1.

  2. In search of the Hohenberg-Kohn theorem

    NASA Astrophysics Data System (ADS)

    Lammert, Paul E.

    2018-04-01

    The Hohenberg-Kohn theorem, a cornerstone of electronic density functional theory, concerns uniqueness of external potentials yielding given ground densities of an N -body system. The problem is rigorously explored in a universe of three-dimensional Kato-class potentials, with emphasis on trade-offs between conditions on the density and conditions on the potential sufficient to ensure uniqueness. Sufficient conditions range from none on potentials coupled with everywhere strict positivity of the density to none on the density coupled with something a little weaker than local 3 N /2 -power integrability of the potential on a connected full-measure set. A second theme is localizability, that is, the possibility of uniqueness over subsets of R3 under less stringent conditions.

  3. Theorem Proving in Intel Hardware Design

    NASA Technical Reports Server (NTRS)

    O'Leary, John

    2009-01-01

    For the past decade, a framework combining model checking (symbolic trajectory evaluation) and higher-order logic theorem proving has been in production use at Intel. Our tools and methodology have been used to formally verify execution cluster functionality (including floating-point operations) for a number of Intel products, including the Pentium(Registered TradeMark)4 and Core(TradeMark)i7 processors. Hardware verification in 2009 is much more challenging than it was in 1999 - today s CPU chip designs contain many processor cores and significant firmware content. This talk will attempt to distill the lessons learned over the past ten years, discuss how they apply to today s problems, outline some future directions.

  4. Mathematical and physical meaning of the Bell inequalities

    NASA Astrophysics Data System (ADS)

    Santos, Emilio

    2016-09-01

    It is shown that the Bell inequalities are closely related to the triangle inequalities involving distance functions amongst pairs of random variables with values \\{0,1\\}. A hidden variables model may be defined as a mapping between a set of quantum projection operators and a set of random variables. The model is noncontextual if there is a joint probability distribution. The Bell inequalities are necessary conditions for its existence. The inequalities are most relevant when measurements are performed at space-like separation, thus showing a conflict between quantum mechanics and local realism (Bell's theorem). The relations of the Bell inequalities with contextuality, the Kochen-Specker theorem, and quantum entanglement are briefly discussed.

  5. Early Vector Calculus: A Path through Multivariable Calculus

    ERIC Educational Resources Information Center

    Robertson, Robert L.

    2013-01-01

    The divergence theorem, Stokes' theorem, and Green's theorem appear near the end of calculus texts. These are important results, but many instructors struggle to reach them. We describe a pathway through a standard calculus text that allows instructors to emphasize these theorems. (Contains 2 figures.)

  6. Pick's Theorem: What a Lemon!

    ERIC Educational Resources Information Center

    Russell, Alan R.

    2004-01-01

    Pick's theorem can be used in various ways just like a lemon. This theorem generally finds its way in the syllabus approximately at the middle school level and in fact at times students have even calculated the area of a state considering its outline with the help of the above theorem.

  7. Renyi entropy measures of heart rate Gaussianity.

    PubMed

    Lake, Douglas E

    2006-01-01

    Sample entropy and approximate entropy are measures that have been successfully utilized to study the deterministic dynamics of heart rate (HR). A complementary stochastic point of view and a heuristic argument using the Central Limit Theorem suggests that the Gaussianity of HR is a complementary measure of the physiological complexity of the underlying signal transduction processes. Renyi entropy (or q-entropy) is a widely used measure of Gaussianity in many applications. Particularly important members of this family are differential (or Shannon) entropy (q = 1) and quadratic entropy (q = 2). We introduce the concepts of differential and conditional Renyi entropy rate and, in conjunction with Burg's theorem, develop a measure of the Gaussianity of a linear random process. Robust algorithms for estimating these quantities are presented along with estimates of their standard errors.

  8. On function classes related pertaining to strong approximation of double Fourier series

    NASA Astrophysics Data System (ADS)

    Baituyakova, Zhuldyz

    2015-09-01

    The investigation of embedding of function classes began a long time ago. After Alexits [1], Leindler [2], and Gogoladze[3] investigated estimates of strong approximation by Fourier series in 1965, G. Freud[4] raised the corresponding saturation problem in 1969. The list of the authors dealing with embedding problems partly is also very long. It suffices to mention some names: V. G. Krotov, W. Lenski, S. M. Mazhar, J. Nemeth, E. M. Nikisin, K. I. Oskolkov, G. Sunouchi, J. Szabados, R. Taberski and V. Totik. Study on this topic has since been carried on over a decade, but it seems that most of the results obtained are limited to the case of one dimension. In this paper, embedding results are considered which arise in the strong approximation by double Fourier series. We prove theorem on the interrelation between the classes Wr1,r2HS,M ω and H(λ, p, r1, r2, ω(δ1, δ2)), in the one-dimensional case proved by L. Leindler.

  9. Secondary production of massive quarks in thrust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, André H.; Erwin Schrödinger International Institute for Mathematical Physics, University of Vienna, Boltzmanngasse 9, A-1090 Vienna; Mateu, Vicent

    2016-01-22

    We present a factorization framework that takes into account the production of heavy quarks through gluon splitting in the thrust distribution for e{sup +}e{sup −} → hadrons. The explicit factorization theorems and some numerical results are displayed in the dijet region where the kinematic scales are widely separated, which can be extended systematically to the whole spectrum. We account for the necessary two-loop matrix elements, threshold corrections, and include resummation up to N{sup 3}LL order. We include nonperturbative power corrections through a field theoretical shape function, and remove the O(Λ{sub QCD}) renormalon in the partonic soft function by appropriate mass-dependentmore » subtractions. Our results hold for any value of the quark mass, from an infinitesimally small (merging to the known massless result) to an infinitely large one (achieving the decoupling limit). This is the first example of an application of a variable flavor number scheme to final state jets.« less

  10. Functional Bregman Divergence and Bayesian Estimation of Distributions (Preprint)

    DTIC Science & Technology

    2008-01-01

    shows that if the set of possible minimizers A includes EPF [F ], then g∗ = EPF [F ] minimizes the expectation of any Bregman divergence. Note the theorem...probability distribution PF defined over the set M. Let A be a set of functions that includes EPF [F ] if it exists. Suppose the function g∗ minimizes...the expected Bregman divergence between the random function F and any function g ∈ A such that g∗ = arg inf g∈A EPF [dφ(F, g)]. Then, if g∗ exists

  11. Characteristic operator functions for quantum input-plant-output models and coherent control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gough, John E.

    We introduce the characteristic operator as the generalization of the usual concept of a transfer function of linear input-plant-output systems to arbitrary quantum nonlinear Markovian input-output models. This is intended as a tool in the characterization of quantum feedback control systems that fits in with the general theory of networks. The definition exploits the linearity of noise differentials in both the plant Heisenberg equations of motion and the differential form of the input-output relations. Mathematically, the characteristic operator is a matrix of dimension equal to the number of outputs times the number of inputs (which must coincide), but with entriesmore » that are operators of the plant system. In this sense, the characteristic operator retains details of the effective plant dynamical structure and is an essentially quantum object. We illustrate the relevance to model reduction and simplification definition by showing that the convergence of the characteristic operator in adiabatic elimination limit models requires the same conditions and assumptions appearing in the work on limit quantum stochastic differential theorems of Bouten and Silberfarb [Commun. Math. Phys. 283, 491-505 (2008)]. This approach also shows in a natural way that the limit coefficients of the quantum stochastic differential equations in adiabatic elimination problems arise algebraically as Schur complements and amounts to a model reduction where the fast degrees of freedom are decoupled from the slow ones and eliminated.« less

  12. How to (properly) strengthen Bell's theorem using counterfactuals

    NASA Astrophysics Data System (ADS)

    Bigaj, Tomasz

    Bell's theorem in its standard version demonstrates that the joint assumptions of the hidden-variable hypothesis and the principle of local causation lead to a conflict with quantum-mechanical predictions. In his latest counterfactual strengthening of Bell's theorem, Stapp attempts to prove that the locality assumption itself contradicts the quantum-mechanical predictions in the Hardy case. His method relies on constructing a complex, non-truth functional formula which consists of statements about measurements and outcomes in some region R, and whose truth value depends on the selection of a measurement setting in a space-like separated location L. Stapp argues that this fact shows that the information about the measurement selection made in L has to be present in R. I give detailed reasons why this conclusion can and should be resisted. Next I correct and formalize an informal argument by Shimony and Stein showing that the locality condition coupled with Einstein's criterion of reality is inconsistent with quantum-mechanical predictions. I discuss the possibility of avoiding the inconsistency by rejecting Einstein's criterion rather than the locality assumption.

