Sample records for functional material gallic

  1. Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications.

    PubMed

    Cirillo, Giuseppe; Hampel, Silke; Klingeler, Rüdiger; Puoci, Francesco; Iemma, Francesca; Curcio, Manuela; Parisi, Ortensia Ilaria; Spizzirri, Umile Gianfranco; Picci, Nevio; Leonhardt, Albrecht; Ritschel, Manfred; Büchner, Bernd

    2011-02-01

    To prove the possibility of covalently functionalizing multi-walled carbon nanotubes (CNTs) by free radical grafting of gallic acid on their surface with the subsequent synthesis of materials with improved biological properties evaluated by specific in-vitro assays. Antioxidant CNTs were synthesized by radical grafting of gallic acid onto pristine CNTs. The synthesis of carbon nanotubes was carried out in a fixed-bed reactor and, after the removal of the amorphous carbon, the grafting process was performed. The obtained materials were characterized by fluorescence and Fourier transform infrared spectroscopy (FT-IR) analyses. After assessment of the biocompatibility and determination of the disposable phenolic group content, the antioxidant properties were evaluated in terms of total antioxidant activity and scavenger ability against 2,2'-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl and peroxyl radicals. Finally the inhibition activity on acetylcholinesterase was evaluated.   The covalent functionalization of CNTs with gallic acid was confirmed and the amount of gallic acid bound per g of CNTs was found to be 2.1±0.2 mg. Good antioxidant and scavenging properties were recorded in the functionalized CNTs, which were found to be able to inhibit the acetylcholinesterase with potential improved activity for biomedical and pharmaceutical applications. For the first time, a free radical grafting procedure was proposed as a synthetic approach for the covalent functionalization of CNTs with an antioxidant polyphenol. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society.

  2. Transglycosylation of gallic acid by using Leuconostoc glucansucrase and its characterization as a functional cosmetic agent.

    PubMed

    Nam, Seung-Hee; Park, Jeongjin; Jun, Woojin; Kim, Doman; Ko, Jin-A; Abd El-Aty, A M; Choi, Jin Young; Kim, Do-Ik; Yang, Kwang-Yeol

    2017-12-22

    Gallic acid glycoside was enzymatically synthesized by using dextransucrase and sucrose from gallic acid. After purification by butanol partitioning and preparative HPLC, gallic acid glucoside was detected at m/z 355 (C 13 , H 16 , O 10 , Na) + by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The yield of gallic acid glucoside was found to be 35.7% (114 mM) by response surface methodology using a reaction mixture of 319 mM gallic acid, 355 mM sucrose, and 930 mU/mL dextransucrase. The gallic acid glucoside obtained showed 31% higher anti-lipid peroxidation and stronger inhibition (Ki = 1.23 mM) against tyrosinase than that shown by gallic acid (Ki = 1.98 mM). In UVB-irradiated human fibroblast cells, gallic acid glucoside lowered matrix metalloproteinase-1 levels and increased the collagen content, which was indicative of a stronger anti-aging effect than that of gallic acid or arbutin. These results indicated that gallic acid glucoside is likely a superior cosmetic ingredient with skin-whitening and anti-aging functions.

  3. Antibacterial Effect of Gallic Acid against Aeromonas hydrophila and Aeromonas sobria Through Damaging Membrane Integrity.

    PubMed

    Lu, Jing; Wang, Zhenning; Ren, Mengrou; Huang, Guoren; Fang, Baochen; Bu, Xiujuan; Liu, Yanhui; Guan, Shuang

    In the study, we investigated the antibacterial activity and mechanism of gallic acid against Aeromonas hydrophila and Aeromonas sobria. Gallic acid showed strong antimicrobial activity against the two bacteria. Furthermore, the antibacterial mechanism of gallic acid (0, 3, 6, 12 mM) was performed by membrane integrity assay and scanning electron microscopy (SEM) assay. The results showed that gallic acid notably increased the released material absorption value at 260, 280 nm and electric conductivity in a dose-dependent manner. Moreover, the SEM assay showed that gallic acid induced severe shrink of bacterial intima and irregular morphology in a dose-dependent manner. The SDS-PAGE profiles further confirmed that gallic acid could damage bacterial cells. These results indicated gallic acid exhibited antibacterial effect by destroying membrane integrity of A. hydrophila and A. sobria. Hence, gallic acid has great potential as a new natural food preservative in food fresh-keeping and storage.

  4. The dopant type and amount governs the electrochemical performance of graphene platforms for the antioxidant activity quantification

    NASA Astrophysics Data System (ADS)

    Hui, Kai Hwee; Ambrosi, Adriano; Sofer, Zdeněk; Pumera, Martin; Bonanni, Alessandra

    2015-05-01

    Graphene doped with heteroatoms can show new or improved properties as compared to the original undoped material. It has been reported that the type of heteroatoms and the doping conditions can have a strong influence on the electronic and electrochemical properties of the resulting material. Here, we wish to compare the electrochemical behavior of two n-type and two p-type doped graphenes, namely boron-doped graphenes and nitrogen-doped graphenes containing different amounts of heteroatoms. We show that the boron-doped graphene containing a higher amount of dopants provides the best electroanalytical performance in terms of calibration sensitivity, selectivity and linearity of response for the detection of gallic acid normally used as the standard probe for the quantification of antioxidant activity of food and beverages. Our findings demonstrate that the type and amount of heteroatoms used for the doping have a profound influence on the electrochemical detection of gallic acid rather than the structural properties of the materials such as amounts of defects, oxygen functionalities and surface area. This finding has a profound influence on the application of doped graphenes in the field of analytical chemistry.Graphene doped with heteroatoms can show new or improved properties as compared to the original undoped material. It has been reported that the type of heteroatoms and the doping conditions can have a strong influence on the electronic and electrochemical properties of the resulting material. Here, we wish to compare the electrochemical behavior of two n-type and two p-type doped graphenes, namely boron-doped graphenes and nitrogen-doped graphenes containing different amounts of heteroatoms. We show that the boron-doped graphene containing a higher amount of dopants provides the best electroanalytical performance in terms of calibration sensitivity, selectivity and linearity of response for the detection of gallic acid normally used as the standard probe for the quantification of antioxidant activity of food and beverages. Our findings demonstrate that the type and amount of heteroatoms used for the doping have a profound influence on the electrochemical detection of gallic acid rather than the structural properties of the materials such as amounts of defects, oxygen functionalities and surface area. This finding has a profound influence on the application of doped graphenes in the field of analytical chemistry. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01045d

  5. Functional Characterization of Epitheaflagallin 3-O-Gallate Generated in Laccase-Treated Green Tea Extracts in the Presence of Gallic Acid.

    PubMed

    Itoh, Nobuya; Kurokawa, Junji; Isogai, Yasuhiro; Ogasawara, Masaru; Matsunaga, Takayuki; Okubo, Tsutomu; Katsube, Yuji

    2017-12-06

    Epitheaflagallin (ETFG) and epitheaflagallin 3-O-gallate (ETFGg) are minor polyphenols in black tea extract that are enzymatically synthesized from epigallocatechin (EGC) and epigallocatechin gallate (EGCg), respectively, in green tea extract via laccase oxidation in the presence of gallic acid. The constituents of laccase-treated green tea extract in the presence of gallic acid are thus quite different from those of nonlaccase-treated green tea extract: EGC and EGCg are present in lower concentrations, and ETFG and ETFGg are present in higher concentrations. Additionally, laccase-treated green tea extract contains further polymerized catechin derivatives, comparable with naturally fermented teas such as oolong tea and black tea. We found that ETFGg and laccase-treated green tea extracts exhibit versatile physiological functions in vivo and in vitro, including antioxidative activity, pancreatic lipase inhibition, Streptococcus sorbinus glycosyltransferase inhibition, and an inhibiting effect on the activity of matrix metalloprotease-1 and -3 and their synthesis by human gingival fibroblasts. We confirmed that these inhibitory effects of ETFGg in vitro match well with the results obtained by docking simulations of the compounds with their target enzymes or noncatalytic protein. Thus, ETFGg and laccase-treated green tea extracts containing ETFGg are promising functional food materials with potential antiobesity and antiperiodontal disease activities.

  6. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats

    PubMed Central

    Patel, Snehal S.; Goyal, Ramesh K.

    2011-01-01

    Background: Normalization of hyperglycemia, hyperlipidemia, and oxidative stress is an important objective in preventing diabetes-induced cardiac dysfunction. Objective: This study was undertaken to examine the effects of gallic acid in myocardial dysfunctions associated with type-1 diabetes. Materials and Methods: Diabetes was induced by single intravenous injection of streptozotocin (STZ, 50 mg/kg i.v.). Gallic acid was administered daily at three different doses (100, 50, and 25 mg/kg p.o.) for 8 weeks at the end of which blood samples were collected and analyzed for various biochemical parameters. Results: Injection of STZ produced significant loss of body weight (BW), polyphagia, polydypsia, hyperglycemia, hypoinsulinemia, hyperlipidemia, hypertension, bradycardia, and myocardial functional alterations. Treatment with gallic acid significantly lowered fasting glucose, the AUCglucose level in a dose-dependent manner; however, the insulin level was not increased significantly at same the dose and prevented loss of BW, polyphagia, and polydypsia in diabetic rats. It also prevented STZ-induced hyperlipidemia, hypertension, bradycardia, structural alterations in cardiac tissue such as increase in force of contraction, left ventricular weight to body weight ratio, collagen content, protein content, serum lactate dehydrogenase, and creatinine kinase levels in a dose-dependent manner. Further, treatment also produced reduction in lipid peroxidation and increase in antioxidant parameters in heart of diabetic rats. Conclusion: The results of this study suggest that gallic acid to be beneficial for the treatment of myocardial damage associated with type-1 diabetes. PMID:22224046

  7. Imperial Policy and the Integration of Gaul into the Roman Empire

    DTIC Science & Technology

    2015-06-12

    ECONOMIC BENEFITS OF EMPIRE From as early as the second century BC Gaul had a taste for the material outputs of the Roman economy. Wine in particular...Rome tolerated the establishment of local Gallic production. This meant the growth in Gaul’s wine consumption benefited Gallic producers and not...exporter of sought after wines . Wine production was not the only industry that benefited from the Roman conquest. Complementing Gallic viticulture

  8. Synthesis and application of in-situ molecularly imprinted silica monolithic in pipette-tip solid-phase microextraction for the separation and determination of gallic acid in orange juice samples.

    PubMed

    Arabi, Maryam; Ghaedi, Mehrorang; Ostovan, Abbas

    2017-03-24

    A novel strategy was presented for the synthesis and application of functionalized silica monolithic as artificial receptor of gallic acid at micro-pipette tip. A sol-gel process was used to prepare the sorbent. In this in-situ polymerization reaction, tetraethyl orthosilicate (TEOS), 3-aminopropyl trimethoxysilane (APTMS), gallic acid and thiourea were used, respectively, as cross-linker, functionalized monomer, template and precursor to make crack-free and non-fragile structure. Such durable and inexpensive in-situ monolithic was successfully employed as useful tool for highly efficient extraction of gallic acid from orange juice samples. The effective parameters in extraction recovery were investigated and optimum conditions were obtained using experimental design methodology. Applying HPLC-UV for separation quantification at optimal conditions, the gallic acid was efficiently extracted without significant matrix interference. Good linearity for gallic acid in the range of 0.02-5.0mgL -1 with correlation coefficients of R 2 >0.999 revealed well applicability of the method for trace analysis. Copyright © 2017. Published by Elsevier B.V.

  9. Two choices for the functionalization of silica nanoparticles with gallic acid: characterization of the nanomaterials and their antimicrobial activity against Paenibacillus larvae

    NASA Astrophysics Data System (ADS)

    Vico, Tamara A.; Arce, Valeria B.; Fangio, María F.; Gende, Liesel B.; Bertran, Celso A.; Mártire, Daniel O.; Churio, María S.

    2016-11-01

    Silica nanoparticles attached to gallic acid were synthesized from 7-nm diameter fumed silica particles by different functionalization methods involving the condensation of hydroxyl or carboxyl groups. The particles were characterized by thermal analyses and UV-vis, FTIR, NMR, and EPR spectroscopies. In comparison to free gallic acid, enhanced stability and increased antimicrobial activity against Paenibacillus larvae were found for the functionalized nanoparticles. Thus, both derivatization strategies result in improved properties of the natural polyphenol as antimicrobial agent for the treatment of honeybee pathologies.

  10. Investigation into structure and dehydration dynamic of gallic acid monohydrate: A Raman spectroscopic study.

    PubMed

    Cai, Qiang; Xue, Jiadan; Wang, Qiqi; Du, Yong

    2018-05-02

    The dehydration process of gallic acid monohydrate was carried out by heating method and characterized using Raman spectroscopic technique. Density functional theory calculation with B3LYP function is applied to simulate optimized structures and vibrational frequencies of anhydrous gallic acid and its corresponding monohydrated form. Different vibrational modes are assigned by comparison between experimental and theoretical Raman spectra of above two polymorphs. Raman spectra show that vibrational modes of the monohydrate are distinctively different from those of anhydrous one. Meanwhile, the dynamic information about dehydration process of gallic acid monohydrate could also be observed and monitored directly with the help of Raman spectral analysis. The decay rate of the characteristic band from gallic acid monohydrate and the growth rate of anhydrous one are pretty consistent with each other. It indicates that there is no intermediate present during the dehydration process of gallic acid monohydrate. The results could offer us benchmark works for identifying both anhydrous and hydrated pharmaceutical compounds, characterizing their corresponding molecular conformation within various crystalline forms, and also providing useful information about the process of dehydration dynamic at the microscopic molecular level. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Gallic Acid Attenuates Platelet Activation and Platelet-Leukocyte Aggregation: Involving Pathways of Akt and GSK3β

    PubMed Central

    Chang, Shih-Sheng; Lee, Viola S. Y.; Tseng, Yu-Lun; Chang, Kuan-Cheng; Chen, Kuen-Bao; Chen, Yuh-Lien; Li, Chi-Yuan

    2012-01-01

    Platelet activation and its interaction with leukocytes play an important role in atherothrombosis. Cardiovascular diseases resulted from atherothrombosis remain the major causes of death worldwide. Gallic acid, a major constituent of red wine and tea, has been believed to have properties of cardiovascular protection, which is likely to be related to its antioxidant effects. Nonetheless, there were few and inconsistent data regarding the effects of gallic acid on platelet function. Therefore, we designed this in vitro study to determine whether gallic acid could inhibit platelet activation and the possible mechanisms. From our results, gallic acid could concentration-dependently inhibit platelet aggregation, P-selectin expression, and platelet-leukocyte aggregation. Gallic acid prevented the elevation of intracellular calcium and attenuated phosphorylation of PKCα/p38 MAPK and Akt/GSK3β on platelets stimulated by the stimulants ADP or U46619. This is the first mechanistic explanation for the inhibitory effects on platelets from gallic acid. PMID:22811749

  12. Gallic acid grafting effect on delivery performance and antiglaucoma efficacy of antioxidant-functionalized intracameral pilocarpine carriers.

    PubMed

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang

    2016-07-01

    Functionalization of therapeutic carrier biomaterials can potentially provide additional benefits in drug delivery for disease treatment. Given that this modification determines final therapeutic efficacy of drug carriers, here, we investigate systematically the role of grafting amount of antioxidant gallic acid (GA) onto GN in situ gelling copolymers made of biodegradable gelatin and thermo-responsive poly(N-isopropylacrylamide) for intracameral delivery of pilocarpine in antiglaucoma treatment. As expected, increasing redox reaction time increased total antioxidant activities and free radical scavenging abilities of synthesized carrier biomaterials. The hydrophilic nature of antioxidant molecules strongly affected physicochemical properties of carrier materials with varying GA grafting amounts, thereby dictating in vitro release behaviors and mechanisms of pilocarpine. In vitro oxidative stress challenges revealed that biocompatible carriers with high GA content alleviated lens epithelial cell damage and reduced reactive oxygen species. Intraocular pressure and pupil diameter in glaucomatous rabbits showed correlations with GA-mediated release of pilocarpine. Additionally, enhanced pharmacological treatment effects prevented corneal endothelial cell loss during disease progression. Increasing GA content increased total antioxidant level and decreased nitrite level in the aqueous humor, suggesting a much improved antioxidant status in glaucomatous eyes. This work significantly highlights the dependence of physicochemical properties, drug release behaviors, and bioactivities on intrinsic antioxidant capacities of therapeutic carrier biomaterials for glaucoma treatment. Development of injectable biodegradable polymer depots and functionalization of carrier biomaterials with antioxidant can potentially provide benefits such as improved bioavailability, controlled release pattern, and increased therapeutic effect in intracameral pilocarpine administration for glaucoma treatment. For the first time, this study demonstrated that the biodegradable in situ gelling copolymers can incorporate different levels of antioxidant gallic acid to tailor the structure-property-function relationship of the intracameral drug delivery system. The systematic evaluation fully verified the dependence of phase transition, degradation behavior, drug release mechanism, and antiglaucoma efficacy on intrinsic antioxidant capacities of carrier biomaterials. The report highlights the significant role of grafting amount of gallic acid in optimizing performance of antioxidant-functionalized polymer therapeutics as new drug delivery platforms in disease treatment. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. [Ecology suitability of Polygonum capitatum in Guizhou province based on topographical conditions].

    PubMed

    Zhang, Xiaobo; Zhou, Tao; Guo, Lanping; Zhu, Shoudong; Huang, Luqi

    2011-02-01

    To study ecology suitability rank dividing of Polygonum capitatum for selecting artificial planting base and high-quality industrial raw material in Guizhou province. Based on the investigation of PCB and DEM data of Guizhou province, the relationship between the gallic acid content in P. capitatum and topographical conditions was analyzed by statistical analysis. The geographic information systems (GIS)-based assessment and landscape ecological principles were applied to assess ecology suitability areas of P. capitatum in Guizhou. slope, aspect and altitude are main topographical factors that affect the content of gallic acid in P. capitatum. The gallic acid content of P. capitatum is higher in the lower altitude, shady slope and smaller slope areas. The gallic acid content is higher in the eastern areas of Guizhou province.

  14. Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials.

    PubMed

    Neo, Yun Ping; Swift, Simon; Ray, Sudip; Gizdavic-Nikolaidis, Marija; Jin, Jianyong; Perera, Conrad O

    2013-12-01

    The applicability of gallic acid loaded zein (Ze-GA) electrospun fibre mats towards potential active food packaging material was evaluated. The surface chemistry of the electrospun fibre mats was determined using X-ray photon spectroscopy (XPS). The electrospun fibre mats showed low water activity and whitish colour. Thermogravimetric analysis (TGA) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy revealed the stability of the fibre mats over time. The Ze-GA fibre mats displayed similar rapid release profiles, with Ze-GA 20% exhibiting the fastest release rate in water as compared to the others. Gallic acid diffuses from the electrospun fibres in a Fickian diffusion manner and the data obtained exhibited a better fit to Higuchi model. L929 fibroblast cells were cultured on the electrospun fibres to demonstrate the absence of cytotoxicity. Overall, the Ze-GA fibre mats demonstrated antibacterial activity and properties consistent with those considered desirable for active packaging material in the food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Surface functionalization of bioactive glasses with natural molecules of biological significance, Part I: Gallic acid as model molecule

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

    2013-12-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) and its derivatives are a group of biomolecules (polyphenols) obtained from plants. They have effects which are potentially beneficial to heath, for example they are antioxidant, anticarcinogenic and antibacterial, as recently investigated in many fields such as medicine, food and plant sciences. The main drawbacks of these molecules are both low stability and bioavailability. In this research work the opportunity to graft GA to bioactive glasses is investigated, in order to deliver the undamaged biological molecule into the body, using the biomaterial surfaces as a localized carrier. GA was considered for functionalization since it is a good model molecule for polyphenols and presents several interesting biological activities, like antibacterial, antioxidant and anticarcinogenic properties. Two different silica based bioactive glasses (SCNA and CEL2), with different reactivity, were employed as substrates. UV photometry combined with the Folin&Ciocalteu reagent was adopted to test the concentration of GA in uptake solution after functionalization. This test verified how much GA consumption occurred with surface modification and it was also used on solid samples to test the presence of GA on functionalized glasses. XPS and SEM-EDS techniques were employed to characterize the modification of material surface properties and functional group composition before and after functionalization.

  16. Gallic Acid Attenuates Postoperative Intra-Abdominal Adhesion by Inhibiting Inflammatory Reaction in a Rat Model

    PubMed Central

    Wei, Guangbing; Wu, Yunhua; Gao, Qi; Shen, Cong; Chen, Zilu; Wang, Kang; Yu, Junhui

    2018-01-01

    Background Intra-abdominal adhesion is one of the most common complications after abdominal surgery. The efficacy of current treatments for intra-abdominal adhesion is unsatisfactory. In this study, we investigated the effect of gallic acid on the prevention and treatment of intra-abdominal adhesions after abdominal surgery using an intra-abdominal adhesion rat model. Material/Methods The experimental rats were randomly divided into the sham operation group, the control group, the chitosan group, and 3 gallic acid groups of different concentrations. All rats except those in the sham operation group received cecal abrasion to induce adhesion. From the first postoperative day, the rats in the gallic acid groups were administered different concentrations of gallic acid in a 2-ml gavage daily. All rats were sacrificed on postoperative day 7, and the degree of intra-abdominal adhesion was evaluated by the naked eye. The amount of collagen deposited between the injured peritoneal tissues was assessed by Sirius red staining. Serum levels of interleukin-6 (IL-6), tumor necrosis factor (TNF-α), and transforming growth factor-β (TGF-β) were measured by ELISA. Western blot was used to detect the level of NF-κB phosphorylation in the injured peritoneal or adhesion tissues of the rats. Results Compared with the control group, the scores of intra-abdominal adhesions in the rats treated with larger doses of gallic acid were significantly decreased, and the degree of inflammation and fibrosis was also significantly decreased. Gallic acid significantly reduced IL-6, TNF-α, and TGF-β1 serum levels. NF-κB phosphorylation in the higher gallic acid groups was significantly reduced. Conclusions Gallic acid inhibits the formation of postoperative intra-abdominal adhesions in rats by inhibiting the inflammatory reaction and fibrogenesis. Gallic acid is a promising drug for preventing intra-abdominal adhesions. PMID:29429982

  17. Highly selective and efficient imprinted polymers based on carboxyl-functionalized magnetic nanoparticles for the extraction of gallic acid from pomegranate rind.

    PubMed

    Zhang, Junjie; Li, Benqiang; Yue, Huijuan; Wang, Jing; Zheng, Yuansuo

    2018-01-01

    With the combined surface imprinting technique and immobilized template strategy, molecularly imprinted magnetic nanoparticles were successfully prepared and coupled with high-performance liquid chromatography to selectively separate and determine gallic acid from the pomegranate rind. On the surface of carboxyl-functionalized magnetic nanospheres, thin imprinting shells were formed using dopamine as monomer and crosslinker. The characteristics, polymerization conditions, and adsorption performances of the resultant nanomaterials were investigated in detail. In addition of good crystallinity, satisfactory magnetism, and uniform morphology of the obtained polymers, they had rapid binding kinetics, high adsorption capacity, and favorable reusability. In the mixed solution of four hydroxybenzoic acids, the prepared nanomaterials have an excellent selectivity to gallic acid with an imprinting factor of as high as 17.5. Therefore, the polymers have great potentials in specific extraction and enrichment of gallic acid from the complex natural resources. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dynamic calibration approach for determining catechins and gallic acid in green tea using LC-ESI/MS.

    PubMed

    Bedner, Mary; Duewer, David L

    2011-08-15

    Catechins and gallic acid are antioxidant constituents of Camellia sinensis, or green tea. Liquid chromatography with both ultraviolet (UV) absorbance and electrospray ionization mass spectrometric (ESI/MS) detection was used to determine catechins and gallic acid in three green tea matrix materials that are commonly used as dietary supplements. The results from both detection modes were evaluated with 14 quantitation models, all of which were based on the analyte response relative to an internal standard. Half of the models were static, where quantitation was achieved with calibration factors that were constant over an analysis set. The other half were dynamic, with calibration factors calculated from interpolated response factor data at each time a sample was injected to correct for potential variations in analyte response over time. For all analytes, the relatively nonselective UV responses were found to be very stable over time and independent of the calibrant concentration; comparable results with low variability were obtained regardless of the quantitation model used. Conversely, the highly selective MS responses were found to vary both with time and as a function of the calibrant concentration. A dynamic quantitation model based on polynomial data-fitting was used to reduce the variability in the quantitative results using the MS data.

  19. Effects of Gallic Acid and Cyclosporine A on Antioxidant Capacity and Cardiac Markers of Rat Isolated Heart After Ischemia/Reperfusion

    PubMed Central

    Badavi, Mohammad; Sadeghi, Najmeh; Dianat, Mahin; Samarbafzadeh, Alireza

    2014-01-01

    Background: Myocardial infarction is one of the important causes of death during old ages. Gallic acid as an antioxidant or cyclosporine A (CsA) as inhibitor of mitochondrial permeability transition pore (mPTP) alone could prevent these complications to some extent, but their combination effect has not been investigated. Objectives: The aim of this study was to determine the combined effect of gallic acid and CsA on antioxidant capacity of isolated heart tissues during ischemia reperfusion. Materials and Methods: Eighty male Wistar rats were randomly assigned to different groups: sham, control (Ca, received saline, 1 mL/kg); 3 groups were pretreated with gallic acid (G1a: 7.5, G2a: 15, G3a: 30 mg/kg) for 10 days, and the other 3 groups were pretreated with gallic acid and received CsA (0.2 µM) for 10 minutes before induction of ischemia and during the first 10 minutes of reperfusion (G1b, G2b and G3b) and the last group received CsA alone (Cb). After 10 days of pretreatment, the heart was isolated and transferred to the Langendorff apparatus and exposed to 30 minutes ischemia followed by 60 minutes of reperfusion. After that cardiac markers and antioxidant enzymes were assessed in cardiac tissues. Results: Lactate dehydrogenase (LDH), Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activity increased and malondialdehyde (MDA) decreased in animals pretreated with gallic acid significantly. However, pretreatment with gallic acid followed by CsA during reperfusion improved the antioxidant capacity and cardiac marker enzymes and restored the lipid peroxidation more effective than gallic acid or CsA alone. Nevertheless, CsA did not change the cardiac marker enzymes significantly. Conclusions: Gallic acid and CsA combination improved antioxidant capacity and cell membrane integrity more than each one alone. Therefore, it can be a therapeutic approach to reduce the I/R injury. PMID:25068044

  20. Synthesis of molecular imprinting polymers for extraction of gallic acid from urine.

    PubMed

    Bhawani, Showkat Ahmad; Sen, Tham Soon; Ibrahim, Mohammad Nasir Mohammad

    2018-02-21

    The molecularly imprinted polymers for gallic acid were synthesized by precipitation polymerization. During the process of synthesis a non-covalent approach was used for the interaction of template and monomer. In the polymerization process, gallic acid was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker and 2,2'-azobisisobutyronitrile as an initiator and acetonitrile as a solvent. The synthesized imprinted and non-imprinted polymer particles were characterized by using Fourier-transform infrared spectroscopy and scanning electron microscopy. The rebinding efficiency of synthesized polymer particles was evaluated by batch binding assay. The highly selective imprinted polymer for gallic acid was MIPI1 with a composition (molar ratio) of 1:4:20, template: monomer: cross-linker, respectively. The MIPI1 showed highest binding efficiency (79.50%) as compared to other imprinted and non-imprinted polymers. The highly selective imprinted polymers have successfully extracted about 80% of gallic acid from spiked urine sample.

  1. Protective effect of gallic acid against cisplatin-induced ototoxicity in rats.

    PubMed

    Kilic, Korhan; Sakat, Muhammed Sedat; Akdemir, Fazile Nur Ekinci; Yildirim, Serkan; Saglam, Yavuz Selim; Askin, Seda

    2018-04-07

    Cisplatin is an antineoplastic agent widely used in the treatment of a variety of cancers. Ototoxicity is one of the main side-effects restricting the use of cisplatin. The purpose of this study was to investigate the protective efficacy of gallic acid, in biochemical, functional and histopathological terms, against ototoxicity induced by cisplatin. Twenty-eight female Sprague Dawley rats were included. Rats were randomly assigned into four groups of seven animals each. Cisplatin group received a single intraperitoneal dose of 15mg/kg cisplatin. Gallic acid group received intraperitoneal gallic acid at 100mg/kg for five consecutive days. Cisplatin+Gallic acid group received intraperitoneal gallic acid at 100mg/kg for five consecutive days and a single intraperitoneal dose of 15mg/kg cisplatin at 3rd day. A control group received 1mL intraperitoneal saline solution for five consecutive days. Prior to drug administration, all rats were exposed to the distortion product otoacoustic emissions test. The test was repeated on the 6th day of the study. All rats were then sacrificed; the cochleas were removed and set aside for biochemical and histopathological analyses. In Cisplatin group, Day 6 signal noise ratio values were significantly lower than those of the other groups. Also, malondialdehyde levels in cochlear tissues were significantly higher, superoxide dismutase and glutathione peroxidase activities were significantly lower compared to the control group. Histopathologic evaluation revealed erosion in the stria vascularis, degeneration and edema in the connective tissue layer in endothelial cells, impairment of outer hair cells and a decrease in the number of these calls. In the Cisplatin+Gallic acid group, this biochemical, histopathological and functional changes were reversed. In the light of our findings, we think that gallic acid may have played a protective role against cisplatin-induced ototoxicity in rats, as indicated by the distortion product otoacoustic emissions test results, biochemical findings and immunohistochemical analyses. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  2. Non-toxic agarose/gelatin-based microencapsulation system containing gallic acid for antifungal application.

    PubMed

    Lam, P-L; Gambari, R; Kok, S H-L; Lam, K-H; Tang, J C-O; Bian, Z-X; Lee, K K-H; Chui, C-H

    2015-02-01

    Aspergillus niger (A. niger) is a common species of Aspergillus molds. Cutaneous aspergillosis usually occurs in skin sites near intravenous injection and approximately 6% of cutaneous aspergillosis cases which do not involve burn or HIV-infected patients are caused by A. niger. Biomaterials and biopharmaceuticals produced from microparticle-based drug delivery systems have received much attention as microencapsulated drugs offer an improvement in therapeutic efficacy due to better human absorption. The frequently used crosslinker, glutaraldehyde, in gelatin-based microencapsulation systems is considered harmful to human beings. In order to tackle the potential risks, agarose has become an alternative polymer to be used with gelatin as wall matrix materials of microcapsules. In the present study, we report the eco-friendly use of an agarose/gelatin-based microencapsulation system to enhance the antifungal activity of gallic acid and reduce its potential cytotoxic effects towards human skin keratinocytes. We used optimal parameter combinations, such as an agarose/gelatin ratio of 1:1, a polymer/oil ratio of 1:60, a surfactant volume of 1% w/w and a stirring speed of 900 rpm. The minimum inhibitory concentration of microencapsulated gallic acid (62.5 µg/ml) was significantly improved when compared with that of the original drug (>750 µg/ml). The anti-A. niger activity of gallic acid -containing microcapsules was much stronger than that of the original drug. Following 48 h of treatment, skin cell survival was approximately 90% with agarose/gelatin microcapsules containing gallic acid, whereas cell viability was only 25-35% with free gallic acid. Our results demonstrate that agarose/gelatin-based microcapsules containing gallic acid may prove to be helpful in the treatment of A. niger-induced skin infections near intravenous injection sites.

  3. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    PubMed

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Natural flavonoids as antidiabetic agents. The binding of gallic and ellagic acids to glycogen phosphorylase b.

    PubMed

    Kyriakis, Efthimios; Stravodimos, George A; Kantsadi, Anastassia L; Chatzileontiadou, Demetra S M; Skamnaki, Vassiliki T; Leonidas, Demetres D

    2015-07-08

    We present a study on the binding of gallic acid and its dimer ellagic acid to glycogen phosphorylase (GP). Ellagic acid is a potent inhibitor with Kis of 13.4 and 7.5 μM, in contrast to gallic acid which displays Kis of 1.7 and 3.9 mM for GPb and GPa, respectively. Both compounds are competitive inhibitors with respect to the substrate, glucose-1-phoshate, and non-competitive to the allosteric activator, AMP. However, only ellagic acid functions with glucose in a strongly synergistic mode. The crystal structures of the GPb-gallic acid and GPb-ellagic acid complexes were determined at high resolution, revealing that both ligands bind to the inhibitor binding site of the enzyme and highlight the structural basis for the significant difference in their inhibitory potency. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Galloylglucoses of low molecular weight as mordant in electron microscopy. II. The moiety and functional groups possibly involved in the mordanting effect

    PubMed Central

    1976-01-01

    Synthetic pentamonogalloylglucose applied to fixed tissues acts as a mordant, inducing high and diversified contrast similar to that obtained with natural gallotannins of low molecular weight (LMGG). By the separate use of each of the two moieties of the galloylglucose molecule, it was found that gallic acid is the mordanting agent. Glucose may contribute, however, to the effect by increasing the solubility and cross-linking potential of the compound, since the mordanting induced by gallic acid alone is weaker than that produced by its hexose esters. As suggested by results obtained with various phenolics and benzoic acid derivatives, the functional groups required for the mordanting effect of such agents are the carboxyl group, and at least one hydroxyl group concomitantly present on the benzene ring. In the case of galloylglucoses, it is assumed that the effect is due to hydrolysis products (gallic, digallic, or trigallic acids) or to the multiple hydroxyl groups of the intact molecule. Esters of gallic acid (propyl- and methylgallate), as well as pyrogallol, produce a "reversed staining" of all membranes, except for those of communicating (gap) junctions. PMID:783173

  6. Free radicals produced by the oxidation of gallic acid: An electron paramagnetic resonance study.

    PubMed

    Eslami, Angelique C; Pasanphan, Wanvimol; Wagner, Brett A; Buettner, Garry R

    2010-08-05

    Gallic acid (3,4,5-trihydroxybenzoic acid) is found in a wide variety of plants; it is extensively used in tanning, ink dyes, as well as in the manufacturing of paper. The gallate moiety is a key component of many functional phytochemicals. In this work electron paramagnetic spectroscopy (EPR) was used to detect the free radicals generated by the air-oxidation of gallic acid. We found that gallic acid produces two different radicals as a function of pH. In the pH range between 7-10, the spectrum of the gallate free radical is a doublet of triplets (aH = 1.00 G, aH = 0.23 G, aH = 0.28 G). This is consistent with three hydrogens providing hyperfine splitting. However, in a more alkaline environment, pH >10, the hyperfine splitting pattern transforms into a 1:2:1 pattern (aH (2) = 1.07 G). Using D2O as a solvent, we demonstrate that the third hydrogen (i.e. aH = 0.28 G) at lower pH is a slowly exchanging hydron, participating in hydrogen bonding with two oxygens in ortho position on the gallate ring. The pKa of this proton has been determined to be 10. This simple and novel approach permitted the understanding of the prototropic equilibrium of the semiquinone radicals generated by gallic acid, a ubiquitous compound, allowing new insights into its oxidation and subsequent reactions.

  7. Agdc1p – a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans

    PubMed Central

    Meier, Anna K.; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (Km −0.7 ± 0.2 mM, kcat −42.0 ± 8.2 s−1) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (Km −3.2 ± 0.2 mM, kcat −44.0 ± 3.2 s−1). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δagdc1] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis-muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be not the only degradation pathway. PMID:28966611

  8. Agdc1p - a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans.

    PubMed

    Meier, Anna K; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (K m -0.7 ± 0.2 mM, k cat -42.0 ± 8.2 s -1 ) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (K m -3.2 ± 0.2 mM, k cat -44.0 ± 3.2 s -1 ). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δ agdc1 ] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis -muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be not the only degradation pathway.

  9. Enhanced oral bioavailability of metoprolol with gallic acid and ellagic acid in male Wistar rats: involvement of CYP2D6 inhibition.

    PubMed

    Athukuri, Bhargavi Latha; Neerati, Prasad

    2016-12-01

    Cytochrome P450-2D6 (CYP2D6), a member of the CYP450 mixed function oxidase system, is an important CYP isoform with regard to herbal-drug interactions and is responsible for the metabolism of nearly 25% of drugs. Until now, studies on the effects of various phytochemicals on CYP2D6 activity in vivo have been very rare. Gallic acid and ellagic acid are natural polyphenols which are widely distributed in fruits and medicinal plants. In the present study, the effects of gallic acid and ellagic acid pretreatment on intestinal transport and oral bioavailability of metoprolol were investigated. The intestinal transport of metoprolol was assessed by conducting an in situ single pass intestinal perfusion (SPIP) study. The bioavailability study was conducted to evaluate the pharmacokinetic parameters of orally administered metoprolol in rats. After pretreatment with gallic acid and ellagic acid, no significant change in effective permeability of metoprolol was observed at the ileum part of rat intestine. A significant improvement in the peak plasma concentration (Cmax) and area under the serum concentration-time profile (AUC) and decrease in clearance were observed in rats pretreated with gallic acid and ellagic acid. Gallic acid and ellagic acid significantly enhanced the oral bioavailability of metoprolol by inhibiting CYP2D6-mediated metabolism in the rat liver. Hence, adverse herbal-drug interactions may result with concomitant ingestion of gallic acid and ellagic acid supplements and drugs that are CYP2D6 substrates. The clinical assessment of these interactions should be further investigated in human volunteers.

  10. Effect of the structure of gallic acid and its derivatives on their interaction with plant ferritin.

    PubMed

    Wang, Qunqun; Zhou, Kai; Ning, Yong; Zhao, Guanghua

    2016-12-15

    Gallic acid and its derivatives co-exist with protein components in foodstuffs, but there is few report on their interaction with proteins. On the other hand, plant ferritin represents not only a novel class of iron supplement, but also a new nanocarrier for encapsulation of bioactive nutrients. However, plant ferritin is easy to be degraded by pepsin in the stomach, thereby limiting its application. Herein, we investigated the interaction of gallic acid and its derivatives with recombinant soybean seed H-2 ferritin (rH-2). We found that these phenolic acids interacted with rH-2 in a structure-dependent manner; namely, gallic acid (GA), methyl gallate (MEGA) and propyl gallate (PG) having three HO groups can bind to rH-2, while their analogues with two HO groups cannot. Consequently, such binding largely inhibited ferritin degradation by pepsin. These findings advance our understanding of the relationship between the structure and function of phenolic acids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A novel, eco-friendly technique for covalent functionalization of graphene nanoplatelets and the potential of their nanofluids for heat transfer applications

    NASA Astrophysics Data System (ADS)

    Sadri, Rad; Hosseini, Maryam; Kazi, S. N.; Bagheri, Samira; Zubir, Nashrul; Ahmadi, Goodarz; Dahari, Mahidzal; Zaharinie, Tuan

    2017-05-01

    In this study, a facile and eco-friendly covalent functionalization technique is developed to synthesize highly stable graphene nanoplatelets (GNPs) in aqueous media. This technique involves free radical grafting of gallic acid onto the surface of GNPs rather than corrosive inorganic acids. Raman spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy are used to confirm the covalent functionalization of GNPs with gallic acid (GAGNPs). The solubility of the GAGNPs in aqueous media is verified using zeta potential and UV-vis spectra measurements. The nanofluid shows significant improvement in thermo-physical properties, indicating its superb potential for various thermal applications.

  12. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    PubMed

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Gallic Acid Induces Apoptosis in Human Gastric Adenocarcinoma Cells.

    PubMed

    Tsai, Chung-Lin; Chiu, Ying-Ming; Ho, Tin-Yun; Hsieh, Chin-Tung; Shieh, Dong-Chen; Lee, Yi-Ju; Tsay, Gregory J; Wu, Yi-Ying

    2018-04-01

    Gastric cancer is one of the most common malignant cancers with a poor prognosis and high mortality rate worldwide. Current treatment of gastric cancer includes surgery and chemotherapy as the main modalities, but the potentially severe side-effects of chemotherapy present a considerable challenge. Gallic acid is a trihydroxybenzoic acid found to exert an anticancer effect against a variety of cancer cells. The purpose of this study was to determine the anti-cancer activity of Galla chinensis and its main component gallic acid on human gastric adenocarcinoma cells. MTT assay and cell death ELISA were used to determine the apoptotic effect of Gallic Chinensis and gallic acid on human gastric adenocarcinoma cells. To determine the pathway and relevant components by which gallic acid-induced apoptosis is mediated through, cells were transfected with siRNA (Fas, FasL, DR5, p53) using Lipofectamine 2000. Reults: Gallic Chinensis and gallic acid induced apoptosis of human gastric adenocarcinoma cells. Gallic acid induced up-regulation of Fas, FasL, and DR5 expression in AGS cells. Transfection of cells with Fas, FasL, or DR5 siRNA reduced gallic acid-induced cell death. In addition, p53 was shown to be involved in gallic acid-mediated Fas, FasL, and DR5 expression as well as cell apoptosis in AGS cells. These results suggest that gallic acid has a potential role in the treatment of gastric cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Protective activity of hamamelitannin on cell damage induced by superoxide anion radicals in murine dermal fibroblasts.

    PubMed

    Masaki, H; Atsumi, T; Sakurai, H

    1995-01-01

    Previously we demonstrated that hamamelitannin (2',5-di-O-galloyl hamamelose) in Hamamelis virginiana L. exhibits potent superoxide-anion scavenging activity. We then examined the physiological and pharmacological activities of hamamelitannin as well as its functional homologues, gallic acid and syringic acid. The following results were obtained: (1) Hamamelitannin has a higher protective activity against cell damages induced by superoxide anions than gallic acid which is the functional moiety of hamamelitannin. The protective activity of hamamelitannin on murine fibroblast-damage induced by superoxide anions was found at a minimum concentration of 50 microM, while the corresponding figure for gallic acid was 100 microM. (2) Pre-treatment of fibroblasts with hamamelitannin enhances cell survival. (3) The superoxide-anion scavenging activity of the compound in terms of its IC50 value (50% inhibition concentration of superoxide anion radicals generated) was evaluated by ESR spin-trapping. Both hamamelitannin (IC50 = 1.31 +/- 0.06 microM) and gallic acid (IC50 = 1.01 +/- 0.03 microM) exhibited high superoxide-anion scavenging activity followed by syringic acid (IC50 = 13.90 +/- 2.38 microM). (4) When hamamelitannin was treated with superoxide anions generated by a KO2-crown ether system, HPLC analysis showed the disappearance of hamamelitannin and the concomitant formation of hamamelitannin-derived radicals (g = 2.005, delta H1 = 2.16 G, delta H2 = 4.69 G) was detected by ESR spectrometry.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats.

    PubMed

    Jin, Li; Piao, Zhe Hao; Liu, Chun Ping; Sun, Simei; Liu, Bin; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Kee, Hae Jin; Jeong, Myung Ho

    2018-03-01

    Hypertension causes cardiac hypertrophy and leads to heart failure. Apoptotic cells are common in hypertensive hearts. Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is associated with apoptosis. We recently demonstrated that gallic acid reduces nitric oxide synthase inhibition-induced hypertension. Gallic acid is a trihydroxybenzoic acid and has been shown to have beneficial effects, such as anti-cancer, anti-calcification and anti-oxidant activity. The purpose of this study was to determine whether gallic acid regulates cardiac hypertrophy and apoptosis in essential hypertension. Gallic acid significantly lowered systolic and diastolic blood pressure in spontaneously hypertensive rats (SHRs). Wheat germ agglutinin (WGA) and H&E staining revealed that gallic acid reduced cardiac enlargement in SHRs. Gallic acid treatment decreased cardiac hypertrophy marker genes, including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), in SHRs. The four isoforms, α, β, δ and γ, of CaMKII were increased in SHRs and were significantly reduced by gallic acid administration. Gallic acid reduced cleaved caspase-3 protein as well as bax, p53 and p300 mRNA levels in SHRs. CaMKII δ overexpression induced bax and p53 expression, which was attenuated by gallic acid treatment in H9c2 cells. Gallic acid treatment reduced DNA fragmentation and the TUNEL positive cells induced by angiotensin II. Taken together, gallic acid could be a novel therapeutic for the treatment of hypertension through suppression of CaMKII δ-induced apoptosis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells

    PubMed Central

    ZHAO, BING; HU, MENGCAI

    2013-01-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa and HTB-35 human cancer cells with gallic acid decreased cell viability in a dose-dependent manner. BrdU proliferation and tube formation assays indicated that gallic acid significantly decreased human cervical cancer cell proliferation and tube formation in human umbilical vein endothelial cells, respectively. Additionally, gallic acid decreased HeLa and HTB-35 cell invasion in vitro. Western blot analysis demonstrated that the expression of ADAM17, EGFR, p-Akt and p-Erk was suppressed by gallic acid in the HeLa and HTB-35 cell lines. These data indicate that the suppression of ADAM17 and the downregulation of the EGFR, Akt/p-Akt and Erk/p-Erk signaling pathways may contribute to the suppression of cancer progression by Gallic acid. Gallic acid may be a valuable candidate for the treatment of cervical cancer. PMID:24843386

  17. The effect of gallic acid on cytotoxicity, Ca(2+) homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes.

    PubMed

    Hsu, Shu-Shong; Chou, Chiang-Ting; Liao, Wei-Chuan; Shieh, Pochuen; Kuo, Daih-Huang; Kuo, Chun-Chi; Jan, Chung-Ren; Liang, Wei-Zhe

    2016-05-25

    Gallic acid, a polyhydroxylphenolic compound, is widely distributed in various plants, fruits and foods. It has been shown that gallic acid passes into blood brain barrier and reaches the brain tissue of middle cerebral artery occlusion rats. However, the effect of gallic acid on Ca(2+) signaling in glia cells is unknown. This study explored whether gallic acid affected Ca(2+) homeostasis and induced Ca(2+)-associated cytotoxicity in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Gallic acid (20-40 μM) concentration-dependently induced cytotoxicity and intracellular Ca(2+) level ([Ca(2+)]i) increases in DBTRG-05MG cells but not in CTX TNA2 cells. In DBTRG-05MG cells, the Ca(2+) response was decreased by half by removal of extracellular Ca(2+). In Ca(2+)-containing medium, gallic acid-induced Ca(2+) entry was inhibited by store-operated Ca(2+) channel inhibitors (2-APB, econazole and SKF96365). In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin abolished gallic acid-induced [Ca(2+)]i increases. Conversely, incubation with gallic acid also abolished thapsigargin-induced [Ca(2+)]i increases. Inhibition of phospholipase C with U73122 abolished gallic acid-induced [Ca(2+)]i increases. Gallic acid significantly caused cytotoxicity in DBTRG-05MG cells, which was partially prevented by prechelating cytosolic Ca(2+) with BAPTA-AM. Moreover, gallic acid activated mitochondrial apoptotic pathways that involved ROS production. Together, in DBTRG-05MG cells but not in CTX TNA2 cells, gallic acid induced [Ca(2+)]i increases by causing Ca(2+) entry via 2-APB, econazole and SKF96365-sensitive store-operated Ca(2+) entry, and phospholipase C-dependent release from the endoplasmic reticulum. This Ca(2+) signal subsequently evoked mitochondrial pathways of apoptosis that involved ROS production. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. An Efficient Protocol for Preparation of Gallic Acid from Terminalia bellirica (Gaertn.) Roxb by Combination of Macroporous Resin and Preparative High-Performance Liquid Chromatography.

    PubMed

    Zou, Denglang; Chen, Tao; Chen, Chen; Li, Hongmei; Liu, Yongling; Li, Yulin

    2016-08-01

    In this article, macroporous resin column chromatography and preparative high-performance liquid chromatography were applied for preparation of gallic acid from Terminalia bellirica (Gaertn.) Roxb. In the first step, six kinds of resins were investigated by adsorption and desorption tests and AB-8 macroporous resin was selected for the enrichment of gallic acid. As a result, 20 g of gallic acid at a purity of 71% could be separated from 100 g of crude extract in which the content of gallic acid was 16.7% and the recovery of gallic acid reached 85.0%. In the second step, preparative high-performance liquid chromatography was selected to purify gallic acid. As a result, 640 mg of gallic acid at a purity of 99.1% was obtained from 1 g of sample in 35 min. The results demonstrated that macroporous resin coupled with preparative high-performance liquid chromatography was suitable for preparation of gallic acid from T. bellirica (Gaertn.) Roxb. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Gallic acid targets acute myeloid leukemia via Akt/mTOR-dependent mitochondrial respiration inhibition.

    PubMed

    Gu, Ruixin; Zhang, Minqin; Meng, Hu; Xu, Dandan; Xie, Yonghua

    2018-06-05

    Gallic acid is one of the many phenolic acids that can be found in dietary substances and traditional medicine herbs. The anti-cancer activities of gallic acid have been shown in various cancers but its underlying molecular mechanisms are not well understood. In this study, we show Akt/mammalian target of rapamycin (mTOR)-dependent inhibition of mitochondrial respiration as a mechanism of gallic acid's action in acute myeloid leukemia (AML). Gallic acid significantly induces apoptosis of AML cell lines, primary mononuclear cells (MNC) and CD34 stem/progenitors isolated form AML patients via caspase-dependent pathway. It also significantly enhances two standard AML chemotherapeutic agents' efficacy in vitro cell culture system and in vivo xenograft model. Gallic acid inhibits dose- and time-dependent mitochondrial respiration, leading to decreased ATP production and oxidative stress. Overexpression of constitutively active Akt restores gallic acid-mediated inhibition of mTOR signaling, mitochondrial dysfunction, energy crisis and apoptosis. Our results demonstrate that mitochondrial respiration inhibition by gallic acid is a consequence of Akt/mTOR signaling suppression. Our findings suggest that combination therapy with gallic acid may enhance antileukemic efficacy of standard chemotherapeutic agents in AML. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Gallic Acid Protects 6-OHDA Induced Neurotoxicity by Attenuating Oxidative Stress in Human Dopaminergic Cell Line.

    PubMed

    Chandrasekhar, Y; Phani Kumar, G; Ramya, E M; Anilakumar, K R

    2018-06-01

    Gallic acid is one of the most important polyphenolic compounds, which is considered an excellent free radical scavenger. 6-Hydroxydopamine (6-OHDA) is a neurotoxin, which has been implicated in mainly Parkinson's disease (PD). In this study, we investigated the molecular mechanism of the neuroprotective effects of gallic acid on 6-OHDA induced apoptosis in human dopaminergic cells, SH-SY5Y. Our results showed that 6-OHDA induced cytotoxicity in SH-SY5Y cells was suppressed by pre-treatment with gallic acid. The percentage of live cells (90%) was high in the pre-treatment of gallic acid when compared with 6-OHDA alone treated cell line. Moreover, gallic acid was very effective in attenuating the disruption of mitochondrial membrane potential, elevated levels of intracellular ROS and apoptotic cell death induced by 6-OHDA. Gallic acid also lowered the ratio of the pro-apoptotic Bax protein and the anti-apoptotic Bcl-2 protein in SH-SY5Y cells. 6-OHDA exposure was up-regulated caspase-3 and Keap-1 and, down-regulated Nrf2, BDNF and p-CREB, which were sufficiently reverted by gallic acid pre-treatment. These findings indicate that gallic acid is able to protect the neuronal cells against 6-OHDA induced injury and proved that gallic acid might potentially serve as an agent for prevention of several human neurodegenerative diseases caused by oxidative stress and apoptosis.

  1. Probing Gallic Acid for Its Broad Spectrum Applications.

    PubMed

    Choubey, Sneha; Goyal, Soniya; Varughese, Lesley Rachel; Kumar, Vinod

    2018-03-29

    Gallic acid and its derivatives not only exhibit excellent antioxidant, anticarcinogenic, antimutagenic, antimicrobial properties but also provide protection to the cells against oxidative stress. Gallic acid (3, 4, 5-trihydroxybenzoic acid), a low molecular triphenolic compound has arised as an efficient apoptosis inducing agent. The antimicrobial and other biological properties of gallic acid and its derivatives seemed to be linked with the hydrolysis of ester linkage between gallic acid and polyols like tannins hydrolyzed after ripening of many edible fruits. Gallic acid serves a natural defense mechanism against microbial infections and modulation of immune-responses. The current review updates us with the diverse roles played by gallic acid, its antioxidant potential, action mechanism and more importantly the diverse array of applications in therapeutic and pharmaceutical area. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Gallic Acid Inhibited Matrix Invasion and AP-1/ETS-1-Mediated MMP-1 Transcription in Human Nasopharyngeal Carcinoma Cells

    PubMed Central

    S. Pang, Jong-Hwei; Yen, Jia-Hau; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2017-01-01

    Gallic acid is a trihydroxybenzoic acid found in natural herbal plants. Gallic acid has been reported to inhibit the migration and invasive capability of various cancers. Little is known about the underlying mechanisms of invasion responsible for cancer metastasis via gallic acid. The present study was intended to investigate the anti-invasive effect of gallic acid on human nasopharyngeal carcinoma cells (NPC-BM1) and its related mechanism. Gallic acid inhibited the invasion of NPC-BM1 cells dose- and time-dependently without significant cytotoxic effect. Affymetrix oligonucleotide microarray analysis revealed matrix metalloproteinase-1 (MMP-1) as the most down-regulated gene in NPC-BM1 cells by gallic acid. The cytosolic and secreted MMP-1 levels were both found to be inhibited by gallic acid as demonstrated by western blot analysis and ELISA respectively. The mRNA expression and transcription of MMP-1 gene was also down-regulated as determined by RT/real-time PCR and promoter activity assay. The expression of two major transcription binding factors in the MMP-1 promoter, AP-1 and ETS-1, were demonstrated to be reduced by gallic acid in NPC-BM1 cells. The effect of gallic acid was associated with the inhibition of p38 MAPK signaling pathway. In addition, gallic acid enhanced the gene expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) which further suppressed the MMP-1 activity. These findings may be useful to develop a novel chemotherapeutic agent to inhibit the metastasis of nasopharyngeal cancer. PMID:28672814

  3. Gallic Acid Inhibited Matrix Invasion and AP-1/ETS-1-Mediated MMP-1 Transcription in Human Nasopharyngeal Carcinoma Cells.

    PubMed

    Pang, Jong-Hwei S; Yen, Jia-Hau; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2017-06-24

    Gallic acid is a trihydroxybenzoic acid found in natural herbal plants. Gallic acid has been reported to inhibit the migration and invasive capability of various cancers. Little is known about the underlying mechanisms of invasion responsible for cancer metastasis via gallic acid. The present study was intended to investigate the anti-invasive effect of gallic acid on human nasopharyngeal carcinoma cells (NPC-BM1) and its related mechanism. Gallic acid inhibited the invasion of NPC-BM1 cells dose- and time-dependently without significant cytotoxic effect. Affymetrix oligonucleotide microarray analysis revealed matrix metalloproteinase-1 (MMP-1) as the most down-regulated gene in NPC-BM1 cells by gallic acid. The cytosolic and secreted MMP-1 levels were both found to be inhibited by gallic acid as demonstrated by western blot analysis and ELISA respectively. The mRNA expression and transcription of MMP-1 gene was also down-regulated as determined by RT/real-time PCR and promoter activity assay. The expression of two major transcription binding factors in the MMP-1 promoter, AP-1 and ETS-1, were demonstrated to be reduced by gallic acid in NPC-BM1 cells. The effect of gallic acid was associated with the inhibition of p38 MAPK signaling pathway. In addition, gallic acid enhanced the gene expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) which further suppressed the MMP-1 activity. These findings may be useful to develop a novel chemotherapeutic agent to inhibit the metastasis of nasopharyngeal cancer.

  4. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity.

    PubMed

    de Cristo Soares Alves, Aline; Mainardes, Rubiana Mara; Khalil, Najeh Maissar

    2016-03-01

    Gallic acid is an important polyphenol compound presenting various biological activities. The objective of this study was to prepare, characterize and evaluate poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated or not with polysorbate 80 (PS80) containing gallic acid. Nanoparticles coated or not with PS80 were produced by emulsion solvent evaporation method and presented a mean size of around 225 nm, gallic acid encapsulation efficiency of around 26% and zeta potential of -22 mV. Nanoparticle formulations were stable during storage, except nanoparticles coated with PS80 stored at room temperature. In vitro release profile demonstrated a quite sustained gallic acid release from nanoparticles and PS80-coating decreased drug release. Cytotoxicity over red blood cells was assessed and gallic acid-loaded PLGA nanoparticles at all analyzed concentrations demonstrated lack of hemolysis, while PS80-nanoparticles containing gallic acid were cytotoxic only in higher concentrations. Antioxidant potential of nanoparticles containing gallic acid was assessed and PLGA uncoated nanoparticles presented greater efficacy than PS80-coated PLGA nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effects of gallic acid on delta - aminolevulinic dehydratase activity and in the biochemical, histological and oxidative stress parameters in the liver and kidney of diabetic rats.

    PubMed

    de Oliveira, Lizielle Souza; Thomé, Gustavo Roberto; Lopes, Thauan Faccin; Reichert, Karine Paula; de Oliveira, Juliana Sorraila; da Silva Pereira, Aline; Baldissareli, Jucimara; da Costa Krewer, Cristina; Morsch, Vera Maria; Chitolina Schetinger, Maria Rosa; Spanevello, Roselia Maria

    2016-12-01

    Diabetes mellitus (DM) is characterised by hyperglycaemia associated with the increase of oxidative stress. Gallic acid has potent antioxidant properties. The aim of this study was to evaluate the effect of gallic acid on the biochemical, histological and oxidative stress parameters in the liver and kidney of diabetic rats. Male rats were divided in groups: control, gallic acid, diabetic and diabetic plus gallic acid. DM was induced in the animals by intraperitoneal injection of streptozotocin (65mg/kg). Gallic acid (30mg/kg) was administered orally for 21days. Our results showed an increase in reactive species levels and lipid peroxidation, and a decrease in activity of the enzymes superoxide dismutase and delta-aminolevulinic acid dehydratase in the liver and kidney of the diabetic animals (P<0.05). Gallic acid treatment showed protective effects in these parameters evaluated, and also prevented a decrease in the activity of catalase and glutathione S-transferase, and vitamin C levels in the liver of diabetic rats. In addition, gallic acid reduced the number of nuclei and increased the area of the core in hepatic tissue, and increased the glomerular area in renal tissue. These results indicate that gallic acid can protect against oxidative stress-induced damage in the diabetic state. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Use of Gallic Acid to Enhance the Antioxidant and Mechanical Properties of Active Fish Gelatin Film.

    PubMed

    Limpisophon, Kanokrat; Schleining, Gerhard

    2017-01-01

    This study explores the potential roles of gallic acid in fish gelatin film for improving mechanical properties, UV barrier, and providing antioxidant activities. Glycerol, a common used plasticizer, also impacts on mechanical properties of the film. A factorial design was used to investigate the effects of gallic acid and glycerol concentrations on antioxidant activities and mechanical properties of fish gelatin film. Increasing the amount of gallic acid increased the antioxidant capacities of the film measured by radical scavenging assay and the ferric reducing ability of plasma assay. The released antioxidant power of gallic acid from the film was not reduced by glycerol. The presence of gallic acid not only increased the antioxidant capacity of the film, but also increased the tensile strength, elongation at break, and reduced UV absorption due to interaction between gallic acid and protein by hydrogen bonding. Glycerol did not affect the antioxidant capacities of the film, but increased the elasticity of the films. Overall, this study revealed that gallic acid entrapped in the fish gelatin film provided antioxidant activities and improved film characteristics, namely UV barrier, strength, and elasticity of the film. © 2016 Institute of Food Technologists®.

  7. Combined Efficacy of Gallic Acid and MiADMSA with Limited Beneficial Effects Over MiADMSA Against Arsenic-induced Oxidative Stress in Mouse

    PubMed Central

    Pachauri, Vidhu; Flora, SJS

    2015-01-01

    Gallic acid is an organic acid known for its antioxidant and anticancer properties. The present study is focused on evaluating the role of gallic acid in providing better therapeutic outcomes against arsenic-induced toxicity. Animals pre-exposed to arsenic were treated with monoisoamyl meso-2,3-dimercaptosuccinic acid (MiADMSA), a new chelating drug, alone and in combination with gallic acid, consecutively for 10 days. The study suggests that (1) gallic acid in presence of MiADMSA is only moderately beneficial against arsenic, (2) monotherapy with gallic acid is more effective than in combination with MiADMSA after arsenic exposure in reducing oxidative injury, and (3) MiADMSA monotherapy as reported previously provides significant therapeutic efficacy against arsenic. Thus, based on the present results, we conclude that gallic acid is effective against arsenic-induced oxidative stress but provides limited additional beneficial effects when administered in combination with MiADMSA. We still recommend that lower doses of gallic acid be evaluated both individually and in combination with MiADMSA, as it might not exhibit the shortcomings we observed with higher doses in this study. PMID:26339189

  8. Protective effect of gallic acid in experimental model of ketamine-induced psychosis: possible behaviour, biochemical, neurochemical and cellular alterations.

    PubMed

    Yadav, Monu; Jindal, Deepak Kumar; Dhingra, Mamta Sachdeva; Kumar, Anil; Parle, Milind; Dhingra, Sameer

    2018-04-01

    Gallic acid has been reported to possess a number of psychopharmacological activities. These activities are attributed to the antioxidant potential due to the presence of phenolic moeity. The present study was carried out to investigate the protective effects of gallic acid in an experimental model of ketamine-induced psychosis in mice. Ketamine (50 mg/kg, i.p.) was used to induce stereotyped psychotic behavioural symptoms in mice. Behavioural studies (locomotor activity, stereotype behaviour, immobility duration and memory retention) were carried out to investigate the protective of gallic acid on ketamine-induced psychotic symptoms, followed by biochemical and neurochemical changes and cellular alterations in the brain. Chronic treatment with gallic acid for 15 consecutive days significantly attenuated stereotyped behavioural symptoms in mice. Biochemical estimations revealed that gallic acid reduced the lipid peroxidation and restored the total brain proteins. Furthermore, gallic acid remarkably reduced the dopamine levels, AChE activity and inflammatory surge (serum TNF-α), and increased the levels of GABA and increased glutathione in mice. The study revealed that gallic acid could ameliorate psychotic symptoms and biochemical changes in mice, indicating protective effects in psychosis.

  9. Combined Efficacy of Gallic Acid and MiADMSA with Limited Beneficial Effects Over MiADMSA Against Arsenic-induced Oxidative Stress in Mouse.

    PubMed

    Pachauri, Vidhu; Flora, Sjs

    2015-01-01

    Gallic acid is an organic acid known for its antioxidant and anticancer properties. The present study is focused on evaluating the role of gallic acid in providing better therapeutic outcomes against arsenic-induced toxicity. Animals pre-exposed to arsenic were treated with monoisoamyl meso-2,3-dimercaptosuccinic acid (MiADMSA), a new chelating drug, alone and in combination with gallic acid, consecutively for 10 days. The study suggests that (1) gallic acid in presence of MiADMSA is only moderately beneficial against arsenic, (2) monotherapy with gallic acid is more effective than in combination with MiADMSA after arsenic exposure in reducing oxidative injury, and (3) MiADMSA monotherapy as reported previously provides significant therapeutic efficacy against arsenic. Thus, based on the present results, we conclude that gallic acid is effective against arsenic-induced oxidative stress but provides limited additional beneficial effects when administered in combination with MiADMSA. We still recommend that lower doses of gallic acid be evaluated both individually and in combination with MiADMSA, as it might not exhibit the shortcomings we observed with higher doses in this study.

  10. Effect of gallic and protocatechuic acids on the metabolism of ethyl carbamate in Chinese yellow rice wine brewing.

    PubMed

    Zhou, Wanyi; Fang, Ruosi; Chen, Qihe

    2017-10-15

    It was studied that gallic and protocatechuic acids played important roles in ethyl carbamate (EC) forming. Gallic and protocatechuic acids can reduce the arginine consumption through inhibiting the arginine deiminase enzyme. Therefore, they are generally added to regulate EC catabolism in the course of yellow rice wine leavening at the third day. In this work, gallic and protocatechuic acids made little influence on the growth of Saccharomyces cerevisiae. Besides, the addition of 200mg/L gallic or protocatechuic acid could prevent the transformation from urea/citrulline to EC. Gallic acid showed better inhibiting effect that the content of EC could be reduced by 91.9% at most. Furthermore, the production of amino acids and volatile flavor compounds are not markedly affected by phenolic compounds. The discoveries reveal that EC can be reduced by supplying gallic acid or protocatechuic acid while yellow rice wine leavening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Synthesis, structure and characterization of a hybrid centrosymmetric material (4-dimethylaminopyridinium nitrate gallic acid monohydrate) well-designed for non-linear optics

    NASA Astrophysics Data System (ADS)

    Ennaceur, Nasreddine; Jalel, Boutheina; Henchiri, Rokaya; Cordier, Marie; Ledoux-Rak, Isabelle

    2018-01-01

    Hybrid material: 4-Dimethylaminopyridinium nitrate gallic acid monohydrate abbreviated DNGA monohydrate has been successfully synthesized by slow evaporation method at room temperature. X-ray diffraction (XRD) on a single crystal showed that the latter was crystallized in P-1 space group. Likewise, thermal analyses demonstrated the stability of our crystal up to 80 °C. Besides, the analysis of the infrared spectrum (FTIR), allowed us to confirm the presence of the different groups present in the structure. Furthermore, by studying the UV-Visible spectrum, the transparency of our crystal was proven. Despite the fact that of having a centrosymmetric structure, the nonlinear optical properties of our single crystal, which was tested by Kurtz-Perry technique, proved that its second harmonic generation efficiency was 1.22 times more than that of KDP (potassium dihydrogen phosphate) single crystal. This nonlinear optical behavior of the studied compound was also determined through the calculations of polarizability and first hyperpolarizability values.

  12. The Microbiota Is Essential for the Generation of Black Tea Theaflavins-Derived Metabolites

    PubMed Central

    Chen, Huadong; Hayek, Saeed; Rivera Guzman, Javier; Gillitt, Nicholas D.; Ibrahim, Salam A.; Jobin, Christian; Sang, Shengmin

    2012-01-01

    Background Theaflavins including theaflavin (TF), theaflavin-3-gallate (TF3G), theaflavin-3′-gallate (TF3′G), and theaflavin-3,3′-digallate (TFDG), are the most important bioactive polyphenols in black tea. Because of their poor systemic bioavailability, it is still unclear how these compounds can exert their biological functions. The objective of this study is to identify the microbial metabolites of theaflavins in mice and in humans. Methods and Findings In the present study, we gavaged specific pathogen free (SPF) mice and germ free (GF) mice with 200 mg/kg TFDG and identified TF, TF3G, TF3′G, and gallic acid as the major fecal metabolites of TFDG in SPF mice. These metabolites were absent in TFDG- gavaged GF mice. The microbial bioconversion of TFDG, TF3G, and TF3′G was also investigated in vitro using fecal slurries collected from three healthy human subjects. Our results indicate that TFDG is metabolized to TF, TF3G, TF3′G, gallic acid, and pyrogallol by human microbiota. Moreover, both TF3G and TF3′G are metabolized to TF, gallic acid, and pyrogallol by human microbiota. Importantly, we observed interindividual differences on the metabolism rate of gallic acid to pyrogallol among the three human subjects. In addition, we demonstrated that Lactobacillus plantarum 299v and Bacillus subtilis have the capacity to metabolize TFDG. Conclusions The microbiota is important for the metabolism of theaflavins in both mice and humans. The in vivo functional impact of microbiota-generated theaflavins-derived metabolites is worthwhile of further study. PMID:23227227

  13. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of Gallic acid imprinted polymers

    NASA Astrophysics Data System (ADS)

    Pardeshi, Sushma; Dhodapkar, Rita; Kumar, Anupama

    2013-12-01

    Gallic acid (GA) is known by its antioxidant, anticarcinogenic properties and scavenger activity against several types of harmful free radicals. Molecularly imprinted polymers (MIPs) are used in separation of a pure compound from complex matrices. A stable template-monomer complex generates the MIPs with the highest affinity and selectivity for the template. The quantum chemical computations based on density functional theory (DFT) was used on the template Gallic acid (GA), monomer acrylic acid (AA) and GA-AA complex to study the nature of interactions involved in the GA-AA complex. B3LYP/6-31+G(2d,2p) model chemistry was used to optimize their structures and frequency calculations. The effect of porogen acetonitrile (ACN) on complex formation was included by using polarizable continuum model (PCM). The results demonstrated the formation of a stable GA-AA complex through the intermolecular hydrogen bonding between carboxylic acid groups of GA and AA. The Mulliken atomic charge analysis and simulated vibrational spectra also supported the stable hydrogen bonding interaction between the carboxylic acid groups of GA and AA with minimal interference of porogen ACN. Further, simulations on GA-AA mole ratio revealed that 1:4 GA-AA was optimum for synthesis of MIP for GA.

  14. Inhibition of Melanogenesis by Gallic Acid: Possible Involvement of the PI3K/Akt, MEK/ERK and Wnt/β-Catenin Signaling Pathways in B16F10 Cells

    PubMed Central

    Su, Tzu-Rong; Lin, Jen-Jie; Tsai, Chi-Chu; Huang, Tsu-Kei; Yang, Zih-Yan; Wu, Ming-O; Zheng, Yu-Qing; Su, Ching-Chyuan; Wu, Yu-Jen

    2013-01-01

    Gallic acid is one of the major flavonoids found in plants. It acts as an antioxidant, and seems to have anti-inflammatory, anti-viral, and anti-cancer properties. In this study, we investigated the effects of gallic acid on melanogenesis, including the activation of melanogenesis signaling pathways. Gallic acid significantly inhibited both melanin synthesis and tyrosinase activity in a dose- and time-dependent manner, and decreased the expression of melanogenesis-related proteins, such as microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP1), and dopachrome tautomerase (Dct). In addition, gallic acid also acts by phosphorylating and activating melanogenesis inhibitory proteins such as Akt and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK). Using inhibitors against PI3K/Akt (LY294002) or MEK/ERK-specific (PD98059), the hypopigmentation effect was suppressed, and the gallic acid-initiated activation of MEK/ERK and PI3K/Akt was also revoked. Gallic acid also increased GSK3β and p-β-catenin expression but down-regulated p-GSK3β. Moreover, GSK3β-specific inhibitor (SB216763) restored gallic acid-induced melanin reduction. These results suggest that activation of the MEK/ERK, PI3K/Akt, and inhibition of Wnt/β-catenin signaling pathways is involved in the melanogenesis signaling cascade, and that activation by gallic acid reduces melanin synthesis via down-regulation of MITF and its downstream signaling pathway. In conclusion, gallic acid may be a potentially agent for the treatment of certain skin conditions. PMID:24129178

  15. Gallic acid attenuates type I diabetic nephropathy in rats.

    PubMed

    Garud, Mayuresh Sudamrao; Kulkarni, Yogesh Anant

    2018-02-25

    Literature suggests that TGF-β1 has a central role in the progression of diabetic nephropathy and its down regulation can improve the disease condition. Oxidative stress, generation of advanced glycation end products and activation of renin angiotensin system are the connecting links between hyperglycemia and TGF-β1 over expression. Gallic acid is a phytochemical having wide range of biological activities. Gallic acid is reported to have antioxidant and advanced glycation inhibitory activity. It has also shown inhibitory effects on angiotensin converting enzyme. Gallic acid qualifies as a drug candidate to be tested in the diabetic nephropathy, one of the important complication of diabetes. Streptozotocin (55 mg/kg body weight, i.p.) induced diabetic nephropathy was used as an experimental model. Gallic acid was evaluated for its possible effect at the dose of 20 and 40 mg/kg body weight. Gallic acid treatment significantly lowered plasma levels of the creatinine and blood urea nitrogen and elevated the levels of the protein and albumin. Gallic acid also improved creatinine clearance. Determination of oxidative stress parameters showed that the oxidative stress in kidney tissues was reduced significantly in gallic acid treated animals. Results of the plasma, urine and oxidative stress parameters were also reflected in the histopathological evaluation showing improvement in kidney pathophysiology. ELISA assay for circulating TGF-β1 evaluation and immunohistochemical study for determination of kidney expression of TGF-β1 revealed that gallic acid significantly lowered both the circulating and tissue levels of TGF-β1. Results support the hypothesis that gallic acid can be effectively used in the treatment of diabetic nephropathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Time-dependent inhibition of CYP3A4 by gallic acid in human liver microsomes and recombinant systems.

    PubMed

    Pu, Qiang-Hong; Shi, Liang; Yu, Chao

    2015-03-01

    1.Gallic acid is a main polyphenol in various fruits and plants. Inhibitory characteristics of gallic acid on CYP3A4 were still unclear. The objective of this work is hence to investigate inhibitory characteristics of gallic acid on CYP3A4 using testosterone as the probe substrate in human liver microsomes (HLMs) and recombinant CYP3A4 (rCYP3A4) systems. 2.Gallic acid caused concentration-dependent loss of CYP3A4 activity with IC50 values of 615.2 μM and 669.5 μM in HLM and rCYP3A4 systems, respectively. IC50-shift experiments showed that pre-incubation with gallic acid in the absence of NADPH contributed to 12- or 14-fold reduction of IC50 in HLM and rCYP3A4 systems, respectively, supporting a time-dependent inhibition. In HLM, time-dependent inactivation variables KI and Kinact were 485.8 μM and 0.05 min(-1), respectively. 3.Compared with the presence of NADPH, pre-incubation of gallic acid in the absence of NADPH markedly increased its inhibitory effects in HLM and rCYP3A4 systems. Those results indicate that CYP3A4 inactivation by gallic acid was independent on NADPH and was mainly mediated its oxidative products. 4.In conclusion, we showed that gallic acid weakly and time-dependently inactivated CYP3A4 via its oxidative products.

  17. Prophylactic Antioxidant Potential of Gallic Acid in Murine Model of Sepsis

    PubMed Central

    Maurya, Harikesh; Mangal, Vaishali; Gandhi, Sanjay; Prabhu, Kathiresan; Ponnudurai, Kathiresan

    2014-01-01

    Present study is to investigate the effect of Gallic acid pretreatment on survival of septic animals and oxidative stress in different organs like lungs, liver, kidney, spleen, and vascular dysfunction of mice. Sepsis was induced by cecal ligation and puncture (CLP) in healthy adult male albino mice (25–30 g) and was divided into 3 groups each consisting of 6 animals, that is, sham-operated (SO group (Group I), SO + sepsis (Group II), and Gallic acid + sepsis (Group III)). Group III animals were pretreated with Gallic acid at the dose rate of 20 mg/kg body weight for 2 days before induction of sepsis. Animals were sacrificed on 8th day and the tissue samples were obtained for further investigation on lipid peroxidation (LPO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GSH). Gallic acid pretreatment significant (P < 0.05) reduces kidney, spleen, liver, and lungs' malondialdehyde level in septic mice. However, it fails to improve reduced glutathione level in all given organs, while, Gallic acid pretreated mice showed significant improvement in SOD activity of kidney and spleen when compared to septic mice. Finally, the beneficial effects of Gallic acid pretreatment in sepsis are evident from the observations that Gallic acid partially restored SOD and catalase activity and completely reversed lipid peroxidation. Further studies are required to find out the possible mechanisms underlying the beneficial effects of Gallic acid on large population. PMID:25018890

  18. The anti-inflammatory and anti-apoptotic effects of gallic acid against mucosal inflammation- and erosions-induced by gastric ischemia-reperfusion in rats

    PubMed Central

    Mard, Seyyed Ali; Mojadami, Shahnaz; Farbood, Yaghoob; Gharib Naseri, Mohammad Kazem

    2015-01-01

    The present study aimed to evaluate the protective effect of gallic acid on gastric mucosal lesions caused by ischemia-reperfusion (I/R) injury in rat. Forty male rats were randomly divided into sham, control (I/R injury) and three gallic acid-pretreated groups. To induce I/R lesions, the celiac artery was clamped for 30 min and then the clamp was removed to allow reperfusion for 6 hr. Pretreated rats received gallic acid (15, 30 or 60 mg kg-1, intraperitoneally) 30 min prior to the induction of I/R injury. Macroscopic and microscopic evaluations of the areas of ulceration were compared. Samples of gastric mucosa were collected to evaluate the protein expression of pro-apoptotic factor, caspase-3, and pro-inflammatory enzyme, inducible nitric oxide synthase (iNOS) using western blot. Pretreatment with gallic acid decreased the total area of gastric lesions. Gallic acid at 30 mg kg-1 decreased the levels of protein expression of caspase-3 and iNOS induced by I/R injury. Our findings showed the protective effect of gallic acid on gastric mucosa against ischemia-reperfusion injury. This effect of gallic acid was mainly mediated by reducing protein expression of iNOS and caspase-3. PMID:26973766

  19. The anti-inflammatory and anti-apoptotic effects of gallic acid against mucosal inflammation- and erosions-induced by gastric ischemia-reperfusion in rats.

    PubMed

    Mard, Seyyed Ali; Mojadami, Shahnaz; Farbood, Yaghoob; Gharib Naseri, Mohammad Kazem

    2015-01-01

    The present study aimed to evaluate the protective effect of gallic acid on gastric mucosal lesions caused by ischemia-reperfusion (I/R) injury in rat. Forty male rats were randomly divided into sham, control (I/R injury) and three gallic acid-pretreated groups. To induce I/R lesions, the celiac artery was clamped for 30 min and then the clamp was removed to allow reperfusion for 6 hr. Pretreated rats received gallic acid (15, 30 or 60 mg kg(-1), intraperitoneally) 30 min prior to the induction of I/R injury. Macroscopic and microscopic evaluations of the areas of ulceration were compared. Samples of gastric mucosa were collected to evaluate the protein expression of pro-apoptotic factor, caspase-3, and pro-inflammatory enzyme, inducible nitric oxide synthase (iNOS) using western blot. Pretreatment with gallic acid decreased the total area of gastric lesions. Gallic acid at 30 mg kg(-1) decreased the levels of protein expression of caspase-3 and iNOS induced by I/R injury. Our findings showed the protective effect of gallic acid on gastric mucosa against ischemia-reperfusion injury. This effect of gallic acid was mainly mediated by reducing protein expression of iNOS and caspase-3.

  20. Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure.

    PubMed

    Jin, Li; Piao, Zhe Hao; Sun, Simei; Liu, Bin; Ryu, Yuhee; Choi, Sin Young; Kim, Gwi Ran; Kim, Hyung-Seok; Kee, Hae Jin; Jeong, Myung Ho

    2017-12-01

    Gallic acid, a trihydroxybenzoic acid found in tea and other plants, attenuates cardiac hypertrophy, fibrosis, and hypertension in animal models. However, the role of gallic acid in heart failure remains unknown. In this study, we show that gallic acid administration prevents heart failure-induced pulmonary fibrosis. Heart failure induced in mice, 8weeks after transverse aortic constriction (TAC) surgery, was confirmed by echocardiography. Treatment for 2weeks with gallic acid but not furosemide prevented cardiac dysfunction in mice. Gallic acid significantly inhibited TAC-induced pathological changes in the lungs, such as increased lung mass, pulmonary fibrosis, and damaged alveolar morphology. It also decreased the expression of fibrosis-related genes, including collagen types I and III, fibronectin, connective tissue growth factor (CTGF), and phosphorylated Smad3. Further, it inhibited the expression of epithelial-mesenchymal transition (EMT)-related genes, such as N-cadherin, vimentin, E-cadherin, SNAI1, and TWIST1. We suggest that gallic acid has therapeutic potential for the treatment of heart failure-induced pulmonary fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Effect of gallic acid/chitosan coating on fresh pork quality in modified atmosphere packaging.

    PubMed

    Fang, Zhongxiang; Lin, Daniel; Warner, Robyn Dorothy; Ha, Minh

    2018-09-15

    Fresh meat safety and quality is a major concern of consumers in the current food market. The objective of this research was to investigate a newly developed gallic acid/chitosan edible coating on the preservation of fresh pork quality in modified atmosphere package (MAP) stored at 4 °C. The pork loins were coated with 2% chitosan (CHI), 0.2% gallic acid in 2% chitosan (CHI/0.2G), or 0.4% gallic acid in 2% chitosan (CHI/0.4G). Results showed that the antimicrobial activity of the chitosan coating was increased with the incorporation of gallic acid. The CHI/0.2G and CHI/0.4G pork loins also had lower lipid oxidation and myoglobin oxidation. However, the CHI/0.4G sample exhibited a pro-protein oxidation effect, suggesting an optimal concentration of gallic acid should be incorporated. This research provides a practical method in application of gallic acid/chitosan coatings on preservation of fresh pork to improve the safety and quality in MAP environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Gallic Acid Decreases Inflammatory Cytokine Secretion Through Histone Acetyltransferase/Histone Deacetylase Regulation in High Glucose-Induced Human Monocytes.

    PubMed

    Lee, Wooje; Lee, Sang Yeol; Son, Young-Jin; Yun, Jung-Mi

    2015-07-01

    Hyperglycemia contributes to diabetes and several diabetes-related complications. Gallic acid is a polyhydroxy phenolic compound found in various natural products. In this study, we investigated the effects and mechanism of gallic acid on proinflammatory cytokine secretion in high glucose-induced human monocytes (THP-1 cells). THP-1 cells were cultured under normoglycemic or hyperglycemic conditions, in the absence or presence of gallic acid. Hyperglycemic conditions significantly induced histone acetylation, nuclear factor-κB (NF-κB) activation, and proinflammatory cytokine release from THP-1 cells, whereas gallic acid suppressed NF-κB activity and cytokine release. It also significantly reduced CREB-binding protein/p300 (CBP/p300, a NF-κB coactivator) gene expression, acetylation levels, and CBP/p300 histone acetyltransferase (HAT) activity. In addition, histone deacetylase 2 (HDAC2) expression was significantly induced. These results suggest that gallic acid inhibits hyperglycemic-induced cytokine production in monocytes through epigenetic changes involving NF-κB. Therefore, gallic acid may have potential for the treatment and prevention of diabetes and its complications.

  3. The Influence of Prefermentative Addition of Gallic Acid on the Phenolic Composition and Chromatic Characteristics of Cabernet Sauvignon Wines.

    PubMed

    Liu, Yue; Zhang, Bo; He, Fei; Duan, Chang-Qing; Shi, Ying

    2016-07-01

    In this study, the prefermentative addition of gallic acid in Cabernet Sauvignon red winemaking was performed. The influence of gallic acid addition on wine phenolic composition, the ratio of copigmentation, and the color parameters were monitored throughout the winemaking process. The results showed that the prefermentative addition of gallic acid enhanced the extraction of total anthocyanins and the copigmentation effect, producing wines with more darkness, redness, yellowness, and saturation. Moreover, the addition of gallic acid contributed to the concentration of total phenolic acids. However, it had a negative effect on the concentrations of flavonols and flavan-3-ols in the final wines. Thus, the prefermentative addition of gallic acid at appropriate levels might be a promising enological technology to obtain wines with high color quality and aging potential. © 2016 Institute of Food Technologists®

  4. Gallic acid inhibits vascular calcification through the blockade of BMP2-Smad1/5/8 signaling pathway.

    PubMed

    Kee, Hae Jin; Cho, Soo-Na; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Kim, In Kyeom; Hong, Young Joon; Park, Hyung Wook; Ahn, Youngkeun; Cho, Jeong Gwan; Park, Jong Chun; Jeong, Myung Ho

    2014-11-01

    Vascular calcification is associated with increased risk of morbidity and mortality in patients with cardiovascular diseases, chronic kidney diseases, and diabetes. Gallic acid, a natural compound found in gallnut and green tea, is known to be antifungal, antioxidant, and anticancer. Here we investigated the effect of gallic acid on vascular smooth muscle cell (VSMC) calcification and the underlying mechanism. Gallic acid inhibited inorganic phosphate-induced osteoblast differentiation markers as well as calcification phenotypes (as determined by calcium deposition, Alizarin Red, and Von Kossa staining). Knockdown of BMP2 or Noggin blocked phosphate-induced calcification. Gallic acid suppressed phosphorylation of Smad1/5/8 protein induced by inorganic phosphate. Taken together, we suggest that gallic acid acts as a novel therapeutic agent of vascular calcification by mediating BMP2-Smad1/5/8 signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Initial Evaluation of Advanced Powder Metallurgy Magnesium Alloys for Armor Development

    DTIC Science & Technology

    2009-05-01

    28911 LEGANES MADRID SPAIN 1 CELIUS MATERIAL TEKNIK KARLSKOGA AB L HELLNER S 69180 KARLSKOGA SWEDEN 3 CENTRE D’ETUDES GRAMAT ...J CAGNOUX C GALLIC J TRANCHET GRAMAT 46500 FRANCE 1 MINISTRY OF DEFENCE DGA DSP STTC G BRAULT 4 RUE DE LA PORTE D’ISSY

  6. Characterization and antioxidant activity of gallic acid derivative

    NASA Astrophysics Data System (ADS)

    Malinda, Krissan; Sutanto, Hery; Darmawan, Akhmad

    2017-11-01

    Peroxidase enzyme was used to catalyze the dimerization process of gallic acid. The structure of the dimerization product was characterized by 1H NMR and LC-MS-MS. The mechanism of gallic acid dimerization was also discussed. It was proposed that ellagic acid was formed through an oxidative coupling mechanism that lead to the formation of a C-C bond and followed by an intramolecular Fischer esterification mechanism that lead to the formation of two C-O bonds. Moreover, the antioxidant activity of gallic acid and ellagic acid were also studied. Gallic acid and ellagic acid exhibited the DPPH radical scavenging activity with IC50 values of 13.2 μM and 15.9 μM, respectively.

