Science.gov

Sample records for functional modules revealed

  1. Remote Synchronization Reveals Network Symmetries and Functional Modules

    NASA Astrophysics Data System (ADS)

    Nicosia, Vincenzo; Valencia, Miguel; Chavez, Mario; Díaz-Guilera, Albert; Latora, Vito

    2013-04-01

    We study a Kuramoto model in which the oscillators are associated with the nodes of a complex network and the interactions include a phase frustration, thus preventing full synchronization. The system organizes into a regime of remote synchronization where pairs of nodes with the same network symmetry are fully synchronized, despite their distance on the graph. We provide analytical arguments to explain this result, and we show how the frustration parameter affects the distribution of phases. An application to brain networks suggests that anatomical symmetry plays a role in neural synchronization by determining correlated functional modules across distant locations.

  2. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast.

    PubMed

    Roguev, Assen; Bandyopadhyay, Sourav; Zofall, Martin; Zhang, Ke; Fischer, Tamas; Collins, Sean R; Qu, Hongjing; Shales, Michael; Park, Han-Oh; Hayles, Jacqueline; Hoe, Kwang-Lae; Kim, Dong-Uk; Ideker, Trey; Grewal, Shiv I; Weissman, Jonathan S; Krogan, Nevan J

    2008-10-17

    An epistasis map (E-MAP) was constructed in the fission yeast, Schizosaccharomyces pombe, by systematically measuring the phenotypes associated with pairs of mutations. This high-density, quantitative genetic interaction map focused on various aspects of chromosome function, including transcription regulation and DNA repair/replication. The E-MAP uncovered a previously unidentified component of the RNA interference (RNAi) machinery (rsh1) and linked the RNAi pathway to several other biological processes. Comparison of the S. pombe E-MAP to an analogous genetic map from the budding yeast revealed that, whereas negative interactions were conserved between genes involved in similar biological processes, positive interactions and overall genetic profiles between pairs of genes coding for physically associated proteins were even more conserved. Hence, conservation occurs at the level of the functional module (protein complex), but the genetic cross talk between modules can differ substantially.

  3. Predicting invasive species impacts: a community module functional response approach reveals context dependencies.

    PubMed

    Paterson, Rachel A; Dick, Jaimie T A; Pritchard, Daniel W; Ennis, Marilyn; Hatcher, Melanie J; Dunn, Alison M

    2015-03-01

    Predatory functional responses play integral roles in predator-prey dynamics, and their assessment promises greater understanding and prediction of the predatory impacts of invasive species. Other interspecific interactions, however, such as parasitism and higher-order predation, have the potential to modify predator-prey interactions and thus the predictive capability of the comparative functional response approach. We used a four-species community module (higher-order predator; focal native or invasive predators; parasites of focal predators; native prey) to compare the predatory functional responses of native Gammarus duebeni celticus and invasive Gammarus pulex amphipods towards three invertebrate prey species (Asellus aquaticus, Simulium spp., Baetis rhodani), thus, quantifying the context dependencies of parasitism and a higher-order fish predator on these functional responses. Our functional response experiments demonstrated that the invasive amphipod had a higher predatory impact (lower handling time) on two of three prey species, which reflects patterns of impact observed in the field. The community module also revealed that parasitism had context-dependent influences, for one prey species, with the potential to further reduce the predatory impact of the invasive amphipod or increase the predatory impact of the native amphipod in the presence of a higher-order fish predator. Partial consumption of prey was similar for both predators and occurred increasingly in the order A. aquaticus, Simulium spp. and B. rhodani. This was associated with increasing prey densities, but showed no context dependencies with parasitism or higher-order fish predator. This study supports the applicability of comparative functional responses as a tool to predict and assess invasive species impacts incorporating multiple context dependencies.

  4. Predicting invasive species impacts: a community module functional response approach reveals context dependencies

    PubMed Central

    Paterson, Rachel A; Dick, Jaimie T A; Pritchard, Daniel W; Ennis, Marilyn; Hatcher, Melanie J; Dunn, Alison M