  13. Quantum mechanics problems in observer's mathematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khots, Boris; Khots, Dmitriy; iMath Consulting LLC, Omaha, Nebraska

    2012-11-06

    This work considers the ontology, guiding equation, Schrodinger's equation, relation to the Born Rule, the conditional wave function of a subsystem in a setting of arithmetic, algebra and topology provided by Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. Certain results and communications pertaining to solutions of these problems are provided. In particular, we prove the following theorems: Theorem I (Two-slit interference). Let {Psi}{sub 1} be a wave from slit 1, {Psi}{sub 2} - from slit 2, andmore » {Psi} = {Psi}{sub 1}+{Psi}{sub 2}. Then the probability of {Psi} being a wave equals to 0.5. Theorem II (k-bodies solution). For W{sub n} from m-observer point of view with m>log{sub 10}((2 Multiplication-Sign 10{sup 2n}-1){sup 2k}+1), the probability of standard expression of Hamiltonian variation is less than 1 and depends on n,m,k.« less

  14. Lp-stability (1 less than or equal to p less than or equal to infinity) of multivariable nonlinear time-varying feedback systems that are open-loop unstable. [noting unstable convolution subsystem forward control and time varying nonlinear feedback

    NASA Technical Reports Server (NTRS)

    Callier, F. M.; Desoer, C. A.

    1973-01-01

    A class of multivariable, nonlinear time-varying feedback systems with an unstable convolution subsystem as feedforward and a time-varying nonlinear gain as feedback was considered. The impulse response of the convolution subsystem is the sum of a finite number of increasing exponentials multiplied by nonnegative powers of the time t, a term that is absolutely integrable and an infinite series of delayed impulses. The main result is a theorem. It essentially states that if the unstable convolution subsystem can be stabilized by a constant feedback gain F and if incremental gain of the difference between the nonlinear gain function and F is sufficiently small, then the nonlinear system is L(p)-stable for any p between one and infinity. Furthermore, the solutions of the nonlinear system depend continuously on the inputs in any L(p)-norm. The fixed point theorem is crucial in deriving the above theorem.

  15. Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States

    NASA Astrophysics Data System (ADS)

    Hoang, Thai M.; Pan, Rui; Ahn, Jonghoon; Bang, Jaehoon; Quan, H. T.; Li, Tongcang

    2018-02-01

    Nonequilibrium processes of small systems such as molecular machines are ubiquitous in biology, chemistry, and physics but are often challenging to comprehend. In the past two decades, several exact thermodynamic relations of nonequilibrium processes, collectively known as fluctuation theorems, have been discovered and provided critical insights. These fluctuation theorems are generalizations of the second law and can be unified by a differential fluctuation theorem. Here we perform the first experimental test of the differential fluctuation theorem using an optically levitated nanosphere in both underdamped and overdamped regimes and in both spatial and velocity spaces. We also test several theorems that can be obtained from it directly, including a generalized Jarzynski equality that is valid for arbitrary initial states, and the Hummer-Szabo relation. Our study experimentally verifies these fundamental theorems and initiates the experimental study of stochastic energetics with the instantaneous velocity measurement.

  16. Generalized virial theorem for massless electrons in graphene and other Dirac materials

    NASA Astrophysics Data System (ADS)

    Sokolik, A. A.; Zabolotskiy, A. D.; Lozovik, Yu. E.

    2016-05-01

    The virial theorem for a system of interacting electrons in a crystal, which is described within the framework of the tight-binding model, is derived. We show that, in the particular case of interacting massless electrons in graphene and other Dirac materials, the conventional virial theorem is violated. Starting from the tight-binding model, we derive the generalized virial theorem for Dirac electron systems, which contains an additional term associated with a momentum cutoff at the bottom of the energy band. Additionally, we derive the generalized virial theorem within the Dirac model using the minimization of the variational energy. The obtained theorem is illustrated by many-body calculations of the ground-state energy of an electron gas in graphene carried out in Hartree-Fock and self-consistent random-phase approximations. Experimental verification of the theorem in the case of graphene is discussed.

  17. A note on generalized Weyl's theorem

    NASA Astrophysics Data System (ADS)

    Zguitti, H.

    2006-04-01

    We prove that if either T or T* has the single-valued extension property, then the spectral mapping theorem holds for B-Weyl spectrum. If, moreover T is isoloid, and generalized Weyl's theorem holds for T, then generalized Weyl's theorem holds for f(T) for every . An application is given for algebraically paranormal operators.

  18. Bootstrapping Cox’s Regression Model.

    DTIC Science & Technology

    1985-11-01

    crucial points a multivariate martingale central limit theorem. Involved in this is a p x p covariance matrix Z with elements T j2= f {2(s8 ) - s(l)( s ,8o...1980). The statistical analaysis of failure time data. Wiley, New York. Meyer, P.-A. (1971). Square integrable martingales, a survey. Lecture Notes

  19. How Sample Size Affects a Sampling Distribution

    ERIC Educational Resources Information Center

    Mulekar, Madhuri S.; Siegel, Murray H.

    2009-01-01

    If students are to understand inferential statistics successfully, they must have a profound understanding of the nature of the sampling distribution. Specifically, they must comprehend the determination of the expected value and standard error of a sampling distribution as well as the meaning of the central limit theorem. Many students in a high…

  20. Planetary Accretion, Oxygen Isotopes and the Central Limit Theorem

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Hill, Hugh G. M.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The accumulation of presolar dust into increasingly larger aggregates (CAIs and Chondrules, Asteroids, Planets) should result in a very drastic reduction in the numerical spread in oxygen isotopic composition between bodies of similar size, in accord with the Central Limit Theorem. Observed variations in oxygen isotopic composition are many orders of magnitude larger than would be predicted by a simple, random accumulation model that begins in a well-mixed nebula - no matter which size-scale objects are used as the beginning or end points of the calculation. This discrepancy implies either that some as yet unspecified process acted on the solids in the Solar Nebula to increase the spread in oxygen isotopic composition during each and every stage of accumulation or that the nebula was heterogeneous and maintained this heterogeneity throughout most of nebular history. Large-scale nebular heterogeneity would have significant consequences for many areas of cosmochemistry, including the application of some well-known isotopic systems to the dating of nebular events or the prediction of bulk compositions of planetary bodies on the basis of a uniform cosmic abundance.

  1. Discrepancy-based error estimates for Quasi-Monte Carlo III. Error distributions and central limits

    NASA Astrophysics Data System (ADS)

    Hoogland, Jiri; Kleiss, Ronald

    1997-04-01

    In Quasi-Monte Carlo integration, the integration error is believed to be generally smaller than in classical Monte Carlo with the same number of integration points. Using an appropriate definition of an ensemble of quasi-random point sets, we derive various results on the probability distribution of the integration error, which can be compared to the standard Central Limit Theorem for normal stochastic sampling. In many cases, a Gaussian error distribution is obtained.

  2. Nonrelativistic limits of colored gravity in three dimensions

    NASA Astrophysics Data System (ADS)

    Joung, Euihun; Li, Wenliang

    2018-05-01

    The three-dimensional nonrelativistic isometry algebras, namely Galilei and Newton-Hooke algebras, are known to admit double central extensions, which allows for nondegenerate bilinear forms hence for action principles through Chern-Simons formulation. In three-dimensional colored gravity, the same central extension helps the theory evade the multigraviton no-go theorems by enlarging the color-decorated isometry algebra. We investigate the nonrelativistic limits of three-dimensional colored gravity in terms of generalized İnönü-Wigner contractions.

  3. Functional determinants, index theorems, and exact quantum black hole entropy

    NASA Astrophysics Data System (ADS)

    Murthy, Sameer; Reys, Valentin

    2015-12-01

    The exact quantum entropy of BPS black holes can be evaluated using localization in supergravity. An important ingredient in this program, that has been lacking so far, is the one-loop effect arising from the quadratic fluctuations of the exact deformation (the QV operator). We compute the fluctuation determinant for vector multiplets and hyper multiplets around Q-invariant off-shell configurations in four-dimensional N=2 supergravity with AdS 2 × S 2 boundary conditions, using the Atiyah-Bott fixed-point index theorem and a subsequent zeta function regularization. Our results extend the large-charge on-shell entropy computations in the literature to a regime of finite charges. Based on our results, we present an exact formula for the quantum entropy of BPS black holes in N=2 supergravity. We explain cancellations concerning 1/8 -BPS black holes in N=8 supergravity that were observed in arXiv:1111.1161. We also make comments about the interpretation of a logarithmic term in the topological string partition function in the low energy supergravity theory.

  4. Means and the Mean Value Theorem

    ERIC Educational Resources Information Center

    Merikoski, Jorma K.; Halmetoja, Markku; Tossavainen, Timo

    2009-01-01

    Let I be a real interval. We call a continuous function [mu] : I x I [right arrow] [Bold R] a proper mean if it is symmetric, reflexive, homogeneous, monotonic and internal. Let f : I [right arrow] [Bold R} be a differentiable and strictly convex or strictly concave function. If a, b [image omitted] I with a [not equal to] b, then there exists a…

  5. Approximate solution for the electronic density profile at the surface of jellium

    NASA Astrophysics Data System (ADS)

    Schmickler, Wolfgang; Henderson, Douglas

    1984-09-01

    A simple family of trial functions for the electronic density at the surface of jellium, which accounts for Friedel oscillations and incorporates the Budd-Vannimenus theorem, is proposed. The free parameters are determined by energy minimization. Model calculations give good results for the work function and for the induced surface charge in the presence of an external field.