  7. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    PubMed

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  8. Synthesis, structure, antitumor activity of novel pharmaceutical co-crystals based on bispyridyl-substituted α, β-unsaturated ketones with gallic acid

    NASA Astrophysics Data System (ADS)

    Liu, Lian-Dong; Liu, Shu-Lian; Liu, Zhi-Xian; Hou, Gui-Ge

    2016-05-01

    Three novel pharmaceutical co-crystals, (A)·(gallic acid) (1), (B)·(gallic acid) (2), and (C)·(gallic acid) (3) were generated based on 2,6-bis((pyridin-4-yl)methylene)cyclohexanone (A), N-methyl-3,5-bis((pyridin-3-yl)methylene)-4-piperidone (B), N-methyl-3,5-bis((pyridin-4-yl)methylene)-4-piperidone (C) with gallic acid, respectively. They are characterized by elemental analysis, FTIR spectroscopy, 1H NMR and single-crystal X-ray diffraction. Structural analysis reveals that two pharmaceutical ingredients link each other into H-bonding-driven 3D network in 1, 2, or 2D plane in 3. In addition, their antitumor activities against human neoplastic cell lines A549, SGC-7901, MCF-7, OVCA-433, HePG2 and cytotoxicity for HUVEC cell lines by CCK-8 method were evaluated primarily. Compared with gallic acid and free A, B and C, their antitumor activities have improved distinctly, while cytotoxicities have reduced markedly, especially for co-crystal 1. This is mainly because of the synergistic effect between pharmaceutical ingredients A, B, and C and gallic acid.

  9. Luminescent behavior of cadmium sulfide quantum dots for gallic acid estimation

    NASA Astrophysics Data System (ADS)

    Singh, Suman; Garg, Sourav; Chahal, Jitender; Raheja, Khushboo; Singh, Deepak; Singla, M. L.

    2013-03-01

    Thioglycolic acid capped cadmium sulfide (CdS/T) quantum dots have been synthesized using wet chemistry and their optical behavior has been investigated using UV-visible absorption and fluorescence spectroscopy. The role of the capping agent, sulfide source concentration, pH and temperature has been studied and discussed. Studies showed that alkaline pH leads to a decrease in the size of quantum dots and reflux temperature above 70 °C resulted in red-shift of emission spectra which is due to narrowing of the bandgap. Further, to reduce the toxicity and photochemical instability of quantum dots, the quantum dots have been functionalized with polyethylene glycol (PEG), which resulted in a 20% enhancement of the fluorescence intensity. The application potential of CdS/T-PEG quantum dots was further studied using gallic acid as a model compound. The sensing is based on fluorescence quenching of quantum dots in the presence of gallic acid, and this study showed linearity in the range from 1.3 × 10-8 to 46.5 × 10-8 mM, with a detection limit of 3.6 × 10-8 mM.

  10. Antimicrobial activity of gallic acid against thermophilic Campylobacter is strain specific and associated with a loss of calcium ions.

    PubMed

    Sarjit, Amreeta; Wang, Yi; Dykes, Gary A

    2015-04-01

    Gallic acid has been suggested as a potential antimicrobial for the control of Campylobacter but its effectiveness is poorly studied. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of gallic acid against Campylobacter jejuni (n = 8) and Campylobacter coli (n = 4) strains was determined. Gallic acid inhibited the growth of five C. jejuni strains and three C. coli strains (MIC: 15.63-250 μg mL(-1)). Gallic acid was only bactericidal to two C. coli strains (MBC: 125 and 62.5 μg mL(-1)). The mechanism of the bactericidal effect against these two strains (and selected non-susceptible controls) was investigated by determining decimal reduction times and by monitoring the loss of cellular content and calcium ions, and changes in cell morphology. Gallic acid did not result in a loss of cellular content or morphological changes in the susceptible strains as compared to the controls. Gallic acid resulted in a loss of calcium ions (0.58-1.53 μg mL(-1) and 0.54-1.17 μg mL(-1), respectively, over a 180 min period) from the susceptible strains but not the controls. Gallic acid is unlikely to be an effective antimicrobial against Campylobacter in a practical sense unless further interventions to ensure an effective bactericidal mode of action against all strains are developed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. An Analysis of Magnesium Alloy AZ31B-H24 for Ballistic Applications

    DTIC Science & Technology

    2007-12-01

    CELIUS MATERIAL TEKNIK KARLSKOGA AB L HELLNER S 69180 KARLSKOGA SWEDEN 3 CENTRE D’ETUDES GRAMAT J CAGNOUX C GALLIC J TRANCHET... GRAMAT 46500 FRANCE 1 MINISTRY OF DEFENCE DGA DSP STTC G BRAULT 4 RUE DE LA PORTE D’ISSY 00460 ARMEES F 75015 PARIS FRANCE 1

  12. Gallic Acid: Review of the Methods of Determination and Quantification.

    PubMed

    Fernandes, Felipe Hugo Alencar; Salgado, Hérida Regina Nunes

    2016-05-03

    Gallic acid (3,4,5 trihydroxybenzoic acid) is a secondary metabolite present in most plants. This metabolite is known to exhibit a range of bioactivities including antioxidant, antimicrobial, anti-inflammatory, and anticancer. There are various methods to analyze gallic acid including spectrometry, chromatography, and capillary electrophoresis, among others. They have been developed to identify and quantify this active ingredient in most biological matrices. The aim of this article is to review the available information on analytical methods for gallic acid, as well as presenting the advantages and limitations of each technique.

  13. Gallic Acid Induces a Reactive Oxygen Species-Provoked c-Jun NH2-Terminal Kinase-Dependent Apoptosis in Lung Fibroblasts

    PubMed Central

    Chen, Chiu-Yuan; Chen, Kun-Chieh; Yang, Tsung-Ying; Liu, Hsiang-Chun; Hsu, Shih-Lan

    2013-01-01

    Idiopathic pulmonary fibrosis is a chronic lung disorder characterized by fibroblasts proliferation and extracellular matrix accumulation. Induction of fibroblast apoptosis therefore plays a crucial role in the resolution of this disease. Gallic acid (3,4,5-trihydroxybenzoic acid), a common botanic phenolic compound, has been reported to induce apoptosis in tumor cell lines and renal fibroblasts. The present study was undertaken to examine the role of mitogen-activated protein kinases (MAPKs) in lung fibroblasts apoptosis induced by gallic acid. We found that treatment with gallic acid resulted in activation of c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB, Akt), but not p38MAPK, in mouse lung fibroblasts. Inhibition of JNK using pharmacologic inhibitor (SP600125) and genetic knockdown (JNK specific siRNA) significantly inhibited p53 accumulation, reduced PUMA and Fas expression, and abolished apoptosis induced by gallic acid. Moreover, treatment with antioxidants (vitamin C, N-acetyl cysteine, and catalase) effectively diminished gallic acid-induced hydrogen peroxide production, JNK and p53 activation, and cell death. These observations imply that gallic acid-mediated hydrogen peroxide formation acts as an initiator of JNK signaling pathways, leading to p53 activation and apoptosis in mouse lung fibroblasts. PMID:23533505

  14. Effective protection of biological membranes against photo-oxidative damage: Polymeric antioxidant forming a protecting shield over the membrane.

    PubMed

    Mertins, Omar; Mathews, Patrick D; Gomide, Andreza B; Baptista, Mauricio S; Itri, Rosangela

    2015-10-01

    We have prepared a chitosan polymer modified with gallic acid in order to develop an efficient protection strategy biological membranes against photodamage. Lipid bilayers were challenged with photoinduced damage by photosensitization with methylene blue, which usually causes formation of hydroperoxides, increasing area per lipid, and afterwards allowing leakage of internal materials. The damage was delayed by a solution of gallic acid in a concentration dependent manner, but further suppressed by the polymer at very low concentrations. The membrane of giant unilamellar vesicles was covered with this modified macromolecule leading to a powerful shield against singlet oxygen and thus effectively protecting the lipid membrane from oxidative stress. The results have proven the discovery of a promising strategy for photo protection of biological membranes. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pHmore » 10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50 nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. - Highlights: • Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression. • EGF-induced MMP-9 expression via p300 stabilization and NFκB/c-Jun activation. • Gallic acid-capped gold nanoparticles inhibit EGF-modulated p300 stabilization. • Gallic acid-capped gold nanoparticles abrogate EGF-induced NFκB/c-Jun activation.« less

  16. Gallic acid, a phenolic compound isolated from Mimosa bimucronata (DC.) Kuntze leaves, induces diuresis and saluresis in rats.

    PubMed

    Schlickmann, Fabile; Boeing, Thaise; Mariano, Luisa Nathália Bolda; da Silva, Rita de Cássia Melo Vilhena de Andrade Fonseca; da Silva, Luisa Mota; de Andrade, Sérgio Faloni; de Souza, Priscila; Cechinel-Filho, Valdir

    2018-06-01

    Although present in the leaves of Mimosa bimucronata (DC.) and many other medicinal plants commonly used to augment urinary volume excretion, the effects of gallic acid as a diuretic agent remain to be studied. Wistar rats were orally treated with vehicle, hydrochlorothiazide, or gallic acid. The effects of gallic acid in the presence of hydrochlorothiazide, furosemide, amiloride, L-NAME, atropine, and indomethacin were also investigated. Diuretic index, pH, conductivity, and electrolyte excretion were evaluated at the end of the experiment (after 8 or 24 h). Gallic acid induced diuretic and saluretic (Na + and Cl - ) effects, without interfering with K + excretion, when orally given to female and male rats at a dose of 3 mg/kg. These effects were associated with increased creatinine and conductivity values while pH was unaffected by any of the treatments. Plasma Na + , K + , and Cl - levels were not affected by any of the acute treatments. The combination with hydrochlorothiazide or furosemide was unable to intensify the effects of gallic acid when compared with the response obtained with each drug alone. On the other hand, the treatment with amiloride plus gallic acid amplified both diuresis and saluresis, besides to a marked potassium-sparing effect. Its diuretic action was significantly prevented in the presence of indomethacin, a cyclooxygenase inhibitor, but not with the pretreatments with L-NAME or atropine. Although several biological activities have already been described for gallic acid, this is the first study demonstrating its potential as a diuretic agent.

  17. Interactive effects of gallic/ferulic/caffeic acids and anthocyanins on pigment thermal stabilities.

    PubMed

    Qian, Bing-Jun; Liu, Jian-Hua; Zhao, Shu-Juan; Cai, Jian-Xiong; Jing, Pu

    2017-06-01

    The data presented in this article are related to the research article entitled "The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability" (Qian et al., 2017) [1]. This paper described preparation and isolation of anthocyanins from purple sweet potatoes (PSP) and the time-course of anthocyanin profiles treated with gallic, ferulic, or caffeic acids at 95 °C. The color appearance of PSPanthocyanins alone, or with gallic, ferulic, or caffeic acids was described after the 15 h of thermal treatment. The high resolution mass spectrographs of PSP anthocyanins were determined using UPLC-ESI-HRMS. The spatial interaction of peonidin 3-O-(2-O-β-D-glucopyranocyl-β-D-glucopyranoide)-5-O-β-D-glucopyranoside and gallic/ferulic/caffeic acids was illustrated by molecular dynamic simulation.

  18. HPLC-ED Analysis of Phenolic Compounds in Three Bosnian Crataegus Species.

    PubMed

    Čulum, Dušan; Čopra-Janićijević, Amira; Vidic, Danijela; Klepo, Lejla; Tahirović, Azra; Bašić, Neđad; Maksimović, Milka

    2018-04-24

    The aim of this work was the qualitative and quantitative determination of selected phenolic compounds in three Crataegus species grown in Bosnia. Crataegus plants are consumed for medicinal purposes and as foodstuff in the form of canned fruit, jam, jelly, tea, and wine. Two samples of plant material, dry leaves with flowers, and berries of three Crataegus species— Crataegus rhipidophylla Gand., Crataegus x subsphaericea Gand., and Crataegus x macrocarpa Hegetschw.—were analyzed. Twelve ethanolic extracts were isolated from the selected plant material using Soxhlet and ultrasound extraction, respectively. Soxhlet extraction proved to be more effective than ultrasound extraction. A simple and sensitive method, high-performance liquid chromatography with electrochemical detection, HPLC-ED, was used for the simultaneous determination of phenolic acids and flavonoids in Crataegus species. The content of gallic acid in the extracts ranged from 0.001 to 0.082 mg/g dry weight (DW), chlorogenic acid from 0.19 to 8.70 mg/g DW, and rutin from 0.03 to 13.49 mg/g DW. Two flavonoids, vitexin and hyperoside, commonly found in chemotaxonomic investigations of Crataegus species, were not detected in the examined extracts. In general, leaves with flowers samples are richer in gallic acid and rutin, whereas the berries samples are richer in chlorogenic acid. Distinct similarities were found in the relative distribution of gallic acid among the three species. Extracts of C. x macrocarpa had the highest content of all detected compounds, while significant differences were found in rutin content, depending on the plant organ. To the best of our knowledge, this is the first study reporting content of phenolic compounds in Crataegus rhipidophylla Gand., Crataegus x subsphaericea , and Crataegus x macrocarpa from Bosnia.

  19. HPLC-ED Analysis of Phenolic Compounds in Three Bosnian Crataegus Species

    PubMed Central

    Čulum, Dušan; Vidic, Danijela; Klepo, Lejla; Tahirović, Azra; Bašić, Neđad; Maksimović, Milka

    2018-01-01

    The aim of this work was the qualitative and quantitative determination of selected phenolic compounds in three Crataegus species grown in Bosnia. Crataegus plants are consumed for medicinal purposes and as foodstuff in the form of canned fruit, jam, jelly, tea, and wine. Two samples of plant material, dry leaves with flowers, and berries of three Crataegus species—Crataegus rhipidophylla Gand., Crataegus x subsphaericea Gand., and Crataegus x macrocarpa Hegetschw.—were analyzed. Twelve ethanolic extracts were isolated from the selected plant material using Soxhlet and ultrasound extraction, respectively. Soxhlet extraction proved to be more effective than ultrasound extraction. A simple and sensitive method, high-performance liquid chromatography with electrochemical detection, HPLC-ED, was used for the simultaneous determination of phenolic acids and flavonoids in Crataegus species. The content of gallic acid in the extracts ranged from 0.001 to 0.082 mg/g dry weight (DW), chlorogenic acid from 0.19 to 8.70 mg/g DW, and rutin from 0.03 to 13.49 mg/g DW. Two flavonoids, vitexin and hyperoside, commonly found in chemotaxonomic investigations of Crataegus species, were not detected in the examined extracts. In general, leaves with flowers samples are richer in gallic acid and rutin, whereas the berries samples are richer in chlorogenic acid. Distinct similarities were found in the relative distribution of gallic acid among the three species. Extracts of C. x macrocarpa had the highest content of all detected compounds, while significant differences were found in rutin content, depending on the plant organ. To the best of our knowledge, this is the first study reporting content of phenolic compounds in Crataegus rhipidophylla Gand., Crataegus x subsphaericea, and Crataegus x macrocarpa from Bosnia. PMID:29695058

  20. Ballistic Performance Testing of Aluminum Alloy 5059-H131 and 5059-H136 for Armor Applications

    DTIC Science & Technology

    2008-05-01

    LEGANES MADRID SPAIN 1 CELIUS MATERIAL TEKNIK KARLSKOGA AB L HELLNER S 69180 KARLSKOGA SWEDEN 3 CENTRE D’ETUDES GRAMAT J...CAGNOUX C GALLIC J TRANCHET GRAMAT 46500 FRANCE 1 MINISTRY OF DEFENCE DGA DSP STTC G BRAULT 4 RUE DE LA PORTE D’ISSY 00460 ARMEES

  1. Gallic acid against hepatocellular carcinoma: An integrated scheme of the potential mechanisms of action from in vivo study.

    PubMed

    Aglan, Hadeer A; Ahmed, Hanaa H; El-Toumy, Sayed A; Mahmoud, Nadia S

    2017-06-01

    The global burden of hepatocellular carcinoma is increasing; actually, it is estimated as 750,000 new cases annually. This study was initiated to emphasize the possibility that gallic acid could alleviate hepatocarcinogenesis in vivo. In this study, 40 rats were enrolled and distributed as follows; group 1 was set as negative control, while all of groups 2, 3, and 4 were orally received N-nitrosodiethylamine for hepatocellular carcinoma induction. Group 2 was left untreated, whereas groups 3 and 4 were orally treated with gallic acid and doxorubicin, respectively. The current data indicated that gallic acid administration in hepatocellular carcinoma bearing rats yielded significant decline in serum levels of alpha-fetoprotein, glypican-3, and signal transducer and activator of transcription 3 along with significant enhancement in serum suppressors of cytokine signaling 3 level. Also, gallic acid-treated group displayed significant downregulation in the gene expression levels of hepatic gamma glutamyl transferase and heat shock protein gp96. Intriguingly, treatment with gallic acid remarkably ameliorated the destabilization of liver tissue architecture caused by N-nitrosodiethylamine intoxication as evidenced by histopathological investigation. In conclusion, this study demonstrates that the hepatocarcinogenic effect of N-nitrosodiethylamine can be abrogated by gallic acid supplementation owing to its affinity to regulate signal transducer and activator of transcription 3 signaling pathway through its outstanding bioactivities including antioxidant, anti-inflammatory, apoptotic, and antitumor effects.

  2. Antiulcerogenic Effect of Gallic Acid in Rats and its Effect on Oxidant and Antioxidant Parameters in Stomach Tissue

    PubMed Central

    Sen, S.; Asokkumar, K.; Umamaheswari, M.; Sivashanmugam, A. T.; Subhadradevi, V.

    2013-01-01

    In the present study, we investigate the antiulcerogenic effect of gallic acid against aspirin plus pyrolus ligation-induced gastric ulcer in rats. Rats were treated with gallic acid (100 and 200 mg/kg) and famotidine (20 mg/kg) for 1 week, followed by induction of gastric ulcer using the aspirin plus pyrolus ligation model. At the end of 4 h after ligation, the rats were sacrificed and ulcer index, gastric juice volume, pH and other biochemical parameter of gastric juice were evaluated. Stomachs of rats were evaluated biochemically to determine oxidant and antioxidant parameters. Pretreatment with gallic acid significantly decreased ulcer index, gastric juice volume, free and total acidity, total protein, DNA content and increased pH and carbohydrates concentration. Gallic acid at a dose of 100 and 200 mg/kg exerted 69.7 and 78.9% ulcer inhibition, respectively. The levels of superoxide dismutase, catalase, reduced glutathione, glutathione reductase, glutathione peroxidise, glucose-6-phosphate dehydrogenase were increased while reduction in myeloperoxidase and lipid peroxidation were observed in the stomach tissues of the drug treated rats. The histopathological studies further confirmed the antiulcer activity of gallic acid. We conclude that the gallic acid possesses antiulcer effect and that these occur by a mechanism that involves attenuation of offensive factors, improvement of mucosal defensive with activation of antioxidant parameters and inhibition of some toxic oxidant parameters. PMID:24019562

  3. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine

    PubMed Central

    Bontpart, Thibaut; Marlin, Thérèse; Vialet, Sandrine; Guiraud, Jean-Luc; Pinasseau, Lucie; Meudec, Emmanuelle; Sommerer, Nicolas; Cheynier, Véronique; Terrier, Nancy

    2016-01-01

    In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) ‘classically’ catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli. In vitro, VvSDH1 exhibited the highest ‘classical’ SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower ‘classical’ activity but were able to produce gallic acid in vitro. The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites. PMID:27241494

  4. Gallic acid modulates phenotypic behavior and gene expression in oral squamous cell carcinoma cells by interfering with leptin pathway.

    PubMed

    Santos, Eliane Macedo Sobrinho; da Rocha, Rogério Gonçalves; Santos, Hércules Otacílio; Guimarães, Talita Antunes; de Carvalho Fraga, Carlos Alberto; da Silveira, Luiz Henrique; Batista, Paulo Ricardo; de Oliveira, Paulo Sérgio Lopes; Melo, Geraldo Aclécio; Santos, Sérgio Henrique; de Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena; Farias, Lucyana Conceição

    2018-01-01

    Gallic acid is a polyphenolic compost appointed to interfere with neoplastic cells behavior. Evidence suggests an important role of leptin in carcinogenesis pathways, inducing a proliferative phenotype. We investigated the potential of gallic acid to modulate leptin-induced cell proliferation and migration of oral squamous cell carcinoma cell lines. The gallic acid effect on leptin secretion by oral squamous cell carcinoma cells, as well as the underlying molecular mechanisms, was also assessed. For this, we performed proliferation, migration, immunocytochemical and qPCR assays. The expression levels of cell migration-related genes (MMP2, MMP9, Col1A1, and E-cadherin), angiogenesis (HIF-1α, mir210), leptin signaling (LepR, p44/42 MAPK), apoptosis (casp-3), and secreted leptin levels by oral squamous cell carcinoma cells were also measured. Gallic acid decreased proliferation and migration of leptin-treated oral squamous cell carcinoma cells, and reduced mRNA expression of MMP2, MMP9, Col1A1, mir210, but did not change HIF-1α. Gallic acid decreased levels of leptin secreted by oral squamous cell carcinoma cells, accordingly with downregulation of p44/42 MAPK expression. Thus, gallic acid appears to break down neoplastic phenotype of oral squamous cell carcinoma cells by interfering with leptin pathway. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Exogenous application of rutin and gallic acid regulate antioxidants and alleviate reactive oxygen generation in Oryza sativa L.

    PubMed

    Singh, Akanksha; Gupta, Rupali; Pandey, Rakesh

    2017-04-01

    The effect of rutin and gallic acid on growth, phytochemical and defense gene activation of rice ( Oryza sativa L.) was investigated. The seeds of rice were primed with different concentrations of rutin and gallic acid (10-60 µg mL -1 ) to explicate the effect on germination on water agar plates. Further, to study the effect of most effective concentrations of gallic acid (60 µg mL -1 ) and rutin (50 µg mL -1 ), greenhouse pot experiment was set up to determine the changes in growth, antioxidant and defense parameters. The results revealed more pronounced effect of gallic acid on total chlorophyll and carotenoids as well as on total flavonoid content and free radical scavenging activities. Gene expression analysis of OsWRKY71, PAL, CHS and LOX genes involved in strengthening the plant defense further validated the results obtained from the biochemical analysis. Microscopic analysis also confirmed reduction in total reactive oxygen species, free radicals like H 2 O 2 and O 2 - by exogenous application of gallic acid and rutin. The data obtained thus suggest that both gallic acid and rutin can affect the growth and physiology of rice plants and therefore can be used to develop effective plant growth promoters and as substitute of biofertilizers for maximizing their use in field conditions.

  6. Gallic Acid Is an Antagonist of Semen Amyloid Fibrils That Enhance HIV-1 Infection.

    PubMed

    LoRicco, Josephine G; Xu, Changmingzi Sherry; Neidleman, Jason; Bergkvist, Magnus; Greene, Warner C; Roan, Nadia R; Makhatadze, George I

    2016-07-01

    Recent in vitro studies have demonstrated that amyloid fibrils found in semen from healthy and HIV-infected men, as well as semen itself, can markedly enhance HIV infection rates. Semen fibrils are made up of multiple naturally occurring peptide fragments derived from semen. The best characterized of these fibrils are SEVI (semen-derived enhancer of viral infection), made up of residues 248-286 of prostatic acidic phosphatase, and the SEM1 fibrils, made up of residues 86-107 of semenogelin 1. A small molecule screen for antagonists of semen fibrils identified four compounds that lowered semen-mediated enhancement of HIV-1 infectivity. One of the four, gallic acid, was previously reported to antagonize other amyloids and to exert anti-inflammatory effects. To better understand the mechanism by which gallic acid modifies the properties of semen amyloids, we performed biophysical measurements (atomic force microscopy, electron microscopy, confocal microscopy, thioflavin T and Congo Red fluorescence assays, zeta potential measurements) and quantitative assays on the effects of gallic acid on semen-mediated enhancement of HIV infection and inflammation. Our results demonstrate that gallic acid binds to both SEVI and SEM1 fibrils and modifies their surface electrostatics to render them less cationic. In addition, gallic acid decreased semen-mediated enhancement of HIV infection but did not decrease the inflammatory response induced by semen. Together, these observations identify gallic acid as a non-polyanionic compound that inhibits semen-mediated enhancement of HIV infection and suggest the potential utility of incorporating gallic acid into a multicomponent microbicide targeting both the HIV virus and host components that promote viral infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Propyl gallate synthesis using acidophilic tannase and simultaneous production of tannase and gallic acid by marine Aspergillus awamori BTMFW032.

    PubMed

    Beena, P S; Basheer, Soorej M; Bhat, Sarita G; Bahkali, Ali H; Chandrasekaran, M

    2011-07-01

    Marine Aspergillus awamori BTMFW032, recently reported by us, produce acidophilic tannase as extracellular enzyme. Here, we report the application of this enzyme for synthesis of propyl gallate by direct transesterification of tannic acid and in tea cream solubilisation besides the simultaneous production of gallic acid along with tannase under submerged fermentation by this fungus. This acidophilic tannase enabled synthesis of propyl gallate by direct transesterification of tannic acid using propanol as organic reaction media under low water conditions. The identity of the product was confirmed with thin layer chromatography and Fourier transform infrared spectroscopy. It was noted that 699 U/ml of enzyme could give 60% solubilisation of tea cream within 1 h. Enzyme production medium was optimized adopting Box-Behnken design for simultaneous synthesis of tannase and gallic acid. Process variables including tannic acid, sodium chloride, ferrous sulphate, dipotassium hydrogen phosphate, incubation period and agitation were recognized as the critical factors that influenced tannase and gallic acid production. The model obtained predicted 4,824.61 U/ml of tannase and 136.206 μg/ml gallic acid after 48 h of incubation, whereas optimized medium supported 5,085 U/ml tannase and 372.6 μg/ml of gallic acid production after 36 and 84 h of incubation, respectively, with a 15-fold increase in both enzyme and gallic acid production. Results indicated scope for utilization of this acidophilic tannase for transesterification of tannic acid into propyl gallate, tea cream solubilisation and simultaneous production of gallic acid along with tannase.

  8. One-Pot Procedure for Recovery of Gallic Acid from Wastewater and Encapsulation within Protein Particles.

    PubMed

    Nourbakhsh, Himan; Madadlou, Ashkan; Emam-Djomeh, Zahra; Wang, Yi-Cheng; Gunasekaran, Sundaram; Mousavi, Mohammad E

    2016-02-24

    A whey protein isolate solution was heat-denatured and treated with the enzyme transglutaminase, which cross-linked ≈26% of the amino groups and increased the magnitude of the ζ-potential value. The protein solution was microemulsified, and then the resulting water-in-oil microemulsion was dispersed within a gallic acid-rich model wastewater. Gallic acid extraction by the outlined microemulsion liquid membrane (MLM) from the exterior aqueous phase (wastewater) and accumulation within the internal aqueous nanodroplets induced protein cold-set gelation and resulted in the formation of gallic acid-enveloping nanoparticles. Measurements with a strain-controlled rheometer indicated a progressive increase in the MLM viscosity during gallic acid recovery corresponding to particle formation. The mean hydrodynamic size of the nanoparticles made from the heat-denatured and preheated enzymatically cross-linked proteins was 137 and 122 nm, respectively. The enzymatic cross-linking of whey proteins led to a higher gallic acid recovery yield and increased the glass transition enthalpy and temperature. A similar impact on glass transition indices was observed by the gallic acid-induced nanoparticulation of proteins. Scanning electron microscopy showed the existence of numerous jammed/fused nanoparticles. It was suggested on the basis of the results of Fourier transform infrared spectroscopy that the in situ nanoparticulation of proteins shifted the C-N stretching and C-H bending peaks to higher wavenumbers. X-ray diffraction results proposed a decreased β-sheet content for proteins because of the acid-induced particulation. The nanoparticles made from the enzymatically cross-linked protein were more stable against the in vitro gastrointestinal digestion and retained almost 19% of the entrapped gallic acid after 300 min sequential gastric and intestinal digestions.

  9. Gallic Acid Is an Antagonist of Semen Amyloid Fibrils That Enhance HIV-1 Infection*

    PubMed Central

    LoRicco, Josephine G.; Xu, Changmingzi Sherry; Neidleman, Jason; Bergkvist, Magnus; Greene, Warner C.; Roan, Nadia R.; Makhatadze, George I.

    2016-01-01

    Recent in vitro studies have demonstrated that amyloid fibrils found in semen from healthy and HIV-infected men, as well as semen itself, can markedly enhance HIV infection rates. Semen fibrils are made up of multiple naturally occurring peptide fragments derived from semen. The best characterized of these fibrils are SEVI (semen-derived enhancer of viral infection), made up of residues 248–286 of prostatic acidic phosphatase, and the SEM1 fibrils, made up of residues 86–107 of semenogelin 1. A small molecule screen for antagonists of semen fibrils identified four compounds that lowered semen-mediated enhancement of HIV-1 infectivity. One of the four, gallic acid, was previously reported to antagonize other amyloids and to exert anti-inflammatory effects. To better understand the mechanism by which gallic acid modifies the properties of semen amyloids, we performed biophysical measurements (atomic force microscopy, electron microscopy, confocal microscopy, thioflavin T and Congo Red fluorescence assays, zeta potential measurements) and quantitative assays on the effects of gallic acid on semen-mediated enhancement of HIV infection and inflammation. Our results demonstrate that gallic acid binds to both SEVI and SEM1 fibrils and modifies their surface electrostatics to render them less cationic. In addition, gallic acid decreased semen-mediated enhancement of HIV infection but did not decrease the inflammatory response induced by semen. Together, these observations identify gallic acid as a non-polyanionic compound that inhibits semen-mediated enhancement of HIV infection and suggest the potential utility of incorporating gallic acid into a multicomponent microbicide targeting both the HIV virus and host components that promote viral infection. PMID:27226574

  10. Gallic acid attenuates hypertension, cardiac remodeling, and fibrosis in mice with NG-nitro-L-arginine methyl ester-induced hypertension via regulation of histone deacetylase 1 or histone deacetylase 2.

    PubMed

    Jin, Li; Lin, Ming Quan; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Sun, Simei; Kee, Hae Jin; Jeong, Myung Ho

    2017-07-01

    Gallic acid, a natural chemical found in plants, has been reported to show antioxidant, anticancer, and anti-inflammatory effects. We investigated the efficacy of a short-term or long-term treatment with gallic acid in N-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive mice and the underlying regulatory mechanism. Hypertension was sufficiently induced after 2 weeks of L-NAME administration. Cardiac remodeling was assessed by echocardiography. Hypertrophic markers, transcription factors, and fibrosis-related gene expression were evaluated by quantitative real-time polymerase chain reaction and western blotting. Gallic acid effectively lowered SBP, regardless of the administration route (intraperitoneal or oral). L-NAME increased the left ventricular (LV) thickness without an increase in the total heart weight. Weekly echocardiography demonstrated that gallic acid significantly reduced LV posterior wall and septum thickness in chronic L-NAME mice from 3 to 7 weeks. The administration of gallic acid to mice showed a dual preventive and therapeutic effect on the L-NAME-induced LV remodeling. The effect was associated with the suppression of the gene expression of hypertrophy markers and the GATA-binding factor 6 (GATA6) transcription factor. Short-term or long-term treatment with gallic acid attenuated cardiac fibrosis and reduced the expression of histone deacetylase 1 and 2 in H9c2 cells and in rat primary cardiac fibroblasts, as well as in vivo. Small interfering RNA knockdown confirmed the association of these enzymes with L-NAME-induced cardiac remodeling and fibrosis. These results suggested that gallic acid may be a potential therapeutic agent for the treatment of cardiovascular diseases with hypertension and cardiac fibrosis.

  11. Tuning stable and unstable aggregates of gallic acid capped gold nanoparticles using Mg2+ as coordinating agent.

    PubMed

    Kim, Dae-Young; Shinde, Surendra; Ghodake, Gajanan

    2017-05-15

    High reducibility of gallic acid allows synthesis of small sized monodisperse gold nanoparticles (GNPs) at ambient temperature (25°C). Mg 2+ rapidly interacts with the gallic acid ligands and suppresses the dispersion of GNPs therefore, causing a decrease in UV-vis absorbance intensity, and color change from red to blue. Thus, the colorimetric response of GNPs with Mg 2+ was investigated by observing temporal quenching of UV-vis absorbance and precise tuning of fractal growth of GNP aggregates. Moreover, Mg 2+ at concentrations as low as 200ppb can be detected using gallic acid ligand-mediated coordination chemistry which results quenching in UV-vis absorbance proportional to the exposure time. This gallic acid-based colorimetric sensor shown a great potential for the selective detection of pathologically important electrolyte Mg 2+ without any interference from other cations Ca 2+ and K + . Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Functionalized ZnO Nanoparticles with Gallic Acid for Antioxidant and Antibacterial Activity against Methicillin-Resistant S. aureus

    PubMed Central

    Lee, Joo Min; Choi, Kyong-Hoon; Min, Jeeeun; Kim, Ho-Joong; Jee, Jun-Pil; Park, Bong Joo

    2017-01-01

    In this study, we report a new multifunctional nanoparticle with antioxidative and antibacterial activities in vitro. ZnO@GA nanoparticles were fabricated by coordinated covalent bonding of the antioxidant gallic acid (GA) on the surface of ZnO nanoparticles. This addition imparts both antioxidant activity and high affinity for the bacterial cell membrane. Antioxidative activities at various concentrations were evaluated using a 2,2′-azino-bis(ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging method. Antibacterial activities were evaluated against Gram-positive bacteria (Staphylococcus aureus: S. aureus), including several strains of methicillin-resistant S. aureus (MRSA), and Gram-negative bacteria (Escherichia coli). The functionalized ZnO@GA nanoparticles showed good antioxidative activity (69.71%), and the bactericidal activity of these nanoparticles was also increased compared to that of non-functionalized ZnO nanoparticles, with particularly effective inhibition and high selectivity for MRSA strains. The results indicate that multifunctional ZnO nanoparticles conjugated to GA molecules via a simple surface modification process displaying both antioxidant and antibacterial activity, suggesting a possibility to use it as an antibacterial agent for removing MRSA. PMID:29099064

  13. The fifth solvatomorph of gallic acid with a supramolecular channel structure: Structural complexity and phase transitions

    NASA Astrophysics Data System (ADS)

    Thomas, Sajesh P.; Kaur, Ramanpreet; Kaur, Jassjot; Sankolli, Ravish; Nayak, Susanta K.; Guru Row, Tayur N.

    2013-01-01

    A new solvatomorph of gallic acid was generated using chiral additive technique and characterized by single crystal and powder X-ray diffraction, C-13 NMR, IR spectroscopic techniques and thermal analysis. The supramolecular channels formed by hexameric motifs of gallic acid and solvent molecules contain highly disordered solvent molecules with fractional occupancies.

  14. Statistical optimization of bioprocess parameters for enhanced gallic acid production from coffee pulp tannins by Penicillium verrucosum.

    PubMed

    Bhoite, Roopali N; Navya, P N; Murthy, Pushpa S

    2013-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid) was produced by microbial biotransformation of coffee pulp tannins by Penicillium verrucosum. Gallic acid production was optimized using response surface methodology (RSM) based on central composite rotatable design. Process parameters such as pH, moisture, and fermentation period were considered for optimization. Among the various fungi isolated from coffee by-products, Penicillium verrucosum produced 35.23 µg/g of gallic acid on coffee pulp as sole carbon source in solid-state fermentation. The optimum values of the parameters obtained from the RSM were pH 3.32, moisture 58.40%, and fermentation period of 96 hr. Gallic acid production with an increase of 4.6-fold was achieved upon optimization of the process parameters. The results optimized could be translated to 1-kg tray fermentation. High-performance liquid chromatography (HPLC) analysis and spectral studies such as mass spectroscopy (MS) and (1)H-nuclear magnetic resonance (NMR) confirmed that the bioactive compound isolated was gallic acid. Thus, coffee pulp, which is available in enormous quantity, could be used for the production of value-added products that can find avenues in food, pharmaceutical, and chemical industries.

  15. Effect of Gallic acid on mechanical and water barrier properties of zein-oleic acid composite films.

    PubMed

    Masamba, Kingsley; Li, Yue; Hategekimana, Joseph; Liu, Fei; Ma, Jianguo; Zhong, Fang

    2016-05-01

    In this study, the effect of gallic acid on mechanical and water barrier properties of zein-oleic acid 0-4 % composite films was investigated. Molecular weight distribution analysis was carried out to confirm gallic acid induced cross linking through change in molecular weight in fraction containing zein proteins. Results revealed that gallic acid treatment increased tensile strength from 17.9 MPa to 26.0 MPa, decreased water vapour permeability from 0.60 (g mm m(-2) h(-1) kPa(-1)) to 0.41 (g mm m(-2) h(-1) kPa(-1)), increased solubility from 6.3 % to 10.2 % and marginally increased elongation at break from 3.7 % to 4.2 % in zein films only. However, gallic acid treatment in zein-oleic composite films did not significantly influence mechanical and water barrier properties and in most instances irrespective of oleic acid concentration, the properties were negatively affected. Results from scanning electron microscopy showed that both gallic acid treated and untreated zein films and composite films containing 3 % oleic acid had a compact and homogeneous structure while those containing 4 % oleic acid had inhomogeneous structure. The findings have demonstrated that gallic acid treatment can significantly improve mechanical and water barrier properties especially in zein films only as opposed to when used in composite films using zein and oleic acid.

  16. Plant Natural Products Calycosin and Gallic Acid Synergistically Attenuate Neutrophil Infiltration and Subsequent Injury in Isoproterenol-Induced Myocardial Infarction: A Possible Role for Leukotriene B4 12-Hydroxydehydrogenase?

    PubMed Central

    Cheng, Yuanyuan; Tse, Hung Fat; Le, X. Chris; Rong, Jianhui

    2015-01-01

    Leukotriene B4 12-hydroxydehydrogenase (LTB4DH) catalyzes the oxidation of proinflammatory LTB4 into less bioactive 12-oxo-LTB4. We recently discovered that LTB4DH was induced by two different natural products in combination. We previously isolated gallic acid from Radix Paeoniae through a bioactivity-guided fractionation procedure. The purpose of this study is to test the hypothesis that LTB4DH inducers may suppress neutrophil-mediated inflammation in myocardial infarction. We first isolated the active compound(s) from another plant, Radix Astragali, by the similar strategy. By evaluating LTB4DH induction, we identified calycosin and formononetin from Radix Astragali by HPLC-ESI-MS technique. We confirmed that gallic acid and commercial calycosin or formononetin could synergistically induce LTB4DH expression in HepG2 cells and human neutrophils. Moreover, calycosin and gallic acid attenuated the effects of LTB4 on the survival and chemotaxis of neutrophil cell culture. We further demonstrated that calycosin and gallic acid synergistically suppressed neutrophil infiltration and protected cardiac integrity in the isoproterenol-induced mice model of myocardial infarction. Calycosin and gallic acid dramatically suppressed isoproterenol-induced increase in myeloperoxidase (MPO) activity and malondialdehyde (MDA) level. Collectively, our results suggest that LTB4DH inducers (i.e., calycosin and gallic acid) may be a novel combined therapy for the treatment of neutrophil-mediated myocardial injury. PMID:26265982

  17. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine.

    PubMed

    Bontpart, Thibaut; Marlin, Thérèse; Vialet, Sandrine; Guiraud, Jean-Luc; Pinasseau, Lucie; Meudec, Emmanuelle; Sommerer, Nicolas; Cheynier, Véronique; Terrier, Nancy

    2016-05-01

    In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) 'classically' catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli In vitro, VvSDH1 exhibited the highest 'classical' SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower 'classical' activity but were able to produce gallic acid in vitro The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Radiation sensitivity and EPR dosimetric potential of gallic acid and its esters

    NASA Astrophysics Data System (ADS)

    Tuner, Hasan; Oktay Bal, M.; Polat, Mustafa

    2015-02-01

    In the preset work the radiation sensitivities of Gallic Acid anhydrous and monohydrate, Octyl, Lauryl, and Ethyl Gallate (GA, GAm, OG, LG, and EG) were investigated in the intermediate (0.5-20 kGy) and low radiation (<10 Gy) dose range using Electron Paramagnetic Resonance (EPR) spectroscopy. While OG, LG, and EG are presented a singlet EPR spectra, their radiation sensitivity found to be very different in the intermediate dose range. At low radiation dose range (<10 Gy) only LG is found to be present a signal that easily distinguished from the noise signals. The intermediate and low dose range radiation sensitivities are compared using well known EPR dosimeter alanine. The radiation yields (G) of the interested material were found to be 1.34×10-2, 1.48×10-2, 4.14×10-2, and 6.03×10-2, 9.44×10-2 for EG, GA, GAm, OG, and LG, respectively at the intermediate dose range. It is found that the simple EPR spectra and the noticeable EPR signal of LG make it a promising dosimetric material to be used below 10 Gy of radiation dose.

  19. Analysis of Phenolic Compounds and Antioxidant Abilities of Extracts from Germinating Vitis californica Seeds Submitted to Cold Stress Conditions and Recovery after the Stress

    PubMed Central

    Weidner, Stanisław; Chrzanowski, Sebastian; Karamać, Magdalena; Król, Angelika; Badowiec, Anna; Mostek, Agnieszka; Amarowicz, Ryszard

    2014-01-01

    The material for this study consisted of stratified seeds of Vitis californica submitted to germination under optimum conditions (+25 °C) or under chill stress (+10 °C), also followed by recovery. It has been determined that the germinating seeds contain considerable amounts of tannins, catechins as well as phenolic acids such as gallic, p-coumaric, caffeic and ferulic acids. Gallic acid appeared in the highest amount in the germinating seeds (from 42.40–204.00 µg/g of fresh weight (FW)), followed by caffeic acid (from 6.62–20.13 µg/g FW), p-coumaric acid (from 2.59–5.41 µg/g FW), and ferulic acid (from 0.56–0.92 µg/g FW). The phenolic acids occurred mostly in the ester form. Under chill stress, the germinating seeds were determined to contain an elevated total amount of phenolics, as well as raised levels of condensed tannins, catechins, gallic acid, and gafeic acid. The levels of p-coumoric and ferulic acids were found to have decreased. In extracts isolated from a sample exposed to low temperature, increased antioxidant activity and reduction potential were also demonstrated. Tissue of the germinating seeds which underwent post-stress recovery was found to have less total phenolics. PMID:25222557

  20. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery

    PubMed Central

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2012-01-01

    Background and methods Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe2+ to Fe3+ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure. Results X-ray diffraction demonstrated that the magnetic nanoparticles were pure Fe3O4 with a cubic inverse spinel structure. Transmission electron microscopy showed that the Fe3O4 nanoparticles were of spherical shape with a mean diameter of 11 nm, compared with 13 nm for the iron oxide-chitosan-gallic acid (FCG) nanocarriers. Conclusion The magnetic nanocarrier enhanced the thermal stability of the drug, gallic acid. Release of the active drug from the FCG nanocarrier was found to occur in a controlled manner. The gallic acid and FCG nanoparticles were not toxic in a normal human fibroblast (3T3) line, and anticancer activity was higher in HT29 than MCF7 cell lines. PMID:23166439

  1. Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli.

    PubMed

    Dwivedi, Gaurav Raj; Tiwari, Nimisha; Singh, Aastha; Kumar, Akhil; Roy, Sudeep; Negi, Arvind Singh; Pal, Anirban; Chanda, Debabrata; Sharma, Ashok; Darokar, Mahendra P

    2016-03-01

    The purpose of the present study was to study the synergy potential of gallic acid-based derivatives in combination with conventional antibiotics using multidrug resistant cultures of Escherichia coli. Gallic acid-based derivatives significantly reduced the MIC of tetracycline against multidrug resistant clinical isolate of E. coli. The best representative, 3-(3',4,'5'-trimethoxyphenyl)-4,5,6-trimethoxyindanone-1, an indanone derivative of gallic acid, was observed to inhibit ethidium bromide efflux and ATPase which was also supported by in silico docking. This derivative extended the post-antibiotic effect and decreased the mutation prevention concentration of tetracycline. This derivative in combination with TET was able to reduce the concentration of TNFα up to 18-fold in Swiss albino mice. This derivative was nontoxic and well tolerated up to 300 mg/kg dose in subacute oral toxicity study in mice. This is the first report of gallic acid-based indanone derivative as drug resistance reversal agent acting through ATP-dependent efflux pump inhibition.

  2. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells.

    PubMed

    Chen, Ying-Jung; Lin, Ku-Nan; Jhang, Li-Mei; Huang, Chia-Hui; Lee, Yuan-Chin; Chang, Long-Sen

    2016-05-25

    Several studies have revealed that natural compounds are valuable resources to develop novel agents against dysregulation of the EGF/EGFR-mediated matrix metalloproteinase-9 (MMP-9) expression in cancer cells. In view of the findings that EGF/EGFR-mediated MMP-9 expression is closely related to invasion and metastasis of breast cancer. To determine the beneficial effects of gallic acid on the suppression of breast cancer metastasis, we explored the effect of gallic acid on MMP-9 expression in EGF-treated MCF-7 breast cancer cells. Treatment with EGF up-regulated MMP-9 mRNA and protein levels in MCF-7 cells. EGF treatment induced phosphorylation of EGFR and elicited Src activation, subsequently promoting Akt/NFκB (p65) and ERK/c-Jun phosphorylation in MCF-7 cells. Activation of Akt/p65 and ERK/c-Jun was responsible for the MMP-9 up-regulation in EGF-treated cells. Gallic acid repressed the EGF-induced activation of EGFR and Src; furthermore, inactivation of Akt/p65 and ERK/c-Jun was a result of the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. Over-expression of constitutively active Akt and MEK1 or over-expression of constitutively active Src eradicated the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. A chromosome conformation capture assay showed that EGF induced a chromosomal loop formation in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun activation. Treatment with gallic acid, EGFR inhibitor, or Src inhibitor reduced DNA looping. Taken together, our data suggest that gallic acid inhibits the activation of EGFR/Src-mediated Akt and ERK, leading to reduced levels of p65/c-Jun-mediated DNA looping and thus inhibiting MMP-9 expression in EGF-treated MCF-7 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Determination of gallic acid with rhodanine by reverse flow injection analysis using simplex optimization.

    PubMed

    Phakthong, Wilaiwan; Liawruangrath, Boonsom; Liawruangrath, Saisunee

    2014-12-01

    A reversed flow injection (rFI) system was designed and constructed for gallic acid determination. Gallic acid was determined based on the formation of chromogen between gallic acid and rhodanine, resulting in a colored product with a λmax at 520 nm. The optimum conditions for determining gallic acid were also investigated. Optimizations of the experimental conditions were carried out based on the so-call univariate method. The conditions obtained were 0.6% (w/v) rhodanine, 70% (v/v) ethanol, 0.9 mol L(-1) NaOH, 2.0 mL min(-1) flow rate, 75 μL injection loop and 600 cm mixing tubing length, respectively. Comparative optimizations of the experimental conditions were also carried out by multivariate or simplex optimization method. The conditions obtained were 1.2% (w/v) rhodanine, 70% (v/v) ethanol, 1.2 mol L(-1) NaOH, flow rate 2.5 mL min(-1), 75 μL injection loop and 600 cm mixing tubing length, respectively. It was found that the optimum conditions obtained by the former optimization method were mostly similar to those obtained by the latter method. The linear relationship between peak height and the concentration of gallic acid was obtained over the range of 0.1-35.0 mg L(-1) with the detection limit 0.081 mg L(-1). The relative standard deviations were found to be in the ranges 0.46-1.96% for 1, 10, 30 mg L(-1) of gallic acid (n=11). The method has the advantages of simplicity extremely high selectivity and high precision. The proposed method was successfully applied to the determination of gallic acid in longan samples without interferent effects from other common phenolic compounds that might be present in the longan samples collected in northern Thailand. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eler, Gabrielle Jacklin; Santos, Israel Souza; Giaretta de Moraes, Amarilis

    n-Propyl gallate and its analogs are used in foods and other products to prevent oxidation. In the liver the compound exerts several harmful effects, especially gluconeogenesis inhibition. The mode of transport and distribution of n-propyl gallate and its kinetics of biotransformation have not yet been investigated. To fill this gap the transformation, transport and distribution of n-propyl gallate and two analogs were investigated in the rat liver. Isolated perfused rat liver was used. n-Propyl gallate, methyl gallate, n-octyl gallate and transformation products were quantified by high pressure-liquid chromatography coupled to fluorescence detection. The interactions of n-propyl gallate and analogs withmore » the liver presented three main characteristics: (1) the hydrolytic release of gallic acid from n-propyl gallate and methyl gallate was very fast compared with the subsequent transformations of the gallic acid moiety; (2) transport of the esters was very fast and flow-limited in contrast to the slow and barrier-limited transport of gallic acid; (3) the apparent distribution volume of n-propyl gallate, but probably also of methyl gallate and n-octyl gallate, greatly exceeded the water space in the liver, contrary to the gallic acid space which is smaller than the water space. It can be concluded that at low portal concentrations (< 50 μM) the gallic acid esters are 100% extracted during a single passage through the liver, releasing mainly gallic acid into the systemic circulation. For the latter a considerable time is required until complete biotransformation. The exposure of the liver to the esters, however, is quite prolonged due to extensive intracellular binding. - Highlights: • The liver binds very strongly n-propyl gallate and releases basically gallic acid. • n-propyl gallate and analogs undergo concentrative flow-limited distribution. • Gallic acid undergoes barrier-limited distribution and is slowly transformed. • The long residence time of n-propyl gallate and analogs increases toxicity.« less

  5. Molecular mechanics and dynamics studies on the interaction of gallic acid with collagen-like peptides

    NASA Astrophysics Data System (ADS)

    Madhan, B.; Thanikaivelan, P.; Subramanian, V.; Raghava Rao, J.; Unni Nair, Balachandran; Ramasami, T.

    2001-10-01

    Molecular modelling approaches have been used to understand the interaction of collagen-like peptides with gallic acid, which mimic vegetable tanning processes involved in protein stabilization. Several interaction sites have been identified and the binding energies of the complexes have been calculated. The calculated binding energies for various geometries are in the range 6-13 kcal/mol. It is found that some complexes exhibit hydrogen bonding, and electrostatic interaction plays a dominant role in the stabilization of the peptide by gallic acid. The π-OH type of interaction is also observed in the peptide stabilization. Molecular dynamics (MD) simulation for 600 ps revealed the possibility of hydrogen bonding between the collagen-like peptide and gallic acid.

  6. Effects of polyurethane matrices on fungal tannase and gallic acid production under solid state culture*

    PubMed Central

    Treviňo, Lucia; Contreras-Esquivel, Juan C.; Rodríguez-Herrera, Raul; Aguilar, Cristóbal Noé

    2007-01-01

    The influence of the physical structure of polyurethane matrix as a support in a solid state culture in tannase production and gallic acid accumulation by Aspergillus niger Aa-20 was evaluated. Three different polyurethane matrices were used as the support: continuous, semi-discontinuous and discontinuous. The highest tannase production at 2479.59 U/L during the first 12 h of culture was obtained using the discontinuous matrix. The gallic acid was accumulated at 7.64 g/L at the discontinuous matrix. The results show that the discontinuous matrix of polyurethane is better for tannase production and gallic acid accumulation in a solid state culture bioprocess than the continuous and semi-discontinuous matrices. PMID:17910122

  7. Development of new antioxidant active packaging films based on ethylene vinyl alcohol copolymer (EVOH) and green tea extract.

    PubMed

    Lopez de Dicastillo, Carol; Nerin, Cristina; Alfaro, Pilar; Catala, Ramon; Gavara, Rafael; Hernandez-Munoz, Pilar

    2011-07-27

    Ethylene vinyl alcohol copolymer (EVOH) films containing green tea extract were successfully produced by extrusion. The films were brown and translucent, and the addition of the extract increased the water and oxygen barrier at low relative humidity but increased the water sensitivity, the glass transition temperature, and the crystallinity of the films and improved their thermal resistance. An analysis by HPLC revealed that the antioxidant components of the extract suffered partial degradation during extrusion, reducing the content of catechin gallates and increasing the concentration of free gallic acid. Exposure of the films to various food simulants showed that the liquid simulants increased their capacity to reduce DPPH(•) and ABTS(•+) radicals. The release of green tea extract components into the simulant monitored by HPLC showed that all compounds present in the green tea extract were partially released, although the extent and kinetics of release were dependent on the type of food. In aqueous food simulants, gallic acid was the main antioxidant component released with partition coefficient values ca. 200. In 95% ethanol (fatty food simulant) the K value for gallic acid decreased to 8 and there was a substantial contribution of catechins (K in the 1000 range) to a greatly increased antioxidant efficiency. Kinetically, gallic acid was released more quickly than catechins, owing to its faster diffusivity in the polymer matrix as a consequence of its smaller molecular size, although the most relevant effect is the plasticization of the matrix by alcohol, increasing the diffusion coefficient >10-fold. Therefore, the materials here developed with the combination of antioxidant substances that constitute the green tea extract could be used in the design of antioxidant active packaging for all type of foods, from aqueous to fatty products, the compounds responsible for the protection being those with the higher compatibility with the packaged product.

  8. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway.

    PubMed

    Gandhi, Gopalsamy Rajiv; Jothi, Gnanasekaran; Antony, Poovathumkal James; Balakrishna, Kedike; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Stalin, Antony; Al-Dhabi, Naif Abdullah

    2014-12-15

    In this study, the therapeutic efficacy of gallic acid from Cyamopsis tetragonoloba (L.) Taub. (Fabaceae) beans was examined against high-fat diet fed-streptozotocin-induced experimental type 2 diabetic rats. Molecular-dockings were done to determine the putative binding modes of gallic acid into the active sites of key insulin-signaling markers. Gallic acid (20 mg/kg) given to high-fat diet fed-streptozotocin-induced rats lowered body weight gain, fasting blood glucose and plasma insulin in diabetic rats. It further restored the alterations of biochemical parameters to near normal levels in diabetic treated rats along with cytoprotective action on pancreatic β-cell. Histology of liver and adipose tissues supported the biochemical findings. Gallic acid significantly enhanced the level of peroxisome proliferator-activated receptor γ (PPARγ) expression in the adipose tissue of treated rat compared to untreated diabetic rat; it also slightly activated PPARγ expressions in the liver and skeletal muscle. Consequently, it improved insulin-dependent glucose transport in adipose tissue through translocation and activation of glucose transporter protein 4 (GLUT4) in phosphatidylinositol 3-kinase (PI3K)/phosphorylated protein kinase B (p-Akt) dependent pathway. Gallic acid docked with PPARγ; it exhibited promising interactions with the GLUT4, glucose transporter protein 1 (GLUT1), PI3K and p-Akt. These findings provided evidence to show that gallic acid could improve adipose tissue insulin sensitivity, modulate adipogenesis, increase adipose glucose uptake and protect β-cells from impairment. Hence it can be used in the management of obesity-associated type 2 diabetes mellitus. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells.

    PubMed

    García-Rivera, Dagmar; Delgado, René; Bougarne, Nadia; Haegeman, Guy; Berghe, Wim Vanden

    2011-06-01

    Vimang is a standardized extract derived from Mango bark (Mangifera Indica L.), commonly used as anti-inflammatory phytomedicine, which has recently been used to complement cancer therapies in cancer patients. We have further investigated potential anti-tumour effects of glucosylxanthone mangiferin and indanone gallic acid, which are both present in Vimang extract. We observed significant anti-tumour effects of both Vimang constituents in the highly aggressive and metastatic breast cancer cell type MDA-MB231. At the molecular level, mangiferin and gallic acid both inhibit classical NFκB activation by IKKα/β kinases, which results in impaired IκB degradation, NFκB translocation and NFκB/DNA binding. In contrast to the xanthone mangiferin, gallic acid further inhibits additional NFκB pathways involved in cancer cell survival and therapy resistance, such as MEK1, JNK1/2, MSK1, and p90RSK. This results in combinatorial inhibition of NFκB activity by gallic acid, which results in potent inhibition of NFκB target genes involved in inflammation, metastasis, anti-apoptosis and angiogenesis, such as IL-6, IL-8, COX2, CXCR4, XIAP, bcl2, VEGF. The cumulative NFκB inhibition by gallic acid, but not mangiferin, is also reflected at the level of cell survival, which reveals significant tumour cytotoxic effects in MDA-MB231 cells. Altogether, we identify gallic acid, besides mangiferin, as an essential anti-cancer component in Vimang extract, which demonstrates multifocal inhibition of NFκB activity in the cancer-inflammation network. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Bioavailable Concentrations of Delphinidin and Its Metabolite, Gallic Acid, Induce Antioxidant Protection Associated with Increased Intracellular Glutathione in Cultured Endothelial Cells

    PubMed Central

    Goszcz, Katarzyna; Deakin, Sherine J.; Duthie, Garry G.; Stewart, Derek

    2017-01-01

    Despite limited bioavailability and rapid degradation, dietary anthocyanins are antioxidants with cardiovascular benefits. This study tested the hypothesis that the antioxidant protection conferred by the anthocyanin, delphinidin, is mediated by modulation of endogenous antioxidant defences, driven by its degradation product, gallic acid. Delphinidin was found to degrade rapidly (t1/2 ~ 30 min), generating gallic acid as a major degradation product. Both delphinidin and gallic acid generated oxygen-centred radicals at high (100 μM) concentrations in vitro. In a cultured human umbilical vein endothelial cell model of oxidative stress, the antioxidant protective effects of both delphinidin and gallic acid displayed a hormesic profile; 100 μM concentrations of both were cytotoxic, but relatively low concentrations (100 nM–1 μM) protected the cells and were associated with increased intracellular glutathione. We conclude that delphinidin is intrinsically unstable and unlikely to confer any direct antioxidant activity in vivo yet it offered antioxidant protection to cells at low concentrations. This paradox might be explained by the ability of the degradation product, gallic acid, to confer benefit. The findings are important in understanding the mode of protection conferred by anthocyanins and reinforce the necessity to conduct in vitro experiments at biologically relevant concentrations. PMID:29081896

  11. Protective activity of hamamelitannin on cell damage of murine skin fibroblasts induced by UVB irradiation.

    PubMed

    Masaki, H; Atsumi, T; Sakurai, H

    1995-07-01

    The protective activities of hamamelitannin (2',5-di-O-galloyl-hamamelose) in Hamamelis virginiana L. and its related compound, gallic acid, on damaged murine skin fibroblasts induced by UVB irradiation were investigated. In order to exclude the UV absorbing effect of the compounds, the protection study was performed such that the fibroblasts were pretreated with hamamelitannin or gallic acid for 24 h before UVB irradiation. At 200 microM concentration, hamamelitannin gave the higher survival of 72.6 +/- 0.4% in comparison with that of gallic acid (35.5 +/- 1.0%), while UVB absorbers such as 2-ethylhexyl p-methoxycinnamate and hexylbenzoate did not show such protection. The scavenging activities of hamamelitannin and gallic acid against active oxygens such as superoxide anion radicals, hydroxyl radicals and singlet oxygens were evaluated using electron spin resonance (ESR-spin trapping method). Hamamelitannin and gallic acid showed potent scavenging activities against all active oxygens tested. Furthermore, the association of hamamelitannin to fibroblasts was examined by comparing it with that of gallic acid, and the following results were obtained: (1) hamamelitannin reduces the reaction rate of liposome entrapped-nitroblue tetrazolium (NBT) with external superoxide anions, and (2) several glycosides associate with fibroblasts. From these results, it was concluded that hamamelitannin protects murine fibroblasts against external active oxygens by associating with the cell surface through its sugar moiety.

  12. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity

    PubMed Central

    Ryu, Yuhee; Jin, Li; Kee, Hae Jin; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Lin, Ming Quan; Jeong, Myung Ho

    2016-01-01

    Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway. PMID:27703224

  13. Antioxidant activity of gallic acid and methyl gallate in triacylglycerols of Kilka fish oil and its oil-in-water emulsion.

    PubMed

    Asnaashari, Maryam; Farhoosh, Reza; Sharif, Ali

    2014-09-15

    The anti-DPPH radical effect as well as anti-peroxide activity of gallic acid, methyl gallate, and α-tocopherol in a bulk Kilka fish oil and its oil-in-water emulsion stabilized by soy protein isolate at 55°C were investigated. Gallic acid with the lowest hydrophobicity (log P=-0.28) was found to be the most active antiradical agent (IC50=29.5 μM), followed by methyl gallate (IC50=38.0 μM, log P=-0.23) and α-tocopherol (IC50=105.3 μM, log P=0.70). The anti-peroxide activity in the bulk oil system decreased in the order of methyl gallate>gallic acid>α-tocopherol. In the emulsion system, methyl gallate still behaved better than gallic acid, but the highest activity belonged to α-tocopherol. Based on the calculation of a number of kinetic parameters, the antioxidants, in general, showed better performances in the bulk oil system than in the emulsion system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Antidiabetic Activity from Gallic Acid Encapsulated Nanochitosan

    NASA Astrophysics Data System (ADS)

    Purbowatiningrum; Ngadiwiyana; Ismiyarto; Fachriyah, E.; Eviana, I.; Eldiana, O.; Amaliyah, N.; Sektianingrum, A. N.

    2017-02-01

    Diabetes mellitus (DM) has become a health problem in the world because it causes death. One of the phenolic compounds that have antidiabetic activity is gallic acid. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The result of chitosan nanoparticle’s Scanning Electron Microscopy (SEM) showed that chitosan nanoparticle’s size is uniform and it is smaller than chitosan. The value of encapsulation efficiency (EE) of gallic acid which encapsulated within chitosan nanoparticles is about 50.76%. Inhibition test result showed that gallic acid-chitosan nanoparticles at 50 ppm could inhibite α-glucosidase activity in 28.87% with 54.94 in IC50. So it can be concluded that gallic acid can be encapsulated in nanoparticles of chitosan and proved that it could inhibit α-glucosidase.

  15. Gallic acid as a protective antioxidant against anthocyanin degradation and color loss in vitamin-C fortified cranberry juice.

    PubMed

    Roidoung, Sunisa; Dolan, Kirk D; Siddiq, Muhammad

    2016-11-01

    The objective of this study was to evaluate different antioxidants for anthocyanin (ACY) retention in vitamin C fortified cranberry juice and assess its quality. Cranberry juice was fortified with 40-80mg/100mL vitamin C and added hesperidin, catechin, and gallic acid at different concentrations. Juice was pasteurized at 85°C for 1min and stored at 23°C for 16days. ACYs, vitamin C, color intensity, and browning index (BI) were evaluated at 2-day intervals. Gallic acid was found to be the most effective antioxidant against ACYs degradation and significantly (p<0.05) increased red color intensity by 37% and ACY concentration by 41%, compared to the control. After 16-day storage, the BI of gallic acid-added juice was significantly lower (0.80 vs 1.00) than the control juice. The outcome of this research provided a potential solution of using gallic acid to preserve a health-beneficial component (ACYs), and endogenous red color in cranberry juice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Design of titanium nitride- and wolfram carbide-doped RGO/GC electrodes for determination of gallic acid.

    PubMed

    Stanković, Dalibor M; Ognjanović, Miloš; Martin, Fabian; Švorc, Ľubomir; Mariano, José F M L; Antić, Bratislav

    2017-12-15

    In the present paper, the electrochemical behavior and the properties of two modified glassy carbon (GC) electrodes used for quantification of gallic acid in sweet wines were compared. A comparative study was conducted between titanium nitride- or wolfram carbide-doped reduced graphene oxide, labeled as TNrGO and WCrGO, respectively, modified GC electrodes, which are promising composite nanomaterials for electroanalytical applications. For the first time, WCrGO was synthesized and its electroanalytical properties compared with those of TNrGO. Results showed that the proposed materials exhibited enhanced characteristics, e.g., low limits of detection (1.1 μM and 3.1 μM for TNrGO and WCrGO, respectively), wide linear ranges (for TNrGO 4.5-76 μM and for WCrGO 10-100 μM), low adsorption, and low background current, which make them promising candidates for electrochemical sensing applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells.

    PubMed

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui; Chang, Long-Sen

    2016-11-01

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pH10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Biopesticides from plants: Calceolaria integrifolia s.l.

    PubMed

    Céspedes, Carlos L; Salazar, Juan R; Ariza-Castolo, Armando; Yamaguchi, Lydia; Avila, José G; Aqueveque, Pedro; Kubo, Isao; Alarcón, Julio

    2014-07-01

    The effects of persistent organic pollutants (POPs) on humans and biodiversity are multiple and varied. Nowadays environmentally-friendly pesticides are strongly preferred to POPs. It is noteworthy that the crop protection role of pesticides and other techniques, i.e. biopesticides, plant extracts, prevention methods, organic methods, evaluation of plant resistance to certain pests under an integrated pest management (IPM), could improve the risks and benefits which must be assessed on a sound scientific basis. For this directive it is crucial to bring about a significant reduction in the use of chemical pesticides, not least through the promotion of sustainable alternative solutions such as organic farming and IPM. Biopesticides are derived from natural materials such as animals, plants, bacteria, and certain minerals. Most of them are biodegradable in relatively short periods of time. On this regard, substances from Calceolaria species emerge as a strong alternative to the use of POPs. The American genus Calceolaria species are regarded both as a notorious weeds and popular ornamental garden plants. Some have medicinal applications. Other taxa of Calceolaria are toxic to insects and resistant to microbial attack. These properties are probably associated with the presence of terpenes, iridoids, flavonoids, naphthoquinones and phenylpropanoids previously demonstrated to have interesting biological activities. In this article a comprehensive evaluation of the potential utilization of Calceolaria species as a source of biopesticides is made. The chemical profile of selected members of the Chilean Calceolaria integrifolia sensu lato complex represents a significant addition to previous studies. New secondary metabolites were isolated, identified and tested for their antifeedant, insect growth regulation and insecticidal activities against Spodoptera frugiperda and Drosophila melanogaster. These species serve as a model of insect pests using conventional procedures. Additionally, bactericidal and fungicidal activity were determined. Dunnione mixed with gallic acid was the most active fungistatic and fungicidal combination encountered. Several compounds as isorhamnetin, combined with ferulic and gallic acid quickly reduced cell viability, but cell viability was recovered quickly and did not differ from that of the control. The effect of these mixtures on cultures of Aspergillus niger, Fusarium moniliforme, Fusarium sporotrichum, Rhizoctonia solani, and Trichophyton mentagrophytes, was sublethal. However, when fungistatic isorhamnetin and dunnione were combined with sublethal amounts of both ferulic and gallic acid, respectively, strong fungicidal activity against theses strains was observed. Thus, dunnione combined with gallic acid completely restricted the recovery of cell viability. This apparent synergistic effect was probably due to the blockade of the recovery process from induced-stress. The same series of phenolics (iridoids, flavonoids, naphthoquinones and phenylpropanoids) were also tested against the Gram-negative bacteria Escherichia coli, Enterobacter agglomerans, and Salmonella typhi, and against the Gram-positive bacteria Bacillus subtilis, Sarcinia lutea, and Staphylococcus aureus and their effects compared with those that of kanamycin. Mixtures of isorhamnetin/dunnione/kaempferol/ferulic/gallic acid in various combinations were found to have the most potent bactericidal and fungicidal activity with MFC between 10 and 50 μg/ml. Quercetin was found to be the most potent fungistatic single compound with an MIC of 15 µg/ml. A time-kill curve study showed that quercetin was fungicidal against fungi assayed at any growth stage. This antifungal activity was slightly enhanced by combination with gallic acid. The primary antifungal action of the mixtures assayed likely comes from their ability to act as nonionic surfactants that disrupt the function of native membrane-associated proteins. Hence, the antifungal activity of isorhamnetin and other O-methyl flavonols appears to be mediated by biophysical processes. Maximum activity is obtained when the balance between hydrophilic and hydrophobic portions of the molecules of the mixtures becomes the most appropriate. Diterpenes, flavonoids, phenylpropanoids, iridoids and phenolic acids were identified by chromatographic procedures (HPLC-DAD), ESI-MS, and NMR hyphenated techniques. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Enhanced functional properties of tannic acid after thermal hydrolysis

    USDA-ARS?s Scientific Manuscript database

    Thermal hydrolysis processing of fresh tannic acid was carried out in a closed reactor at four different temperatures (65, 100, 150 and 200°C). Pressures reached in the system were 1.3 and 4.8 MPa at 150 and 200°C, respectively. Hydrolysis products (gallic acid and pyrogallol) were separated and qua...

  20. [Gallic acid inhibits inflammatory response of RAW264.7 macrophages by blocking the activation of TLR4/NF-κB induced by LPS].

    PubMed

    Huang, Lihua; Hou, Lin; Xue, Hainan; Wang, Chunjie

    2016-12-01

    Objective To observe the influence of gallic acid on Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway in the RAW264.7 macrophages stimulated by lipopolysaccharide (LPS). Methods RAW264.7 macrophages were divided into the following groups: control group, LPS group, LPS combined with gallic acid group, LPS combined with pyrrolidine dithiocarbamate (PDTC) group and LPS combined with dexamethasone (DM) group. RAW264.7 cells were cultured for 24 hours after corresponding treatments. The levels of tumor necrosis factor α (TNF-α), interleukin-1 (IL-1) and IL-6 were detected by ELISA. The levels of TLR4 and NF-κB mRNAs were tested by real-time PCR. The levels of p-IκBα, p65, p-p65 and TLR4 proteins were examined by Western blotting. Results The expression levels of TNF-α, IL-1 and IL-6 were up-regulated in the RAW264.7 macrophages after stimulated by LPS. Gallic acid could reduce the elevated expression levels of TNF-α, IL-1 and IL-6 induced by LPS. The expression of TLR4 significantly increased after stimulated by LPS and NF-κB was activated. Gallic acid could reverse the above changes and prevent the activation of NF-κB. Conclusion Gallic acid could inhibit LPS-induced inflammatory response in RAW264.7 macrophages via TLR4/NF-κB pathway.

  1. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Moreno-Álvarez, S. A.; Martínez-Castañón, G. A.; Niño-Martínez, N.; Reyes-Macías, J. F.; Patiño-Marín, N.; Loyola-Rodríguez, J. P.; Ruiz, Facundo

    2010-10-01

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 μg/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  2. Computational study of molecular electrostatic potential, docking and dynamics simulations of gallic acid derivatives as ABL inhibitors.

    PubMed

    Raghi, K R; Sherin, D R; Saumya, M J; Arun, P S; Sobha, V N; Manojkumar, T K

    2018-04-05

    Chronic myeloid leukemia (CML), a hematological malignancy arises due to the spontaneous fusion of the BCR and ABL gene, resulting in a constitutively active tyrosine kinase (BCR-ABL). Pharmacological activity of Gallic acid and 1,3,4-Oxadiazole as potential inhibitors of ABL kinase has already been reported. Objective of this study is to evaluate the ABL kinase inhibitory activity of derivatives of Gallic acid fused with 1,3,4-Oxadiazole moieties. Attempts have been made to identify the key structural features responsible for drug likeness of the Gallic acid and the 1,3,4-Oxadiazole ring using molecular electrostatic potential maps (MESP). To investigate the inhibitory activity of Gallic acid derivatives towards the ABL receptor, we have applied molecular docking and molecular dynamics (MD) simulation approaches. A comparative study was performed using Bosutinib as the standard which is an approved CML drug acting on the same receptor. Furthermore, the novel compounds designed and reported here in were evaluated for ADME properties and the results indicate that they show acceptable pharmacokinetic properties. Accordingly these compounds are predicted to be drug like with low toxicity potential. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. EGFR-dependent signalling reduced and p38 dependent apoptosis required by Gallic acid in Malignant Mesothelioma cells.

    PubMed

    Demiroglu-Zergeroglu, Asuman; Candemir, Gulsife; Turhanlar, Ebru; Sagir, Fatma; Ayvali, Nurettin

    2016-12-01

    The unrestrained EGFR signalling contributes to malignant phenotype in a number of cancers including Malignant Mesotheliomas. Present study was designed to evaluate EGFR-dependent anti-proliferative and apoptotic effects of Gallic acid in transformed Mesothelial (MeT-5A) and Malignant Mesothelioma (SPC212) cells. Gallic acid reduced the viability of Malignant Mesothelioma cells in a concentration and time-dependent manner. However, viability of mesothelial cells reduced only at high concentration and longer time periods. Gallic acid restrained the activation of EGFR, ERK1/2 and AKT proteins and down regulated expression of Cyclin D and Bcl-2 genes, but upregulated the expression of p21 gene in EGF-induced SPC212 cells. GA-induced transitory G1 arrest and triggered mitochondrial and death receptor mediated apoptosis, which requires p38MAPK activation. The data provided here indicate that GA is able to inhibit EGFR dependent proliferation and survival signals and induces p38 pathway dependent apoptosis in Malignant Mesothelioma cells. On the basis of these experimental findings it is worthwhile to investigate further the biological activity of Gallic acid on other Mesothelioma cell lines harbouring aberrant EGFR signals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Synthesis and structure identification of 2-amino-4, 6- dimethyl pyrimidine with gallic acid and pimelic acid

    NASA Astrophysics Data System (ADS)

    Mekala, R.; Jagdish, P.; Mathammal, R.

    2018-07-01

    Reaction of 2-amino-4, 6- dimethyl pyrimidine with carboxylic acid such as gallic acid and pimelic acid, yielded a salt and co-crystal, respectively. The new crystal forms were obtained from slow evaporation technique. The crystal structure and hydrogen bond interaction of the two crystals were determined by single X-ray diffraction analysis. Inter molecular interactions of the compounds were investigated using the 3D Hirshfeld surfaces and the associated 2D fingerprint plots. The functional groups were identified by the FTIR, FT-Raman spectral studies. The presence of carbon and hydrogen in the two samples were identified by the 1H and 13C NMR analysis. The excited energy was observed using UV-Visible spectral analysis. The fluorescence spectra revealed the emission state of the two samples. The thermal behaviour and stability of the two compounds were evaluated by the TGA-DSC analysis.

  5. Rise in the pH of an unfrozen solution in ice due to the presence of NaCl and promotion of decomposition of gallic acids owing to a change in the pH.

    PubMed

    Takenaka, Norimichi; Tanaka, Masayuki; Okitsu, Kenji; Bandow, Hiroshi

    2006-09-14

    Oxidative decomposition of gallic acid occurs in alkaline solutions but hardly arises in acidic solutions. We have found that the addition of sodium chloride promotes the decomposition of gallic acid caused by freezing even under neutral and acidic conditions. Even at pH 4.5, gallic acid was decomposed by freezing in the presence of NaCl; however, in the absence of NaCl, it was hardly decomposed by freezing at pH lower than 7. Chloride ions are more easily incorporated in ice than sodium ions when the NaCl solution is frozen. The unfrozen solution in ice becomes positively charged, and as a result, protons transfer from the unfrozen solution to the ice. We measured the pH in the unfrozen solution which coexists with single-crystal ice formed from a 5 mmol dm(-3) NaCl solution and determined the pH to be 8.6 at equilibrium with CO(2) of 380 ppm or 11.3 in the absence of CO(2) compared to pH 5.6 in the original solution. From the model calculation performed for gallic acid solution in the presence of 5 mmol dm(-3) NaCl, it can be estimated that the amount of OH(-) transferred from the ice to the solution corresponds to 1.26 x 10(-5) mol dm(-3). The amount of OH(-) transferred is concentrated into the unfrozen solution and affects the pH of the unfrozen solution. Therefore, the pH in an unfrozen gallic acid solution in ice becomes alkaline, and the decomposition of gallic acid proceeds. It is expected that other base-catalyzed reactions in weakly acidic solutions also proceed by freezing in the presence of NaCl without the need for any alkaline reagents.

  6. Allelopathic potential and ecotoxicity evaluation of gallic and nonanoic acids to prevent cyanobacterial growth in lentic systems: A preliminary mesocosm study.

    PubMed

    Techer, Didier; Fontaine, Pascal; Personne, Aline; Viot, Sandrine; Thomas, Marielle

    2016-03-15

    The increase in anthropogenic nutrient loading affecting many freshwater ecosystems combined with global warming may lead to cyanobacterial blooms on an increasingly frequent basis. Among the various physicochemical and biological methods which have been proposed to rapidly control blue-green algae growth, the use of plant-derived substances such as allelochemicals has gained great interest as an environment-friendly approach. The primary aim of this work was to evaluate the efficiency of gallic and nonanoic acid application to preemptively inhibit cyanobacterial growth in lentic hydrosystems. In order to address the process feasibility under realistic exposure scenarios, thirteen outdoor freshwater mesocosms (unit volume: 3m(3)) were designed, each containing phytoplankton (including local blue-green algae species) and various non-target organisms from higher trophic levels (Physa, Lymnaea, Gammarus, and Scardinius erythrophthalmus). After an 8-week mesocosm stabilization period, a full factorial design based on the presence/absence of gallic acid (GA) and nonanoic acid (NA) (including a control group) was implemented into the exposure tanks. Regular monitoring of major phytoplankton taxa was conducted during a 28-day experiment using an on-line fluorometer. The main results suggested that gallic acid was more efficient than nonanoic acid at limiting cyanobacterial growth at concentrations as low as 1 mg L(-1). Successive gallic acid applications (at 1, 2 and 4 mg L(-1)) at the early stages of cyanobacterial growth did not allow the complete elimination of blue-green algae from the mesocosms. However, the specificity of the allelopathic effect of gallic acid towards cyanobacteria was compatible with the maintenance of a primary productivity in the treated tanks as indicated by the photoautotrophic growth of other algal taxa. Finally, no biomarker induction signal could be reported in non-target species. Further gallic acid application trials in lentic systems such as small freshwater ponds may help to design innovative allelopathy-based aquatic ecotechnologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A cellular uptake and cytotoxicity properties study of gallic acid-loaded mesoporous silica nanoparticles on Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Rashidi, Ladan; Vasheghani-Farahani, Ebrahim; Soleimani, Masoud; Atashi, Amir; Rostami, Khosrow; Gangi, Fariba; Fallahpour, Masoud; Tahouri, Mohammad Taher

    2014-03-01

    In this study, the effects of intracellular delivery of various concentrations of gallic acid (GA) as a semistable antioxidant, gallic acid-loaded mesoporous silica nanoparticles (MSNs-GA), and cellular uptake of nanoparticles into Caco-2 cells were investigated. MSNs were synthesized and loaded with GA, then characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, N2 adsorption isotherms, X-ray diffraction, and thermal gravimetric analysis. The cytotoxicity of MSNs and MSNs-GA at low and high concentrations were studied by means of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test and flow cytometry. MSNs did not show significant toxicity in various concentrations (0-500 μg/ml) on Caco-2 cells. For MSNs-GA, cell viability was reduced as a function of incubation time and different concentrations of nanoparticles. The in vitro GA release from MSNs-GA exhibited the same antitumor properties as free GA on Caco-2 cells. Flow cytometry results confirmed those obtained using MTT assay. TEM and fluorescent microscopy confirmed the internalization of MSNs by Caco-2 cells through nonspecific cellular uptake. MSNs can easily internalize into Caco-2 cells without deleterious effects on cell viability. The cell viability of Caco-2 cells was affected during MSNs-GA uptake. MSNs could be designed as suitable nanocarriers for antioxidants delivery.

  8. Formation of β-glucogallin, the precursor of ellagic acid in strawberry and raspberry

    PubMed Central

    Schulenburg, Katja; Feller, Antje; Hoffmann, Thomas; Schecker, Johannes H.; Martens, Stefan; Schwab, Wilfried

    2016-01-01

    Ellagic acid/ellagitannins are plant polyphenolic antioxidants that are synthesized from gallic acid and have been associated with a reduced risk of cancer and cardiovascular diseases. Here, we report the identification and characterization of five glycosyltransferases (GTs) from two genera of the Rosaceae family (Fragaria and Rubus; F.×ananassa FaGT2*, FaGT2, FaGT5, F. vesca FvGT2, and R. idaeus RiGT2) that catalyze the formation of 1-O-galloyl-β-d-glucopyranose (β-glucogallin) the precursor of ellagitannin biosynthesis. The enzymes showed substrate promiscuity as they formed glucose esters of a variety of (hydroxyl)benzoic and (hydroxyl)cinnamic acids. Determination of kinetic values and site-directed mutagenesis revealed amino acids that affected substrate preference and catalytic activity. Green immature strawberry fruits were identified as the main source of gallic acid, β-glucogallin, and ellagic acid in accordance with the highest GT2 gene expression levels. Injection of isotopically labeled gallic acid into green fruits of stable transgenic antisense FaGT2 strawberry plants clearly confirmed the in planta function. Our results indicate that GT2 enzymes might contribute to the production of ellagic acid/ellagitannins in strawberry and raspberry, and are useful to develop strawberry fruit with additional health benefits and for the biotechnological production of bioactive polyphenols. PMID:26884604

  9. Estimation of kinetic parameters of anthocyanins and color degradation in vitamin C fortified cranberry juice during storage.

    PubMed

    Roidoung, Sunisa; Dolan, Kirk D; Siddiq, Muhammad

    2017-04-01

    Color degradation in cranberry juice during storage is the most common consumer complaint. To enhance nutritional quality, juice is typically fortified with vitamin C. This study determined effect of gallic acid, a natural antioxidant, for the preservation of anthocyanins (ACYs) and color, and estimated kinetics of ACYs and color degradation. Juice, fortified with 40-80mg/100mL vitamin C and 0-320mg/100mL gallic acid, was pasteurized at 85°C for 1min and stored at 23°C for 16days. Total monomeric anthocyanins and red color intensity were evaluated spectrophotometrically and data were used to determine degradation rate constants (k values) and order of reaction (n) of ACYs and color. Due to high correlation, k and n could not be estimated simultaneously. To overcome this difficulty, both n and k were held at different constant values in separate analyses to allow accurate estimation of each. Parameters n and k were modeled empirically as functions of vitamin C, and of vitamin C and gallic acid, respectively. Reaction order n ranged from 1.2 to 4.4, and decreased with increasing vitamin C concentration. The final model offers an effective tool that could be used for predicting ACYs and color retention in cranberry juice during storage. Copyright © 2017. Published by Elsevier Ltd.

  10. Antibacterial Potential of Northeastern Portugal Wild Plant Extracts and Respective Phenolic Compounds

    PubMed Central

    Ferreira, Isabel C. F. R.; Barros, Lillian; Carvalho, Ana Maria; Soares, Graça; Henriques, Mariana

    2014-01-01

    The present work aims to assess the antibacterial potential of phenolic extracts, recovered from plants obtained on the North East of Portugal, and of their phenolic compounds (ellagic, caffeic, and gallic acids, quercetin, kaempferol, and rutin), against bacteria commonly found on skin infections. The disk diffusion and the susceptibility assays were used to identify the most active extracts and phenolic compounds. The effect of selected phenolic compounds on animal cells was assessed by determination of cellular metabolic activity. Gallic acid had a higher activity, against gram-positive (S. epidermidis and S. aureus) and gram-negative bacteria (K. pneumoniae) at lower concentrations, than the other compounds. The caffeic acid, also, showed good antibacterial activity against the 3 bacteria used. The gallic acid was effective against the 3 bacteria without causing harm to the animal cells. Gallic and caffeic acid showed a promising applicability as antibacterial agents for the treatment of infected wounds. PMID:24804249

  11. Synthesis of Gallic Acid Analogs as Histamine and Pro-Inflammatory Cytokine Inhibitors for Treatment of Mast Cell-Mediated Allergic Inflammation.

    PubMed

    Fei, Xiang; Je, In-Gyu; Shin, Tae-Yong; Kim, Sang-Hyun; Seo, Seung-Yong

    2017-05-29

    Gallic acid (3,4,5-trihydroxybenzoic acid), is a natural product found in various foods and herbs that are well known as powerful antioxidants. Our previous report demonstrated that it inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. In this report, various amide analogs of gallic acid have been synthesized by introducing different amines through carbodiimide-mediated amide coupling and Pd/C-catalyzed hydrogenation. These compounds showed a modest to high inhibitory effect on histamine release and pro-inflammatory cytokine expression. Among them, the amide bearing ( S )-phenylglycine methyl ester 3d was found to be more active than natural gallic acid. Further optimization yielded several ( S )- and ( R )-phenylglycine analogs that inhibited histamine release in vitro. Our findings suggest that some gallamides could be used as a treatment for allergic inflammatory diseases.

  12. Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity.

    PubMed

    Rudrappa, Thimmaraju; Bonsall, Justin; Gallagher, John L; Seliskar, Denise M; Bais, Harsh P

    2007-10-01

    Phragmites australis is considered the most invasive plant in marsh and wetland communities in the eastern United States. Although allelopathy has been considered as a possible displacing mechanism in P. australis, there has been minimal success in characterizing the responsible allelochemical. We tested the occurrence of root-derived allelopathy in the invasiveness of P. australis. To this end, root exudates of two P. australis genotypes, BB (native) and P38 (an exotic) were tested for phytotoxicity on different plant species. The treatment of the susceptible plants with P. australis root exudates resulted in acute rhizotoxicity. It is interesting to note that the root exudates of P38 were more effective in causing root death in susceptible plants compared to the native BB exudates. The active ingredient in the P. australis exudates was identified as 3,4,5-trihydroxybenzoic acid (gallic acid). We tested the phytotoxic efficacy of gallic acid on various plant systems, including the model plant Arabidopsis thaliana. Most tested plants succumbed to the gallic acid treatment with the exception of P. australis itself. Mechanistically, gallic acid treatment generated elevated levels of reactive oxygen species (ROS) in the treated plant roots. Furthermore, the triggered ROS mediated the disruption of the root architecture of the susceptible plants by damaging the microtubule assembly. The study also highlights the persistence of the exuded gallic acid in P. australis's rhizosphere and its inhibitory effects against A. thaliana in the soil. In addition, gallic acid demonstrated an inhibitory effect on Spartina alterniflora, one of the salt marsh species it successfully invades.

  13. Identification of protoxins and a microbial basis for red maple (Acer rubrum) toxicosis in equines.

    PubMed

    Agrawal, Karan; Ebel, Joseph G; Altier, Craig; Bischoff, Karyn

    2013-01-01

    The leaves of Acer rubrum (red maple), especially when wilted in the fall, cause severe oxidative damage to equine erythrocytes, leading to potentially fatal methemoglobinemia and hemolytic anemia. Gallic acid and tannins from A. rubrum leaves have been implicated as the toxic compounds responsible for red maple toxicosis, but the mechanism of action and toxic principle(s) have not been elucidated to date. In order to investigate further how red maple toxicosis occurs, aqueous solutions of gallic acid, tannic acid, and ground dried A. rubrum leaves were incubated with contents of equine ileum, jejunum, cecum, colon, and liver, and then analyzed for the metabolite pyrogallol, as pyrogallol is a more potent oxidizing agent. Gallic acid was observed to be metabolized to pyrogallol maximally in equine ileum contents in the first 24 hr. Incubation of tannic acid and A. rubrum leaves, individually with ileum contents, produced gallic acid and, subsequently, pyrogallol. Ileum suspensions, when passed through a filter to exclude microbes but not enzymes, formed no pyrogallol, suggesting a microbial basis to the pathway. Bacteria isolated from ileum capable of pyrogallol formation were identified as Klebsiella pneumoniae and Enterobacter cloacae. Therefore, gallotannins and free gallic acid are present in A. rubrum leaves and can be metabolized by K. pneumoniae and E. cloacae found in the equine ileum to form pyrogallol either directly or through a gallic acid intermediate (gallotannins). Identification of these compounds and their physiological effects is necessary for the development of effective treatments for red maple toxicosis in equines.

  14. Gallic Acid Content in Taiwanese Teas at Different Degrees of Fermentation and Its Antioxidant Activity by Inhibiting PKCδ Activation: In Vitro and in Silico Studies.

    PubMed

    Kongpichitchoke, Teeradate; Chiu, Ming-Tzu; Huang, Tzou-Chi; Hsu, Jue-Liang

    2016-10-12

    Teas can be classified according to their degree of fermentation, which has been reported to affect both the bioactive components in the teas and their antioxidative activity. In this study, four kinds of commercial Taiwanese tea at different degrees of fermentation, which include green (non-fermented), oolong (semi-fermented), black (fully fermented), and Pu-erh (post-fermented) tea, were profiled for catechin levels by using high performance liquid chromatography (HPLC). The result indicated that the gallic acid content in tea was directly proportional to the degree of fermentation in which the lowest and highest gallic acid content were 1.67 and 21.98 mg/g from green and Pu-erh tea, respectively. The antioxidative mechanism of the gallic acid was further determined by in vitro and in silico analyses. In vitro assays included the use of phorbol ester-induced macrophage RAW264.7 cell model for determining the inhibition of reactive oxygen species (ROS) production, and PKCδ and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit (p47) activations. The results showed that only at a concentration of 5.00 μM could gallic acid significantly ( p < 0.05) reduce ROS levels in phorbol ester-activated macrophages. Moreover, protein immunoblotting expressed similar results in which activations of PKCδ and p47 were only significantly ( p < 0.05) attenuated by 5.00 μM treatment. Lastly, in silico experiments further revealed that gallic acid could block PKCδ activation by occupying the phorbol ester binding sites of the protein.

  15. Selection of diazotrophic bacterial communities in biological sand filter mesocosms used for the treatment of phenolic-laden wastewater.

    PubMed

    Ramond, Jean-Baptiste; Welz, Pamela J; Tuffin, Marla I; Burton, Stephanie G; Cowan, Don A

    2013-10-01

    Agri effluents such as winery or olive mill wastewaters are characterized by high phenolic concentrations. These compounds are highly toxic and generally refractory to biodegradation. Biological sand filters (BSFs) represent inexpensive, environmentally friendly, and sustainable wastewater treatment systems which rely vastly on microbial catabolic processes. Using denaturing gradient gel electrophoresis and terminal-restriction fragment length polymorphism, this study aimed to assess the impact of increasing concentrations of synthetic phenolic-rich wastewater, ranging from 96 mg L(-1) gallic acid and 138 mg L(-1) vanillin (i.e., a total chemical oxygen demand (COD) of 234 mg L(-1)) to 2,400 mg L(-1) gallic acid and 3,442 mg L(-1) vanillin (5,842 mg COD L(-1)), on bacterial communities and the specific functional diazotrophic community from BSF mesocosms. This amendment procedure instigated efficient BSF phenolic removal, significant modifications of the bacterial communities, and notably led to the selection of a phenolic-resistant and less diverse diazotrophic community. This suggests that bioavailable N is crucial in the functioning of biological treatment processes involving microbial communities, and thus that functional alterations in the bacterial communities in BSFs ensure provision of sufficient bioavailable nitrogen for the degradation of wastewater with a high C/N ratio.

  16. Relative content of gallic acid over 5-galloylquinic acid as an index for the baking intensity of oolong teas.

    PubMed

    Wang, Miki Mei-Chi; Yeh, Yun; Shih, Yu-En; Tzen, Jason Tze-Cheng

    2018-04-01

    Phenolic compounds in a series of old oolong teas prepared by baking annually were monitored and compared. The results showed that the relative content of gallic acid over 5-galloylquinic acid was subsequently elevated during this preparatory process. To reveal the effect was mainly resulted from baking or aging, two sets of oolong teas were collected and examined; one set was generated from fresh oolong tea via continually daily baking and the other set was composed of aged oolong teas with no or light baking in the storage period. The relative content of gallic acid over 5-galloylquinic acid was observed to be subsequently elevated when oolong tea was continually baked at 90, 100, 110, and 120 °C for 8 h day after day. In contrast, the relative contents of gallic acid over 5-galloylquinic acid in aged oolong teas with no or light baking were found to be similar to or slightly higher than that in fresh oolong tea. The results suggest that the relative content of gallic acid over 5-galloylquinic acid seems to be a suitable index for the baking intensity of oolong tea in different preparations. Copyright © 2017. Published by Elsevier B.V.

  17. Improved Anticancer Effect of Magnetite Nanocomposite Formulation of GALLIC Acid (Fe₃O₄-PEG-GA) Against Lung, Breast and Colon Cancer Cells.

    PubMed

    Rosman, Raihana; Saifullah, Bullo; Maniam, Sandra; Dorniani, Dena; Hussein, Mohd Zobir; Fakurazi, Sharida

    2018-02-02

    Lung cancer, breast cancer and colorectal cancer are the most prevalent fatal types of cancers globally. Gallic acid (3,4,5-trihydroxybenzoic acid) is a bioactive compound found in plants and foods, such as white tea, witch hazel and it has been reported to possess anticancer, antioxidant and anti-inflammatory properties. In this study we have redesigned our previously reported anticancer nanocomposite formulation with improved drug loading based on iron oxide magnetite nanoparticles coated with polyethylene glycol and loaded with anticancer drug gallic acid (Fe₃O₄-PEG-GA). The in vitro release profile and percentage drug loading were found to be better than our previously reported formulation. The anticancer activity of pure gallic acid (GA), empty carrier (Fe₃O₄-PEG) nanocarrier and of anticancer nanocomposite (Fe₃O₄-PEG-GA) were screened against human lung cancer cells (A549), human breast cancer cells (MCF-7), human colon cancer cells (HT-29) and normal fibroblast cells (3T3) after incubation of 24, 48 and 72 h using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay. The designed formulation (Fe₃O₄-PEG-GA) showed better anticancer activity than free gallic acid (GA). The results of the in vitro studies are highly encouraging to conduct the in vivo studies.

  18. A C8-Modified Graphene@mSiO2 Composites Based Method for Quantification of Gallic Acid in Rat Plasma after Oral Administration of Changtai Granule and Its Application to Pharmacokinetics.

    PubMed

    Xu, Chen; Yu, Yingjia; Ling, Li; Wang, Yang; Zhang, Jundong; Li, Yan; Duan, Gengli

    2017-01-01

    A rapid, effective extraction technique has been established for measuring the gallic acid in rat plasma by using sandwich-structured graphene/mesoporous silica composites with C 8 -modified interior pore-walls as adsorbent. The unique characteristics of the graphene-silica composites excluded large molecules, like proteins, from the mesopore channels as a result of size exclusion effect, leading to a direct extraction of drug molecules from protein-rich biological samples such as plasma without any other pretreatment procedure. Followed by elution and centrifugation, the gallic acid-absorbed composites were rapidly isolated before LC-MS/MS. Serving as a reliable tool for analysis of Traditional Chinese Medicine: Changtai Granule, the newly developed method was fully validated and successfully applied in the pharmacokinetic study of gallic acid in rat plasma. Extraction recovery, matrix effect and stability were satisfactory in rat plasma. According to the results of pharmacokinetic studies, Changtai Granule exhibited greater adsorption, distribution and clearance properties of gallic acid in the treatment of ulcerative colitis. Hence, this study may offer a valuable alternative to simplify and speed up sample preparation, and be useful for clinical studies of related preparations.

  19. Simultaneous determination of gallic acid and gentisic acid in organic anion transporter expressing cells by liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Li; Halquist, Matthew S; Sweet, Douglas H

    2013-10-15

    In order to elucidate the role of organic anion transporters (OATs) in the renal elimination of gallic acid and gentisic acid, a new, rapid, and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous determination of gallic acid and gentisic acid in cell lysate, using Danshensu as the internal standard (IS). After a simple liquid-liquid extraction, the analytes were detected in negative ESI mode using selected reaction monitoring. The precursor-to-product ion transitions (m/z) were 169.0→125.0, 153.1→108.0, and 196.8→135.2 for gallic acid, gentisic acid, and the IS, respectively. Chromatographic separation was achieved on a C18 column using mobile phases consisting of water with 0.1% acetic acid (A) and acetonitrile with 0.05% formic acid. (B) The total run time was 3min and calibration curves were linear over the concentrations of 0.33-2400ng/mL for both compounds (r(2)>0.995). Good precision (between 3.11% and 14.1% RSD) and accuracy (between -12.7% and 11% bias) was observed for quality controls at concentrations of 0.33 (lower limit of quantification), 1, 50, and 2000ng/mL. The mean extraction recovery of gallic acid and gentisic acid was 80.7% and 83.5%, respectively. Results from post-column infusion and post-extraction methods indicated that the analytical method exhibited negligible matrix effects. Finally, this validated assay was successfully applied in a cellular uptake study to determine the intracellular concentrations of gallic acid and gentisic acid in OAT expressing cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Gallic acid reduces cell growth by induction of apoptosis and reduction of IL-8 in HepG2 cells.

    PubMed

    Lima, Kelly Goulart; Krause, Gabriele Catyana; Schuster, Aline Daniele; Catarina, Anderson Velasque; Basso, Bruno Souza; De Mesquita, Fernanda Cristina; Pedrazza, Leonardo; Marczak, Elisa Simon; Martha, Bianca Andrade; Nunes, Fernanda Bordignon; Chiela, Eduardo Cremonese Filippi; Jaeger, Natália; Thomé, Marcos Paulo; Haute, Gabriela Viegas; Dias, Henrique Bregolin; Donadio, Márcio Vinícius Fagundes; De Oliveira, Jarbas Rodrigues

    2016-12-01

    Hepatocellular carcinoma is the most prevalent primary liver tumor and is among the top ten cancer that affect the world population. Its development is related, in most cases, to the existence of chronic liver injury, such as in cirrhosis. The knowledge about the correlation between chronic inflammation and cancer has driven new researches with anti-inflammatory agents that have potential for the development of antitumor drugs. Gallic acid is a phenolic acid found in many natural products and have shown anti-inflammatory, anti-tumor, anti-mutagenic and antioxidant actions. The purpose of this study was to investigate the effect of gallic acid on acute and chronic cell proliferation and inflammatory parameters of hepatocellular carcinoma cells (HepG2), as well as to investigate the mechanisms involved. Results showed that the gallic acid decreased the proliferation of HepG2 cells in a dose-dependent manner (Trypan blue exclusion assay), without causing necrosis (LDH assay). We observed a significant increase in the percentage of small and regular nuclei (Nuclear Morphometric Analysis assay), a significant induction of apoptosis by Annexin V-FITC and PI assay and no interference with the cell cycle using the FITC BrdU Flow Kit. We observed a significant reduction in the levels of IL-8 and increased levels of IL-10 and IL-12 (Cytometric Bead Array Human Inflammation Assay). Furthermore, gallic acid caused no cancer cells regrowth at a long term (Cumulative Population Doubling assay). According to these results, gallic acid showed a strong potential as an anti-tumor agent in hepatocellular carcinoma cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Synergistic effect of the combination of gallic acid and famotidine in protection of rat gastric mucosa.

    PubMed

    Asokkumar, K; Sen, Saikat; Umamaheswari, M; Sivashanmugam, A T; Subhadradevi, V

    2014-08-01

    Antioxidant supplements with existing drugs may confer better therapeutic efficacy in oxidative stress related diseases. The purpose of the present work was to characterize the interaction and investigate the protective effect of H2 blocker famotidine and gallic acid in combination against experimentally induced peptic ulcer. Preventive effect of gallic acid and famotidine in different combinations was investigated against aspirin plus pyloric ligation induced ulcer in rat. Ulcer index, gastric juice volume, pH, other biochemical parameters of gastric juice and antioxidant activity using stomach tissue were estimated. Pretreatment with gallic acid and famotidine in combinations for 7 days, protected the gastric mucosa significantly (p<0.05, 0.01), which was evidenced by decrease in ulcer index, gastric juice volume, free and total acidity, total protein, pepsin and DNA content, and increase in pH, carbohydrates concentration in gastric juice. Combination treatment increases levels of superoxide dismutase, catalase, reduced glutathione, glutathione reductase and glucose-6-phosphate dehydrogenase, and decreases lipid peroxidation, myloperoxidase in stomach tissue. Along with higher dose combination, lower dose combinations like gallic acid (50mg/kg) plus famotidine (10mg/kg) also offered better antiulcer activity than their individual effect. Histopathological studies confirmed their antiulcer activity. Combination treatments confer synergistic protective effect against peptic ulcer in rats, which was related to the gastroprotective, antisecratory and antioxidant activity of combination treatment. Results proved that use of gallic acid with existing antiulcer drug will be more useful in the prevention/management of peptic ulcer. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats.

    PubMed

    Karimi-Khouzani, Omid; Heidarian, Esfandiar; Amini, Sayed Asadollah

    2017-08-01

    Fluoxetine-induced liver damage is a cause of chronic liver disease. In the present study the hepatoprotective effects of gallic acid against fluoxetine-induced liver damage were examined. Forty-eight male rats were divided into six groups as follow: group 1, the control group; group 2, rats receiving fluoxetine (24mg/kg bw daily, po) without treatment; group 3, rats receiving 24mg/kg bw fluoxetine, treated with 50mg/kg bw silymarin and groups 4, 5, and 6 in which gallic acid (50, 100, and 200mg/kg bw, po, respectively) was prescribed after the consumption of fluoxetine. The histopathological changes of hepatic tissues were checked out. Fluoxetine caused a significant increase in the levels of serum glutamate oxaloacetate transaminase (GOT), serum glutamate pyruvate transaminase (GPT), lipid profiles, urea, fasting blood sugar (FBS), creatinine (Cr), protein carbonyl (PC) content, malondialdehyde (MDA), and liver TNF-α as an inflammatory element. Also, the obtained results of group 2 revealed a significant decline in ferric reducing ability of plasma (FRAP), liver catalase (CAT), superoxide dismutase (SOD), and vitamin C levels. The treatment with gallic acid showed significant ameliorations in abnormalities of fluoxetine-induced liver injury as represented by the improvement of hepatic CAT, SOD activities, vitamin C levels, serum biochemical parameters, and histopathological changes, in addition to the recovery of antioxidant defense system status. Gallic acid has inhibitory effects on fluoxetine-induced liver damage. The effect of gallic acid is derived from free radical scavenging properties and the anti-inflammatory effect related to TNF-α. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  3. Free radicals generated during oxidation of green tea polyphenols: electron paramagnetic resonance spectroscopy combined with density functional theory calculations.

    PubMed

    Severino, Joyce Ferreira; Goodman, Bernard A; Kay, Christopher W M; Stolze, Klaus; Tunega, Daniel; Reichenauer, Thomas G; Pirker, Katharina F

    2009-04-15

    Electron paramagnetic resonance spectroscopy and density functional theory calculations have been used to investigate the redox properties of the green tea polyphenols (GTPs) (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), and (-)-epicatechin gallate (ECG). Aqueous extracts of green tea and these individual phenols were autoxidized at alkaline pH and oxidized by superoxide anion (O(2)(-)) radicals in dimethyl sulfoxide. Several new aspects of the free radical chemistry of GTPs were revealed. EGCG can be oxidized on both the B and the D ring. The B ring was the main oxidation site during autoxidation, but the D ring was the preferred site for O(2)(-) oxidation. Oxidation of the D ring was followed by structural degradation, leading to generation of a radical identical to that of oxidized gallic acid. Alkaline autoxidation of green tea extracts produced four radicals that were related to products of the oxidation of EGCG, EGC, ECG, and gallic acid, whereas the spectra from O(2)(-) oxidation could be explained solely by radicals generated from EGCG. Assignments of hyperfine coupling constants were made by DFT calculations, allowing the identities of the radicals observed to be confirmed.

  4. Optimization of ultrasound-assisted hydroalcoholic extraction of phenolic compounds from walnut leaves using response surface methodology.

    PubMed

    Nour, Violeta; Trandafir, Ion; Cosmulescu, Sina

    2016-10-01

    Context Walnut leaves are highly appreciated for their pharmacological effects and therapeutic properties which are mainly attributed to their high content of phenolic compounds. Objective This study optimizes ultrasound assisted hydroalcoholic extraction (UAE) of phenolic compounds from dried walnut leaves by the maximization of total phenolics content (TPC) and total flavanoids content (TFC) of the extracts. Materials and methods Optimal conditions with regard to ethanol concentration (X1: 12.17-95.83% v/v), extraction time (X2: 8.17-91.83 min) and liquid-to-solid ratio (X3: 4.96-25.04 v/w) were identified using central composite design combined with response surface methodology. A high-performance liquid chromatography method with diode-array detection was used to quantify phenolic acids (gallic, vanillic, chlorogenic, caffeic, syringic, p-coumaric, ferulic, sinapic, salicylic, ellagic and trans-cinnamic), flavonoids (catechin, epicatechin, rutin, myricetin and quercetin) and juglone in the extracts. Results Liquid-to-solid ratio and ethanol concentration proved to be the primary factors affecting the extraction efficiency. The maximum predicted TPC, under the optimized conditions (61% ethanol concentration, 51.28 min extraction time and 4.96 v/w liquid-to-solid ratio) was 10125.4 mg gallic acid equivalents per liter while maximum TFC (2925 mg quercetin equivalents per liter) occurred at 67.83% ethanol concentration, 4.96 v/w liquid-to-solid ratio and 49.37 min extraction time. High significant correlations were found between antioxidant activity and both TPC (R(2 )=( )0.81) and TFC (R(2 )=( )0.78). Discussion and conclusion Extracts very rich in polyphenols could be obtained from walnut leaves by using UAE, aimed at preparing dietary supplements, nutraceuticals or functional food ingredients.

  5. Fabrication and characterization of electrospun gelatin nanofibers crosslinked with oxidized phenolic compounds.

    PubMed

    Tavassoli-Kafrani, Elham; Goli, Sayed Amir Hossein; Fathi, Milad

    2017-10-01

    In this study, the ability of oxidized phenolic compounds of tannic, gallic, ferulic and caffeic acids to crosslink gelatin (G) was investigated. The electrospun crosslinked gelatin nanofibers were assessed in terms of gelatin solution properties, fiber morphology, thermal properties, FTIR spectra, XRD pattern and antioxidant activity. Tannic acid showed the most crosslinking activity towards gelatin (13.3 vs 7.44, 4.65, and 3.45% for caffeic, gallic and ferulic, respectively). Crosslinking enhanced roughly electrical conductivity of gelatin solution while the surface tension and viscosity reduced. According to scanning electron microscopy (SEM) results, the fibrous structure of crosslinked gelatin nanofibers didn't change while their diameter increased to the highest value of 280nm for gelatin-tannic. Gelatin-gallic sample showed the highest total phenolic content (86.3mg gallic acid equivalent/g) and antioxidant activity (86.5%). Surprisingly, from differential scanning calorimetry (DSC) curves, it was found that crosslinking led to the reduction of thermal stability of gelatin nanofibers. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Phenolic Modified Ceramic Coating on Biodegradable Mg Alloy: The Improved Corrosion Resistance and Osteoblast-Like Cell Activity.

    PubMed

    Lee, Hung-Pang; Lin, Da-Jun; Yeh, Ming-Long

    2017-06-25

    Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility.

  7. Phenolic Modified Ceramic Coating on Biodegradable Mg Alloy: The Improved Corrosion Resistance and Osteoblast-Like Cell Activity

    PubMed Central

    Lee, Hung-Pang; Lin, Da-Jun; Yeh, Ming-Long

    2017-01-01

    Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility. PMID:28773055

  8. Galloyl-RGD as a new cosmetic ingredient

    PubMed Central

    2014-01-01

    Background The cosmetics market has rapidly increased over the last years. For example, in 2011 it reached 242.8 billion US dollars, which was a 3.9% increase compared to 2010. There have been many recent trials aimed at finding the functional ingredients for new cosmetics. Gallic acid is a phytochemical derived from various herbs, and has anti-fungal, anti-viral, and antioxidant properties. Although phytochemicals are useful as cosmetic ingredients, they have a number of drawbacks, such as thermal stability, residence time in the skin, and permeability through the dermal layer. To overcome these problems, we considered conjugation of gallic acid with a peptide. Results We synthesized galloyl-RGD, which represents a conjugate of gallic acid and the peptide RGD, purified it by HPLC and characterized by MALDI-TOF with the aim of using it as a new cosmetic ingredient. Thermal stability of galloyl-RGD was tested at alternating temperatures (consecutive 4°C, 20°C, or 40°C for 8 h each) on days 2, 21, 41, and 61. Galloyl-RGD was relatively safe to HaCaT keratinocytes, as their viability after 48 h incubation with 500 ppm galloyl-RGD was 93.53%. In the group treated with 50 ppm galloyl-RGD, 85.0% of free radicals were removed, whereas 1000 ppm galloyl-RGD suppressed not only L-DOPA formation (43.8%) but also L-DOPA oxidation (54.4%). Conclusions Galloyl-RGD is a promising candidate for a cosmetic ingredient. PMID:25103826

  9. Two UGT84 Family Glycosyltransferases Catalyze a Critical Reaction of Hydrolyzable Tannin Biosynthesis in Pomegranate (Punica granatum)

    PubMed Central

    Ono, Nadia N.; Qin, Xiaoqiong; Wilson, Alexander E.; Li, Gang

    2016-01-01

    Hydrolyzable tannins (HTs) play important roles in plant herbivore deterrence and promotion of human health. A critical step in HT production is the formation of 1-O-galloyl-β-D-glucopyranoside (β-glucogallin, ester-linked gallic acid and glucose) by a UDP-glucosyltransferase (UGT) activity. We cloned and biochemically characterized four candidate UGTs from pomegranate (Punica granatum), of which only UGT84A23 and UGT84A24 exhibited β-glucogallin forming activities in enzyme assays. Although overexpression and single RNAi knockdown pomegranate hairy root lines of UGT84A23 or UGT84A24 did not lead to obvious alterations in punicalagin (the prevalent HT in pomegranate) accumulation, double knockdown lines of the two UGTs resulted in largely reduced levels of punicalagins and bis-hexahydroxydiphenyl glucose isomers. An unexpected accumulation of galloyl glucosides (ether-linked gallic acid and glucose) was also detected in the double knockdown lines, suggesting that gallic acid was utilized by an unidentified UGT activity for glucoside formation. Transient expression in Nicotiana benthamiana leaves and immunogold labeling in roots of pomegranate seedlings collectively indicated cytosolic localization of UGT84A23 and UGT84A24. Overall, functional characterization and localization of UGT84A23 and UGT84A24 open up opportunities for further understanding the regulatory control of HT metabolism in plants and its coordination with other biochemical pathways in the metabolic network. PMID:27227328

  10. Galloyl-RGD as a new cosmetic ingredient.

    PubMed

    Park, Dae-Hun; Jung, Dae Hyun; Kim, Soo Jung; Kim, Sung Han; Park, Kyung Mok

    2014-08-08

    The cosmetics market has rapidly increased over the last years. For example, in 2011 it reached 242.8 billion US dollars, which was a 3.9% increase compared to 2010. There have been many recent trials aimed at finding the functional ingredients for new cosmetics. Gallic acid is a phytochemical derived from various herbs, and has anti-fungal, anti-viral, and antioxidant properties. Although phytochemicals are useful as cosmetic ingredients, they have a number of drawbacks, such as thermal stability, residence time in the skin, and permeability through the dermal layer. To overcome these problems, we considered conjugation of gallic acid with a peptide. We synthesized galloyl-RGD, which represents a conjugate of gallic acid and the peptide RGD, purified it by HPLC and characterized by MALDI-TOF with the aim of using it as a new cosmetic ingredient. Thermal stability of galloyl-RGD was tested at alternating temperatures (consecutive 4°C, 20°C, or 40°C for 8 h each) on days 2, 21, 41, and 61. Galloyl-RGD was relatively safe to HaCaT keratinocytes, as their viability after 48 h incubation with 500 ppm galloyl-RGD was 93.53%. In the group treated with 50 ppm galloyl-RGD, 85.0% of free radicals were removed, whereas 1000 ppm galloyl-RGD suppressed not only L-DOPA formation (43.8%) but also L-DOPA oxidation (54.4%). Galloyl-RGD is a promising candidate for a cosmetic ingredient.

  11. Two UGT84 Family Glycosyltransferases Catalyze a Critical Reaction of Hydrolyzable Tannin Biosynthesis in Pomegranate (Punica granatum).

    PubMed

    Ono, Nadia N; Qin, Xiaoqiong; Wilson, Alexander E; Li, Gang; Tian, Li

    2016-01-01

    Hydrolyzable tannins (HTs) play important roles in plant herbivore deterrence and promotion of human health. A critical step in HT production is the formation of 1-O-galloyl-β-D-glucopyranoside (β-glucogallin, ester-linked gallic acid and glucose) by a UDP-glucosyltransferase (UGT) activity. We cloned and biochemically characterized four candidate UGTs from pomegranate (Punica granatum), of which only UGT84A23 and UGT84A24 exhibited β-glucogallin forming activities in enzyme assays. Although overexpression and single RNAi knockdown pomegranate hairy root lines of UGT84A23 or UGT84A24 did not lead to obvious alterations in punicalagin (the prevalent HT in pomegranate) accumulation, double knockdown lines of the two UGTs resulted in largely reduced levels of punicalagins and bis-hexahydroxydiphenyl glucose isomers. An unexpected accumulation of galloyl glucosides (ether-linked gallic acid and glucose) was also detected in the double knockdown lines, suggesting that gallic acid was utilized by an unidentified UGT activity for glucoside formation. Transient expression in Nicotiana benthamiana leaves and immunogold labeling in roots of pomegranate seedlings collectively indicated cytosolic localization of UGT84A23 and UGT84A24. Overall, functional characterization and localization of UGT84A23 and UGT84A24 open up opportunities for further understanding the regulatory control of HT metabolism in plants and its coordination with other biochemical pathways in the metabolic network.

  12. Enhanced Oral Bioavailability of Diltiazem by the Influence of Gallic Acid and Ellagic Acid in Male Wistar Rats: Involvement of CYP3A and P-gp Inhibition.

    PubMed

    Athukuri, Bhargavi Latha; Neerati, Prasad

    2017-09-01

    The oral bioavailability of diltiazem is very low due to rapid first pass metabolism in liver and intestine. The purpose of the study was to investigate the effect of gallic acid and ellagic acid on intestinal transport and oral bioavailability of diltiazem in rats. The intestinal transport and permeability of diltiazem was evaluated by in vitro non-everted sac method and in situ single pass intestinal perfusion study. The oral pharmacokinetics was evaluated by conducting oral bioavailability study. The intestinal transport and apparent permeability of diltiazem were significantly enhanced in duodenum, jejunum, and ileum of gallic and ellagic acid-treated groups. The effective permeability of diltiazem was significantly enhanced in ileum part of gallic and ellagic acid-treated groups. When compared with control group, the presence of these two phytochemicals significantly enhanced the area under plasma concentration-time curve and the peak plasma concentration of diltiazem (C max ). Gallic acid and ellagic acid significantly increased the bioavailability of diltiazem due to the inhibition of both CYP3A-mediated metabolism and P-glycoprotein-mediated efflux in the intestine and/or liver. Based on these results, the clinical experiments are warranted for the confirmation to reduce the dose of diltiazem when concomitantly administered with these phytochemicals. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum.

    PubMed

    BenSaad, Lamees A; Kim, Kah Hwi; Quah, Chin Chew; Kim, Wee Ric; Shahimi, Mustafa

    2017-01-14

    Punica granatum (pomegranate), an edible fruit originating in the Middle East, has been used as a traditional medicine for treatment of pain and inflammatory conditions such as peptic ulcer. The numerous risks associated with nonsteroidal anti-inflammatory drugs (NSAIDs) for treatment of pain and inflammation give rise to using medicinal herbs as alternative therapies. This study aimed to evaluate the anti-inflammatory effect of isolated compounds from the ethyl acetate (EtOAc) fraction of P. granatum by determination of their inhibitory effects on lipopolysaccharide (LPS), stimulated nitric oxide (NO), prostaglandin E2 (PGE-2), interleukin-6 (IL-6) and cyclooxxgenase-2 (COX-2) release from RAW264.7 cells. The compounds ellagic acid, gallic acid and punicalagin A&B were isolated from EtOAc by high performance liquid chromatography (HPLC) and further identified by mass spectrometry (MS). The inhibitory effect of ellagic acid, gallic acid and punicalagin A&B were evaluated on the production of LPS-induced NO by Griess reagent, PGE-2 and IL-6 by immunoassay kit and prostaglandin E2 competitive ELISA kit, and COX-2 by Western blotting. Ellagic acid, gallic acid and punicalagin A&B potentially inhibited LPS-induced NO, PGE-2 and IL-6 production. The results indicate that ellagic acid, gallic acid and punicalagin may be the compounds responsible for the anti-inflammatory potential of P. granatum.

  14. The relationship between antiglycation activity and procyanidin and phenolic content in commercial grape seed products.

    PubMed

    Sun, Cathy; McIntyre, Kristina; Saleem, Ammar; Haddad, Pierre Selim; Arnason, John Thor

    2012-02-01

    Eight commercial grape seed products (GSPs) were assessed for their inhibition of the formation of advanced glycation end-products in vitro. All 8 commercial GSPs included in this study were potent inhibitors of advanced glycation end-product formation with IC(50) values ranging from 2.93 to 20.0 µg/mL. Total procyanidin content ranged from 60% to 73%. HPLC-DAD-ELSD results indicate that (+)-catechin, (-)-epicatechin, procyanidin B1, and procyanidin B2 were predominant and ubiquitously present in all the products under study, while gallic acid and procyanidin B4 were present in relatively minor amounts. The IC(50) values correlated with total phenolic content, and multiple regression analysis indicated that IC(50) is a linear function of the concentration of gallic acid and procyanidins B1, B2, and B4. Based on this study, GSPs have the potential to complement conventional diabetes medication toward disease management and prevention.

  15. Terahertz spectroscopic investigation of gallic acid and its monohydrate

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Li, Shaoping; Wang, Chenyang; Zou, Tao; Pan, Tingting; Zhang, Jianbing; Xu, Zhou; Ren, Guanhua; Zhao, Hongwei

    2018-02-01

    The low-frequency spectra of gallic acid (GA) and its monohydrate were investigated by terahertz time-domain spectroscopy (THz-TDS) in the range of 0.5 to 4.5 THz. The dehydration process of GA monohydrate was monitored on-line. The kinetic mechanism of the dehydration process was analyzed depending on the THz spectral change at different temperatures. The results indicate that the diffusion of water molecule dominates the speed of the entire dehydration process. Solid-state density functional theory (DFT) calculations of the vibrational modes of both GA and its monohydrate were performed based on their crystalline structures for better interpreting the experimental THz spectra. The results demonstrate that the characterized features of GA mainly originate from the collective vibrations of molecules. And the interactions between GA and water molecules are responsible for THz fingerprint of GA monohydrate. Multi-techniques including differential scanning calorimetry and thermogravimetry (DSC-TG) and powder X-ray diffraction (PXRD) were also carried out to further investigate GA and its monohydrate.

  16. Preparation and CO 2 adsorption properties of soft-templated mesoporous carbons derived from chestnut tannin precursors

    DOE PAGES

    Nelson, Kimberly M.; Mahurin, Shannon Mark; Mayes, Richard T.; ...

    2015-10-09

    This paper presents a soft templating approach for mesoporous carbon using the polyphenolic heterogeneous biomass, chestnut tannin, as the carbon precursor. By varying synthesis parameters such as tannin:surfactant ratio, cross-linker, reaction time and acid catalyst, the pore structure could be controllably modulated from lamellar to a more ordered hexagonal array. Carbonization at 600 °C under nitrogen produced a bimodal micro-mesoporous carbonaceous material exhibiting enhanced hydrogen bonding with the soft template, similar to that shown by soft-templating of phenolic-formaldehyde resins, allowing for a tailorable pore size. By utilizing the acidic nature of chestnut tannin (i.e. gallic and ellagic acid), hexagonal-type mesostructuresmore » were formed without the use of an acid catalyst. The porous carbon materials were activated with ammonia to increase the available surface area and incorporate nitrogen-containing functionality which led to a maximum CO 2 adsorption capacity at 1 bar of 3.44 mmol/g and 2.27 mmol/g at 0 °C and 25 °C, respectively. The ammonia-activated carbon exhibited multiple peaks in the adsorption energy distribution which indicates heterogeneity of adsorption sites for CO 2 capture.« less

  17. Crystal water as the mol-ecular glue for obtaining different co-crystal ratios: the case of gallic acid tris-caffeine hexa-hydrate.

    PubMed

    Vella-Zarb, L; Baisch, U

    2018-04-01

    The crystal structure of the hexa-hydrate co-crystal of gallic acid and caffeine, C 7 H 6 O 5 ·3C 8 H 10 N 4 O 2 ·6H 2 O or GAL3CAF·6H 2 O , is a remarkable example of the importance of hydrate water acting as structural glue to facilitate the crystallization of two components of different stoichiometries and thus to compensate an imbalance of hydrogen-bond donors and acceptors. The water mol-ecules provide the additional hydrogen bonds required to form a crystalline solid. Whereas the majority of hydrogen bonds forming the inter-molecular network between gallic acid and caffeine are formed by crystal water, only one direct classical hydrogen bond between two mol-ecules is formed between the carb-oxy-lic oxygen of gallic acid and the carbonyl oxygen of caffeine with d ( D ⋯ A ) = 2.672 (2) Å. All other hydrogen bonds either involve crystal water or utilize protonated carbon atoms as donors.

  18. [Simultaneous isolation and purification of gallic acid and brevifolincarboxylic acid from Polygonum capitatum by high-speed counter-current chromatography].

    PubMed

    Chen, Xinxia; Zhang, Liyan; Wan, Jinzhi; Liang, Bin; Xie, Yu

    2010-08-01

    To isolate and purify gallic acid and brevifolincarboxylic acid simultaneously by high-speed counter-current chromatography (HSCCC) from a crude extract of Polygonum capitatum. The biphasic solvent system composed of ethyl acetate-n-butanol-0.44% acetic acid (3:1:5) was used at a flow rate of 2.0 mL x min(-1), while the aqueous phase was selected as the mobile phase and the apparatus was rotated at 860 r x min(-1). The effluent was detected at 272 nm. 51.5 mg of gallic acid and 5.9 mg of brevifolincarboxylic acid were separated from 1.07 g of the crude extract with the purities of 99.7% and 97.5%, respectively, while brevifolincarboxylic acid was obtained firstly from the genus Polygonum. The structures of the compounds were identified by ultraviolet spectrometry (UV), infra-red spectrometry (IR), liquid chromatography/mass spectrometry (LC/MS), time-of-flight mass spectrometry( TOF-MS), 1H-nuclear magnetic resonance (NMR) and 13C-NMR. This method is feasible and rapid for isolation and purification of gallice acid and brevifolincarboxylil acid.

  19. The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability.

    PubMed

    Qian, Bing-Jun; Liu, Jian-Hua; Zhao, Shu-Juan; Cai, Jian-Xiong; Jing, Pu

    2017-08-01

    The mechanism by which copigments stabilize colour, by protecting anthocyanin chromophores from nucleophilic attack, seems well accepted. This study was to determine effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability. Molecular dynamics simulations were applied to explore molecular interactions. Phenolic acids intensified the colour by 19%∼27%. Colour fading during heating followed first-order reactions with half-lives of 3.66, 9.64, 3.50, and 3.39h, whereas anthocyanin degradation, determined by the pH differential method (or HPLC-PDA), followed second-order reactions with half-lives of 3.29 (3.40), 3.43 (3.39), 2.29 (0.39), and 2.72 (0.32)h alone or with gallic/ferulic/caffeic acids, respectively, suggesting that anthocyanin degradation was faster than the colour fading. The strongest protection of gallic acids might be attributed to the shortest distance (4.37Å) of its aromatic ring to the anthocyanin (AC) panel. Hyperchromic effects induced by phenolic acids were pronounced and they obscured the accelerated anthocyanin degradation due to self-association interruption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. In Vitro Sustained Release Study of Gallic Acid Coated with Magnetite-PEG and Magnetite-PVA for Drug Delivery System

    PubMed Central

    Kura, Aminu Umar; Hussein-Al-Ali, Samer Hasan; Bin Hussein, Mohd Zobir; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2014-01-01

    The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG. PMID:24737969

  1. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential.

    PubMed

    Mittal, Amit Kumar; Kumar, Sanjay; Banerjee, Uttam Chand

    2014-10-01

    In this study a synthetic approach for the stable, mono-dispersed high yielding bimetallic (Ag-Se) nanoparticles by quercetin and gallic acid is described. The bimetallic nanoparticles were synthesized at room temperature. Different reaction parameters (concentration of quercetin, gallic acid and Ag/Se salt, pH, temperature and reaction time) were optimized to control the properties of nanoparticles. The nanoparticles were characterized by various analytical techniques and their size was determined to be 30-35 nm. Our findings suggest that both the reduction as well as stabilization of nanoparticles were achieved by the flavonoids and phenolics. This study describes the efficacy of quercetin and gallic acid mediated synthesis of bimetallic (Ag-Se) nanoparticles and their in vitro antioxidant, antimicrobial (Gram-positive and Gram-negative bacteria) and antitumor potentials. The synthesized Ag-Se nanoparticles were used as anticancer agents for Dalton lymphoma (DL) cells and in in vitro 80% of its viability was reduced at 50 μg/mL. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Peroxidase-like activity of the Co3O4 nanoparticles used for biodetection and evaluation of antioxidant behavior

    NASA Astrophysics Data System (ADS)

    Jia, Huimin; Yang, Dongfang; Han, Xiangna; Cai, Junhui; Liu, Haiying; He, Weiwei

    2016-03-01

    Nanostructured enzyme mimics are of great interest as promising alternatives to artificial enzymes for biomedical and catalytic applications. Studying the chemical interactions between antioxidants and nano-enzymes may result in a better understanding of the antioxidant capability of antioxidants and may help improve the function of artificial enzymes to better mimic natural enzymes. In this study, using Co3O4 nanoparticles (NPs) as peroxidase mimics to catalyze the oxidation of chromophoric substrates by H2O2, we developed a platform that acts as a biosensor for hydrogen peroxide and glucose and that can study the inhibitory effects of natural antioxidants on peroxidase mimics. This method can be applied specifically to glucose detection in real samples. Three natural antioxidants, gallic acid (GA), tannic acid (TA), and ascorbic acid (AA), were compared for their antioxidant capabilities. We found that these three antioxidants efficiently inhibit peroxidase-like activity with concentration dependence. The antioxidants showed different efficiencies, in the following order: tannic acid > gallic acid > ascorbic acid. They also showed distinct modes of inhibition based on different interaction mechanisms. This study serves as a proof-of-concept that nano-enzyme mimics can be used to evaluate antioxidant capabilities and to screen enzyme inhibitors.Nanostructured enzyme mimics are of great interest as promising alternatives to artificial enzymes for biomedical and catalytic applications. Studying the chemical interactions between antioxidants and nano-enzymes may result in a better understanding of the antioxidant capability of antioxidants and may help improve the function of artificial enzymes to better mimic natural enzymes. In this study, using Co3O4 nanoparticles (NPs) as peroxidase mimics to catalyze the oxidation of chromophoric substrates by H2O2, we developed a platform that acts as a biosensor for hydrogen peroxide and glucose and that can study the inhibitory effects of natural antioxidants on peroxidase mimics. This method can be applied specifically to glucose detection in real samples. Three natural antioxidants, gallic acid (GA), tannic acid (TA), and ascorbic acid (AA), were compared for their antioxidant capabilities. We found that these three antioxidants efficiently inhibit peroxidase-like activity with concentration dependence. The antioxidants showed different efficiencies, in the following order: tannic acid > gallic acid > ascorbic acid. They also showed distinct modes of inhibition based on different interaction mechanisms. This study serves as a proof-of-concept that nano-enzyme mimics can be used to evaluate antioxidant capabilities and to screen enzyme inhibitors. Electronic supplementary information (ESI) available: Fig. S1-S6. See DOI: 10.1039/c6nr00860g

  3. Induction of Biofilm Formation in the Betaproteobacterium Burkholderia unamae CK43B Exposed to Exogenous Indole and Gallic Acid

    PubMed Central

    Kim, Dongyeop; Sitepu, Irnayuli R.

    2013-01-01

    Burkholderia unamae CK43B, a member of the Betaproteobacteria that was isolated from the rhizosphere of a Shorea balangeran sapling in a tropical peat swamp forest, produces neither indole nor extracellular polymeric substances associated with biofilm formation. When cultured in a modified Winogradsky's medium supplemented with up to 1.7 mM indole, B. unamae CK43B maintains its planktonic state by cell swelling and effectively degrades exogenous indole. However, in medium supplemented with 1.7 mM exogenous indole and 1.0 mM gallic acid, B. unamae CK43B produced extracellular polymeric substances and formed a biofilm. The concentration indicated above of gallic acid alone had no effect on either the growth or the differentiation of B. unamae CK43B cells above a certain concentration threshold, whereas it inhibited indole degradation by B. unamae CK43B to 3-hydroxyindoxyl. In addition, coculture of B. unamae CK43B with indole-producing Escherichia coli in nutrient-rich Luria-Bertani medium supplemented with 1.0 mM gallic acid led to the formation of mixed cell aggregates. The viability and active growth of B. unamae CK43B cells in a coculture system with Escherichia coli were evidenced by fluorescence in situ hybridization. Our data thus suggest that indole facilitates intergenus communication between indole-producing gammaproteobacteria and some indole-degrading bacteria, particularly in gallic acid-rich environments. PMID:23747701

  4. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats.

    PubMed

    Abdel-Moneim, Adel; Yousef, Ahmed I; Abd El-Twab, Sanaa M; Abdel Reheim, Eman S; Ashour, Mohamed B

    2017-08-01

    The brain of diabetics revealed deterioration in many regions, especially the hippocampus. Hence, the present study aimed to evaluate the effects of gallic acid and p-coumaric acid against the hippocampal neurodegeneration in type 2 diabetic rats. Adult male albino rats were randomly allocated into four groups: Group 1 served as control ones and others were induced with diabetes. Group 2 considered as diabetic, and groups 3 and 4 were further orally treated with gallic acid (20 mg/kg b.wt./day) and p-coumaric acid (40 mg/kg b.wt./day) for six weeks. Diabetic rats revealed significant elevation in the levels of serum glucose, blood glycosylated hemoglobin and serum tumor necrosis factor-α, while the level of serum insulin was significantly declined. Furthermore, the brain of diabetic rats showed a marked increase in oxidative stress and a decrease of antioxidant parameters as well as upregulation the protein expression of Bax and downregulation the protein expression of Bcl-2 in the hippocampus. Treatment of diabetic rats with gallic acid and p-coumaric acid significantly ameliorated glucose tolerance, diminished the brain oxidative stress and improved antioxidant status, declined inflammation and inhibited apoptosis in the hippocampus. The overall results suggested that gallic acid and p-coumaric acid may inhibit hippocampal neurodegeneration via their potent antioxidant, anti-inflammatory and anti-apoptotic properties. Therefore, both compounds can be recommended as hopeful adjuvant agents against brain neurodegeneration in diabetics.

  5. Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2)

    PubMed Central

    Salucci, M; Stivala, L A; Maiani, G; Bugianesi, R; Vannini, V

    2002-01-01

    Green tea, mainly through its constituents epigallocatechin gallate, epigallocatechin, epicatechin gallate and epicatechin, has demonstrated anticarcinogenic activity in several animal models, including those for skin, lung and gastro-intestinal tract cancer, although less is known about colorectal cancer. Quercetin, the major flavonoid present in vegetables and fruit, exerts potential anticarcinogenic effects in animal models and cell cultures, but less is known about quercetin glucosides. The objectives of this study were to investigate (i) the antioxidant activity of the phenolic compounds epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside; (ii) the cytotoxicity of different concentrations of epicatechin, epigallocatechin gallate, and gallic acid; (iii) the cellular uptake of epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside and (iv) their effect on the cell cycle. Human colon adenocarcinoma cells were used as experimental model. The results of this study indicate that all dietary flavonoids studied (epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside) show a significant antioxidant effect in a chemical model system, but only epigallocatechin gallate or gallic acid are able to interfere with the cell cycle in Caco2 cell lines. These data suggest that the antioxidant activity of flavonoids is not related to the inhibition of cellular growth. From a structural point of view, the galloyl moiety appears to be required for both the antioxidant and the antiproliferative effects. British Journal of Cancer (2002) 86, 1645–1651. DOI: 10.1038/sj/bjc/6600295 www.bjcancer.com © 2002 Cancer Research UK PMID:12085217

  6. Polyphenols of Salix aegyptiaca modulate the activities of drug metabolizing and antioxidant enzymes, and level of lipid peroxidation.

    PubMed

    Nauman, Mohd; Kale, R K; Singh, Rana P

    2018-03-07

    Salix aegyptiaca is known for its medicinal properties mainly due to the presence of salicylate compounds. However, it also contains other beneficial phytochemicals such as gallic acid, quercetin, rutin and vanillin. The aim of the study was to examine the redox potential, antioxidant and anti-inflammatory activity of these phytochemicals along with acetylsalicylic acid. The redox potential and antioxidant activity of gallic acid, quercetin, rutin, vanillin and acetylsalicylic acid were determined by oxidation-reduction potential electrode method and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, respectively. In ex vivo studies, antioxidant activity of these phytochemicals was determined by lipid peroxidation and carbonyl content assay in the liver of mice. Anti-inflammatory activity was determined by protein denaturation method. Six-week old C57BL/6 mice treated with gallic acid (100 mg/kg body weight) and acetylsalicylic acid (25 and 50 mg/kg body weight) to investigate their in vivo modulatory effects on the specific activities of drug metabolizing phase I and phase II enzymes, antioxidant enzymes and level of lipid peroxidation in liver. The order of ability to donate electron and antioxidant activity was found to be: gallic acid > quercetin > rutin > vanillin > acetylsalicylic acid. In ex vivo studies, the similar pattern and magnitude of inhibitory effects of these phytochemicals against peroxidative damage in microsomes and protein carbonyl in cytosolic fraction were observed. In in vivo studies, gallic acid and acetylsalicylic acid alone or in combination, enhanced the specific activities of drug metabolizing phase I and phase II enzymes as well as antioxidant enzymes and also inhibited lipid peroxidation in liver. These findings show a close link between the electron donation and antioxidation potential of these phytochemicals, and in turn their biological activity. Gallic acid, quercetin, rutin and vanillin were found to be better electron donors and antioxidants and therefore, might be mainly responsible for the antioxidant properties of S. aegyptiaca, while acetylsalicylic acid provided its maximum anti-inflammatory activity.

  7. Effect of fractionated extracts and isolated pure compounds of Spondias mombin (L. Anacardiaceae) leaves on novelty-induced rearing and grooming behaviours in mice.

    PubMed

    Ayoka, Abiodun O; Owolabi, Rotimi A; Bamitale, Samuel K; Akomolafe, Rufus O; Aladesanmi, Joseph A; Ukponmwan, Eghe O

    2013-01-01

    This study attempted to elucidate the neurotransmitter systems involved in the neurophysiological properties of ethanolic extract, fractions and pure isolates of Spondias mombin leaves in mice (n = 6) after intraperitoneal (i.p.) route of administration.The crude ethanolic extract of Spondian mombin leaves was fractionated using the partitioning method to obtain the ethylacetate, butanolic and aqueous fractions. Open column chromatographic fractionation of the ethylacetate fraction yielded seven sub-fractions, out of which the pure coumaroyl, quercetin and gallic acid derivatives were obtained after purification on Sephadex LH 20. The ethanolic extract, butanolic fraction, ethylacetate subfractions and pure isolates of the Spondian mombin leaves were tested on novelty-induced rearing and grooming behaviours in mice with standard pharmacological tools using the open field method. The extract and its fractions decreased novelty-induced rearing in a dose-dependent manner. While the Coumaroyl derivative had no effect on novelty-induced rearing, it significantly reversed the inhibitory effect of yohimbine, propranolol and haloperidol on novelty-induced rearing. Quercetin significantly potentiated the inhibitory effect of yohimbine on novelty-induced rearing. Naloxone significantly potentiated the quercetin-induced suppression of novelty-induced rearing. Gallic acid derivative significantly potentiated the inhibitory effect of yohimbine on novelty-induced rearing. Naloxone, atropine and haloperidol pretreatments significantly potentiated gallic acid derivative-induced suppression of novelty-induced rearing.The extract and its fractions had biphasic effect on novelty-induced grooming in mice. Coumaroyl derivative significantly increased novelty-induced grooming, while quercetin and gallic acid derivative decreased novelty-induced grooming significantly. The three pure isolates significantly reversed the effects of yohimbine and atropine on the novelty-induced grooming in mice. Propranolol-induced increase in novelty-induced grooming was significantly reversed by coumaroyl and gallic acid derivatives. Pre-treatment with naloxone significantly increased the gallic acid derivative-induced suppression of novelty-induced grooming. Pre-treatment with haloperidol reversed the effect of coumaroyl derivative and potentiated the inhibitory effect of quercetin derivative and gallic acid derivative significantly. This study suggested that adrenergic and dopaminergic neuro-transmissions are strongly involved in the neural mechanisms of the effect of the three pure isolates derivative, while opioid neuro-transmission is strongly linked with the neural mechanism of behavioural effect of coumaroyl derivative.

  8. Gallic acid grafting modulates the oxidative potential of ferrimagnetic bioactive glass-ceramic SC-45.

    PubMed

    Corazzari, Ingrid; Tomatis, Maura; Turci, Francesco; Ferraris, Sara; Bertone, Elisa; Prenesti, Enrico; Vernè, Enrica

    2016-12-01

    Magnetite-containing glass-ceramics are promising bio-materials for replacing bone tissue after tumour resection. Thanks to their ferrimagnetic properties, they generate heat when subjected to an alternated magnetic field. In virtue of this they can be employed for the hyperthermic treatment of cancer. Moreover, grafting anti-cancer drugs onto their surface produces specific anti-neoplastic activity in these biomaterials. Gallic acid (GA) exhibits antiproliferative activity which renders it a promising candidate for anticancer applications. In the present paper, the reactivity of ferrimagnetic glass-ceramic SC-45 grafted with GA (SC-45+GA) was studied in terms of ROS release, rupture of the C-H bond of the formate molecule and Fenton reactivity by EPR/spin trapping in acellular systems. The ability of these materials to cause lipid peroxidation was assessed by UV-vis/TBA assay employing linoleic acid as a model of membrane lipid. The results, compared to those obtained with SC-45, showed that GA grafting (i) significantly enhanced the Fenton reactivity and (ii) restored the former reactivity of SC-45 towards both the C-H bond and linoleic acid which had been completely suppressed by prolonged contact with water. Fe 2+ centres at the surface are probably implicated. GA, acting as a pro-oxidant, reduces Fe 3+ to Fe 2+ by maintaining a supply of Fe 2+ at the surface of SC-45+GA. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Antioxidative and Anti-Inflammatory Activities of Galloyl Derivatives and Antidiabetic Activities of Acer ginnala

    PubMed Central

    Park, Kwan Hee; Yoon, Kyu Hyeong; Yin, Jun; Le, Thi Tam; Ahn, Hye Sin; Yoon, Seong Hye

    2017-01-01

    Chromatographic isolation of the 80% MeOH extract of Acer ginnala (AG) yielded seven galloyl derivatives: gallic acid (1), ginnalin B (2), acertannin (3), maplexin D (4), maplexin E (5), quercetin-3-O-(2′′-galloyl)-α-L-rhamnopyranoside (6), and kaempferol-3-O-(2′′-galloyl)-α-L-rhamnopyranoside (7). This is the first study to report the isolation of compounds 4 and 5 from AG. Galloyl derivatives 3–7 exhibited potent radical scavenging activities, with 5 and 7 showing particularly strong inhibitory activities against nitric oxide production in lipopolysaccharides- (LPS-) stimulated RAW264.7 cells. In addition, oral administration of AG extract (500 mg/kg b.w.) improved symptoms of hyperglycemia and blunted the increases in serum GOT/GPT levels in a rat model of streptozotocin-induced diabetes. These results suggest that galloyl derivatives (1–7) are antioxidant and anti-inflammatory agents and that AG extract has potential as a functional material or novel herbal medicine for treating diabetes mellitus. PMID:28348624

  10. Comparison of the Composition and Antioxidant Activities of Phenolics from the Fruiting Bodies of Cultivated Asian Culinary-Medicinal Mushrooms.

    PubMed

    Lin, Shaoling; Ching, Lai Tsz; Ke, Xinxin; Cheung, Peter Chi Keung

    2016-01-01

    The composition profile and the antioxidant properties of phenolics in water extracts obtained from the fresh fruiting bodies of 4 common cultivated Asian edible mushrooms-Agrocybe aegerita, Pleurotus ostreatus, P. eryngii, and Pholiota nameko were compared. The water extract from A. aegerita (AaE) had the highest total phenolic content (TPC) at 54.18 ± 0.27 gallic acid equivalents (μmol/L)/mg extract (P < 0.05), as measured by the Folin-Ciocalteu method, and consisted of the largest number (including gallic acid, protocatechuic acid, chlorogenic acid, ferulic acid, and sinapic acid) and total amounts of phenolic acids identified by Fourier transform-ion cyclotron resonance mass spectrometry. The water extract of Ph. nameko was found to have the second-highest TPC (43.55 ± 0.10 gallic acid equivalents [μmol/L]/mg extract), followed by the water extract of P. eryngii and the water extract of P. ostreatus (39.55 ± 0.25 and 39.02 ± 0.30 gallic acid equivalents/mg extract, respectively). The scavenging activities of the water extracts from these mushrooms were evaluated against 2,2-diphenyl-l-(2,4,6-trinitrophenyl) hydrazyl diphenylpicrylhydrazyl (DPPH), superoxide anion radicals, hydroxyl radicals, and hydrogen peroxide. Based on halfmaximal effective concentrations, AaE was more effective in scavenging hydrogen peroxide (<0.05), followed by DPPH (0.51 mg/mL), superoxide anion radicals (0.85 mg/mL) and hydroxyl radicals (5.94 mg/mL), then the other mushroom water extracts. The differences in the half-maximal effective concentrations of individual mushroom water extracts were probably the result of the different numbers and amounts of individual phenolic acids in the extracts. The antioxidant activities of the mushroom water extracts were correlated with their TPC. The strongest antioxidant properties of AaE were consistent with its highest TPC and with the largest number and amount of phenolics identified in the extract. These results indicated that cultivated edible mushrooms could be a potential source of natural antioxidants with free radical scavenging properties for application as a functional food ingredient.

  11. Wheat germ oil enrichment in broiler feed with α-lipoic acid to enhance the antioxidant potential and lipid stability of meat.

    PubMed

    Arshad, Muhammad Sajid; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Shahid, Muhammad; Akhtar, Saeed; Sohaib, Muhammad

    2013-11-04

    Lipid peroxidation is the cause of declining the meat quality. Natural antioxidants plays a vital role in enhancing the stability and quality of meat. The supplementation of natural antioxidants in feed decreases lipid peroxidation and improves the stability of meat. The present research was conducted to determine the effect of α-lipoic acid, α-tocopherol and wheat germ oil on the status of antioxidants, quality and lipid stability of broiler meat. One day old male broilers were fed with different feeds containing antioxidants i.e. natural (wheat germ oil) and synthetic α-tocopherol and α-lipoic acid during the two experimental years. The feed treatments have significant variation on the body weight and feed conversion ratio (FCR) while having no influence on the feed intake. The broilers fed on wheat germ oil (natural α-tocopherol) gained maximum body weight (2451.97 g & 2466.07 g) in the experimental years 2010-11 & 2011-12, respectively. The higher total phenolic contents were found in the broilers fed on wheat germ oil plus α-lipoic acid in breast (162.73±4.8 mg Gallic acid equivalent/100 g & 162.18±4.5 mg Gallic acid equivalent/100 g) and leg (149.67±3.3 mg Gallic acid equivalent/100 g & 146.07±3.2 mg Gallic acid equivalent/100 g) meat during both experimental years. Similar trend was observed for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power assay (FRAP). The production of malondialdehydes in the breast and leg meat increased with progressive increase in the time period. The deposition of α-tocopherol (AT) and α-lipoic acid (ALA) contents were found to be higher in the broilers fed on wheat germ oil plus α-lipoic acid in breast and leg meat during the both experimental years. In conclusion, the combination of wheat germ oil and α-lipoic acid has more beneficial for stability and the quality of the broiler meat and more work should be needed in future for the bio-evaluation of this kind of functional meat in humans.

  12. Total phenolics and total flavonoids in selected Indian medicinal plants.

    PubMed

    Sulaiman, C T; Balachandran, Indira

    2012-05-01

    Plant phenolics and flavonoids have a powerful biological activity, which outlines the necessity of their determination. The phenolics and flavonoids content of 20 medicinal plants were determined in the present investigation. The phenolic content was determined by using Folin-Ciocalteu assay. The total flavonoids were measured spectrophotometrically by using the aluminium chloride colorimetric assay. The results showed that the family Mimosaceae is the richest source of phenolics, (Acacia nilotica: 80.63 mg gallic acid equivalents, Acacia catechu 78.12 mg gallic acid equivalents, Albizia lebbeck 66.23 mg gallic acid equivalents). The highest total flavonoid content was revealed in Senna tora which belongs to the family Caesalpiniaceae. The present study also shows the ratio of flavonoids to the phenolics in each sample for their specificity.

  13. Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase

    PubMed Central

    Rodríguez-Durán, Luis V.; Valdivia-Urdiales, Blanca; Contreras-Esquivel, Juan C.; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal N.

    2011-01-01

    Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme. PMID:21941633

  14. Polyphenols in red wine inhibit the proliferation and induce apoptosis of LNCaP cells.

    PubMed

    Romero, I; Páez, A; Ferruelo, A; Luján, M; Berenguer, A

    2002-06-01

    To assess the effect of five polyphenol constituents of red wine (quercetin, morin, rutin, gallic acid and tannic acid) on the proliferation of LNCaP cells, and to quantify the extent of apoptosis with each polyphenol. LNCaP cells (500) were cultured in microtitre plates and treated with gallic acid, tannic acid, quercetin (1, 5 and 10 micromol/L), rutin and morin (25, 50 and 75 micromol/L). A colorimetric immunoassay was then used to determine the extent of proliferation at 24, 48, 72 and 96 h, and a cell-death detection assay to assess apoptosis at 24, 48 and 72 h. Gallic and tannic acid (5 and 10 micromol/L), morin (50 and 75 micromol/L), quercetin (5 and 10 micromol/L) and rutin (50 and 75 micromol/L) all significantly inhibited (P<0.05) cell proliferation compared with the control. Apoptotic indexes were significantly greater (P<0.01) in the presence of gallic (5 and 10 micromol/L) and tannic acid (5 and 10 micromol/L), and rutin (75 micromol/L, P<0.05) than in the control. The apoptotic effect of morin (75 micromol/L), although significant (P<0.01), only appeared at 72 h. Conversely, while significant (P<0.05) quercetin (5 and 10 micromol/L) had a transient (first 48 h) apoptotic effect compared with the control. Quercetin, rutin, morin, gallic acid and tannic acid inhibited the growth of LNCaP cells at different concentrations, and induced apoptosis. The results provide a strong rationale for studying the in vivo effects of these compounds.

  15. Protective effect of gallic acid and Syzygium cumini extract against oxidative stress-induced cellular injury in human lymphocytes.

    PubMed

    De Bona, Karine Santos; Bonfanti, Gabriela; Bitencourt, Paula Eliete Rodrigues; da Silva, Thainan Paz; Borges, Raphaela Maleski; Boligon, Aline; Pigatto, Aline; Athayde, Margareth Lynde; Moretto, Maria Beatriz

    2016-01-01

    Syzygium cumini (Myrtaceae) presents antioxidant, anti-inflammatory, hypoglycemic and antibacterial effects; however, the cellular and molecular mechanisms of action in the immune system are not yet completely elucidated. This study evaluates the in vitro effect of gallic acid and aqueous S. cumini leaf extract (ASc) on adenosine deaminase (ADA) and dipeptidyl peptidase IV (DPP-IV) activities, cell viability and oxidative stress parameters in lymphocytes exposed to 2, 2'-azobis-2-amidinopropane dihydrochloride (AAPH). Lymphocytes were incubated with ASc (100 and 500 µg/ml) and gallic acid (50 and 200 µM) at 37 °C for 30 min followed by incubation with AAPH (1 mM) at 37 °C for 2 h. After the incubation time, the lymphocytes were used for determinations of ADA, DPP-IV and lactate dehydrogenase (LDH) activities, lipid peroxidation, protein thiol (P-SH) group levels and cellular viability by colorimetric methods. (i) HPLC fingerprinting of ASc revealed the presence of catechin, epicatechin, rutin, quercitrin, isoquercitrin, quercetin, kaempferol and chlorogenic, caffeic, gallic and ellagic acids; (ii) for the first time, ASc reduced the AAPH-induced increase in ADA activity, but no effect was observed on DPP-IV activity; (iii) ASc increased P-SH groups and cellular viability and decreased LDH activity, but was not able to reduce the AAPH-induced lipid peroxidation; (iv) gallic acid showed less protective effects than ASc. ASc affects the purinergic system and may modulate adenosine levels, indicating that the extract of this plant exhibits immunomodulatory properties. ASc also may potentially prevent the cellular injury induced by oxidative stress, highlighting its cytoprotective effects.

  16. Effects and interactions of gallic acid, eugenol and temperature on thermal inactivation of Salmonella spp. in ground chicken

    USDA-ARS?s Scientific Manuscript database

    The combined effects of heating temperature (55 to 65C), gallic acid (0 to 2.0%), and eugenol (0 to 2.0%) on thermal inactivation of Salmonella in ground chicken were assessed. Thermal death times were determined in bags submerged in a heated water bath maintained at various set temperatures, follo...

  17. Total Phenolics and Total Flavonoids in Selected Indian Medicinal Plants

    PubMed Central

    Sulaiman, C. T.; Balachandran, Indira

    2012-01-01

    Plant phenolics and flavonoids have a powerful biological activity, which outlines the necessity of their determination. The phenolics and flavonoids content of 20 medicinal plants were determined in the present investigation. The phenolic content was determined by using Folin-Ciocalteu assay. The total flavonoids were measured spectrophotometrically by using the aluminium chloride colorimetric assay. The results showed that the family Mimosaceae is the richest source of phenolics, (Acacia nilotica: 80.63 mg gallic acid equivalents, Acacia catechu 78.12 mg gallic acid equivalents, Albizia lebbeck 66.23 mg gallic acid equivalents). The highest total flavonoid content was revealed in Senna tora which belongs to the family Caesalpiniaceae. The present study also shows the ratio of flavonoids to the phenolics in each sample for their specificity. PMID:23439764

  18. Effect of Gallic Acid on Dementia Type of Alzheimer Disease in Rats: Electrophysiological and Histological Studies.

    PubMed

    Hajipour, Somayeh; Sarkaki, Alireza; Farbood, Yaghoob; Eidi, Akram; Mortazavi, Pejman; Valizadeh, Zohreh

    2016-04-01

    To study the effect of gallic acid (GA) on hippocampal long-term potentiation (LTP) and histological changes in animal model of Alzheimer disease (AD) induced by beta-amyloid (Aβ). Sixty-four adult male Wistar rats (300±20 g) were divided into 8 groups: 1) Control (Cont); 2) AD; 3) Sham; 4-7) AD+GA (50, 100, and 200 mg/kg for 10 days, orally) or vehicle, 8) Cont+GA100, Aβ (1μg/μL in each site) was infused into hippocampus bilaterally. Changes of amplitude and slope of LTP induced in hippocampal dentate gyrus (DG) were evaluated by high frequency stimulation (HFS) of perforant path (PP). Data showed that LTP amplitude and area under curve significantly impaired in AD rats (P<0.001), while significantly improved in AD rats treated with GA (P<0.05, P<0.01). Current findings suggest that GA reduces neural damage and brain amyloid neuropathology and improves cognitive function via free radicals scavenging and inhibiting oligomerization of Aβ but with no effect on healthy rats.

  19. Fabrication of silver nanoparticle sponge leather with durable antibacterial property.

    PubMed

    Liu, Gongyan; Haiqi, Gao; Li, Kaijun; Xiang, Jun; Lan, Tianxiang; Zhang, Zongcai

    2018-03-15

    Leather product with durable antibacterial property is of great interest both from industry and consumer's point of view. To fabricate such functional leather, gallic acid modified silver nanoparticles (GA@AgNPs) were first in situ synthesized with a core-shell structure and an average size of 15.3nm. Due to its hydrophilic gallic acid surface, the GA@AgNPs possessed excellent stability and dispersibility in wide pH range from 3 to 12 and also showed effective antibacterial activity with a minimum inhibitory concentration (MIC) of around 10μgmL -1 . Then, such GA@AgNPs were used as retanning agent to be successfully filled into leather matrix during the leather manufacturing process. Moreover, taking the advantage of its high surface density of carboxyl groups, these GA@AgNPs could be further chemically cross-linked onto collagen fibers by chrome tanning agent. After retanning, the resultant leather was given a "AgNPs sponge" feature with high payload of silver nanoparticles against laundry, exhibiting high and durable antibacterial activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Impact of thermal processing on the activity of gallotannins and condensed tannins from Hamamelis virginiana used as functional ingredients in seafood.

    PubMed

    González, María Jesús; Torres, Josep Lluís; Medina, Isabel

    2010-04-14

    Phenolic extracts from witch hazel, Hamamelis virginiana, are efficient antioxidants against fish lipid peroxidation. The impact of fish thermal processes on the hydrolyzable polyphenols from this source was studied. H. virginiana polyphenols included 80% of hydrolyzable tannins, characterized by a mixture of glucose gallates containing from 5 to 10 units of gallic acid, hamamelitannin, and 20% of proanthocyanidins. Structural modifications of the polyphenols during thermal processes were determined by HPLC-MS. Changes in their reducing and free radical scavenging capacities as a result of high temperatures were also determined. Thermal processes triggered a significant breakdown of hydrolyzable tannins with 6-10 galloyl units to give pentagalloyl glucose (PGG). The release of high concentrations of free gallic acid especially in long-term thermally processed samples leads to an increase of the antioxidant ability of heated H. virginiana extracts. Such an increase was evidenced by an increment in the reducing and radical scavenging capacities as well as an improvement in the antioxidant effectiveness for inhibiting lipid oxidation of processed fatty fish muscle.

  1. Anti-pandemic influenza A (H1N1) virus potential of catechin and gallic acid.

    PubMed

    You, Huey-Ling; Huang, Chao-Chun; Chen, Chung-Jen; Chang, Cheng-Chin; Liao, Pei-Lin; Huang, Sheng-Teng

    2018-05-01

    The pandemic influenza A (H1N1) virus has spread worldwide and infected a large proportion of the human population. Discovery of new and effective drugs for the treatment of influenza is a crucial issue for the global medical community. According to our previous study, TSL-1, a fraction of the aqueous extract from the tender leaf of Toonasinensis, has demonstrated antiviral activities against pandemic influenza A (H1N1) through the down-regulation of adhesion molecules and chemokine to prevent viral attachment. The aim of the present study was to identify the active compounds in TSL-1 which exert anti-influenza A (H1N1) virus effects. XTT assay was used to detect the cell viability. Meanwhile, the inhibitory effect on the pandemic influenza A (H1N1) virus was analyzed by observing plaque formation, qRT-PCR, neuraminidase activity, and immunofluorescence staining of influenza A-specific glycoprotein. Both catechin and gallic acid were found to be potent inhibitors in terms of influenza virus mRNA replication and MDCK plaque formation. Additionally, both compounds inhibited neuraminidase activities and viral glycoprotein. The 50% effective inhibition concentration (EC 50 ) of catechin and gallic acid for the influenza A (H1N1) virus were 18.4 μg/mL and 2.6 μg/mL, respectively; whereas the 50% cytotoxic concentrations (CC 50 ) of catechin and gallic acid were >100 μg/mL and 22.1 μg/mL, respectively. Thus, the selectivity indexes (SI) of catechin and gallic acid were >5.6 and 22.1, respectively. The present study demonstrates that catechin might be a safe reagent for long-term use to prevent influenza A (H1N1) virus infection; whereas gallic acid might be a sensitive reagent to inhibit influenza virus infection. We conclude that these two phyto-chemicals in TSL-1 are responsible for exerting anti-pandemic influenza A (H1N1) virus effects. Copyright © 2017. Published by Elsevier Taiwan LLC.

  2. Inhibition of class IIa histone deacetylase activity by gallic acid, sulforaphane, TMP269, and panobinostat.

    PubMed

    Choi, Sin Young; Kee, Hae Jin; Jin, Li; Ryu, Yuhee; Sun, Simei; Kim, Gwi Ran; Jeong, Myung Ho

    2018-05-01

    Histone deacetylase (HDAC) inhibitors are gaining increasing attention as potential therapeutics for cardiovascular diseases as well as cancer. We recently reported that the class II HDAC inhibitor, MC1568, and the phytochemical, gallic acid, lowered high blood pressure in mouse models of hypertension. We hypothesized that class II HDACs may be involved in the regulation of hypertension. The aim of this study was to determine and compare the effects of well-known HDAC inhibitors (TMP269, panobinostat, and MC1568), phytochemicals (gallic acid, sulforaphane, and piceatannol), and anti-hypertensive drugs (losartan, carvedilol, and furosemide) on activities of class IIa HDACs (HDAC4, 5, 7, and 9). The selective class IIa HDAC inhibitor, TMP269, and the pan-HDAC inhibitor, panobinostat, but not MC1568, clearly inhibited class IIa HDAC activities. Among the three phytochemicals, gallic acid showed remarkable inhibition, whereas sulforaphane presented mild inhibition of class IIa HDACs. Piceatannol inhibited only HDAC7 activity. As expected, the anti-hypertensive drugs losartan, carvedilol, and furosemide did not affect the activity of any class IIa HDAC. In addition, we evaluated the inhibitory effect of several compounds on the activity of class l HDACs (HDAC1, 2, 3, and 8) and class IIb HDAC (HDAC6). MC1568 did not affect the activities of HDAC1, HDAC2, and HDAC3, but it reduced the activity of HDAC8 at concentrations of 1 and 10 μM. Gallic acid weakly inhibited HDAC1 and HDAC6 activities, but strongly inhibited HDAC8 activity with effectiveness comparable to that of trichostatin A. Inhibition of HDAC2 activity by sulforaphane was stronger than that by piceatnnaol. These results indicated that gallic acid is a powerful dietary inhibitor of HDAC8 and class IIa/b HDAC activities. Sulforaphane may also be used as a dietary inhibitor of HDAC2 and class IIa HDAC. Our findings suggest that the class II HDAC inhibitor, MC1568, does not inhibit class IIa HDAC, but inhibits HDAC8. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Influence of waterborne gallic and pelargonic acid exposures on biochemical and reproductive parameters in the zebrafish (Danio rerio).

    PubMed

    Techer, Didier; Milla, Sylvain; Fontaine, Pascal; Viot, Sandrine; Thomas, Marielle

    2017-01-01

    Gallic and pelargonic acids are biologically derived substances receiving a growing interest as eco-friendly biocides with potential applications in freshwater system management. However, some data gaps remain to address their chronic ecotoxicity issue, particularly for fish. This work aimed at investigating the sublethal effects of a long-term waterborne exposure of zebrafish to these compounds. Mature fish were exposed to gallic or pelargonic acid at the concentrations of 0, 0.05, 0.5 and 5 mg/L during one month under semi-static conditions. Fecundity, hatching rate and median hatching time were regularly evaluated. Circulating sex hormone levels (11 ketotestosterone -11 KT, 17 βestradiol -E2-), plasma vitellogenin (Vtg), and gonad histology were monitored in males and females after exposure. Lactate dehydrogenase (LDH), total glutathione peroxydase (GPx) and glutathione-S transferase (GST) activities were assessed as enzymatic biomarkers of exposure in fish liver. Significant increases of GPx activity were reported in females exposed to both type of chemicals regardless the contamination level. Moreover, 5 mg/L gallic acid induced a decrease in 11-KT levels for males. For fish exposed to pelargonic acid, decreases in circulating hormone levels were reported respectively at 0.05 and 5 mg/L for 11-KT in males, and at 0.5 mg/L for E2 in females. However, no histological alteration in gonads neither significant variation in reproductive performances were detected following zebrafish exposure to gallic or pelargonic acid. Additional investigations concerning the mode of application and the environmental fate of these substances may warrant their further use in freshwater systems at concentrations compatible with biocidal/allelochemical effects. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 227-240, 2017. © 2015 Wiley Periodicals, Inc.

  4. Acute toxicity and sublethal effects of gallic and pelargonic acids on the zebrafish Danio rerio.

    PubMed

    Techer, Didier; Milla, Sylvain; Fontaine, Pascal; Viot, Sandrine; Thomas, Marielle

    2015-04-01

    Gallic and pelargonic acids are naturally found in a variety of plants and food products. Despite their extensive use in man-made applications, little is known regarding their potential risks to aquatic vertebrates. The aim of this work was to assess the acute toxicity of these polyphenolic and fatty acid compounds to the zebrafish. In order to get insights into sublethal effects, the enzyme activity of usual biomarkers related to oxidative stress and biotransformation were also assessed in fish. These latter included total superoxide dismutase, catalase as well as total glutathione peroxidase for antioxidant defence mechanisms and glutathione S-transferase for biotransformation related enzyme. Gallic acid was practically non-toxic (96-h lethal concentration (LC50) > 100 mg/L) whereas pelargonic acid was slightly toxic (96-h LC50 of 81.2 mg/L). Moreover, biomarker analyses indicated enhanced superoxide dismutase activity in fish exposed to 20, 40 and 100 mg/L of gallic acid compared to control. A dose-dependent induction of glutathione peroxidase and glutathione S-transferase was reported following gallic acid exposure at the tested concentrations of 10, 20 and 40 mg/L, with the exception of 100 mg/L of substance where basal activity levels were reported. In the case of pelargonic acid, there was no change in antioxidant enzyme activity while an inhibition of glutathione S-transferase was observed from organisms exposed to 45, 58 and 76 mg/L of test solution. The results concerning sublethal effects on biological parameters of zebrafish highlighted thereby the need for further investigations following chronic exposure to both organic acids.

  5. Effect of antioxidants on the quality of irradiated sausages prepared with turkey thigh meat.

    PubMed

    Du, M; Ahn, D U

    2002-08-01

    The effects of antioxidants on the flavor and color of electron-beam-irradiated turkey sausages were studied. Sausages were prepared from turkey thigh meat, NaCl (2.0%), phosphate (0.5%), water (10%), and one of five antioxidant treatments (none, vitamin E, sesamol, rosemary extract, or gallic acid at 0.02%). Sausages were stuffed and cooked in an 85 C smokehouse to an internal temperature of 74 C, then chilled and sliced to 1.5-cm thickness, and vacuum-packaged. Packaged sausages were randomly divided into three groups and irradiated at 0, 1.5 or 3.0 kGy, using an electron beam. Volatiles, color, 2-TBA-reactive substances values, and sensory characteristics were analyzed. The antioxidant effect of sesamol was the highest, followed by vitamin E and gallic acid; rosemary extract had the weakest antioxidant effect. Irradiation induced red color in sausages, but addition of gallic acid, rosemary extract, or sesamol reduced it. Gallic acid was very effective in lowering the redness of irradiated and nonirradiated sausages. The redness (a*) values of sausages with added gallic acid that were irradiated at 0, 1.5, and 3.0 kGy were 1.49,2.03, and 2.29, respectively, whereas those of control sausages under the same irradiation conditions were 2.58, 2.81, and 3.25, respectively. The reduction of redness in irradiated sausages by antioxidants was not related to CO, because antioxidants had no effect on CO production by irradiation. The amount of total volatiles was decreased significantly by antioxidants, but antioxidants had minimal effect on the off-flavor of turkey sausages induced by irradiation.

  6. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    NASA Astrophysics Data System (ADS)

    Park, Jisu; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-06-01

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of -41.98 mV for the gold nanoparticles and -53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV-visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7-99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  7. Response Surface Methodology Optimization of Ultrasonic-Assisted Extraction of Acer Truncatum Leaves for Maximal Phenolic Yield and Antioxidant Activity.

    PubMed

    Yang, Lingguang; Yin, Peipei; Fan, Hang; Xue, Qiang; Li, Ke; Li, Xiang; Sun, Liwei; Liu, Yujun

    2017-02-04

    This study is the first to report the use of response surface methodology to improve phenolic yield and antioxidant activity of Acer truncatum leaves extracts (ATLs) obtained by ultrasonic-assisted extraction. The phenolic composition in ATLs extracted under the optimized conditions were characterized by UPLC-QTOF-MS/MS. Solvent and extraction time were selected based on preliminary experiments, and a four-factors-three-levels central composite design was conducted to optimize solvent concentration ( X ₁), material-to-liquid ratio ( X ₂), ultrasonic temperature ( X ₃) and power ( X ₄) for an optimal total phenol yield ( Y ₁) and DPPH• antioxidant activity ( Y ₂). The results showed that the optimal combination was ethanol:water ( v : v ) 66.21%, material-to-liquid ratio 1:15.31 g/mL, ultrasonic bath temperature 60 °C, power 267.30 W, and time 30 min with three extractions, giving a maximal total phenol yield of 7593.62 mg gallic acid equivalent/100 g d.w. and a maximal DPPH• antioxidant activity of 74,241.61 μmol Trolox equivalent/100 g d.w. Furthermore, 22 phenolics were first identified in ATL extract obtained under the optimized conditions, indicating that gallates, gallotannins, quercetin, myricetin and chlorogenic acid derivatives were the main phenolic components in ATL. What's more, a gallotannins pathway existing in ATL from gallic acid to penta- O -galloylglucoside was proposed. All these results provide practical information aiming at full utilization of phenolics in ATL, together with fundamental knowledge for further research.

  8. Synthesis and spectroscopic characterization of gallic acid and some of its azo complexes

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Hagagg, Sawsan S.; Ali, Alaa E.; Nasr, Nessma M.

    2012-04-01

    A series of gallic acid and azo gallic acid complexes were prepared and characterized by elemental analysis, IR, electronic spectra and magnetic susceptibility. The complexes were of different geometries: Octahedral, Tetrahedral and Square Planar. ESR was studied for copper complexes. All of the prepared complexes were of isotropic nature. The thermal analyses of the complexes were studied by DTA and DSC techniques. The thermodynamic parameters and the thermal transitions, such as glass transitions, crystallization and melting temperatures for some ligands and their complexes were evaluated and discussed. The entropy change values, ΔS#, showed that the transition states are more ordered than the reacting complexes. The biological activities of some ligands and their complexes are tested against Gram positive and Gram negative bacteria. The results showed that some complexes have a well considerable activity against different organisms.