  6. Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling and general nonlinear systems

    NASA Astrophysics Data System (ADS)

    Li, Huanan

    2013-03-01

    Based on a two-time observation protocol, we consider heat transfer in a given time interval tM in a lead-junction-lead system taking coupling between the leads into account. In view of the two-time observation, consistency conditions are carefully verified in our specific family of quantum histories. Furthermore, its implication is briefly explored. Then using the nonequilibrium Green's function method, we obtain an exact formula for the cumulant generating function for heat transfer between the two leads, valid in both transient and steady-state regimes. Also, a compact formula for the cumulant generating function in the long-time limit is derived, for which the Gallavotti-Cohen fluctuation symmetry is explicitly verified. In addition, we briefly discuss Di Ventra's repartitioning trick regarding whether the repartitioning procedure of the total Hamiltonian affects the nonequilibrium steady-state current fluctuation. All kinds of properties of nonequilibrium current fluctuations, such as the fluctuation theorem in different time regimes, could be readily given according to these exact formulas. Finally a practical formalism dealing with cumulants of heat transfer across general nonlinear quantum systems is established based on field theoretical/algebraic method.

  7. The Kolmogorov-Obukhov Statistical Theory of Turbulence

    NASA Astrophysics Data System (ADS)

    Birnir, Björn

    2013-08-01

    In 1941 Kolmogorov and Obukhov postulated the existence of a statistical theory of turbulence, which allows the computation of statistical quantities that can be simulated and measured in a turbulent system. These are quantities such as the moments, the structure functions and the probability density functions (PDFs) of the turbulent velocity field. In this paper we will outline how to construct this statistical theory from the stochastic Navier-Stokes equation. The additive noise in the stochastic Navier-Stokes equation is generic noise given by the central limit theorem and the large deviation principle. The multiplicative noise consists of jumps multiplying the velocity, modeling jumps in the velocity gradient. We first estimate the structure functions of turbulence and establish the Kolmogorov-Obukhov 1962 scaling hypothesis with the She-Leveque intermittency corrections. Then we compute the invariant measure of turbulence, writing the stochastic Navier-Stokes equation as an infinite-dimensional Ito process, and solving the linear Kolmogorov-Hopf functional differential equation for the invariant measure. Finally we project the invariant measure onto the PDF. The PDFs turn out to be the normalized inverse Gaussian (NIG) distributions of Barndorff-Nilsen, and compare well with PDFs from simulations and experiments.

  8. Discovering the Theorem of Pythagoras

    NASA Technical Reports Server (NTRS)

    Lattanzio, Robert (Editor)

    1988-01-01

    In this 'Project Mathematics! series, sponsored by the California Institute of Technology, Pythagoraus' theorem a(exp 2) + b(exp 2) = c(exp 2) is discussed and the history behind this theorem is explained. hrough live film footage and computer animation, applications in real life are presented and the significance of and uses for this theorem are put into practice.

  9. Bertrand's theorem and virial theorem in fractional classical mechanics

    NASA Astrophysics Data System (ADS)

    Yu, Rui-Yan; Wang, Towe

    2017-09-01

    Fractional classical mechanics is the classical counterpart of fractional quantum mechanics. The central force problem in this theory is investigated. Bertrand's theorem is generalized, and virial theorem is revisited, both in three spatial dimensions. In order to produce stable, closed, non-circular orbits, the inverse-square law and the Hooke's law should be modified in fractional classical mechanics.

  10. Guided Discovery of the Nine-Point Circle Theorem and Its Proof

    ERIC Educational Resources Information Center

    Buchbinder, Orly

    2018-01-01

    The nine-point circle theorem is one of the most beautiful and surprising theorems in Euclidean geometry. It establishes an existence of a circle passing through nine points, all of which are related to a single triangle. This paper describes a set of instructional activities that can help students discover the nine-point circle theorem through…

  11. A Historical Gem from Vito Volterra.

    ERIC Educational Resources Information Center

    Dunham, William

    1990-01-01

    Presented is the theorem proposed by Volterra based on the idea that there is no function continuous at each rational point and discontinuous at each irrational point. Discussed are the two conclusions that were drawn by Volterra based on his solution to this problem. (KR)

  12. Do all pure entangled states violate Bell's inequalities for correlation functions?

    PubMed

    Zukowski, Marek; Brukner, Caslav; Laskowski, Wiesław; Wieśniak, Marcin

    2002-05-27

    Any pure entangled state of two particles violates a Bell inequality for two-particle correlation functions (Gisin's theorem). We show that there exist pure entangled N>2 qubit states that do not violate any Bell inequality for N particle correlation functions for experiments involving two dichotomic observables per local measuring station. We also find that Mermin-Ardehali-Belinskii-Klyshko inequalities may not always be optimal for refutation of local realistic description.

  13. Algebraic Functions of H-Functions with Specific Dependency Structure.

    DTIC Science & Technology

    1984-05-01

    a study of its characteristic function. Such analysis is reproduced in books by Springer (17), Anderson (23), Feller (34,35), Mood and Graybill (52...following linearity property for expectations of jointly distributed random variables is derived. r 1 Theorem 1.1: If X and Y are real random variables...appear in American Journal of Mathematical and Management Science. 13. Mathai, A.M., and R.K. Saxena, "On linear combinations of stochastic variables

  14. Free-energy functional of the Debye-Hückel model of simple fluids

    NASA Astrophysics Data System (ADS)

    Piron, R.; Blenski, T.

    2016-12-01

    The Debye-Hückel approximation to the free energy of a simple fluid is written as a functional of the pair correlation function. This functional can be seen as the Debye-Hückel equivalent to the functional derived in the hypernetted chain framework by Morita and Hiroike, as well as by Lado. It allows one to obtain the Debye-Hückel integral equation through a minimization with respect to the pair correlation function, leads to the correct form of the internal energy, and fulfills the virial theorem.

  15. On flows of viscoelastic fluids under threshold-slip boundary conditions

    NASA Astrophysics Data System (ADS)

    Baranovskii, E. S.

    2018-03-01

    We investigate a boundary-value problem for the steady isothermal flow of an incompressible viscoelastic fluid of Oldroyd type in a 3D bounded domain with impermeable walls. We use the Fujita threshold-slip boundary condition. This condition states that the fluid can slip along a solid surface when the shear stresses reach a certain critical value; otherwise the slipping velocity is zero. Assuming that the flow domain is not rotationally symmetric, we prove an existence theorem for the corresponding slip problem in the framework of weak solutions. The proof uses methods for solving variational inequalities with pseudo-monotone operators and convex functionals, the method of introduction of auxiliary viscosity, as well as a passage-to-limit procedure based on energy estimates of approximate solutions, Korn’s inequality, and compactness arguments. Also, some properties and estimates of weak solutions are established.

  16. Ward Identity and Scattering Amplitudes for Nonlinear Sigma Models

    NASA Astrophysics Data System (ADS)

    Low, Ian; Yin, Zhewei

    2018-02-01

    We present a Ward identity for nonlinear sigma models using generalized nonlinear shift symmetries, without introducing current algebra or coset space. The Ward identity constrains correlation functions of the sigma model such that the Adler's zero is guaranteed for S -matrix elements, and gives rise to a subleading single soft theorem that is valid at the quantum level and to all orders in the Goldstone decay constant. For tree amplitudes, the Ward identity leads to a novel Berends-Giele recursion relation as well as an explicit form of the subleading single soft factor. Furthermore, interactions of the cubic biadjoint scalar theory associated with the single soft limit, which was previously discovered using the Cachazo-He-Yuan representation of tree amplitudes, can be seen to emerge from matrix elements of conserved currents corresponding to the generalized shift symmetry.

  17. Stability and Bifurcation Analysis of a Three-Species Food Chain Model with Delay

    NASA Astrophysics Data System (ADS)

    Pal, Nikhil; Samanta, Sudip; Biswas, Santanu; Alquran, Marwan; Al-Khaled, Kamel; Chattopadhyay, Joydev

    In the present paper, we study the effect of gestation delay on a tri-trophic food chain model with Holling type-II functional response. The essential mathematical features of the proposed model are analyzed with the help of equilibrium analysis, stability analysis, and bifurcation theory. Considering time-delay as the bifurcation parameter, the Hopf-bifurcation analysis is carried out around the coexisting equilibrium. The direction of Hopf-bifurcation and the stability of the bifurcating periodic solutions are determined by applying the normal form theory and center manifold theorem. We observe that if the magnitude of the delay is increased, the system loses stability and shows limit cycle oscillations through Hopf-bifurcation. The system also shows the chaotic dynamics via period-doubling bifurcation for further enhancement of time-delay. Our analytical findings are illustrated through numerical simulations.