  9. SERS spectrum of gallic acid obtained from a modified silver colloid

    NASA Astrophysics Data System (ADS)

    Garrido, C.; Diaz-Fleming, G.; Campos-Vallette, M. M.

    2016-06-01

    Two different crystals of the gallic acid were microscopically separated from a p.a. commercial product. The Raman spectra analysis allowed distinguishing monomeric and dimeric structures. The vibrational wave numbers were computed using DFT quantum chemical calculations. The data obtained from wave number calculations are used to assign vibrational bands obtained in the Raman spectrum. The dimer, characterized as ellagic acid, involves the carboxyl and hydroxyl moieties. The Raman spectrum in water solution of each species is dominated by the monomeric form. A low negatively charged Ag colloid allowed obtain to the best of our knowledge, the first surface enhanced Raman scattering (SERS) spectrum of the gallic acid. The possible electrophilic attacking sites of the title molecule are identified using MEP surface plot study and the orientation of the analyte on the metal surface is proposed tilted to the surface.

  10. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    NASA Astrophysics Data System (ADS)

    Justino, Licínia L. G.; Reva, Igor; Fausto, Rui

    2016-07-01

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N2, Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  11. Green Extraction of Natural Antioxidants from the Sterculia nobilis Fruit Waste and Analysis of Phenolic Profile.

    PubMed

    Zhang, Jiao-Jiao; Li, Ya; Lin, Sheng-Jun; Li, Hua-Bin

    2018-05-02

    The waste of Sterculia nobilis fruit was massively produced during food processing, which contains lots of natural antioxidants. In this study, antioxidants in the Sterculia nobilis fruit waste were extracted using the green microwave-assisted extraction (MAE) technique. The effects of five independent variables (ethanol concentration, solvent/material ratio, extraction time, temperature, and microwave power) on extraction efficiency were explored, and three major factors (ethanol concentration, extraction time, and temperature) showing great influences were chosen to study their interactions by response surface methodology. The optimal conditions were as follows: 40.96% ethanol concentration, 30 mL/g solvent/material ratio, 37.37 min extraction time at 66.76 °C, and 700 W microwave power. The Trolox equivalent antioxidant capacity value obtained in optimal conditions was in agreement with the predicted value. Besides, MAE improved the extraction efficiency compared with maceration and Soxhlet extraction methods. Additionally, the phenolic profile in the extract was analyzed by UPLC-MS/MS, and eight kinds of phenolic compounds were identified and quantified, including epicatechin, protocatechuic acid, ferulic acid, gallic acid, p -coumaric acid, caffeic acid, quercetin, and p -hydroxycinnamic acid. This study could contribute to the value-added utilization of the waste from Sterculia nobilis fruit, and the extract could be developed as food additive or functional food.

  12. Proceedings of the Natick Science Symposium (4th) Held in Natick, Massachusetts on 9-10 June 1992

    DTIC Science & Technology

    1992-09-01

    HQ - hydroquinone; MG - methyl gallate; CA - caffeic acid ; CHIA - chlorogenic acid ; GA - gallic acid ; FOLY - polymeric antioxidant. Values shown...examples 268 FQRrER & BIACK (qu~tin, hydroquinone, caffeic acid , chlorogenic acid and gallic acid ) , these are relatively ineffective in HSV...unless covalently bonded to the membrane. 279 SENECAL & RAND A membrane lactase reactor, modelled after the mammalian small intestine, has been

  13. Analysis of oak tannins by liquid chromatography-electrospray ionisation mass spectrometry.

    PubMed

    Mämmelä, P; Savolainen, H; Lindroos, L; Kangas, J; Vartiainen, T

    2000-09-01

    Extractable tannins were analysed by liquid chromatography-electrospray ionisation mass spectrometry in two oak species, North American white oak (Quercus alba) and European red oak (Quercus robur). They mainly included various glucose gallic and ellagic acid esters. The structures were partially determined, and they included grandinin/roburin E, castalagin/vescalagin, gallic acid, valoneic acid bilactone, monogalloyl glucose, digalloyl glucose, trigalloyl glucose, ellagic acid rhamnose, quercitrin and ellagic acid.

  14. Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries.

    PubMed

    Vitonyte, Justina; Manca, Maria Letizia; Caddeo, Carla; Valenti, Donatella; Peris, Josè Esteban; Usach, Iris; Nacher, Amparo; Matos, Maria; Gutiérrez, Gemma; Orrù, Germano; Fernàndez-Busquets, Xavier; Fadda, Anna Maria; Manconi, Maria

    2017-05-01

    Resveratrol and gallic acid were co-loaded in phospholipid vesicles aiming at protecting the skin from external injuries, such as oxidative stress and microbial infections. Liposomes were prepared using biocompatible phospholipids dispersed in water. To improve vesicle stability and applicability, the phospholipids and the phenols were dispersed in water/propylene glycol or water/glycerol, thus obtaining PEVs and glycerosomes, respectively. The vesicles were characterized by size, morphology, physical stability, and their therapeutic efficacy was investigated in vitro. The vesicles were spherical, unilamellar and small in size: liposomes and glycerosomes were around 70nm in diameter, while PEVs were larger (∼170nm). The presence of propylene glycol or glycerol increased the viscosity of the vesicle systems, positively affecting their stability. The ability of the vesicles to promote the accumulation of the phenols (especially gallic acid) in the skin was demonstrated, as well as their low toxicity and great ability to protect keratinocytes and fibroblasts from oxidative damage. Additionally, an improvement of the antimicrobial activity of the phenols was shown against different skin pathogens. The co-loading of resveratrol and gallic acid in modified phospholipid vesicles represents an innovative, bifunctional tool for preventing and treating skin affections. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Comparative study on anti-oxidant and anti-inflammatory activities of Caesalpinia crista and Centella asiatica leaf extracts

    PubMed Central

    Ramesh, B. N.; Girish, T. K.; Raghavendra, R. H.; Naidu, K. Akhilender; Rao, U. J. S. Prasada; Rao, K. S.

    2014-01-01

    Background: Amyloidosis, oxidative stress and inflammation have been strongly implicated in neurodegenerative disorders like Alzheimer's disease. Traditionally, Caesalpinia crista and Centella asiatica leaf extracts are used to treat brain related diseases in India. C. crista is used as a mental relaxant drink as well as to treat inflammatory diseases, whereas C. asiatica is reported to be used to enhance memory and to treat dementia. Objective: The present study is aimed to understand the anti-oxidant and anti-inflammatory potential of C. asiatica and C. crista leaf extracts. Materials and Methods: Phenolic acid composition of the aqueous extracts of C. crista and C. asiatica were separated on a reverse phase C18 column (4.6 x 250 mm) using HPLC system. Antioxidant properties of the leaf extracts were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and the reducing potential assay. The anti-inflammatory activities of aqueous extracts of C. crista and C. asiatica were studied using 5-lipoxygenase assay. Polymorphonuclear leukocytes (PMNLs) were isolated from blood by Ficoll-Histopaque density gradient followed by hypotonic lysis of erythrocytes. Results: Gallic, protocatechuic, gentisic, chlorogenic, caffeic, p-coumaric and ferulic acids were the phenolic acids identified in C. crista and C. asiatica leaf aqueous extracts. However, gallic acid and ferulic acid contents were much higher in C. crista compared to C. asiatica. Leaf extracts of C. asiatica and C. crista exhibited antioxidant properties and inhibited 5-lipoxygenase (anti-inflammatory) in a dose dependent manner. However, leaf extracts of C. crista had better antioxidant and anti-inflammatory activity compared to that of C. asiatica. The better activity of C. crista is attributed to high gallic acid and ferulic acid compared to C. asiatica. Conclusions: Thus, the leaf extract of C. crista can be a potential therapeutic role for Alzheimer's disease. PMID:24741275

  16. Wheat germ oil enrichment in broiler feed with α-lipoic acid to enhance the antioxidant potential and lipid stability of meat

    PubMed Central

    2013-01-01

    Background Lipid peroxidation is the cause of declining the meat quality. Natural antioxidants plays a vital role in enhancing the stability and quality of meat. The supplementation of natural antioxidants in feed decreases lipid peroxidation and improves the stability of meat. Methods The present research was conducted to determine the effect of α-lipoic acid, α-tocopherol and wheat germ oil on the status of antioxidants, quality and lipid stability of broiler meat. One day old male broilers were fed with different feeds containing antioxidants i.e. natural (wheat germ oil) and synthetic α-tocopherol and α-lipoic acid during the two experimental years. Results The feed treatments have significant variation on the body weight and feed conversion ratio (FCR) while having no influence on the feed intake. The broilers fed on wheat germ oil (natural α-tocopherol) gained maximum body weight (2451.97 g & 2466.07 g) in the experimental years 2010–11 & 2011–12, respectively. The higher total phenolic contents were found in the broilers fed on wheat germ oil plus α-lipoic acid in breast (162.73±4.8 mg Gallic acid equivalent/100 g & 162.18±4.5 mg Gallic acid equivalent/100 g) and leg (149.67±3.3 mg Gallic acid equivalent/100 g & 146.07±3.2 mg Gallic acid equivalent/100 g) meat during both experimental years. Similar trend was observed for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power assay (FRAP). The production of malondialdehydes in the breast and leg meat increased with progressive increase in the time period. The deposition of α-tocopherol (AT) and α-lipoic acid (ALA) contents were found to be higher in the broilers fed on wheat germ oil plus α-lipoic acid in breast and leg meat during the both experimental years. Conclusion In conclusion, the combination of wheat germ oil and α-lipoic acid has more beneficial for stability and the quality of the broiler meat and more work should be needed in future for the bio-evaluation of this kind of functional meat in humans. PMID:24499336

  17. Excellent electrochemical performances of nanocast ordered mesoporous carbons based on tannin-related polyphenols as supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Sanchez-Sanchez, A.; Izquierdo, Maria Teresa; Ghanbaja, Jaafar; Medjahdi, Ghouti; Mathieu, Sandrine; Celzard, Alain; Fierro, Vanessa

    2017-03-01

    Hierarchically porous, oxygen-doped ordered mesoporous carbons (OMCs) were synthesised and compared for the first time from different types of plant-derived polyphenols through a nanocasting route: phloroglucinol, gallic acid, catechin and Mimosa tannin. All are secondary metabolites naturally occurring in various plant species and are available at low cost at the industrial scale. The infiltration was carried out in one single step without using toxic solvents or long polymerisation-stabilisation times. When applied as electrode materials for supercapacitors in 1 M H2SO4 electrolyte, those OMCs led to specific capacitances up to 277 F g-1 at 0.5 mV s-1 and high rate capabilities as measured by cyclic voltammetry, good cycling stabilities up to 5000 cycles and maximum energy densities between 15 and 8 W h kg-1 under exceptionally high power outputs ranging from 200 W kg-1 to 22.1 kW kg-1, respectively, in the range of current density of 0.1-12 A g-1, as determined by galvanostatic charge - discharge. Moreover, electrochemical impedance spectroscopy tests evidenced that the gallic acid-derived electrode exhibited the highest electrical conductivity and the fastest frequency response, making it an excellent candidate for high-power commercial devices.

  18. EPR spectral investigation of radiation-induced radicals of gallic acid.

    PubMed

    Tuner, Hasan

    2017-11-01

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden "spin-flip" transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, [Formula: see text] radicals for both compounds.

  19. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Justino, Licínia L. G., E-mail: liciniaj@ci.uc.pt; Reva, Igor; Fausto, Rui

    2016-07-07

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N{sub 2},more » Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.« less

  20. Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive.

    PubMed

    Salat, Marc; Petkova, Petya; Hoyo, Javier; Perelshtein, Ilana; Gedanken, Aharon; Tzanov, Tzanko

    2018-06-01

    An important preventive measure for providing a bacteria-free environment for the patients is the introduction of highly efficient and durable antibacterial textiles in hospitals. This work describes a single step sono-enzymatic process for coating of cotton medical textiles with antibacterial ZnO nanoparticles (NPs) and gallic acid (GA) to produce biocompatible fabrics with durable antibacterial properties. Cellulose substrates, however, need pre-activation to achieve sufficient stability of the NPs on their surface. Herein, this drawback is overcome by the simultaneous sonochemical deposition of ZnO NPs and the synthesis of a bio-based adhesive generated by the enzymatic cross-linking of GA in which the NPs were embedded. GA possesses the multiple functions of an antibacterial agent, a building block of the cross-linked phenolic network, and as a compound providing the safe contact of the coated materials with human skin. The ZnO NPs-GA coated fabrics maintained above 60% antibacterial efficacy even after 60 washing cycles at 75 °C hospital laundry regime. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Enzyme-assisted extraction of phenolics from winemaking by-products: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities.

    PubMed

    de Camargo, Adriano Costa; Regitano-d'Arce, Marisa Aparecida Bismara; Biasoto, Aline Camarão Telles; Shahidi, Fereidoon

    2016-12-01

    Phenolics in food and agricultural processing by-products exist in the soluble and insoluble-bound forms. The ability of selected enzymes in improving the extraction of insoluble-bound phenolics from the starting material (experiment I) or the residues containing insoluble-bound phenolics (experiment II) were evaluated. Pronase and Viscozyme improved the extraction of insoluble-bound phenolics as evaluated by total phenolic content, antioxidant potential as determined by ABTS and DPPH assays, and hydroxyl radical scavenging capacity, reducing power as well as evaluation of inhibition of alpha-glucosidase and lipase activities. Viscozyme released higher amounts of gallic acid, catechin, and prodelphinidin dimer A compared to Pronase treatment. Furthermore, p-coumaric and caffeic acids, as well as procyanidin dimer B, were extracted with Viscozyme but not with Pronase treatment. Solubility plays an important role in the bioavailability of phenolic compounds, hence this study may assist in better exploitation of phenolics from winemaking by-products as functional food ingredients and/or supplements. Copyright © 2016. Published by Elsevier Ltd.

  2. Anti-Inflammatory Effect of Gallic Acid-Eluting Stent in a Porcine Coronary Restenosis Model

    PubMed Central

    Seob Lim, Kyung; Park, Jun-Kyu; Ho Jeong, Myung; Ho Bae, In; Sung Park, Dae; Won Shim, Jae; Ha Kim, Jung; Kuk Kim, Hyun; Soo Kim, Sung; Sun Sim, Doo; Joon Hong, Young; Han Kim, Ju; Ahn, Youngkeun

    2018-01-01

    Background Gallic acid (3,4,5-trihydroxybenzoic acid) is a natural polyphenol and strong natural antioxidant found abundantly in red wine and green tea. The aim of this study was to examine the anti-inflammatory effect of a novel gallic acid-eluting stent in a porcine coronary restenosis model. Methods Fifteen pigs were randomized into three groups; in which a total of 30 coronary arteries (10 in each group) were implanted with gallic acid-eluting stents (GESs, n = 10), gallic acid and sirolimus-eluting stents (GSESs, n = 10), or sirolimus-eluting stents (SESs, n = 10). Histopathologic analysis was performed 28 days after stenting. Results There were no significant differences in injury score and fibrin score among the groups, however there were significant differences in the internal elastic lamina (4.0 ± 0.83 mm2 in GES vs. 3.0 ± 0.53 mm2 in GSES vs. 4.6 ± 1.43 mm2 in SES, p < 0.0001), lumen area (2.3 ± 0.49 mm2 in GES vs. 1.9 ± 0.67 mm2 in GSES vs. 2.9 ± 0.56 mm2 in SES, p < 0.0001), neointimal area (1.7 ± 0.63 mm2 in GES vs. 1.1 ± 0.28 mm2 in GSES vs. 1.7 ± 1.17 mm2 in SES, p < 0.05), and percent area of stenosis (42.4% ± 9.22% in GES vs. 38.2% ± 12.77% in GSES vs. 33.9% ± 15.64% in SES, p < 0.05). The inflammation score was significantly lower in the GES and GSES groups compared to that in the SES group [1.0 (range: 1.0 to 2.0) in GES vs. 1.0 (range: 1.0 to 1.0) in GSES vs. 1.5 (range: 1.0 to 3.0) in SES, p < 0.05]. Conclusions The GES group had a greater percent area of stenosis than the SES group. Although gallic acid in the GES and GSES groups did not show a synergistic effect in suppressing neointimal hyperplasia, it resulted in greater inhibition of the inflammatory reaction in the porcine coronary restenosis model than in the SES group. PMID:29844643

  3. Quantitative analysis of rutin, quercetin, naringenin, and gallic acid by validated RP- and NP-HPTLC methods for quality control of anti-HBV active extract of Guiera senegalensis.

    PubMed

    Alam, Perwez; Parvez, Mohammad K; Arbab, Ahmed H; Al-Dosari, Mohammed S

    2017-12-01

    Guiera senegalensis J.F. Gmel (Combretaceae) is a folk medicinal plant used in various metabolic and infectious diseases. In addition to its antiviral activities against herpes and fowlpox, the anti-HBV efficacy is very recently reported. To develop and validate simple, sensitive RP-/NP-HPTLC methods for quantitative determination of biomarkers rutin, quercetin, naringenin, and gallic acid in the anti-HBV active G. senegalensis leaves ethanol-extract. RP-HPTLC (rutin & quercetin; phase- acetonitrile:water, 4:6) and NP-HPTLC (naringenin & gallic acid; phase- toluene:ethyl acetate:formic acid, 6:4:0.8) were performed on glass-backed silica gel plates 60F 254 -RP18 and 60F 254 , respectively. The methods were validated according to the ICH guidelines. Well-separated and compact spots (R f ) of rutin (0.52 ± 0.006), quercetin (0.23 ± 0.005), naringenin (0.56 ± 0.009) and gallic acid (0.28 ± 0.006) were detected. The regression equations (Y) were 12.434x + 443.49, 10.08x + 216.85, 11.253x + 973.52 and 11.082x + 446.41 whereas the coefficient correlations (r 2 ) were 0.997 ± 0.0004, 0.9982 ± 0.0001, 0.9974 ± 0.0004 and 0.9981 ± 0.0001, respectively. The linearity ranges (ng/spot) were 200-1400 (RP-HPTLC) and 100-1200 (NP-HPTLC). The LOD/LOQ (ng/band) were 33.03/100.1 (rutin), 9.67/29.31 (quercetin), 35.574/107.8 (naringenin), and 12.32/37.35 (gallic acid). Gallic acid (7.01 μg/mg) was the most abundant biomarker compared to rutin (2.42 μg/mg), quercetin (1.53 μg/mg) and naringenin (0.14 μg/mg) in the extract. The validated NP-/RP-HPTLC methods were simple, accurate, and sensitive for separating and quantifying antiviral biomarkers in G. senegalensis, and endorsed its anti-HBV activity. The developed methods could be further employed in the standardization and quality-control of herbal formulations.

  4. In Vitro Antioxidant-Activity Evaluation of Gallic-Acid-Grafted Chitosan Conjugate Synthesized by Free-Radical-Induced Grafting Method.

    PubMed

    Hu, Qiaobin; Wang, Taoran; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-07-27

    The major objective of this work was to develop a green and facile process to prepare gallic acid-chitosan conjugate and comprehensively evaluate the physicochemical properties and biological activities of an as-prepared water-soluble chitosan derivative. A free-radical-induced grafting approach using an ascorbic acid-hydrogen peroxide redox pair was adopted. The obtained conjugate was characterized by Fourier transform infrared spectroscopy, UV-vis, X-ray diffraction, and pKa analysis. The antioxidant activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6)-sulphonic acid (ABTS), reducing power, and oxygen-radical antioxidant-capacity assays. The results showed that the mass ratio of gallic acid to chitosan played a vital role in determining the grafting degree and ζ potential of the conjugates, with the ratio of 0.5:1 being the optimal ratio that resulted in the highest grafting degree. The antioxidant assays demonstrated that conjugation significantly improved the antioxidant activities, being dramatically higher than that of free chitosan. It was notable that the DPPH- and ABTS-scavenging activities of conjugate at 0.4 mg/mL reached the same level as the free gallic acid at the equivalent concentration. Our study demonstrated a green and facile synthesis approach to preparing a novel water-soluble chitosan derivative that may have promising potentials in the food industry.

  5. Functionalities of chitosan conjugated with stearic acid and gallic acid and application of the modified chitosan in stabilizing labile aroma compounds in an oil-in-water emulsion.

    PubMed

    Yang, Tsung-Shi; Liu, Tai-Ti; Lin, I-Hwa

    2017-08-01

    The aims of this research were to conjugate chitosan (CT) with stearic acid (SA) and gallic acid (GA), and apply the modified chitosan to stabilize labile aroma compounds such as allyl isothiocyanate (AITC) and limonene in oil-in-water emulsions. Generally, the antioxidant activity of CT-SA-GA increased as the GA content in the conjugate increased. In most assays, GA had a lower IC 50 value than that of CT-SA-GA; however, CT-SA-GA exhibited better performance than GA in the Fe 2+ -chelating activity. In accelerated tests (heating or illumination) for evaluating the chemical stability of AITC and limonene during storage, CT-SA and CT-SA-GA were used to prepare AITC and limonene O/W emulsions, respectively. Tween 80 and Span 80 (T-S-80), an emulsifier mixture, were used as a control in both emulsions for comparison. The results show that CT-SA or CT-SA-GA could protect AITC or limonene from degradation or oxidation more effectively than T-S-80. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Antidepressant-like effect of gallic acid in mice: Dual involvement of serotonergic and catecholaminergic systems.

    PubMed

    Can, Özgür Devrim; Turan, Nazlı; Demir Özkay, Ümide; Öztürk, Yusuf

    2017-12-01

    This study was planned to examine the antidepressant potency of gallic acid (30 and 60mg/kg), a phenolic acid widely distributed in nature, together with its possible underlying monoaminergic mechanisms. Antidepressant-like activity was assessed using the tail suspension (TST) and the modified forced swimming tests (MFST). Locomotor activity was evaluated in an activity cage. Administration of gallic acid at 60mg/kg reduced the immobility duration of mice in both the TST and MFST without any changes in the locomotor activity. The anti-immobility effect observed in the TST was abolished with pre-treatment of p-chlorophenylalanine methyl ester (an inhibitor of serotonin synthesis; 100mg/kg i.p. administered for 4-consecutive days), ketanserin (a 5-HT2A/2C antagonist; 1mg/kg i.p.), ondansetron (a 5-HT3 antagonist; 0.3mg/kg i.p.), α-methyl-para-tyrosine methyl ester (an inhibitor of catecholamine synthesis; 100mg/kg i.p.), phentolamine (non-selective alpha-adrenoceptor antagonist; 5mg/kg i.p.), SCH 23390 (a dopamine D1 antagonist; 0.05mg/kg s.c.), and sulpiride (a dopamine D2/D3 antagonist; 50mg/kg i.p.). However, NAN 190 (a 5-HT1A antagonist; 0.5mg/kg i.p.) and propranolol (a non-selective β-adrenoceptor antagonist; 5mg/kg i.p.) pre-treatments were ineffective at reversing the antidepressant-like effects of gallic acid. The results of the present study indicate that gallic acid seems to have a dual mechanism of action by increasing not only serotonin but also catecholamine levels in synaptic clefts of the central nervous system. Further alpha adrenergic, 5-HT2A/2C and 5-HT3 serotonergic, and D1, D2, and D3 dopaminergic receptors also seem to be involved in this antidepressant-like activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Alterations in blood pressure, antioxidant status and caspase 8 expression in cobalt chloride-induced cardio-renal dysfunction are reversed by Ocimum gratissimum and gallic acid in Wistar rats.

    PubMed

    Akinrinde, A S; Oyagbemi, A A; Omobowale, T O; Asenuga, E R; Ajibade, T O

    2016-07-01

    The protective abilities of the chloroform extract of Ocimum gratissimum (COG) and gallic acid against cobalt chloride (CoCl2) - induced cardiac and renal toxicity were evaluated. Rats were exposed to CoCl2 (350ppm) for 7 days, either alone, or in combination with COG (100 and 200mg/kg) or gallic acid (120mg/kg). CoCl2 given alone, caused significant increases (p<0.05) in oxidative stress parameters (hydrogen peroxide, H2O2 and malondialdehyde, MDA) and increased expression of the apoptotic initiator caspase 8 in the heart and kidneys. There was significant reduction (p<0.05) in reduced glutathione (GSH) in cardiac and renal tissues; reduction in superoxide dismutase (SOD) activity in the kidneys and adaptive increases in Glutathione S-transferase (GST) and catalase (CAT). CoCl2 also produced significant reduction (p<0.05) in systolic (SBP), diastolic (DBP) and mean arterial (MAP) blood pressures. Oral COG and gallic acid treatment significantly reduced (p<0.05) the levels of H2O2 and MDA; with reduced expression of caspase 8 and restoration of GSH levels, GPx, SOD and CAT activities, howbeit, to varying degrees in the heart and kidneys. COG (200mg/kg) was most effective in restoring the blood pressures in the rats to near control levels. CoCl2-induced histopathological lesions including myocardial infarction and inflammation and renal tubular necrosis and inflammation were effectively ameliorated by the treatments administered. This study provides evidence for the protective roles of O. gratissimum and gallic acid by modulation of CoCl2-induced alterations in blood pressure, antioxidant status and pro-apoptotic caspase 8 in Wistar rats. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Direct analysis by time-of-flight secondary ion mass spectrometry reveals action of bacterial laccase-mediator systems on both hardwood and softwood samples.

    PubMed

    Goacher, Robyn E; Braham, Erick J; Michienzi, Courtney L; Flick, Robert M; Yakunin, Alexander F; Master, Emma R

    2017-12-29

    The modification and degradation of lignin play a vital role in carbon cycling as well as production of biofuels and bioproducts. The possibility of using bacterial laccases for the oxidation of lignin offers a route to utilize existing industrial protein expression techniques. However, bacterial laccases are most frequently studied on small model compounds that do not capture the complexity of lignocellulosic materials. This work studied the action of laccases from Bacillus subtilis and Salmonella typhimurium (EC 1.10.3.2) on ground wood samples from yellow birch (Betula alleghaniensis) and red spruce (Picea rubens). The ability of bacterial laccases to modify wood can be facilitated by small molecule mediators. Herein, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), gallic acid and sinapic acid mediators were tested. Direct analysis of the wood samples was achieved by time-of-flight secondary ion mass spectrometry (ToF-SIMS), a surface sensitive mass spectrometry technique that has characteristic peaks for H, G and S lignin. The action of the bacterial laccases on both wood samples was demonstrated and revealed a strong mediator influence. The ABTS mediator led to delignification, evident in an overall increase of polysaccharide peaks in the residual solid, along with equal loss of G and S-lignin peaks. The gallic acid mediator demonstrated minimal laccase activity. Meanwhile, the sinapic acid mediator altered the S/G peak ratio consistent with mediator attaching to the wood solids. The current investigation demonstrates the action of bacterial laccase-mediator systems directly on woody materials, and the potential of using ToF-SIMS to uncover the fundamental and applied role of bacterial enzymes in lignocellulose conversion. © 2017 Scandinavian Plant Physiology Society.

  9. Visual Reading Method for Detection of Bacterial Tannase

    PubMed Central

    Osawa, R.; Walsh, T. P.

    1993-01-01

    Tannase activity of bacteria capable of degrading tannin-protein complexes was determined by a newly developed visual reading method. The method is based on two phenomena: (i) the ability of tannase to hydrolyze methyl gallate to release free gallic acid and (ii) the green to brown coloration of gallic acid after prolonged exposure to oxygen in an alkaline condition. The method has been successfully used to detect the presence of tannase in the cultures of bacteria capable of degrading tannin-protein complexes. PMID:16348918

  10. Julius Caesar and the Gallic Campaign: A Roadmap to the Use of the Instruments of Power

    DTIC Science & Technology

    2010-03-30

    David R Godine Publishing Inc, 1980), 10-13, 17. 13 Kate Gilliver, Caesar’s Gallic Wars, (Oxford: Osprey Publishing, 2002), 74. 14 Plutarch , Fall of...information, see Goldsworthy, Caesar: A Life of a Colossus, 316. 88 Plutarch , 269. 89 Lord Kitchener was the British general credited with winning the...Serverin and Siedler; London: HarperCollins, 1995. Penrose, Jane, ed., Rome and Her Enemies. Oxford, UK: Osprey Publishing Ltd, 2008. Plutarch , Fall of

  11. The effects of antioxidants and shelf life conditions on oxidation markers in a sunflower oil salad dressing emulsion (SOSDE).

    PubMed

    Sainsbury, Jeanine; Grypa, Roman; Ellingworth, John; Duodu, Kwaku G; De Kock, Henriëtta L

    2016-12-15

    The effects of levels of antioxidant [gallic acid or ethylene diamine tetraacetate (EDTA)] in a sunflower oil salad dressing emulsion (SOSDE) and shelf life affecting conditions on aroma, anisidine values (AV) and peroxide values (PV) were determined. Aroma differences between products with different concentrations of antioxidants were more apparent for ambient than accelerated stored SOSDEs. Aroma differences were more noted between SOSDEs with different antioxidants than antioxidant concentrations per se. PV differences between accelerated stored SOSDEs with high and low EDTA concentrations were found. AV differences existed between SOSDEs with different gallic acid concentrations for both storage conditions, and for accelerated stored SOSDEs with different EDTA concentrations. The accelerated storage model is more suitable for SOSDEs with metal chelator antioxidants e.g. EDTA, than free radical scavenging antioxidants e.g. gallic acid. PV, AV and aroma of accelerated stored SOSDEs do not clearly predict ambient shelf life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Crude ethanol extracts from grape seeds and peels exhibit anti-tyrosinase activity.

    PubMed

    Hsu, Cheng-Kuang; Chou, Su-Tze; Huang, Pai-Jane; Mong, Mei-Chin; Wang, Chien-Kuo; Hsueh, Yu-Pin; Jhan, Jyun-Kai

    2012-01-01

    This study aimed to evaluate the anti-tyrosinase activities of ethanol extracts from the peels and the seeds of Kyoho grapes and Red Globe grapes (KG-PEE, KG-SEE, RGG-PEE, and RGG-SEE). The total phenolic content in KG-SEE and RGG-SEE was 400 +/- 11 and 339 +/- 7 mg gallic acid equivalent/g, respectively, about 22 times and 13 times that in KG-PEE and RGG-PEE, respectively. Both seed extracts showed significantly higher anti-tyrosinase activity than the peel extracts due to their high total phenolic content. The gallic acid content in RGG-SEE was twice that in KG-SEE, and gallic acid showed high anti-tyrosinase activity; thus, RGG-SEE had higher anti-tyrosinase activity than KG-SEE. Lineweaver-Burk plots revealed that the inhibitory mechanism of the ethanol extracts from the grapes was a mix-type inhibition. Grape seed has a greater total phenolic content and has potential as a skin-lighting agent.

  13. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis).

    PubMed

    de la Rosa, Laura A; Alvarez-Parrilla, Emilio; Shahidi, Fereidoon

    2011-01-12

    The phenolic composition and antioxidant activity of pecan kernels and shells cultivated in three regions of the state of Chihuahua, Mexico, were analyzed. High concentrations of total extractable phenolics, flavonoids, and proanthocyanidins were found in kernels, and 5-20-fold higher concentrations were found in shells. Their concentrations were significantly affected by the growing region. Antioxidant activity was evaluated by ORAC, DPPH•, HO•, and ABTS•-- scavenging (TAC) methods. Antioxidant activity was strongly correlated with the concentrations of phenolic compounds. A strong correlation existed among the results obtained using these four methods. Five individual phenolic compounds were positively identified and quantified in kernels: ellagic, gallic, protocatechuic, and p-hydroxybenzoic acids and catechin. Only ellagic and gallic acids could be identified in shells. Seven phenolic compounds were tentatively identified in kernels by means of MS and UV spectral comparison, namely, protocatechuic aldehyde, (epi)gallocatechin, one gallic acid-glucose conjugate, three ellagic acid derivatives, and valoneic acid dilactone.

  14. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids.

    PubMed

    Luís, Ângelo; Silva, Filomena; Sousa, Sónia; Duarte, Ana Paula; Domingues, Fernanda

    2014-01-01

    Staphylococcus aureus is a Gram-positive pathogen which is able to form biofilms, exhibiting a more pronounced resistance to antibiotics and disinfectants. The hurdles posed in eradicating biofilms have driven the search for new compounds able to fight these structures. Phenolic compounds constitute one of the most numerous and ubiquitous group of plant secondary metabolites with many biological activities. The aim of the present work was to study the potential antimicrobial and antibiofilm properties of gallic, caffeic, and chlorogenic acids against S. aureus as well to elucidate its mechanism of action. It was concluded that the phenolic acids studied in this work have antistaphylococcal properties. For instance, gallic acid is able to influence the adhesion properties of S. aureus. The phenolic acids tested were also able to inhibit the production of α-hemolysin by this microorganism, with the exception of chlorogenic acid. Regarding its mechanism of action, caffeic acid interferes with the stability of the cell membrane and with the metabolic activity of the cells of S. aureus.

  15. Relationship between the lipophilicity of gallic acid n-alquil esters' derivatives and both myeloperoxidase activity and HOCl scavenging.

    PubMed

    Rosso, Rober; Vieira, Tiago O; Leal, Paulo C; Nunes, Ricardo J; Yunes, Rosendo A; Creczynski-Pasa, Tânia B

    2006-09-15

    The gallic acid and several n-alkyl gallates, with the same number of hydroxyl substituents, varying only in the side carbonic chain length, with respective lipophilicity defined through the C log P, were studied. It evidenced the structure-activity relationship of the myeloperoxidase activity inhibition and the hypochlorous acid scavenger property, as well as its low toxicity in rat hepatic tissue. The gallates with C log P below 3.0 (compounds 2-7) were more active against the enzyme activity, what means that the addition of 1-6 carbons (C log P between 0.92 and 2.92) at the side chain increased approximately 50% the gallic acid effect. However, a relationship between the HOCl scavenging capability and the lipophilicity was not observed. With these results it is possible to suggest that the gallates protect the HOCl targets through two mechanisms: inhibiting its production by the enzyme and scavenging the reactive specie.

  16. Strecker Aldehyde Formation in Wine: New Insights into the Role of Gallic Acid, Glucose, and Metals in Phenylacetaldehyde Formation.

    PubMed

    Monforte, Ana Rita; Martins, Sara I F S; Silva Ferreira, Antonio C

    2018-03-14

    Strecker degradation (SD) leading to the formation of phenylacetaldehyde (PA) was studied in wine systems. New insights were gained by using two full factorial designs focusing on the effects of (1) pH and (2) temperature. In each design of experiments (DoE) three factors, glucose, gallic acid, and metals at two levels (present or absence), were varied while phenylalanine was kept constant. The obtained results gave a clear indication, with statistical significance, that in wine conditions, the SD occurs in the presence of metals preferentially via the phenolic oxidation independent of the temperature (40 or 80 °C). The reaction of the amino acid with the o-quinone formed by the oxidation of the gallic acid seems to be favored when compared with the SD promoted by the reaction with α-dicarbonyls formed by MR between glucose and phenylalanine. In fact, kinetics results showed that the presence of glucose had an inhibitory effect on PA rate of formation. PA formation was 4 times higher in the control wine when compared to the same wine with 10 g/L glucose added. By gallic acid quinone quantitation it is shown that glucose affects directly the concentration of the quinone. decreasing the rate of quinone formation. This highlights the role of sugar in o-quinone concentration and consequently in the impact on Strecker aldehyde formation, a promising new perspective regarding wine shelf-life understanding.

  17. Biotechnological procedures to select white rot fungi for the degradation of PAHs.

    PubMed

    Lee, Hwanhwi; Jang, Yeongseon; Choi, Yong-Seok; Kim, Min-Ji; Lee, Jaejung; Lee, Hanbyul; Hong, Joo-Hyun; Lee, Young Min; Kim, Gyu-Hyeok; Kim, Jae-Jin

    2014-02-01

    White rot fungi are essential in forest ecology and are deeply involved in wood decomposition and the biodegradation of various xenobiotics. The fungal ligninolytic enzymes involved in these processes have recently become the focus of much attention for their possible biotechnological applications. Successful bioremediation requires the selection of species with desirable characteristics. In this study, 150 taxonomically and physiologically diverse white rot fungi, including 55 species, were investigated for their performance in a variety of biotechnological procedures, such as dye decolorization, gallic acid reaction, ligninolytic enzymes, and tolerance to four PAHs, phenanthrene, anthracene, fluoranthene, and pyrene. Among these fungi, six isolates showed the highest (>90%) tolerance to both individual PAH and mixed PAHs. And six isolates oxidized gallic acid with dark brown color and they rapidly decolorized RBBR within ten days. These fungi revealed various profiles when evaluated for their biotechnological performance to compare the capability of degradation of PAHs between two groups selected. As the results demonstrated the six best species selected from gallic acid more greatly degraded four PAHs than the other isolates selected via tolerance test. It provided that gallic acid reaction test can be performed to rank the fungi by their ability to degrade the PAHs. Most of all, Peniophora incarnata KUC8836 and Phlebia brevispora KUC9033 significantly degraded the four PAHs and can be considered prime candidates for the degradation of xenobiotic compounds in environmental settings. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Preliminary phytochemical screening and in vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC.

    PubMed

    Aiyegoro, Olayinka A; Okoh, Anthony I

    2010-05-14

    Many oxidative stress related diseases are as a result of accumulation of free radicals in the body. A lot of researches are going on worldwide directed towards finding natural antioxidants of plants origins. The aims of this study were to evaluate in vitro antioxidant activities and to screen for phytochemical constituents of Helichrysum longifolium DC. [Family Asteraceae] aqueous crude extract. We assessed the antioxidant potential and phytochemical constituents of crude aqueous extract of Helichrysum longifolium using tests involving inhibition of superoxide anions, DPPH, H2O2, NO and ABTS. The flavonoid, proanthocyanidin and phenolic contents of the extract were also determined using standard phytochemical reaction methods. Phytochemical analyses revealed the presence of tannins, flavonoids, steroids and saponins. The total phenolic content of the aqueous leaf extract was 0.499 mg gallic acid equivalent/g of extract powder. The total flavonoid and proanthocyanidin contents of the plant were 0.705 and 0.005 mg gallic acid equivalent/g of extract powder respectively. The percentage inhibition of lipid peroxide at the initial stage of oxidation showed antioxidant activity of 87% compared to those of BHT (84.6%) and gallic acid (96%). Also, the percentage inhibition of malondialdehyde by the extract showed percentage inhibition of 78% comparable to those of BHT (72.24%) and Gallic (94.82%). Our findings provide evidence that the crude aqueous extract of H. longifolium is a potential source of natural antioxidants, and this justified its uses in folkloric medicines.

  19. Ultra-fast liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry for the rapid phenolic profiling of red maple (Acer rubrum) leaves.

    PubMed

    Li, Chunting; Seeram, Navindra P

    2018-03-07

    The red maple (Acer rubrum) species is economically important to North America because of its sap, which is used to produce maple syrup. In addition, various other red maple plant parts, including leaves, were used as a traditional medicine by the Native Americans. Currently, red maple leaves are being used for nutraceutical and cosmetic applications but there are no published analytical methods for comprehensive phytochemical characterization of this material. Herein, a rapid and sensitive method using liquid chromatography with electrospray ionization time-of-flight tandem mass spectrometry was developed to characterize the phenolics in a methanol extract of red maple leaves and a proprietary phenolic-enriched red maple leaves extract (Maplifa™). Time-of-flight mass spectrometry and tandem mass spectrometry experiments led to the identification of 106 phenolic compounds in red maples leaves with the vast majority of these compounds also detected in Maplifa™. The compounds included 68 gallotannins, 25 flavonoids, gallic acid, quinic acid, catechin, epicatechin, and nine other gallic acid derivatives among which 11 are potentially new and 75 are being reported from red maple for the first time. The developed method to characterize red maple leaves phenolics is rapid and highly sensitive and could aid in future standardization and quality control of this botanical ingredient. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry.

    PubMed

    Ehlenfeldt, M K; Prior, R L

    2001-05-01

    Antioxidant capacity, as measured by oxygen radical absorbance capacity (ORAC), and total phenolic and total anthocyanin contents were evaluated in fruit tissues of 87 highbush blueberry (Vacciniumcorymbosum L.) and species-introgressed highbush blueberry cultivars. ORAC and phenolic levels were evaluated in leaf tissues of the same materials. Average values for ORAC, phenolics, and anthocyanins in fruit were 15.9 ORAC units, 1.79 mg/g (gallic acid equivalents), and 0.95 mg/g (cyanidin-3-glucoside equivalents), respectively. Cv. Rubel had the highest ORAC per gram of fresh weight values, at 31.1 units, and cv. Elliott had the highest values on the basis of ORAC per square centimeter of surface area. In leaf tissue, values for both ORAC and phenolics were significantly higher than in fruit tissue, with mean values of 490 ORAC units and 44.80 mg/g (gallic acid equivalents), respectively. Leaf ORAC had a low, but significant, correlation with fruit phenolics and anthocyanins, but not with fruit ORAC. An analysis of ORAC values versus calculated midparent values in 11 plants from the 87-cultivar group in which all parents were tested suggested that, across cultivars, ORAC inheritance is additive. An investigation of ORAC values in a family of 44 cv. Rubel x Duke seedlings showed negative epistasis for ORAC values, suggesting Rubel may have gene combinations contributing to ORAC that are broken up during hybridization.

  1. An electrochemical sensor for gallic acid based on Fe₂O₃/electro-reduced graphene oxide composite: Estimation for the antioxidant capacity index of wines.

    PubMed

    Gao, Feng; Zheng, Delun; Tanaka, Hidekazu; Zhan, Fengping; Yuan, Xiaoning; Gao, Fei; Wang, Qingxiang

    2015-12-01

    A highly sensitive electrochemical sensor for gallic acid (GA), an important polyphenolic compound, was fabricated using the hybrid material of chitosan (CS), fishbone-shaped Fe2O3 (fFe2O3), and electrochemically reduced graphene oxide (ERGO) as the sensing matrix. The electrochemical characterization experiments showed that the CS-fFe2O3-ERGO modified glassy carbon electrode (CS-fFe2O3-ERGO/GCE) had large surface area, excellent electronic conductivity and high stability. The GA presented a superior electrochemical response on CS-fFe2O3-ERGO/GCE in comparison with the single-component modified electrode. The electrochemical mechanism and optimal test conditions of GA on the electrode surface were carefully investigated. Under the optimal conditions, the oxidation peak currents in differential pulse voltammetry (DPV) experiments exhibited a good linear relationship with the logarithmic values of GA concentration over the range from 1.0×10(-6)M to 1.0×10(-4)M. Based on signal-to-noise (S/N) characteristic of 3, the detection limit was estimated to be 1.5×10(-7)M. The proposed sensor has also been applied for estimating the antioxidant capacity index of real samples of red and white wines. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Rapid ultrasound-assisted magnetic microextraction of gallic acid from urine, plasma and water samples by HKUST-1-MOF-Fe3O4-GA-MIP-NPs: UV-vis detection and optimization study.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Dashtian, Kheibar

    2017-01-01

    Magnetite (Fe 3 O 4 nanoparticles (NPs)) HKUST-1 metal organic framework (MOF) composite as a support was used for surface imprinting of gallic acid imprinted polymer (HKUST-1-MOF-Fe 3 O 4 -GA-MIP) using vinyltrimethoxysilane (VTMOS) as the cross-linker. Subsequently, HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP characterized by FT-IR, XRD and FE-SEM analysis and applied for fast and selective and sensitive ultrasound assisted dispersive magnetic solid phase microextraction of gallic acid (GA) by UV-Vis (UA-DMSPME-UV-Vis) detection method. Plackett-Burman design (PBD) and central composite design (CCD) according to desirability function (DF) indicate the significant variables among the extraction factors vortex (mixing) time (min), sonication time (min), temperature (°C), eluent volume (L), pH and HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP mass (mg) and their contribution on the response. Optimum conditions and values correspond to pH, HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP mass, sonication time and the eluent volume were set as follow 3.0, 1.6mg, 4.0min and 180μL, respectively. The average recovery (ER%) of GA was 98.13% with desirability of 0.997, while the present method has best operational performance like wide linear range 8-6000ngmL -1 with a Limit of detection (LOD) of 1.377ngmL -1 , limit of quantification (LOQ) 4.591ngmL -1 and precision (<3.50% RSD). The recovery of GA in urine, human plasma and water samples within the range of 92.3-100.6% that strongly support high applicability of present method for real samples analysis, which candidate this method as promise for further application. Copyright © 2016. Published by Elsevier B.V.

  3. [Studies on chemical constituents from seeds of Euryale ferox].

    PubMed

    Sun, Hai-lin; Zhang, Ya-qiong; Xie, Xiao-yan; Che, Yan-yun

    2014-11-01

    To study the chemical constituents from the seeds of Euryale ferox. The chemical constituents were isolated by silica gel column, Sephadex LH-20 and their structures were identified by physico-chemical and spectral analysis. Seven compounds were purified from the 95% ethanol extract. These constituents were elucidated as protocatechuic acid (1), gallic acid (2), gallic acid ethyl ester(3),5 ,7-dihydroxychromone(4), β-sitosterol(5), daucosterol(6), and 5,7-dihydroxy-6,4'-dimethoxyflavone(7), respectively. All compounds are isolated from this plant for the first time.

  4. Effect of phenolic compounds, ethyl alcohol, and sodium metabisulphite on the lytic activity of phage PL-1 on a Lactobacillus casei S strain.

    PubMed

    Lee, A; Eschenbruch, R; Waller, J

    1985-09-01

    The effect of phenolic compounds, ethyl alcohol, and sodium metabisulphite on the lytic activity of virulent bacteriophage PL-1 on a Lactobacillus casei S strain isolated from a lactic acid beverage fermentation was investigated. Catechin, caffeic, and gallic acids, commercially produced red, white, and champagne tannins, ethyl alcohol, and sodium metabisulphite inhibited plaque formation. Catechin, caffeic, and gallic acids were the most effective inhibitors of plaque formation. Commercially supplied oenocyanin was not effective.

  5. Carbohydrates, volatile and phenolic compounds composition, and antioxidant activity of calabura (Muntingia calabura L.) fruit.

    PubMed

    Pereira, Gustavo Araujo; Arruda, Henrique Silvano; de Morais, Damila Rodrigues; Eberlin, Marcos Nogueira; Pastore, Glaucia Maria

    2018-06-01

    Soluble carbohydrates, volatile and phenolic compounds from calabura fruit as well as its antioxidant activity were assessed. The low amount of fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) and similar amount of glucose and fructose allow us to classify the calabura berry as low-FODMAPs. The terpenes β-Farnesene and dendrolasin identified by SPME-GC-MS were the major volatile components. UHPLC-MS/MS analysis revelled gallic acid (5325 μg/g dw) and cyanidin-3-O-glucoside (171 μg/g dw) as the main phenolic compounds, followed by gentisic acid, gallocatechin, caffeic acid and protocatechuic acid. In addition, gallic acid was found mainly in esterified (2883 μg/g dw) and insoluble-bound (2272 μg/g dw) forms. Free and glycosylated forms showed however the highest antioxidant activity due to occurrence of flavonoids (0.28-27 μg/g dw) in these fractions, such as catechin, gallocatechin, epigallocatechin, naringenin, and quercetin. These findings clearly suggest that calabura is a berry with low energy value and attractive colour and flavour that may contribute to the intake of several bioactive compounds with antioxidant activity. Furthermore, this berry have great potential for use in the food industry and as functional food. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Walnut Polyphenol Extract Attenuates Immunotoxicity Induced by 4-Pentylphenol and 3-methyl-4-nitrophenol in Murine Splenic Lymphocyte.

    PubMed

    Yang, Lubing; Ma, Sihui; Han, Yu; Wang, Yuhan; Guo, Yan; Weng, Qiang; Xu, Meiyu

    2016-05-12

    4-pentylphenol (PP) and 3-methyl-4-nitrophenol (PNMC), two important components of vehicle emissions, have been shown to confer toxicity in splenocytes. Certain natural products, such as those derived from walnuts, exhibit a range of antioxidative, antitumor, and anti-inflammatory properties. Here, we investigated the effects of walnut polyphenol extract (WPE) on immunotoxicity induced by PP and PNMC in murine splenic lymphocytes. Treatment with WPE was shown to significantly enhance proliferation of splenocytes exposed to PP or PNMC, characterized by increases in the percentages of splenic T lymphocytes (CD3+ T cells) and T cell subsets (CD4+ and CD8+ T cells), as well as the production of T cell-related cytokines and granzymes (interleukin-2, interleukin-4, and granzyme-B) in cells exposed to PP or PNMC. These effects were associated with a decrease in oxidative stress, as evidenced by changes in OH, SOD, GSH-Px, and MDA levels. The total phenolic content of WPE was 34,800 ± 200 mg gallic acid equivalents/100 g, consisting of at least 16 unique phenols, including ellagitannins, quercetin, valoneic acid dilactone, and gallic acid. Taken together, these results suggest that walnut polyphenols significantly attenuated PP and PNMC-mediated immunotoxicity and improved immune function by inhibiting oxidative stress.

  7. Walnut Polyphenol Extract Attenuates Immunotoxicity Induced by 4-Pentylphenol and 3-methyl-4-nitrophenol in Murine Splenic Lymphocyte

    PubMed Central

    Yang, Lubing; Ma, Sihui; Han, Yu; Wang, Yuhan; Guo, Yan; Weng, Qiang; Xu, Meiyu

    2016-01-01

    4-pentylphenol (PP) and 3-methyl-4-nitrophenol (PNMC), two important components of vehicle emissions, have been shown to confer toxicity in splenocytes. Certain natural products, such as those derived from walnuts, exhibit a range of antioxidative, antitumor, and anti-inflammatory properties. Here, we investigated the effects of walnut polyphenol extract (WPE) on immunotoxicity induced by PP and PNMC in murine splenic lymphocytes. Treatment with WPE was shown to significantly enhance proliferation of splenocytes exposed to PP or PNMC, characterized by increases in the percentages of splenic T lymphocytes (CD3+ T cells) and T cell subsets (CD4+ and CD8+ T cells), as well as the production of T cell-related cytokines and granzymes (interleukin-2, interleukin-4, and granzyme-B) in cells exposed to PP or PNMC. These effects were associated with a decrease in oxidative stress, as evidenced by changes in OH, SOD, GSH-Px, and MDA levels. The total phenolic content of WPE was 34,800 ± 200 mg gallic acid equivalents/100 g, consisting of at least 16 unique phenols, including ellagitannins, quercetin, valoneic acid dilactone, and gallic acid. Taken together, these results suggest that walnut polyphenols significantly attenuated PP and PNMC-mediated immunotoxicity and improved immune function by inhibiting oxidative stress. PMID:27187455

  8. Preliminary phytochemical screening and In vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC

    PubMed Central

    2010-01-01

    Background Many oxidative stress related diseases are as a result of accumulation of free radicals in the body. A lot of researches are going on worldwide directed towards finding natural antioxidants of plants origins. The aims of this study were to evaluate in vitro antioxidant activities and to screen for phytochemical constituents of Helichrysum longifolium DC. [Family Asteraceae] aqueous crude extract. Methods We assessed the antioxidant potential and phytochemical constituents of crude aqueous extract of Helichrysum longifolium using tests involving inhibition of superoxide anions, DPPH, H2O2, NO and ABTS. The flavonoid, proanthocyanidin and phenolic contents of the extract were also determined using standard phytochemical reaction methods. Results Phytochemical analyses revealed the presence of tannins, flavonoids, steroids and saponins. The total phenolic content of the aqueous leaf extract was 0.499 mg gallic acid equivalent/g of extract powder. The total flavonoid and proanthocyanidin contents of the plant were 0.705 and 0.005 mg gallic acid equivalent/g of extract powder respectively. The percentage inhibition of lipid peroxide at the initial stage of oxidation showed antioxidant activity of 87% compared to those of BHT (84.6%) and gallic acid (96%). Also, the percentage inhibition of malondialdehyde by the extract showed percentage inhibition of 78% comparable to those of BHT (72.24%) and Gallic (94.82%). Conclusions Our findings provide evidence that the crude aqueous extract of H. longifolium is a potential source of natural antioxidants, and this justified its uses in folkloric medicines. PMID:20470421

  9. Production of propyl gallate in nonaqueous medium using cell-associated tannase of Bacillus massiliensis: effect of various parameters and statistical optimization.

    PubMed

    Aithal, Mahesh; Belur, Prasanna D

    2013-01-01

    Enzymatic synthesis of propyl gallate in an organic solvent was studied using cell-associated tannase (E.C. 3.1.1.20) of Bacillus massiliensis. Lyophilized biomass showing tannase activity was used as a biocatalyst. The influence of buffer pH and strength, water activity, temperature, biocatalyst loading, gallic acid concentration, and 1-propanol concentration was studied by the one-factor-at-a-time method. Subsequently, response surface methodology was applied based on a central composite design to determine the effects of three independent variables (biocatalyst loading, gallic acid concentration, and 1-propanol concentration) and their mutual interactions. A total of 20 experiments were conducted, and a statistical model was developed, which predicted the maximum propyl gallate yield of 20.28 μg/mL in the reaction mixture comprising 40.4 mg biocatalyst, 0.4 mM gallic acid, and 6.52 % (v/v) 1-propanol in 9.5 mL benzene at 30°C. The subsequent verification experiments established the validity of the model. Under optimal conditions, 25% conversion of gallic acid to propyl gallate was achieved on a molar basis. The absence of the need for enzyme purification and subsequent immobilization steps and good conversion efficiency makes this enzyme system an interesting one. Reports on the applications of bacterial whole cell systems for synthetic reactions in organic solvents are scarce, and perhaps this is the first report on bacterial cell-associated tannase-mediated esterification in a nonaqueous medium. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  10. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet.

    PubMed

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-01

    Herein, we investigated the hypoglycemic effect of plant gallic acid (GA) on glucose uptake in an insulin-resistant cell culture model and on hepatic carbohydrate metabolism in rats with a high-fructose diet (HFD)-induced diabetes. Our hypothesis is that GA ameliorates hyperglycemia via alleviating hepatic insulin resistance by suppressing hepatic inflammation and improves abnormal hepatic carbohydrate metabolism by suppressing hepatic gluconeogenesis and enhancing the hepatic glycogenesis and glycolysis pathways in HFD-induced diabetic rats. Gallic acid increased glucose uptake activity by 19.2% at a concentration of 6.25 μg/mL in insulin-resistant FL83B mouse hepatocytes. In HFD-induced diabetic rats, GA significantly alleviated hyperglycemia, reduced the values of the area under the curve for glucose in an oral glucose tolerance test, and reduced the scores of the homeostasis model assessment of insulin resistance index. The levels of serum C-peptide and fructosamine and cardiovascular risk index scores were also significantly decreased in HFD rats treated with GA. Moreover, GA up-regulated the expression of hepatic insulin signal transduction-related proteins, including insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3 kinase, Akt/protein kinase B, and glucose transporter 2, in HFD rats. Gallic acid also down-regulated the expression of hepatic gluconeogenesis-related proteins, such as fructose-1,6-bisphosphatase, and up-regulated expression of hepatic glycogen synthase and glycolysis-related proteins, including hexokinase, phosphofructokinase, and aldolase, in HFD rats. Our findings indicate that GA has potential as a health food ingredient to prevent diabetes mellitus. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Mitigation of diazinon-induced cardiovascular and renal dysfunction by gallic acid

    PubMed Central

    Ajibade, Temitayo Olabisi; Omobowale, Temidayo Olutayo; Asenuga, Ebunoluwa Racheal; Afolabi, Jeremiah Moyinoluwa; Adedapo, Adeolu Alex

    2016-01-01

    Studies of the link between environmental pollutants and cardiovascular dysfunction, neglected for decades, have recently provided new insights into the pathology and consequences of these killers. In this study, rats were divided into four groups, each containing 10 rats. The rats in group one served as controls and were administered normal saline, whereas the rats in group two were orally gavaged with 3 mg/kg of diazinon (DZN) alone for twenty one consecutive days. The rats in groups 3 and 4 were administered respective 60 mg/kg and 120 mg/kg gallic acid (GA) in addition to DZN for twenty one consecutive days. Exposure of rats to diazinon significantly (p<0.05) reduced the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) content. Malondialdehyde, hydrogen peroxide (H2O2) and nitric oxide (NO) contents were also significantly (p<0.05) elevated following DZN exposure. DZN further caused a significant (p<0.05) decrease of heart rate and QT interval prolongation. Hematologic analysis revealed significant reduction (p<0.05) in packed cell volume (PCV), hemoglobin concentration (Hb), red blood cell (RBC) count, and total white blood cell count of rats administered only DZN. Observations in this study suggest a modulatory role of gallic acid in diazinon-induced anemia and associated cardiovascular dysfunction in rats. Treatment with gallic acid reversed the oxidative stress markers studied, increased the antioxidant defence system and reduced deleterious effects on hematological parameters in rats. Pathologic findings of the heart and kidney were also found to be lessened. PMID:28652848

  12. Separation and purification of hydrolyzable tannin from Geranium wilfordii Maxim by reversed-phase and normal-phase high-speed counter-current chromatography.

    PubMed

    Liu, Dan; Su, Zhiguo; Wang, Changhai; Gu, Ming; Xing, Siliang

    2010-08-01

    Three hydrolyzable tannins, geraniin, corilagin and gallic acid, main active components of Geranium wilfordii Maxim, have been separated and purified in one-step by both reversed-phase and normal-phase high-speed counter-current chromatography. Gallic acid, corilagin and geraniin were purified from 70% aqueous acetone extract of G. wilfordii Maxim with solvent system n-hexane-ethyl acetate-methanol-acetic acid-water (1:10:0.2:0.2:20) by reversed-phase high-speed counter-current chromatography at purities of 94.2, 91.0 and 91.3%, at yields of 89.3, 82.9 and 91.7%, respectively. Gallic acid, corilagin and geraniin were purified with solvent system n-hexane-ethyl acetate-methanol-acetic acid-water (0.2:10:2:1:5) by normal-phase high-speed counter-current chromatography at purities of 85.9, 92.2 and 87.6%, at yields of 87.4, 94.6 and 94.3%, respectively. It was successful for both reversed-phase and normal-phase high-speed counter-current chromatography to separate high-polarity of low-molecular-weight substances.

  13. Development of an active food packaging system with antioxidant properties based on green tea extract.

    PubMed

    Carrizo, Daniel; Gullo, Giuseppe; Bosetti, Osvaldo; Nerín, Cristina

    2014-01-01

    A formula including green tea extract (GTE) was developed as an active food packaging material. This formula was moulded to obtain an independent component/device with antioxidant properties that could be easily coupled to industrial degassing valves for food packaging in special cases. GTE components (i.e., gallic acid, catechins and caffeine) were identified and quantified by HPLC-UV and UPLC-MS and migration/diffusion studies were carried out. Antioxidant properties of the formula alone and formula-valve were measured with static and dynamic methods. The results showed that the antioxidant capacity (scavenging of free radicals) of the new GTE formula was 40% higher than the non-active system (blank). This antioxidant activity increased in parallel with the GTE concentration. The functional properties of the industrial target valve (e.g., flexibility) were studied for different mixtures of GTE, and good results were found with 17% (w/w) of GTE. This new active formula can be an important addition for active packaging applications in the food packaging industry, with oxidative species-scavenging capacity, thus improving the safety and quality for the consumer and extending the shelf-life of the packaged food.

  14. Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters.

    PubMed

    Toli, Aikaterini; Chalastara, Konstantina; Mystrioti, Christiana; Xenidis, Anthimos; Papassiopi, Nymphodora

    2016-07-01

    The objective of present study was to obtain the fixation of nano zero valent iron (nZVI) particles on a permeable matrix and evaluate the performance of this composite material for the removal of Cr(VI) from contaminated waters. The experiments were carried out using the cationic resin Dowex 50WX2 as porous support of the iron nanoparticles. The work was carried out in two phases. The first phase involved the fixation of nZVI on the resin matrix. The resin granules were initially mixed with a FeCl3 solution to obtain the adsorption of Fe(III). Then the Fe(III) loaded resin (RFe) was treated with polyphenol solutions to obtain the reduction of Fe(III) to the elemental state. Two polyphenol solutions were tested as reductants, i.e. green tea extract and gallic acid. Green tea was found to be inefficient, probably due to the relatively big size of the contained polyphenol molecules, but gallic acid molecules were able to reach adsorbed Fe(III) and reduce the cations to the elemental state. The second phase was focused on the investigation of Cr(VI) reduction kinetics using the nanoiron loaded resins (R-nFe). It was found that the reduction follows a kinetic law of first order with respect to Cr(VI) and to the embedded nanoiron. Compared to other similar products, this composite material was found to have comparable performance regarding reaction rates and higher degree of iron utilization. Namely the rate constant for the reduction of Cr(VI), in the presence of 1 mM nZVI, was equivalent to 1.4 h of half-life time at pH 3.2 and increased to 24 h at pH 8.5. The degree of iron utilization was as high as 0.8 mol of reduced Cr(VI) per mole of iron. It was also found that this composite material can be easily regenerated and reused for Cr(VI) reduction without significant loss of efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Ultrasound stimulated release of gallic acid from chitin hydrogel matrix.

    PubMed

    Jiang, Huixin; Kobayashi, Takaomi

    2017-06-01

    Ultrasound (US) stimulated drug release was examined in this study using a chitin hydrogel matrix loaded with gallic acid (GA), a drug used for wound healing and anticancer. Using phase inversion, GA-chitin hydrogels were prepared from chitin-dimethylacetamide (DMAc)/lithium chloride (LiCl) solution in the presence of GA, with 24h exposure of the solution to water vapor. The GA release from the GA-chitin hydrogel was examined under different US powers of 0-30W at 43kHz. The effects of GA loading amounts in the hydrogels (0.54, 0.43, and 0.25mg/cm 3 ) and chitin concentrations (0.1, 0.5, and 1wt%) on the release behaviors were recorded under 43kHz US exposure at 30W. Results show that US accelerated the release efficiencies for all samples. Furthermore, the release efficiency increased concomitantly with increasing US power, GA loading amount, and decrease of the chitin concentration. The highest release rate of 0.74μg/mL·min was obtained from 0.54mg/cm 3 of GA-loaded hydrogel fabricated from a 0.1wt% chitin mixture solution under 43kHz US exposure at 30W: nine times higher than that of the sample without US exposure. The hydrogel viscoelasticity demonstrated that the US irradiation rigidified the material. FT-IR showed that US can break the hydrogen bonds in the GA-chitin hydrogels. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Comparative assessment on in vitro antioxidant activities of ethanol extracts of Averrhoa bilimbi, Gymnema sylvestre and Capsicum frutescens

    PubMed Central

    Rahman, Md. Mominur; Habib, Md. Razibul; Hasan, Md. Anayet; Al Amin, Mohammad; Saha, Ayan; Mannan, Adnan

    2014-01-01

    Background: Averrhoa bilimbi, Gymnema sylvestre and Capsicum frutescens are medicinal plants commonly used as traditional medicine for the treatment of various diseases. The present study was designed to investigate the antioxidant activities of Ethanolic extract of A. bilimbi, G. sylvestre and C. frutescens. Materials and Methods: The antioxidant activity of the extracts were evaluated using total phenolic and flavonoid contents, ferric reducing power and the free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH). Results: Total phenolic and flavonoid contents were higher in G. sylvestre (53.63636 ± 0.454545 mg/g gallic acid equivalent) and C. frutescens (26.66667 ± 2.081666 mg/g quercetin equivalent) respectively. Reducing power of the crude ethanol extracts increased with the concentrations of the extracts and all the extracts showed moderate free radical scavenging activity against DPPH. The plant extract displayed moderate phenolic and flavonoid contents compared to gallic acid and quercetin equivalent respectively, whereas also exhibited significant scavenging of DPPH radical and reducing power compared with ascorbic acid as standard. Conclusion: Our study suggests that G. sylvestre has significant antioxidant activity. The antioxidant compound of this plant might be a therapeutic candidate against oxidative stress related diseases. Different sub-fraction of A. bilimbi and C. frutescens should be studied further to assess the effect. Further study is necessary for isolation and characterization of the active antioxidant agents for better treatment. PMID:24497740

  17. Radioprotective Efficacy of Lutein in Ameliorating Electron Beam Radiation-induced Oxidative Injury in Swiss Albino Mice

    PubMed Central

    Vasudeva, Vidya; Tenkanidiyoor, Yogish Somayaji; Peter, Alex John; Shetty, Jayaram; Lakshman, Srikant Patil; Fernandes, Ronald; Patali, Krishna Ananthapura

    2018-01-01

    Background: Lutein, a carotenoid compound, has previously been studied for its antioxidant and medicinal properties as well as the moderate protection it confers against gamma radiation. This study aimed at evaluating the effects of lutein against radiation-induced hematological and biochemical changes in mice. Methods: The optimized dose of the compound was orally administered for 15 days, and the mice were irradiated (6 Gy) on day 15 after the administration of the compound. The groups were divided (6 mice in each group) into normal control, radiation control, gallic acid control, 10% DMSO control, lutein control, and irradiated groups pretreated with gallic acid, 10% DMSO, and lutein. Gallic acid was used to maintain a standard since it is a proven radioprotector. Within 24 hours post irradiation, the animals were anesthetized and sacrificed. The hematological, biochemical, and antioxidant changes were determined using suitable methods. Data were analyzed by the Kaplan–Meier curve (log-rank test) and ANOVA (the Tukey test). The independent t test was used to compare the independent groups. SPSS (ver. 16) was employed. Results: Maximum survival was observed with a dose of 250 mg/kg b.wt lutein. The total leukocyte count and the percentage lymphocyte count exhibited a significant decline in the irradiated groups pretreated with gallic acid and lutein in comparison to their controls, whereas the percentage granulocyte count showed a significant rise. Antioxidant activity had markedly declined in the irradiated groups, indicating oxidative stress. Lutein pretreatment reduced the damage and maintained the antioxidant system. Conclusion: The present study suggests a protective role for lutein in palliating radiation-induced oxidative changes and maintaining the antioxidant system in vivo. PMID:29398751

  18. Gastroprotective Effect of Ginger Rhizome (Zingiber officinale) Extract: Role of Gallic Acid and Cinnamic Acid in H+, K+-ATPase/H. pylori Inhibition and Anti-Oxidative Mechanism

    PubMed Central

    Nanjundaiah, Siddaraju M.; Annaiah, Harish Nayaka Mysore; Dharmesh, Shylaja M.

    2011-01-01

    Zinger officinale has been used as a traditional source against gastric disturbances from time immemorial. The ulcer-preventive properties of aqueous extract of ginger rhizome (GRAE) belonging to the family Zingiberaceae is reported in the present study. GRAE at 200 mg kg−1 b.w. protected up to 86% and 77% for the swim stress-/ethanol stress-induced ulcers with an ulcer index (UI) of 50 ± 4.0/46 ± 4.0, respectively, similar to that of lansoprazole (80%) at 30 mg kg−1 b.w. Increased H+, K+-ATPase activity and thiobarbituric acid reactive substances (TBARS) were observed in ulcer-induced rats, while GRAE fed rats showed normalized levels and GRAE also normalized depleted/amplified anti-oxidant enzymes in swim stress and ethanol stress-induced animals. Gastric mucin damage was recovered up to 77% and 74% in swim stress and ethanol stress, respectively after GRAE treatment. GRAE also inhibited the growth of H. pylori with MIC of 300 ± 38 μg and also possessed reducing power, free radical scavenging ability with an IC50 of 6.8 ± 0.4 μg mL−1 gallic acid equivalent (GAE). DNA protection up to 90% at 0.4 μg was also observed. Toxicity studies indicated no lethal effects in rats fed up to 5 g kg−1 b.w. Compositional analysis favored by determination of the efficacy of individual phenolic acids towards their potential ulcer-preventive ability revealed that between cinnamic (50%) and gallic (46%) phenolic acids, cinnamic acid appear to contribute to better H+, K+-ATPase and Helicobacter pylori inhibitory activity, while gallic acid contributes significantly to anti-oxidant activity. PMID:19570992

  19. Prediction of oxidation parameters of purified Kilka fish oil including gallic acid and methyl gallate by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network.

    PubMed

    Asnaashari, Maryam; Farhoosh, Reza; Farahmandfar, Reza

    2016-10-01

    As a result of concerns regarding possible health hazards of synthetic antioxidants, gallic acid and methyl gallate may be introduced as natural antioxidants to improve oxidative stability of marine oil. Since conventional modelling could not predict the oxidative parameters precisely, artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS) modelling with three inputs, including type of antioxidant (gallic acid and methyl gallate), temperature (35, 45 and 55 °C) and concentration (0, 200, 400, 800 and 1600 mg L(-1) ) and four outputs containing induction period (IP), slope of initial stage of oxidation curve (k1 ) and slope of propagation stage of oxidation curve (k2 ) and peroxide value at the IP (PVIP ) were performed to predict the oxidation parameters of Kilka oil triacylglycerols and were compared to multiple linear regression (MLR). The results showed ANFIS was the best model with high coefficient of determination (R(2)  = 0.99, 0.99, 0.92 and 0.77 for IP, k1 , k2 and PVIP , respectively). So, the RMSE and MAE values for IP were 7.49 and 4.92 in ANFIS model. However, they were to be 15.95 and 10.88 and 34.14 and 3.60 for the best MLP structure and MLR, respectively. So, MLR showed the minimum accuracy among the constructed models. Sensitivity analysis based on the ANFIS model suggested a high sensitivity of oxidation parameters, particularly the induction period on concentrations of gallic acid and methyl gallate due to their high antioxidant activity to retard oil oxidation and enhanced Kilka oil shelf life. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Enhanced anticancer effect of fabricated gallic acid/CdS on the rGO nanosheets on human glomerular mesangial (IP15) and epithelial proximal (HK2) kidney cell lines - Cytotoxicity investigations.

    PubMed

    Peng, Wei; Luo, Pengcheng; Gui, Dingwen; Jiang, Weidong; Wu, Haixia; Zhang, Jie

    2018-01-01

    In spite of the technological innovation in the biomedical science, cancer remains a critical disease. In this study, we designed a gallic acid/cadmium sulfide (GA/CdS) nanocomposite fabricated on the reduced graphene oxide (GA/CdS-rGO) nanosheets for the treatment system of human kidney cancer cells. The GA/CdS-rGO nanosheets have been prepared using gallic acid as a reducing agent. The characterization of nanocomposites was studied using UV-Vis spectroscope, FT-IR, XRD, SEM and TEM. The microscopic images showed the spherical shape and nano-scaled CdS nanoparticles on the sheet like rGO nanomaterials. These structural and morphology investigations show that excellent properties of as-prepared GA/CdS-rGO has ability to treat the human glomerular mesangial (IP15) cancer cells at 50μg/ml as an IC 50 value, without affecting the epithelial proximal (HK-2) normal cells. In vitro cytotoxicity results showed that the variability of toxic effects after CdS exposure was strongly associated to the cellular Cd content. Release of Cd 2+ from nanocomposites depended to solubility and particle degradation of CdS nanoparticles were considered to be the main cause of these cytotoxicity. The in vitro analysis results indicated that heterogeneity of Cd and gallic acid toxicity that was highly dependent on the physico-chemical properties of the nanocomposites. The cytotoxicity results suggested that the prepared nanomaterials were toxic and inhibitory efficiency to human kidney cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Prescription Proportion of Pomegranate Extract Gallic Acid Gel by Orthogonal Design

    NASA Astrophysics Data System (ADS)

    Fan, Gaofu; Liu, Xiushu; Tang, Jie; Gong, Jumei; Fu, Entao; Cai, Yuhua; Xu, Zhenguo

    2018-05-01

    The aim of the present work was to optimize the formulation of pomegranate extract gallic acid gel by orthogonal design. Using orthogonal design, propylene glycol, carbomer-940 and gel pH level as influencing factors, the evaluation key index was external apearance malleability, uniformity, and eccentric for gel, and the optimum formula was selected. The present findings suggest that 10% propylene glycol, 1.5% Carbopol-940, and gel pH in the range of 4.5∼5.5, and the indexes of the optimal. The inclusion complexes showed that after the orthogonal design, the preparation process was simple, stable and controllable quality, with production feasibility.

  2. A phytochemical study of the Cuphea glutinosa from Southern Brazil: Na+,K+-ATPase activity inhibition and antioxidant properties.

    PubMed

    Zago, Adriana M; Carvalho, Fabiano B; Gutierres, Jessié Martins; Bohnert, Crystiani; Fernandes, Marilda da Cruz; Morandini, Liziane M; Coelho, Helena S; Fogaça, Aline O; Andrade, Cinthia M; Mostardeiro, Marco A; Dalcol, Ionara I; Morel, Ademir F

    2018-05-21

    This study investigated the antioxidant activity of Cuphea glutinosa (CG) and its effect on Na + , K + -ATPase from cardiac muscle. The ethanolic extract showed higher antioxidant capacity compared to aqueous and ethyl acetate fraction. Ethyl acetate fraction showed β-sitosterol-3-O-β-glucoside, kaempferol, quercetin, isoquercetin, gallic acid methyl ester, and gallic acid. The ethanolic extract also reduced the Na + ,K + -ATPase activity. CG presented a promising antioxidant activity and inhibitory effect on the Na + , K + -ATPase activity, supporting biochemical evidences the popular use of this plant in the treatment of heart failure.

  3. Intermolecular interactions in aqueous solutions of gallic acid at 296-306 K according to spectrofluorimetry and densimetry data

    NASA Astrophysics Data System (ADS)

    Grigoryan, K. R.; Sargsyan, L. S.

    2015-12-01

    Features of intermolecular interactions in aqueous solutions of gallic acid (GA) are studied by means of densimetry and fluorescence spectroscopy (intrinsic fluorescence, 2D spectra, and excitation/ emission matrix fluorescence spectra, 3D) at 296.15, 301.15, and 306.15 K in the concentration range of 5.88 × 10-4-5.88 × 10-2 mol L-1. It is shown by analyzing the concentration and temperature dependences of the apparent molar volumes and fluorescence parameters of GA that the equilibrium between nonassociated and associated species in the solution and the hydration of these species undergo changes.

  4. Simultaneous analysis of tea catechins, caffeine, gallic acid, theanine and ascorbic acid by micellar electrokinetic capillary chromatography.

    PubMed

    Aucamp, J P; Hara, Y; Apostolides, Z

    2000-04-21

    A micellar electrokinetic capillary chromatography (MEKC) method for the simultaneous analysis of five tea catechins, theanine, caffeine, gallic acid and ascorbic acid has been developed. The catechins are (-)-epicatechin, (+)-catechin, (-)-epigallocatechin, (-)-epicatechin gallate and (-)-epigallocatechin gallate. p-Nitrophenol serves as both reference and internal standard. All the components are separated within 13 min with a 57 cm uncoated fused-silica column. On-column detection was carried out at 200 nm. This method has been used to measure these compounds in fresh tea leaves and tea liquor. The limit of detection for all analytes ranged from 1 to 20 microg/ml.

  5. Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium

    PubMed Central

    Alberto, María R.; de Nadra, María C. Manca; Arena, Mario E.

    2012-01-01

    The influence of seven phenolic compounds, normally present in wine, on the growth and arginine deiminase system (ADI) of Lactobacillus hilgardii X1B, a wine lactic acid bacterium, was established. This system provides energy for bacterial growth and produces citrulline that reacts with ethanol forming the carcinogen ethyl carbamate (EC), found in some wines. The influence of phenolic compounds on bacterial growth was compound dependent. Growth and final pH values increased in presence of arginine. Arginine consumption decreased in presence of protocatechuic and gallic acids (31 and 17%, respectively) and increased in presence of quercetin, rutin, catechin and the caffeic and vanillic phenolic acids (between 10 and 13%, respectively). ADI enzyme activities varied in presence of phenolic compounds. Rutin, quercetin and caffeic and vanillic acids stimulated the enzyme arginine deiminase about 37–40%. Amounts of 200 mg/L gallic and protocatechuic acids inhibited the arginine deiminase enzyme between 53 and 100%, respectively. Ornithine transcarbamylase activity was not modified at all concentrations of phenolic compounds. As gallic and protocatechuic acids inhibited the arginine deiminase enzyme that produces citrulline, precursor of EC, these results are important considering the formation of toxic compounds. PMID:24031815

  6. Gallic acid is an active component for the anticarcinogenic action of grape seed procyanidins in pancreatic cancer cells.

    PubMed

    Cedó, Lídia; Castell-Auví, Anna; Pallarès, Victor; Macià, Alba; Blay, Mayte; Ardévol, Anna; Motilva, Maria-José; Pinent, Montserrat

    2014-01-01

    The aim of the present work was to evaluate the effects of a grape seed procyanidin extract (GSPE) on proliferation and apoptosis in the pancreatic adenocarcinoma cell line MIA PaCa-2 and identify the components of the extract with higher activity. The effects of the extract were analyzed on the proliferation and apoptosis processes in MIA PaCa-2 cells, as well as in the levels of the apoptosis markers Bcl-2 and Bax, the mitochondrial membrane potential, and reactive oxygen species levels. Finally, the components of the extract with higher effects were elucidated using enriched fractions of the extract and pure compounds. The results showed that GSPE inhibits cell proliferation and increases apoptosis in MIA PaCa-2 cells, which is primarily mediated by the downregulation of the antiapoptotic protein Bcl-2 and the depolarization of the mitochondrial membrane. GSPE also reduced the formation of reactive oxygen species. The component of the extract that possesses the highest antiproliferative and proapoptotic activity was gallic acid. In conclusion, GSPE acts as anticarcinogenic in MIA PaCa-2 cells, with gallic acid as the major single active constituent of the extract.

  7. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro

    PubMed Central

    Jayaraman, Premkumar; Sakharkar, Meena K; Lim, Chu Sing; Tang, Thean Hock; Sakharkar, Kishore R.

    2010-01-01

    In this study the in vitro activities of seven antibiotics (ciprofloxacin, ceftazidime, tetracycline, trimethoprim, sulfamethoxazole, polymyxin B and piperacillin) and six phytochemicals (protocatechuic acid, gallic acid, ellagic acid, rutin, berberine and myricetin) against five P. aeruginosa isolates, alone and in combination are evaluated. All the phytochemicals under investigation demonstrate potential inhibitory activity against P. aeruginosa. The combinations of sulfamethoxazole plus protocatechuic acid, sulfamethoxazole plus ellagic acid, sulfamethoxazole plus gallic acid and tetracycline plus gallic acid show synergistic mode of interaction. However, the combinations of sulfamethoxazole plus myricetin shows synergism for three strains (PA01, DB5218 and DR3062). The synergistic combinations are further evaluated for their bactericidal activity against P. aeruginosa ATCC strain using time-kill method. Sub-inhibitory dose responses of antibiotics and phytochemicals individually and in combination are presented along with their interaction network to suggest on the mechanism of action and potential targets for the phytochemicals under investigation. The identified synergistic combinations can be of potent therapeutic value against P. aeruginosa infections. These findings have potential implications in delaying the development of resistance as the antibacterial effect is achieved with lower concentrations of both drugs (antibiotics and phytochemicals). PMID:20941374

  8. Dinuclear copper(II) octaazamacrocyclic complex in a PVC coated GCE and graphite as a voltammetric sensor for determination of gallic acid and antioxidant capacity of wine samples.

    PubMed

    Petković, B B; Stanković, D; Milčić, M; Sovilj, S P; Manojlović, D

    2015-01-01

    A novel efficient differential pulse voltammetric (DPV) method for determination gallic acid (GA) was developed by using an electrochemical sensor based on [Cu2tpmc](ClO4)4 immobilized in PVC matrix and coated on graphite (CGE) or classy carbon rod (CGCE). The proposed method is based on the gallic acid oxidation process at formed [Cu2tpmcGA](3+) complex at the electrode surface. The complexation was explored by molecular modeling and DFT calculations. Voltammograms for both sensors, recorded in a HNO3 as a supporting electrolyte at pH 2 and measured in 2.5×10(-7) to 1.0×10(-4) M of GA, resulted with two linear calibration curves (for higher and lower GA concentration range). The detection limit at CGE was 1.48×10(-7) M, while at CGCE was 4.6×10(-6) M. CGE was successfully applied for the determination of the antioxidant capacity based on GA equivalents for white, rosé and red wine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Chebulagic acid Chebulinic acid and Gallic acid, the active principles of Triphala, inhibit TNFα induced pro-angiogenic and pro-inflammatory activities in retinal capillary endothelial cells by inhibiting p38, ERK and NFkB phosphorylation.

    PubMed

    Shanmuganathan, Sivasankar; Angayarkanni, Narayanasamy

    2018-04-17

    Tumor necrosis factor-α (TNFα) a pleiotropic cytokine induces pro-inflammatory and pro-angiogenic changes in conditions such as diabetic retinopathy (DR) and neovascular age related macular degeneration (NV-AMD). Hence, inhibition of TNFα mediated changes can benefit the management of DR and NV-AMD. Triphala, an ayurvedic herbal preparation is known to have immunomodulatry functions. In this study we evaluated the alcoholic extract of triphala (AlE) and its compounds Chebulagic acid (CA), Chebulinic acid (CI) and Gallic acid (GA) for their anti-TNFα activity. TNFα induced pro-inflammatory and pro-angiogenic changes in the retinal-choroid microvascular endothelial cells (RF/6A). Treatment with CA/CI/GA and the whole Triphala extract showed characteristic inhibition of MMP-9, cell proliferation/migration and tube formation as well the expression of IL-6, IL-8 and MCP-1 without affecting cell viability. This was mediated by inhibition of p38, ERK and NFκB phosphorylation. Ex vivo angiogenesis assay using chick chorioallantoic membrane (CAM) model also showed that TNFα-induced angiogenesis and it was inhibited by AlE and its active principles. Further, in silico studies revealed that CA, CI and GA are capable of binding the TNFα-receptor-1 to mediate anti-TNFα activity. This study explains the immunomodulatory function of Triphala, evaluated in the context of retinal and choroid vasculopathies in vitro and ex vivo; which showed that CA, CI and GA can be a potential pharmacological agents in the management of DR and NV-AMD. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing*

    PubMed Central

    Huang, Wu-yang; Zhang, Hong-cheng; Liu, Wen-xu; Li, Chun-yang

    2012-01-01

    Berries are a good source of natural antioxidants. In the present study, the total antioxidant capacity and phenolic composition of three berry fruits (blueberry, blackberry, and strawberry) cultivated in Nanjing were investigated. Blueberry, with a Trolox equivalent antioxidant capacity (TEAC) value of 14.98 mmol Trolox/100 g dry weight (DW), exhibited the strongest total antioxidant capacity using both the 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. Blueberry also had the highest total phenolic content (TPC, 9.44 mg gallic acid/g DW), total flavonoid content (TFC, 36.08 mg rutin/g DW), and total anthocyanidin content (TAC, 24.38 mg catechin/g DW). A preliminary analysis using high performance liquid chromatography (HPLC) showed that the blueberry, blackberry, and strawberry samples tested contained a range of phenolic acids (including gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, p-coumaric acid, ferulic acid, ellagic acid, and cinnamic acid) and various types of flavonoids (flavone: luteolin; flavonols: rutin, myricetin, quercetrin, and quercetin; flavanols: gallocatechin, epigallocatechin, catechin, and catechin gallate; anthocyanidins: malvidin-3-galactoside, malvidin-3-glucoside, and cyanidin). In particular, the blueberries had high levels of proanthocyanidins and anthocyanidins, which might be responsible for their strong antioxidant activities. These results indicate a potential market role for berries (especially blueberries) as a functional food ingredient or nutraceutical. PMID:22302422

  11. UVA, UVB Light Doses and Harvesting Time Differentially Tailor Glucosinolate and Phenolic Profiles in Broccoli Sprouts.

    PubMed

    Moreira-Rodríguez, Melissa; Nair, Vimal; Benavides, Jorge; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2017-06-26

    Broccoli sprouts contain health-promoting glucosinolate and phenolic compounds that can be enhanced by applying ultraviolet light (UV). Here, the effect of UVA or UVB radiation on glucosinolate and phenolic profiles was assessed in broccoli sprouts. Sprouts were exposed for 120 min to low intensity and high intensity UVA (UVA L , UVA H ) or UVB (UVB L , UVB H ) with UV intensity values of 3.16, 4.05, 2.28 and 3.34 W/m², respectively. Harvest occurred 2 or 24 h post-treatment; and methanol/water or ethanol/water (70%, v / v ) extracts were prepared. Seven glucosinolates and 22 phenolics were identified. Ethanol extracts showed higher levels of certain glucosinolates such as glucoraphanin, whereas methanol extracts showed slight higher levels of phenolics. The highest glucosinolate accumulation occurred 24 h after UVB H treatment, increasing 4-methoxy-glucobrassicin, glucobrassicin and glucoraphanin by ~170, 78 and 73%, respectively. Furthermore, UVA L radiation and harvest 2 h afterwards accumulated gallic acid hexoside I (~14%), 4- O -caffeoylquinic acid (~42%), gallic acid derivative (~48%) and 1-sinapoyl-2,2-diferulolyl-gentiobiose (~61%). Increases in sinapoyl malate (~12%), gallotannic acid (~48%) and 5-sinapoyl-quinic acid (~121%) were observed with UVB H Results indicate that UV-irradiated broccoli sprouts could be exploited as a functional food for fresh consumption or as a source of bioactive phytochemicals with potential industrial applications.

  12. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    NASA Astrophysics Data System (ADS)

    Ferraris, S.; Miola, M.; Cochis, A.; Azzimonti, B.; Rimondini, L.; Prenesti, E.; Vernè, E.

    2017-02-01

    The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules - showing reducing ability to directly obtain in situ metallic silver - and silver nanoparticles was investigated by means of UV-vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  13. Studies on the chemical constituents from the stem and leaves of Tagetes erecta.

    PubMed

    Zhang, Yu; Zhang, Ting-Ting

    2010-09-01

    To investigate the chemical constituents of the stem and leaves of Tagetes erecta. The materials extracted with ethanol were first purified with D101 resin and then separated by repeated silica gel column chromatography as well as recrystallization to get single compounds. The chemical structures of the compounds were elucidated on the basis of physicochemical properties, spectroscopic analysis and comparing with standard sample and literatures. Six compounds were identified as 4'-methoxy-eupatolitin-3-O-glucoside (I), kaempferitrin (II), rutin (III), beta-sitosterol (IV), daucosterol (V) and gallic acid (VI). Compounds I, II, III are isolated from the plant for the first time; the compounds IV, V, VI are isolated from the stem and leaves of the plant for the first time.

  14. Design, formulation, and evaluation of ginger medicated chewing gum

    PubMed Central

    Aslani, Abolfazl; Ghannadi, Alireza; Rostami, Farnaz

    2016-01-01

    Background: Various ginger compounds improve gastrointestinal problems and motion sickness. The main effects of ginger allocate to some phenolics such as gingerols and shogaols that act as their active agents. Chewing gums are among convenient dosage forms which patients prefer due to their advantages. Hence, this study tried to design, formulate, and evaluate ginger chewing gum of favorable taste and texture to avoid motion sickness and have gastro-protective and anti-oxidant effect. Materials and Methods: Dried ginger rhizomes were percolated to extract ginger compounds. Total phenolics were measured in 70% hydro-alcoholic extract of ginger by gallic and tannic acid standards using Folin–Ciocalteu’s reagent. Chewing gums containing 50 mg of concentrated extract were prepared. Content uniformity, weight variation, release pattern, organoleptic, and mechanical properties were evaluated. Results: Phenolic content was measured 61.50 ± 5.27 mg/g and 76.75 ± 5.45 mg/g of concentrated extract as gallic acid and tannic acid equivalents, respectively. Release pattern of formulations with different gum bases and sweeteners demonstrated almost 100% release of drug. Evaluation of organoleptic properties was on 10 healthy volunteers and later prepared formulations exhibited better characteristics. Formulations without any flavorants have higher acceptability. Evaluation of mechanical properties showed higher stiffness of F15. Conclusion: Ginger chewing gum comprises admissible properties to be used as a modern drug delivery system due to its advantageous results in motion sickness. It passed all the specified tests for an acceptable chewing gum. Thus, it may be successfully produced to help GI problems. PMID:27563640

  15. Preparation and antibacterial activities of chitosan-gallic acid/polyvinyl alcohol blend film by LED-UV irradiation.

    PubMed

    Yoon, Soon-Do; Kim, Young-Mog; Kim, Boo Il; Je, Jae-Young

    2017-11-01

    Active blend films from chitosan-gallic acid (CGA) and polyvinyl alcohol (PVA) were prepared via a simple mixing and casting method through the addition of citric acid as a plasticizer. The CGA/PVA blend films were characterized using Fourier transform infrared spectroscopy (FT-IR). The mechanical properties including tensile strength (TS) and elongation at break (%E), degree of solubility (S) and swelling behavior (DS), water vapor adsorption, and antimicrobial activities of the CGA/PVA blend films with and without LED (light emitting diode)-UV irradiation were also investigated. The CGA/PVA blend films exposed to UV irradiation exerted a higher TS (43.5MPa) and lower %E (50.40), S (0.38) and DS (2.73) compared to the CGA/PVA blend films (TS=41.7MPa, %E=55.40, S=0.42, and DS=3.16) not exposed LED-UV irradiation, indicating that the cross-linkage between CGA and PVA had been strengthened by LED-UV irradiation. However, the water vapor adsorption in the CGA/PVA blend films increased due to the changes of surface roughness and pore volume after LED-UV irradiation, and all values increased by increasing the CGA concentrations in the CGA/PVA blend films. The antimicrobial activities of the CGA/PVA blend films showed that the efficient concentration of CGA in the CGA/PVA blend films was over 1.0%. Taken together, the CGA/PVA blend films have potential for use as food packing materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer

    NASA Astrophysics Data System (ADS)

    Sotiriou, Georgios A.; Blattmann, Christoph O.; Deligiannakis, Yiannis

    2015-12-01

    Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04942c

  17. Removal of phenols from the water effluents of olive presses

    NASA Astrophysics Data System (ADS)

    Stamboliadis, Elias; Emejulu, Anthony; Pantelaki, Olga; Pentari, Despina; Petrakis, Evangelos

    2012-11-01

    The water effluents of olive presses contain a number of phenols that are hardly biodegradable and therefore constitute an environmental hazard, mainly in the Mediterranean countries. The present work presents the results obtained from the study of artificial solutions containing one kind of phenol, namely gallic acid that consists of the main type of phenols present. According to the experimental procedure, the phenol is removed from the water solution by absorption on different naturally occurring raw rock materials. The first material is caustic magnesia produced after the calcination of a magnesite sample from Macedonia, Greece, the second is a sample of sedimentary psammitic marl from the area of Chania, Crete, Greece, and the third solid absorbent is a bentonite sample from the island of Milos, Greece. According to the results obtained, magnesia seems to be by far the best absorbent, with an absorbing capacity of 3500 mg of phenol per gram, followed by the psammitic marl. The absorbing capacity of bentonite is almost negligible

  18. Polyphenols in Raw and Cooked Cereals/Pseudocereals/Legume Pasta and Couscous.

    PubMed

    Carcea, Marina; Narducci, Valentina; Turfani, Valeria; Giannini, Vittoria

    2017-09-11

    Pasta and couscous are popular foods manufactured (in their traditional form) from durum wheat semolina. In recent years, the consumers' quest for novel, functional, gluten-free, wholegrain foods has prompted the industry to manufacture new pasta and couscous products in which durum wheat has been partially or totally replaced by other vegetable flours. Besides dietary fibre, these raw materials might be an interesting source of phytochemicals. In this work, 16 commercial samples of pasta and four samples of couscous representative of the new products and made of refined and wholegrain flours of different species of cereals, pseudocereals and legumes were analysed for free, hydrolysable bound and total polyphenol content by means of the Folin-Ciocalteu procedure. Analyses were repeated on cooked samples to assess the quantity of polyphenols ingested by the consumers. The raw legume and pseudocereal products had a total polyphenol content higher than most cereal products (up to 1743.4 mg of Gallic Acid Equivalent (GAE) per 100 g dry weight). Wholegrain products had higher contents than refined products. The free fraction underwent up to 46% loss with cooking, probably because of solubility in water. The water absorption of pasta and couscous during cooking was in a ratio of 2:3, resulting in higher dilution of polyphenols in the cooked couscous.

  19. Polyphenols in Raw and Cooked Cereals/Pseudocereals/Legume Pasta and Couscous

    PubMed Central

    Giannini, Vittoria

    2017-01-01

    Pasta and couscous are popular foods manufactured (in their traditional form) from durum wheat semolina. In recent years, the consumers’ quest for novel, functional, gluten-free, wholegrain foods has prompted the industry to manufacture new pasta and couscous products in which durum wheat has been partially or totally replaced by other vegetable flours. Besides dietary fibre, these raw materials might be an interesting source of phytochemicals. In this work, 16 commercial samples of pasta and four samples of couscous representative of the new products and made of refined and wholegrain flours of different species of cereals, pseudocereals and legumes were analysed for free, hydrolysable bound and total polyphenol content by means of the Folin-Ciocalteu procedure. Analyses were repeated on cooked samples to assess the quantity of polyphenols ingested by the consumers. The raw legume and pseudocereal products had a total polyphenol content higher than most cereal products (up to 1743.4 mg of Gallic Acid Equivalent (GAE) per 100 g dry weight). Wholegrain products had higher contents than refined products. The free fraction underwent up to 46% loss with cooking, probably because of solubility in water. The water absorption of pasta and couscous during cooking was in a ratio of 2:3, resulting in higher dilution of polyphenols in the cooked couscous. PMID:28892013

  20. Selective extraction of derivates of p-hydroxy-benzoic acid from plant material by using a molecularly imprinted polymer.

    PubMed

    Karasová, Gabriela; Lehotay, Jozef; Sádecká, Jana; Skacáni, Ivan; Lachová, Miroslava

    2005-12-01

    Selective SPE of derivates of p-hydroxybenzoic acid (pHBA) from plant extract of Melissa officinalis is presented using a molecularly imprinted polymer (MIP) made with protocatechuic acid (PA) as template molecule. MIP was prepared with acrylamide as functional monomer, ethylene glycol dimethacrylate as crosslinking monomer and ACN as porogen. MIP was evaluated towards six phenolic acids: PA, gallic acid, pHBA, vanillic acid (VA), gentisic acid (GeA) and syringic acid (SyrA), and then steps of molecularly imprinted SPE (MISPE) procedure were optimized. The best specific binding capacity of MIP was obtained for PA in ACN (34.7 microg/g of MIP). Other tested acids were also bound on MIP if they were dissolved in this solvent. ACN was chosen as solvent for sample application. M. officinalis was extracted into methanol/water (4:1, v/v), the extract was then evaporated to dryness and dissolved in ACN before application on MIP. Water and ACN were used as washing solvents and elution of benzoic acids was performed by means of a mixture methanol/acetic acid (9:1, v/v). pHBA, GA, PA and VA were extracted with recoveries of 56.3-82.1% using this MISPE method. GeA was not determined in plant extract.

  1. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo) Peels.

    PubMed

    Pacheco-Ordaz, Ramón; Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A; González-Aguilar, Gustavo A

    2018-02-08

    Mango ( Mangifera indica cv. Ataulfo) peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA) and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5%) when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp) across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10 -6 cm/s) than in the other fractions and similar to that obtained when tested pure (2.48 × 10 -6 cm/s). In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry.

  2. Native Plant and Microbial Contributions to a Negative Plant-Plant Interaction1[OA

    PubMed Central

    Bains, Gurdeep; Sampath Kumar, Amutha; Rudrappa, Thimmaraju; Alff, Emily; Hanson, Thomas E.; Bais, Harsh P.

    2009-01-01

    A number of hypotheses have been suggested to explain why invasive exotic plants dramatically increase their abundance upon transport to a new range. The novel weapons hypothesis argues that phytotoxins secreted by roots of an exotic plant are more effective against naïve resident competitors in the range being invaded. The common reed Phragmites australis has a diverse population structure including invasive populations that are noxious weeds in North America. P. australis exudes the common phenolic gallic acid, which restricts the growth of native plants. However, the pathway for free gallic acid production in soils colonized by P. australis requires further elucidation. Here, we show that exotic, invasive P. australis contain elevated levels of polymeric gallotannin relative to native, noninvasive P. australis. We hypothesized that polymeric gallotannin can be attacked by tannase, an enzymatic activity produced by native plant and microbial community members, to release gallic acid in the rhizosphere and exacerbate the noxiousness of P. australis. Native plants and microbes were found to produce high levels of tannase while invasive P. australis produced very little tannase. These results suggest that both invasive and native species participate in signaling events that initiate the execution of allelopathy potentially linking native plant and microbial biochemistry to the invasive traits of an exotic species. PMID:19776161

  3. Potential for food-drug interactions by dietary phenolic acids on human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11).

    PubMed

    Wang, Li; Sweet, Douglas H

    2012-10-15

    Phenolic acids exert beneficial health effects such as anti-oxidant, anti-carcinogenic, and anti-inflammatory activities and show systemic exposure after consumption of common fruits, vegetables, and beverages. However, knowledge regarding which components convey therapeutic benefits and the mechanism(s) by which they cross cell membranes is extremely limited. Therefore, we determined the inhibitory effects of nine food-derived phenolic acids, p-coumaric acid, ferulic acid, gallic acid, gentisic acid, 4-hydroxybenzoic acid, protocatechuic acid, sinapinic acid, syringic acid, and vanillic acid, on human organic anion transporter 1 (hOAT1), hOAT3, and hOAT4. In the present study, inhibition of OAT-mediated transport of prototypical substrates (1 μM) by phenolic acids (100 μM) was examined in stably expressing cell lines. All compounds significantly inhibited hOAT3 transport, while just ferulic, gallic, protocatechuic, sinapinic, and vanillic acid significantly blocked hOAT1 activity. Only sinapinic acid inhibited hOAT4 (~35%). For compounds exhibiting inhibition > ~60%, known clinical plasma concentration levels and plasma protein binding in humans were examined to select compounds to evaluate further with dose-response curves (IC(50) values) and drug-drug interaction (DDI) index determinations. IC(50) values ranged from 1.24 to 18.08 μM for hOAT1 and from 7.35 to 87.36 μM for hOAT3. Maximum DDI indices for gallic and gentisic acid (≫0.1) indicated a very strong potential for DDIs on hOAT1 and/or hOAT3. This study indicates that gallic acid from foods or supplements, or gentisic acid from salicylate-based drug metabolism, may significantly alter the pharmacokinetics (efficacy and toxicity) of concomitant therapeutics that are hOAT1 and/or hOAT3 substrates. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components.

    PubMed

    Xie, Hong; Li, Xican; Ren, Zhenxing; Qiu, Weimin; Chen, Jianlan; Jiang, Qian; Chen, Ban; Chen, Dongfeng

    2018-01-24

    Tibetan tea (Kangzhuan) is an essential beverage of the Tibetan people. In this study, a lyophilized aqueous extract of Tibetan tea ( LATT ) was prepared and analyzed by HPLC. The results suggested that there were at least five phenolic components, including gallic acid, and four catechins (i.e., (+)-catechin, (-)-catechin gallate ( CG ), (-)-epicatechin gallate ( ECG ), and (-)-epigallocatechin gallate). Gallic acid, the four catechins, and LATT were then comparatively investigated by four antioxidant assays: ferric reducing antioxidant power, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•) scavenging, 1,1-diphenyl-2-picryl-hydrazl radical scavenging, and 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) radical scavenging assays. In these assays, LATT, along with the five phenolic components, increased their antioxidant effects in a concentration-dependent manner; however, the half maximal scavenging concentrations of ECG were always lower than those of CG . Gallic acid and the four catechins were also suggested to chelate Fe 2+ based on UV-visible spectral analysis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis suggested that, when mixed with PTIO•, the five phenolic components could yield two types of radical adduct formation (RAF) products (i.e., tea phenolic dimers and tea phenolic-PTIO• adducts). In a flow cytometry assay, (+)-catechin and LATT was observed to have a cytoprotective effect towards oxidative-stressed bone marrow-derived mesenchymal stem cells. Based on this evidence, we concluded that LATT possesses antioxidative or cytoprotective properties. These effects may mainly be attributed to the presence of phenolic components, including gallic acid and the four catechins. These phenolic components may undergo electron transfer, H⁺-transfer, and Fe 2+ -chelating pathways to exhibit antioxidative or cytoprotective effects. In these effects, two diastereoisomeric CG and ECG showed differences to which a steric effect from the 2-carbon may contribute. Phenolic component decay may cause RAF in the antioxidant process.

  5. Antifungal Activity of Gallic Acid In Vitro and In Vivo.

    PubMed

    Li, Zhi-Jian; Liu, Meng; Dawuti, Gulina; Dou, Qin; Ma, Yu; Liu, Heng-Ge; Aibai, Silafu

    2017-07-01

    Gallic acid (GA) is a polyphenol natural compound found in many medicinal plant species, including pomegranate rind (Punica granatum L.), and has been shown to have antiinflammatory and antibacterial properties. Pomegranate rind is used to treat bacterial and fungal pathogens in Uyghur and other systems of traditional medicine, but, surprisingly, the effects of GA on antifungal activity have not yet been reported. In this study, we aimed to investigate the inhibitory effects of GA on fungal strains both in vitro and in vivo. The minimal inhibitory concentration (MIC) was determined by the NCCLS (M38-A and M27-A2) standard method in vitro, and GA was found to have a broad spectrum of antifungal activity, with MICs for all the tested dermatophyte strains between 43.75 and 83.33 μg/mL. Gallic acid was also active against three Candida strains, with MICs between 12.5 and 100.0 μg/mL. The most sensitive Candida species was Candida albicans (MIC = 12.5 μg/mL), and the most sensitive filamentous species was Trichophyton rubrum (MIC = 43.75 μg/mL), which was comparable in potency to the control, fluconazole. The mechanism of action was investigated for inhibition of ergosterol biosynthesis using an HPLC-based assay and an enzyme linked immunosorbent assay. Gallic acid reduced the activity of sterol 14α-demethylase P450 (CYP51) and squalene epoxidase in the T. rubrum membrane, respectively. In vivo model demonstrated that intraperitoneal injection administration of GA (80 mg/kg d) significantly enhanced the cure rate in a mice infection model of systemic fungal infection. Overall, our results confirm the antifungal effects of GA and suggest a mechanism of action, suggesting that GA has the potential to be developed further as a natural antifungal agent for clinical use. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Biosynthesis of flat silver nanoflowers: from Flos Magnoliae Officinalis extract to simulation solution

    NASA Astrophysics Data System (ADS)

    Jing, Xiaolian; Huang, Jiale; Wu, Lingfeng; Sun, Daohua; Li, Qingbiao

    2014-03-01

    Flat Ag nanoflowers were directly synthesized from the bioreduction of AgNO3 using Flos Magnoliae Officinalis extract without any additional stabilizer or protective agent at room temperature. Effects of concentrations of the Flos Magnoliae Officinalis extract on the Ag nanostructures were investigated. The main components containing flavone, polyphenol, protein, and reducing sugar in the plant extract were thoroughly determined before and after the reaction, and the dialysis experiments were also conducted. The results of components analysis and dialysis showed that gallic acid representing polyphenols played an important role in the biosynthesis of silver nanoplates. Trisodium citrate combined gallic acid solution, instead of Flos Magnoliae Officinalis extract, was employed and successfully simulated the biosynthesis process of the flat Ag nanoflowers.

  7. Pseudotannins Self-assembled into Antioxidant Complexes

    PubMed Central

    Cheng, H. A.; Drinnan, C. T.; Pleshko, N.; Fisher, O. Z.

    2015-01-01

    Natural tannins are attractive as building blocks for biomaterials due to their antioxidant properties and ability to form interpolymer complexes (IPCs) with other macromolecules. One of the major challenges to tannin usage in biomedical applications is their instability at physiological conditions and a lack of control over the purity and reactivity. Herein, we report the synthesis and characterization of tannin-like polymers with controlled architecture, reactivity, and size. These pseudotannins were synthesized by substituting linear dextran chains with gallic, resorcylic, and protocatechuic pendant groups to mimic the structure of natural hydrolysable tannins. We demonstrate that these novel materials can self-assemble to form reductive and colloidally stable nanoscale and microscale particles. Specifically, the synthesis, turbidity, particle size, antioxidant power, and cell uptake of IPCs derived from pseudotannins and poly(ethylene glycol) was evaluated. PMID:26313262

  8. Pseudotannins self-assembled into antioxidant complexes.

    PubMed

    Cheng, H A; Drinnan, C T; Pleshko, N; Fisher, O Z

    2015-10-21

    Natural tannins are attractive as building blocks for biomaterials due to their antioxidant properties and ability to form interpolymer complexes (IPCs) with other macromolecules. One of the major challenges to tannin usage in biomedical applications is their instability at physiological conditions and a lack of control over the purity and reactivity. Herein, we report the synthesis and characterization of tannin-like polymers with controlled architecture, reactivity, and size. These pseudotannins were synthesized by substituting linear dextran chains with gallic, resorcylic, and protocatechuic pendant groups to mimic the structure of natural hydrolysable tannins. We demonstrate that these novel materials can self-assemble to form reductive and colloidally stable nanoscale and microscale particles. Specifically, the synthesis, turbidity, particle size, antioxidant power, and cell uptake of IPCs derived from pseudotannins and poly(ethylene glycol) was evaluated.

  9. Statistical mixture design selective extraction of compounds with antioxidant activity and total polyphenol content from Trichilia catigua.

    PubMed

    Lonni, Audrey Alesandra Stinghen Garcia; Longhini, Renata; Lopes, Gisely Cristiny; de Mello, João Carlos Palazzo; Scarminio, Ieda Spacino

    2012-03-16

    Statistical design mixtures of water, methanol, acetone and ethanol were used to extract material from Trichilia catigua (Meliaceae) barks to study the effects of different solvents and their mixtures on its yield, total polyphenol content and antioxidant activity. The experimental results and their response surface models showed that quaternary mixtures with approximately equal proportions of all four solvents provided the highest yields, total polyphenol contents and antioxidant activities of the crude extracts followed by ternary design mixtures. Principal component and hierarchical clustering analysis of the HPLC-DAD spectra of the chromatographic peaks of 1:1:1:1 water-methanol-acetone-ethanol mixture extracts indicate the presence of cinchonains, gallic acid derivatives, natural polyphenols, flavanoids, catechins, and epicatechins. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Phenolic compounds, antioxidant potential and antiproliferative potential of 10 common edible flowers from China assessed using a simulated in vitro digestion-dialysis process combined with cellular assays.

    PubMed

    Huang, Weisu; Mao, Shuqin; Zhang, Liuquan; Lu, Baiyi; Zheng, Lufei; Zhou, Fei; Zhao, Yajing; Li, Maiquan

    2017-11-01

    Phenolic compounds could be sensitive to digestive conditions, thus a simulated in vitro digestion-dialysis process and cellular assays was used to determine phenolic compounds and antioxidant and antiproliferative potentials of 10 common edible flowers from China and their functional components. Gallic acid, ferulic acid, and rutin were widely present in these flowers, which demonstrated various antioxidant capacities (DPPH, ABTS, FRAP and CAA values) and antiproliferative potentials measured by the MTT method. Rosa rugosa, Paeonia suffruticosa and Osmanthus fragrans exhibited the best antioxidant and antiproliferative potentials against HepG2, A549 and SGC-7901 cell lines, except that Osmanthus fragrans was not the best against SGC-7901 cells. The in vitro digestion-dialysis process decreased the antioxidant potential by 33.95-90.72% and the antiproliferative potential by 13.22-87.15%. Following the in vitro digestion-dialysis process, phenolics were probably responsible for antioxidant (R 2 = 0.794-0.924, P < 0.01) and antiproliferative (R 2 = 0.408-0.623, P < 0.05) potential. Moreover, gallic acid may be responsible for the antioxidant potential of seven flowers rich in edible flowers. The antioxidant and antiproliferative potential of 10 edible flowers revealed a clear decrease after digestion and dialysis along with the reduction of phenolics. Nevertheless, they still had considerable antioxidant and antiproliferative potential, which merited further investigation in in vivo studies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Assessment of the polyphenolic composition of the organic extracts of Mauritian black teas: a potential contributor to their antioxidant functions.

    PubMed

    Luximon-Ramma, Amitabye; Neergheen, Vidushi S; Bahorun, Theeshan; Crozier, Alan; Zbarsky, Virginia; Datla, Krishna P; Dexter, David T; Aruoma, Okezie I

    2006-01-01

    There is increasing interest in the emerging view that tea improves the antioxidant status in vivo and thereby helps to lower risk of certain types of cancer, coronary heart disease and stroke and its component biofactors could provide prophylactic potential for these diseases. The polyphenolic composition and the antioxidant properties of organic extracts (acetone/methanol) of Mauritian commercial black teas were evaluated. HPLC data of the individual compounds revealed remarkably high levels (+)-Catechin ((+)-C), (-)-epicatechin ((-)-EC), (-)-epicatechin 3-gallate ((-)-ECG), (-)-epigallocatechin ((-)-EGC), (-)-epigallocatechin 3-gallate ((-)-EGCG) and gallic acid. Analysis of hydrolysed extracts indicated that quercetin was the dominant flavonol aglycone with traces of myricetin and kaempferol. Based on the Ferric Reducing Antioxidant Power (FRAP) and the Trolox Equivalent Antioxidant Capacity (TEAC) assays Extra tea from Bois Chéri exhibited the highest antioxidant potential. Linear regression analyses showed that the antioxidant capacities of the organic extracts are strongly influenced by total phenols (TEAC: r=0.95 and FRAP: r=0.96) and to a lesser extent by total proanthocyanidin and total flavonoid contents. Catechins and gallic acid seem to add up to the overall antioxidant capacity of black tea extracts. The fresh tea leaves had high levels of total phenols, total flavonoids, total proanthocyanidin and exhibited greater antioxidant potential when compared with black teas. Organic extracts of endemic teas represent useful source of phenolic antioxidants supplements for prophylactic use.

  12. Characterization and cloning of laccase gene from Hericium coralloides NBRC 7716 suitable for production of epitheaflagallin 3-O-gallate.

    PubMed

    Itoh, Nobuya; Takagi, Shinya; Miki, Asami; Kurokawa, Junji

    2016-01-01

    Epitheaflagallin 3-O-gallate (ETFGg) is a minor polyphenol found in black tea extract, which has good physiological functions. It is synthesized from epigallocatechin gallate (EGCg) with gallic acid via laccase oxidation. Various basidiomycetes and fungi were screened to find a suitable laccase for the production of ETFGg. A basidiomycete, Hericium coralloides NBRC 7716, produced an appropriate extracellular laccase. The purified laccase produced twice the level of ETFGg compared with commercially available laccase from Trametes sp. The enzyme, termed Lcc2, is a monomeric protein with an apparent molecular mass of 67.2 kDa. The N-terminal amino acid sequence of Lcc2 is quite different from laccase isolated from the fruiting bodies of Hericium. Lcc2 showed similar substrate specificity to known laccases and could oxidize various phenolic substrates, including pyrogallol, gallic acid, and 2,6-dimethoxyphenol. The full-length lcc2 gene was obtained by PCR using degenerate primers, which were designed based on the N-terminal amino acid sequence of Lcc2 and conserved copper-binding sites of laccases, and 5'-, and 3'-RACE PCR with mRNA. The Lcc2 gene showed homology with Lentinula edodes laccase (sharing 77% amino acid identity with Lcc6). We successfully produced extracellular Lcc2 using a heterologous expression system with Saccharomyces cerevisiae. Moreover, it was confirmed that the recombinant laccase generates similar levels of ETFGg as the native enzyme. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Flexible graphene/carbon nanotube hybrid papers chemical-reduction-tailored by gallic acid for high-performance electrochemical capacitive energy storages

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Zhou, Chao; Hu, Nantao; Hu, Jing; Hong, Min; Zhang, Liying; Zhang, Yafei

    2018-03-01

    Mechanically robust graphene papers with both high gravimetric and volumetric capacitances are desired for high-performance energy storages. However, it's still a challenge to tailor the structure of graphene papers in order to meet this requirement. In this work, a kind of chemical-reduction-tailored mechanically-robust reduced graphene oxide/carbon nanotube hybrid paper has been reported for high-performance electrochemical capacitive energy storages. Gallic acid (GA), as an excellent reducing agent, was used to reduce graphene oxide. Through vacuum filtration of gallic acid reduced graphene oxide (GA-rGO) and carboxylic multiwalled carbon nanotubes (MWCNTs) aqueous suspensions, mechanically robust GA-rGO/MWCNTs hybrid papers were obtained. The resultant hybrid papers showed high gravimetric capacitance of 337.6 F g-1 (0.5 A g-1) and volumetric capacitance of 151.2 F cm-3 (0.25 A cm-3). In addition, the assembled symmetric device based on the hybrid papers exhibited high gravimetric capacitance of 291.6 F g-1 (0.5 A g-1) and volumetric capacitance of 136.6 F cm-3 (0.25 A cm-3). Meanwhile, it exhibited excellent rate capability and cycling stability. Above all, this chemical reduction tailoring technique and the resultant high-performance GA-rGO/MWCNTs hybrid papers give an insight for designing high-performance electrodes and hold a great potential in the field of energy storages.

  14. Flow injection chemiluminescence determination of the total phenolics levels in plant-derived beverages using soluble manganese(IV).

    PubMed

    Nalewajko-Sieliwoniuk, Edyta; Tarasewicz, Iwona; Kojło, Anatol

    2010-05-23

    This study established a flow injection (FI) methodology for the determination of the total phenolic content in plant-derived beverages based on soluble manganese(IV) chemiluminescence (CL) detection. It was found that mixing polyphenols with acidic soluble manganese(IV) in the presence of formaldehyde evoked chemiluminescence. Based on this finding, a new FI-CL method was developed for the estimation of the total content of phenolic compounds (expressed as milligrams of gallic acid equivalent per litre of drink) in a variety of wine, tea and fruit juice samples. The proposed method is sensitive with a detection limit of 0.02 ng mL(-1) (gallic acid), offers a wide linear dynamic range (0.5-400 ng mL(-1)) and high sample throughput (247 samples h(-1)). The relative standard deviation for 15 measurements was 3.8% for 2 ng mL(-1) and 0.45% for 10 ng mL(-1) of gallic acid. Analysis of 36 different samples showed that the results obtained by the proposed FI-CL method correlate highly with those obtained by spectrophotometric methods commonly used for the evaluation of the total phenolic/antioxidant level. However, the FI-CL method was found to be far simpler, more rapid and selective, with almost no interference from non-phenolic components of the samples examined. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Enhancement of periodate-hydrogen peroxide chemiluminescence by nitrogen doped carbon dots and its application for the determination of pyrogallol and gallic acid.

    PubMed

    Shah, Syed Niaz Ali; Li, Haifang; Lin, Jin-Ming

    2016-06-01

    A new sensitized chemiluminescence (CL) was developed to broaden the analytical application of KIO4-H2O2 system. The nitrogen doped carbon dots (N-CDs) dramatically boosted the CL intensity of KIO4-H2O2 system which was further enriched by basic medium. In light of EPR analysis, free radical scavenging studies and CL spectra the detail mechanism for the enhancement was conferred in the presence of N-CDs and NaOH. The results suggested that CL of KIO4-H2O2 system in the presence and absence of N-CDs and NaOH proceeds via radical pathway. The enhanced CL was used for the determination of pyrogallol and gallic acid in range of 1.0×10(-4)-1.0×10(-7)M with 4.6×10(-8) and 6.1×10(-8)M limit of detection respectively. The relative standard deviation (RSD) at a concentration of 10(-5) for gallic acid and pyrogallol was 1.4% and 2.3% respectively (n=11). The attained results unveil that the present method is sensitive, faster, simpler and less costly compared to other methods and could be applied to determine polyphenols in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Analysis of polyphenols in white wine by CZE with amperometric detection using carbon nanotube-modified electrodes.

    PubMed

    Moreno, Mónica; Arribas, Alberto Sánchez; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2011-04-01

    A method for the simultaneous detection of five polyphenols (caffeic, chlorogenic, ferulic and gallic acids and (+)-catechin) by CZE with electrochemical detection was developed. Separation of these polyphenols was performed in a 100 mM borate buffer (pH 9.2) within 15 min. Under optimized separation conditions, the performance of glassy carbon (GC) electrodes modified with multiwalled carbon nanotube layer obtained from different dispersions was examined. GC electrode modified with a dispersion of multi-walled carbon nanotubes (CNT) in polyethylenimine has proven to be the most suitable CNT-based electrode for its application as amperometric detector for the CZE separation of the studied compounds. The excellent electrochemical properties of this electrode allowed the detection of the selected polyphenols at +200 mV and improved the efficiency and the resolution of their CZE separation. Limits of detection below 3.1 μM were obtained with linear ranges covering the 10⁻⁵ to 10⁻⁴  M range. The proposed method has been successfully applied for the detection (ferulic, caffeic and gallic acids and (+)-catechin) and the quantification (gallic acid and (+)-catechin) of polyphenols in two different white wines without any preconcentration step. A remarkable signal stability was observed on the electrode performance despite the presence of potential fouling substances in wine. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo) Peels

    PubMed Central

    Pacheco-Ordaz, Ramón; González-Aguilar, Gustavo A.

    2018-01-01

    Mango (Mangifera indica cv. Ataulfo) peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA) and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5%) when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp) across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10−6 cm/s) than in the other fractions and similar to that obtained when tested pure (2.48 × 10−6 cm/s). In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry. PMID:29419800

  18. Membrane-Filtered Olive Mill Wastewater: Quality Assessment of the Dried Phenolic-Rich Fraction.

    PubMed

    Sedej, Ivana; Milczarek, Rebecca; Wang, Selina C; Sheng, Runqi; de Jesús Avena-Bustillos, Roberto; Dao, Lan; Takeoka, Gary

    2016-04-01

    A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also to extract and utilize valuable by-products. Therefore, the objectives of this study were to explore different techniques for drying a phenolic-rich membrane filtration fraction of OMWW and compare the techniques in terms of the dried product quality and feasibility of the process. The OMWW from 2 (3-phase and 2-phase) California mills was subjected to a 2-step membrane filtration process using a novel vibratory system. The reverse osmosis retentate (RO-R) is a phenolic-rich coproduct stream, and the reverse osmosis permeate is a near-pure water stream that could be recycled into the milling process. Spray-, freeze-, and infrared-drying were applied to obtain solid material from the RO-R. Drying of the RO-R was made possible only with addition of 10% maltodextrin as a carrier. The total soluble phenolics in dried RO-R were in the range 0.15 to 0.58 mg gallic acid equivalents/g of dry weight for 2-phase RO-R, and 1.38 to 2.17 mg gallic acid equivalents/g of dry weight for the 3-phase RO-R. Spray-dried RO-R from 3-phase OMWW showed remarkable antioxidant activity. Protocatechuic acid, tyrosol, vanillic acid, and p-coumaric acid were quantified in all dried RO-R, whereas 3-hydroxytyrosol was found in 3-phase dried RO-R. This combination of separation and drying technologies helps to add value and shelf-stability to an olive oil by-product and increase environmental sustainability of its production. © 2016 Institute of Food Technologists®

  19. A cost-effective assay for antioxidant using simple cotton thread combining paper based device with mobile phone detection.

    PubMed

    Sateanchok, Suphasinee; Wangkarn, Sunanta; Saenjum, Chalermpong; Grudpan, Kate

    2018-01-15

    A cost-effective assay for antioxidant using simple cotton thread combining paper based device with mobile phone detection has been investigated. Standard and sample solutions flow along a bunch of cotton thread treated with sodium hydroxide via microfluidic behaviors without external pumping. The analyte solution reacts with the reagents that have been immobilized on the paper strip fixed at the end of the cotton bunch. The developed platforms were used for the assays of total phenolic content and antioxidant capacity by employing Folin-Ciocalteu and 2, 2-diphenyl-1-picryhydrazyl (DPPH) respectively. Simple detection can be made by employing a mobile phone camera (iPhone 4S) with Image J or Photoshop for image processing and evaluation. Gallic acid was used as a reference standard in this work, as its polyphenol structures can be found in many plants. The total phenolic content is expressed as gallic acid equivalents (GAE) (mg/g material). Inhibition capacity is calculated by the equation: % I = [(I o - I s )/ I o ] × 100, where I s is the relative magenta intensity (CMYK mode) of sample, and I o the relative magenta intensity of DPPH•. IC 50 inhibition can be estimated from the graph and can be used for the antioxidant capacity consideration. Applications to the assay green tea samples were demonstrated. The total phenolic contents in the green tea samples were found to be 48-105mg/g, with %RSD of less than 10 for that of higher 50 GAE mg/g and IC 50 values of the samples studied were 25-50mg/L. The results obtained by the developed methods agree with that of the standard methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Mechanism of in situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core-shell magnetite nanoparticles.

    PubMed

    Tóth, Ildikó Y; Szekeres, Márta; Turcu, Rodica; Sáringer, Szilárd; Illés, Erzsébet; Nesztor, Dániel; Tombácz, Etelka

    2014-12-30

    Magnetite nanoparticles (MNPs) with biocompatible coatings are good candidates for MRI (magnetic resonance imaging) contrasting, magnetic hyperthermia treatments, and drug delivery systems. The spontaneous surface induced polymerization of dissolved organic matter on environmental mineral particles inspired us to prepare carboxylated core-shell MNPs by using a ubiquitous polyphenolic precursor. Through the adsorption and in situ surface polymerization of gallic acid (GA), a polygallate (PGA) coating is formed on the nanoparticles (PGA@MNP) with possible antioxidant capacity. The present work explores the mechanism of polymerization with the help of potentiometric acid-base titration, dynamic light scattering (for particle size and zeta potential determination), UV-vis (UV-visible light spectroscopy), FTIR-ATR (Fourier-transformed infrared spectroscopy by attenuated total reflection), and XPS (X-ray photoelectron spectroscopy) techniques. We observed the formation of ester and ether linkages between gallate monomers both in solution and in the adsorbed state. Higher polymers were formed in the course of several weeks both on the surface of nanoparticles and in the dispersion medium. The ratio of the absorbances of PGA supernatants at 400 and 600 nm (i.e., the E4/E6 ratio commonly used to characterize the degree of polymerization of humic materials) was determined to be 4.3, similar to that of humic acids. Combined XPS, dynamic light scattering, and FTIR-ATR results revealed that, prior to polymerization, the GA monomers became oxidized to poly(carboxylic acid)s due to ring opening while Fe(3+) ions reduced to Fe(2+). Our published results on the colloidal and chemical stability of PGA@MNPs are referenced thoroughly in the present work. Detailed studies on biocompatibility, antioxidant property, and biomedical applicability of the particles will be published.

  1. Biomimetic growth of gallic acid-ZnO hybrid assemblies and their applications

    NASA Astrophysics Data System (ADS)

    Sarker, Nazmul H.; Barnaby, Stacey N.; Fath, Karl R.; Frayne, Stephen H.; Nakatsuka, Nako; Banerjee, Ipsita A.

    2012-03-01

    In this study, we probed the biomimetic formation of gallic acid (GA)-ZnO nanoparticle hybrids. It was found that the morphologies formed were dependent upon pH values, resulting in GA-ZnO hybrids of varying shapes such as micro or nanoplates or fibers. The formed supramolecular GA-ZnO hybrids were found to be luminescent as indicated by confocal microscopy and were utilized for the photocatalytic degradation of the organic dye methylene blue. We also explored the bactericidal effects of the hybrids on Staphylococcus aureus ( S. aureus) as well as Escherichia Coli ( E. Coli). Thus, we have developed a new class of shape-controlled nanohybrid assemblies via mild, green synthetic methods that may be utilized for photocatalytic degradation for environmental remediation as well as for antibacterial applications.

  2. Pomegranate extract exhibits in vitro activity against Clostridium difficile.

    PubMed

    Finegold, Sydney M; Summanen, Paula H; Corbett, Karen; Downes, Julia; Henning, Susanne M; Li, Zhaoping

    2014-10-01

    To determine the possible utility of pomegranate extract in the management or prevention of Clostridium difficile infections or colonization. The activity of pomegranate was tested against 29 clinical C. difficile isolates using the Clinical and Laboratory Standards Institute-approved agar dilution technique. Total phenolics content of the pomegranate extract was determined by Folin-Ciocalteau colorimetric method and final concentrations of 6.25 to 400 μg/mL gallic acid equivalent were achieved in the agar. All strains had MICs at 12.5 to 25 mg/mL gallic acid equivalent range. Our results suggest antimicrobial in vitro activity for pomegranate extract against toxigenic C. difficile. Pomegranate extract may be a useful contributor to the management and prevention of C. difficile disease or colonization. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. [Comparative study of chemical composition of pomegranate peel pomegranates inside and pomegranate seeds].

    PubMed

    Zhou, Qian; Sun, Li-Li; Dai, Yan-Peng; Wang, Liang; Su, Ben-Zheng

    2013-07-01

    An HPLC fingerprint of pomegranate peel was established. Using chromatographic conditions, we compared the chemical composition of pomegranate peel, inside and seeds, and simultaneously determined the contents of gallic acid and ellagic acid. By comparison, we found that there were no significant differences between pomegranate peel and inside, but there was a big difference between pomegranate seeds and another two. The contents of gallic acid and ellagic acid of pomegranate peel respectively were 0.33%, 0.59%, while in pomegranate inside the result respectively were 0.52%, 0.38%. Content of ellagic acid from pomegranate seeds was only 0.01%. By study, we thought that when pomegranate peel was processed, pomegranate seeds should be removed, while pomegranate inside could be retained on the premise of full drying.

  4. Nutritional and functional characterization of barley flaxseed based functional dry soup mix.

    PubMed

    Kaur, Sumeet; Das, Madhusweta

    2015-09-01

    Barley flaxseed based functional dry soup mix (BFSM) was developed from whole barely flour (46.296%), roasted flaxseed powder (23.148%) and the seasoning (30.555%) comprising several flavoring compounds and anticaking agent, using simple processing technique. Developed BFSM was nutritious. On dry matter basis it contained: protein (14.31%), carbohydrate excluding crude fiber (54.70%), fat (8.70%), ash (17.45%) and crude fiber (4.84%). It was low glycemic soup, free of antinutritional risk and had calorific value of 319.77 kcal/100 g (wet or sample basis, sb) estimated from its composition. 100 g (sb) of BFSM contained 4.36 g β-glucans and 8.08 g total lipid of which 25.6% was ω-3 fatty acids. Different extracts of BFSM revealed the presence of total phenols (0.57-1.86 mg gallic acid equivalent/g, sb) with antioxidants equivalence of DPPH (20.69-39.07%) and FRAP (120-331 μm Fe (II)/g, sb).

  5. Covalent functionalization of single-walled carbon nanotubes with polytyrosine: Characterization and analytical applications for the sensitive quantification of polyphenols.

    PubMed

    Eguílaz, Marcos; Gutiérrez, Alejandro; Gutierrez, Fabiana; González-Domínguez, Jose Miguel; Ansón-Casaos, Alejandro; Hernández-Ferrer, Javier; Ferreyra, Nancy F; Martínez, María T; Rivas, Gustavo

    2016-02-25

    This work reports the synthesis and characterization of single-walled carbon nanotubes (SWCNT) covalently functionalized with polytyrosine (Polytyr); the critical analysis of the experimental conditions to obtain the efficient dispersion of the modified carbon nanotubes; and the analytical performance of glassy carbon electrodes (GCE) modified with the dispersion (GCE/SWCNT-Polytyr) for the highly sensitive quantification of polyphenols. Under the optimal conditions, the calibration plot for the amperometric response of gallic acid (GA) shows a linear range between 5.0 × 10(-7) and 1.7 × 10(-4) M, with a sensitivity of (518 ± 5) m AM(-1) cm(-2), and a detection limit of 8.8 nM. The proposed sensor was successfully used for the determination of total polyphenolic content in tea extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Bioactivity-guided isolation of anticancer agents from Bauhinia kockiana Korth.

    PubMed

    Chew, Yik Ling; Lim, Yau Yan; Stanslas, Johnson; Ee, Gwendoline Cheng Lian; Goh, Joo Kheng

    2014-01-01

    Flowers of Bauhinia kockiana were investigated for their anticancer properties. Gallic acid (1), and methyl gallate (2), were isolated via bioassay-directed isolation, and they exhibited anticancer properties towards several cancer cell lines, examined using MTT cell viability assay. Pyrogallol (3) was examined against the same cancer cell lines to deduce the bioactive functional group of the phenolic compounds. The results showed that the phenolic compounds could exhibit moderate to weak cytotoxicity towards certain cell lines (GI50 30 - 86 µM), but were inactive towards DU145 prostate cancer cell (GI50 > 100 µM). It was observed that pyrogallol moiety was one of the essential functional structures of the phenolic compounds in exhibiting anticancer activity. Also, the carboxyl group of compound 1 was also important in anticancer activity. Examination of the PC-3 cells treated with compound 1 using fluorescence microscopy showed that PC-3 cells were killed by apoptosis.

  7. Chemometrics-enhanced high performance liquid chromatography-diode array detection strategy for simultaneous determination of eight co-eluted compounds in ten kinds of Chinese teas using second-order calibration method based on alternating trilinear decomposition algorithm.

    PubMed

    Yin, Xiao-Li; Wu, Hai-Long; Gu, Hui-Wen; Zhang, Xiao-Hua; Sun, Yan-Mei; Hu, Yong; Liu, Lu; Rong, Qi-Ming; Yu, Ru-Qin

    2014-10-17

    In this work, an attractive chemometrics-enhanced high performance liquid chromatography-diode array detection (HPLC-DAD) strategy was proposed for simultaneous and fast determination of eight co-eluted compounds including gallic acid, caffeine and six catechins in ten kinds of Chinese teas by using second-order calibration method based on alternating trilinear decomposition (ATLD) algorithm. This new strategy proved to be a useful tool for handling the co-eluted peaks, uncalibrated interferences and baseline drifts existing in the process of chromatographic separation, which benefited from the "second-order advantages", making the determination of gallic acid, caffeine and six catechins in tea infusions within 8 min under a simple mobile phase condition. The average recoveries of the analytes on two selected tea samples ranged from 91.7 to 103.1% with standard deviations (SD) ranged from 1.9 to 11.9%. Figures of merit including sensitivity (SEN), selectivity (SEL), root-mean-square error of prediction (RMSEP) and limit of detection (LOD) have been calculated to validate the accuracy of the proposed method. To further confirm the reliability of the method, a multiple reaction monitoring (MRM) method based on LC-MS/MS was employed for comparison and the obtained results of both methods were consistent with each other. Furthermore, as a universal strategy, this new proposed analytical method was applied for the determination of gallic acid, caffeine and catechins in several other kinds of Chinese teas, including different levels and varieties. Finally, based on the quantitative results, principal component analysis (PCA) was used to conduct a cluster analysis for these Chinese teas. The green tea, Oolong tea and Pu-erh raw tea samples were classified successfully. All results demonstrated that the proposed method is accurate, sensitive, fast, universal and ideal for the rapid, routine analysis and discrimination of gallic acid, caffeine and catechins in Chinese tea samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Antioxidant and Nephroprotective Activities of the Extract and Fractions of Homonoia riparia Lour.

    PubMed

    Xavier, Seena Kanniparambil; Haneefa, Shoja Muhammed; Anand, Devkar Raviraj; Polo, Picheswara Rao; Maheshwari, Rajalekshmi; Shreedhara, Chandrashekara Shastry; Setty, Manganahalli Manjunath

    2017-01-01

    Homonoia riparia is a plant, which is widely used in the indigenous system of medicine for the treatment of urolithiasis, renal disorders and inflammatory conditions. This is the first report on the antioxidant and nephroprotective activities of whole plant of H. riparia . The present study aims at investigating the in vitro antioxidant and nephroprotective activity of the methanol extract and its different fractions of H. riparia . Petroleum ether (HRPE), Ethyl acetate (HREA), Butanol (HRBU), aqueous fractions (HRAQ) were prepared from the crude methanol extract of H. riparia (HRM) using liquid partitioning. Total phenolic content, flavonoid content and antioxidant activity assay were performed according to suitable methods. Nephroprotective activities were evaluated by MTT assay using Human Embryonic Kidney cells against cisplatin induced toxicity. Quantification of gallic acid was performed using validated HPTLC method. The studies showed that extract and fractions possess significant nephroprotective activity against cisplatin induced renal toxicity. All the extracts/fractions of whole plant of Homonoia riparia was found to be significantly reducing cisplatin induced toxicity (< 0.05). The highest activity was observed with HRBU and HRAQ with a percentage viability of 293.09 ± 4.3 and 345.07 ± 3.2 at a concentration of 200 µg/ml. Gallic acid was detected in the HRM/fractions using HPTLC. Cisplatin (8 μg/ml) exhibited 50 % inhibition in cell viability in HEK 293 cellsButanol and aqueous fractions of Homonoia riparia showed significant nephroprotective activity against cisplatin induced cell damage in HEK cells.Gallic acid was detected and quantified in the extract and fractions of whole plant of Homonoia riparia Abbreviations used: HPTLC: High Performance Thin Layer Chromatography, DPPH: 1,1-diphenyl-2-picrylhydrazyl, ABTS: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, MTT: 3-(4,5-dimethylthiazolyl-2-yl)-2,5- diphenyl tetrazolium bromide, GAE: Gallic acid equivalents, QE: Quercetin equivalents, HEK: Human Embryonic Kidney, HRM: Methanol extract of H. riparia, HRPE: Petroleum ether fraction of H. riparia, HREA: ethyl acetate fraction of H. riparia, HRBU: Butanol fraction of H. riparia, HRAQ: Aqueous fraction of H. riparia, DMEM: Dulbecco's minimum essential medium, FBS: Foetal bovine serum, DMSO: Dimethyl sulfoxide, ANOVA: One way analysis of variance.

  9. Protection capacity against low-density lipoprotein oxidation and antioxidant potential of some organic and non-organic wines.

    PubMed

    Kalkan Yildirim, Hatice; Delen Akçay, Yasemin; Güvenç, Ulgar; Yildirim Sözmen, Eser

    2004-08-01

    Current research suggests that phenolics from wine may play a positive role against oxidation of low-density lipoprotein (LDL), which is a key step in the development of atherosclerosis. Considering the effects of different wine-making techniques on phenols and the wine consumption preference influencing the benefical effects of the product, organically and non-organically produced wines were obtained from the grapes of Vitis vinifera origin var: Carignan, Cabernet Sauvignon, Merlot, Grenache, Columbard and Semillon. Levels of total phenols [mg/l gallic acid equivalents (GAE)], antioxidant activity (%) and inhibition of LDL oxidation [%, inhibition of diene and malondialdehyde (MDA) formation] were determined. Some phenolic acids (gallic acid, p-hydroxybenzoic acid, syringic acid, 2,3-dihydroxybenzoic acid, ferulic acid, p-coumaric acid and vanillic acid) were quantified by high-performance liquid chromatography equipped with an electrochemical detection carried at +0.65 V (versus Ag/AgCl, 0.5 microA full scale). The highest concentrations of gallic, syringic and ferulic acids were found in organic Cabernet Sauvignon; 2,3-dihydroxybenzoic acid in organic Carignan and p-coumaric and vanillic acids in non-organic Merlot wine. High levels of antioxidant activity (AOA), inhibition of LDL oxidation and total phenol levels were found in non-organic Merlot (101.950% AOA; 88.570% LDL-diene; 41.000% LDL-MDA; 4700.000 mg/l GAE total phenol) and non-organic Cabernet Sauvignon (92.420% AOA; 91.430% LDL-diene; 67.000% LDL-MDA; 3500.000 mg/l GAE total phenol) grape varieties. Concentrations of some individual phenolic constituents (ferulic, p-coumaric, vanillic) are correlated with high antioxidant activity and inhibition of LDL oxidation. The best r value for all examined characteristics was determined for gallic acid, followed by 2,3-dihydroxybenzoic, syringic, ferulic and p-coumaric acids. Negative correlation of vanillic with MDA and p-hydroxybenzoic acid with LDL were confirmed by principal component analysis (PCA) analyses. Red wines display a higher antioxidant activity (81.110% AOA) than white ones (19.512% AOA). The average level of LDL inhibition capacity in red wine was determined as 87.072% and for the white as 54.867%.

  10. High performance thin layer chromatography fingerprint analysis of guava (Psidium guajava) leaves

    NASA Astrophysics Data System (ADS)

    Astuti, M.; Darusman, L. K.; Rafi, M.

    2017-05-01

    High-performance thin layer chromatography (HPTLC) fingerprint analysis is commonly used for quality control of medicinal plants in term of identification and authentication. In this study, we have been developed HPTLC fingerprint analysis for identification of guava (Psidium guajava) leaves raw material. A mixture of chloroform, acetone, and formic acid in the ratio 10:2:1 was used as the optimum mobile phase in HPTLC silica plate and with 13 bands were detected. As reference marker we chose gallic acid (Rf = 0.21) and catechin (Rf = 0.11). The two compound were detected as pale black bands at 366 nm after derivatization with sulfuric acid 10% v/v (in methanol) reagent. Validation of the method was met within validation criteria, so the developed method could be used for quality control of guava leaves.

  11. GATG dendrimers and PEGylated block copolymers: from synthesis to bioapplications.

    PubMed

    Sousa-Herves, Ana; Novoa-Carballal, Ramon; Riguera, Ricardo; Fernandez-Megia, Eduardo

    2014-09-01

    Dendrimers are synthetic macromolecules composed of repetitive layers of branching units that emerge from a central core. They are characterized by a tunable size and precise number of peripheral groups which determine their physicochemical properties and function. Their high multivalency, functional surface, and globular architecture with diameters in the nanometer scale makes them ideal candidates for a wide range of applications. Gallic acid-triethylene glycol (GATG) dendrimers have attracted our attention as a promising platform in the biomedical field because of their high tunability and versatility. The presence of terminal azides in GATG dendrimers and poly(ethylene glycol) (PEG)-dendritic block copolymers allows their efficient functionalization with a variety of ligands of biomedical relevance including anionic and cationic groups, carbohydrates, peptides, or imaging agents. The resulting functionalized dendrimers have found application in drug and gene delivery, as antiviral agents and for the treatment of neurodegenerative diseases, in diagnosis and as tools to study multivalent carbohydrate recognition and dendrimer dynamics. Herein, we present an account on the preparation and recent applications of GATG dendrimers in these fields.

  12. Effect of microwave drying and oven drying on the water activity, color, phenolic compounds content and antioxidant activity of coconut husk (Cocos nucifera L.).

    PubMed

    Valadez-Carmona, Lourdes; Cortez-García, Rosa María; Plazola-Jacinto, Carla Patricia; Necoechea-Mondragón, Hugo; Ortiz-Moreno, Alicia

    2016-09-01

    The coconut ( Cocos nucifera L.) husk is basically composed by fiber and pith material and remained under-utilized. This is an important source of phenolic compounds that could be used as functional ingredients. The aim of this study was to determine the effect of: oven-drying (OD) and microwave drying (MD), on the water activity, color, phenolic compound content and antioxidant activity of coconut husk. The OD was performed at 60 °C for 12 h and MD was performed at 900 W for 10 min. The total phenolic content (TPC) in fresh coconut husk was 64.2 mg GAE/g dry wt and significant higher than observed after OD and MD of 35.8 and 45.5 mg GAE/g dry wt, respectively. Ten phenols were identified in fresh and dehydrated coconut husks. The husk MD showed an increase in the content of gallic, 4-hydroxybenzoic, ferulic and syringic acids and epicatechin compared with the fresh; while coconut husk OD and MD, showed a decrease in the content of vanillic acid, vanillin, catequin and kaempferol. The antioxidant activity decreased after both OD and MD. However, MD resulted in a better antioxidant activity in husk than OD. MD of husk resulted into better retention of preserved color, TPC and TFC than OD.

  13. Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats.

    PubMed

    Gondi, Mahendranath; Prasada Rao, U J S

    2015-12-01

    Peel is a major by-product during processing of mango fruit into pulp. Recent report indicates that the whole peel powder ameliorated diabetes. In the present study, ethanolic extract of mango peel was analysed for its bioactive compounds, evaluated for α-amylase and α-glucosidase inhibitory properties, oral glucose tolerance test, antioxidant properties, plasma insulin level and biochemical parameters related to diabetes. In addition to gallic and protocatechuic acids, the extract also had chlorogenic and ferulic acids, which were not reported earlier in mango peel extracts. The peel extract inhibited α-amylase and α-glucosidase activities, with IC50 values of 4.0 and 3.5 μg/ml. Ethanolic extract of peel showed better glucose utilization in oral glucose tolerance test. Treatment of streptozotocin-induced diabetic rats with the extract decreased fasting blood glucose, fructosamine and glycated hemoglobin levels, and increased plasma insulin level. Peel extract treatment decreased malondialdehyde level, but increased the activities of antioxidant enzymes significantly in liver and kidney compared to diabetic rats. These beneficial effects were comparable to metformin, but better than gallic acid treated diabetic rats. The beneficial effects of peel extract may be through different mechanism like increased plasma insulin levels, decreased oxidative stress and inhibition of carbohydrate hydrolyzing enzyme activities by its bioactive compounds. Thus, results suggest that the peel extract can be a potential source of nutraceutical or can be used in functional foods and this is the first report on antidiabetic properties of mango peel extract.

  14. Tryptamine-Gallic Acid Hybrid Prevents Non-steroidal Anti-inflammatory Drug-induced Gastropathy

    PubMed Central

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd. Shameel; Sarkar, Souvik; Kumar, Rahul; Halder, Kamal Krishna; Debnath, Mita Chatterjee; Adhikari, Susanta; Bandyopadhyay, Uday

    2012-01-01

    We have investigated the gastroprotective effect of SEGA (3a), a newly synthesized tryptamine-gallic acid hybrid molecule against non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy with mechanistic details. SEGA (3a) prevents indomethacin (NSAID)-induced mitochondrial oxidative stress (MOS) and dysfunctions in gastric mucosal cells, which play a pathogenic role in inducing gastropathy. SEGA (3a) offers this mitoprotective effect by scavenging of mitochondrial superoxide anion (O2˙̄) and intramitochondrial free iron released as a result of MOS. SEGA (3a) in vivo blocks indomethacin-mediated MOS, as is evident from the inhibition of indomethacin-induced mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. SEGA (3a) corrects indomethacin-mediated mitochondrial dysfunction in vivo by restoring defective electron transport chain function, collapse of transmembrane potential, and loss of dehydrogenase activity. SEGA (3a) not only corrects mitochondrial dysfunction but also inhibits the activation of the mitochondrial pathway of apoptosis by indomethacin. SEGA (3a) inhibits indomethacin-induced down-regulation of bcl-2 and up-regulation of bax genes in gastric mucosa. SEGA (3a) also inhibits indometacin-induced activation of caspase-9 and caspase-3 in gastric mucosa. Besides the gastroprotective effect against NSAID, SEGA (3a) also expedites the healing of already damaged gastric mucosa. Radiolabeled (99mTc-labeled SEGA (3a)) tracer studies confirm that SEGA (3a) enters into mitochondria of gastric mucosal cell in vivo, and it is quite stable in serum. Thus, SEGA (3a) bears an immense potential to be a novel gastroprotective agent against NSAID-induced gastropathy. PMID:22157011

  15. Portable ceria nanoparticle-based assay for rapid detection of food antioxidants (NanoCerac)

    PubMed Central

    Sharpe, Erica; Frasco, Thalia; Andreescu, Daniel; Andreescu, Silvana

    2012-01-01

    With increased awareness of nutrition and the advocacy for healthier food choices, there exists a great demand for a simple, easy-to-use test that can reliably measure the antioxidant capacity of dietary products. We report development and characterization of a portable nanoparticle based-assay, similar to a small sensor patch, for rapid and sensitive detection of food antioxidants. The assay is based on the use of immobilized ceria nanoparticles, which change color after interaction with antioxidants by means of redox and surface chemistry reactions. Monitoring corresponding optical changes enables sensitive detection of antioxidants in which the nanoceria provides an optical ‘signature’ of antioxidant power, while the antioxidants act as reducing agents. The sensor has been tested for the detection of common antioxidant compounds including ascorbic acid, gallic acid, vanilic acid, quercetin, caffeic acid, and epigallocatechin gallate and its function has been successfully applied for the assessment of antioxidant activity in real samples (teas and medicinal mushrooms). The colorimetric response was concentration dependent, with detection limits ranging from 20–400 μM depending on the antioxidant involved. Steady-state color intensity was achieved within seconds upon addition of antioxidants. The results are presented in terms of Gallic Acid Equivalents (GAE). The sensor performed favorably when compared with commonly used antioxidant detection methods. This assay is particularly appealing for remote sensing applications, where specialized equipment is not available, and also for high throughput analysis of a large number of samples. Potential applications for antioxidant detection in remote locations are envisioned. PMID:23139929

  16. Effects of aluminum oxide (Al2O3) nanoparticles on ECG, myocardial inflammatory cytokines, redox state, and connexin 43 and lipid profile in rats: possible cardioprotective effect of gallic acid.

    PubMed

    El-Hussainy, El-Hussainy M A; Hussein, Abdelaziz M; Abdel-Aziz, Azza; El-Mehasseb, Ibrahim

    2016-08-01

    The objectives of present study were to examine the effects of aluminum oxide (Al2O3) nanoparticles on myocardial functions, electrical activities, morphology, inflammation, redox state, and myocardial expression of connexin 43 (Cx43) and the effect of gallic acid (GA) on these effects in a rat animal model. Forty male albino rats were divided into 4 equal groups: the control (normal) group; the Al2O3 group, rats received Al2O3 (30 mg·kg(-1), i.p.) daily for 14 days; the nano-alumina group, rats received nano-alumina (30 mg·kg(-1), i.p.) daily for 14 days; and the nano-alumina + GA group, rats received GA (100 mg·kg(-1) orally once daily) for 14 days before nano-alumina administration. The results showed disturbed ECG variables and significant increases in serum levels of LDH, creatine phosphokinase (CPK), CK-MB, triglycerides (TGs), cholesterol and LDL, nitric oxide (NO), and TNF-α and myocardial concentrations of NO, TNF-α, and malondialdehyde (MDA), with significant decreases in serum HDL and myocardial GSH, SOD, catalase (CAT), and Cx43 expression in the nano-alumina group. Pretreatment with GA improved significantly all parameters except serum and myocardial NO. We concluded that chronic administration of Al2O3 NPs caused myocardial dysfunctions, and pretreatment with GA ameliorates myocardial injury induced by nano-alumina, probably through its hypolipidaemic, anti-inflammatory, and antioxidant effects and upregulation of Cx43 in heart.

  17. Docking analysis of gallic acid derivatives as HIV-1 protease inhibitors.

    PubMed

    Singh, Anjali; Pal, Tapan Kumar

    2015-01-01

    HIV-1 Protease (HIV-1 PR) enzymes are essential for accurate assembly and maturation of infectious HIV retroviruses. The significant role of HIV-1 protease in viral replication has made it a potential drug target. In the recent past, phytochemical Gallic Acid (GA) derivatives have been screened for protease inhibitor activity. The present work aims to design and evaluate potential GA-based HIV-1 PR phytoinhibitors by docking approach. The ligands were prepared by ChemDraw and docking was performed in HEX software. In this present study, one of the GA analogues (GA4) emerged as a potent drug candidate for HIV-1 PR inhibition, and docking results showed it to be comparable with anti-HIV drugs, darunavir and amprenavir. The GA4 derivative provided a lead for designing more effective HIV-1 PR inhibitors.

  18. Green technology approach towards herbal extraction method

    NASA Astrophysics Data System (ADS)

    Mutalib, Tengku Nur Atiqah Tengku Ab; Hamzah, Zainab; Hashim, Othman; Mat, Hishamudin Che

    2015-05-01

    The aim of present study was to compare maceration method of selected herbs using green and non-green solvents. Water and d-limonene are a type of green solvents while non-green solvents are chloroform and ethanol. The selected herbs were Clinacanthus nutans leaf and stem, Orthosiphon stamineus leaf and stem, Sesbania grandiflora leaf, Pluchea indica leaf, Morinda citrifolia leaf and Citrus hystrix leaf. The extracts were compared with the determination of total phenolic content. Total phenols were analyzed using a spectrophotometric technique, based on Follin-ciocalteau reagent. Gallic acid was used as standard compound and the total phenols were expressed as mg/g gallic acid equivalent (GAE). The most suitable and effective solvent is water which produced highest total phenol contents compared to other solvents. Among the selected herbs, Orthosiphon stamineus leaves contain high total phenols at 9.087mg/g.

  19. Anti-tumour potential of a gallic acid-containing phenolic fraction from Oenothera biennis.

    PubMed

    Pellegrina, Chiara Dalla; Padovani, Giorgia; Mainente, Federica; Zoccatelli, Gianni; Bissoli, Gaetano; Mosconi, Silvia; Veneri, Gianluca; Peruffo, Angelo; Andrighetto, Giancarlo; Rizzi, Corrado; Chignola, Roberto

    2005-08-08

    A phenolic fraction purified form defatted seeds of Oenothera biennis promoted selective apoptosis of human and mouse bone marrow-derived cell lines following first-order kinetics through a caspase-dependent pathway. In non-leukemia tumour cell lines, such as human colon carcinoma CaCo(2) cells and mouse fibrosarcoma WEHI164 cells, this fraction inhibited (3)H-thymidine incorporation but not cell death or cell cycle arrest. Human peripheral blood mononuclear cells showed low sensitivity to treatment. Single bolus injection of the phenolic fraction could delay the growth of established myeloma tumours in syngeneic animals. HPLC and mass spectrometry analysis revealed that the fraction contains gallic acid. However, the biological activity of the fraction differs from the activity of this phenol and hence it should be attributed to other co-purified molecules which remain still unidentified.

  20. [Determination of total tannins in the roots, branches, leaves and pericarps of Juglans mandshurica].

    PubMed

    Wang, Tianmin; Sun, Xiaoli; Peng, Xue; Zhai, Yanjun; Chu, Zhengyun; Zhang, Hui; Kang, Tingguo; Chen, Hubiao

    2011-01-01

    The roots, barks, branches and pericarps of Juglans mandshurica were used as folk medicine in China and reputed for its treatment of several cancers, such as gastric cancer, liver cancer and leukemia. The extracts of the roots, branches, leaves and pericarps of J. mandshurica have been experimentally proved to show anti-tumor activities. Tannins, which exhibited antioxidant and anti-tumor activities, were the main constituents in J. mandshurica. In this paper, a simple spectrophotometric method was developed for the determination of total tannins in the roots, branches, leaves and pericarps of J. mandshurica collected in Dalian and Anshan of Liaoning Province. Gallic acid was used as standard compound and the content of total tannins was calculated as gallic acid equivalent. As a result of the method validation, a good linearity (r = 0.9997, n = 5) and a high recovery of gallic acid (99.02%, RSD 3.7%, n = 9) was achieved. Eight samples including four parts of J. mandshurica collected in two places were analyzed for their total tannins with the established method. In the corresponding parts of J. mandshurica, except the pericarps, the contents of total tannins showed no significant difference between samples collected in Dalian and Anshan, while the content of total tannins in different parts of J. mandshurica were significantly different. The average content of total tannins in the roots, branches, leaves and pericarps of samples collected in Dalian and Anshan was 45.66, 23.40, 58.24, 3.58 mg g(-1), respectively.

  1. Fungal pretreatment of sweet sorghum bagasse with supplements: improvement in lignin degradation, selectivity and enzymatic saccharification.

    PubMed

    Mishra, Vartika; Jana, Asim K; Jana, Mithu Maiti; Gupta, Antriksh

    2017-06-01

    Sweet sorghum bagasse (SSB) from food processing and agricultural industry has attracted the attention for uses in production of biofuel, enzymes and other products. The alteration in lignocellulolytic enzymes by use of supplements in fungal pretreatment of SSB to achieve higher lignin degradation, selectivity value and enzymatic hydrolysis to fermentable sugar was studied. Fungal strain Coriolus versicolor was selected for pretreatment due to high ligninolytic and low cellulolytic enzyme production resulting in high lignin degradation and selectivity value. SSB was pretreated with supplements of veratryl alcohol, syringic acid, catechol, gallic acid, vanillin, guaiacol, CuSO 4 and MnSO 4 . The best results were obtained with CuSO 4 , gallic acid and syringic acid supplements. CuSO 4 increased the activities of laccase (4.9-fold) and polyphenol oxidase (1.9-fold); gallic acid increased laccase (3.5-fold) and manganese peroxidase (2.5-fold); and syringic acid increased laccase (5.6-fold), lignin peroxidase (13-fold) and arylalcohol oxidase (2.8-fold) resulting in enhanced lignin degradations and selectivity values than the control. Reduced cellulolytic enzyme activities resulted in high cellulose recovery. Enzymatic hydrolysis of pretreated SSB yielded higher sugar due to degradation of lignin and reduced the crystallinity of cellulose. The study showed that supplements could be used to improve the pretreatment process. The results were confirmed by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric/differential thermogravimetric analysis of SSB.

  2. Fungal Pretreatment of Sweet Sorghum Bagasse with Combined CuSO4-Gallic Acid Supplement for Improvement in Lignin Degradation, Selectivity, and Enzymatic Saccharification.

    PubMed

    Mishra, Vartika; Jana, Asim K

    2017-09-01

    Sweet sorghum (Sorghum sp.) has high biomass yield. Hydrolysis of lignocellulosic sweet sorghum bagasse (SSB) to fermentable sugar could be useful for manufacture of biofuel or other fermentation products. Pretreatment of lignocellulosic biomass to degrade lignin before enzymatic hydrolysis is a key step. Fungal pretreatment of SSB with combined CuSO 4 -gallic acid supplements in solid-state fermentation (SSF) to achieve higher lignin degradation, selectivity value (SV), and enzymatic hydrolysis to sugar was studied. Coriolus versicolor was selected due to high activities of ligninolytic enzymes laccase, lignin peroxidase (LiP), manganese peroxidase (MnP), polyphenol oxidase (PPO), and arylalcohol oxidase (AAO) and low activities of cellulolytic enzymes CMCase, FPase, and β-glucosidase with high lignin degradation and SV in 20 days. CuSO 4 /gallic acid increased the activities of ligninolytic enzymes resulting in enhanced lignin degradations and SVs. Cumulative/synergistic effect of combined supplements further increased the activities of laccase, LiP, MnP, PPO, and AAO by 7.6, 14.6, 2.67, 2.06, and 2.15-folds, respectively (than control), resulting in highest lignin degradation 31.1 ± 1.4% w/w (1.56-fold) and SV 2.33 (3.58-fold). Enzymatic hydrolysis of pretreated SSB yielded higher (~2.2 times) fermentable sugar. The study showed combined supplements can improve fungal pretreatment of lignocellulosic biomass. XRD, SEM, FTIR, and TGA/DTG of SSB confirmed the results.

  3. Simultaneous Determination of Gallic Acid, Ellagic Acid, and Eugenol in Syzygium aromaticum and Verification of Chemical Antagonistic Effect by the Combination with Curcuma aromatica Using Regression Analysis

    PubMed Central

    Seo, Chang-Seob; Kim, Seong-Sil; Ha, Hyekyung

    2013-01-01

    This study was designed to perform simultaneous determination of three reference compounds in Syzygium aromaticum (SA), gallic acid, ellagic acid, and eugenol, and to investigate the chemical antagonistic effect when combining Curcuma aromatica (CA) with SA, based on chromatographic analysis. The values of LODs and LOQs were 0.01–0.11 μg/mL and 0.03–0.36 μg/mL, respectively. The intraday and interday precisions were <3.0 of RSD values, and the recovery was in the range of 92.19–103.24%, with RSD values <3.0%. Repeatability and stability were 0.38–0.73% and 0.49–2.24%, respectively. Compared with the content of reference and relative peaks in SA and SA combined with CA (SAC), the amounts of gallic acid and eugenol were increased, while that of ellagic acid was decreased in SAC (compared with SA), and most of peak areas in SA were reduced in SAC. Regression analysis of the relative peak areas between SA and SAC showed r 2 values >0.87, indicating a linear relationship between SA and SAC. These results demonstrate that the components contained in CA could affect the extraction of components of SA mainly in a decreasing manner. The antagonistic effect of CA on SA was verified by chemical analysis. PMID:23878761

  4. Stability of Pycnogenol® as an ingredient in fruit juices subjected to in vitro gastrointestinal digestion.

    PubMed

    Frontela, Carmen; Ros, Gaspar; Martínez, Carmen; Sánchez-Siles, Luis M; Canali, Raffaella; Virgili, Fabio

    2011-01-30

    The enrichment of fruit juices with concentrated polyphenolic extracts is an expedient strategy to compensate possible phenolic loss through gastrointestinal processing. Pycnogenol, a standardised procyanidin-rich extract from pine bark, has been proposed as a potential candidate for polyphenol enrichment of foods. In this study the effects of in vitro digestion on the phenolic profile of fruit juices enriched with Pycnogenol were investigated. After in vitro digestion the level of detectable total phenolic compounds (expressed as gallic acid equivalent) was higher in both pineapple and red fruit juices enriched with Pycnogenol than in non-enriched commercial juices. Five phenolic monomeric compounds were identified by high-performance liquid chromatography, namely chlorogenic acid, caffeic acid, ferulic acid, gallic acid and taxifolin, the last two being predominant. In vitro digestion of both Pycnogenol-enriched pineapple and red fruit juices led to a significant (P < 0.05) increase in detectable chlorogenic and ferulic acids, indicating that hydrolysis of more complex molecules occurs. On the other hand, in vitro digestion of non-enriched juices was associated with a decrease in gallic and caffeic acids in pineapple juice and with a decrease in ferulic acid in red fruit juice. In no case did in vitro digestion increase the amount of detectable phenolic compounds in non-enriched juices. The stability of Pycnogenol after in vitro gastrointestinal digestion makes it a good choice for phenolic enrichment of fruit juices. 2010 Society of Chemical Industry.

  5. Comparison of Antioxidant Evaluation Assays for Investigating Antioxidative Activity of Gallic Acid and Its Alkyl Esters in Different Food Matrices.

    PubMed

    Phonsatta, Natthaporn; Deetae, Pawinee; Luangpituksa, Pairoj; Grajeda-Iglesias, Claudia; Figueroa-Espinoza, Maria Cruz; Le Comte, Jérôme; Villeneuve, Pierre; Decker, Eric A; Visessanguan, Wonnop; Panya, Atikorn

    2017-08-30

    The addition of antioxidants is one of the strategies to inhibit lipid oxidation, a major cause of lipid deterioration in foods leading to rancidity development and nutritional losses. However, several studies have been reported that conventional antioxidant assays, e.g., TPC, ABTS, FRAP, and ORAC could not predict antioxidant performance in several foods. This study aimed to investigate the performance of two recently developed assays, e.g., the conjugated autoxidizable triene (CAT) and the apolar radical-initiated conjugated autoxidizable triene (ApoCAT) assays to predict the antioxidant effectiveness of gallic acid and its esters in selected food models in comparison with the conventional antioxidant assays. The results indicated that the polarities of the antioxidants have a strong impact on antioxidant activities. In addition, different oxidant locations demonstrated by the CAT and ApoCAT assays influenced the overall antioxidant performances of the antioxidants with different polarities. To validate the predictability of the assays, the antioxidative performance of gallic acid and its alkyl esters was investigated in oil-in-water (O/W) emulsions, bulk soybean oils, and roasted peanuts as the lipid food models. The results showed that only the ApoCAT assay could be able to predict the antioxidative performances in O/W emulsions regardless of the antioxidant polarities. This study demonstrated that the relevance of antioxidant assays to food models was strongly dependent on physical similarities between the tested assays and the food structure matrices.

  6. MICROWAVE-ASSISTED EXTRACTION OF PHENOLIC COMPOUNDS FROM POLYGONUM MULTIFLORUM THUNB. ROOTS.

    PubMed

    Quoc, Le Pham Tan; Muoi, Nguyen Van

    2016-01-01

    The aim of this study was to determine the best extraction conditions for total phenolic content (TPC) and antioxidant capacity (AC) of Polygonum multiflorum Thunb. root using microwave-assisted extraction (MAE). The raw material used was Polygonum multiflorum Thunb. root powder. Five factors such as solvent type, solvent concentrations, solvent/material ratio, extraction time and microwave power were studied; TPC and AC values were determined by the Folin-Ciocalteu method and DPPH free radical scavenging activity measurement, respectively. In addition, studies involved assaying the HPLC test of extracts and SEM of samples. Optimal results pointed to acetone as the solvent, acetone concentration of 60%, solvent/material ratio of 40/1 (v/w), extraction time of 5 mins and microwave power of 127 W. TPC and AC obtained were approximates 44.3 ±0.13 mg GAE/g DW and 341.26 ±1.54 μmol TE/g DW, respectively. The effect of microwaving on the cell destruction of Polygonum multiflorum Thunb. root was observed by scanning electron microscopy (SEM). Some phenolic compounds were determined by the HPLC method, for instance, gallic acid, catechin and resveratrol. These factors significantly affected TPC and AC. We can use acetone as a solvent with microwave-assisted extraction to achieve the best result.

  7. Polyphenol content and antioxidant properties of colored soybean seeds from central Europe.

    PubMed

    Malenčić, Djordje; Cvejić, Jelena; Miladinović, Jegor

    2012-01-01

    The antioxidant activity and contents of various polyphenol classes in the seeds of seven soybean varieties of different seed color and one yellow seed cultivar, representing a reference genotype, were evaluated. Total polyphenols and tannins were determined after extraction of plant material with 70% aqueous acetone, and total flavonoids were extracted with methanol and acetic acid, whereas anthocyanins were extracted with 20% aqueous ethanol. In addition, isoflavone content and composition were determined using high-performance liquid chromatography analysis. Antioxidant activity of seed extracts was evaluated by the 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity assay. A positive linear correlation between antioxidant activity and contents of total polyphenols and anthocyanins was established. The highest antioxidant activity was observed in the extracts of black and brown varieties, which also showed high levels of all polyphenol classes examined. Yellow seed had the highest total isoflavone content (3.62 mg/g of dry material). The highest concentration of total daidzein was determined in black seeds (>2.0 mg/g of dry material), and the highest total glycitein and genistein contents occurred in the yellow cultivar (0.53 and 1.49 mg/g of dry material, respectively). According to our results, varieties of black and brown seeds could be of special interest not only for their large content of total polyphenols, ranging from 4.94 to 6.22 mg of gallic acid equivalents/g of dry material, but also for their high content of natural antioxidants such as anthocyanins.

  8. [Polyphenol compounds from Hamamelis virginiana L].

    PubMed

    Kostálová, D; Misíková, E; Gáborová, G

    2001-01-01

    Two phenolic acids and two flavone aglycones were isolated from the aboveground part of Hamamelis virginiana L. and identified with the use of thin-layer chromatography, melting points, and spectroscopic methods as gallic acid, ethyl gallate, quercetin, and kaempferol.

  9. Improved Quantification of Free and Ester-Bound Gallic Acid in Foods and Beverages by UHPLC-MS/MS.

    PubMed

    Newsome, Andrew G; Li, Yongchao; van Breemen, Richard B

    2016-02-17

    Hydrolyzable tannins are measured routinely during the characterization of food and beverage samples. Most methods for the determination of hydrolyzable tannins use hydrolysis or methanolysis to convert complex tannins to small molecules (gallic acid, methyl gallate, and ellagic acid) for quantification by HPLC-UV. Often unrecognized, analytical limitations and variability inherent in these approaches for the measurement of hydrolyzable tannins include the variable mass fraction (0-0.90) that is released as analyte, contributions of sources other than tannins to hydrolyzable gallate (can exceed >10 wt %/wt), the measurement of both free and total analyte, and lack of controls to account for degradation. An accurate, specific, sensitive, and higher-throughput approach for the determination of hydrolyzable gallate based on ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) that overcomes these limitations was developed.

  10. Graphene Oxide-Gallic Acid Nanodelivery System for Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Dorniani, Dena; Saifullah, Bullo; Barahuie, Farahnaz; Arulselvan, Palanisamy; Hussein, Mohd Zobir Bin; Fakurazi, Sharida; Twyman, Lance J.

    2016-11-01

    Despite the technological advancement in the biomedical science, cancer remains a life-threatening disease. In this study, we designed an anticancer nanodelivery system using graphene oxide (GO) as nanocarrier for an active anticancer agent gallic acid (GA). The successful formation nanocomposite (GOGA) was characterized using XRD, FTIR, HRTEM, Raman, and UV/Vis spectroscopy. The release study shows that the release of GA from the designed anticancer nanocomposite (GOGA) occurs in a sustained manner in phosphate-buffered saline (PBS) solution at pH 7.4. In in vitro biological studies, normal fibroblast (3T3) and liver cancer cells (HepG2) were treated with different concentrations of GO, GOGA, and GA for 72 h. The GOGA nanocomposite showed the inhibitory effect to cancer cell growth without affecting normal cell growth. The results of this research are highly encouraging to go further for in vivo studies.

  11. Evaluation of antioxidant activity and characterization of phenolic constituents of Phyllanthus amarus root.

    PubMed

    Maity, Soumya; Chatterjee, Suchandra; Variyar, Prasad Shekhar; Sharma, Arun; Adhikari, Soumyakanti; Mazumder, Santasree

    2013-04-10

    The antioxidant property of the 70% aqueous ethanol extract of Phyllanthus amarus roots and its ether-soluble, ethyl acetate-soluble, and aqueous fractions were investigated by various in vitro assays. The root extracts showed higher DPPH, hydroxyl, superoxide, and nitric oxide radical scavenging and reducing power activity. Among all the samples, the ethyl acetate-soluble fraction demonstrated highest radical scavenging activity and total phenolics content. Twenty-eight different phenolic compounds were identified by LCMS/MS analysis of the ethyl acetate-soluble fraction. The majority of the compounds were found to exist as their glycosides, and many of these were gallic acid derivatives. Free epicatechin and gallic acid were also identified in the ethyl acetate-soluble fraction. The present investigation suggested that P. amarus root is a potent antioxidant and can be used for the prevention of diseases related to oxidative stress.

  12. Dye ingredients and energy conversion efficiency at natural dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Özbay Karakuş, Mücella; Koca, İrfan; Er, Orhan; Çetin, Hidayet

    2017-04-01

    In this work, natural dyes extracted from the same genus but different species flowers were used as sensitizer in Dye Sensitized Solar Cell (DSSC). To clearly show dye ingredients effect on electrical characteristics, the same genus flowers were selected. The dye ingredients were analyzed by Gas Chromatography Mass Spectrometer (GC-MS). The dyes were modified by a procedure that includes refluxing in acetone. All results indicate a relationship between gallic acid quantity in dyes and solar cell efficiency. To gain further insight, the solar cell parameters were obtained by using the single-diode and double-diode models and they were compared to each other. It was observed that the applied process causes a decrease in series resistance. How the modification process and gallic acid affect energy conversion efficiency were argued in detail in the frame of results that were obtained from solar cell models.