  18. Electrostatic fluctuations in collisional plasmas

    NASA Astrophysics Data System (ADS)

    Rozmus, W.; Brantov, A.; Fortmann-Grote, C.; Bychenkov, V. Yu.; Glenzer, S.

    2017-10-01

    We present a theory of electrostatic fluctuations in two-component plasmas where electrons and ions are described by Maxwellian distribution functions at unequal temperatures. Based on the exact solution of the Landau kinetic equation, that includes electron-electron, electron-ion, and ion-ion collision integrals, the dynamic form factor, S (k ⃗,ω ) , is derived for weakly coupled plasmas. The collective plasma responses at ion-acoustic, Langmuir, and entropy mode resonances are described for arbitrary wave numbers and frequencies in the entire range of plasma collisionality. The collisionless limit of S (k ⃗,ω ) and the strong-collision result based on the fluctuation-dissipation theorem and classical transport at Te=Ti are recovered and discussed. Results of several Thomson scattering experiments in the broad range of plasma parameters are described and discussed by means of our theory for S (k ⃗,ω ) .

  19. Large fluctuations of the macroscopic current in diffusive systems: a numerical test of the additivity principle.

    PubMed

    Hurtado, Pablo I; Garrido, Pedro L

    2010-04-01

    Most systems, when pushed out of equilibrium, respond by building up currents of locally conserved observables. Understanding how microscopic dynamics determines the averages and fluctuations of these currents is one of the main open problems in nonequilibrium statistical physics. The additivity principle is a theoretical proposal that allows to compute the current distribution in many one-dimensional nonequilibrium systems. Using simulations, we validate this conjecture in a simple and general model of energy transport, both in the presence of a temperature gradient and in canonical equilibrium. In particular, we show that the current distribution displays a Gaussian regime for small current fluctuations, as prescribed by the central limit theorem, and non-Gaussian (exponential) tails for large current deviations, obeying in all cases the Gallavotti-Cohen fluctuation theorem. In order to facilitate a given current fluctuation, the system adopts a well-defined temperature profile different from that of the steady state and in accordance with the additivity hypothesis predictions. System statistics during a large current fluctuation is independent of the sign of the current, which implies that the optimal profile (as well as higher-order profiles and spatial correlations) are invariant upon current inversion. We also demonstrate that finite-time joint fluctuations of the current and the profile are well described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

  20. Direct and converse theorems in problems of approximation by vectors of finite degree

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radzievski, G V

    1998-04-30

    Let A be a linear operator in a complex Banach space X with domain D(A) and a non-empty resolvent set. An element g element of D{sub {infinity}}(A):= intersection{sub j=0,1,...}D(A{sup j}) is called a vector of degree at most {zeta}(>0) with respect to A if ||A{sup j}g||{sub X}{<=}c(g){zeta}{sup j}, j=0,1,.... The set of vectors of degree at most {zeta} is denoted by G{sub {zeta}}(A). The quantity E{sub {zeta}}(f,A){sub X}=inf{sub gelement} {sub of{sub G}{sub {zeta}}}{sub (A)}||f-g||{sub X} is introduced and estimated in terms of the K-functional K({zeta}{sup -r},f;X,D(A{sup r}))=inf{sub gelementof} {sub D(A{sup r})}(||f-g||{sub X}+{zeta}{sup -r}||A{sup r}f||{sub X}) (the direct theorem). An estimatemore » of this K-functional in terms of E{sub {zeta}}(f,A){sub X} and ||f||{sub x} is established (the converse theorem). Using the estimates obtained, necessary and sufficient conditions for the following properties are found in terms of E{sub {zeta}}(f,A){sub X}: 1) f element of D{sub {infinity}}(A); 2) the series e{sup zA}f:={sigma}{sub r=0}{sup {infinity}}(z{sup r}A{sup r}f)/(r{exclamation_point}) converges in some disc; 3) the series e{sup zA}f converges in the entire complex plane. The growth order and the type of the entire function e{sup zA}f are calculated in terms of E{sub {zeta}}(f,A){sub X}.« less

  1. Inequalities for majorizing analytic functions and their applications to rational trigonometric functions and polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olesov, A V

    2014-10-31

    New inequalities are established for analytic functions satisfying Meiman's majorization conditions. Estimates for values of and differential inequalities involving rational trigonometric functions with an integer majorant on an interval of length less than the period and with prescribed poles which are symmetrically positioned relative to the real axis, as well as differential inequalities for trigonometric polynomials in some classes, are given as applications. These results improve several theorems due to Meiman, Genchev, Smirnov and Rusak. Bibliography: 27 titles.

  2. The explicit form of the rate function for semi-Markov processes and its contractions

    NASA Astrophysics Data System (ADS)

    Sughiyama, Yuki; Kobayashi, Testuya J.

    2018-03-01

    We derive the explicit form of the rate function for semi-Markov processes. Here, the ‘random time change trick’ plays an essential role. Also, by exploiting the contraction principle of large deviation theory to the explicit form, we show that the fluctuation theorem (Gallavotti-Cohen symmetry) holds for semi-Markov cases. Furthermore, we elucidate that our rate function is an extension of the level 2.5 rate function for Markov processes to semi-Markov cases.

  3. Excitonic magnet in external field: Complex order parameter and spin currents

    NASA Astrophysics Data System (ADS)

    Geffroy, D.; Hariki, A.; Kuneš, J.

    2018-04-01

    We investigate spin-triplet exciton condensation in the two-orbital Hubbard model close to half-filling by means of dynamical mean-field theory. Employing an impurity solver that handles complex off-diagonal hybridization functions, we study the behavior of excitonic condensate in stoichiometric and doped systems subject to external magnetic field. We find a general tendency of the triplet order parameter to lie perpendicular with the applied field and identify exceptions from this rule. For solutions exhibiting k -odd spin textures, we discuss the Bloch theorem, which, in the absence of spin-orbit coupling, forbids the appearance of spontaneous net spin current. We demonstrate that the Bloch theorem is not obeyed by the dynamical mean-field theory.

  4. Brownian motion of graphene.

    PubMed

    Maragó, Onofrio M; Bonaccorso, Francesco; Saija, Rosalba; Privitera, Giulia; Gucciardi, Pietro G; Iatì, Maria Antonia; Calogero, Giuseppe; Jones, Philip H; Borghese, Ferdinando; Denti, Paolo; Nicolosi, Valeria; Ferrari, Andrea C

    2010-12-28

    Brownian motion is a manifestation of the fluctuation-dissipation theorem of statistical mechanics. It regulates systems in physics, biology, chemistry, and finance. We use graphene as prototype material to unravel the consequences of the fluctuation-dissipation theorem in two dimensions, by studying the Brownian motion of optically trapped graphene flakes. These orient orthogonal to the light polarization, due to the optical constants anisotropy. We explain the flake dynamics in the optical trap and measure force and torque constants from the correlation functions of the tracking signals, as well as comparing experiments with a full electromagnetic theory of optical trapping. The understanding of optical trapping of two-dimensional nanostructures gained through our Brownian motion analysis paves the way to light-controlled manipulation and all-optical sorting of biological membranes and anisotropic macromolecules.

  5. A Numerical, Literal, and Converged Perturbation Algorithm

    NASA Astrophysics Data System (ADS)

    Wiesel, William E.

    2017-09-01

    The KAM theorem and von Ziepel's method are applied to a perturbed harmonic oscillator, and it is noted that the KAM methodology does not allow for necessary frequency or angle corrections, while von Ziepel does. The KAM methodology can be carried out with purely numerical methods, since its generating function does not contain momentum dependence. The KAM iteration is extended to allow for frequency and angle changes, and in the process apparently can be successfully applied to degenerate systems normally ruled out by the classical KAM theorem. Convergence is observed to be geometric, not exponential, but it does proceed smoothly to machine precision. The algorithm produces a converged perturbation solution by numerical methods, while still retaining literal variable dependence, at least in the vicinity of a given trajectory.

  6. The Poincaré-Hopf Theorem for line fields revisited

    NASA Astrophysics Data System (ADS)

    Crowley, Diarmuid; Grant, Mark

    2017-07-01

    A Poincaré-Hopf Theorem for line fields with point singularities on orientable surfaces can be found in Hopf's 1956 Lecture Notes on Differential Geometry. In 1955 Markus presented such a theorem in all dimensions, but Markus' statement only holds in even dimensions 2 k ≥ 4. In 1984 Jänich presented a Poincaré-Hopf theorem for line fields with more complicated singularities and focussed on the complexities arising in the generalized setting. In this expository note we review the Poincaré-Hopf Theorem for line fields with point singularities, presenting a careful proof which is valid in all dimensions.

  7. Common fixed point theorems for maps under a contractive condition of integral type

    NASA Astrophysics Data System (ADS)

    Djoudi, A.; Merghadi, F.