  13. Phenolic constituents of shea (Vitellaria paradoxa) kernels.

    PubMed

    Maranz, Steven; Wiesman, Zeev; Garti, Nissim

    2003-10-08

    Analysis of the phenolic constituents of shea (Vitellaria paradoxa) kernels by LC-MS revealed eight catechin compounds-gallic acid, catechin, epicatechin, epicatechin gallate, gallocatechin, epigallocatechin, gallocatechin gallate, and epigallocatechin gallate-as well as quercetin and trans-cinnamic acid. The mean kernel content of the eight catechin compounds was 4000 ppm (0.4% of kernel dry weight), with a 2100-9500 ppm range. Comparison of the profiles of the six major catechins from 40 Vitellaria provenances from 10 African countries showed that the relative proportions of these compounds varied from region to region. Gallic acid was the major phenolic compound, comprising an average of 27% of the measured total phenols and exceeding 70% in some populations. Colorimetric analysis (101 samples) of total polyphenols extracted from shea butter into hexane gave an average of 97 ppm, with the values for different provenances varying between 62 and 135 ppm of total polyphenols.

  14. Comparative study of the antioxidant capacity and polyphenol content of Douro wines by chemical and electrochemical methods.

    PubMed

    Rebelo, M J; Rego, R; Ferreira, M; Oliveira, M C

    2013-11-01

    A comparative study of the antioxidant capacity and polyphenols content of Douro wines by chemical (ABTS and Folin-Ciocalteau) and electrochemical methods (cyclic voltammetry and differential pulse voltammetry) was performed. A non-linear correlation between cyclic voltammetric results and ABTS or Folin-Ciocalteau data was obtained if all types of wines (white, muscatel, ruby, tawny and red wines) are grouped together in the same correlation plot. In contrast, a very good linear correlation was observed between the electrochemical antioxidant capacity determined by differential pulse voltammetry and the radical scavenging activity of ABTS. It was also found that the antioxidant capacity of wines evaluated by the electrochemical methods (expressed as gallic acid equivalents) depend on background electrolyte of the gallic acid standards, type of electrochemical signal (current or charge) and electrochemical technique. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Resolving Identification Issues of Saraca asoca from Its Adulterant and Commercial Samples Using Phytochemical Markers

    PubMed Central

    Hegde, Satisha; Hegde, Harsha Vasudev; Jalalpure, Sunil Satyappa; Peram, Malleswara Rao; Pai, Sandeep Ramachandra; Roy, Subarna

    2017-01-01

    Saraca asoca (Roxb.) De Wilde (Ashoka) is a highly valued endangered medicinal tree species from Western Ghats of India. Besides treating cardiac and circulatory problems, S. asoca provides immense relief in gynecological disorders. Higher price and demand, in contrast to the smaller population size of the plant, have motivated adulteration with other plants such as Polyalthia longifolia (Sonnerat) Thwaites. The fundamental concerns in quality control of S. asoca arise due to its part of medicinal value (Bark) and the chemical composition. Phytochemical fingerprinting with proper selection of analytical markers is a promising method in addressing quality control issues. In the present study, high-performance liquid chromatography of phenolic compounds (gallic acid, catechin, and epicatechin) coupled to multivariate analysis was used. Five samples each of S. asoca, P. longifolia from two localities alongside five commercial market samples showed evidence of adulteration. Subsequently, multivariate hierarchical cluster analysis and principal component analysis was established to discriminate the adulterants of S. asoca. The proposed method ascertains identification of S. asoca from its putative adulterant P. longifolia and commercial market samples. The data generated may also serve as baseline data to form a quality standard for pharmacopoeias. SUMMARY Simultaneous quantification of gallic acid, catechin, epicatechin from Saraca asoca by high-performance liquid chromatographyDetection of S. asoca from adulterant and commercial samplesUse of analytical method along with a statistical tool for addressing quality issues. Abbreviations used: HPLC: High Performance Liquid Chromatography; RP-HPLC: Reverse Phase High Performance Liquid Chromatography; CAT: Catechin; EPI: Epicatechin; GA: Gallic acid; PCA: Principal Component Analysis. PMID:28808391

  16. Crystal structure of tannase from Lactobacillus plantarum.

    PubMed

    Ren, Bin; Wu, Mingbo; Wang, Qin; Peng, Xiaohong; Wen, Hua; McKinstry, William J; Chen, Qianming

    2013-08-09

    Tannins are water-soluble polyphenolic compounds in plants. Hydrolyzable tannins are derivatives of gallic acid (3,4,5-trihydroxybenzoic acid) or its meta-depsidic forms that are esterified to polyol, catechin, or triterpenoid units. Tannases are a family of esterases that catalyze the hydrolysis of the galloyl ester bond in hydrolyzable tannins to release gallic acid. The enzymes have found wide applications in food, feed, beverage, pharmaceutical, and chemical industries since their discovery more than a century ago, although little is known about them at the molecular level, including the details of the catalytic and substrate binding sites. Here, we report the first three-dimensional structure of a tannase from Lactobacillus plantarum. The enzyme displays an α/β structure, featured by a large cap domain inserted into the classical serine hydrolase fold. A catalytic triad was identified in the structure, which is composed of Ser163, His451, and Asp419. During the binding of gallic acid, the carboxyl group of the molecule forges hydrogen-bonding interactions with the catalytic triad of the enzyme while the three hydroxyl groups make contacts with Asp421, Lys343, and Glu357 to form another hydrogen-bonding network. Mutagenesis studies demonstrated that these residues are indispensable for the activity of the enzyme. Structural studies of the enzyme in complex with a number of substrates indicated that the interactions at the galloyl binding site are the determinant force for the binding of substrates. The single galloyl binding site is responsible for the esterase and depsidase activities of the enzyme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Role of gallic and p-coumaric acids in the AHL-dependent expression of flgA gene and in the process of biofilm formation in food-associated Pseudomonas fluorescens KM120.

    PubMed

    Myszka, Kamila; Schmidt, Marcin T; Białas, Wojciech; Olkowicz, Mariola; Leja, Katarzyna; Czaczyk, Katarzyna

    2016-09-01

    In the process of Pseudomonas fluorescens biofilm formation, N-acyl-l-homoserine lactone (AHL)-mediated flagella synthesis plays a key role. Inhibition of AHL production may attenuate P. fluorescens biofilm on solid surfaces. This work validated the anti-biofilm properties of p-coumaric and gallic acids via the ability of phenolics to suppress AHL synthesis in P. fluorescens KM120. The dependence between synthesis of AHL molecules, expression of flagella gene (flgA) and the ability of biofilm formation by P. fluorescens KM120 on a stainless steel surface (type 304L) was also investigated. Research was carried out in a purpose-built flow cell device. Limitations on AHL synthesis in P. fluorescens KM120 were observed at concentrations of 120 and 240 µmol L(-1) of phenolic acids in medium. At such levels of gallic and p-coumaric acids the ability of P. fluorescens KM120 to synthesize 3-oxo-C6-homoserine lactone (HSL) was not observed. These concentrations caused decreased expression of flgA gene in P. fluorescens KM120. The changes in expression of AHL-dependent flgA gene significantly decreased the rate of microorganism colonization on the stainless steel surface. Phenolic acids are able to inhibit biofilm formation. The results obtained in the work may help to develop alternative techniques for anti-biofilm treatment in the food industry. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. Preparation and characterization of iron oxide magnetic nanoparticles functionalized by nisin.

    PubMed

    Gruskiene, Ruta; Krivorotova, Tatjana; Staneviciene, Ramune; Ratautas, Dalius; Serviene, Elena; Sereikaite, Jolanta

    2018-05-08

    Nisin is a known bacteriocin approved as a food additive for food preservation. It exhibits a wide spectrum antimicrobial activity against Gram-positive bacteria. Iron oxide magnetic nanoparticles were synthesized and characterized by X-ray diffraction method. A main part of iron oxide nanoparticles was found to be maghemite though a small quantity of magnetite could also be present. Magnetic nanoparticles were stabilized by citric, ascorbic, gallic or glucuronic acid coating. Stable iron oxide magnetic nanoparticles were functionalized by nisin using a simple and low cost adsorption method. Nisin loading was confirmed by FT-IR spectra, thermogravimetric analysis, dynamic light scattering and atomic force microscopy methods. Nisin-loaded iron oxide magnetic nanoparticles were stable at least six weeks as judged by the measurements of zeta-potential and hydrodynamic diameter. The antimicrobial activity of nisin-loaded iron oxide magnetic nanoparticles was demonstrated toward Gram-positive bacteria. Functionalized nanoparticles could therefore find the application as antimicrobials in innovative and emerging technologies based on the magnetic field. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Immunomodulatory Activity of Oenothein B Isolated from Epilobium angustifolium1

    PubMed Central

    Schepetkin, Igor A.; Kirpotina, Liliya N.; Jakiw, Larissa; Khlebnikov, Andrei I.; Blaskovich, Christie L.; Jutila, Mark A.; Quinn, Mark T.

    2009-01-01

    Epilobium angustifolium has been traditionally used to treat of a number of diseases; however, not much is known regarding its effect on innate immune cells. Here, we report that extracts of E. angustifolium activated functional responses in neutrophils and monocyte/macrophages. Activity-guided fractionation, followed by mass spectroscopy and NMR analysis, resulted in the identification of oenothein B as the primary component responsible for phagocyte activation. Oenothein B, a dimeric hydrolysable tannin, dose-dependently induced a number of phagocyte functions in vitro, including intracellular Ca2+ flux, production of reactive oxygen species (ROS), chemotaxis, nuclear factor (NF)-κB activation, and proinflammatory cytokine production. Furthermore, oenothein B was active in vivo, inducing keratinocyte chemoattractant (KC) production and neutrophil recruitment to the peritoneum after intraperitoneal administration. Biological activity required the full oenothein B structure, as substructures of oenothein B (pyrocatechol, gallic acid, pyrogallol, 3,4-dihydroxybenzoic acid) were all inactive. The ability of oenothein B to modulate phagocyte functions in vitro and in vivo suggests that this compound is responsible for at least part of the therapeutic properties of E. angustifolium extracts. PMID:19846877

  20. Quality of black beans as a function of long-term storage and moldy development: Chemical and functional properties of flour and isolated protein.

    PubMed

    Ferreira, Cristiano Dietrich; Ziegler, Valmor; Lindemann, Igor da Silva; Hoffmann, Jessica Fernanda; Vanier, Nathan Levien; Oliveira, Maurício de

    2018-04-25

    The aim of this study was to evaluate the effects of moisture content and storage temperature on the percentage of moldy and fermented beans, mycotoxins levels, phenolic acids content, pasting properties of whole flour, as well as functional and thermal properties of protein isolates from black beans stored for 12 months. Beans stored under 14%/32 °C exhibited 16% of fermented grains, while at 17%/25 °C (42.3%) and 17%/32 °C (93.5%) of moldy plus fermented grains, named drastic conditions (DC). Mycotoxins were not present in grains from all storage conditions. Reduction of gallic, caffeic, and p-hydroxybenzoic acid contents, and increase of sinapic acid were observed in DC. Reduction of peak, final, and setback viscosities of bean flours in DC indicate the application in refrigerated and frozen products. The increase in foaming and reduction in foam degradation of the proteins highlights their use in beverages where the foam is an important factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Fabrication of an electrochemical sensor based on computationally designed molecularly imprinted polymer for the determination of mesalamine in real samples.

    PubMed

    Torkashvand, M; Gholivand, M B; Taherkhani, F

    2015-10-01

    A novel electrochemical sensor based on mesalamine molecularly imprinted polymer (MIP) film on a glassy carbon electrode was fabricated. Density functional theory (DFT) in gas and solution phases was developed to study the intermolecular interactions in the pre-polymerization mixture and to find the suitable functional monomers in MIP preparation. On the basis of computational results, o-phenylenediamine (OP), gallic acid (GA) and p-aminobenzoic acid (ABA) were selected as functional monomers. The MIP film was cast on glassy carbon electrode by electropolymerization of solution containing ternary monomers and then followed by Ag dendrites (AgDs) with nanobranch deposition. The surface feature of the modified electrode (AgDs/MIP/GCE) was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Under the optimal experimental conditions, the peak current was proportional to the concentration of mesalamine ranging from 0.05 to 100 μM, with the detection limit of 0.015 μM. The proposed sensor was applied successfully for mesalamine determination in real samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Proanthocyanidin Characterization, Antioxidant and Cytotoxic Activities of Three Plants Commonly Used in Traditional Medicine in Costa Rica: Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd.

    PubMed Central

    Navarro, Mirtha; Moreira, Ileana; Arnaez, Elizabeth; Quesada, Silvia; Azofeifa, Gabriela; Alvarado, Diego; Monagas, Maria J.

    2017-01-01

    The phenolic composition of aerial parts from Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd., species commonly used in Costa Rica as traditional medicines, was studied using UPLC-ESI-TQ-MS on enriched-phenolic extracts. Comparatively, higher values of total phenolic content (TPC), as measured by the Folin-Ciocalteau method, were observed for P. niruri extracts (328.8 gallic acid equivalents/g) than for S. reticulata (79.30 gallic acid equivalents/g) whereas P. alliaceae extract showed the lowest value (13.45 gallic acid equivalents/g). A total of 20 phenolic acids and proanthocyanidins were identified in the extracts, including hydroxybenzoic acids (benzoic, 4-hydroxybenzoic, gallic, prochatechuic, salicylic, syringic and vanillic acids); hydroxycinnamic acids (caffeic, ferulic, and p-coumaric acids); and flavan-3-ols monomers [(+)-catechin and (−)-epicatechin)]. Regarding proanthocyanidin oligomers, five procyanidin dimers (B1, B2, B3, B4, and B5) and one trimer (T2) are reported for the first time in P. niruri, as well as two propelargonidin dimers in S. reticulata. Additionally, P. niruri showed the highest antioxidant DPPH and ORAC values (IC50 of 6.4 μg/mL and 6.5 mmol TE/g respectively), followed by S. reticulata (IC50 of 72.9 μg/mL and 2.68 mmol TE/g respectively) and P. alliaceae extract (IC50 >1000 μg/mL and 1.32 mmol TE/g respectively). Finally, cytotoxicity and selectivity on gastric AGS and colon SW20 adenocarcinoma cell lines were evaluated and the best values were also found for P. niruri (SI = 2.8), followed by S. reticulata (SI = 2.5). Therefore, these results suggest that extracts containing higher proanthocyanidin content also show higher bioactivities. Significant positive correlation was found between TPC and ORAC (R2 = 0.996) as well as between phenolic content as measured by UPLC-DAD and ORAC (R2 = 0.990). These findings show evidence for the first time of the diversity of phenolic acids in P. alliaceae and S. reticulata, and the presence of proanthocyanidins as minor components in latter species. Of particular relevance is the occurrence of proanthocyanidin oligomers in phenolic extracts from P. niruri and their potential bioactivity. PMID:29048336

  3. Tryptamine-gallic acid hybrid prevents non-steroidal anti-inflammatory drug-induced gastropathy: correction of mitochondrial dysfunction and inhibition of apoptosis in gastric mucosal cells.

    PubMed

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd Shameel; Sarkar, Souvik; Kumar, Rahul; Halder, Kamal Krishna; Debnath, Mita Chatterjee; Adhikari, Susanta; Bandyopadhyay, Uday

    2012-01-27

    We have investigated the gastroprotective effect of SEGA (3a), a newly synthesized tryptamine-gallic acid hybrid molecule against non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy with mechanistic details. SEGA (3a) prevents indomethacin (NSAID)-induced mitochondrial oxidative stress (MOS) and dysfunctions in gastric mucosal cells, which play a pathogenic role in inducing gastropathy. SEGA (3a) offers this mitoprotective effect by scavenging of mitochondrial superoxide anion (O(2)(·-)) and intramitochondrial free iron released as a result of MOS. SEGA (3a) in vivo blocks indomethacin-mediated MOS, as is evident from the inhibition of indomethacin-induced mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. SEGA (3a) corrects indomethacin-mediated mitochondrial dysfunction in vivo by restoring defective electron transport chain function, collapse of transmembrane potential, and loss of dehydrogenase activity. SEGA (3a) not only corrects mitochondrial dysfunction but also inhibits the activation of the mitochondrial pathway of apoptosis by indomethacin. SEGA (3a) inhibits indomethacin-induced down-regulation of bcl-2 and up-regulation of bax genes in gastric mucosa. SEGA (3a) also inhibits indometacin-induced activation of caspase-9 and caspase-3 in gastric mucosa. Besides the gastroprotective effect against NSAID, SEGA (3a) also expedites the healing of already damaged gastric mucosa. Radiolabeled ((99m)Tc-labeled SEGA (3a)) tracer studies confirm that SEGA (3a) enters into mitochondria of gastric mucosal cell in vivo, and it is quite stable in serum. Thus, SEGA (3a) bears an immense potential to be a novel gastroprotective agent against NSAID-induced gastropathy.

  4. Plantain peel - a potential source of antioxidant dietary fibre for developing functional cookies.

    PubMed

    Arun, K B; Persia, Florence; Aswathy, P S; Chandran, Janu; Sajeev, M S; Jayamurthy, P; Nisha, P

    2015-10-01

    Plantain cultivar Nendran is popular as a staple food in many parts of India and deep fried chips made from raw matured Nendran are one of the popular snack items in India. This study aims to utilize peel from Nendran variety- the main byproduct of banana chips industry- to develop high fibre cookies with enhanced bioactive content. Proximate analysis indicated that peels are rich in total dietary fibre (64.33 g/100 g), vitamins (Folic acid- 33.12 mg/100 g) and minerals (Potassium- 35.61 mg/100 g). Nendran Peel Flour (NPF) was extracted with hexane, ethyl acetate and methanol. Phenolic and flavonoid content was high for ethyl acetate extract (15.21 and 9.39 mg QE/g dry weight). Methanol extract was more potent in reducing Copper ion (2.36 μM TR/g dry weight) and scavenging NO (IC50-381.71 μg/mL). Ethyl acetate extract was capable of scavenging DPPH and hydroxyl radical. HPLC profiling showed presence of gallic acid, protocatechuic acid, rutin hydrate and quercetin in ethyl acetate extract and gallic acid, chlorogenic acid and vanillic acid in methanol extract. Cookies prepared with NPF possess higher total dietary fibre content. There was a decrease in spread ratio, breaking strength and browning index of cookies as the percentage of NPF increased. NPF incorporation gradually increased the phenolic content from 4.36 to 5.28 mg GAE, compared to control cookie (3.21 mg GAE). DPPH scavenging activity also increased with increase in NPF. Hence NPF is a very good source of antioxidant dietary fibre and acceptable cookies can be produced by replacing wheat flour with 10 % NPF.

  5. In vitro antioxidant activity of different cultivars of banana flower (Musa paradicicus L.) extracts available in India.

    PubMed

    China, Ratna; Dutta, Sanjukta; Sen, Sauradip; Chakrabarti, Rajarshi; Bhowmik, Debajit; Ghosh, Santinath; Dhar, Pubali

    2011-01-01

    Six different cultivars of banana flowers (Musa paradicicus) (Kathali, Bichi, Shingapuri, Kacha, Champa, and Kalabou) were analyzed for the content of polyphenol expressed as gallic acid equivalent and flavonoid expressed as quercetein equivalent, and the in vitro total antioxidative activities of the flower extracts were compared with standard and expressed as trolox equivalent. The reducing power, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•(+)) scavenging activities, inhibition of lipid peroxidation in a linoleic acid emulsion system, and liposome peroxidation system were measured and compared with respective standard antioxidants. Iron-mediated Fenton reaction was carried out to evaluate the protective effect of the extract of banana flower (Kacha cultivar) against H(2)O(2)-induced DNA damage. The Kacha variety contains the maximum amount of polyphenol (11.94 ± 0.03 mg of gallic acid equivalent/g of dry weight) and flavonoid (0.174 ± 0.001 g of quercetin equivalent/g of polyphenol). It also has the highest total antioxidant capacity, DPPH radical scavenging activity, and ABTS•(+) radical scavenging activity with a least EC(50) value of 0.051 mg/mL. Hepatic cell damage in iron-mediated Fenton reaction caused by free radicals is reduced by the banana flower extract. On the basis of the results obtained, the banana flowers are found to be a potential source of natural antioxidants. This is the first report on the antioxidant properties of the extracts from banana flowers. The study suggests that the flowers of M. paradicicus that are found in India and consumed as vegetable can provide valuable functional ingredients that help in the prevention of oxidative stress. © 2011 Institute of Food Technologists®

  6. Antiproliferative and Antioxidant Activities of Two Extracts of the Plant Species Euphorbia dendroides L.

    PubMed

    Ghout, Agena; Zellagui, Amar; Gherraf, Noureddine; Demirtas, Ibrahim; Ayse Sahin, Yaglioglu; Boukhenaf, Meriem; Lahouel, Mesbah; Nieto, Gema; Akkal, Salah

    2018-04-20

    Background: These days, the desire for naturally occurring antioxidants has significantly increased, especially for use in foodstuffs, cosmetics, and pharmaceutical products, to replace synthetic antioxidants that are regularly constrained due to their carcinogenicity. Methods : The study in hand aimed to appraise the antioxidant effect of two Euphorbia dendroides extracts using reducing power, anti-peroxidation, and DPPH (1,1 Diphenyl 2 Pycril Hydrazil) scavenging essays, in addition to the anticancer activity against two tumor cell lines, namely C6 (rat brain tumor)cells, and Hela (human uterus carcinoma)cell lines. Results : The results indicated that the ethyl acetate extract exhibited antiradical activity of 29.49%, higher than that of n -butanol extract (18.06%) at 100 µg/mL but much lower than that of gallic acid (78.21%).The ethyl acetate extract exhibits better reducing capacity and lipid peroxidation inhibitory activity compared to n -butanol extract but less than all tested standards. Moreover, the ethyl acetate extract was found to have an antiproliferative activity of more than 5-FU (5-fluoro-Uracil) against C6 cells at 250 µg/mL with IC 50 and IC 75 of 113.97, 119.49 µg/mL, respectively, and good cytotoxic activity against the Hela cell lines at the same concentration. The HPLC-TOF-MS (high performance liquid chromatography-Time-of-flight-Mass Spectrometry) analyses exposed the presence of various compounds, among which Gallic and Chlorogenic acids functioned as major compounds. Conclusions : The two extracts exhibited moderate anticancer abilities and behaved somewhat as average antioxidant agents. Based on the total phenolics and flavonoids contents, as well as HPLC results, it could be concluded that antiproliferative and antioxidant activities depend upon the content of different phenolics and flavonoids.

  7. Impacts of low-molecular-weight organic acids on aquatic behavior of graphene nanoplatelets and their induced algal toxicity and antioxidant capacity.

    PubMed

    Wang, Zhuang; Gao, Yucheng; Wang, Se; Fang, Hao; Xu, Defu; Zhang, Fan

    2016-06-01

    Knowledge of the interaction between graphene-based materials and low-molecular-weight organic acids (LOAs) is essential to understand fate and effects of graphene-based materials in the aquatic environment, but this interaction remains poorly elucidated. In this study, the effects of LOAs on the physicochemical properties of graphene nanoplatelets (GNPs) in an aqueous medium and on the GNP toxicity to algae were studied. The unicellular green alga Scenedesmus obliquus was exposed to GNP suspensions in the presence of benzoic acid or gallic acid at various concentrations. The GNPs had smaller hydrodynamic sizes and the GNP suspensions were more stable and had higher or lower surface zeta potentials in the presence of LOAs than when LOAs were not present. The toxic effects in S. obliquus cultures incubated with GNP suspensions containing LOAs were related to the LOA concentration, and the presence of LOAs caused three effects: stimulation, alleviation, and synergistic inhibition. The intensities of the effects mainly correlated with the LOA concentration, the extent of agglomeration, and particle-induced oxidative stress. The results indicate that the environmental fates and toxicities of GNPs are strongly affected by the binding of GNPs to LOAs.

  8. Inhibitory effect of leaves extracts of Ocimum basilicum and Ocimum gratissimum on two key enzymes involved in obesity and hypertension in vitro

    PubMed Central

    Irondi, Emmanuel Anyachukwu; Agboola, Samson Olalekan; Oboh, Ganiyu; Boligon, Aline Augusti

    2016-01-01

    Aim: To evaluate the phenolics composition and inhibitory effect of the leaves extracts of Ocimum basilicum and Ocimum gratissimum on two key enzymes (pancreatic lipase [PL] and angiotensin 1-converting enzyme [ACE]) involved in obesity and hypertension in vitro. Materials and Methods: The phenolics (flavonoids and phenolic acids) were quantified using high-performance liquid chromatography coupled with diode array detection. PL and ACE inhibitory effects; DPPH* and ABTS*+ scavenging activities of the extracts were tested using spectrophotometric methods. Results: O. basilicum had the following major phenolics: Rutin, quercetin, and quercitrin (flavonoids); caffeic, chlorogenic, and gallic acids (phenolic acids); while O. gratissimum had the following major phenolics: Rutin, quercitrin, and luteolin (flavonoids); ellagic and chlorogenic acids (phenolic acids). “Extracts of both plants inhibited PL and ACE; scavenged DPPH* in a dose-dependent manner”. O. gratissimum extract was more potent in inhibiting PL (IC50: 20.69 µg/mL) and ACE (IC50: 29.44 µg/mL) than O. basilicum (IC50: 52.14 µg/mL and IC50: 64.99 µg/mL, against PL and ACE, respectively). O. gratissimum also scavenged DPPH* and ABTS*+ more than O. basilicum. Conclusion: O. basilicum and O. gratissimum leaves could be used as functional foods for the management of obesity and obesity-related hypertension. However, O. gratissimum may be more effective than O. basilicum. PMID:27757270

  9. Polyphenolic profile as a useful tool to identify the wood used in wine aging.

    PubMed

    Sanz, Miriam; Fernández de Simón, Brígida; Cadahía, Estrella; Esteruelas, Enrique; Muñoz, Angel Ma; Hernández, Ma Teresa; Estrella, Isabel

    2012-06-30

    Although oak wood is the main material used in cooperage, other species are being considered as possible sources of wood for the production of wines and their derived products. In this work we have compared the phenolic composition of acacia (Robinia pseudoacacia), chestnut (Castanea sativa), cherry (Prunus avium) and ash (Fraxinus excelsior and F. americana) heartwoods, by using HPLC-DAD/ESI-MS/MS (some of these data have been showed in previous paper), as well as the changes that toasting intensity at cooperage produce in each polyphenolic profile. Before toasting, each wood shows a different and specific polyphenolic profile, with both qualitative and quantitative differences among them. Toasting notably changed these profiles, in general, proportionally to toasting intensity and led to a minor differentiation among species in toasted woods, although we also found phenolic markers in toasted woods. Thus, methyl syringate, benzoic acid, methyl vanillate, p-hydroxybenzoic acid, 3,4,5-trimethylphenol and p-coumaric acid, condensed tannins of the procyanidin type, and the flavonoids naringenin, aromadendrin, isosakuranetin and taxifolin will be a good tool to identify cherry wood. In acacia wood the chemical markers will be the aldehydes gallic and β-resorcylic and two not fully identified hydroxycinnamic compounds, condensed tannins of the prorobinetin type, and when using untoasted wood, dihydrorobinetin, and in toasted acacia wood, robinetin. In untoasted ash wood, the presence of secoiridoids, phenylethanoid glycosides, or di and oligolignols will be a good tool, especially oleuropein, ligstroside and olivil, together verbascoside and isoverbascoside in F. excelsior, and oleoside in F. americana. In toasted ash wood, tyrosol, syringaresinol, cyclolovil, verbascoside and olivil, could be used to identify the botanical origin. In addition, in ash wood, seasoned and toasted, neither hydrolysable nor condensed tannins were detected. Lastly, in chestnut wood, gallic and ellagic acids and hydrolysable tannins of both the gallotannin and ellagitannin type, can be used as chemical markers. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. ANTI-INFLAMMATORY ACTIVITY OF EUCALYPTUS SPP. AND PISTASCIA LENTISCUS LEAF EXTRACTS

    PubMed Central

    Qabaha, Khaled; Ras, Sari Abu; Abbadi, Jehad; Al-Rimawi, Fuad

    2016-01-01

    Background: Eucalyptus spp. and Pistascia lentiscus are among the Palestinian trees that are traditionally used in folkloric medicine in treating many diseases; leaves of which are thought to have anti-inflammatory, antibacterial and antioxidant effects. The goal of this study is to evaluate the in vitro inhibitory effect of Eucalyptus spp. and Pistascia lentiscus extracts on Lipopolysacaride (LPS)-induced Interlukin-6 (Il-6) and Tumor Necrosis Factor-α (TNF-α) by polymorphonuclear Cells (PMNCs). Materials and Methods: Polymorphonuclear cells were isolated from the whole blood using Histopaque (Ficol-1077) method and then cultured in an enriched Roswell Park Memorial Institute (RBMI) medium. Supernatants’ Interlukin-6 (IL-6) and Tumor Necrosis Factor (TNF-α) levels were determined 24 hour after LPS stimulation. HPLC was employed to determine the concentration of phenolic compounds in the extracts. The concentrations of TNF-α and IL-6 were compared using paired-samples t test. Results: Eucalyptus spp. and Pistascia lentiscus leaves extracts have shown significant reduction in the levels of both Il-6 and TNF-α Gallic acid; a strong anti-inflammatory agent was found to be the major phenolic compound in both leaf extracts. However, other anti-inflammatory phenolic compounds were detected in Pitascia lentiscus extract including syringic acid and p-coumaric acid, while chlorogenic acid was detected in Eucalyptus spp. leaf extract. Conclusion: Reduction in the levels of Il-6 and TNF-α upon the effect of both Eucalyptus spp. and Pistascia lentiscus extract is an indication of their anti-inflammatory effects. Our results may also indicate that the observed anti-inflammatory effect of the above extracts may be due to the presence of gallic acid and other phenolic compounds. List of Abbreviations and Nomenclature: LPS: Lipopolysacaride, Il-6: Interlukin-6, TNF-α: Tumor Necrosis Factor-α, PMNCs: Polymorphonuclear Cells, HPLC: High Performance Liquid Chromatography, ELISA: Enzyme Linked Immune Sorbent Assay, EDTA: Ethylene Diamine Tetra Acetic acid, PBS: phosphate buffered saline, RPMI: Roswell Park Memorial Institute medium FBS: Fetal Bovine Serum. PMID:28487887

  11. Stabilization of antioxidant gallate in layered double hydroxide by exfoliation and reassembling reaction

    NASA Astrophysics Data System (ADS)

    Ansy, Kanakappan Mickel; Lee, Ji-Hee; Piao, Huiyan; Choi, Goeun; Choy, Jin-Ho

    2018-06-01

    As for the stabilization of chemically sensitive bioactive molecule in this study, gallic acid (GA) with antioxidant property was intercalated into interlayer space of layered double hydroxide (LDH), which was realized by exfoliation and reassembling reaction. At first, the pristine nitrate-type Zn2Al-LDH in solid state was synthesized via co-precipitation followed by the hydrothermal treatment at 80 °C for 6 h, and then exfoliated in formamide to form a colloidal solution of exfoliated LDH nanosheets, and finally reassembled in the presence of GA to prepare GA intercalated LDH (GA-LDH) desired, where the pH was adjusted to 8.0 in order to deprotonate GA to form gallate anion. According to the XRD analysis, GA-LDH showed well-developed (00l) diffraction peaks with a basal spacing of 1.15 nm, which was estimated to be larger than that of the pristine LDH (0.88 nm), indicating that gallate molecules were incorporated into LDH layers with perpendicular orientation. From the FT-IR spectra it was found that gallic acid was completely deprotonated into gallate, and stabilized in between LDH lattices via electrostatic interaction. The content of GA in GA-LDH was determined to be around 23 wt% by UV-vis spectroscopic study, which was also confirmed by HPLC analysis. According to the in-vitro release of GA out of GA-LDH in PBS solution (pH 7.4) at 4 °C, GA was sustainably released from GA-LDH nanohybrid up to 86% within 72 h. The antioxidant property of GA-LDH was almost the same with that of intact GA which was examined by DPPH. The photostability of GA-LDH under UV light irradiation was immensely enhanced compared to intact GA. It is, therefore, concluded that the present GA-LDH nanohybrid can be considered as an excellent antioxidant material with high chemical- and photo-stabilities, and controlled release property.

  12. Polyphenol Content and Antioxidant Properties of Colored Soybean Seeds from Central Europe

    PubMed Central

    Cvejić, Jelena; Miladinović, Jegor

    2012-01-01

    Abstract The antioxidant activity and contents of various polyphenol classes in the seeds of seven soybean varieties of different seed color and one yellow seed cultivar, representing a reference genotype, were evaluated. Total polyphenols and tannins were determined after extraction of plant material with 70% aqueous acetone, and total flavonoids were extracted with methanol and acetic acid, whereas anthocyanins were extracted with 20% aqueous ethanol. In addition, isoflavone content and composition were determined using high-performance liquid chromatography analysis. Antioxidant activity of seed extracts was evaluated by the 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity assay. A positive linear correlation between antioxidant activity and contents of total polyphenols and anthocyanins was established. The highest antioxidant activity was observed in the extracts of black and brown varieties, which also showed high levels of all polyphenol classes examined. Yellow seed had the highest total isoflavone content (3.62 mg/g of dry material). The highest concentration of total daidzein was determined in black seeds (>2.0 mg/g of dry material), and the highest total glycitein and genistein contents occurred in the yellow cultivar (0.53 and 1.49 mg/g of dry material, respectively). According to our results, varieties of black and brown seeds could be of special interest not only for their large content of total polyphenols, ranging from 4.94 to 6.22 mg of gallic acid equivalents/g of dry material, but also for their high content of natural antioxidants such as anthocyanins. PMID:21861721

  13. Cerumen of Australian stingless bees ( Tetragonula carbonaria): gas chromatography-mass spectrometry fingerprints and potential anti-inflammatory properties

    NASA Astrophysics Data System (ADS)

    Massaro, Flavia Carmelina; Brooks, Peter Richard; Wallace, Helen Margaret; Russell, Fraser Donald

    2011-04-01

    Cerumen, or propolis, is a mixture of plant resins enriched with bee secretions. In Australia, stingless bees are important pollinators that use cerumen for nest construction and possibly for colony's health. While extensive research attests to the therapeutic properties of honeybee ( Apis mellifera) propolis, the biological and medicinal properties of Australian stingless bee cerumen are largely unknown. In this study, the chemical and biological properties of polar extracts of cerumen from Tetragonula carbonaria in South East Queensland, Australia were investigated using gas chromatography-mass spectrometry (GC-MS) analyses and in vitro 5-lipoxygenase (5-LOX) cell-free assays. Extracts were tested against comparative (commercial tincture of A. mellifera propolis) and positive controls (Trolox and gallic acid). Distinct GC-MS fingerprints of a mixed diterpenic profile typical of native bee cerumen were obtained with pimaric acid (6.31 ± 0.97%, w/w), isopimaric acid (12.23 ± 3.03%, w/w), and gallic acid (5.79 ± 0.81%, w/w) tentatively identified as useful chemical markers. Characteristic flavonoids and prenylated phenolics found in honeybee propolis were absent. Cerumen extracts from T. carbonaria inhibited activity of 5-LOX, an enzyme known to catalyse production of proinflammatory mediators (IC50 19.97 ± 2.67 μg/ml, mean ± SEM, n = 4). Extracts had similar potency to Trolox (IC50 12.78 ± 1.82 μg/ml), but were less potent than honeybee propolis (IC50 5.90 ± 0.62 μg/ml) or gallic acid (IC50 5.62 ± 0.35 μg/ml, P < 0.001). These findings warrant further investigation of the ecological and medicinal properties of this stingless bee cerumen, which may herald a commercial potential for the Australian beekeeping industry.

  14. Nanoparticle mediated brain targeted delivery of gallic acid: in vivo behavioral and biochemical studies for improved antioxidant and antidepressant-like activity.

    PubMed

    Nagpal, Kalpana; Singh, Shailendra Kumar; Mishra, Dina Nath

    2012-11-01

    Gallic acid had been reported to possess antidepressant like activity, which may be attributed to its CNS effects like increase in reduced glutathione levels, increased catalase activity and decreased malonaldehyde levels in brain. This study was designed to enhance the antidepressant-like activity of gallic acid (GA) using nanoparticulate delivery system in swiss male albino mice and to explore the possible underlying mechanisms for this activity. GA loaded chitosan nanoparticles (GANP) and corresponding tween 80 coated batch (cGANP) were formulated for brain targeting of GA and characterized for physicochemical parameters, morphology, differential scanning calorimetry and in vitro drug release. GA, GANP, cGANP (dose equivalent to GA 10 mg/kg, i.p.) and positive control drug, Fluoxetine (10 mg/kg, i.p.) were administered for successive seven days to male swiss albino mice. Then, the in vivo antidepressant-like activity was evaluated using Despair Swim Test (DST) and Tail Suspension Test (TST); along with the evaluation of MAO-A activity, reduced glutathione, malonaldehyde level, catalase and locomotor activity in mice. KEYFINDINGS: cGANP (equivalent to 10 mg/kg, i.p.) significantly decreased immobility period of mice in DST and TST, indicating significant antidepressant-like activity. There was no significant effect on locomotor activity of the mice by GA and its nanoparticle formulations. cGANP (10 mg/kg, i.p.) significantly decreased Monoamine oxidase-A (MAO-A) activity, malondialdehyde levels, and catalase activity in mice. GA possess significant antidepressant like activity and ligand coated nanoparticle approach with improved brain targeting may serve as an effective approach to enhance such effect.

  15. Uncovering the Lactobacillus plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation

    PubMed Central

    Jiménez, Natalia; Curiel, José Antonio; Reverón, Inés; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases. PMID:23645198

  16. Understanding the native Californian diet: Identification of condensed and hydrolyzable tannins in tanoak acorns (Lithocarpus densiflorus).

    PubMed

    Meyers, Katherine J; Swiecki, Tedmund J; Mitchell, Alyson E

    2006-10-04

    The tanoak (Lithocarpus densiflorus) acorn was a staple food in the Native American diet and is still used in traditional dishes. Acorns from the genus Quercus have been shown to contain a large range of hydrolyzable tannins. However, neither hydrolyzable nor condensed tannins have been characterized in tanoak acorns. The aim of this study was to identify the full range of hydrolyzable and condensed tannins in extracts of tanoak acorns using liquid chromatography/electrospray ionization-mass spectrometry/mass spectrometry. Condensed tannins were identified as B type oligomers of (epi)-catechin (procyanidins) with a degree of polymerization up to six. Oligomers up to and including tetramers were identified by UV spectra and MS detection whereas pentamers and hexamers were detected only by MS. The total concentration of condensed tannins was 464 mg/100 g acorn pericarp. The concentration of propocyanidin monomers, dimers, trimers, and tetramers in acorn pericarp (mg/100 g acorn pericarp) were 95 +/- 10.9, 148 +/- 35.0, 90 +/- 17.9, and 131 +/- 1.9, respectively. No procyanidins were found in the acorn cotyledon tissue. A total of 22 hydrolyzable tannins were identified in methanolic extracts of acorn cotyledon tissue. Gallic acid derivatives predominated and included galloylated esters of glucose, hexahydrodiphenoyl esters of glucose, and methylated gallates. Galloylated esters of glucose were present as isomers of galloyl glucose, digalloyl glucose, and trigalloyl glucose. Mass spectral fragmentation patterns indicate the presence of one gallic acid-galloyl glucose isomer and two gallic acid-digalloyl-glucose isomers. No isomers of tetragalloyl glucose and pentagalloyl glucose were identified. Ellagic acid and ellagic acid pentoside were also identified.

  17. Phenolic and microbial-targeted metabolomics to discovering and evaluating wine intake biomarkers in human urine and plasma.

    PubMed

    Urpi-Sarda, Mireia; Boto-Ordóñez, María; Queipo-Ortuño, María Isabel; Tulipani, Sara; Corella, Dolores; Estruch, Ramon; Tinahones, Francisco J; Andres-Lacueva, Cristina

    2015-09-01

    The discovery of biomarkers of intake in nutritional epidemiological studies is essential in establishing an association between dietary intake (considering their bioavailability) and diet-related risk factors for diseases. The aim is to study urine and plasma phenolic and microbial profile by targeted metabolomics approach in a wine intervention clinical trial for discovering and evaluating food intake biomarkers. High-risk male volunteers (n = 36) were included in a randomized, crossover intervention clinical trial. After a washout period, subjects received red wine or gin, or dealcoholized red wine over four weeks. Fasting plasma and 24-h urine were collected at baseline and after each intervention period. A targeted metabolomic analysis of 70 host and microbial phenolic metabolites was performed using ultra performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). Metabolites were subjected to stepwise logistic regression to establish prediction models and received operation curves were performed to evaluate biomarkers. Prediction models based mainly on gallic acid metabolites, obtained sensitivity, specificity and area under the curve (AUC) for the training and validation sets of between 91 and 98% for urine and between 74 and 91% for plasma. Resveratrol, ethylgallate and gallic acid metabolite groups in urine samples also resulted in being good predictors of wine intake (AUC>87%). However, lower values for metabolites were obtained in plasma samples. The highest correlations between fasting plasma and urine were obtained for the prediction model score (r = 0.6, P<0.001), followed by gallic acid metabolites (r = 0.5-0.6, P<0.001). This study provides new insights into the discovery of food biomarkers in different biological samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A characterization of the antimalarial activity of the bark of Cylicodiscus gabunensis Harms.

    PubMed

    Aldulaimi, Omar; Uche, Fidelia I; Hameed, Hamza; Mbye, Haddijatou; Ullah, Imran; Drijfhout, Falko; Claridge, Timothy D W; Horrocks, Paul; Li, Wen-Wu

    2017-02-23

    A decoction of the bark of Cylicodiscus gabunensis Harms is used as a traditional medicine in the treatment of malaria in Nigeria. This study aims to validate the antimalarial potency of this decoction in vitro against Plasmodium falciparum and define potential bioactive constituents within the C. gabunensis bark. A bioassay-guided separation and fractionation protocol was applied to C. gabunensis extracts, exploiting the use of a Malaria Sybr Green I Fluorescence assay method to monitor antiproliferative effects on parasites as well as define 50% inhibition concentrations. Spectroscopic techniques, including GC-MS, TOF LC-MS and 1 H NMR were used to identify phytochemicals present in bioactive fractions. Analogues of gallic acid were synthesized de novo to support the demonstration of the antimalarial action of phenolic acids identified in C. gabunensis bark. In vitro cytotoxicity of plant extracts, fractions and gallate analogues was evaluated against the HepG2 cell line. The antimalarial activity of ethanolic extracts of C. gabunensis bark was confirmed in vitro, with evidence for phenolic acids, primarily gallic acid and close analogues such as ethyl gallate, likely providing this effect. Further fractionation produced the most potent fraction with a 50% inhibitory concentration of 4.7µg/ml. Spectroscopic analysis, including 1 H NMR, LC-MS and GC-MS analysis of this fraction and its acid hydrolyzed products, indicated the presence of conjugates of gallic acid with oligosaccharides. The extracts/fractions and synthetic alkyl and alkenyl gallates showed moderate selectivity against P. falciparum. These results support the use of the bark of C. gabunensis as a traditional medicine in the treatment of human malaria, with phenolic acid oligosaccharide complexes evident in the most bioactive fractions. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  19. Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract.

    PubMed

    Rangkadilok, Nuchanart; Sitthimonchai, Somkid; Worasuttayangkurn, Luksamee; Mahidol, Chulabhorn; Ruchirawat, Mathuros; Satayavivad, Jutamaad

    2007-02-01

    The protective effects of fruits and vegetables against chronic diseases have been attributed to the antioxidant properties of some secondary metabolites present in these foods. Plant polyphenols have been reported to exhibit bioactive properties, and in particular antioxidant activities. Longan seeds are found to contain high levels of some beneficial polyphenolic compounds such as corilagin, gallic acid and ellagic acid. The present study examined the free radical scavenging activity of longan seed extract by using three different assay methods. Longan extracts contained corilagin ranging from zero to 50.64 mg/g DW, gallic acid from 9.18 to 23.04 mg/g DW, and ellagic acid from 8.13 to 12.65 mg/g DW depending on the cultivars. Dried longan seed extracts of cultivar Edor contained high levels of gallic acid and ellagic acid and also exhibited the highest radical scavenging activities when comparing fresh seed and dried pulp extracts. For scavenging activity of DPPH and superoxide radicals, longan seed extract was found to be as effective as Japanese green tea extract while dried longan pulp and mulberry green tea extracts showed the least scavenging activities. In the ORAC assay, both fresh and dried longan seed also had higher activity than dried pulp and whole fruit. However, the results demonstrate that three polyphenolics may not be the major contributors of the high antioxidant activity of longan water extracts but this high activity may be due to other phenolic/flavonoid glycosides and ellagitannins present in longan fruit. In addition, longan seed also showed tyrosinase inhibitory activity with IC(50) values of 2.9-3.2 mg/ml. Therefore, the preliminary observations suggest that longan seed extract could be another potential source of potent natural dietary antioxidants and also in an application as a new natural skin-whitening agent.

  20. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats.

    PubMed

    Latha, R Cecily Rosemary; Daisy, P

    2011-01-15

    Diabetes mellitus causes derangement of carbohydrate, protein and lipid metabolism which eventually leads to a number of secondary complications. Terminalia bellerica is widely used in Indian medicine to treat various diseases including diabetes. The present study was carried out to isolate and identify the putative antidiabetic compound from the fruit rind of T. bellerica and assess its chemico-biological interaction in experimental diabetic rat models. Bioassay guided fractionation was followed to isolate the active compound, structure was elucidated using (1)H and (13)C NMR, IR, UV and mass spectrometry and the compound was identified as gallic acid (GA). GA isolated from T. bellerica and synthetic GA was administered to streptozotocin (STZ)-induced diabetic male Wistar rats at different doses for 28 days. Plasma glucose level was significantly (p<0.05) reduced in a dose-dependent manner when compared to the control.Histopathological examination of the pancreatic sections showed regeneration of β-cells of islets of GA-treated rats when compared to untreated diabetic rats. In addition, oral administration of GA (20mg/kg bw) significantly decreased serum total cholesterol, triglyceride, LDL-cholesterol, urea, uric acid, creatinine and at the same time markedly increased plasma insulin, C-peptide and glucose tolerance level. Also GA restored the total protein, albumin and body weight of diabetic rats to near normal. Thus our findings indicate that gallic acid present in fruit rind of T. bellerica is the active principle responsible for the regeneration of β-cells and normalizing all the biochemical parameters related to the patho-biochemistry of diabetes mellitus and hence it could be used as a potent antidiabetic agent. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Anti-Inflammatory Activities of Pentaherbs Formula, Berberine, Gallic Acid and Chlorogenic Acid in Atopic Dermatitis-Like Skin Inflammation.

    PubMed

    Tsang, Miranda S M; Jiao, Delong; Chan, Ben C L; Hon, Kam-Lun; Leung, Ping C; Lau, Clara B S; Wong, Eric C W; Cheng, Ling; Chan, Carmen K M; Lam, Christopher W K; Wong, Chun K

    2016-04-20

    Atopic dermatitis (AD) is a common allergic skin disease, characterized by dryness, itchiness, thickening and inflammation of the skin. Infiltration of eosinophils into the dermal layer and presence of edema are typical characteristics in the skin biopsy of AD patients. Previous in vitro and clinical studies showed that the Pentaherbs formula (PHF) consisting of five traditional Chinese herbal medicines, Flos Lonicerae, Herba Menthae, Cortex Phellodendri, Cortex Moutan and Rhizoma Atractylodis at w/w ratio of 2:1:2:2:2 exhibited therapeutic potential in treating AD. In this study, an in vivo murine model with oxazolone (OXA)-mediated dermatitis was used to elucidate the efficacy of PHF. Active ingredients of PHF water extract were also identified and quantified, and their in vitro anti-inflammatory activities on pruritogenic cytokine IL-31- and alarmin IL-33-activated human eosinophils and dermal fibroblasts were evaluated. Ear swelling, epidermis thickening and eosinophils infiltration in epidermal and dermal layers, and the release of serum IL-12 of the murine OXA-mediated dermatitis were significantly reduced upon oral or topical treatment with PHF (all p < 0.05). Gallic acid, chlorogenic acid and berberine contents (w/w) in PHF were found to be 0.479%, 1.201% and 0.022%, respectively. Gallic acid and chlorogenic acid could suppress the release of pro-inflammatory cytokine IL-6 and chemokine CCL7 and CXCL8, respectively, in IL-31- and IL-33-treated eosinophils-dermal fibroblasts co-culture; while berberine could suppress the release of IL-6, CXCL8, CCL2 and CCL7 in the eosinophil culture and eosinophils-dermal fibroblasts co-culture (all p < 0.05). These findings suggest that PHF can ameliorate allergic inflammation and attenuate the activation of eosinophils.

  2. Gontscharovia popovii, a new source of carvacrol, its polyphenolic constituents, essential oil analysis, total phenolic content and antioxidant activity.

    PubMed

    Zareiyan, Faraneh; Rowshan, Vahid; Bahmanzadegan, Atefeh; Hatami, Ahmad

    2017-09-28

    The experiment was carried out using the shadow-dried aerial parts including leaves and shoots of Gontscharovia popovii collected in Fars province in order to investigate the polyphenolic compositions, antioxidant activity, total phenolic content and essential oil constituents. The result showed IC 50 of 395.77 μg mL -1 and total phenolic content of about 20.01 mg g -1 gallic acid equivalent dry weight. It also showed a wild range of polyphenols such as; Gallic acid, catechin, chloregenic acid, rutin, vanillin, trans-Ferulic acid, sinapic acid, coumarin, hesperedin, quercetin, hesperetin, eugenol and carvacrol as the main detected polyphenols. Some major compounds were also detected through essential oil analysis, such as; 76.7% carvacrol, 4.25% γ-Terpinene, 3.8% p-Cymene and 2.4% (E)-Caryophyllene. Qualitative and quantitative analyses of chemical compounds of G. popovii was performed using HPLC, GC, GC/MS and microplate reader.

  3. Gallic Acid Grafted Chitosan Has Enhanced Oxidative Stability in Bulk Oils.

    PubMed

    Gim, Seo Yeong; Hong, Seungmi; Kim, Mi-Ja; Lee, JaeHwan

    2017-07-01

    Gallic acid (GA) was grafted in chitosan and the effects of GA grafted chitosan (GA-g-CS) on the oxidative stability in bulk oil was tested at 60 and 140 °C. To text oxidative stability in oils, headspace oxygen content, conjugated dienoic acid (CDA) value, p-anisidine value (p-AV), and acid value were determined. Chitosan itself did not show antioxidative or prooxidative effects in oils at 60 °C. However, GA-g-CS and GA acted as antioxidants at 60 °C. At 140 °C heating with moisture supplied condition, different results were observed. GA-g-CS acted as antioxidants based on the results of CDA and p-AV. However, chitosan showed the highest oxidative stability based on results of acid value and brown color formation at 140 °C. This could be due to reduction of moisture content by chitosan. GA was continuously released from GA-g-CS in bulk oil. This might have provided extra antioxidant activities to oils. © 2017 Institute of Food Technologists®.

  4. Effect of dietary supplementation of gallic acid on nitrogen balance, nitrogen excretion pattern and urinary nitrogenous constituents in beef cattle.

    PubMed

    Wei, Chen; Yang, Kai; Zhao, Guangyong; Lin, Shixin; Xu, Zhiwei

    2016-10-01

    The objective of the trial was to study the effects of dietary supplementation of gallic acid (GA) on nitrogen (N) balance, N excretion pattern and urinary N constituents in beef cattle. In a 4 × 4 Latin square design, four male 30-month-old Simmental cattle (443 ± 22 kg live weight) received four levels of GA (purity ≥ 98.5%), i.e. 0, 5.3, 10.5, 21.1 g/kg DM, added to a basal ration. Each experimental period lasted 17 d, consisting of 12 d adaptation and 5 d sampling. The results showed that supplementation of GA at 5.3, 10.5 or 21.1 g/kg DM did not affect the N balance but regulated the N excretion pattern by increasing the ratio of faecal N/urinary N and decreasing the ratio of urinary urea N/total urinary N in beef cattle fed at maintenance level.

  5. Effect of tannic and gallic acids alone or in combination with carbenicillin or tetracycline on Chromobacterium violaceum CV026 growth, motility, and biofilm formation.

    PubMed

    Dusane, Devendra H; O'May, Che; Tufenkji, Nathalie

    2015-07-01

    Chromobacterium violaceum is an opportunistic pathogen that causes infections that are difficult to treat. The goal of this research was to evaluate the effect of selected tannins (tannic acid (TA) and gallic acid (GA)) on bacterial growth, motility, antibiotic (carbenicillin, tetracycline) susceptibility, and biofilm formation. Both tannins, particularly TA, impaired bacterial growth levels and swimming motilities at sub-minimum inhibitory concentrations (sub-MICs). In combination with tannins, antibiotics showed increased MICs, suggesting that tannins interfered with antibacterial activity. Sub-MICs of tetracycline or TA alone enhanced biofilm formation of C. violaceum; however, in combination, these compounds inhibited biofilm formation. In contrast, carbenicillin at sub-MICs was effective in inhibiting C. violaceum biofilm formation; however, in combination with lower concentrations of TA or GA, biofilms were enhanced. These results provide insights into the effects of tannins on C. violaceum growth and their varying interaction with antibiotics used to target C. violaceum infections.

  6. Effect of wine inhibitors on free pineapple stem bromelain activity in a model wine system.

    PubMed

    Esti, Marco; Benucci, Ilaria; Liburdi, Katia; Garzillo, Anna Maria Vittoria

    2011-04-13

    The influence of potential inhibitors, naturally present in wine, on the activity of stem bromelain was investigated in order to evaluate the applicability of this enzyme for protein stabilization in white wine. Bromelain proteolytic activity was tested against a synthetic substrate (Bz-Phe-Val-Arg-pNA) in a model wine system after adding ethanol, sulfur dioxide (SO(2)), skin, seed, and gallic and ellagic tannins at the average range of their concentration in wine. All the inhibitors of stem bromelain activity tested turned out to be reversible. Ethanol was a competitive inhibitor with a rather limited effect. Gallic and ellagic tannins have no inhibitory effect on stem bromelain activity, while both seed and skin tannins were uncompetitive inhibitors. The strongest inhibition effect was revealed for sulfur dioxide, which was a mixed-type inhibitor for the enzyme activity. This study provides useful information relative to a future biotechnological application of stem bromelain in winemaking.

  7. Development and UFLC-MS/MS Characterization of a Product-Specific Standard for Phenolic Quantification of Maple-Derived Foods.

    PubMed

    Liu, Yongqiang; Ma, Hang; Seeram, Navindra P

    2016-05-04

    The phenolic contents of plant foods are commonly quantified by the Folin-Ciocalteu assay based on gallic acid equivalents (GAEs). However, this may lead to inaccuracies because gallic acid is not always representative of the structural heterogeneity of plant phenolics. Therefore, product-specific standards have been developed for the phenolic quantification of several foods. Currently, maple-derived foods (syrup, sugar, sap/water, and extracts) are quantified for phenolic contents based on GAEs. Because lignans are the predominant phenolics present in maple, herein, a maple phenolic lignan-enriched standard (MaPLES) was purified (by chromatography) and characterized (by UFLC-MS/MS with lignans previously isolated from maple syrup). Using MaPLES and secoisolariciresinol (a commercially available lignan), the phenolic contents of the maple-derived foods increased 3-fold compared to GAEs. Therefore, lignan-based standards are more appropriate for phenolic quantification of maple-derived foods versus GAEs. Also, MaPLES can be utilized for the authentication and detection of fake label claims on maple products.

  8. Characterization of the Interaction between Gallic Acid and Lysozyme by Molecular Dynamics Simulation and Optical Spectroscopy

    PubMed Central

    Zhan, Minzhong; Guo, Ming; Jiang, Yanke; Wang, Xiaomeng

    2015-01-01

    The binding interaction between gallic acid (GA) and lysozyme (LYS) was investigated and compared by molecular dynamics (MD) simulation and spectral techniques. The results from spectroscopy indicate that GA binds to LYS to generate a static complex. The binding constants and thermodynamic parameters were calculated. MD simulation revealed that the main driving forces for GA binding to LYS are hydrogen bonding and hydrophobic interactions. The root-mean-square deviation verified that GA and LYS bind to form a stable complex, while the root-mean-square fluctuation results showed that the stability of the GA-LYS complex at 298 K was higher than that at 310 K. The calculated free binding energies from the molecular mechanics/Poisson-Boltzmann surface area method showed that van der Waals forces and electrostatic interactions are the predominant intermolecular forces. The MD simulation was consistent with the spectral experiments. This study provides a reference for future study of the pharmacological mechanism of GA. PMID:26140374

  9. Characterization of the Interaction between Gallic Acid and Lysozyme by Molecular Dynamics Simulation and Optical Spectroscopy.

    PubMed

    Zhan, Minzhong; Guo, Ming; Jiang, Yanke; Wang, Xiaomeng

    2015-07-01

    The binding interaction between gallic acid (GA) and lysozyme (LYS) was investigated and compared by molecular dynamics (MD) simulation and spectral techniques. The results from spectroscopy indicate that GA binds to LYS to generate a static complex. The binding constants and thermodynamic parameters were calculated. MD simulation revealed that the main driving forces for GA binding to LYS are hydrogen bonding and hydrophobic interactions. The root-mean-square deviation verified that GA and LYS bind to form a stable complex, while the root-mean-square fluctuation results showed that the stability of the GA-LYS complex at 298 K was higher than that at 310 K. The calculated free binding energies from the molecular mechanics/Poisson-Boltzmann surface area method showed that van der Waals forces and electrostatic interactions are the predominant intermolecular forces. The MD simulation was consistent with the spectral experiments. This study provides a reference for future study of the pharmacological mechanism of GA.

  10. Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Tahir, Muhammad Nawaz

    2014-11-01

    Isoniazid is the primary constituent of “triple therapy” used to effectively treat tuberculosis. In tuberculosis and other diseases, tissue inflammation and free radical burst from macrophages results in oxidative stress. These free radicals cause pulmonary inflammation if not countered by anti-oxidants. Therefore, in the present study cocrystals of isoniazid with four anti-oxidant hydroxy benzoic acids have been reported. Gallic acid, 2,3-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, and 3-hydroxybenzoic acid resulted in the formation of cocrystals when reacted with isoniazid. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the cocrystals of isoniazid with Gallic acid, 2,3-dihydroxybenzoic acid and 3-hydroxybenzoic acid. While cocrystal of 3,5-dihydroxybenzoic acid formed the pyridine-hydroxy group synthon. Other synthons of different graph sets are formed between hydrazide group of isoniazid and coformers involving Nsbnd H⋯O and Osbnd H⋯N bonds. All the cocrystals were in 1:1 stoichiometric ratio.

  11. UV light impact on ellagitannins and wood surface colour of European oak ( Quercus petraea and Quercus robur)

    NASA Astrophysics Data System (ADS)

    Zahri, S.; Belloncle, C.; Charrier, F.; Pardon, P.; Quideau, S.; Charrier, B.

    2007-03-01

    Two European oak species ( Q. petraea and Q. robur) have a high content of phenols which may participate in the alteration of colour upon UV irradiation. To study the photodegradation process of oak surfaces, the two oak species extractives, vescalagin, castalagin, ellagic acid and gallic acid were analysed quantitatively by HPLC before and after UV irradiation. Irradiation time was altered between 3, 24, 72, 96, 120, 144, 192 and 216 h. In parallel, any colour changes of Oak wood surface was followed after 120 h of UV-irradiation by measuring CIELAB parameters (DL*, Da*, Db* and DE*). We observed that 60% of total phenol content of extractives decreased after the maximal exposure time. Our findings also showed that castalagin and gallic acid were destroyed after 216 h and vescalagin and ellagic acid after 72 h. This study proves the photosenibility of oakwood extractives which, supplementary to lignin degradation, would strongly result in the discolouration of oak heartwood.

  12. Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances?

    PubMed

    Trigo, C; Ball, A S

    1994-11-01

    Three actinomycetes (Streptomyces sp. EC22, Streptomyces viridosporus T7A and Thermomonospora fusca BD25) were assessed for their ability to degrade ball-milled wheat straw. All gave maximum levels of solubilized lignocellulose products (APPL) at the beginning of the stationary phase of growth (72-96 h). Low-molecular-mass aromatic compounds extracted from the APPL were analysed by reverse-phase and gas chromatography. Although the number of chromatographic peaks detected made identification of the products difficult, p-coumaric acid (4-hydroxycinnamic acid), protocatechuic acid (3,4-dihydroxybenzoic acid), gallic acid (3,4,5-trihydroxybenzoic acid), gallic acid methyl ester (methyl-3,4,5-trihydroxybenzoate) and 4-methoxyphenol were recognized. The infrared spectra of the three strains were similar to the spectra of humic acids, with all APPL extracts showing carbonyl, amino, carboxyl, aliphatic and aromatic group vibrations. Also detected were peptide linkages of proteins. The results suggest a role for actinomycetes in the formation of humic substances in soils and composts.

  13. Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage.

    PubMed

    Heeger, Andrea; Kosińska-Cagnazzo, Agnieszka; Cantergiani, Ennio; Andlauer, Wilfried

    2017-04-15

    Coffee cherry pulp is a by-product obtained during coffee production. Coffee cherry pulp contains considerable amounts of phenolic compounds and caffeine. An attempt to produce Cascara, a refreshing beverage, has been made. Six dried coffee pulp samples and a beverage called Cascara produced in Switzerland out of one of those samples were investigated. Aqueous extraction of coffee pulps revealed a content of total polyphenols between 4.9 and 9.2mg gallic acid equivalents (GAE)/gDM. The antioxidant capacity was between 51 and 92μmol Trolox equivalents (TE)/gDM as measured by the assay with ABTS radical. Bourbon variety from Congo and maragogype variety showed highest caffeine contents with 6.5 and 6.8mg/gDM. In all samples chlorogenic acid, protocatechuic acid, gallic acid and rutin were present. The beverage Cascara contained 226mg/L of caffeine and 283mgGAE/L of total polyphenols whereas antioxidant capacity amounted to 8.9mmol TE/L. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Pulse radiolysis study of the reactions of catechins with nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Gebicki, Jerzy L.; Meisner, Piotr; Stawowska, Katarzyna; Gebicka, Lidia

    2012-12-01

    Nitrogen dioxide (•NO2), one of the oxidizing radicals formed in vivo is suspected to play a role in various pathophysiological processes. The reactions of •NO2 with dietary catechins, the group of flavonoids present in high amounts in green tea and red wine, have been investigated by pulse radiolysis method. The kinetics of the reaction of •NO2 with gallic acid have been also studied for comparison. The spectra of transient intermediates are presented. The rate constants of the reaction of •NO2 with catechin, epigallocatechin, epigallocatechin gallate and gallic acid determined by the competition method with 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) at pH 7.0 and room temperature have been found to be 0.9, 1.0, 2.3 and 0.5×108 M-1 s-1, respectively. The values for catechins are among the highest reported for the reactions of •NO2 with non-radical compounds.

  15. Phenolic compounds from the flowers of Nepalese medicinal plant Aconogonon molle and their DPPH free radical-scavenging activities.

    PubMed

    Joshi, Khem Raj; Devkota, Hari Prasad; Watanabe, Takashi; Yahara, Shoji

    2014-01-01

    Eleven phenolic compounds, quercetin (1), quercetin 3-O-β-d-galactopyranoside (2), quercetin 3-O-(6″-O-galloyl)-β-d-galactopyranoside (3), quercetin 3-O-(6″-O-caffeoyl)-β-d-galactopyranoside (4), quercetin 3-O-β-d-glucopyranoside (5), rutin (6) quercetin 3-O-α-l-arabinopyranoside (7), quercetin 3-O-α-l-arabinofuranoside (8), protocatechulic acid (9), gallic acid (10) and chlorogenic acid (11), were isolated from the flowers of Aconogonon molle, a Nepalese medicinal plant. Structures of these compounds were elucidated on the basis of spectroscopic methods. All these compounds were isolated for the first time from flowers, and five compounds (4, 5, 8, 9 and 11) were isolated for the first time from A. molle. All of these isolated compounds were evaluated for their in vitro antioxidant activity by using the 1,1-diphenyl-2-picrylhydrazyl radical-scavenging method. Quercetin (1), quercetin glycosides (2-8) and gallic acid (10) exhibited potent antioxidant activity.

  16. Ultrastructure of sea urchin calcified tissues after high-pressure freezing and freeze substitution.

    PubMed

    Ameye, L; Hermann, R; Dubois, P

    2000-08-01

    The improvements brought by high-pressure freezing/freeze substitution fixation methods to the ultrastructural preservation of echinoderm mineralized tissues are investigated in developing pedicellariae and teeth of the echinoid Paracentrotus lividus. Three freeze substitution (FS) protocols were tested: one in the presence of osmium tetroxide, one in the presence of uranyl acetate, and the last in the presence of gallic acid. FS in the presence of osmium tetroxide significantly improved cell ultrastructure preservation and should especially be used for ultrastructural studies involving vesicles and the Golgi apparatus. With all protocols, multivesicular bodies, suggested to contain Ca(2+), were evident for the first time in skeleton-forming cells. FS in the presence of gallic acid allowed us to confirm the structured and insoluble character of a part of the organic matrix of mineralization in the calcification sites of the tooth, an observation which modifies the current understanding of biomineralization control in echinoderms. Copyright 2000 Academic Press.

  17. Self-Assembly of Supramolecular Aggregates Based on Sector- and Cone-Shaped Dendrons and Bolaamphiphiles

    NASA Astrophysics Data System (ADS)

    Shcherbina, M. A.; Chvalun, S. N.

    2018-06-01

    Using a number of classes of such sector-shaped macromolecules as derivatives of 2,3,4- and 3,4,5- tri(dodecyloxy)benzenesulfonic acid and dendrimers based on gallic acid as an example, the main stages in the formation of supramolecular ensembles are considered: the formation of individual supramolecular aggregates due to the weak noncovalent interactions of mesogenic groups, and the subsequent ordering within these aggregates, which lowers the free energy of a system. Supramolecular aggregates are in turn organized into two- or three-dimensional supramolecular lattices. It is shown that the shape of the supramolecular aggregates and its change along with temperature are functions of the chemical structure of the mesogenic group (resulting in the controlled design of complex self-organizing systems with a given response to external stimuli).

  18. In vivo Pharmacological Evaluations of Pilocarpine-Loaded Antioxidant-Functionalized Biodegradable Thermogels in Glaucomatous Rabbits

    NASA Astrophysics Data System (ADS)

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang

    2017-02-01

    To alleviate oxidative stress-induced ocular hypertension, grafting of antioxidant molecules to drug carriers enables a dual-function mechanism to effectively treat glaucomatous intraocular pressure (IOP) dysregulation. Providing potential application for intracameral administration of antiglaucoma medications, this study, for the first time, aims to examine in vivo pharmacological efficacy of pilocarpine-loaded antioxidant-functionalized biodegradable thermogels in glaucomatous rabbits. A series of gallic acid (GA)-grafted gelatin-g-poly(N-isopropylacrylamide) (GN) polymers were synthesized via redox reactions at 20-50 °C. Our results showed that raising redox radical initiation reaction temperature maximizes GA grafting level, antioxidant activity, and water content at 40 °C. Meanwhile, increase in overall hydrophilicity of GNGA carriers leads to fast polymer degradation and early pilocarpine depletion in vivo, which is disadvantageous to offer necessary pharmacological performance at prolonged time. By contrast, sustained therapeutic drug concentrations in aqueous humor can be achieved for long-term (i.e., 28 days) protection against corneal aberration and retinal injury after pilocarpine delivery using dual-function optimized carriers synthesized at 30 °C. The GA-functionalized injectable hydrogels are also found to contribute significantly to enhancement of retinal antioxidant defense system and preservation of histological structure and electrophysiological function, thereby supporting the benefits of drug-containing antioxidant biodegradable thermogels to prevent glaucoma development.

  19. Chemical and functional properties of the different by-products of artichoke (Cynara scolymus L.) from industrial canning processing.

    PubMed

    Ruiz-Cano, Domingo; Pérez-Llamas, Francisca; Frutos, María José; Arnao, Marino B; Espinosa, Cristóbal; López-Jiménez, José Ángel; Castillo, Julián; Zamora, Salvador

    2014-10-01

    In this study, the basic chemical composition and functional properties of six by-product fractions collected from different steps of artichoke industrial processing were evaluated. Fractions differed in thermal treatment, the bract position in the artichoke head and the cutting size. Contents of moisture, ash, protein, fat, dietary fibre, inulin, total phenolics, total flavonoids, caffeoyl derivatives and flavones were analysed. Antioxidant activity values were also determined. All assessed artichoke by-product fractions contained high-dietary fibre (53.6-67.0%) and low fat (2.5-3.7%). Artichoke by-product fractions contained high levels of inulin, especially in the boiled inner bracts (30%). Total phenolic and flavonoid contents and antioxidant activity (153-729 μmol gallic acid equivalents, 6.9-19.2 μmol quercetin equivalents and 85-234 μmol ascorbic acid equivalents per gram of dry matter, respectively) varied widely with the bract positions in the artichoke head and the thermal treatments. The more interesting fractions for use as functional ingredients were those situated closer to the artichoke heart and thermally treated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Buchanania obovata: Functionality and Phytochemical Profiling of the Australian Native Green Plum.

    PubMed

    Fyfe, Selina A; Netzel, Gabriele; Netzel, Michael E; Sultanbawa, Yasmina

    2018-05-04

    The green plum is the fruit of Buchanania obovata Engl. and is an Australian Indigenous bush food. Very little study has been done on the green plum, so this is an initial screening study of the functional properties and phytochemical profile found in the flesh and seed. The flesh was shown to have antimicrobial properties effective against gram negative ( Escherichia coli 9001—NCTC) and gram positive ( Staphylococcus aureus 6571—NCTC) bacteria. Scanning electron microscopy analysis shows that the antimicrobial activity causes cell wall disintegration and cytoplasmic leakage in both bacteria. Antioxidant 2,2-diphenyl-1-picrylhydrazyl (DPPH) testing shows the flesh has high radical scavenging activity (106.3 ± 28.6 μM Trolox equivalant/g Dry Weight in methanol). The flesh and seed contain a range of polyphenols including gallic acid, ellagic acid, p-coumaric acid, kaempferol, quercetin and trans-ferulic acid that may be responsible for this activity. The seed is eaten as a bush food and contains a delphinidin-based anthocyanin. The green plum has potential as a functional ingredient in food products for its antimicrobial and antioxidant activity, and further investigation into its bioactivity, chemical composition and potential applications in different food products is warranted.

  1. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    USDA-ARS?s Scientific Manuscript database

    Several benzoic acid analogs showed antifungal activity against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids increased by addition of a methyl, methoxyl...

  2. Total antioxidant and antiproliferative activities of twenty-four Vitis vinifera grapes

    USDA-ARS?s Scientific Manuscript database

    The phytochemical profiles of 24 Vitis vinifera grape cultivars, including total phenolics, total flavonoids, total antioxidant activity and antiproliferative activity, were determined. Total phenolic contents in the cultivars ranged from 95.3 to 686.5 mg of gallic acid equivalents/100 g FW, and to...

  3. Phenolic compounds and fatty acid composition of organic and conventional grown pecan kernels

    USDA-ARS?s Scientific Manuscript database

    In this study, differences in contents of phenolic compounds and fatty acids in pecan kernels of organically versus conventionally grown pecan cultivars (‘Desirable’, ‘Cheyenne’, and ‘Wichita’) were evaluated. Although we were able to identify nine phenolic compounds (gallic acid, catechol, catechin...

  4. Quality and stability of edible oils enriched with hydrophilic antioxidants from the olive tree: the role of enrichment extracts and lipid composition.

    PubMed

    Sánchez de Medina, Verónica; Priego-Capote, Feliciano; Jiménez-Ot, Carlos; Luque de Castro, María Dolores

    2011-11-09

    Phenolic extracts from olive tree leaves and olive pomace were used to enrich refined oils (namely, maize, soy, high-oleic sunflower, sunflower, olive, and rapeseed oils) at two concentration levels (200 and 400 μg/mL, expressed as gallic acid). The concentration of characteristic olive phenols in these extracts together with the lipidic composition of the oils to be enriched influenced the mass transfer of the target antioxidants, which conferred additional stability and quality parameters to the oils as a result. In general, all of the oils experienced either a noticeable or dramatic improvement of their quality-stability parameters (e.g., peroxide index and Rancimat) as compared with their nonenriched counterparts. The enriched oils were also compared with extra virgin olive oil with a natural content in phenols of 400 μg/mL. The healthy properties of these phenols and the scarce or nil prices of the raw materials used can convert oils in supplemented foods or even nutraceuticals.

  5. Metabolic fingerprint of Brazilian maize landraces silk (stigma/styles) using NMR spectroscopy and chemometric methods.

    PubMed

    Kuhnen, Shirley; Bernardi Ogliari, Juliana; Dias, Paulo Fernando; da Silva Santos, Maiara; Ferreira, Antônio Gilberto; Bonham, Connie C; Wood, Karl Vernon; Maraschin, Marcelo

    2010-02-24

    Aqueous extract from maize silks is used by traditional medicine for the treatment of several ailments, mainly related to the urinary system. This work focuses on the application of NMR spectroscopy and chemometric analysis for the determination of metabolic fingerprint and pattern recognition of silk extracts from seven maize landraces cultivated in southern Brazil. Principal component analysis (PCA) of the (1)H NMR data set showed clear discrimination among the maize varieties by PC1 and PC2, pointing out three distinct metabolic profiles. Target compounds analysis showed significant differences (p < 0.05) in the contents of protocatechuic acid, gallic acid, t-cinnamic acid, and anthocyanins, corroborating the discrimination of the genotypes in this study as revealed by PCA analysis. Thus the combination of (1)H NMR and PCA is a useful tool for the discrimination of maize silks in respect to their chemical composition, including rapid authentication of the raw material of current pharmacological interest.

  6. Identification of Phenolic Compounds in Red and Green Pistachio (Pistacia vera L.) Hulls (Exo- and Mesocarp) by HPLC-DAD-ESI-(HR)-MS(n).

    PubMed

    Erşan, Sevcan; Güçlü Üstündağ, Özlem; Carle, Reinhold; Schweiggert, Ralf M

    2016-07-06

    Phenolic constituents of the nonlignified red and green pistachio hulls (exo- and mesocarp) were assessed by HPLC-DAD-ESI-MS(n) as well as by HR-MS. A total of 66 compounds was identified in the respective aqueous methanolic extracts. Among them, gallic acid, monogalloyl glucoside, monogalloyl quinic acid, penta-O-galloyl-β-d-glucose, hexagalloyl hexose, quercetin 3-O-galactoside, quercetin 3-O-glucoside, quercetin 3-O-glucuronide, and (17:1)-, (13:0)-, and (13:1)-anacardic acids were detected at highest signal intensity. The main difference between red and green hulls was the presence of anthocyanins in the former ones. Differently galloylated hydrolyzable tannins, anthocyanins, and minor anacardic acids were identified for the first time. Pistachio hulls were thus shown to be a source of structurally diverse and potentially bioactive phenolic compounds. They therefore represent a valuable byproduct of pistachio processing having potential for further utilization as raw material for the recovery of pharmaceutical, nutraceutical, and chemical products.

  7. Natural polyphenols enhance stability of crosslinked UHMWPE for joint implants.

    PubMed

    Shen, Jie; Gao, Guorong; Liu, Xincai; Fu, Jun

    2015-03-01

    Radiation-crosslinked UHMWPE has been used for joint implants since the 1990s. Postirradiation remelting enhances oxidative stability, but with some loss in strength and toughness. Vitamin E-stabilized crosslinked UHMWPE has shown improved strength and stability as compared with irradiated and remelted UHMWPE. With more active phenolic hydroxyl groups, natural polyphenols are widely used in the food and pharmaceutical industries as potent stabilizers and could be useful for oxidative stability in crosslinked UHMWPE. We asked whether UHMWPE blended with polyphenols would (1) show higher oxidation resistance after radiation crosslinking; (2) preserve the mechanical properties of UHMWPE after accelerated aging; and (3) alter the wear resistance of radiation-crosslinked UHMWPE. The polyphenols, gallic acid and dodecyl gallate, were blended with medical-grade UHMWPE followed by consolidation and electron beam irradiation at 100 kGy. Radiation-crosslinked virgin and vitamin E-blended UHMWPEs were used as reference materials. The UHMWPEs were aged at 120 °C in air with oxidation levels analyzed by infrared spectroscopy. Tensile (n = 5 per group) and impact (n = 3 per group) properties before and after aging as per ASTM F2003 were evaluated. The wear rates were examined by pin-on-disc testing (n = 3 per group). The data were reported as mean ± SDs. Statistical analysis was performed by using Student's t-test for a two-tailed distribution with unequal variance for tensile and impact data obtained with n ≥ 3. A significant difference is defined with p < 0.05. The oxidation induction time of 100 kGy UHMWPE was prolonged to 144 hours with 0.05 wt% dodecyl gallate and 192 hours with 0.05 wt% gallic acid compared with 48 hours for 0.05 wt% vitamin E-blended UHMWPE. Accelerated aging of these polyphenol-blended UHMWPEs resulted in ultimate tensile strength of 50.4 ± 1.4 MPa and impact strength of 53 ± 5 kJ/m(2) for 100 kGy-irradiated UHMWPE with 0.05 wt% dodecyl gallate, for example, in comparison to 51.2 ± 0.7 MPa (p = 0.75) and 58 ± 5 kJ/m(2) (p = 0.29) before aging. The pin-on-disc wear rates of 100 kGy-irradiated UHMWPE with 0.05 wt% dodecyl gallate and 0.05 wt% gallic acid were 2.29 ± 0.31 and 1.65 ± 0.32 mg/million cycles, comparable to 1.68 ± 0.25 and 2.05 ± 0.22 mg/million cycles for 100 kGy-irradiated virgin and 0.05 wt% vitamin E-blended UHMWPE. Based on the sample numbers tested in this study, polyphenols appear to effectively enhance the oxidation stability without altering the mechanical properties or pin-on-disc wear rate of radiation-crosslinked UHMWPE. Crosslinked UHMWPE with natural polyphenols with improved oxidative stability and low wear may find clinical application in joint implants.

  8. Phytochemical and pharmacological variability in Golden Thistle functional parts: comparative study of roots, stems, leaves and flowers.

    PubMed

    Marmouzi, Ilias; El Karbane, Miloud; El Hamdani, Maha; Kharbach, Mourad; Naceiri Mrabti, Hanae; Alami, Rachid; Dahraoui, Souhail; El Jemli, Meryem; Ouzzif, Zhor; Cherrah, Yahia; Derraji, Soufiane; Faouzi, My El Abbes

    2017-11-01

    Scolymus hispanicus or the Golden Thistle, locally known as 'Guernina' or 'Taghediwt', is one of the most appreciated wild vegetables in Morocco. This study aims to characterise the functional chemical and pharmacological variability of Scolymus hispanicus parts (roots, stems, leaves and flowers). The chemical analysis revealed higher content of α-tocopherol in the flowers (2.79 ± 0.07 mg/100 g) and lead to the identification of 3 flavonoids and 13 phenolic acids, with high content of gallic acid in leaves (187.01 ± 10.19 mg/kg); chlorogenic (936.18 ± 92.66 mg/kg) and caffeic (4400.14 ± 191.43 mg/kg) acids in flowers, roots were much more higher in sinapic acid (0.25 ± 0.03 mg/kg) compared to the other parts. Moreover, Scolymus hispanicus ethanolic extracts exhibited interesting antioxidant and antimicrobial properties, promising anti-amylase and anti-glucosidase activities and relevant diuretic effect that confirms its traditional uses.

  9. A single use electrochemical sensor based on biomimetic nanoceria for the detection of wine antioxidants.

    PubMed

    Andrei, Veronica; Sharpe, Erica; Vasilescu, Alina; Andreescu, Silvana

    2016-08-15

    We report the development and characterization of a disposable single use electrochemical sensor based on the oxidase-like activity of nanoceria particles for the detection of phenolic antioxidants. The use of nanoceria in the sensor design enables oxidation of phenolic compounds, particularly those with ortho-dihydroxybenzene functionality, to their corresponding quinones at the surface of a screen printed carbon electrode. Detection is carried out by electrochemical reduction of the resulting quinone at a low applied potential of -0.1V vs the Ag/AgCl electrode. The sensor was optimized and characterized with respect to particle loading, applied potential, response time, detection limit, linear concentration range and sensitivity. The method enabled rapid detection of common phenolic antioxidants including caffeic acid, gallic acid and quercetin in the µM concentration range, and demonstrated good functionality for the analysis of antioxidant content in several wine samples. The intrinsic oxidase-like activity of nanoceria shows promise as a robust tool for sensitive and cost effective analysis of antioxidants using electrochemical detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Analysis of phenolic compounds in Matricaria chamomilla and its extracts by UPLC-UV

    PubMed Central

    Haghi, G.; Hatami, A.; Safaei, A.; Mehran, M.

    2014-01-01

    Chamomile (Matricaria chamomilla L.) is a widely used medicinal plant possessing several pharmacological effects due to presence of active compounds. This study describes a method of using ultra performance liquid chromatography (UPLC) coupled with photodiode array (PDA) detector for the separation of phenolic compounds in M. chamomilla and its crude extracts. Separation was conducted on C18 column (150 mm × 2 mm, 1.8 μm) using a gradient elution with a mobile phase consisting of acetonitrile and 4% aqueous acetic acid at 25°C. The method proposed was validated for determination of free and total apigenin and apigenin 7-glucoside contents as bioactive compounds in the extracts by testing sensitivity, linearity, precision and recovery. In general, UPLC produced significant improvements in method sensitivity, speed and resolution. Extraction was performed with methanol, 70% aqueous ethanol and water solvents. Total phenolic and total flavonoid contents ranged from 1.77 to 50.75 gram (g) of gallic acid equivalent (GAE)/100 g and 0.82 to 36.75 g quercetin equivalent (QE)/100 g in dry material, respectively. There was a considerable difference from 40 to 740 mg/100 g for apigenin and 210 to 1110 mg/100 g for apigenin 7-glucoside in dry material. PMID:25598797

  11. Composition and biological activities of hydrolyzable tannins of fruits of Phyllanthus emblica.

    PubMed

    Yang, Baoru; Liu, Pengzhan

    2014-01-22

    Fruits of emblic leafflower have been used as food and traditional medicine in Asia. A wide range of biological activities have been shown in modern research suggesting potential of the fruits as healthy food and raw material for bioactive ingredients of food. Hydrolyzable tannins are among the major bioactive components of the fruits. Mucic acid gallate, mucic acid lactone gallate, monogalloylglucose, gallic acid, digalloylglucose, putranjivain A, galloyl-HHDP-glucose, elaeocarpusin, and chebulagic acid are the most abundant hydrolyzable tannins. The compositional profiles of tannins in the fruits vary depending on the cultivars as well as ripening stages. Fruits and tannin-rich extracts of fruits have shown antidiabetic, antimicrobial, anti-inflammatory, and immune-regulating activities in vitro and in animal studies. The fruits and fruit extracts have manifested protective effects on organs/tissues from damages induced by chemicals, stresses, and aging in animal models. The fruits and fruit extracts have potential in inhibiting the growth of cancer cells and reducing DNA damage induced by chemicals and radiation. Antioxidative activities are likely among the mechanisms of the biological activities and physiological effects. Human intervention/clinical studies are needed to investigate the bioavailability and metabolism of the tannins and to substantiate the health benefits in humans. Emblic leafflower may be a potential raw material for natural food preservatives.

  12. Evaluation of antioxidant capacity and flavor profile change of pomegranate wine during fermentation and aging process.