    2008-05-01

    Two common fixed point theorems for mapping of complete metric space under a general contractive inequality of integral type and satisfying minimal commutativity conditions are proved. These results extend and improve several previous results, particularly Theorem 4 of Rhoades [B.E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 63 (2003) 4007-4013] and Theorem 4 of Sessa [S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.) 32 (46) (1982) 149-153].

  8. Nonlinear system theory: another look at dependence.

    PubMed

    Wu, Wei Biao

    2005-10-04

    Based on the nonlinear system theory, we introduce previously undescribed dependence measures for stationary causal processes. Our physical and predictive dependence measures quantify the degree of dependence of outputs on inputs in physical systems. The proposed dependence measures provide a natural framework for a limit theory for stationary processes. In particular, under conditions with quite simple forms, we present limit theorems for partial sums, empirical processes, and kernel density estimates. The conditions are mild and easily verifiable because they are directly related to the data-generating mechanisms.

  9. Thermal Noise Limit in Frequency Stabilization of Lasers with Rigid Cavities

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Kemery, Amy; Camp, Jordan

    2005-01-01

    We evaluated thermal noise (Brownian motion) in a rigid reference cavity Used for frequency stabilization of lasers, based on the mechanical loss of cavity materials and the numerical analysis of the mirror-spacer mechanics with the direct application of the fluctuation dissipation theorem. This noise sets a fundamental limit for the frequency stability achieved with a rigid frequency-reference cavity of order 1 Hz/rtHz at 10mHz at room temperature. This level coincides with the world-highest level stabilization results.

  10. On the solubility of certain classes of non-linear integral equations in p-adic string theory

    NASA Astrophysics Data System (ADS)

    Khachatryan, Kh. A.

    2018-04-01

    We study classes of non-linear integral equations that have immediate application to p-adic mathematical physics and to cosmology. We prove existence and uniqueness theorems for non-trivial solutions in the space of bounded functions.

  11. Infinity: The Twilight Zone of Mathematics.

    ERIC Educational Resources Information Center

    Love, William P.

    1989-01-01

    The theorems and proofs presented are designed to enhance student understanding of the theory of infinity as developed by Cantor and others. Three transfinite numbers are defined to express the cardinality of infinite algebraic sets, infinite sets of geometric points and infinite sets of functions. (DC)

  12. Essentially Entropic Lattice Boltzmann Model

    NASA Astrophysics Data System (ADS)

    Atif, Mohammad; Kolluru, Praveen Kumar; Thantanapally, Chakradhar; Ansumali, Santosh

    2017-12-01

    The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality. This inequality is solved by creating a new framework for construction of Padé approximants via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88 ×106.

  13. On the probability of violations of Fourier's law for heat flow in small systems observed for short times

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.; Searles, Debra J.; Williams, Stephen R.

    2010-01-01

    We study the statistical mechanics of thermal conduction in a classical many-body system that is in contact with two thermal reservoirs maintained at different temperatures. The ratio of the probabilities, that when observed for a finite time, the time averaged heat flux flows in and against the direction required by Fourier's Law for heat flow, is derived from first principles. This result is obtained using the transient fluctuation theorem. We show that the argument of that theorem, namely, the dissipation function is, close to equilibrium, equal to a microscopic expression for the entropy production. We also prove that if transient time correlation functions of smooth zero mean variables decay to zero at long times, the system will relax to a unique nonequilibrium steady state, and for this state, the thermal conductivity must be positive. Our expressions are tested using nonequilibrium molecular dynamics simulations of heat flow between thermostated walls.

  14. A Converse of the Mean Value Theorem Made Easy

    ERIC Educational Resources Information Center

    Mortici, Cristinel

    2011-01-01

    The aim of this article is to discuss some results about the converse mean value theorem stated by Tong and Braza [J. Tong and P. Braza, "A converse of the mean value theorem", Amer. Math. Monthly 104(10), (1997), pp. 939-942] and Almeida [R. Almeida, "An elementary proof of a converse mean-value theorem", Internat. J. Math. Ed. Sci. Tech. 39(8)…

  15. Recurrence theorems: A unified account

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, David, E-mail: david.wallace@balliol.ox.ac.uk

    I discuss classical and quantum recurrence theorems in a unified manner, treating both as generalisations of the fact that a system with a finite state space only has so many places to go. Along the way, I prove versions of the recurrence theorem applicable to dynamics on linear and metric spaces and make some comments about applications of the classical recurrence theorem in the foundations of statistical mechanics.

  16. A variational theorem for creep with applications to plates and columns

    NASA Technical Reports Server (NTRS)

    Sanders, J Lyell, Jr; Mccomb, Harvey G , Jr; Schlechte, Floyd R

    1958-01-01

    A variational theorem is presented for a body undergoing creep. Solutions to problems of the creep behavior of plates, columns, beams, and shells can be obtained by means of the direct methods of the calculus of variations in conjunction with the stated theorem. The application of the theorem is illustrated for plates and columns by the solution of two sample problems.

  17. Correcting Duporcq's theorem☆

    PubMed Central

    Nawratil, Georg

    2014-01-01

    In 1898, Ernest Duporcq stated a famous theorem about rigid-body motions with spherical trajectories, without giving a rigorous proof. Today, this theorem is again of interest, as it is strongly connected with the topic of self-motions of planar Stewart–Gough platforms. We discuss Duporcq's theorem from this point of view and demonstrate that it is not correct. Moreover, we also present a revised version of this theorem. PMID:25540467

  18. Statistical Inference and Simulation with StatKey

    ERIC Educational Resources Information Center

    Quinn, Anne

    2016-01-01

    While looking for an inexpensive technology package to help students in statistics classes, the author found StatKey, a free Web-based app. Not only is StatKey useful for students' year-end projects, but it is also valuable for helping students learn fundamental content such as the central limit theorem. Using StatKey, students can engage in…

  19. Dynamic Investigation of Triangles Inscribed in a Circle, Which Tend to an Equilateral Triangle

    ERIC Educational Resources Information Center

    Stupel, Moshe; Oxman, Victor; Sigler, Avi

    2017-01-01

    We present a geometrical investigation of the process of creating an infinite sequence of triangles inscribed in a circle, whose areas, perimeters and lengths of radii of the inscribed circles tend to a limit in a monotonous manner. First, using geometrical software, we investigate four theorems that represent interesting geometrical properties,…

  20. Pedagogical Simulation of Sampling Distributions and the Central Limit Theorem

    ERIC Educational Resources Information Center

    Hagtvedt, Reidar; Jones, Gregory Todd; Jones, Kari

    2007-01-01

    Students often find the fact that a sample statistic is a random variable very hard to grasp. Even more mysterious is why a sample mean should become ever more Normal as the sample size increases. This simulation tool is meant to illustrate the process, thereby giving students some intuitive grasp of the relationship between a parent population…

  1. The Sampling Distribution and the Central Limit Theorem: What They Are and Why They're Important.

    ERIC Educational Resources Information Center

    Kennedy, Charlotte A.

    The use of and emphasis on statistical significance testing has pervaded educational and behavioral research for many decades in spite of criticism by prominent researchers in this field. Much of the controversy is caused by lack of understanding or misinterpretations. This paper reviews criticisms of statistical significance testing and discusses…

  2. Averaging in SU(2) open quantum random walk

    NASA Astrophysics Data System (ADS)

    Clement, Ampadu

    2014-03-01

    We study the average position and the symmetry of the distribution in the SU(2) open quantum random walk (OQRW). We show that the average position in the central limit theorem (CLT) is non-uniform compared with the average position in the non-CLT. The symmetry of distribution is shown to be even in the CLT.

  3. Momentum distribution of the uniform electron gas: Improved parametrization and exact limits of the cumulant expansion

    NASA Astrophysics Data System (ADS)

    Gori-Giorgi, Paola; Ziesche, Paul

    2002-12-01

    The momentum distribution of the unpolarized uniform electron gas in its Fermi-liquid regime, n(k,rs), with the momenta k measured in units of the Fermi wave number kF and with the density parameter rs, is constructed with the help of the convex Kulik function G(x). It is assumed that n(0,rs),n(1±,rs), the on-top pair density g(0,rs), and the kinetic energy t(rs) are known (respectively, from accurate calculations for rs=1,…,5, from the solution of the Overhauser model, and from quantum Monte Carlo calculations via the virial theorem). Information from the high- and the low-density limit, corresponding to the random-phase approximation and to the Wigner crystal limit, is used. The result is an accurate parametrization of n(k,rs), which fulfills most of the known exact constraints. It is in agreement with the effective-potential calculations of Takada and Yasuhara [Phys. Rev. B 44, 7879 (1991)], is compatible with quantum Monte Carlo data, and is valid in the density range rs≲12. The corresponding cumulant expansions of the pair density and of the static structure factor are discussed, and some exact limits are derived.

  4. On spurious detection of linear response and misuse of the fluctuation-dissipation theorem in finite time series

    NASA Astrophysics Data System (ADS)

    Gottwald, Georg A.; Wormell, J. P.; Wouters, Jeroen

    2016-09-01

    Using a sensitive statistical test we determine whether or not one can detect the breakdown of linear response given observations of deterministic dynamical systems. A goodness-of-fit statistics is developed for a linear statistical model of the observations, based on results for central limit theorems for deterministic dynamical systems, and used to detect linear response breakdown. We apply the method to discrete maps which do not obey linear response and show that the successful detection of breakdown depends on the length of the time series, the magnitude of the perturbation and on the choice of the observable. We find that in order to reliably reject the assumption of linear response for typical observables sufficiently large data sets are needed. Even for simple systems such as the logistic map, one needs of the order of 106 observations to reliably detect the breakdown with a confidence level of 95 %; if less observations are available one may be falsely led to conclude that linear response theory is valid. The amount of data required is larger the smaller the applied perturbation. For judiciously chosen observables the necessary amount of data can be drastically reduced, but requires detailed a priori knowledge about the invariant measure which is typically not available for complex dynamical systems. Furthermore we explore the use of the fluctuation-dissipation theorem (FDT) in cases with limited data length or coarse-graining of observations. The FDT, if applied naively to a system without linear response, is shown to be very sensitive to the details of the sampling method, resulting in erroneous predictions of the response.

  5. Voronovskaja's theorem revisited

    NASA Astrophysics Data System (ADS)

    Tachev, Gancho T.

    2008-07-01

    We represent a new quantitative variant of Voronovskaja's theorem for Bernstein operator. This estimate improves the recent quantitative versions of Voronovskaja's theorem for certain Bernstein-type operators, obtained by H. Gonska, P. Pitul and I. Rasa in 2006.

  6. Riemannian and Lorentzian flow-cut theorems

    NASA Astrophysics Data System (ADS)

    Headrick, Matthew; Hubeny, Veronika E.

    2018-05-01

    We prove several geometric theorems using tools from the theory of convex optimization. In the Riemannian setting, we prove the max flow-min cut (MFMC) theorem for boundary regions, applied recently to develop a ‘bit-thread’ interpretation of holographic entanglement entropies. We also prove various properties of the max flow and min cut, including respective nesting properties. In the Lorentzian setting, we prove the analogous MFMC theorem, which states that the volume of a maximal slice equals the flux of a minimal flow, where a flow is defined as a divergenceless timelike vector field with norm at least 1. This theorem includes as a special case a continuum version of Dilworth’s theorem from the theory of partially ordered sets. We include a brief review of the necessary tools from the theory of convex optimization, in particular Lagrangian duality and convex relaxation.

  7. An Introduction to Kristof's Theorem for Solving Least-Square Optimization Problems Without Calculus.

    PubMed

    Waller, Niels

    2018-01-01

    Kristof's Theorem (Kristof, 1970 ) describes a matrix trace inequality that can be used to solve a wide-class of least-square optimization problems without calculus. Considering its generality, it is surprising that Kristof's Theorem is rarely used in statistics and psychometric applications. The underutilization of this method likely stems, in part, from the mathematical complexity of Kristof's ( 1964 , 1970 ) writings. In this article, I describe the underlying logic of Kristof's Theorem in simple terms by reviewing four key mathematical ideas that are used in the theorem's proof. I then show how Kristof's Theorem can be used to provide novel derivations to two cognate models from statistics and psychometrics. This tutorial includes a glossary of technical terms and an online supplement with R (R Core Team, 2017 ) code to perform the calculations described in the text.

  8. Understanding squeezing of quantum states with the Wigner function

    NASA Technical Reports Server (NTRS)

    Royer, Antoine

    1994-01-01

    The Wigner function is argued to be the only natural phase space function evolving classically under quadratic Hamiltonians with time-dependent bilinear part. This is used to understand graphically how certain quadratic time-dependent Hamiltonians induce squeezing of quantum states. The Wigner representation is also used to generalize Ehrenfest's theorem to the quantum uncertainties. This makes it possible to deduce features of the quantum evolution, such as squeezing, from the classical evolution, whatever the Hamiltonian.

  9. Formal reasoning about systems biology using theorem proving

    PubMed Central

    Hasan, Osman; Siddique, Umair; Tahar, Sofiène

    2017-01-01

    System biology provides the basis to understand the behavioral properties of complex biological organisms at different levels of abstraction. Traditionally, analysing systems biology based models of various diseases have been carried out by paper-and-pencil based proofs and simulations. However, these methods cannot provide an accurate analysis, which is a serious drawback for the safety-critical domain of human medicine. In order to overcome these limitations, we propose a framework to formally analyze biological networks and pathways. In particular, we formalize the notion of reaction kinetics in higher-order logic and formally verify some of the commonly used reaction based models of biological networks using the HOL Light theorem prover. Furthermore, we have ported our earlier formalization of Zsyntax, i.e., a deductive language for reasoning about biological networks and pathways, from HOL4 to the HOL Light theorem prover to make it compatible with the above-mentioned formalization of reaction kinetics. To illustrate the usefulness of the proposed framework, we present the formal analysis of three case studies, i.e., the pathway leading to TP53 Phosphorylation, the pathway leading to the death of cancer stem cells and the tumor growth based on cancer stem cells, which is used for the prognosis and future drug designs to treat cancer patients. PMID:28671950

  10. Double soft graviton theorems and Bondi-Metzner-Sachs symmetries

    NASA Astrophysics Data System (ADS)

    Anupam, A. H.; Kundu, Arpan; Ray, Krishnendu

    2018-05-01

    It is now well understood that Ward identities associated with the (extended) BMS algebra are equivalent to single soft graviton theorems. In this work, we show that if we consider nested Ward identities constructed out of two BMS charges, a class of double soft factorization theorems can be recovered. By making connections with earlier works in the literature, we argue that at the subleading order, these double soft graviton theorems are the so-called consecutive double soft graviton theorems. We also show how these nested Ward identities can be understood as Ward identities associated with BMS symmetries in scattering states defined around (non-Fock) vacua parametrized by supertranslations or superrotations.

  11. The Neglect of Monotone Comparative Statics Methods

    ERIC Educational Resources Information Center

    Tremblay, Carol Horton; Tremblay, Victor J.

    2010-01-01

    Monotone methods enable comparative static analysis without the restrictive assumptions of the implicit-function theorem. Ease of use and flexibility in solving comparative static and game-theory problems have made monotone methods popular in the economics literature and in graduate courses, but they are still absent from undergraduate…

  12. Mathematics from Still and Moving Images

    ERIC Educational Resources Information Center

    Pierce, Robyn; Stacey, Kaye; Ball, Lynda

    2005-01-01

    Digital photos and digital movies offer an excellent way of bringing real world situations into the mathematics classroom. The technologies surveyed here are feasible for everyday classroom use and inexpensive. Examples are drawn from the teaching of Cartesian coordinates, linear functions, ratio and Pythagoras' theorem using still images, and…

  13. The Star-Forming Main Sequence as a Natural Consequence of the Central Limit Theorem

    NASA Astrophysics Data System (ADS)

    Kelson, Daniel David

    2015-08-01

    Star-formation rates (SFR) of disk galaxies correlate with stellar mass, with a small dispersion in SSFR at fixed mass, sigma~0.3 dex. With such scatter this star-formation main sequence (SFMS) has been interpreted as deterministic and fundamental. Here I demonstrate that such a correlation arises naturally from the central limit theorem. The derivation begins by approximating in situ stellar mass growth as a stochastic process, much like a random walk, where the expectation of SFR at any time is equal to the SFR at the previous time. The SFRs of real galaxies, however, do not experience wholly random stochastic changes over time, but change in a highly correlated fashion due to the long reach of gravity and the correlation of structure in the universe. We therefore generalize the results for star-formation as a stochastic process that has random correlations over random and potentially infinite timescales. For unbiased samples of (disk) galaxies we derive expectation values for SSFR and its scatter, such that =2/T, and Sig[SFR/M]=. Note that this relative scatter is independent of mass and time. This derived correlation between SFR and stellar mass, and its evolution, matches published data to z=10 with sufficient accuracy to constrain cosmological parameters from the data. This statistical approach to the diversity of star-formation histories reproduces several important observables, including: the scatter in SSFR at fixed mass; the forms of SFHs of nearby dwarf galaxies and the Milky Way. At least one additional process beyond a single one responsible for in situ stellar mass growth will be required to match the evolution of the stellar mass function, and we discuss ways to generalize the framework. The implied dispersion in SFHs, and the SFMS's insensitivity to timescales of stochasticity, thus substantially limits the ability to connect massive galaxies to their progenitors over long cosmic baselines. Such analytical work shows promise for statisically modeling distributions of galaxies over cosmic time, in a manner particularly indpendent of the thorny uncertainties in sub-grid astrophysics of modern cosmological simulations.