    PubMed

    Lan, Yongli; Wu, Jin; Wang, Xuejiao; Sun, Xuchun; Hackman, Robert M; Li, Zhixi; Feng, Xianchao

    2017-10-01

    Antioxidant properties and flavor characteristic profile of pomegranate wine during winemaking were investigated. The total phenol content and radical scavenging activity exhibited a slightly decrease in the end edge. Punicalagins and gallic acid were revealed to be the most abundant phenolic compounds, followed by ellagic acid and vanillic acid. These constituents were mainly responsible for the effective antioxidant capacity of pomegranate wine. The major changes of flavor qualities occurred in the initial stage, particularly 0-4day of fermentation. Fermentation significantly reduced the relative content of aldehydes, ketones, heterocyclic and aromatic compounds, but promoted the generation of esters and alcohols. This is the first time of using E-nose and E-tongue to monitor odour and taste changes in the brewing process of pomegranate wine. The study may provide a promising instruction for improving functional features and quality control of the pomegranate wine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Surfactant-enhanced disinfection of the human norovirus surrogate, Tulane virus, with organic acids and surfactant

    USDA-ARS?s Scientific Manuscript database

    Combination treatments of surfactants and phenolic or short-chained organic acids (SCOA) may act synergistically or additively as sanitizers to inactive foodborne viruses and prevent outbreaks. The purpose of this study was to investigate the effect of gallic acid (GA), tannic acid (TA), p-coumaric ...

  14. 21 CFR 184.1097 - Tannic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Tannic acid. 184.1097 Section 184.1097 Food and... Substances Affirmed as GRAS § 184.1097 Tannic acid. (a) Tannic acid (CAS Reg. No. 1401-55-4), or hydrolyzable gallotannin, is a complex polyphenolic organic structure that yields gallic acid and either glucose or quinic...

  15. 21 CFR 184.1097 - Tannic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Tannic acid. 184.1097 Section 184.1097 Food and... Substances Affirmed as GRAS § 184.1097 Tannic acid. (a) Tannic acid (CAS Reg. No. 1401-55-4), or hydrolyzable gallotannin, is a complex polyphenolic organic structure that yields gallic acid and either glucose or quinic...

  16. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    USDA-ARS?s Scientific Manuscript database

    Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis, by addition of a methyl, methoxyl or a chloro group at position 4 of the aromatic ri...

  17. Development and validation of a simple high performance thin layer chromatography method combined with direct 1,1-diphenyl-2-picrylhydrazyl assay to quantify free radical scavenging activity in wine.

    PubMed

    Agatonovic-Kustrin, Snezana; Morton, David W; Yusof, Ahmad P

    2016-04-15

    The aim of this study was to: (a) develop a simple, high performance thin layer chromatographic (HPTLC) method combined with direct 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay to rapidly assess and compare free radical scavenging activity or anti-oxidant activity for major classes of polyphenolics present in wines; and (b) to investigate relationship between free radical scavenging activity to the total polyphenolic content (TPC) and total antioxidant capacity (TAC) in the wine samples. The most potent free radical scavengers that we tested for in the wine samples were found to be resveratrol (polyphenolic non-flavonoid) and rutin (flavonoid), while polyphenolic acids (caffeic acid and gallic acid) although present in all wine samples were found to be less potent free radical scavengers. Therefore, the total antioxidant capacity was mostly affected by the presence of resveratrol and rutin, while total polyphenolic content was mostly influenced by the presence of the less potent free radical scavengers gallic and caffeic acids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Metabolic variation and antioxidant potential of Malus prunifolia (wild apple) compared with high flavon-3-ol containing fruits (apple, grapes) and beverage (black tea).

    PubMed

    Maria John, K M; Enkhtaivan, Gansukh; Kim, Ju Jin; Kim, Doo Hwan

    2014-11-15

    Secondary metabolic variation of wild apple (Malus prunifolia) was compared with fruits that contained high flavan-3-ol like grapes (GR), apple (App) and the beverage, black tea (BT). The polyphenol contents in wild apple was higher than in GR and App but less than BT. The identified phenolic acids (gallic, protocatechuic, chlorogenic, p-coumaric and ferulic acids) and flavonoids (quercetin and myricetin) indicate that wild apple was higher than that of App. Among all the samples, BT had highest antioxidant potential in terms of 2,2'-Azinobis (3-thylbenzothiazoline-6-sulfonic acid) diammonium salt (95.36%), metal chelating (45.36%) and phosphomolybdenum activity (95.8 mg/g) because of the high flavan-3-ol content. The gallic acid and epigallocatechin gallate were highly correlated with antioxidant potential and these metabolites levels are higher in wild apple than that of App. Wild apples being a non-commercial natural source, a detailed study of this plant will be helpful for the food additive and preservative industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Antioxidant synergistic effects of Osmanthus fragrans flowers with green tea and their major contributed antioxidant compounds.

    PubMed

    Mao, Shuqin; Wang, Kaidi; Lei, Yukun; Yao, Shuting; Lu, Baiyi; Huang, Weisu

    2017-04-19

    The antioxidant synergistic effects of Osmanthus fragrans flowers with green tea were evaluated, and their major antioxidant compounds contributed to the total amount of synergy were determined. The antioxidant compounds in O. fragrans flowers with green tea were identified by LC-MS and quantified by UPLC-PDA. The synergistic antioxidant interactions between O. fragrans flowers with green tea and their antioxidant compounds were tested using the Prieto's model after the simulated digestion. The main antioxidant compounds in O. fragrans flowers were acteoside and salideroside, whereas the main antioxidant compounds in green tea were caffeine, gallic acid, and L-epicatechin. The significant synergistic effect between O. fragrans flowers and green tea was observed and among nearly all of the combinations of their antioxidant compounds. Among the combinations, acteoside and gallic acid contributed most to the antioxidant synergy between O. fragrans flowers and green tea. However, the simulated digestion decreased this antioxidant synergy because it reduced the contents and the antioxidant capacities of their compounds, as well as the antioxidant synergy among the compounds.

  20. Green synthesis of Se/Ru alloy nanoparticles using gallic acid and evaluation of theiranti-invasive effects in HeLa cells.

    PubMed

    Zhou, Yanhui; Xu, Meng; Liu, Yanan; Bai, Yan; Deng, Yuqian; Liu, Jie; Chen, Lanmei

    2016-08-01

    Methods for the synthesis of nanoparticles (NPs) for biomedical applications ideally involve the use of nontoxic reducing and capping agents, and more importantly, enable control over the shape and size of the particles. As such, we used gallic acid (GA) as both a reducing and a capping agent in a simple and "green" synthesis of stable Se/Rualloy NPs (GA-Se/RuNPs). The diameter and morphology of the Se/Ru alloy NPs were regulated by GA concentration, and the presence of Ru was found to be a key factor in regulating and controlling the size of GA-Se/RuNPs. Moreover, GA-Se/RuNPs suppressed HeLa cell proliferation through the induction of apoptosis at concentrations that were nontoxic in normal cells. Furthermore, GA-Se/RuNPs effectively inhibited migration and invasion in HeLa cells via the inhibition of MMP-2 and MMP-9 proteins. Our findings confirm that bimetallic (Se/Ru) NPs prepared via GA-mediated synthesis exhibit enhanced anticancer effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A computational investigation on the structure, global parameters and antioxidant capacity of a polyphenol, Gallic acid.

    PubMed

    Rajan, Vijisha K; Muraleedharan, K

    2017-04-01

    A computational DFT-B3LYP structural analysis of a poly phenol, Gallic acid (GA) has been performed by using 6-311++ G (df, p) basis set. The GA is a relatively stable molecule with considerable radical scavenging capacity. It is a well known antioxidant. The NBO analysis shows that the aromatic system is delocalized. The results reveal that the most stable radical is formed at O 3 -atom upon scavenging the free radicals. Global descriptive parameters show that GA acts as an acceptor center in charge transfer complex formation which is supported by ESP and contour diagrams and also by Q max value. The GA is a good antioxidant and it can be better understood by HAT and TMC mechanisms as it has low BDE, ΔH acidity and ΔG acidity values. The ΔBDE and ΔAIP values also confirm that the antioxidant capacity of GA can be explained through HAT rather than the SET-PT mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds.

    PubMed

    Gülçin, Ilhami

    2005-11-01

    Water and ethanol crude extracts from black pepper (Piper nigrum) were investigated for their antioxidant and radical scavenging activities in six different assay, namely, total antioxidant activity, reducing power, 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, and metal chelating activities. Both water extract (WEBP) and ethanol extract (EEBP) of black pepper exhibited strong total antioxidant activity. The 75 microg/ml concentration of WEBP and EEBP showed 95.5% and 93.3% inhibition on peroxidation of linoleic acid emulsion, respectively. On the other hand, at the same concentration, standard antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and alpha-tocopherol exhibited 92.1%, 95.0%, and 70.4% inhibition on peroxidation of linoleic acid emulsion, respectively. Also, total phenolic content in both WEBP and EEBP were determined as gallic acid equivalents. The total phenolics content of water and ethanol extracts were determined by the Folin-Ciocalteu procedure and 54.3 and 42.8 microg gallic acid equivalent of phenols was detected in 1 mg WEBP and EEBP.

  3. Antiinflammatory and antioxidant activities of gum mastic.

    PubMed

    Mahmoudi, M; Ebrahimzadeh, M A; Nabavi, S F; Hafezi, S; Nabavi, S M; Eslami, Sh

    2010-09-01

    Pistacia lentiscus has traditionally been used in the treatment of many diseases. Its resin was investigated for its mineral contents, anti-inflammatory and antioxidant activities in rats. Inhibition of carrageenan induced edema was used to evaluate anti-inflammatory activity. Fe2+ chelating ability, 1,1-diphenyl-2-picryl hydrazyl radical (DPPH) and nitric oxide scavenging activities were used to evaluate antioxidant activities and mineral contents were determined by atomic absorption spectroscopy. Gallic acid content was determined by HPLC. Resin produced statistically significant inhibition of edema at all doses when compared to the control groups. A 100% inhibition of inflammation was observed at 800 mg/kg i.p. Resin exhibit no toxicity up to 3 g/kg body weights i.p. in mice. Weak DPPH and nitric oxide scavenging activities were observed but showed good Fe2+ chelating ability (IC50 = 162 microg ml(-1)). The amount of elements was decreased in the order: Cu > Fe, Zn > Mn > Ni, Cd. Gallic acid content was 0.1 mg/g resin. These experimental data support the use of Pistacia lentiscus resin as an antiinflammatory and antioxidant agent.

  4. Antioxidant and antimicrobial properties of phenolic rich fraction of Seabuckthorn (Hippophae rhamnoides L.) leaves in vitro.

    PubMed

    Yogendra Kumar, M S; Tirpude, R J; Maheshwari, D T; Bansal, Anju; Misra, Ksipra

    2013-12-15

    Phenolic rich fraction (PRF) from Seabuckthorn leaves was prepared by sequential fractionation. Total phenolic content of PRF estimated as gallic acid equivalent was found to be 319.33±7.02 mg/g of PRF. Its major constituents gallic acid, rutin, quercetin-3-galactoside, quercetin-3-glucoside, myricetin, quercetin, kaempferol and isorhamnetin, were found in the range of 1.551-196.89 mg/g of PRF as determined by RP-HPLC. Antioxidant activity of PRF evaluated using 2,2-diphenyl-2-picrylhydrazyl, superoxide and nitric oxide scavenging assays. Reducing power of PRF increased with increasing amount of PRF; the equation of reducing power (y) and amount of PRF (x) was y=8.004x (r(2)=0.99), indicating that reducing ability correlated well with amount of PRF. Antibacterial activity of PRF, tested against certain medically important bacterial species showed growth inhibiting effect against Escherichia coli, Salmonella typhi, Shigella dysenteriae, Streptococcus pneumoniae and Staphylococcus aureus. In conclusion, PRF has potent antioxidant and broad spectrum antibacterial properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Gadolinium-Doped Gallic Acid-Zinc/Aluminium-Layered Double Hydroxide/Gold Theranostic Nanoparticles for a Bimodal Magnetic Resonance Imaging and Drug Delivery System.

    PubMed

    Sani Usman, Muhammad; Hussein, Mohd Zobir; Fakurazi, Sharida; Masarudin, Mas Jaffri; Ahmad Saad, Fathinul Fikri

    2017-08-31

    We have developed gadolinium-based theranostic nanoparticles for co-delivery of drug and magnetic resonance imaging (MRI) contrast agent using Zn/Al-layered double hydroxide as the nanocarrier platform, a naturally occurring phenolic compound, gallic acid (GA) as therapeutic agent, and Gd(NO₃)₃ as diagnostic agent. Gold nanoparticles (AuNPs) were grown on the system to support the contrast for MRI imaging. The nanoparticles were characterized using techniques such as Hi-TEM, XRD, ICP-ES. Kinetic release study of the GA from the nanoparticles showed about 70% of GA was released over a period of 72 h. The in vitro cell viability test for the nanoparticles showed relatively low toxicity to human cell lines (3T3) and improved toxicity on cancerous cell lines (HepG2). A preliminary contrast property test of the nanoparticles, tested on a 3 Tesla MRI machine at various concentrations of GAGZAu and water (as a reference) indicates that the nanoparticles have a promising dual diagnostic and therapeutic features to further develop a better future for clinical remedy for cancer treatment.

  6. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats.

    PubMed

    Ibitoye, Oluwayemisi B; Ajiboye, Taofeek O

    2017-12-20

    This study investigated the influence of caffeic, ferulic, gallic and protocatechuic acids on high-fructose diet-induced metabolic syndrome in rats. Oral administration of the phenolic acids significantly reversed high-fructose diet-mediated increase in body mass index and blood glucose. Furthermore, phenolic acids restored high-fructose diet-mediated alterations in metabolic hormones (insulin, leptin and adiponectin). Similarly, elevated tumour necrosis factor-α, interleukin-6 and -8 were significantly lowered. Administration of phenolic acids restored High-fructose diet-mediated increase in the levels of lipid parameters and indices of atherosclerosis, cardiac and cardiovascular diseases. High-fructose diet-mediated decrease in activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase) and increase in oxidative stress biomarkers (reduced glutathione, lipid peroxidation products, protein oxidation and fragmented DNA) were significantly restored by the phenolic acids. The result of this study shows protective influence of caffeic acid, ferulic acid, gallic acid and protocatechuic acid in high-fructose diet-induced metabolic syndrome.

  7. Influence of apple and citrus pectins, processed mango peels, a phenolic mango peel extract, and gallic Acid as potential feed supplements on in vitro total gas production and rumen methanogenesis.

    PubMed

    Geerkens, Christian Hubert; Schweiggert, Ralf Martin; Steingass, Herbert; Boguhn, Jeannette; Rodehutscord, Markus; Carle, Reinhold

    2013-06-19

    Several food processing byproducts were assessed as potential feed and feed supplements. Since their chemical composition revealed a high nutritional potential for ruminants, the Hohenheim in vitro gas test was used to investigate total gas, methane, and volatile fatty acid production as well as protozoal numbers after ruminal digestion of different substrate levels. Processing byproducts used were low- and high-esterified citrus and apple pectins, integral mango peels, and depectinized mango peels. In addition, the effect of a phenolic mango peel extract and pure gallic acid was investigated. The highest decrease in methane production (19%) was achieved by supplementing high levels of low-esterified citrus pectin to the hay-based diet. Interestingly, total gas production was not affected at the same time. Showing valuable nutritional potential, all byproducts exhibited, e.g., high metabolizable energy (11.9-12.8 MJ/kg DM). In conclusion, all byproducts, particularly low-esterified citrus pectin, revealed promising potential as feed and feed supplements.

  8. Antioxidant properties and phenolic profile characterization by LC-MS/MS of selected Tunisian pomegranate peels.

    PubMed

    Abid, Mouna; Yaich, Héla; Cheikhrouhou, Salma; Khemakhem, Ibtihel; Bouaziz, Mohamed; Attia, Hamadi; Ayadi, M A

    2017-08-01

    Antioxidant contents and activities of different extracts from four Tunisian pomegranate peels, locally called "Acide", "Gabsi", "Nebli" and "Tounsi", were studied. Peels samples were extracted with three solvents (water, ethanol and acetone). For each extract, the total phenol contents and antioxidant activity were evaluated. The highest values of polyphenol, tannins, flavonoids and anthocyanins were recorded in the acetone extract of Acide ecotype with 304.6 mg gallic acid equivalent/g; 292.23 mg gallic acid equivalent/g; 15.46 mg Quercetin/g and 54.51 mg cy-3-glu/100 g, respectively. The acetone extract of Acide ecotype also showed the highest free radical-scavenging and reducing power activity compared to other extracts. Besides, the phytochemical analysis by LC-MS/MS revealed a high content of ellagitannins with punicalagin and punicalagin derivatives as the major compounds that might be responsible for promising antioxidant activity of pomegranate peel extracts. Two compounds (Castalagin derivative and Galloyl-bis-HHDP-hex derivative) were detected only in "Acide" ecotype in important contents.

  9. Catalytic determination of vanadium in water

    USGS Publications Warehouse

    Fishman, M. J.; Skougstad, M.W.

    1964-01-01

    A rapid, accurate, and sensitive spectrophotometric method for the quantitative determination of trace amounts of vanadium in water is based on the catalytic effect of vanadium on the rate of oxidation of gallic acid by persulfate in acid solution. Under given conditions of concentrations of reactants, temperature, and reaction time, the extent of oxidation of gallic acid is proportional to the concentration of vanadium present. Vanadium is determined by measuring the absorbance of the sample at 415 m?? and comparison with standard solutions treated in an identical manner. Concentrations in the range of from 0.1 to 8.0 ??g. per liter may be determined with a standard deviation of 0.2 or less. By reducing the reaction time, the method may be extended to cover the range from 1 to 100 ??g. with a standard deviation of 0.8 or less. Several substances interfere, including chloride above 100 p.p.m., and bromide and iodide in much lower concentrations. Interference from the halides is eliminated or minimized by the addition of mercuric nitrate solution. Most other substances do not interfere at the concentration levels at which they commonly occur in natural waters.

  10. Gallic acid/hydroxypropyl-β-cyclodextrin complex: Improving solubility for application on in vitro/ in vivo Candida albicans biofilms

    PubMed Central

    Teodoro, Guilherme Rodrigues; Salvador, Marcos José; Koga-Ito, Cristiane Yumi

    2017-01-01

    The aim of this study was to increase the solubility of gallic acid (GA) for the treatment of Candida albicans biofilm, which is very difficult to treat and requires high drug concentrations. Cyclodextrins (CDs) were used for this purpose. Complexes were evaluated by phase-solubility studies, prepared by spray drying and characterized by drug loading, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The complexes were tested on C. albicans biofilm using in vitro and in vivo models. HPβCD formed soluble inclusion complexes with GA. The percentage of GA in GA/HPβCD was 10.8 ± 0.01%. The SEM and DSC analyses confirmed the formation of inclusion complexes. GA/HPβCD maintained the antimicrobial activity of the pure GA. GA/HPβCD was effective on C. albicans biofilms of 24 and 48h. The in vivo results showed an anti-inflammatory activity of GA/HPβCD with no difference in invading hypha counting among the groups. This study encourages the development of new antifungal agents. PMID:28700692

  11. Antioxidant activity, phenolic content, and peroxide value of essential oil and extracts of some medicinal and aromatic plants used as condiments and herbal teas in Turkey.

    PubMed

    Ozcan, Mehmet Musa; Erel, Ozcan; Herken, Emine Etöz

    2009-02-01

    The antioxidant activity, total peroxide values, and total phenol contents of several medicinal and aromatic plant essential oil and extracts from Turkey were examined. Total phenolic contents were determined using a spectrophotometric technique and calculated as gallic acid equivalents. Total antioxidant activity of essential oil and extracts varied from 0.6853 to 1.3113 and 0.3189 to 0.6119 micromol of Trolox equivalents/g, respectively. The total phenolic content of essential oil ranged from 0.0871 to 0.5919 mg of gallic acid/g dry weight. However, the total phenolic contents of extracts were found to be higher compared with those of essential oils. The amount of total peroxide values of oils varied from 7.31 (pickling herb) to 58.23 (bitter fennel flower) mumol of H(2)O(2)/g. As a result, it is shown that medicinal plant derivatives such as extract and essential oils can be useful as a potential source of total phenol, peroxide, and antioxidant capacity for protection of processed foods.

  12. Discovery of a new mitochondria permeability transition pore (mPTP) inhibitor based on gallic acid.

    PubMed

    Teixeira, José; Oliveira, Catarina; Cagide, Fernando; Amorim, Ricardo; Garrido, Jorge; Borges, Fernanda; Oliveira, Paulo J

    2018-12-01

    Pharmacological interventions targeting mitochondria present several barriers for a complete efficacy. Therefore, a new mitochondriotropic antioxidant (AntiOxBEN 3 ) based on the dietary antioxidant gallic acid was developed. AntiOxBEN 3 accumulated several thousand-fold inside isolated rat liver mitochondria, without causing disruption of the oxidative phosphorylation apparatus, as seen by the unchanged respiratory control ratio, phosphorylation efficiency, and transmembrane electric potential. AntiOxBEN 3 showed also limited toxicity on human hepatocarcinoma cells. Moreover, AntiOxBEN 3 presented robust iron-chelation and antioxidant properties in both isolated liver mitochondria and cultured rat and human cell lines. Along with its low toxicity profile and high antioxidant activity, AntiOxBEN 3 strongly inhibited the calcium-dependent mitochondrial permeability transition pore (mPTP) opening. From our data, AntiOxBEN 3 can be considered as a lead compound for the development of a new class of mPTP inhibitors and be used as mPTP de-sensitiser for basic research or clinical applications or emerge as a therapeutic application in mitochondria dysfunction-related disorders.

  13. Hydrolyzable Tannins from Sweet Chestnut Fractions Obtained by a Sustainable and Eco-friendly Industrial Process.

    PubMed

    Campo, Margherita; Pinelli, Patrizia; Romani, Annalisa

    2016-03-01

    Sweet Chestnut (Castanea sativa Mill.) wood extracts, rich in Hydrolyzable Tannins (HTs), are traditionally used in the tanning and textile industries, but recent studies suggest additional uses. The aim of this work is the HPLC-DAD-ESI-MS characterization of Sweet Chestnut aqueous extracts and fractions obtained through a membrane separation technology system without using other solvents, and the evaluation of their antioxidant and antiradical activities. Total tannins range between 2.7 and 138.4 mM; gallic acid ranges between 6% and 100%; castalagin and vescalagin range between 0% and 40%. Gallic Acid Equivalents, measured with the Folin-Ciocalteu test, range between 0.067 and 56.99 g/100 g extract weight; ORAC test results for the marketed fractions are 450.4 and 3050 µmol/g Trolox Equivalents/extract weight. EC₅₀ values, measured with the DPPH test, range between 0.444 and 2.399 µM. These results suggest a new ecofriendly and economically sustainable method for obtaining chestnut fractions with differentiated, stable and reproducible chemical compositions. Such fractions can be marketed for innovative uses in several sectors.

  14. Antidiabetic and antioxidant functionality associated with phenolic constituents from fruit parts of indigenous black jamun (Syzygium cumini L.) landraces.

    PubMed

    Gajera, H P; Gevariya, Shila N; Hirpara, Darshna G; Patel, S V; Golakiya, B A

    2017-09-01

    Fruit phenolics are important dietary antioxidant and antidiabetic constituents. The fruit parts (pulp, seed, seed coat, kernel) of underutilized indigenous six black jamun landraces ( Syzygium cumini L.), found in Gir forest region of India and differed in their fruit size, shape and weight, are evaluated and correlated with antidiabetic, DPPH radical scavenging and phenolic constituents. The α-amylase inhibitors propose an efficient antidiabetic strategy and the levels of postprandial hyperglycemia were lowered by restraining starch breakdown. The sequential solvent systems with ascending polarity-petroleum ether, ethyl acetate, methanol and water were performed for soxhlet extraction by hot percolation method and extractive yield was found maximum with methanolic fruit part extracts of six landraces. The methanolic extracts of fruit parts also evidenced higher antidiabetic activity and hence utilized for further characterization. Among the six landraces, pulp and kernel of BJLR-6 (very small, oblong fruits) evidenced maximum 53.8 and 98.2% inhibition of α-amylase activity, respectively. The seed attained inhibitory activity mostly contributed by the kernel fraction. The inhibition of DPPH radical scavenging activity was positively correlated with phenol constituents. An HPLC-PDA technique was used to quantify the seven individual phenolics. The seed and kernel of BJLR-6 exhibited higher individual phenolics-gallic, catechin, ellagic, ferulic acids and quercetin, whereas pulp evidenced higher with gallic acid and catechin as α-amylase inhibitors. The IC 50 value indicates concentration of fruit extracts exhibiting ≥50% inhibition on porcine pancreatic α-amylase (PPA) activity. The kernel fraction of BJLR6 evidenced lowest (8.3 µg ml -1 ) IC 50 value followed by seed (12.9 µg ml -1 ), seed coat (50.8 µg ml -1 ) and pulp (270 µg ml -1 ). The seed and kernel of BJLR-6 inhibited PPA at much lower concentrations than standard acarbose (24.7 µg ml -1 ) considering good candidates for antidiabetic herbal formulations.

  15. Gallic Acid Ameliorated Impaired Glucose and Lipid Homeostasis in High Fat Diet-Induced NAFLD Mice

    PubMed Central

    Chao, Jung; Huo, Teh-Ia; Cheng, Hao-Yuan; Tsai, Jen-Chieh; Liao, Jiunn-Wang; Lee, Meng-Shiou; Qin, Xue-Mei; Hsieh, Ming-Tsuen; Pao, Li-Heng; Peng, Wen-Huang

    2014-01-01

    Gallic acid (GA), a naturally abundant plant phenolic compound in vegetables and fruits, has been shown to have potent anti-oxidative and anti-obesity activity. However, the effects of GA on nonalcoholic fatty liver disease (NAFLD) are poorly understood. In this study, we investigated the beneficial effects of GA administration on nutritional hepatosteatosis model by a more “holistic view” approach, namely 1H NMR-based metabolomics, in order to prove efficacy and to obtain information that might lead to a better understanding of the mode of action of GA. Male C57BL/6 mice were placed for 16 weeks on either a normal chow diet, a high fat diet (HFD, 60%), or a high fat diet supplemented with GA (50 and 100 mg/kg/day, orally). Liver histopathology and serum biochemical examinations indicated that the daily administration of GA protects against hepatic steatosis, obesity, hypercholesterolemia, and insulin resistance among the HFD-induced NAFLD mice. In addition, partial least squares discriminant analysis scores plots demonstrated that the cluster of HFD fed mice is clearly separated from the normal group mice plots, indicating that the metabolic characteristics of these two groups are distinctively different. Specifically, the GA-treated mice are located closer to the normal group of mice, indicating that the HFD-induced disturbances to the metabolic profile were partially reversed by GA treatment. Our results show that the hepatoprotective effect of GA occurs in part through a reversing of the HFD caused disturbances to a range of metabolic pathways, including lipid metabolism, glucose metabolism (glycolysis and gluconeogenesis), amino acids metabolism, choline metabolism and gut-microbiota-associated metabolism. Taken together, this study suggested that a 1H NMR-based metabolomics approach is a useful platform for natural product functional evaluation. The selected metabolites are potentially useful as preventive action biomarkers and could also be used to help our further understanding of the effect of GA in hepatosteatosis mice. PMID:24918580

  16. Development and validation of High-performance Thin-layer Chromatography Method for Simultaneous Determination of Polyphenolic Compounds in Medicinal Plants.

    PubMed

    Jayachandran Nair, C V; Ahamad, Sayeed; Khan, Washim; Anjum, Varisha; Mathur, Rajani

    2017-12-01

    Quantitative standardization of plant-based products is challenging albeit essential to maintain their quality. This study aims to develop and validate high-performance thin-layer chromatography (HPTLC) method for the simultaneous determination of rutin (Ru), quercetin (Qu), and gallic acid (Ga) from Psidium guajava Linn. (PG) and Aegle marmelos (L.) Correa. (AM) and correlate with antioxidant activity. The stock solution (1 mg/mL) of standard Ru, Qu, and Ga in methanol: Water (1:1) was serially diluted and spotted (5 μL) on slica gel 60 F 254 thin-layer chromatography plates. Toluene: Ethyl acetate: Formic acid: Methanol (3:4:0.8:0.7, v/v/v) was selected as mobile phase for analysis at 254 nm. Hydroalcoholic (1:1) extracts of leaves of PG and AM were fractionated and similarly analyzed. Antioxidant activity was also determined using 2, 2-diphenyl-1-picrylhydrazyl assay. The developed method was robust and resolved Ru, Qu, and Ga at R f 0.08 ± 0.02, 0.76 ± 0.01, and 0.63 ± 0.02, respectively. The intra-day, interday precision, and interanalyst were <2% relative standard deviation. The limit of detection and limit of quantification for Ru, Qu, and Ga were 4.51, 4.2, 5.27, and 13.67, 12.73, 15.98 ng/spot, respectively. Antioxidant activity (Log 50% inhibition) of PG and AM was 4.947 ± 0.322 and 6.498 ± 0.295, respectively. The developed HPTLC method was rapid, accurate, precise, reproducible, and specific for the simultaneous estimation of Ru, Qu, and Ga. HPTLC method for simultaneous determination and quantification of Rutin, Quercetin and Gallic acid, is reported for quality control of herbal drugs. Abbreviations Used: A: Aqueous fraction; AM: Aegle marmelos L. Correa; B: Butanol fraction; C: Chloroform fraction; EA: Ethyl acetate fraction; Ga: Gallic acid; H: Hexane fraction; HA: Hydroalcoholic extract; HPTLC: High-performance thin-layer chromatography; PG: Psidium guajava ; Qu: Quercetin; Ru: Rutin.

  17. Efficient procedure for isolating methylated catechins from green tea and effective simultaneous analysis of ten catechins, three purine alkaloids, and gallic acid in tea by high-performance liquid chromatography with diode array detection.

    PubMed

    Hu, Bing; Wang, Lin; Zhou, Bei; Zhang, Xin; Sun, Yi; Ye, Hong; Zhao, Liyan; Hu, Qiuhui; Wang, Guoxiang; Zeng, Xiaoxiong

    2009-04-10

    Monomers of (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCG), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3''Me) and (-)-3-O-methyl epicatechin gallate (ECG3'Me) (purity, >97%) were successfully prepared from extract of green tea by two-time separation with Toyopearl HW-40S column chromatography eluted by 80% ethanol. In addition, monomers of (-)-catechin (C), (-)-gallocatechin (GC), (-)-gallocatechin gallate (GCG), and (-)-catechin gallate (CG) (purity, >98%) were prepared from EC, EGC, EGCG, and ECG by heat-epimerization and semi-preparative HPLC chromatography. With the prepared catechin standards, an effective and simultaneous HPLC method for the analysis of gallic acid, tea catechins, and purine alkaloids in tea was developed in the present study. Using an ODS-100Z C(18) reversed-phase column, fourteen compounds were rapidly separated within 15min by a linear gradient elution of formic acid solution (pH 2.5) and methanol. A 2.5-7-fold reduction in HPLC analysis time was obtained from existing analytical methods (40-105min) for gallic acid, tea catechins including O-methylated catechins and epimers of epicatechins, as well as purine alkaloids. Detection limits were generally on the order of 0.1-1.0ng for most components at the applied wavelength of 280nm. Method replication generally resulted in intraday and interday peak area variation of <6% for most tested components in green, Oolong, black, and pu-erh teas. Recovery rates were generally within the range of 92-106% with RSDs less than 4.39%. Therefore, advancement has been readily achievable with commonly used chromatography equipments in the present study, which will facilitate the analytical, clinical, and other studies of tea catechins.

  18. Cocrystals of a 1,2,4-thiadiazole-based potent neuroprotector with gallic acid: solubility, thermodynamic stability relationships and formation pathways.

    PubMed

    Surov, Artem O; Churakov, Andrei V; Proshin, Alexey N; Dai, Xia-Lin; Lu, Tongbu; Perlovich, German L

    2018-05-30

    Three distinct solid forms, namely anhydrous cocrystals with 2 : 1 and 1 : 1 drug/acid ratios ([TDZ : GA] (2 : 1), [TDZ : GA] (1 : 1)), and a hydrated one having 1 : 1 : 1 drug/acid/water stoichiometry ([TDZ : GA : H2O] (1 : 1 : 1)), have been formed by cocrystallization of the biologically active 1,2,4-thiadiazole derivative (TDZ) with gallic acid (GA). The thermodynamic stability relationships between the cocrystals were rationalized in terms of Gibbs energies of the formation reactions and further verified by performing a set of competitive and exchange mechanochemical reactions. Interestingly, competitive grinding in the presence of the structurally related vanillic acid led to the formation of a new polymorphic form of the [TDZ : Vanillic acid] (1 : 1) cocrystal, which was promoted by gallic acid. The mechanochemical method was also applied to elucidate the alternative pathways of the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal formation. Direct cocrystallization of TDZ with GA monohydrate was found to proceed much faster than the reaction of TDZ and anhydrous GA in the presence of an acetonitrile/water mixture, which may indicate the presence of a transitional stage. According to dissolution studies, the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal was ca. 6.6 times more soluble than the parent 1,2,4-thiadiazole at pH 2.0 and 25.0 °C. The apparent two-step dehydration behavior of the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal monohydrate was clarified by analyzing the intermolecular interactions of water molecules with the crystalline environment derived from solid state DFT calculations.

  19. Chromatographic and Spectrophotometric Analysis of Phenolic Compounds from Fruits of Libidibia ferrea Martius

    PubMed Central

    Ferreira, Magda R. A.; Fernandes, Mônica T. M.; da Silva, Wliana A. V.; Bezerra, Isabelle C. F.; de Souza, Tatiane P.; Pimentel, Maria F.; Soares, Luiz A. L.

    2016-01-01

    Background: Libidibia ferrea (Mart. ex Tul.) L.P. Queiroz (Fabaceae) is a tree which is native to Brazil, widely known as “Jucá,” where its herbal derivatives are used in folk medicine with several therapeutic properties. The constituents, which have already been described in the fruit, are mainly hydrolysable tannins (gallic acid [GA] and ellagic acid [EA]). Objective: The aim of this study was to investigate the phenolic variability in the fruit of L. ferrea by ultraviolet/visible (UV/VIS) and chromatographic methods (high-performance liquid chromatography [HPLC]/high-performance thin layer chromatography [HPTLC]). Materials and Methods: Several samples were collected from different regions of Brazil and the qualitative (fingerprints by HPTLC and HPLC) and quantitative analysis (UV/VIS and HPLC) of polyphenols were performed. Results: The HPTLC and HPLC profiles allowed separation and identification of both major analytical markers: EA and GA. The chemical profiles were similar in a number of spots or peaks for the samples, but some differences could be observed in the intensity or area of the analytical markers for HPTLC or HPLC, respectively. Regarding the quantitative analysis, the polyphenolic content by UV/VIS ranged from 13.99 to 37.86 g% expressed as GA or from 10.75 to 29.09 g% expressed as EA. The contents of EA and GA by liquid chromatography-reversed phase (LC-RP) method ranged from 0.57 to 2.68 g% and from 0.54 to 3.23 g%, respectively. Conclusion: The chemical profiles obtained by HPTLC or HPLC, as well as the quantitative analysis by spectrophotometry or LC-RP method, were suitable for discrimination of each herbal sample and can be used as tools for the comparative analysis of the fruits from L. ferrea. SUMMARY The polyphenols of fruits of Libidibia ferrea can be quantified by UV/VIS and HPLCThe HPLC method was able to detect the gallic and ellagic acids in several samples of fruits of Libidibia ferreaThe phenolic profiles of fruits from Libidibia ferrea by HPTLC and HPLC were reproductible. Abbreviations used: HPTLC: high performance thin layer chromatography, HPLC: high performance liquid chromatography, UV-Vis: spectrophotometry PMID:27279721

  20. Behavior of ellagitannins, gallic acid, and ellagic acid under alkaline conditions

    Treesearch

    Richard W. Hemingway; W.E. Hillis

    1971-01-01

    Examination of the rates of hydrolysis of different ellagitannins under conditions comparable with cold soda and alkaline-groundwood pulping processes showed that some ellagitannins are notably resistant to hydrolysis. The rate of hydrolysis was dependent upon the pH and tempemture of the solution and particularly upon the structure of the compound. Decarboxylation of...

  1. The esterase and depsidase activities of tannase

    PubMed Central

    Haslam, E.; Stangroom, J. E.

    1966-01-01

    The esterase and depsidase activities of tannase have been examined by kinetic methods. Although the esterase/depsidase ratio of tannase may be varied by cultural methods and isolation procedures, evidence has been obtained to show that tannase, esterase and depsidase are enzymes with low specificities capable of hydrolysing both esters and depsides of gallic acid. PMID:5965343

  2. Use of Moessbauer spectroscopy to study reaction products of polyphenols and iron compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gust, J.; Suwalski, J.

    1994-05-01

    Moessbauer spectroscopy was used to study parameters of the reaction products of iron compounds (Fe[sup III]) and polyphenols with hydroxyl (OH) groups in ortho positions. Polyphenols used in the reaction were catechol, pyrogallol, gallic acid, and oak tannin. The Fe-containing compounds were hydrated ferric sulfate (Fe[sub 2][SO[sub 4

  3. Understanding Photography as Applied Chemistry: Using Talbot's Calotype Process to Introduce Chemistry to Design Students

    ERIC Educational Resources Information Center

    Ro¨sch, Esther S.; Helmerdig, Silke

    2017-01-01

    Early photography processes were predestined to combine chemistry and art. William Henry Fox Talbot is one of the early photography pioneers. In 2-3 day workshops, design students without a major background in chemistry are able to define a reproducible protocol for Talbot's gallic acid containing calotype process. With the experimental concept…

  4. [Mango: agroindustrial aspects, nutritional/functional value and health effects].

    PubMed

    Wall-Medrano, Abraham; Olivas-Aguirre, Francisco J; Velderrain-Rodriguez, Gustavo R; González-Aguilar, A; de la Rosa, Laura A; López-Díaz, Jose A; Álvarez-Parrilla, Emilio

    2014-11-01

    To review and discuss the latest information on agroindustrial, functional and nutritional value of one of the most produced/consumed fruit crop in México: The mango. A search was conducted in several databases (PubMed, Cochrane, ScienceDirect) and public repositories (Google Scholar) on Mangifera indica L. This information was further sub-classified into agroindustrial, nutritional, functional aspects and health effects. One out of twenty mangoes consumed worldwide is Mexican. The variety "Ataulfo" variety is the most important crop. Minimal processing of its pulp (MP) generates peel (MC) and seeds as biowastes, which have nutraceutical potential. MP and MC are good sources of ascorbate, fructose, soluble (MP, starches and rhamnogalacturonans) and insoluble (MC, lignin and hemicelluloses) dietary fibers as well as functional lipids (MP). MP and MC are good sources of monomeric (MP) phenolic compounds (PC) such as gallic and protocatehuic acids and polymeric PC (MC) such as -PGG with associated anti-obesigenic, anti-inflammatory, anti-carcinogenic and anti-diabetic potential. However, these benefits are dependent on their bioaccessibility (release from its food matrix) and metabolic fate (bioavailability). Mango is a valuable source of antioxidant compounds with proven health benefits. However, factors such as its variety, seasonality, pre and post-harvest handling, extraction of bioactives and some physiological barriers, can modify their nutraceutical potential. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. The organic materials in the Five Northern Provinces' Assembly Hall: disclosing the painting technique of the Qing dynasty painters in civil buildings

    NASA Astrophysics Data System (ADS)

    Lluveras-Tenorio, A.; Bonaduce, I.; Sabatini, F.; Degano, I.; Blaensdorf, C.; Pouyet, E.; Cotte, M.; Ma, L.; Colombini, M. P.

    2015-11-01

    The beiwusheng huiguan (`Meeting hall of the Five Northern Dynasties') is a building complex from the Qing dynasty (1636-1912 ad) located in Wafangdian, near Ziyang, in the south of the Chinese Province of Shaanxi. Two of the preserved halls are richly decorated with wall paintings dated probably in 1848 ad and representing scenes of the `Romance of the Three Kingdoms' and Confucian moral tales. They are a rare example of well-preserved mural paintings of high artistic value inside civil buildings. The aims of this paper are the chemical characterization and localization of organic materials used as binders and colorants in the wall paintings. A multi-analytical approach, consisting in the combined use of gas chromatographic-mass spectrometric techniques (GC/MS and Py-GC/MS) and high-pressure liquid chromatography with diode array detector (HPLC-DAD), was chosen for these purposes. Proteinaceous materials (animal glue and egg), saccharide material (fruit tree gum) and a siccative oil were identified in different paint layers supplying invaluable information about the painting technique used. Moreover, the analyses of organic dyes allowed identifying indigo and gallic acid in more than one sample adding fundamental information about Chinese artists' techniques in mural paintings, missing from the previous studies. To shed light on the gilding technique, the distribution of the painting materials was achieved by means of synchrotron radiation Fourier transform infrared spectroscopy (SR micro-FTIR) and X-ray fluorescence (SR micro-XRF). The results obtained from the multi-analytical approach enabled us to determine the organic materials both binders and organic colorants used by Chinese artisans, highlighting the high technical level achieved in nineteenth century. The binding media and the organic colorants identified, as well as their distribution, allowed the discussion on the painting technique used by the artists of the Qing dynasty giving information for the first time about the decoration of Chinese civil buildings.

  6. Antioxidant activities of phenolic compounds isolated from the leaves of Macaranga allorobinsonii Whitmore

    NASA Astrophysics Data System (ADS)

    Darmawan, Akhmad; Fajriah, Sofa; Megawati, Dewijanti, Indah D.; Banjarnahor, Sofna; Yuliani, Tri; Hartati, Sri; Mozef, Tjandrawati; Effendi, Ruslan; Swandiny, Greesty F.

    2017-01-01

    Two secondary metabolites compounds, gallic acid (1) and methyl gallate (2) have been isolated from the ethyl acetate fraction of the methanol extract of the leaves of Macaranga allorobinsonii Whitmore. Isolation and purification of the secondary metabolite compounds conducted using chromatography methods, and structure elucidation determined based on NMR, mass spectroscopic data and compared with appropriate references.

  7. Antioxidant activity of extracts from the wood and bark of Port OrFord cedar

    Treesearch

    Heng Gao; Todd F. Shupe; Thomas L. Eberhardt; Chung Y. Hse

    2007-01-01

    Heartwood, sapwood, and inner and outer bark of Port Orford cedar were extracted with methanol, and the extracts evaluated for antioxidant activity. The total phenol content (TPC) of the extracts was determined by the Folin-Ciocalteu method and expressed as gallic acid equivalent (GAE). Butylated hydroxytoluene was used as a positive control in the free-radical-...

  8. Analysis of Antibacterial Activity and Bioactive Compounds of the Giant Mushroom, Macrocybe gigantea (Agaricomycetes), from India.

    PubMed

    Gaur, Tanvi; Rao, P B

    2017-01-01

    The antibacterial activity, phenolic profile, and bioactive compounds of fruiting bodies from 2 strains (MA1 and MA2) of the giant mushroom Macrocybe gigantea were evaluated to access their nutraceutical efficacy. The antibacterial activity was higher in MA2 against all selected pathogenic bacteria. Selected phenolics were analyzed by high-performance liquid chromatography coupled with ultraviolet-visible detection. Gallic acid, ferulic acid, quercetin, p-hydroxy benzoic acid, cinnamic acid, and rutin contents (micrograms per gram dry weight) were quantified. Quercetin and rutin were absent in both strains of M. gigantea. M. gigantea MA2 showed relatively higher phenolic content (915.8 μg/g dry weight) than M. gigantea MA1 (854.4 μg/g dry weight). Among the phenolics, gallic acid is found in the largest amount; in M. gigantea MA2, it was 847.9 ± 2.67 μg/g dry weight. Gas chromatography-mass spectrometry analysis showed the presence of bioactive compounds in both strains; most compounds were antibacterial. Thus, the selected strains of M. gigantea can combat oxidative damage and can be used in foods, pharmaceuticals, and cosmetics because of their antioxidant potential.

  9. Synthesis, characterization, X-ray crystallography, acetyl cholinesterase inhibition and antioxidant activities of some novel ketone derivatives of gallic hydrazide-derived Schiff bases.

    PubMed

    Gwaram, Nura Suleiman; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen; Buckle, Michael J C; Sukumaran, Sri Devi; Chung, Lip Yong; Othman, Rozana; Alhadi, Abeer A; Yehye, Wageeh A; Hadi, A Hamid A; Hassandarvish, Pouya; Khaledi, Hamid; Abdelwahab, Siddig Ibrahim

    2012-02-28

    Alzheimer's disease (AD) is the most common form of dementia among older people and the pathogenesis of this disease is associated with oxidative stress. Acetylcholinesterase inhibitors with antioxidant activities are considered potential treatments for AD. Some novel ketone derivatives of gallic hydrazide-derived Schiff bases were synthesized and examined for their antioxidant activities and in vitro and in silico acetyl cholinesterase inhibition. The compounds were characterized using spectroscopy and X-ray crystallography. The ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays revealed that all the compounds have strong antioxidant activities. N-(1-(5-bromo-2-hydroxyphenyl)-ethylidene)-3,4,5-trihydroxybenzohydrazide (2) was the most potent inhibitor of human acetyl cholinesterase, giving an inhibition rate of 77% at 100 μM. Molecular docking simulation of the ligand-enzyme complex suggested that the ligand may be positioned in the enzyme's active-site gorge, interacting with residues in the peripheral anionic subsite (PAS) and acyl binding pocket (ABP). The current work warrants further preclinical studies to assess the potential for these novel compounds for the treatment of AD.

  10. Assessment of Antioxidant Properties in Fruits of Myrica esculenta: A Popular Wild Edible Species in Indian Himalayan Region

    PubMed Central

    Rawat, Sandeep; Jugran, Arun; Giri, Lalit; Bhatt, Indra D.; Rawal, Ranbeer S.

    2011-01-01

    Crude extract of Myrica esculenta fruits, a wild edible species of Indian Himalayan Region, was evaluated for phenolic compounds and antioxidant properties. Results revealed significant variation in total phenolic and flavonoid contents across populations. Among populations, total phenolic content varied between 1.78 and 2.51 mg gallic acid equivalent/g fresh weight (fw) of fruits and total flavonoids ranged between 1.31 and 1.59 mg quercetin equivalent/g fw. Antioxidant activity determined by 2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging, 1,1-diphenyl-2-picrylhydrazyl radical scavenging and ferric reducing antioxidant power (FRAP) exhibited considerable antioxidant potential and showed significant positive correlation with total phenolic and total flavonoids content. High performance liquid chromatography analysis revealed significant variation (P <  .01) in phenolic compounds (i.e., gallic acid, catechin, hydroxybenzioc acid and ρ-coumaric acid) across populations. This study provides evidences to establish that consumption of M. esculenta fruits while providing relished taste would also help in reduction of free radicals. Therefore, this wild edible species deserves promotion in the region through horticulture and forestry interventions. PMID:21785629

  11. Chronocoulometry of wine on multi-walled carbon nanotube modified electrode: Antioxidant capacity assay.

    PubMed

    Ziyatdinova, Guzel; Kozlova, Ekaterina; Budnikov, Herman

    2016-04-01

    Phenolic antioxidants of wine were electrochemically oxidized on multi-walled carbon nanotubes modified glassy carbon electrode (MWNT/GCE) in phosphate buffer solution. Three oxidation peaks were observed at 0.39, 0.61 and 0.83V for red dry wine and 0.39, 0.80 and 1.18 V for white dry wine, respectively, using differential pulse voltammetry at pH 4.0. The oxidation potentials for individual phenolic antioxidants confirmed the integral nature of the analytical signals for the wines examined. A one-step chronocoulometric method at 0.83 and 1.18 V for red and white wines, respectively, has been developed for the evaluation of wine antioxidant capacity (AOC). The AOC is expressed in gallic acid equivalents per 1L of wine. The AOC of white wine was significantly less than red wine (386 ± 112 vs. 1224 ± 184, p<0.0001), as might be expected. Positive correlations were observed between gallic acid equivalent AOC of wine and total antioxidant capacity, based on coulometric titration with electrogenerated bromine (r=0.8957 at n=5 and r=0.8986 at n=4 for red and white wines, respectively). Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Antioxidant activity of commercial food grade tannins exemplified in a wine model.

    PubMed

    Ricci, Arianna; Olejar, Kenneth J; Parpinello, Giuseppina P; Mattioli, Alessia U; Teslić, Nemanja; Kilmartin, Paul A; Versari, Andrea

    2016-12-01

    Although commercial tannins are widely used in foods and beverages, an improved understanding of the structure and composition of vegetable tannins is needed to promote the exploitation of agri-food by-products and waste and their valorisation in more sustainable industrial applications. This study aims to characterise the phytochemical composition and antioxidant activity of 13 food grade tannins using multiple analytical approaches, including spectrophotometry and HPLC-ECD to determine the amount of targeted polyphenolic compounds. Moreover, the antioxidant activity of tannins was assessed in terms of radical scavenging activity (DPPH• assay), reducing power (FRAP assay), and redox properties (cyclic voltammetry, CV). A statistical univariate and multivariate correlation analysis was performed on 17 parameters including tannin content (range: 0.71-1.62 mM), gallic acid, (+)-catechin, syringic acid and (‒)-epicatechin. The compositional profile of tannins was related to their chemical moiety, antioxidant activity and the botanical origin of the extracts. In particular, the CV signal at 500 mV was highly correlated with DPPH• value due to the catechol ring of flavonoids and trigalloyl moieties of gallic acid-based compounds. Practical examples of tannins application in winemaking are discussed.

  13. Polyphenolic profile and bioactivity study of Oenothera speciosa Nutt. aerial parts.

    PubMed

    Marzouk, Mohamed S; Moharram, Fatma A; El Dib, Rabab A; El-Shenawy, Siham M; Tawfike, Ahmed F

    2009-04-07

    Two new flavonol glycosides, myricetin 4'-O-alpha-L-rhamnopyranoside (1) and quercetin 3'-O-alpha-L-rhamnopyranoside (2), together with a novel biflavonol compound, speciin (3), as well as eleven phenolic metabolites, namely myricitrin (4), europetin 3-O-alpha-L-(1)C(4)-rhamnopyranoside (5), quercitrin (6), hyperin (7), rhamnetin 3-O-beta-galacto-pyranoside (8), caffeic acid (9), caffeic acid methyl ester (10), chlorogenic acid (11), chlorogenic acid methyl ester (12), gallic acid (13) and gallic acid methyl ester (14), were identified from the 80 % methanol extract of the aerial parts (leaves and stems) of Oenothera speciosa Nutt. (Onagraceae). In addition myricetin (15), quercetin (16) and ellagic acid (17) were identified from the chloroform extract. The structures were established depending on their chemical and physical analyses (UV, HR-ESIMS, 1D and 2D NMR). It was found that 80 % aqueous methanol extract of O. speciosa is non-toxic to mice up to 5 g kg(-1)b wt. The investigated extract exhibited significant antihyperglycaemic and anti-inflammatory activities in a dose dependant manner. Also, the 80 % methanol extract, myricitrin(4) and hyperin(7) showed potent antioxidant activity in vitro using 1,1-diphenyl 2-picryl hydrazyl (DPPH) radical assay.

  14. Effect of quercitrin gallate on zymosan A-induced peroxynitrite production in macrophages.

    PubMed

    Kim, Byung Hak; Cho, Sung-Min; Chang, Yoon Sook; Han, Sang Bae; Kim, Youngsoo

    2007-06-01

    We previously isolated quercetin 3-O-beta-(2"-galloyl)-rhamnopyranoside (QGR), a quercitrin gallate, from aerial parts of Persicaria lapathifolia (Polygonaceae) to prevent superoxide produc tion in monocytes from venous blood of healthy human donors. In this study, effects of QGR and its building moieties (quercitrin, quercetin and gallic acid) on the production of peroxyni trite, a coupling oxidant between superoxide and nitric oxide (NO) radicals, were investigated in zymosan A-stimulated macrophages RAW 264.7. The QGR, quercitrin and quercetin inhib ited peroxynitrite production in dose-dependent manners with IC50 values of 2.1 microM, 24.5 microM and 5.1 microM, respectively, but gallic acid even at 100 microM was inactive. QGR also inhibited both zymosan A- and phorbol 12-myristate 13-acetate-induced superoxide productions with IC50 values of 3.2 microM and 4.7 microM, respectively. However, QGR affected neither zymosan A-induced NO production nor inducible NO synthase synthesis. Taken together, QGR could inhibit peroxynitrite production by blocking superoxide production without affecting NO production. Finally, this study could provide a pharmacological potential of QGR in the oxidative stress-implicated disorders.

  15. Cytoprotective Effects of Hydrophilic and Lipophilic Extracts of Pistacia vera against Oxidative Versus Carbonyl Stress in Rat Hepatocytes

    PubMed Central

    Shahraki, Jafar; Zareh, Mona; Kamalinejad, Mohammad; Pourahmad, Jalal

    2014-01-01

    This study was conducted to evaluate the cytoprotection of various extracts and bioactive compounds found in Pistacia vera againts cytotoxicity, ROS formation, lipid peroxidation, protein carbonylation, mitochondrial and lysosomal membrane damages in cell toxicity models of diabetes related carbonyl (glyoxal) and oxidative stress (hydroperoxide). Methanol, water and ethyl acetate were used to prepare crude pistachios extracts, which were then used to screen for in-vitro cytoprotection of freshly isolated rat hepatocytes against these toxins. The order of protection by Pistacia vera extracts against both hydroperoxide induced oxidative stress (ROS formation) and glyoxal induced protein carbonylation was: pistachio methanolic extract >pistachio water extract, gallic acid, catechin> α-tochoferol and pistachio ethyl acetate extract. Finally due to higher protection achieved by methanolic extract even compared to sole pretreatment of gallic acid, catechin or α-tochoferol, we suggest that cytoprotection depends on the variety of polar and non-polar compounds found in methanolic extract, it is likely that multiple cytoprotective mechanisms are acting against oxidative and carbonyl induced cytotoxicity. To our knowledge, we are the first to report the cytoprotective activity of Pistacia vera extracts against oxidative and carbonyl stress seen in type 2 diabetes hepatocytes model. PMID:25587316

  16. Evaluation of nutritional and antioxidant properties of the tropical fruits banana, litchi, mango, papaya, passion fruit and pineapple cultivated in Réunion French Island.

    PubMed

    Septembre-Malaterre, Axelle; Stanislas, Giovédie; Douraguia, Elisabeth; Gonthier, Marie-Paule

    2016-12-01

    Much attention is paid to the beneficial action of fruits against obesity-related oxidative stress. This study evaluated nutritional and antioxidant properties of banana, litchi, mango, papaya, passion fruit and pineapple from Réunion French Island. Results showed that total amounts of carbohydrates, vitamin C and carotenoids were 7.7-67.3g glucose equivalent, 4.7-84.9mg ascorbic acid equivalent and 26.6-3829.2μg β-carotene equivalent/100g fresh weight, respectively. Polyphenols were detected as the most abundant antioxidants (33.0-286.6mg gallic acid equivalent/100g fresh weight) with the highest content from passion fruit. UPLC-MS analysis led to identify epigallocatechin and quercetin derivatives from banana and litchi, ferulic, sinapic, syringic and gallic acids from pineapple and mango, and piceatannol from passion fruit. Polyphenol-rich extracts protected red blood cells and preadipose cells against oxidative stress. Altogether, these findings highlight nutritional benefits of French tropical fruits and their possible interest to improve antioxidant capacities of the body during obesity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Determination of total phenolic content and antioxidant activitity of methanol extract of Maranta arundinacea L fresh leaf and tuber

    NASA Astrophysics Data System (ADS)

    Kusbandari, A.; Susanti, H.

    2017-11-01

    Maranta arundinacea L is one of herbaceous plants in Indonesia which have flavonoid content. Flavonoids has antioxidants activity by inhibition of free radical oxidation reactions. The study aims were to determination total phenolic content and antioxidant activity of methanol extract of fresh leaf and tuber of M. arundinacea L by UV-Vis spectrophotometer. The methanol extracts were obtained with maceration and remaseration method of fresh leaves and tubers. The total phenolic content was assayed with visible spectrophotometric using Folin Ciocalteau reagent. The antioxidant activity was assayed with 1,1-diphenyl-2-picrilhidrazil (DPPH) compared to gallic acid. The results showed that methanol extract of tuber and fresh leaf of M. arundinacea L contained phenolic compound with total phenolic content (TPC) in fresh tuber of 3.881±0.064 (% GAE) and fresh leaf is 6.518±0.163 (% b/b GAE). IC50 value from fresh tuber is 1.780±0.0005 μg/mL and IC50 fresh leaf values of 0.274±0.0004 μg/mL while the standard gallic acid is IC50 of 0.640±0.0002 μg/mL.

  18. Gadolinium-Doped Gallic Acid-Zinc/Aluminium-Layered Double Hydroxide/Gold Theranostic Nanoparticles for a Bimodal Magnetic Resonance Imaging and Drug Delivery System

    PubMed Central

    Sani Usman, Muhammad; Hussein, Mohd Zobir; Fakurazi, Sharida; Ahmad Saad, Fathinul Fikri

    2017-01-01

    We have developed gadolinium-based theranostic nanoparticles for co-delivery of drug and magnetic resonance imaging (MRI) contrast agent using Zn/Al-layered double hydroxide as the nanocarrier platform, a naturally occurring phenolic compound, gallic acid (GA) as therapeutic agent, and Gd(NO3)3 as diagnostic agent. Gold nanoparticles (AuNPs) were grown on the system to support the contrast for MRI imaging. The nanoparticles were characterized using techniques such as Hi-TEM, XRD, ICP-ES. Kinetic release study of the GA from the nanoparticles showed about 70% of GA was released over a period of 72 h. The in vitro cell viability test for the nanoparticles showed relatively low toxicity to human cell lines (3T3) and improved toxicity on cancerous cell lines (HepG2). A preliminary contrast property test of the nanoparticles, tested on a 3 Tesla MRI machine at various concentrations of GAGZAu and water (as a reference) indicates that the nanoparticles have a promising dual diagnostic and therapeutic features to further develop a better future for clinical remedy for cancer treatment. PMID:28858229

  19. HPLC profiling of phenolics and flavonoids of Adonidia merrillii fruits and their antioxidant and cytotoxic properties.

    PubMed

    Vafaei, Ali; Bin Mohamad, Jamaludin; Karimi, Ehsan

    2018-03-12

    In this study the antioxidant and cytotoxicity activity of the Adonidia merrillii fruits were investigated using different solvent polarities (methanol, ethyl acetate and water). The results showed that the total phenolic and flavonoid contents of the methanolic extract was higher compare with other extract with respective values of 17.80 ± 0.45 mg gallic acid equivalents/g dry weight (DW) and 5.43 ± 0.33 mg rutin equivalents/g DW. Beside that The RP-HPLC analyses indicated the presence of gallic acid, pyrogallol, caffeic acid, vanillic acid, syringic acid, naringin and rutin. In the DPPH, NO2 and ABTS scavenging assays, the methanolic extract exhibited higher antioxidant activity as compared to the ethyl acetate and water extracts. The extracts exhibited moderate to weak cytotoxic activity in the assays using human hepatocytes (Chang liver cells) and NIH/3T3 (fibroblasts cell) cell lines. The findings showed the Adonidia merrillii fruit extracts to possess considerable antioxidant and cytotoxicity properties. The fruit, therefore, is a potential candidate for further work to discover antioxidant and cytotoxic drugs from natural sources.

  20. Potential of endophytic fungus Phomopsis liquidambari for transformation and degradation of recalcitrant pollutant sinapic acid.

    PubMed

    Xie, Xing-Guang; Huang, Chun-Yan; Fu, Wan-Qiu; Dai, Chuan-Chao

    2016-03-01

    The biodegradation potential of sinapic acid, one of the most representative methoxy phenolic pollutants presented in industrial wastewater, was first studied using an endophytic fungus called Phomopsis liquidambari. This strain can effectively degrade sinapic acid in flasks and in soil and the possible biodegradation pathway was first systematically proposed on the basis of the metabolite production patterns and the identification of the metabolites by GC-MS and HPLC-MS. Sinapic acid was first transformed to 2,6-dimethoxy-4-vinylphenol that was further degraded via 4-hydroxy-3,5-dimethoxybenzaldehyde, syringic acid, gallic acid, and citric acid which involved in the continuous catalysis by phenolic acid decarboxylase, laccase, and gallic acid dioxygenase. Moreover, their activities and gene expression levels exhibited a 'cascade induction' response with the changes in metabolic product concentrations and the generation of fungal laccase significantly improved the degradation process. This study is the first report of an endophytic fungus that has great potential to degrade xenobiotic sinapic acid, and also provide a basis for practical application of endophytic fungus in the bioremediation of sinapic acid-contaminated industrial wastewater and soils. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  1. Characterization And Application Of Tannase Produced By Aspergillus Niger ITCC 6514.07 On Pomegranate Rind

    PubMed Central

    Srivastava, Anita; Kar, Rita

    2009-01-01

    Extracellular tannase and gallic acid were produced optimally under submerged fermentation at 37 0C, 72 h, pH 5.0, 10 %(v/v) inoculum and 4 %(w/v) of the agroresidue pomegranate rind (PR) powder by an Aspergillus niger isolate. Tannic acid (1 %) stimulated the enzyme production by 245.9 % while with 0.5 % glucose, increase was marginal. Tannase production was inhibited by gallic acid and nitrogen sources such as NH4NO3, NH4Cl, KNO3, asparatic acid, urea and EDTA. The partially purified enzyme showed temperature and pH optima of 35 0C and 6.2 respectively which shifted to 40 0C and 5.8 on immobilization in alginate beads. Activity of the enzyme was inhibited by Zn+2, Ca+, Mn+2, Mg+2, Ba+2and Ag+. The immobilized enzyme removed 68.8 % tannin from juice of aonla/myrobalan (Phyllanthus emblica), a tropical fruit, rich in vitamin C and other essential nutrients. The enzymatic treatment of the juice with minimum reduction in vitamin C is encouraging as non enzymatic treatments of myrobalan juice results in vitamin C removal. PMID:24031425

  2. Desensitizing Mitochondrial Permeability Transition by ERK-Cyclophilin D Axis Contributes to the Neuroprotective Effect of Gallic Acid against Cerebral Ischemia/Reperfusion Injury

    PubMed Central

    Sun, Jing; Ren, Da-Dui; Wan, Jin-Yi; Chen, Chen; Chen, Dong; Yang, Huan; Feng, Chun-Lai; Gao, Jing

    2017-01-01

    Ischemic stroke is a devastating disease with complex pathophysiology. Much evidence confirms that opening of the mitochondrial permeability transition pore (MPTP) is related with mitochondrial dysfunction to apoptosis in ischemic stroke, thus elucidating its signaling mechanism and screening novel MPTP inhibitor is therefore of paramount importance. Our earlier studies identified that gallic acid (GA), a naturally occurring plant phenol, endows with effect on inhibition of mitochondrial dysfunction, which has significant neuroprotective effect in cerebral ischemia/reperfusion injury. However, its molecular mechanisms regulating mitochondrial dysfunction remain elusive. Here, we uncover a role of GA in protecting mitochondria via MPTP inhibition. In addition to inhibit CypD binding to adenine nucleotide translocator, GA potentiates extracellular signal-regulated kinases (ERK) phosphorylation, leading to a decrease in cyclophilin D (CypD) expression, resulting in a desensitization to induction of MPTP, thus inhibiting caspase activation and ultimately giving rise to cellular survival. Our study firstly identifies ERK-CypD axis is one of the cornerstones of the cell death pathways following ischemic stroke, and confirms GA is a novel inhibitor of MPTP, which inhibits apoptosis depending on regulating the ERK-CypD axis. PMID:28428752

  3. Phenolic Compounds Present Schinus terebinthifolius Raddi Influence the Lowering of Blood Pressure in Rats.

    PubMed

    de Lima Glória, Lorena; Barreto de Souza Arantes, Mariana; Menezes de Faria Pereira, Silvia; de Souza Vieira, Guilherme; Xavier Martins, Camilla; Ribeiro de Carvalho Junior, Almir; Antunes, Fernanda; Braz-Filho, Raimundo; José Curcino Vieira, Ivo; Leandro da Cruz, Larissa; Siqueira de Almeida Chaves, Douglas; de Paiva Freitas, Silvério; Barros de Oliveira, Daniela

    2017-10-23

    This study identified two phenolic compounds in Schinus terebinthifolius Raddi fruits: naringenin (first report in this species) and gallic acid. Their structures were elucidated by nuclear magnetic resonance (NMR) data (¹H-, 13 C-NMR) and a high-performance liquid chromatography (HPLC) technique. A high content of phenolics (659.21 mg of gallic acid equivalents/g of sample-Folin-Ciocalteau method) and total flavonoids (140.69 mg of rutin equivalents/g of sample-aluminum chloride method) were quantified in S. terebinthifolius , as well as high antioxidant activity (77.47%-2,2-diphenyl-1-picrylhydrazyl, DPPH method). The antihypertensive activity related to its phenolic content was investigated. After intravenous infusion in Wistar rats, these phenolics significantly reduced ( p < 0.05) the systolic, median, and diastolic arterial pressures of individuals. The rotarod test was performed to determine the mechanism of action of the sample vasorelaxant effect. It was found that its action exceeded that of the positive control used (diazepam). This confirmed the vasodilatory activity exerted by S. terebinthifolius fruits is related to the phenolic compounds present in the plant, which are potent antioxidants and inhibit oxidative stress, mainly in the central nervous system.

  4. Laccase-based biosensor for the determination of polyphenol index in wine.

    PubMed

    Di Fusco, Massimo; Tortolini, Cristina; Deriu, Daniela; Mazzei, Franco

    2010-04-15

    In this work we have developed and characterized the use of Laccases from Trametes versicolor (TvL) and Trametes hirsuta (ThL) as biocatalytic components of electrochemical biosensors for the determination of polyphenol index in wines. Polyazetidine prepolimer (PAP) was used as immobilizing agent, multi-walled and single-walled carbon nanotubes screen-printed electrodes as sensors (MWCNTs-SPE and SWCNTs-SPE) and gallic acid as standard substrate. The amperometric measurements were carried out by using a flow system at a fixed potential of -100 mV vs. silver/silver chloride electrode in Britton-Robinson buffer 0.1 mol L(-1), pH 5. The results were compared with those obtained with the Folin-Ciocalteau reference method. The results obtained in the analysis of twelve Italian wines put in evidence the better suitability of ThL-MWCNTs-based biosensor in the determination of the polyphenol index in wines. This biosensor shows fast and reliable amperometric responses to gallic acid with a linear range 0.1-18.0 mg L(-1) (r(2)=0.999). The influence of the interferences on both spectrophotometric and electrochemical measurements have been carefully evaluated. (c) 2009 Elsevier B.V. All rights reserved.

  5. Effect of Various Food Additives on the Levels of 4(5)-Methylimidazole in a Soy Sauce Model System.

    PubMed

    Lee, Sumin; Lee, Jung-Bin; Hwang, Junho; Lee, Kwang-Geun

    2016-01-01

    In this study, the effect of food additives such as iron sulfate, magnesium sulfate, zinc sulfate, citric acid, gallic acid, and ascorbic acid on the reduction of 4(5)-methylimidazole (4(5)-MI) was investigated using a soy sauce model system. The concentration of 4(5)-MI in the soy sauce model system with 5% (v/v) caramel colorant III was 1404.13 μg/L. The reduction rate of 4(5)-MI level with the addition of 0.1M additives followed in order: iron sulfate (81%) > zinc sulfate (61%) > citric acid (40%) > gallic acid (38%) > ascorbic acid (24%) > magnesium sulfate (13%). Correlations between 4(5)-MI levels and the physicochemical properties of soy sauce, including the amount of caramel colorant, pH value, and color differences, were determined. The highest correlations were found between 4(5)-MI levels and the amount of caramel colorant and pH values (r(2) = 0.9712, r(2) = 0.9378). The concentration of caramel colorants in 8 commercial soy sauces were estimated, and ranged from 0.01 to 1.34% (v/v). © 2015 Institute of Food Technologists®

  6. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions.

    PubMed

    Yang, Dong Joo; Moh, Sang Hyun; Son, Dong Hwee; You, Seunghoon; Kinyua, Ann W; Ko, Chang Mann; Song, Miyoung; Yeo, Jinhee; Choi, Yun-Hee; Kim, Ki Woo

    2016-07-08

    Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound) on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK), c-Jun N-terminal kinases (JNK), and extracellular signal-regulated kinases (Erk), underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications.

  7. Skin delivery of antioxidant surfactants based on gallic acid and hydroxytyrosol.

    PubMed

    Alonso, Cristina; Lucas, Ricardo; Barba, Clara; Marti, Meritxell; Rubio, Laia; Comelles, Francesc; Morales, Juan Carlos; Coderch, Luisa; Parra, José Luís

    2015-07-01

    The aim of this study has been to investigate the dermal absorption profile of the antioxidant compounds gallic acid and hydroxytyrosol as well as their derivatives, hexanoate (hexyl gallate and hydroxytyrosol hexanoate) and octanoate (octyl gallate and octanoate derivative) alkyl esters (antioxidant surfactants). Previously, the scavenging capacity of these compounds, expressed as efficient dose ED50, has also determined. The percutaneous absorption of these compounds was obtained by an in vitro methodology using porcine skin biopsies on Franz static diffusion cells. The antiradical activity of compounds was determined using the 1,1-diphenyl-2-picrylhydrazyl free radical method. The percutaneous penetration results show the presence of antioxidants in all layers of the skin. The content of the cutaneously absorbed compound is higher for the antioxidant surfactants (ester derivatives). This particular behaviour could be due to the higher hydrophobicity of these compounds and the presence of surface activity in the antioxidant surfactants. These new antioxidant surfactants display optimum properties, which may be useful in the preparation of emulsified systems in cosmetic and pharmaceutical formulations because of their suitable surface activity and because they can protect the skin from oxidative damage. © 2015 Royal Pharmaceutical Society.

  8. One-Pot Green Synthesis of Graphene Nanosheets Encapsulated Gold Nanoparticles for Sensitive and Selective Detection of Dopamine

    PubMed Central

    Thirumalraj, Balamurugan; Rajkumar, Chellakannu; Chen, Shen-Ming; Palanisamy, Selvakumar

    2017-01-01

    We report a simple new approach for green preparation of gallic acid supported reduced graphene oxide encapsulated gold nanoparticles (GA-RGO/AuNPs) via one-pot hydrothermal method. The as-prepared composites were successfully characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction techniques (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and elemental analysis. The GA-RGO/AuNPs modified electrode behaves as a hybrid electrode material for sensitive and selective detection of dopamine (DA) in presence of ascorbic acid (AA) and uric acid (UA). The GA-RGO/AuNPs modified electrode displays an excellent electrocatalytic activity towards the oxidation of DA and exhibits a wide linear response range over the DA concentrations from 0.01–100.3 μM with a detection limit (LOD) of 2.6 nM based on S/N = 3. In addition, the proposed sensor could be applied for the determination of DA in human serum and urine samples for practical analysis. PMID:28128225

  9. Isolation of polyphenols from spent coffee grounds and silverskin by mild hydrothermal pretreatment.

    PubMed

    Conde, Teresa; Mussatto, Solange I

    2016-05-18

    In this study, a new method for isolation of polyphenols (PP) from spent coffee grounds (SCG) and coffee silverskin (CS) is described. The method consisted of a mild hydrothermal pretreatment at 120°C, for 20 min, using a liquid-to-solid ratio of 20 mL/g. PP (determined as gallic acid equivalents, GAE) were the most abundant components in the extracts produced by this method, corresponding to 32.92 mgGAE/gSCG and 19.17 mgGAE/gCS, among which flavonoids corresponded to 8.29 and 2.73 mg quercetin equivalents/g of SCG and CS, respectively. Both extracts presented antioxidant activity but the results were higher for SCG extract, probably due to the highest content of PP present. Negligible effects (less than 1% solubilization) were caused by the hydrothermal pretreatment on cellulose, hemicellulose, and protein fractions of these materials. Some mineral elements were present in the extracts, with potassium being the most abundant. Hydrothermal pretreatment under mild conditions was demonstrated to be an efficient method to recover antioxidant PP from coffee residues.

  10. Heterogeneous photodegradation of methylene blue with iron and tea or coffee polyphenols in aqueous solutions.

    PubMed

    Morikawa, Claudio Kendi; Shinohara, Makoto

    2016-01-01

    Recently, we developed two new Fenton catalysts using iron (Fe) and spent tea leaves or coffee grounds as raw material. In this study, Fe-to-tea or Fe-to-coffee polyphenol complexes were successfully tested as heterogeneous photo-Fenton catalysts. The photodegradation efficiency of methylene blue solutions with Fe-to-polyphenol complexes was higher than that of homogeneous iron salts in the photo-Fenton process. Furthermore, the tested Fe-to-polyphenol complexes could be reused by simply adding H2O2 to the solutions. After three sequential additions of H2O2, the conventional catalysts FeCl2·4H2O and FeCl3 removed only 16.6% and 53.6% of the dye, while the catalysts made using spent coffee grounds and tea leaves removed 94.4% and 96.0% of the dye, respectively. These results showed that the complexes formed between Fe and chlorogenic acid, caffeic acid, gallic acid and catechin, which are the main polyphenols in tea and coffee, can be used to improve the photo-Fenton process.

  11. One-Pot Green Synthesis of Graphene Nanosheets Encapsulated Gold Nanoparticles for Sensitive and Selective Detection of Dopamine

    NASA Astrophysics Data System (ADS)

    Thirumalraj, Balamurugan; Rajkumar, Chellakannu; Chen, Shen-Ming; Palanisamy, Selvakumar

    2017-01-01

    We report a simple new approach for green preparation of gallic acid supported reduced graphene oxide encapsulated gold nanoparticles (GA-RGO/AuNPs) via one-pot hydrothermal method. The as-prepared composites were successfully characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction techniques (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and elemental analysis. The GA-RGO/AuNPs modified electrode behaves as a hybrid electrode material for sensitive and selective detection of dopamine (DA) in presence of ascorbic acid (AA) and uric acid (UA). The GA-RGO/AuNPs modified electrode displays an excellent electrocatalytic activity towards the oxidation of DA and exhibits a wide linear response range over the DA concentrations from 0.01-100.3 μM with a detection limit (LOD) of 2.6 nM based on S/N = 3. In addition, the proposed sensor could be applied for the determination of DA in human serum and urine samples for practical analysis.

  12. Study on the Multi-marker Components Quantitative HPLC Fingerprint of the Compound Chinese Medicine Wuwei Changyanning Granule

    PubMed Central

    Yang, Xian; Yang, Shui-Ping; Zhang, Xue; Yu, Xiao-Dong; He, Qi-Yi; Wang, Bo-Chu

    2014-01-01

    The aim of this paper is to develop a rapid and highly sensitive quantitative HPLC fingerprint method with multiple indicators by using the Compound Chinese Medicine Wuwei Changyanning granule and 5 herbs in the prescription. The quantitative fingerprint chromatogram with multiple indicators was investigated. і)6 compositions included rutin, gallic acid, chlorogenic acid, atractylenolide Ⅰ, pachymic acid and apigenin, which originated from 5 herbs respectively, were selected as quantitative compositions, and their contents were determined using HPLC from 11 batches granules and the corresponding 5 medicinal materials. ⅱ) The precision, stability and repeatability of fingerprinting were investigated. In addition, common peaks number, the percentage of non-common peaks and similarity were also studied. Among them, 21 common peaks in the granule could find the source of peaks from the 5 herbs, among of 10 peaks from Niuerfeng, 9 peaks from Laliao, 3 peaks from Baishu, 3 peaks from Fuling and 5 peaks from Guanghuoxiang. The results showed that the identification method of fingerprinting was reliable. PMID:25587307

  13. Improved method for the extraction and chromatographic analysis on a fused-core column of ellagitannins found in oak-aged wine.

    PubMed

    Navarro, María; Kontoudakis, Nikolaos; Canals, Joan Miquel; García-Romero, Esteban; Gómez-Alonso, Sergio; Zamora, Fernando; Hermosín-Gutiérrez, Isidro

    2017-07-01

    A new method for the analysis of ellagitannins observed in oak-aged wine is proposed, exhibiting interesting advantages with regard to previously reported analytical methods. The necessary extraction of ellagitannins from wine was simplified to a single step of solid phase extraction (SPE) using size exclusion chromatography with Sephadex LH-20 without the need for any previous SPE of phenolic compounds using reversed-phase materials. The quantitative recovery of wine ellagitannins requires a combined elution with methanol and ethyl acetate, especially for increasing the recovery of the less polar acutissimins. The chromatographic method was performed using a fused-core C18 column, thereby avoiding the coelution of main ellagitannins, such as vescalagin and roburin E. However, the very polar ellagitannins, namely, the roburins A, B and C, still partially coeluted, and their quantification was assisted by the MS detector. This methodology also enabled the analysis of free gallic and ellagic acids in the same chromatographic run. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. HILIC quantification of oenotheralanosterol A and B from Oenothera biennis and their suppression of IL-6 and TNF-α expression in mouse macrophages.

    PubMed

    Singh, Rashmi; Trivedi, Priyanka; Bawankule, Dnyaneshwar Umrao; Ahmad, Ateeque; Shanker, Karuna

    2012-05-07

    Evening primrose (Oenothera biennis L.) is a wild medicinal herb of Central American origin that is now globally widespread. Its traditional uses include treatment of rheumatoid arthritis and premenopausal pain both of which have an inflammatory component. The present study demonstrates the in vitro anti-inflammatory activity of three Oenothera biennis compounds. Oenotheralanosterol A and B (Oen-A & Oen-B) along with gallic acid (GA) were isolated and characterized using column chromatography and NMR. The compounds were tested with LPS stimulated peritoneal mouse macrophages assaying for suppression of IL-6, TNF-α and NO synthesis. An HILIC method for the simultaneous quantitation of GA, Oen-A, and Oen-B in Oenothera biennis plant material was also developed as a means of monitoring quality of plant material. Significant inhibition of TNF-α and IL-6 by GA, Oen-A and Oen-B was observed (p<0.05). Inhibition was concentration dependent and no synergistic or antagonistic effect on pro-inflammatory cytokines was found when used in combination (1:1) (p>0.05). The HILIC analysis method was validated using Oenothera biennis root. The study demonstrates the anti-inflammatory activity of Oenothera biennis root compounds and supports its traditional use in arthritis management. Active anti-inflammatory compounds were identified and quantified by the HILIC method. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Optimization of phenolics and flavonoids extraction conditions of Curcuma Zedoaria leaves using response surface methodology.

    PubMed

    Azahar, Nur Fauwizah; Gani, Siti Salwa Abd; Mohd Mokhtar, Nor Fadzillah

    2017-10-02

    This study focused on maximizing the extraction yield of total phenolics and flavonoids from Curcuma Zedoaria leaves as a function of time (80-120 min), temperature (60-80 °C) and ethanol concentration (70-90 v/v%). The data were subjected to response surface methodology (RSM) and the results showed that the polynomial equations for all models were significant, did not show lack of fit, and presented adjusted determination coefficients (R 2 ) above 99%, proving their suitability for prediction purposes. Using desirability function, the optimum operating conditions to attain a higher extraction of phenolics and flavonoids was found to be 75 °C, 92 min of extraction time and 90:10 of ethanol concentration ratios. Under these optimal conditions, the experimental values for total phenolics and flavonoids of Curcuma zedoaria leaves were 125.75 ± 0.17 mg of gallic acid equivalents and 6.12 ± 0.23 mg quercetin/g of extract, which closely agreed with the predicted values. Besides, in this study, the leaves from Curcuma zedoaria could be considered to have the strong antioxidative ability and can be used in various cosmeceuticals or medicinal applications.

  16. Diabetes and Alzheimer's Disease: Can Tea Phytochemicals Play a Role in Prevention?

    PubMed

    Fernando, Warnakulasuriya M A D B; Somaratne, Geeshani; Goozee, Kathryn G; Williams, Shehan; Singh, Harjinder; Martins, Ralph N

    2017-01-01

    Dementia and diabetes mellitus are prevalent disorders in the elderly population. While recognized as two distinct diseases, diabetes has more recently recognized as a significant contributor to risk for developing dementia, and some studies make reference to type 3 diabetes, a condition resulting from insulin resistance in the brain. Alzheimer's disease, the most common form of dementia, and diabetes, interestingly, share underlying pathological processes, commonality in risk factors, and, importantly, pathways for intervention. Tea has been suggested to possess potent antioxidant properties. It is rich in phytochemicals including, flavonoids, tannins, caffeine, polyphenols, boheic acid, theophylline, theobromine, anthocyanins, gallic acid, and finally epigallocatechin-3-gallate, which is considered to be the most potent active ingredient. Flavonoid phytochemicals, known as catechins, within tea offer potential benefits for reducing the risk of diabetes and Alzheimer's disease by targeting common risk factors, including obesity, hyperlipidemia, hypertension, cardiovascular disease, and stroke. Studies also show that catechins may prevent the formation of amyloid-β plaques and enhance cognitive functions, and thus may be useful in treating patients who have Alzheimer's disease or dementia. Furthermore, other phytochemicals found within tea offer important antioxidant properties along with innate properties capable of modulating intracellular neuronal signal transduction pathways and mitochondrial function.

  17. Guava leaves polyphenolics-rich extract inhibits vital enzymes implicated in gout and hypertension in vitro

    PubMed Central

    Irondi, Emmanuel Anyachukwu; Agboola, Samson Olalekan; Oboh, Ganiyu; Boligon, Aline Augusti; Athayde, Margareth Linde; Shode, Francis O.

    2016-01-01

    Background/Aim: Elevated uric acid level, an index of gout resulting from the over-activity of xanthine oxidase (XO), increases the risk of developing hypertension. However, research has shown that plant-derived inhibitors of XO and angiotensin 1-converting enzyme (ACE), two enzymes implicated in gout and hypertension, respectively, can prevent or ameliorate both diseases, without noticeable side effects. Hence, this study characterized the polyphenolics composition of guava leaves extract and evaluated its inhibitory effect on XO and ACE in vitro. Materials and Methods: The polyphenolics (flavonoids and phenolic acids) were characterized using high-performance liquid chromatography (HPLC) coupled with diode array detection (DAD). The XO, ACE, and Fe2+-induced lipid peroxidation inhibitory activities, and free radicals (2,2-diphenylpicrylhydrazyl [DPPH]* and 2,2´-azino-bis-3-ethylbenzthiazoline-6-sulphonic [ABTS]*+) scavenging activities of the extract were determined using spectrophotometric methods. Results: Flavonoids were present in the extract in the order of quercetin > kaempferol > catechin > quercitrin > rutin > luteolin > epicatechin; while phenolic acids were in the order of caffeic acid > chlorogenic acid > gallic acids. The extract effectively inhibited XO, ACE and Fe2+-induced lipid peroxidation in a dose-dependent manner; having half-maximal inhibitory concentrations (IC50) of 38.24 ± 2.32 μg/mL, 21.06 ± 2.04 μg/mL and 27.52 ± 1.72 μg/mL against XO, ACE and Fe2+-induced lipid peroxidation, respectively. The extract also strongly scavenged DPPH* and ABTS*+. Conclusion: Guava leaves extract could serve as functional food for managing gout and hypertension and attenuating the oxidative stress associated with both diseases. PMID:27104032

  18. Determination of C-glucosidic ellagitannins in Lythri salicariaeherba by ultra-high performance liquid chromatography coupled with charged aerosol detector: method development and validation.