  14. Estimation of the neural drive to the muscle from surface electromyograms

    NASA Astrophysics Data System (ADS)

    Hofmann, David

    Muscle force is highly correlated with the standard deviation of the surface electromyogram (sEMG) produced by the active muscle. Correctly estimating this quantity of non-stationary sEMG and understanding its relation to neural drive and muscle force is of paramount importance. The single constituents of the sEMG are called motor unit action potentials whose biphasic amplitude can interfere (named amplitude cancellation), potentially affecting the standard deviation (Keenan etal. 2005). However, when certain conditions are met the Campbell-Hardy theorem suggests that amplitude cancellation does not affect the standard deviation. By simulation of the sEMG, we verify the applicability of this theorem to myoelectric signals and investigate deviations from its conditions to obtain a more realistic setting. We find no difference in estimated standard deviation with and without interference, standing in stark contrast to previous results (Keenan etal. 2008, Farina etal. 2010). Furthermore, since the theorem provides us with the functional relationship between standard deviation and neural drive we conclude that complex methods based on high density electrode arrays and blind source separation might not bear substantial advantages for neural drive estimation (Farina and Holobar 2016). Funded by NIH Grant Number 1 R01 EB022872 and NSF Grant Number 1208126.

  15. Statistical mechanics in the context of special relativity. II.

    PubMed

    Kaniadakis, G

    2005-09-01

    The special relativity laws emerge as one-parameter (light speed) generalizations of the corresponding laws of classical physics. These generalizations, imposed by the Lorentz transformations, affect both the definition of the various physical observables (e.g., momentum, energy, etc.), as well as the mathematical apparatus of the theory. Here, following the general lines of [Phys. Rev. E 66, 056125 (2002)], we show that the Lorentz transformations impose also a proper one-parameter generalization of the classical Boltzmann-Gibbs-Shannon entropy. The obtained relativistic entropy permits us to construct a coherent and self-consistent relativistic statistical theory, preserving the main features of the ordinary statistical theory, which is recovered in the classical limit. The predicted distribution function is a one-parameter continuous deformation of the classical Maxwell-Boltzmann distribution and has a simple analytic form, showing power law tails in accordance with the experimental evidence. Furthermore, this statistical mechanics can be obtained as the stationary case of a generalized kinetic theory governed by an evolution equation obeying the H theorem and reproducing the Boltzmann equation of the ordinary kinetics in the classical limit.

  16. A full-angle Monte-Carlo scattering technique including cumulative and single-event Rutherford scattering in plasmas

    NASA Astrophysics Data System (ADS)

    Higginson, Drew P.

    2017-11-01

    We describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event. We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10-3 to 0.3-0.7; the upper limit corresponds to Coulomb logarithm of 20-2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.

  17. Visual Theorems.

    ERIC Educational Resources Information Center

    Davis, Philip J.

    1993-01-01

    Argues for a mathematics education that interprets the word "theorem" in a sense that is wide enough to include the visual aspects of mathematical intuition and reasoning. Defines the term "visual theorems" and illustrates the concept using the Marigold of Theodorus. (Author/MDH)

  18. Note on the theorems of Bjerknes and Crocco

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore

    1946-01-01

    The theorems of Bjerknes and Crocco are of great interest in the theory of flow around airfoils at Mach numbers near and above unity. A brief note shows how both theorems are developed by short vector transformations.

  19. Analysis of non locality proofs in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe

    2012-02-01

    Two kinds of non-locality theorems in Quantum Mechanics are taken into account: the theorems based on the criterion of reality and the quite different theorem proposed by Stapp. In the present work the analyses of the theorem due to Greenberger, Horne, Shimony and Zeilinger, based on the criterion of reality, and of Stapp's argument are shown. The results of these analyses show that the alleged violations of locality cannot be considered definitive.

  20. PYGMALION: A Creative Programming Environment

    DTIC Science & Technology

    1975-06-01

    iiiiiimimmmimm wm^m^mmm’ wi-i ,»■»’■’.■- v* 26 Examples of Purely Iconic Reasoning 1-H Pythagoras ’ original proof of the Pythagorean Theorem ... Theorem Proving Machine񓟋. His program employed properties of the representation to guide the proof of theorems . His simple heruristic "Reject...one theorem the square of the hypotenuse. "Every proposition is presented as a self-contained fact relying on its own intrinsic evidence. Instead

  1. A Maximal Element Theorem in FWC-Spaces and Its Applications

    PubMed Central

    Hu, Qingwen; Miao, Yulin

    2014-01-01

    A maximal element theorem is proved in finite weakly convex spaces (FWC-spaces, in short) which have no linear, convex, and topological structure. Using the maximal element theorem, we develop new existence theorems of solutions to variational relation problem, generalized equilibrium problem, equilibrium problem with lower and upper bounds, and minimax problem in FWC-spaces. The results represented in this paper unify and extend some known results in the literature. PMID:24782672

  2. Generalized Bloch theorem and topological characterization

    NASA Astrophysics Data System (ADS)

    Dobardžić, E.; Dimitrijević, M.; Milovanović, M. V.

    2015-03-01

    The Bloch theorem enables reduction of the eigenvalue problem of the single-particle Hamiltonian that commutes with the translational group. Based on a group theory analysis we present a generalization of the Bloch theorem that incorporates all additional symmetries of a crystal. The generalized Bloch theorem constrains the form of the Hamiltonian which becomes manifestly invariant under additional symmetries. In the case of isotropic interactions the generalized Bloch theorem gives a unique Hamiltonian. This Hamiltonian coincides with the Hamiltonian in the periodic gauge. In the case of anisotropic interactions the generalized Bloch theorem allows a family of Hamiltonians. Due to the continuity argument we expect that even in this case the Hamiltonian in the periodic gauge defines observables, such as Berry curvature, in the inverse space. For both cases we present examples and demonstrate that the average of the Berry curvatures of all possible Hamiltonians in the Bloch gauge is the Berry curvature in the periodic gauge.

  3. On Monotone Embedding in Information Geometry (Open Access)

    DTIC Science & Technology

    2015-06-25

    the non-parametric ( infinite - dimensional ) setting, as well [4,6], with the α-connection structure cast in a more general way. Theorem 1 of [4] gives... the weighting function for taking the expectation of random variables in calculating the Riemannian metric (G = 1 reduces to F - geometry , with the ...is a trivial rewriting of the convex function f used by [2]. This paper will start in Section 1

  4. On an application of conformal maps to inequalities for rational functions

    NASA Astrophysics Data System (ADS)

    Dubinin, V. N.

    2002-04-01

    Using classical properties of conformal maps, we get new exact inequalities for rational functions with prescribed poles. In particular, we prove a new Bernstein-type inequality, an inequality for Blaschke products and a theorem that generalizes the Turan inequality for polynomials. The estimates obtained strengthen some familiar inequalities of Videnskii and Rusak. They are also related to recent results of Borwein, Erdelyi, Li, Mohapatra, Rodriguez, Aziz and others.

  5. Revisiting Ramakrishnan's approach to relatively. [Velocity addition theorem uniqueness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, K.K.; Shankara, T.S.

    The conditions under which the velocity addition theorem (VAT) is formulated by Ramakrishnan gave rise to doubts about the uniqueness of the theorem. These conditions are rediscussed with reference to their algebraic and experimental implications. 9 references.

  6. General Theorems about Homogeneous Ellipsoidal Inclusions

    ERIC Educational Resources Information Center

    Korringa, J.; And Others

    1978-01-01

    Mathematical theorems about the properties of ellipsoids are developed. Included are Poisson's theorem concerning the magnetization of a homogeneous body of ellipsoidal shape, the polarization of a dielectric, the transport of heat or electricity through an ellipsoid, and other problems. (BB)

  7. A no-hair theorem for black holes in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Cañate, Pedro

    2018-01-01

    In this work we present a no-hair theorem which discards the existence of four-dimensional asymptotically flat, static and spherically symmetric or stationary axisymmetric, non-trivial black holes in the frame of f(R) gravity under metric formalism. Here we show that our no-hair theorem also can discard asymptotic de Sitter stationary and axisymmetric non-trivial black holes. The novelty is that this no-hair theorem is built without resorting to known mapping between f(R) gravity and scalar–tensor theory. Thus, an advantage will be that our no-hair theorem applies as well to metric f(R) models that cannot be mapped to scalar–tensor theory.

  8. Algebraic independence results for reciprocal sums of Fibonacci and Lucas numbers

    NASA Astrophysics Data System (ADS)

    Stein, Martin

    2011-09-01

    Let Fn and Ln denote the Fibonacci and Lucas numbers, respectively. D. Duverney, Ke. Nishioka, Ku. Nishioka and I. Shiokawa proved that the values of the Fibonacci zeta function ζF(2s) = Σn = 1∞Fn-2s are transcendental for any s∈N using Nesterenko's theorem on Ramanujan functions P(q), Q(q), and R(q). They obtained similar results for the Lucas zeta function ζL(2s) = Σn = 1∞Ln-2s and some related series. Later, C. Elsner, S. Shimomura and I. Shiokawa found conditions for the algebraic independence of these series. In my PhD thesis I generalized their approach and treated the following problem: We investigate all subsets of { ∑ n = 1∞1/Fn2s1, ∑ n = 1∞(-1)n+1/Fn2s2, ∑ n = 1∞1/Ln2s3, ∑ n = 1∞(-1)n+1/Ln2s4:s1,s2,s3,s4∈N} and decide on their algebraic independence over Q. Actually this is a special case of a more general theorem for reciprocal sums of binary recurrent sequences.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Leo C.; Yagi, Kent; Yunes, Nicolás, E-mail: leostein@astro.cornell.edu

    The gravitational field outside of astrophysical black holes is completely described by their mass and spin frequency, as expressed by the no-hair theorems. These theorems assume vacuum spacetimes, and thus they apply only to black holes and not to stars. Despite this, we analytically find that the gravitational potential of arbitrarily rapid, rigidly rotating stars can still be described completely by only their mass, spin angular momentum, and quadrupole moment. Although these results are obtained in the nonrelativistic limit (to leading order in a weak-field expansion of general relativity, GR), they are also consistent with fully relativistic numerical calculations ofmore » rotating neutron stars. This description of the gravitational potential outside the source in terms of just three quantities is approximately universal (independent of equation of state). Such universality may be used to break degeneracies in pulsar and future gravitational wave observations to extract more physics and test GR in the strong-field regime.« less

  10. Brane surgery: energy conditions, traversable wormholes, and voids

    NASA Astrophysics Data System (ADS)

    Barceló1, C.; Visser, M.

    2000-09-01

    Branes are ubiquitous elements of any low-energy limit of string theory. We point out that negative tension branes violate all the standard energy conditions of the higher-dimensional spacetime they are embedded in; this opens the door to very peculiar solutions of the higher-dimensional Einstein equations. Building upon the (/3+1)-dimensional implementation of fundamental string theory, we illustrate the possibilities by considering a toy model consisting of a (/2+1)-dimensional brane propagating through our observable (/3+1)-dimensional universe. Developing a notion of ``brane surgery'', based on the Israel-Lanczos-Sen ``thin shell'' formalism of general relativity, we analyze the dynamics and find traversable wormholes, closed baby universes, voids (holes in the spacetime manifold), and an evasion (not a violation) of both the singularity theorems and the positive mass theorem. These features appear generic to any brane model that permits negative tension branes: This includes the Randall-Sundrum models and their variants.

  11. Path integrals, supersymmetric quantum mechanics, and the Atiyah-Singer index theorem for twisted Dirac

    NASA Astrophysics Data System (ADS)

    Fine, Dana S.; Sawin, Stephen

    2017-01-01

    Feynman's time-slicing construction approximates the path integral by a product, determined by a partition of a finite time interval, of approximate propagators. This paper formulates general conditions to impose on a short-time approximation to the propagator in a general class of imaginary-time quantum mechanics on a Riemannian manifold which ensure that these products converge. The limit defines a path integral which agrees pointwise with the heat kernel for a generalized Laplacian. The result is a rigorous construction of the propagator for supersymmetric quantum mechanics, with potential, as a path integral. Further, the class of Laplacians includes the square of the twisted Dirac operator, which corresponds to an extension of N = 1/2 supersymmetric quantum mechanics. General results on the rate of convergence of the approximate path integrals suffice in this case to derive the local version of the Atiyah-Singer index theorem.

  12. Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Xueying; Zhang, Yichen; Zhao, Yijia; Wang, Xiangyu; Yu, Song; Guo, Hong

    2017-10-01

    We study the impact of the finite-size effect on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, mainly considering the finite-size effect on the parameter estimation procedure. The central-limit theorem and maximum likelihood estimation theorem are used to estimate the parameters. We also analyze the relationship between the number of exchanged signals and the optimal modulation variance in the protocol. It is proved that when Charlie's position is close to Bob, the CV-MDI QKD protocol has the farthest transmission distance in the finite-size scenario. Finally, we discuss the impact of finite-size effects related to the practical detection in the CV-MDI QKD protocol. The overall results indicate that the finite-size effect has a great influence on the secret-key rate of the CV-MDI QKD protocol and should not be ignored.

  13. Reviews Book: The Babylonian Theorem Video Game: BrainBox360 (Physics Edition) Book: Teaching and Learning Science: Towards a Personalized Approach Book: Good Practice in Science Teaching: What Research Has to Say Equipment: PAPERSHOW Equipment: SEP Steady State Bottle Kit Equipment: Sciencescope Datalogging Balance Equipment: USB Robot Arm Equipment: Sciencescope Spectrophotometer Web Watch

    NASA Astrophysics Data System (ADS)

    2010-07-01

    WE RECOMMEND Good Practice in Science Teaching: What Research Has to Say Book explores and summarizes the research Steady State Bottle Kit Another gem from SEP Sciencescope Datalogging Balance Balance suits everyday use Sciencescope Spectrophotometer Device displays clear spectrum WORTH A LOOK The Babylonian Theorem Text explains ancient Egyptian mathematics BrainBox360 (Physics Edition) Video game tests your knowledge Teaching and Learning Science: Towards a Personalized Approach Book reveals how useful physics teachers really are PAPERSHOW Gadget kit is useful but has limitations Robotic Arm Kit with USB PC Interface Robot arm teaches programming WEB WATCH Simple applets teach complex topics

  14. Proposal for founding mistrustful quantum cryptography on coin tossing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Adrian; Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS34 8QZ,

    2003-07-01

    A significant branch of classical cryptography deals with the problems which arise when mistrustful parties need to generate, process, or exchange information. As Kilian showed a while ago, mistrustful classical cryptography can be founded on a single protocol, oblivious transfer, from which general secure multiparty computations can be built. The scope of mistrustful quantum cryptography is limited by no-go theorems, which rule out, inter alia, unconditionally secure quantum protocols for oblivious transfer or general secure two-party computations. These theorems apply even to protocols which take relativistic signaling constraints into account. The best that can be hoped for, in general, aremore » quantum protocols which are computationally secure against quantum attack. Here a method is described for building a classically certified bit commitment, and hence every other mistrustful cryptographic task, from a secure coin-tossing protocol. No security proof is attempted, but reasons are sketched why these protocols might resist quantum computational attack.« less

  15. Extension theorems for homogenization on lattice structures

    NASA Technical Reports Server (NTRS)

    Miller, Robert E.

    1992-01-01

    When applying homogenization techniques to problems involving lattice structures, it is necessary to extend certain functions defined on a perforated domain to a simply connected domain. This paper provides general extension operators which preserve bounds on derivatives of order l. Only the special case of honeycomb structures is considered.

  16. Research in Stochastic Processes.

    DTIC Science & Technology

    1983-10-01

    increases. A more detailed investigation for the exceedances themselves (rather than Just the cluster centers) was undertaken, together with J. HUsler and...J. HUsler and M.R. Leadbetter, Compoung Poisson limit theorems for high level exceedances by stationary sequences, Center for Stochastic Processes...stability by a random linear operator. C.D. Hardin, General (asymmetric) stable variables and processes. T. Hsing, J. HUsler and M.R. Leadbetter, Compound

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollaber, Allan Benton

    This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.

  18. The dynamical behaviour of our planetary system. Proceedings. 4th Alexander von Humboldt Colloquium on Celestial Mechanics, Ramsau (Austria), 17 - 23 Mar 1996.

    NASA Astrophysics Data System (ADS)

    Dvorak, R.; Henrard, J.

    1996-03-01

    The following topics were dealt with: celestial mechanics, dynamical astronomy, planetary systems, resonance scattering, Hamiltonian mechanics non-integrability, irregular periodic orbits, escape, dynamical system mapping, fast Fourier method, precession-nutation, Nekhoroshev theorem, asteroid dynamics, the Trojan problem, planet-crossing orbits, Kirkwood gaps, future research, human comprehension limitations.

  19. Rocks: A Concrete Activity That Introduces Normal Distribution, Sampling Error, Central Limit Theorem and True Score Theory

    ERIC Educational Resources Information Center

    Van Duzer, Eric

    2011-01-01

    This report introduces a short, hands-on activity that addresses a key challenge in teaching quantitative methods to students who lack confidence or experience with statistical analysis. Used near the beginning of the course, this activity helps students develop an intuitive insight regarding a number of abstract concepts which are key to…

  20. Formally Generating Adaptive Security Protocols

    DTIC Science & Technology

    2013-03-01

    User Interfaces for Theorem Provers, 2012. [9] Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason J. Hickey, Mark Hayden, Ken- neth Birman, and...Constable, Mark Hayden, Jason Hickey, Christoph Kreitz, Robbert van Renesse, Ohad Rodeh, and Werner Vogels. The Horus and Ensemble projects: Accom...plishments and limitations. In DARPA Information Survivability Conference and Exposition (DISCEX 2000), pages 149–161, Hilton Head, SC, 2000. IEEE

Top