    PubMed

    Granica, Sebastian; Piwowarski, Jakub P; Kiss, Anna K

    2014-01-01

    Lythri salicariaeherba is a pharmacopoeial plant material used by patients in the form of infusions in the treatment of acute diarrhoea. According to its pharmacopoeial monograph it is standardised for total tannin content, which should be not less than 5.0% using pyrogallol as a standard. Previous studies have shown that aqueous extracts from Lythri herba contain mainly ellagitannins among which vescalagin, castalagin and salicarinins A and B are dominating constituents. To develop and validate an efficient UHPLC coupled with a charged aerosol detector (CAD) method for quantification of four major ellagitannins in Lythri salicariaeherba and in one commercial preparation. Extraction conditions of ellagitannins from plant material were optimised. The relative response factors for vescalagin, castalagin and salicarinins A and B using gallic acid as an external standard were determined for the CAD detector. Then, a UHPLC method for quantification of ellagitannins was developed and validated. Four major ellagitannins were quantified in four samples of Lythri herba and in one commercial preparation. The sum of ellagitannins for each sample was determined, which varied from 30.66 to 48.80 mg/g of raw material and 16.57 mg per capsule for the preparation investigated. The first validated UHPLC/CAD UHPLC-CAD method for quantification of four major ellagitannins was developed. The universality of the CAD response was evaluated and it is shown that although all compounds analysed have similar structures their CAD response differs significantly. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Radiation induced chemical changes of phenolic compounds in strawberries

    NASA Astrophysics Data System (ADS)

    Breitfellner, F.; Solar, S.; Sontag, G.

    2003-06-01

    In unirradiated strawberries four phenolic acids (gallic acid, p-coumaric acid, caffeic acid and 4-hydroxybenzoic acid), the flavonoids (+)-catechin, (-)-epicatechin and glycosides from kaempferol and quercetin were determined by reversed phase chromatography with diode array detection. Characteristic linear dose/concentration relationships were found for 4-hydroxybenzoic acid and two unidentified compounds. One of them may be usable as marker to prove an irradiation treatment.

  20. Computational analysis of the solvation of coffee ingredients in aqueous ionic liquid mixtures.

    PubMed

    Zeindlhofer, Veronika; Khlan, Diana; Bica, Katharina; Schröder, Christian

    2017-01-13

    In this paper, we investigate the solvation of coffee ingredients including caffeine, gallic acid as representative for phenolic compounds and quercetin as representative for flavonoids in aqueous mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate [C 2 mim][OAc] at various concentrations. Due to the anisotropy of the solutes we show that classical Kirkwood-Buff theory is not appropriate to study solvation effects with increasing ionic liquid content. However, excess coordination numbers as well as the mean residence time of solvent molecules at the surface of the solutes can be determined by Voronoi tessellation. Since the volume of the hydration shells is also available by this method, solvation free energies will be discussed as a function of the ionic liquid concentration to yield a physical meaningful picture of solvation for the anisotropic solutes. Hydrogen bonding capabilities of the solutes and their relevance for experimental extraction yields from spent coffee grounds are also discussed.

  1. In vitro health promoting properties of antioxidant dietary fiber extracted from spent coffee (Coffee arabica L.) grounds.

    PubMed

    Vázquez-Sánchez, Kenia; Martinez-Saez, Nuria; Rebollo-Hernanz, Miguel; Del Castillo, Maria Dolores; Gaytán-Martínez, Marcela; Campos-Vega, Rocio

    2018-09-30

    Antioxidant dietary fiber extracted from spent coffee grounds (FSCG) was evaluated as a potential functional food ingredient when incorporated in a food model (biscuits), and digested in vitro under simulated human gastrointestinal conditions. FSCG added to biscuits increased its total dietary fiber, antioxidant capacity after in vitro digestion, bioaccessibility of phenolic compounds (gallic acid and catechin) and amino acids. Furthermore, advanced glycation end products (AGEs), involved in chronic diseases, decreased up to 6-folds in the biscuits containing FSCG when compared with the traditional biscuit. The digestible fraction of biscuits containing the highest amount of FSCG (5 g) displayed the higher inhibiting α-glucosidase activity, correlating with the bioaccessibility of ascorbic acid and catechin. Our study seems to indicate that anti-diabetic compounds may be released in the small intestine during FSCG digestion, where biscuits containing FSCG may be able to beneficially regulate sugar metabolism thereby helping in producing foods friendly for diabetes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Composition and properties of virgin pistachio oils and their by-products from different cultivars.

    PubMed

    Ojeda-Amador, Rosa M; Fregapane, Giuseppe; Salvador, María Desamparados

    2018-02-01

    Pistachios (Pistacia vera) exhibit an interesting nutritional value, due to the high content of oleic acid and minor components with antioxidant and bioactive properties. This work aimed to characterize pistachio virgin oils and their partially defatted residual cakes, obtained from eight cultivars (Aegina, Avdat, Kastel, Kerman, Larnaka, Mateur, Napoletana, and Sirora). Interesting results on phenolics, tocopherols and antioxidant activity were observed, which were greatly affected by variety. Pistachio virgin oils are rich in healthy oleic acid (55-74%), phytosterols (3200-7600mg/kg) and γ-tocopherol (550-720mg/kg). A high content of phenolic compounds (8600-15000mg/kg gallic acid equivalents) and the corresponding antioxidant activities (12-46 and 155-496mmol/kg for DPPH and ORAC) of the residual cakes demonstrate their potential applications as functional ingredients and as rich sources of bioactive compounds. Moreover, virgin pistachio oils possess peculiar and pleasant sensory characteristics, contributing greater added value to the consumers compared to refined vegetable oils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Comparative Assessment of Phenolic Content and in Vitro Antioxidant Capacity in the Pulp and Peel of Mango Cultivars

    PubMed Central

    Abbasi, Arshad Mehmood; Guo, Xinbo; Fu, Xiong; Zhou, Lin; Chen, Youngsheng; Zhu, Yong; Yan, Huaifeng; Liu, Rui Hai

    2015-01-01

    Mango (Mangifera indica L.), also called “the king of fruits”, is one of the most popular fruits in tropical regions. Pulp and peel samples of mango cultivars were analyzed to estimate total phenolic, total flavonoid and total anthocyanin contents. Phenolic acids, hydrophilic peroxyl radical scavenging capacity (hydro-PSC) and oxygen radical scavenging capacity (ORAC) in vitro were also determined. Total phenolics and flavonoid contents were found maximum in the peel of Xiao Tainang and Da Tainang cultivars, respectively, whereas Xiao Tainang also exhibited significant antioxidant capacity. Noteworthy, concentrations of gallic acid, protocatechuic acid, ferulic acid, chlorogenic acid and caffeic acids at 79.15, 64.33, 33.75, 27.19 and 13.62 mg/100 g fresh weight (FW) were quantified for Da Tainang, Xiao Tainang and of Jidan cultivars, respectively. Comparatively, a higher level of phenolics and significant antioxidant capacity in mango peel indicated that it might be useful as a functional food and value-added ingredient to promote human health. PMID:26075869

  4. Antioxidant activity of Rafflesia kerrii flower extract.

    PubMed

    Puttipan, Rinrampai; Okonogi, Siriporn

    2014-02-01

    Rafflesia kerrii has been used in Thai traditional remedies for treatment of several diseases. However, scientific data particularly on biological activities of this plant is very rare. The present study explores an antioxidant activity of R. kerrii flower (RKF). Extracting solvent and extraction procedure were found to play an important role on the activity of RKF extract. The extract obtained from water-ethanol system showed higher antioxidant activity than that from water-propylene glycol system. Fractionated extraction using different solvents revealed that methanol fractionated extract (RM) possessed the highest antioxidant activity with Trolox equivalent antioxidant capacity (TEAC) and inhibitory concentration of 50% inhibition (IC50) values of approximately 39 mM/mg and 3 μg/mL, respectively. Phytochemical assays demonstrated that RM contained extremely high quantity of phenolic content with gallic antioxidant equivalent (GAE) and quercetin equivalent (QE) values of approximately 312 mg/g and 16 mg/g, respectively. Ultraviolet-visible spectroscopy (UV- VIS) and high-pressure liquid chromatography (HPLC) indicated that gallic acid was a major component. RM which was stored at 40°C, 75% RH for 4 months showed slightly significant change (p < 0.05) in phytochemical content and antioxidant activity with zero order degradation. The results of this study could be concluded that R. kerrii flower was a promising natural source of strong antioxidant compounds.

  5. Singlet Oxygen Detection Using Red Wine Extracts as Photosensitizers.

    PubMed

    Lagunes, Irene; Vázquez-Ortega, Fernanda; Trigos, Ángel

    2017-09-01

    Moderate consumption of red wine provides beneficial effects to health. This is attributed to polyphenol compounds present in wine such as resveratrol, quercetin, gallic acid, rutin, and vanillic acid. The amount of these antioxidants is variable; nevertheless, the main beneficial effects of red wine are attributed to resveratrol. However, it has been found that resveratrol and quercetin are able to photosensitize singlet oxygen generation and conversely, gallic acid acts as quencher. Therefore, and since resveratrol and quercetin are some of the most important antioxidants reported in red wines, the aim of this research was to evaluate the photosensitizing ability of 12 red wine extracts through photo-oxidation of ergosterol. The presence of 1 O 2 was detected by ergosterol conversion into peroxide of ergosterol through 1 H NMR analysis. Our results showed that 10 wine extracts were able to act as photosensitizers in the generation of singlet oxygen. The presence of 1 O 2 can damage other compounds of red wine and cause possible organoleptic alterations. Finally, although the reaction conditions employed in this research do not resemble the inherent conditions in wine making processing or storing, or even during its consumption, this knowledge could be useful to prevent possible pro-oxidant effects and avoid detrimental effects in red wines. © 2017 Institute of Food Technologists®.

  6. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens

    PubMed Central

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP–GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core–shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP–GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP–GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP–GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP–GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP–GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP–GA has potential for further application in biomedical sciences. PMID:27555764

  7. Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection.

    PubMed

    Lee, Ji-Hye; Oh, Mi; Seok, Jong Hyeon; Kim, Sella; Lee, Dan Bi; Bae, Garam; Bae, Hae-In; Bae, Seon Young; Hong, Young-Min; Kwon, Sang-Oh; Lee, Dong-Hun; Song, Chang-Seon; Mun, Ji Young; Chung, Mi Sook; Kim, Kyung Hyun

    2016-06-06

    Influenza is a serious public health concern worldwide, as it causes significant morbidity and mortality. The emergence of drug-resistant viral strains requires new approaches for the treatment of influenza. In this study, Rubus coreanus seed (RCS) that is left over from the production of wine or juice was found to show antiviral activities against influenza type A and B viruses. Using the time-of-addition plaque assay, viral replication was almost completely abolished by simultaneous treatment with the RCS fraction of less than a 1-kDa molecular weight (RCSF1). One of the polyphenols derived from RCSF1, gallic acid (GA), identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against both influenza type A and B viruses, albeit at relatively high concentrations. RCSF1 was bound to hemagglutinin protein, inhibited hemagglutination significantly and disrupted viral particles, whereas GA was found to only disrupt the viral particles by using transmission electron microscopy. In BALB/c mice infected with influenza virus, oral administration of RCSF1 significantly improved the survival rate and reduced the viral titers in the lungs. Our results demonstrate that RCSF1 and GA show potent and broad antiviral activity against influenza A and B type viruses and are promising sources of agents that target virus particles.

  8. Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection

    PubMed Central

    Lee, Ji-Hye; Oh, Mi; Seok, Jong Hyeon; Kim, Sella; Lee, Dan Bi; Bae, Garam; Bae, Hae-In; Bae, Seon Young; Hong, Young-Min; Kwon, Sang-Oh; Lee, Dong-Hun; Song, Chang-Seon; Mun, Ji Young; Chung, Mi Sook; Kim, Kyung Hyun

    2016-01-01

    Influenza is a serious public health concern worldwide, as it causes significant morbidity and mortality. The emergence of drug-resistant viral strains requires new approaches for the treatment of influenza. In this study, Rubus coreanus seed (RCS) that is left over from the production of wine or juice was found to show antiviral activities against influenza type A and B viruses. Using the time-of-addition plaque assay, viral replication was almost completely abolished by simultaneous treatment with the RCS fraction of less than a 1-kDa molecular weight (RCSF1). One of the polyphenols derived from RCSF1, gallic acid (GA), identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against both influenza type A and B viruses, albeit at relatively high concentrations. RCSF1 was bound to hemagglutinin protein, inhibited hemagglutination significantly and disrupted viral particles, whereas GA was found to only disrupt the viral particles by using transmission electron microscopy. In BALB/c mice infected with influenza virus, oral administration of RCSF1 significantly improved the survival rate and reduced the viral titers in the lungs. Our results demonstrate that RCSF1 and GA show potent and broad antiviral activity against influenza A and B type viruses and are promising sources of agents that target virus particles. PMID:27275830

  9. A 1H NMR Investigation of the Interaction between Phenolic Acids Found in Mango (Manguifera indica cv Ataulfo) and Papaya (Carica papaya cv Maradol) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) Free Radicals

    PubMed Central

    López-Martínez, Luis M.; Santacruz-Ortega, Hisila; Navarro, Rosa-Elena; Sotelo-Mundo, Rogerio R.; González-Aguilar, Gustavo A.

    2015-01-01

    The benefits of phenolic acids on human health are very often ascribed to their potential to counteract free radicals to provide antioxidant protection. This potential has been attributed to their acidic chemical structure, which possesses hydroxyl groups in different positions. Phenolic acids can interact between themselves and exhibit an additive, antagonistic or synergistic effect. In this paper, we used 1H NMR to analyze the interactions and mechanisms that are present in major phenolic acids found in mango (gallic, protocatechuic, chlorogenic and vanillic acids) and papaya (caffeic, ferulic and p-coumaric acids), and the DPPH radical was used to evaluate the effect of the antioxidant mixtures. The interactions were found to occur via hydrogen bonds between the -OH and -COOH groups. Moreover, the phenolic acids exhibit two types of mechanisms for the neutralization of the DPPH radical. According to the results, these two mechanisms are Hydrogen Atom Transfer (HAT) and Single Electron Transfer (SET). The ability of the phenolic acid to neutralize the DPPH radical decreases in the following order in mango: gallic > chlorogenic > protocatechuic > vanillic. Moreover, within the acids found in papaya, the order was as follows: caffeic > p-coumaric > ferulic. PMID:26559189

  10. Investigation of antioxidant ability of grape seeds extract to prevent oxidatively induced DNA damage by gas chromatography-tandem mass spectrometry.

    PubMed

    Aybastıer, Önder; Dawbaa, Sam; Demir, Cevdet

    2018-01-01

    Phenolic compounds have been studied elaborately for their efficacy to improve health and to protect against a wide variety of diseases. Herein this study, different analysis methods were implemented to evaluate the antioxidant properties of catechin and cyanidin using their standard substances and as they found in the grape seeds extracts. Total phenol contents were 107.39±8.94mg GAE/g dw of grape seeds for grape seed extract (GSE) and 218.32±10.66mg GAE/g dw of grape seeds for acid-hydrolyzed grape seed extract (AcGSE). The extracts were analyzed by HPLC-DAD system and the results showed the presence of catechin, gallic acid, chlorogenic acid and ellagic acid in the processed methanolic extract and cyanidin, gallic acid and ellagic acid in the processed acidified methanolic extract. The protective abilities of catechin and cyanidin were tested against the oxidation of DNA. The results showed that cyanidin has better protection of DNA against oxidation than catechin. GSE and AcGSE were revealed to inhibit the oxidatively induced DNA damage. GSE decreased about 57% of damage caused by the Fenton control sample. This study could show new aspects of the antioxidant profiles of cyanidin and catechin. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Gallic acid prevents nonsteroidal anti-inflammatory drug-induced gastropathy in rat by blocking oxidative stress and apoptosis.

    PubMed

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd Shameel; Maity, Pallab; Adhikari, Susanta S; Bandyopadhyay, Uday

    2010-07-15

    Nonsteroidal anti-inflammatory drug (NSAID)-induced oxidative stress plays a critical role in gastric mucosal cell apoptosis and gastropathy. NSAIDs induce the generation of hydroxyl radical ((*)OH) through the release of free iron, which plays an important role in developing gastropathy. Thus, molecules having both iron-chelating and antiapoptotic properties will be beneficial in preventing NSAID-induced gastropathy. Gallic acid (GA), a polyphenolic natural product, has the capacity to chelate free iron. Here, we report that GA significantly prevents, as well as heals, NSAID-induced gastropathy. In vivo, GA blocks NSAID-mediated mitochondrial oxidative stress by preventing mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. In vitro, GA scavenges free radicals and blocks (*)OH-mediated oxidative damage. GA also attenuates gastric mucosal cell apoptosis in vivo as well as in vitro in cultured gastric mucosal cells as evident from the TUNEL assay. GA prevents NSAID-induced activation of caspase-9, a marker for the mitochondrial pathway of apoptosis, and restores NSAID-mediated collapse of the mitochondrial transmembrane potential and dehydrogenase activity. Thus, the inhibition of mitochondrial oxidative stress by GA is associated with the inhibition of NSAID-induced mitochondrial dysfunction and activation of apoptosis in gastric mucosal cells, which are responsible for gastric injury or gastropathy. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Quantitative and fingerprint analyses of Chinese sweet tea plant (Rubus Suavissimus S. Lee)

    PubMed Central

    Chou, Guixin; Xu, Shun-Jun; Liu, Dong; Koh, Gar Yee; Zhang, Jian; Liu, Zhijun

    2009-01-01

    Quality of botanical food is increasingly assessed by the content of multiple bioactive compounds. In this study we report, for the first time, an HPLC fingerprinting method for the quality evaluation of Rubus suavissimus leaves possessing multiple bioactivities. Five constituents, gallic acid, rutin, ellagic acid, rubusoside, and steviol monoside were quantified and used in developing qualitative chromatographic fingerprints. The limits of detection and quantification ranged from 0.29 μg/mL to 37.86 μg/mL. The relative standard deviations (RSDs) of intra- and inter-day precisions were no more than 3.14% and 3.01%, respectively. The average recoveries were between 93.1% and 97.5%. The developed method was validated in analyzing fourteen leaf samples with satisfactory results. The contents of the five marker compounds accounted for an average of about 6% w/w with a variability of 16% among the fourteen samples collected from a single site and year. Gallic acid was the least whereas steviol monoside the most variable compounds among the fourteen leaf samples. The characteristic compound rubusoside that is responsible for the sweet taste accounted for 5% of leaf weight. The validated method can now be used to quantitatively and qualitatively assess the quality of Rubus suavissimus leaves as traditional beverage or potential medicines. PMID:19138116

  13. Effect of processing techniques on nutritional composition and antioxidant activity of fenugreek (Trigonella foenum-graecum) seed flour.

    PubMed

    Pandey, Hemlata; Awasthi, Pratima

    2015-02-01

    Fenugreek (Pusa Early Bunching) seeds were processed by using different processing methods viz. soaking, germination and roasting. Raw and processed fenugreek seed flours were analyzed for nutritional composition, anti- nutritional, and antioxidant activity. Raw fenugreek seed flour contained higher amount of dietary fiber (45.4 %) followed by 41.7 % in soaked seed flour, 40.9 % in roasted fenugreek seed flour and 31.3 % in germinated fenugreek seed flour. Processing of fenugreek seeds improved in vitro starch digestibility and in vitro protein digestibility. Soaking, germination and roasting enhanced total phenolic content and the antioxidant activity of fenugreek seed flour as compared to raw fenugreek seed flour. The phenolic content of soaked, germinated and roasted fenugreek seed flours was 54.4, 80.8 and 48.5 mg of gallic acid equivalents/g of sample in contrast to raw fenugreek seed flour (45.4 mg of gallic acid equivalents/g of sample). The antioxidant activity of the extracts of soaked, germinated and roasted fenugreek seed flours was 60.7 %, 73.9 % and 32.0 % whereas as the raw fenugreek seed flour exhibited 18.1 % antioxidant activity. Processing of fenugreek seeds also decreased phytic acid content significantly (P < 0.05) as compared to raw seeds.

  14. The hepatoprotective effect of Phyllanthus emblica L. fruit on high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in SD rats.

    PubMed

    Huang, Cheng-Ze; Tung, Yu-Tang; Hsia, Shih-Min; Wu, Chi-Hao; Yen, Gow-Chin

    2017-02-22

    Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver disease, is closely associated with metabolic syndrome and refers to the accumulation of hepatic steatosis not due to excess alcohol consumption. Phyllanthus emblica L. is a rich source of gallic acid and many known medicinally phytochemicals such as tannins, lignans, flavonoids, alkaloids, vitamin C, mucic acid, and ellagic acid. Our previous study has revealed that P. emblica exhibits inhibitory effects on hepatic steatosis and liver fibrosis in vitro, as well as gallic acid improves high fat diet (HFD)-induced dyslipidaemia, hepatosteatosis, and oxidative stress in vivo. Therefore, the aim of this study was to investigate the hepatoprotective effect of the water extract of P. emblica L. fruit (WEPE) on NAFLD in an animal model. The results showed that WEPE could significantly decrease body weight, peritoneal fat and epididymal fat, enhance the antioxidant enzyme activities, and improve steatosis through elevating adiponectin in adipocytes and PPAR-α in the liver as well as lowering SREBP-1c in the liver of rats fed with a high fat diet (HFD). This might be an explanation for the hepatic fat deposition-lowering effect of WEPE. These results demonstrate that WEPE could be beneficial for the amelioration of HFD-induced steatosis.

  15. Phragmites australis root secreted phytotoxin undergoes photo-degradation to execute severe phytotoxicity

    PubMed Central

    Rudrappa, Thimmaraju; Choi, Yong Seok; Levia, Delphis F; Legates, David R; Lee, Kelvin H

    2009-01-01

    Our study organism, Phragmites australis (common reed), is a unique invader in that both native and introduced lineages are found coexisting in North America. This allows one to make direct assessments of physiological differences between these different subspecies and examine how this relates to invasiveness. Recent efforts to understand plant invasive behavior show that some invasive plants secrete a phytotoxin to ward-off encroachment by neighboring plants (allelopathy) and thus provide the invaders with a competitive edge in a given habitat. Here we show that a varying climatic factor like ultraviolet (UV) light leads to photo-degradation of secreted phytotoxin (gallic acid) in P. australis rhizosphere inducing higher mortality of susceptible seedlings. The photo-degraded product of gallic acid (hereafter GA), identified as mesoxalic acid (hereafter MOA), triggered a similar cell death cascade in susceptible seedlings as observed previously with GA. Further, we detected the biological concentrations of MOA in the natural stands of exotic and native P. australis. Our studies also show that the UV degradation of GA is facilitated at an alkaline pH, suggesting that the natural habitat of P. australis may facilitate the photo-degradation of GA. The study highlights the persistence of the photo-degraded phytotoxin in the P. australis's rhizosphere and its inhibitory effects against the native plants. PMID:19816146

  16. Phragmites australis root secreted phytotoxin undergoes photo-degradation to execute severe phytotoxicity.

    PubMed

    Rudrappa, Thimmaraju; Choi, Yong Seok; Levia, Delphis F; Legates, David R; Lee, Kelvin H; Bais, Harsh P

    2009-06-01

    Our study organism, Phragmites australis (common reed), is a unique invader in that both native and introduced lineages are found coexisting in North America. This allows one to make direct assessments of physiological differences between these different subspecies and examine how this relates to invasiveness. Recent efforts to understand plant invasive behavior show that some invasive plants secrete a phytotoxin to ward-off encroachment by neighboring plants (allelopathy) and thus provide the invaders with a competitive edge in a given habitat. Here we show that a varying climatic factor like ultraviolet (UV) light leads to photo-degradation of secreted phytotoxin (gallic acid) in P. australis rhizosphere inducing higher mortality of susceptible seedlings. The photo-degraded product of gallic acid (hereafter GA), identified as mesoxalic acid (hereafter MOA), triggered a similar cell death cascade in susceptible seedlings as observed previously with GA. Further, we detected the biological concentrations of MOA in the natural stands of exotic and native P. australis. Our studies also show that the UV degradation of GA is facilitated at an alkaline pH, suggesting that the natural habitat of P. australis may facilitate the photo-degradation of GA. The study highlights the persistence of the photo-degraded phytotoxin in the P. australis's rhizosphere and its inhibitory effects against the native plants.

  17. A ¹H NMR Investigation of the Interaction between Phenolic Acids Found in Mango (Manguifera indica cv Ataulfo) and Papaya (Carica papaya cv Maradol) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) Free Radicals.

    PubMed

    López-Martínez, Luis M; Santacruz-Ortega, Hisila; Navarro, Rosa-Elena; Sotelo-Mundo, Rogerio R; González-Aguilar, Gustavo A

    2015-01-01

    The benefits of phenolic acids on human health are very often ascribed to their potential to counteract free radicals to provide antioxidant protection. This potential has been attributed to their acidic chemical structure, which possesses hydroxyl groups in different positions. Phenolic acids can interact between themselves and exhibit an additive, antagonistic or synergistic effect. In this paper, we used 1H NMR to analyze the interactions and mechanisms that are present in major phenolic acids found in mango (gallic, protocatechuic, chlorogenic and vanillic acids) and papaya (caffeic, ferulic and p-coumaric acids), and the DPPH radical was used to evaluate the effect of the antioxidant mixtures. The interactions were found to occur via hydrogen bonds between the -OH and -COOH groups. Moreover, the phenolic acids exhibit two types of mechanisms for the neutralization of the DPPH radical. According to the results, these two mechanisms are Hydrogen Atom Transfer (HAT) and Single Electron Transfer (SET). The ability of the phenolic acid to neutralize the DPPH radical decreases in the following order in mango: gallic > chlorogenic > protocatechuic > vanillic. Moreover, within the acids found in papaya, the order was as follows: caffeic > p-coumaric > ferulic.

  18. Hydrophilic Graphene Preparation from Gallic Acid Modified Graphene Oxide in Magnesium Self-Propagating High Temperature Synthesis Process

    NASA Astrophysics Data System (ADS)

    Cao, Lei; Li, Zhenhuan; Su, Kunmei; Cheng, Bowen

    2016-10-01

    Hydrophilic graphene sheets were synthesized from a mixture of magnesium and gallic acid (GA) modified graphene oxide (GO) in a self-propagating high-temperature synthesis (SHS) process, and hydrophilic graphene sheets displayed the higher C/O ratio (16.36), outstanding conductivity (~88900 S/m) and excellent water-solubility. GO sheets were connected together by GA, and GA was captured to darn GO structure defects through the formation of hydrogen bonds and ester bonds. In SHS process, the most oxygen ions of GO reacted with magnesium to prevent the escape of carbon dioxide and carbon monoxide to from the structure defects associated with vacancies, and GA could take place the high-temperature carbonization, during which a large-area graphene sheets formed with a part of the structure defects being repaired. When only GO was reduced by magnesium in SHS process, and the reduced GO (rGO) exhibited the smaller sheets, the lower C/O ratio (15.26), the weaker conductivity (4200 S/m) and the poor water-solubility because rGO inevitably left behind carbon vacancies and topological defects. Therefore, the larger sheet, less edge defects and free structure defects associated with vacancies play a key role for graphene sheets good dispersion in water.

  19. Polyphenol levels in human urine after intake of six different polyphenol-rich beverages.

    PubMed

    Ito, Hideyuki; Gonthier, Marie-Paule; Manach, Claudine; Morand, Christine; Mennen, Louise; Rémésy, Christian; Scalbert, Augustin

    2005-10-01

    Dietary polyphenols are suggested to participate in the prevention of CVD and cancer. It is essential for epidemiological studies to be able to compare intake of the main dietary polyphenols in populations. The present paper describes a fast method suitable for the analysis of polyphenols in urine, selected as potential biomarkers of intake. This method is applied to the estimation of polyphenol recovery after ingestion of six different polyphenol-rich beverages. Fifteen polyphenols including mammalian lignans (enterodiol and enterolactone), several phenolic acids (chlorogenic, caffeic, m-coumaric, gallic, and 4-O-methylgallic acids), phloretin and various flavonoids (catechin, epicatechin, quercetin, isorhamnetin, kaempferol, hesperetin, and naringenin) were simultaneously quantified in human urine by HPLC coupled with electrospray ionisation mass-MS (HPLC-electrospray-tandem mass spectrometry) with a run time of 6 min per sample. The method has been validated with regard to linearity, precision, and accuracy in intra- and inter-day assays. It was applied to urine samples collected from nine volunteers in the 24 h following consumption of either green tea, a grape-skin extract, cocoa beverage, coffee, grapefruit juice or orange juice. Levels of urinary excretion suggest that chlorogenic acid, gallic acid, epicatechin, naringenin or hesperetin could be used as specific biomarkers to evaluate the consumption of coffee, wine, tea or cocoa, and citrus juices respectively.

  20. Effects of methyl gallate and gallic acid on the production of inflammatory mediators interleukin-6 and interleukin-8 by oral epithelial cells stimulated with Fusobacterium nucleatum.

    PubMed

    Kang, Mi-Sun; Jang, Hee-Sook; Oh, Jong-Suk; Yang, Kyu-Ho; Choi, Nam-Ki; Lim, Hoi-Soon; Kim, Seon-Mi

    2009-12-01

    Interactions between periodontal bacteria and human oral epithelial cells can lead to the activation and expression of a variety of inflammatory mediators in epithelial cells. Fusobacterium nucleatum is a filamentous human pathogen that is strongly associated with periodontal diseases. This study examined the effects of methyl gallate (MG) and gallic acid (GA) on the production of inflammatory mediators, interleukin (IL)-6 and IL-8, by oral epithelial cells stimulated by F. nucleatum. In a real-time reverse transcription-polymerase chain reaction and an enzyme-linked immunosorbent assay, live F. nucleatum induced high levels of gene expression and protein release of IL-6 and IL-8. The effects of MG and GA were examined by treating KB oral epithelial cells with MG and GA and stimulating them with F. nucleatum. MG and GA inhibited significantly the increases in the IL-6 and IL-8 gene and protein levels in a dose-dependent manner. These Compounds also inhibited the growth of F. nucleatum. No visible effects of MG and GA on the adhesion and invasion of KB cells by F. nucleatum were observed. In conclusion, both MG and GA inhibit IL-6 and IL-8 production from F. nucleatum-activated KB cells.

  1. Tunicate-Inspired Gallic Acid/Metal Ion Complex for Instant and Efficient Treatment of Dentin Hypersensitivity.

    PubMed

    Prajatelistia, Ekavianty; Ju, Sung-Won; Sanandiya, Naresh D; Jun, Sang Ho; Ahn, Jin-Soo; Hwang, Dong Soo

    2016-04-20

    Dentin hypersensitivity is sharp and unpleasant pains caused by exposed dentinal tubules when enamel outside of the tooth wears away. The occlusion of dentinal tubules via in situ remineralization of hydroxyapatite is the best method to alleviate the symptoms caused by dentin hypersensitivity. Commercially available dental desensitizers are generally effective only on a specific area and are relatively toxic, and their performance usually depends on the skill of the clinician. Here, a facile and efficient dentin hypersensitivity treatment with remarkable aesthetic improvement inspired by the tunicate-self-healing process is reported. As pyrogallol groups in tunicate proteins conjugate with metal ions to heal the torn body armor of a tunicate, the ingenious mechanism by introducing gallic acid (GA) as a cheap, abundant, and edible alternative to the pyrogallol groups of the tunicate combined with a varied daily intake of metal ion sources is mimicked. In particular, the GA/Fe(3+) complex exhibits the most promising results, to the instant ≈52% blockage in tubules within 4 min and ≈87% after 7 d of immersion in artificial saliva. Overall, the GA/metal ion complex-mediated coating is facile, instant, and effective, and is suggested as an aesthetic solution for treating dentin hypersensitivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Analysis of hydrolyzable tannins and other phenolic compounds in emblic leafflower (Phyllanthus emblica L.) fruits by high performance liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Yang, Baoru; Kortesniemi, Maaria; Liu, Pengzhan; Karonen, Maarit; Salminen, Juha-Pekka

    2012-09-05

    Phenolic compounds were extracted from dried emblic leafflower (Phyllanthus emblica L.) fruits with methanol and separated by Sephadex LH-20 column chromatography. The raw extracts and fractions were analyzed with HPLC coupled with diode array UV spectroscopy, electrospray ionization mass spectrometry, and tandem mass spectrometry. Mucic acid gallate, mucic acid lactone gallate, monogalloylglucose, gallic acid, digalloylglucose, putranjivain A, galloyl-HHDP-glucose, elaeocarpusin, and chebulagic acid were suggested to be the most abundant compounds in the crude methanol extracts of the fruits. In addition, 144 peaks were detected, of which 67 were tentatively identified mostly as ellagitannins, flavonoids, and simple gallic acid derivatives in the fractions. The results indicated the presence of neochebulagic acid, isomers of neochebuloyl galloylglucose, chebuloyl neochebuloyl galloylglucose, ellagic acid glycosides, quercetin glycosides, and eriodictyol coumaroyl glycosides in the fruits. The study provides a systematic report of the retention data and characteristics of UV, MS, and MS/MS spectra of the phenolic compounds in the fruits of emblic leafflower. The fruits of two varieties (Ping Dan No 1 and Fruity) from Guangxi Province differed from those of wild Tian Chuan emblic leafflower from Fujian Province in the content and profile of phenolic compounds.

  3. Gallic acid inhibits the release of ADAMTS4 in nucleus pulposus cells by inhibiting p65 phosphorylation and acetylation of the NF-κB signaling pathway.

    PubMed

    Huang, Yao; Chen, Jian; Jiang, Tao; Zhou, Zheng; Lv, Bin; Yin, Guoyong; Fan, Jin

    2017-07-18

    This study investigated the inhibitory effect of gallic acid (GA) on the release of A Disintegrin and Metalloproteinase with Thrombospondin motifs 4 (ADAMTS4) through the regulation of the NF-κB signaling pathway, which is closely related to the matrix metalloproteinases in nucleus pulposus cells. Different concentrations of GA were added to TNF-α-induced human nucleus pulposus cells (hNPCs) and intervertebral disc degeneration rat model. ADAMTS-4 expression increased both in the TNF-α-induced nucleus pulposus cells and intervertebral disc degeneration rat model. By contrast, the release of ADAMTS-4 was reduced, and the TNF-α-induced apoptosis of nucleus pulposus cells was significantly inhibited after addition of GA at different concentrations. Further study found that the levels of phosphorylated p65 (p-p65) was increased and the classical NF-κB signal pathway was activated after the nucleus pulposus cells were stimulated by TNF-α. Meanwhile, GA suppressed the p65 phosphorylation and inceased p65 deacetylation levels. As a consequence, GA can decrease the expression of ADAMTS-4 in nucleus pulposus cells by regulating the phosphorylation and acetylation of p65 in NF-κB signaling pathways.

  4. Proteomic study reveals a co-occurrence of gallic acid-induced apoptosis and glycolysis in B16F10 melanoma cells.

    PubMed

    Liu, Cheng; Lin, Jen-Jie; Yang, Zih-Yan; Tsai, Chi-Chu; Hsu, Jue-Liang; Wu, Yu-Jen

    2014-12-03

    Gallic acid (GA) has long been associated with a wide range of biological activities. In this study, its antitumor effect against B16F10 melanoma cells was demonstrated by MTT assay, cell migration assay, wound-healing assay, and flow cytometric analysis. GA with a concentration >200 μM shows apoptotic activity toward B16F10 cells. According to Western blotting data, overexpressions of cleaved forms of caspase-9, caspase-3, and PARP-1 and pro-apoptotic Bax and Bad, accompanied by underexpressed anti-apoptotic Bcl-2 and Bcl-xL indicate that GA induces B16F10 cell apoptosis via mitochondrial pathway. The 2-DE based comparative proteomics was further employed in B16F10 cells with and without GA treatment for a large-scale protein expression profiling. A total of 41 differential protein spots were quantified, and their identities were characterized using LC-MS/MS analysis and database matching. In addition to some regulated proteins that were associated with apoptosis, interestingly, some identified proteins involved in glycolysis such as glucokinase, α-enolase, aldolase, pyruvate kinase, and GAPDH were simultaneously up-regulated, which reveals that the GA-induced cellular apoptosis in B16 melanoma cells is associated with metabolic glycolysis.

  5. Effect of polyphenols from coffee and grape on gene expression in myoblasts.

    PubMed

    Priftis, Alexandros; Goutzourelas, Nikolaos; Halabalaki, Maria; Ntasi, Georgia; Stagos, Dimitrios; Amoutzias, Grigorios D; Skaltsounis, Leandros A; Kouretas, Dimitrios

    2018-06-01

    Coffee and grape contain various bioactive compounds like polyphenols that may exert beneficial effects, especially antioxidant activity, on human health upon consumption. However, the molecular mechanisms through which these effects are achieved are not fully elucidated. Thus, in the present study in order to investigate these mechanisms, a whole genome expression DNA microarray analysis was carried out in myoblasts treated with polyphenols of coffee and grape pomace at concentrations that improved the redox status. Grape was composed of catechin, epicatechin, cyanidin, malvidin, delphinidin, petunidin, myrtillin, kuromanin, oenin, peonidin, quercetin, gallic acid and caftaric acid as LC-MS revealed, with a total polyphenolic content (TPC) of 648 mg of gallic acid equivalents/g of dry matter. Coffee had a TPC of 42.61 mg GAE/g coffee and was composed of 3-chlorogenic acid (16.61 mg/g), 4- and 5-chlorogenic acids (13.62 mg/g), as UHPLC-HRMS revealed. According to the results, grape polyphenols altered mainly the expression of cytoskeleton and differentiation-associated genes, while coffee compounds had a more profound effect, on the expression levels of many metabolic and antioxidant genes possibly through the nuclear factor (erythroid-derived 2) like-2 (Nrf2) pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Antioxidant and antimicrobial potentials of Serbian red wines produced from international Vitis vinifera grape varieties.

    PubMed

    Radovanović, Aleksandra N; Jovančićević, Branimir S; Radovanović, Blaga C; Mihajilov-Krstev, Tatjana; Zvezdanović, Jelena B

    2012-08-15

    Antioxidant and antimicrobial potentials of Serbian red wines produced from different international Vitis vinifera grape varieties and their correlation with contents of phenolic compounds were studied by spectrophotometric and chromatographic methods. The antioxidant activity of red wines was estimated through their ability to scavenge 2,2'-diphenyl-1-picrylhydrazyl free radical (DPPH(•) ). The red wines, gallic acid, (+)-catechin and quercetin were screened in vitro for antimicrobial activity against Gram-positive and Gram-negative strains using microdilution and disc diffusion techniques. Excellent correlations between the contents of quercetin-3-glucoside (R(2) = 0.9463) and quercetin (R(2) = 0.9337) and DPPH(•) -scavenging ability of the red wines were found. Serbian red wines exhibited significant activity against Staphylococcus aureus, Listeria inocua, Micrococcus flavus, Sarcina lutea, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis and Shigella sonnei strains, which was in correlation with their phenolic composition and antioxidant activity. The compounds gallic acid, quercetin and (+)-catechin showed high activity against B. subtilis, S. aureus, S. lutea and M. flavus Gram-positive and S. enteritidis and P. aeruginosa Gram-negative strains. The results show that quercetin-3-glucoside and quercetin concentrations can be used as markers for the determination of antioxidant and antimicrobial potentials of red wines. Copyright © 2012 Society of Chemical Industry.

  7. Ameliorative effects of gallic acid, quercetin and limonene on urethane-induced genotoxicity and oxidative stress in Drosophila melanogaster.

    PubMed

    Nagpal, Isha; Abraham, Suresh K

    2017-05-01

    The main objective of our present work was to ascertain the efficacy of Drosophila melanogaster model for assessing antigenotoxic and antioxidant effects of dietary phytochemicals gallic acid (GA), quercetin (QC) and limonene (Lim) against urethane (URE), a genotoxic environmental carcinogen. Oregon-K (ORK) adult male flies were fed GA, QC and Lim in combination with URE (20 mM) in 10% sucrose for 72 h. Third instar larvae were fed instant medium containing the above phytochemicals and URE for 24 h. Sex-linked recessive lethal (SLRL) test and assays for estimating glutathione content (GSH), glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) and lipid peroxidation (MDA content) were performed. Adult feeding experiments demonstrated that co-treatment of flies with URE and the test phytochemicals has significantly decreased the frequencies of SLRL mutations in all the germ cell stages when compared to that with URE alone. Larval feeding experiments also showed a similar pattern. The above results correlate well with antioxidative potentials of the test agents where we observed the elevated enzymatic levels with a significant reduction in MDA level in Drosophila larvae. The results further suggest that the dietary phytochemicals have an antioxidant and antimutagenic property which can be assessed using D. melanogaster.

  8. Gallic acid regulates skin photoaging in UVB-exposed fibroblast and hairless mice.

    PubMed

    Hwang, Eunson; Park, Sang-Yong; Lee, Hyun Ji; Lee, Tae Youp; Sun, Zheng-Wang; Yi, Tae Hoo

    2014-12-01

    Ultraviolet (UV) radiation is the primary factor in skin photoaging, which is characterized by wrinkle formation, dryness, and thickening. The mechanisms underlying skin photoaging are closely associated with degradation of collagen via upregulation of matrix metalloproteinase (MMP) activity, which is induced by reactive oxygen species (ROS) production. Gallic acid (GA), a phenolic compound, possesses a variety of biological activities including antioxidant and antiinflammatory activities. We investigated the protective effects of GA against photoaging caused by UVB irradiation using normal human dermal fibroblasts (NHDFs) in vitro and hairless mice in vivo. The production levels of ROS, interlukin-6, and MMP-1 were significantly suppressed, and type I procollagen expression was stimulated in UVB-irradiated and GA-treated NHDFs. GA treatment inhibited the activity of transcription factor activation protein 1. The effects of GA following topical application and dietary administration were examined by measuring wrinkle formation, histological modification, protein expression, and physiological changes such as stratum corneum hydration, transepidermal water loss, and erythema index. We found that GA decreased dryness, skin thickness, and wrinkle formation via negative modulation of MMP-1 secretion and positive regulation of elastin, type I procollagen, and transforming growth factor-β1. Our data indicate that GA is a potential candidate for the prevention of UVB-induced premature skin aging. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens.

    PubMed

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP-GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core-shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP-GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP-GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP-GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP-GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP-GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP-GA has potential for further application in biomedical sciences.

  10. In vitro digestibility, free and bound phenolic profiles and antioxidant activity of thermally treated Eragrostis tef L.

    PubMed

    Koubová, Eva; Mrázková, Martina; Sumczynski, Daniela; Orsavová, Jana

    2018-06-01

    Total phenolic content, phenolic profile and antioxidant activity were determined in free and bound phenolic fractions of thermally treated brown and white teff grains. Phenolic content in raw brown and white teff (1540 and 992 mg gallic acid equivalent kg -1 ) as well as antioxidant activity (6.3 and 5.5 mmol trolox equivalent kg -1 ) were higher in free phenolic fractions. The most significant decrease in total phenolics was observed after application of the sous-vide method (35% for brown teff and 11% for white teff). Main free phenolics of heat-treated teff were ferulic, protocatechuic, p-coumaric and ellagic acids, rutin and epigallocatechin. Main bound phenolics were ferulic, gallic, sinapic and ellagic acids, catechin and epigallocatechin. The detrimental effect on free and bound quercetin and bound cinnamic acid concentrations was also examined during heat treatment. Thermally treated brown teff showed a high level of in vitro organic matter digestibility if water cooking and rice cooker (both 99.5%) and sous-vide (96.5%) methods were applied. The sous-vide method may be recommended as the most suitable hydrothermal treatment for grains of teff when compared with water cooking and rice cooker methods. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. In-vitro investigation of anti-acne properties of Mangifera indica L. kernel extract and its mechanism of action against Propionibacterium acnes.

    PubMed

    Poomanee, Worrapan; Chaiyana, Wantida; Mueller, Monika; Viernstein, Helmut; Khunkitti, Watcharee; Leelapornpisid, Pimporn

    2018-05-17

    Propionibacterium acnes has been recognized as a main target for medical treatment of acne since this bacterium promotes acne inflammation by inducing upregulation of pro-inflammatory cytokines production, resulting in an accumulation of neutrophils and oxygen-free radicals produced by neutrophils within acne lesion. The aims of this study were to evaluate the biological activities of Mangifera indica kernel extracts grown in Northern Thailand (Kaew-Moragot cultivar), related to anti-acne properties including antimicrobial effect against acne-inducing bacteria together with the first elucidation of the mechanism of action against Propionibacterium acnes, anti-oxidation, and anti-inflammation. The kernels of M. indica, obtained from raw and ripe fruits, were macerated using various solvents. Agar diffusion and broth microdilution methods were performed to investigate the antibacterial activities of the extracts against P. acnes, Staphylococcus aureus, and Staphylococcus epidermidis. The ethanolic fractions exhibited the strongest antimicrobial effect against P. acnes with minimum inhibitory concentration and minimum bactericidal concentration of 1.56 mg/mL and 12.50 mg/mL, respectively. Bactericidal effect against P. acnes of these extracts could be observed after 3 h of incubation from time-kill curve. The chromatograms of high-performance liquid chromatography showed that the extracts existed gallic acid with high total phenolic content. These extracts additionally showed strong free radical scavenging properties on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) as well as a notable inhibitory effect on linoleic acid peroxidation, which highly correlated to their antimicrobial effect, total phenolic, and gallic acid contents. The images, studied through using transmission electron microscopy, revealed that the extract certainly disrupted P. acnes cell membrane after exposure for 1 h as well as induced the consequent leakage of cytoplasmic materials. The inhibitory effects of the extracts on IL-8 secretion from LPS-inducing RAW 264.7 cells were also presented. In conclusion, the kernel extracts of raw M. indica fruit were effective against aerobic and anaerobic acne-inducing bacteria particularly P. acnes and exerted antioxidant along with anti-inflammatory activities. Therefore, the extracts might be potential agents for inflammatory acne treatment. However, clinical study is needed for further investigation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Renal-Clearable Ultrasmall Coordination Polymer Nanodots for Chelator-Free 64Cu-Labeling and Imaging-Guided Enhanced Radiotherapy of Cancer.

    PubMed

    Shen, Sida; Jiang, Dawei; Cheng, Liang; Chao, Yu; Nie, Kaiqi; Dong, Ziliang; Kutyreff, Christopher J; Engle, Jonathan W; Huang, Peng; Cai, Weibo; Liu, Zhuang

    2017-09-26

    Developing tumor-homing nanoparticles with integrated diagnostic and therapeutic functions, and meanwhile could be rapidly excreted from the body, would be of great interest to realize imaging-guided precision treatment of cancer. In this study, an ultrasmall coordination polymer nanodot (CPN) based on the coordination between tungsten ions (W VI ) and gallic acid (W-GA) was developed via a simple method. After polyethylene glycol (PEG) modification, PEGylated W-GA (W-GA-PEG) CPNs with an ultrasmall hydrodynamic diameter of 5 nm were rather stable in various physiological solutions. Without the need of chelator molecules, W-GA-PEG CPNs could be efficiently labeled with radioisotope 64 Cu 2+ , enabling positron emission tomography (PET) imaging, which reveals efficient tumor accumulation and rapid renal clearance of W-GA-PEG CPNs upon intravenous injection. Utilizing the radio-sensitizing function of tungsten with strong X-ray absorption, such W-GA-PEG CPNs were able to greatly enhance the efficacy of cancer radiotherapy in inhibiting the tumor growth. With fast clearance and little long-term body retention, those W-GA-PEG CPNs exhibited no appreciable in vivo toxicity. This study presents a type of CPNs with excellent imaging and therapeutic abilities as well as rapid renal clearance behavior, promising for further clinic translation.

  13. Phenolic sodium sulphates of Frankenia laevis L.

    PubMed

    Hussein, S A M

    2004-04-01

    Four new phenolic anionic conjugates have been isolated from the whole plant aqueous alcohol extract of Frankenia laevis L. Their structures were established, mainly on the basis of ESI-MS, 1D and 2D NMR spectroscopic evidence, as gallic acid-3-methyl ether-5-sodium sulphate, acetophenone-4-methyl ether-2-sodium sulphate, ellagic acid-3,3'-dimethyl ether-4,4'-di-sodium sulphate and ellagic acid-3-methyl ether-4-sodium sulphate.

  14. Dosimetry Evolution in Teletherapy: Polimer Gel

    NASA Astrophysics Data System (ADS)

    Hamann, J. H.; Peixoto, J. G. P.

    2018-03-01

    Polymer gels evolution and chemical composition used in dosimetry. Type Composition First gels Folin’s Phenol or Gallic Acid Polymer Gel Agarose and N,N’-methylene-bis-acrylamide BANANA Bis, acrylamide, nitrous oxide and agarose BANG-1TM Bis, acrylamide, nitrogen and gelatin BANG-2TM Bis, acrylic acid, sodium hydroxide, nitrogen and gelatin BANG-3TM Bis, methacrylate acid, sodium hydroxide, nitrogen and gelatin MAGIC Methacrylate acid, ascorbic acid, gelatin and copper sulphate

  15. Quality Evaluation of Raw Moutan Cortex Using the AHP and Gray Correlation-TOPSIS Method

    PubMed Central

    Zhou, Sujuan; Liu, Bo; Meng, Jiang

    2017-01-01

    Background: Raw Moutan cortex (RMC) is an important Chinese herbal medicine. Comprehensive and objective quality evaluation of Chinese herbal medicine has been one of the most important issues in the modern herbs development. Objective: To evaluate and compare the quality of RMC using the weighted gray correlation- Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method. Materials and Methods: The percentage composition of gallic acid, catechin, oxypaeoniflorin, paeoniflorin, quercetin, benzoylpaeoniflorin, paeonol in different batches of RMC was determined, and then adopting MATLAB programming to construct the gray correlation-TOPSIS assessment model for quality evaluation of RMC. Results: The quality evaluation results of model evaluation and objective evaluation were consistent, reliable, and stable. Conclusion: The model of gray correlation-TOPSIS can be well applied to the quality evaluation of traditional Chinese medicine with multiple components and has broad prospect in application. SUMMARY The experiment tries to construct a model to evaluate the quality of RMC using the weighted gray correlation- Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method. Results show the model is reliable and provide a feasible way in evaluating quality of traditional Chinese medicine with multiple components. PMID:28839384

  16. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation.

    PubMed

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de Las Rivas, Blanca; Muñoz, Rosario

    2017-04-01

    Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase ( lpdC , or lp_2945 ) is only 6.5 kb distant from the gene encoding inducible tannase ( L. plantarum tanB [ tanB Lp ], or lp_2956 ). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B ( lpdB , or lp_0271 ) and D ( lpdD , or lp_0272 ) of the gallate decarboxylase are cotranscribed, whereas subunit C ( lpdC , or lp_2945 ) is cotranscribed with a gene encoding a transport protein ( gacP , or lp_2943 ). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator ( lp_2942 ) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are located close to each other in the chromosome, suggesting concomitant regulation. Proteins involved in tannin metabolism and regulation, such GacP (gallic acid permease) and TanR (tannin transcriptional regulator), were identified by differential gene expression in knockout mutants with mutations in genes from this region. This study provides insights into the highly coordinated mechanisms that enable L. plantarum to adapt to plant food fermentations. Copyright © 2017 American Society for Microbiology.

  17. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation

    PubMed Central

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de las Rivas, Blanca

    2017-01-01

    ABSTRACT Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase (lpdC, or lp_2945) is only 6.5 kb distant from the gene encoding inducible tannase (L. plantarum tanB [tanBLp], or lp_2956). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B (lpdB, or lp_0271) and D (lpdD, or lp_0272) of the gallate decarboxylase are cotranscribed, whereas subunit C (lpdC, or lp_2945) is cotranscribed with a gene encoding a transport protein (gacP, or lp_2943). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator (lp_2942) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are located close to each other in the chromosome, suggesting concomitant regulation. Proteins involved in tannin metabolism and regulation, such GacP (gallic acid permease) and TanR (tannin transcriptional regulator), were identified by differential gene expression in knockout mutants with mutations in genes from this region. This study provides insights into the highly coordinated mechanisms that enable L. plantarum to adapt to plant food fermentations. PMID:28115379

  18. Utilization of aromatic compounds by the Penicillium strain Bi 7/2.

    PubMed

    Hofrichter, M; Scheibner, K

    1993-01-01

    The Penicillium strain Bi 7/2 utilized phenol, catechol, resorcinol, hydroquinone, pyrogallol, hydroxyhydroquinone, phloroglucinol, m- and p-cresol, orcinol, 4-methylcatechol, 4-methoxyphenol, 4-aminophenol, benzyl alcohol, benzoic acid, 2-, 3- and 4-hydroxybenzoic acid, anthranilic acid, protocatechuic acid and gallic acid as sole sources of carbon and energy. The central metabolites catechol, protocatechuic acid and hydroxyquinone could be determined by HPLC with diode-array detection. Pathways for the degradation of aromatic substances were proposed.

  19. Molecular Recognition Directed Self-Assembly of Supramolecular Architectures

    DTIC Science & Technology

    1994-06-30

    TMV-Like SupraxlecuiarArchiteturc _ TMV is a simple virus consisting only of a single type of protein molecule and of a strand of ribonucleic acid (RNA...experiments have demonstrated that various substituted gallic acid derivatives can be used to construct exo-receptors with a tapered shape. 1.2...with 3,4,5-tris(p - dodecyloxybenzyloxy)benzoic acid {12-ABCr) resulted in the taper shaped structural units. 12- ABG-B1SC5 and 12-ABG-15C5

  20. Isolation of four phenolic compounds from Mangifera indica L. flowers by using normal phase combined with elution extrusion two-step high speed countercurrent chromatography.

    PubMed

    Shaheen, Nusrat; Lu, Yanzhen; Geng, Ping; Shao, Qian; Wei, Yun

    2017-03-01

    Two-step high speed countercurrent chromatography method, following normal phase and elution-extrusion mode of operation by using selected solvent systems, was introduced for phenolic compounds separation. Phenolic compounds including gallic acid, ethyl gallate, ethyl digallate and ellagic acid were separated from the ethanol extract of mango (Mangifera indica L.) flowers for the first time. In the first step, gallic acid of 3.7mg and ethyl gallate of 3.9mg with the purities of 98.87% and 99.55%, respectively, were isolated by using hexane-ethylacetate-methanol-water (4:6:4:6, v/v) in normal phase high speed countercurrent chromatography from 200mg of crude extract, while ethyl digallate and ellagic acid were collected in the form of mixture fraction. In the second step, further purification of the mixture was carried out with the help of another selected solvent system of dichloromethane-methanol-water (4:3:2, v/v) following elusion-extrusion mode of operation. Ethyl digallate of 3.8mg and ellagic acid of 5.7mg were separated well with high purities of 98.68% and 99.71%, respectively. The separated phenolic compounds were identified and confirmed by HPLC, UPLC-QTOF/ESI-MS, 1 H and 13 C NMR spectrometric analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Free radical scavenging and total antioxidant capacity of root extracts of Anchomanes difformis Engl. (Araceae).

    PubMed

    Aliyu, Abubakar B; Ibrahim, Mohammed A; Musa, Aliyu M; Musa, Aisha O; Kiplimo, Joyce J; Oyewale, Adebayo O

    2013-01-01

    Antioxidants activities from plants sources have attracted a wide range of interest across the world in recent times. This is due to growing concern for safe and alternative sources of antioxidants. The free radical scavenging activity using 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), reducing power assay, total antioxidant capacity of the phosphomolybdenum method and the total phenolics content using the Folin-Ciocalteu reagent were carried out on the acetone, n-butanol and methanol root extracts of Anchomanes difformis. The results of the total phenolics content expressed in mg/100 g of gallic acid equivalent (GAE) showed that the n-butanol extract has significantly (p < 0.05) higher phenolics content (381 +/- 1.13) than the methanol and acetone extracts. All the extracts displayed strong concentration dependent radical scavenging activity. It was also observed that the n-butanol extract showed higher activity of 70.87% and 78.59% at low concentrations of 31.25 microg/mL and 62.5 microg/mL, respectively, than methanol and acetone extracts. The results also showed that the n-butanol extract has strongest reducing ability which is comparable to that of gallic acid at all the concentrations tested. Phytochemical screening on the extracts revealed the presence of flavonoids, saponins, and tannins. The results suggest that n-butanol extract of the plant is very rich in antioxidant compounds worthy of further investigations.

  2. Formation of redispersible polyelectrolyte complex nanoparticles from gallic acid-chitosan conjugate and gum arabic.

    PubMed

    Hu, Qiaobin; Wang, Taoran; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-11-01

    Polyelectrolyte complex (PEC) nanoparticles between chitosan (CS) and biomacromolecules offer better physicochemical properties as delivery vehicles for nutrients than other CS-based nanoparticles. Our major objective was to fabricate PEC nanoparticles between water soluble gallic acid-chitosan conjugate (GA-CS) and gum arabic. The optimal fabrication method, physicochemical characteristics and stability were investigated. Furthermore, we also evaluated the effects of nano spray drying technology on the morphology and redispersibility of nanoparticle powders using Buchi B-90 Nano Spray Dryer. Results showed that the mass ratio between GA-CS and gum arabic and the preparation pH had significant contributions in determining the particle size and count rate of the nanoparticles, with the ratio of 3:1 and pH 5.0 being the optimal conditions that resulted in 112.2nm and 122.9kcps. The polyethylene glycol (PEG) played a vital role in forming the well-separated spray dried nanoparticles. The most homogeneous nanoparticles with the smoothest surface were obtained when the mass ratio of GA-CS and PEG was 1:0.5. In addition, the GA-CS/gum arabic spray dried nanoparticles exhibited excellent water-redispersibiliy compared to native CS/gum arabic nanoparticles. Our results demonstrated GA-CS/gum arabic nanoparticles were successfully fabricated with promising physicochemical properties and great potential for their applications in food and pharmaceutical industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Quality Evaluation of the Traditional Medicine Majun Mupakhi ELA via Chromatographic Fingerprinting Coupled with UHPLC-DAD-Quadrupole-Orbitrap-MS and the Antioxidant Activity In Vitro

    PubMed Central

    Reheman, Ayinuer; Ma, Qing Ling; Nijat, Dilaram; Abdulla, Rahima

    2018-01-01

    By merging a high-performance liquid chromatography diode array detector (HPLC-DAD) method with high-performance thin-layer chromatography (HPTLC), an assay was developed for chemical fingerprinting and quantitative analysis of traditional medicine Majun Mupakhi ELA (MME), and constituent compounds were identified using HPLC coupled with UHPLC-DAD-Quadrupole-Orbitrap-MS method. In addition, the antioxidant capacity of MME was assessed based on the ability of components to scavenge radicals using in vitro method. Using a HPLC-DAD method with HPTLC easily validated the chemical fingerprinting results and quantified three characteristic components, namely, gallic acid (1), daidzein (2), and icariin (3), in commercial MMEs. The three compounds presented excellent regression values (R2 = 0.9999) in the ranges of the test and the method recovery was in the range from 100.49% to 100.68%. The fingerprints had 27 common characteristic peaks, of which 13 were verified by rapid UHPLC-DAD-Q-Orbitrap-MS analysis. In vitro antioxidant assays rapidly assessed and contrasted antioxidant activity or the free radical scavenging activity of the main polyphenolic classes in MMEs, and the antioxidant capacity was mostly affected by the presence of gallic acid. Thus, this study establishes a powerful and meaningful approach for MME quality control and for assessing in vitro antioxidant activity. PMID:29692853

  4. Eradication and Sensitization of Methicillin Resistant Staphylococcus aureus to Methicillin with Bioactive Extracts of Berry Pomace

    PubMed Central

    Salaheen, Serajus; Peng, Mengfei; Joo, Jungsoo; Teramoto, Hironori; Biswas, Debabrata

    2017-01-01

    The therapeutic roles of phenolic blueberry (Vaccinium corymbosum) and blackberry (Rubus fruticosus) pomace (commercial byproduct) extracts (BPE) and their mechanism of actions were evaluated against methicillin resistant Staphylococcus aureus (MRSA). Five major phenolic acids of BPE, e.g., protocatechuic, p. coumaric, vanillic, caffeic, and gallic acids, as well as crude BPE completely inhibited the growth of vegetative MRSA in vitro while BPE+methicillin significantly reduced MRSA biofilm formation on plastic surface. In addition, BPE restored the effectiveness of methicillin against MRSA by down-regulating the expression of methicillin resistance (mecA) and efflux pump (norA, norB, norC, mdeA, sdrM, and sepA) genes. Antibiogram with broth microdilution method showed that MIC of methicillin reduced from 512 μg/mL to 4 μg/mL when combined with only 200 μg Gallic Acid Equivalent (GAE)/mL of BPE. Significant reduction in MRSA adherence to and invasion into human skin keratinocyte Hek001 cells were also noticed in the presence of BPE. BPE induced anti-apoptosis and anti-autophagy pathways through overexpression of Bcl-2 gene and down-regulation of TRADD and Bax genes (inducers of apoptosis pathway) in Hek001 cells. In summary, novel and sustainable prophylactic therapy can be developed with BPE in combination with currently available antibiotics, especially methicillin, against skin and soft tissue infections with MRSA. PMID:28270804

  5. Determination of Phenolic Acids in Sugarcane Vinasse by HPLC with Pulse Amperometry

    PubMed Central

    Freitas, P. V.; Beluomini, M. A.; da Silva, J. L.; Stradiotto, N. R.

    2018-01-01

    A reversed-phase liquid chromatographic separation with pulsed amperometric detection of phenolic acids at a glassy carbon electrode is described. Chromatographic separation was carried out in isocratic conditions using 0.20 mol·L−1 acetic acid (pH 5.0)/water (80 : 20, v/v) as mobile phase under constant working potential mode of 0.80 V. Chromatographic peaks presented high resolution and separation. Calibration curves exhibited excellent correlation coefficients, above 0.995. Linear ranges of the analytes, in mg L−1, were of 0.018–18 (gallic acid), 0.146–19 (vanillic acid), 0.13–17 (caffeic acid), 0.016–16 (ferulic acid), and 0.008–17 (p-coumaric acid), respectively. Limits of detection ranged from 1.6 to 97 μg·L−1 and precision varied in 1.73–3.78% interval. Concentrations of 19 ± 0.51 mg·L−1 and 7.8 ± 2.5 mg·L−1 were found for vanillic and caffeic acids, respectively, in a sugarcane vinasse sample. Gallic, ferulic, and p-coumaric acids were not detected. Recovery results demonstrated that the proposed method is accurate, and it can be used to detect and quantify phenolic acids in sugarcane vinasse without any influence of interferents. PMID:29600112

  6. Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose.

    PubMed

    Oboh, Ganiyu; Ogunsuyi, Opeyemi Babatunde; Ogunbadejo, Mariam Damilola; Adefegha, Stephen Adeniyi

    2016-07-01

    Acarbose is an antidiabetic drug which acts by inhibiting α-amylase and α-glucosidase activities but with deleterious side effects. Gallic acid (GA) is a phenolic acid that is widespread in plant foods. We therefore investigated the influence of GA on α-amylase and α-glucosidase inhibitory properties of acarbose (in vitro). Aqueous solutions of acarbose and GA were prepared to a final concentration of 25μM each. Thereafter, mixtures of the samples (50% acarbose + 50% GA; 75% acarbose+25% GA; and 25% acarbose+75% GA) were prepared. The results revealed that the combination of 50% acarbose and 50% GA showed the highest α-glucosidase inhibitory effect, while 75% acarbose+25% GA showed the highest α-amylase inhibitory effect. Furthermore, all the samples caused the inhibition of Fe 2+ -induced lipid peroxidation (in vitro) in rat pancreatic tissue homogenate, with the combination of 50% acarbose and 50% GA causing the highest inhibition. All the samples also showed antioxidant properties (reducing property, 2,2'-azino-bis (-3-ethylbenzthiazoline-6-sulphonate [ABTS*] and 1,1-diphenyl-2-picrylhydrazyl [DPPH] free radicals scavenging abilities, and Fe 2+ chelating ability). Therefore, combinations of GA with acarbose could be employed as antidiabetic therapy, with a possible reduction of side effects of acarbose; nevertheless, the combination of 50% acarbose and 50% GA seems the best. Copyright © 2016. Published by Elsevier B.V.

  7. Gallic acid improved behavior, brain electrophysiology, and inflammation in a rat model of traumatic brain injury.

    PubMed

    Sarkaki, Alireza; Farbood, Yaghoub; Gharib-Naseri, Mohammad Kazem; Badavi, Mohammad; Mansouri, Mohammad Taghi; Haghparast, Abbas; Mirshekar, Mohammad Ali

    2015-08-01

    Traumatic brain injury (TBI) is one of the main causes of intellectual and cognitive disabilities. In the clinic it is essential to limit the development of cognitive impairment after TBI. In this study, the effects of gallic acid (GA; 100 mg/kg, per oral, from 7 days before to 2 days after TBI induction) on neurological score, passive avoidance memory, long-term potentiation (LTP) deficits, and levels of proinflammatory cytokines including interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) in the brain have been evaluated. Brain injury was induced following Marmarou's method. Data were analyzed by one-way and repeated measures ANOVA followed by Tukey's post-hoc test. The results indicated that memory was significantly impaired (p < 0.001) in the group treated with TBI + vehicle, together with deterioration of the hippocampal LTP and increased brain tissue levels of IL-1β, IL-6, and TNF-α. GA treatment significantly improved memory and LTP in the TBI rats. The brain tissue levels of IL-1β, IL-6, and TNF-α were significantly reduced (p < 0.001) in the group treated with GA. The results suggest that GA has neuroprotective properties against TBI-induced behavioral, electrophysiological, and inflammatory disorders, probably via the decrease of cerebral proinflammatory cytokines.

  8. The influence of ripening stage and cultivation system on the total antioxidant activity and total phenolic compounds of yellow passion fruit pulp.

    PubMed

    Macoris, Mariana S; De Marchi, Renata; Janzantti, Natália S; Monteiro, Magali

    2012-07-01

    This work aimed to investigate the influence of both ripening stage and cultivation system on the total phenolic compounds (TPC) and total antioxidant activity (TAA) of passion fruit pulp. TPC extraction was optimized using a 2³ central composed design. The variables were fruit pulp volume, methanol volume and extraction solution volume. TPC was determined using the Folin-Ciocalteu reaction, and TAA using the ABTS radical reaction. The conditions to extract TPC were 2 mL passion fruit pulp and 9 mL extraction solution containing 40% methanol:water (v/v). TPC values increased in the passion fruit pulp during ripening for both cultivation systems, ranging from 281.8 to 361.9 mg gallic acid L⁻¹ (P ≤ 0.05) for the organic pulp and from 291.0 to 338.6 mg gallic acid L⁻¹ (P ≤ 0.05) for the conventional pulp. TPC values increased during ripening for both organic and conventional passion fruit. The same was true for TAA values for conventional passion fruit. For organic passion fruit, however, TAA values were highest at the initial ripening stages. These results suggest that antioxidant compounds exert strong influence on the initial ripening stages for organic passion fruit, when TPC still did not reach its maximum level. Copyright © 2012 Society of Chemical Industry.

  9. Quality Evaluation of the Traditional Medicine Majun Mupakhi ELA via Chromatographic Fingerprinting Coupled with UHPLC-DAD-Quadrupole-Orbitrap-MS and the Antioxidant Activity In Vitro.

    PubMed

    Reheman, Ayinuer; Aisa, Haji Akber; Ma, Qing Ling; Nijat, Dilaram; Abdulla, Rahima

    2018-01-01

    By merging a high-performance liquid chromatography diode array detector (HPLC-DAD) method with high-performance thin-layer chromatography (HPTLC), an assay was developed for chemical fingerprinting and quantitative analysis of traditional medicine Majun Mupakhi ELA (MME), and constituent compounds were identified using HPLC coupled with UHPLC-DAD-Quadrupole-Orbitrap-MS method. In addition, the antioxidant capacity of MME was assessed based on the ability of components to scavenge radicals using in vitro method. Using a HPLC-DAD method with HPTLC easily validated the chemical fingerprinting results and quantified three characteristic components, namely, gallic acid (1), daidzein (2), and icariin (3), in commercial MMEs. The three compounds presented excellent regression values ( R 2 = 0.9999) in the ranges of the test and the method recovery was in the range from 100.49% to 100.68%. The fingerprints had 27 common characteristic peaks, of which 13 were verified by rapid UHPLC-DAD-Q-Orbitrap-MS analysis. In vitro antioxidant assays rapidly assessed and contrasted antioxidant activity or the free radical scavenging activity of the main polyphenolic classes in MMEs, and the antioxidant capacity was mostly affected by the presence of gallic acid. Thus, this study establishes a powerful and meaningful approach for MME quality control and for assessing in vitro antioxidant activity.

  10. Chemical Composition and Bioactivities of Two Common Chaenomeles Fruits in China: Chaenomeles speciosa and Chaenomeles sinensis.

    PubMed

    Miao, Jing; Zhao, Chengcheng; Li, Xia; Chen, Xuetao; Mao, Xinhui; Huang, Hanhan; Wang, Tingting; Gao, Wenyuan

    2016-08-01

    Contents of total flavonoids, total phenolics, total triterpenes, total condensed tannin and total saponins in peels, flesh and endocarps of Chaenomeles speciosa (CSP) and Chaenomeles sinensis (CSS) were determined by colorimetric method, while 5 phenolics (vanillic, gallic, chlorogenic, ferulic and p-coumaric acids), 2 triterpenes (oleanolic and ursolic acids), and 3 flavonoids (rutin, catechin and epicatechin) were identified and quantified by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and HPLC, and antioxidant and α-glucosidase inhibitory activities of them also were evaluated as well as their digestive characteristics. In the correlation analysis, total phenolics, vanillic acid, catechin, ursolic acid and oleanolic acid all contribute to DPPH(·) scavenge capacity, gallic acid contributes to total ferric reducing antioxidant power, while total triterpenes, total saponins, chlorogenic acid and ferullic acid contribute to α-glucosidase inhibitory activity. In the principal component analysis, endocarps of CSP and CSS both show better quality than their peels and flesh, respectively. In vitro digestion can increase contents of total flavonoids, total condensed tannin and total saponins, while contents of total phenolics and total triterpenes decreased greatly. Our study would contribute to the full use of discarded parts of the 2 Chaenomeles and be helpful to establish a good foundation for further research of CSP and CSS. © 2016 Institute of Food Technologists®

  11. Application of α-aminoisobutyric acid and β-aminoisobutyric acid inhibits pericarp browning of harvested longan fruit.

    PubMed

    Wang, Hui; Zhi, Wei; Qu, Hongxia; Lin, Hetong; Jiang, Yueming

    2015-12-01

    Pericarp browning is a critical problem resulting in reduced commercial value and shelf life of longan fruit. Two non-protein amino acids, α-aminoisobutyric acid (AIB) and β-aminoisobutyric acid (BAIB) at 100 and 1 mM were applied to longan fruit prior to storage for up to 8 days at 25 °C respectively. Contents of the major five phenolics (gallic acid, catechin, corilagin, epicatechin and gallocatechin gallate) were assayed by high-performance liquid chromatography (HPLC). Physiological properties related to pericarp browning of longan fruit were investigated during storage. Respiration rate, membrane permeability, malondialdehyde (MDA) content, and activities of polyphenol oxidase (PPO) and peroxidase (POD) were down-regulated by AIB or BAIB treatments, with significantly lower pericarp browning index and higher proportion of edible fruit than the control. Moreover, exogenous application of AIB and BAIB maintained higher contents of catechin, corilagin, epicatechin and gallocatechin gallate, but lower content of gallic acid compared to the control in the pericarp of longan fruit during storage, which was associated with the oxidation of browning substrate. Pericarp browning was inhibited and storage life of longan fruit was extended effectively by AIB and BAIB treatments with AIB treatment being more significant than BAIB. The findings may provide a new strategy for controlling pericarp browning of harvested longan fruit.

  12. Bacillus sphaericus: the highest bacterial tannase producer with potential for gallic acid synthesis.

    PubMed

    Raghuwanshi, Shailendra; Dutt, Kakoli; Gupta, Pritesh; Misra, Swati; Saxena, Rajendra Kumar

    2011-06-01

    An indigenously isolated strain of Bacillus sphaericus was found to produce 1.21 IU/ml of tannase under unoptimized conditions. Optimizing the process one variable at a time resulted in the production of 7.6 IU/ml of tannase in 48 h in the presence of 1.5% tannic acid. A 9.26-fold increase in tannase production was achieved upon further optimization using response surface methodology (RSM), a statistical approach. This increase led to a production level of 11.2I U/ml in medium containing 2.0% tannic acid, 2.5% galactose, 0.25% ammonium chloride, and 0.1% MgSO(4) pH 6.0 incubated at 37°C and 100 rpm for 48 h with a 2.0% inoculum level. Scaling up tannase production in a 30-l bioreactor resulted in the production of 16.54 IU/ml after 36 h. Thus far, this tannase production is the highest reported in this bacterial strain. Partially purified tannase exhibited an optimum pH of 5.0 with activity in the pH range of 3 to 8; 50°C was the optimal temperature for activity. Efficient conversion of tannic acid to purified gallic acid (90.80%) was achieved through crystallization. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Gallic Acid Enriched Fraction of Phyllanthus emblica Potentiates Indomethacin-Induced Gastric Ulcer Healing via e-NOS-Dependent Pathway

    PubMed Central

    Chatterjee, Ananya; Chatterjee, Sirshendu; Biswas, Angshuman; Bhattacharya, Sayanti; Chattopadhyay, Subrata; Bandyopadhyay, Sandip K.

    2012-01-01

    The healing activity of gallic acid enriched ethanolic extract (GAE) of Phyllanthus emblica fruits (amla) against the indomethacin-induced gastric ulceration in mice was investigated. The activity was correlated with the ability of GAE to alter the cyclooxygenase- (COX-) dependent healing pathways. Histology of the stomach tissues revealed maximum ulceration on the 3rd day after indomethacin (18 mg/kg, single dose) administration that was associated with significant increase in inflammatory factors, namely, mucosal myeloperoxidase (MPO) activity and inducible nitric oxide synthase (i-NOS) expression. Proangiogenic parameters such as the levels of prostaglandin (PG) E2, vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), von Willebrand Factor VIII, and endothelial NOS (e-NOS) were downregulated by indomethacin. Treatment with GAE (5 mg/kg/day) and omeprazole (3 mg/kg/day) for 3 days led to effective healing of the acute ulceration, while GAE could reverse the indomethacin-induced proinflammatory changes of the designated biochemical parameters. The ulcer healing activity of GAE was, however, compromised by coadministration of the nonspecific NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME), but not the i-NOS-specific inhibitor, L-N6-(1-iminoethyl) lysine hydrochloride (L-NIL). Taken together, these results suggested that the GAE treatment accelerates ulcer healing by inducing PGE2 synthesis and augmenting e-NOS/i-NOS ratio. PMID:22966242

  14. Anti-atherogenic properties of date vs. pomegranate polyphenols: the benefits of the combination.

    PubMed

    Rosenblat, Mira; Volkova, Nina; Borochov-Neori, Hamutal; Judeinstein, Sylvie; Aviram, Michael

    2015-05-01

    Hydrolysable tannin polyphenols in pomegranate and phenolic acids in date fruit and seeds are potent antioxidants and anti-atherogenic agents, and thus, in the present study we investigated the possible benefits of combining them in vivo in atherosclerotic apolipoprotein E KO (E(0)) mice, compared with the individual fruit. In vitro studies revealed that the date seed extract contains more polyphenols than Amari or Hallawi date extracts, and possesses a most impressive free radical scavenging capacity. Similarly, pomegranate juice (PJ), punicalagin, punicalain, gallic acid, and urolithins A and B are very potent antioxidants. E(0) mice consumed 0.5 μmol gallic acid equivalents (GAE) per mouse per day of PJ, Hallawi extract, date seed extract, or a combination for 3 weeks. Consumption of the combination was the most potent treatment, as it decreased serum cholesterol and triglyceride levels, and increased serum paraoxonase 1 (PON1) activity. Consumption of the combination also significantly reduced mouse peritoneal macrophage (MPM) oxidative stress, MPM cholesterol content, and MPM LDL uptake. Finally, the lipid peroxide content in the aortas of the mice significantly decreased, and the PON lactonase activity of the aortas increased after treatment with the combination. We thus conclude that consumption of pomegranate, together with date fruit and date seeds, has the most beneficial anti-atherogenic effects on E(0) mice serum, macrophages, and aortas, probably due to their unique and varied structures.

  15. Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water.

    PubMed

    López-Ramón, María V; Álvarez, Miguel A; Moreno-Castilla, Carlos; Fontecha-Cámara, María A; Yebra-Rodríguez, África; Bailón-García, Esther

    2018-02-01

    A copper ferrite synthesized by a sol-gel combustion method was calcined at different temperatures up to 800°C, determining changes in its structural characteristics and magnetic measurements and studying its catalytic performance in gallic acid removal by Fenton reaction. The main objective was to study the effect of the calcination temperature of copper ferrite on its crystalline phase formation and transformation, activity and metal ion leaching. The cubic-to-tetragonal transformation of the spinel occurred via its reaction with the CuO phase, displacing Fe 3+ ions in B (octahedral) sites out of the spinel structure by the following reaction: 2Fe 3+ B +3CuO→Fe 2 O 3 +3Cu 2+ B . The catalysts showed superparamagnetic or substantial superparamagnetic behaviour. At higher calcination temperatures, catalyst activity was lower, and Cu ion leaching was markedly decreased. There was no Fe ion leaching with any catalyst. The as-prepared catalyst showed better catalytic performance than a commercial copper ferrite. Leached Cu ions acted as homogeneous catalysts, and their contribution to the overall removal mechanism was examined. Cu 2 O present in the as-prepared catalysts made only a small contribution to their activity. Finally, the reutilization of various catalysts was studied by performing different catalytic cycles. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Comparative assessment on in vitro antioxidant activities of ethanol extracts of Averrhoa bilimbi, Gymnema sylvestre and Capsicum frutescens.

    PubMed

    Rahman, Md Mominur; Habib, Md Razibul; Hasan, Md Anayet; Al Amin, Mohammad; Saha, Ayan; Mannan, Adnan

    2014-01-01

    Averrhoa bilimbi, Gymnema sylvestre and Capsicum frutescens are medicinal plants commonly used as traditional medicine for the treatment of various diseases. The present study was designed to investigate the antioxidant activities of Ethanolic extract of A. bilimbi, G. sylvestre and C. frutescens. The antioxidant activity of the extracts were evaluated using total phenolic and flavonoid contents, ferric reducing power and the free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH). Total phenolic and flavonoid contents were higher in G. sylvestre (53.63636 ± 0.454545 mg/g gallic acid equivalent) and C. frutescens (26.66667 ± 2.081666 mg/g quercetin equivalent) respectively. Reducing power of the crude ethanol extracts increased with the concentrations of the extracts and all the extracts showed moderate free radical scavenging activity against DPPH. The plant extract displayed moderate phenolic and flavonoid contents compared to gallic acid and quercetin equivalent respectively, whereas also exhibited significant scavenging of DPPH radical and reducing power compared with ascorbic acid as standard. Our study suggests that G. sylvestre has significant antioxidant activity. The antioxidant compound of this plant might be a therapeutic candidate against oxidative stress related diseases. Different sub-fraction of A. bilimbi and C. frutescens should be studied further to assess the effect. Further study is necessary for isolation and characterization of the active antioxidant agents for better treatment.

  17. Metabolic dependence of green tea on plucking positions revisited: a metabolomic study.

    PubMed

    Lee, Jang-Eun; Lee, Bum-Jin; Hwang, Jeong-Ah; Ko, Kwang-Sup; Chung, Jin-Oh; Kim, Eun-Hee; Lee, Sang-Jun; Hong, Young-Shick

    2011-10-12

    The dependence of global green tea metabolome on plucking positions was investigated through (1)H nuclear magnetic resonance (NMR) analysis coupled with multivariate statistical data set. Pattern recognition methods, such as principal component analysis (PCA) and orthogonal projection on latent structure-discriminant analysis (OPLS-DA), were employed for a finding metabolic discrimination among fresh green tea leaves plucked at different positions from young to old leaves. In addition to clear metabolic discrimination among green tea leaves, elevations in theanine, caffeine, and gallic acid levels but reductions in catechins, such as epicatechin (EC), epigallocatechin (EGC), epicatechin-3-gallate (ECG), and epigallocatechin-3-gallate (EGCG), glucose, and sucrose levels were observed, as the green tea plant grows up. On the other hand, the younger the green tea leaf is, the more theanine, caffeine, and gallic acid but the lesser catechins accumlated in the green tea leaf, revealing a reverse assocation between theanine and catechins levels due to incorporaton of theanine into catechins with growing up green tea plant. Moreover, as compared to the tea leaf, the observation of marked high levels of theanine and low levels of catechins in green tea stems exhibited a distinct tea plant metabolism between the tea leaf and the stem. This metabolomic approach highlights taking insight to global metabolic dependence of green tea leaf on plucking position, thereby providing distinct information on green tea production with specific tea quality.

  18. Phenolic Profiles and Antioxidant Activity of Lotus Root Varieties.

    PubMed

    Yi, Yang; Sun, Jie; Xie, Jun; Min, Ting; Wang, Li-Mei; Wang, Hong-Xun

    2016-06-30

    Lotus root attracts increasing attention mainly because of its phenolic compounds known as natural antioxidants. Its thirteen varieties were systematically analyzed on the content, distribution, composition and antioxidant activity of phenolic compounds for a better understanding of this aquatic vegetable. The respective mean contents of total phenolics in their flesh, peel and nodes were 1.81, 4.30 and 7.35 mg gallic acid equivalents (GAE)/g fresh weight (FW), and those of total flavonoids were 3.35, 7.69 and 15.58 mg rutin equivalents/g FW. The phenolic composition determined by a high-performance liquid chromatography method varied significantly among varieties and parts. The phenolics of flesh were mainly composed of gallocatechin and catechin; those of peel and node were mainly composed of gallocatechin, gallic acid, catechin and epicatechin. The antioxidant activities of phenolic extracts in increasing order were flesh, peel and node; their mean concentrations for 50% inhibition of 2,2-diphenyl-1-picrylhydrazyl radical were 46.00, 26.43 and 21.72 µg GAE/mL, and their mean values representing ferric reducing antioxidant power were 75.91, 87.66 and 100.43 µg Trolox equivalents/100 µg GAE, respectively. "Zoumayang", "Baheou", "No. 5 elian" and "Guixi Fuou" were the hierarchically clustered varieties with relatively higher phenolic content and stronger antioxidant activity as compared with the others. Especially, their nodes and peels are promising sources of antioxidants for human nutrition.

  19. Simulated Gastrointestinal Digestion, Bioaccessibility and Antioxidant Capacity of Polyphenols from Red Chiltepin (Capsicum annuum L. Var. glabriusculum) Grown in Northwest Mexico.

    PubMed

    Ovando-Martínez, Maribel; Gámez-Meza, Nohemí; Molina-Domínguez, Claudia Celeste; Hayano-Kanashiro, Corina; Medina-Juárez, Luis Angel

    2018-06-01

    Chiltepin, a wild chili mostly used in different traditional foods and traditional medicine in Northwest Mexico, represents a source of polyphenols. However, studies about the bioaccessibility of polyphenols as a parameter to measure the nutritional quality and bioefficacy of them in the fruit after consumption are scarce. Chiltepin showed phenolic acids and flavonoids contents between 387 and 65 μg/g, respectively. Nevertheless, these values decreased after the digestion process. Before digestion, gallic acid, 4-hydroxibenzoinc acid, chlorogenic acid, caffeic acid, p-coumaric acid, quercetin and luteolin were the main polyphenols found in chiltepin by HPLC-DAD and confirmed by FIA-ESI-IT-MS/MS. Gallic and chlorogenic acids were non-detected in the gastric phase, while only p-coumaric acid (5.35 ± 3.89 μg/g), quercetin (5.91 ± 0.92 μg/g) and luteolin (2.86 ± 0.62 μg/g) were found in the intestinal phase. The bioaccessibility of phenolic acids, flavonoids, and total polyphenols after the intestinal phase was around 24, 17 and 23%, respectively. Overall, results indicated that release of polyphenols from chiltepin fruit might be affected by the food matrix and gastrointestinal conditions due to the low bioaccessibility values observed.

  20. Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films

    PubMed Central

    Pant, Astrid F.; Sängerlaub, Sven; Müller, Kajetan

    2017-01-01

    Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O2/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (aw > 0.86). PMID:28772849

Top