    2015-01-01

    Summary Predatory functional responses play integral roles in predator–prey dynamics, and their assessment promises greater understanding and prediction of the predatory impacts of invasive species. Other interspecific interactions, however, such as parasitism and higher-order predation, have the potential to modify predator–prey interactions and thus the predictive capability of the comparative functional response approach. We used a four-species community module (higher-order predator; focal native or invasive predators; parasites of focal predators; native prey) to compare the predatory functional responses of native Gammarus duebeni celticus and invasive Gammarus pulex amphipods towards three invertebrate prey species (Asellus aquaticus, Simulium spp., Baetis rhodani), thus, quantifying the context dependencies of parasitism and a higher-order fish predator on these functional responses. Our functional response experiments demonstrated that the invasive amphipod had a higher predatory impact (lower handling time) on two of three prey species, which reflects patterns of impact observed in the field. The community module also revealed that parasitism had context-dependent influences, for one prey species, with the potential to further reduce the predatory impact of the invasive amphipod or increase the predatory impact of the native amphipod in the presence of a higher-order fish predator. Partial consumption of prey was similar for both predators and occurred increasingly in the order A. aquaticus, Simulium spp. and B. rhodani. This was associated with increasing prey densities, but showed no context dependencies with parasitism or higher-order fish predator. This study supports the applicability of comparative functional responses as a tool to predict and assess invasive species impacts incorporating multiple context dependencies. PMID:25265905

  5. Validation of skeletal muscle cis-regulatory module predictions reveals nucleotide composition bias in functional enhancers.

    PubMed

    Kwon, Andrew T; Chou, Alice Yi; Arenillas, David J; Wasserman, Wyeth W

    2011-12-01

    We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions.

  6. Continuous Descending Modulation of the Spinal Cord Revealed by Functional MRI

    PubMed Central

    Bosma, Rachael L.; Cotoi, Andreea I.; Leung, Roxanne H.; Kornelsen, Jennifer; Lawrence-Dewar, Jane M.; Pukall, Caroline F.; Staud, Roland

    2016-01-01

    Spontaneous variations in spinal cord activity may arise from regulation of any of a number of functions including sensory, motor, and autonomic control. Here, we use functional MRI (fMRI) of healthy participants to identify properties of blood oxygenation-level dependent (BOLD) variations in the spinal cord in response to knowledge that either a noxious stimulus is impending, or that no stimulus is to be expected. Expectation of a noxious stimulus, or no stimulus, is shown to have a significant effect on wide-spread BOLD signal variations in the spinal cord over the entire time period of the fMRI acquisition. Coordination of BOLD responses between/within spinal cord and brainstem regions are also influenced by this knowledge. We provide evidence that such signal variations are the result of continuous descending modulation of spinal cord function. BOLD signal variations in response to noxious stimulation of the hand are also shown, as in previous studies. The observation of both continuous and reactive BOLD responses to emotional/cognitive factors and noxious peripheral stimulation may have important implications, not only for our understanding of endogenous pain modulation, but also in showing that spinal cord activity is under continuous regulatory control. PMID:27907094

  7. Community Structure Reveals Biologically Functional Modules in MEF2C Transcriptional Regulatory Network

    PubMed Central

    Alcalá-Corona, Sergio A.; Velázquez-Caldelas, Tadeo E.; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2016-01-01

    Gene regulatory networks are useful to understand the activity behind the complex mechanisms in transcriptional regulation. A main goal in contemporary biology is using such networks to understand the systemic regulation of gene expression. In this work, we carried out a systematic study of a transcriptional regulatory network derived from a comprehensive selection of all potential transcription factor interactions downstream from MEF2C, a human transcription factor master regulator. By analyzing the connectivity structure of such network, we were able to find different biologically functional processes and specific biochemical pathways statistically enriched in communities of genes into the network, such processes are related to cell signaling, cell cycle and metabolism. In this way we further support the hypothesis that structural properties of biological networks encode an important part of their functional behavior in eukaryotic cells. PMID:27252657

  8. In Vitro Assessment Reveals Parameters-Dependent Modulation on Excitability and Functional Connectivity of Cerebellar Slice by Repetitive Transcranial Magnetic Stimulation

    PubMed Central

    Tang, Rongyu; Zhang, Guanghao; Weng, Xiechuan; Han, Yao; Lang, Yiran; Zhao, Yuwei; Zhao, Xiaobo; Wang, Kun; Lin, Qiuxia; Wang, Changyong

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is an increasingly common technique used to selectively modify neural excitability and plasticity. There is still controversy concerning the cortical response to rTMS of different frequencies. In this study, a novel in vitro paradigm utilizing the Multi-Electrodes Array (MEA) system and acute cerebellar slicing is described. In a controllable environment that comprises perfusion, incubation, recording and stimulation modules, the spontaneous single-unit spiking activity in response to rTMS of different frequencies and powers was directly measured and analyzed. Investigation using this in vitro paradigm revealed frequency-dependent modulation upon the excitability and functional connectivity of cerebellar slices. The 1-Hz rTMS sessions induced short-term inhibition or lagged inhibition, whereas 20-Hz sessions induced excitation. The level of modulation is influenced by the value of power. However the long-term response fluctuated without persistent direction. The choice of evaluation method may also interfere with the interpretation of modulation direction. Furthermore, both short-term and long-term functional connectivity was strengthened by 1-Hz rTMS and weakened by 20-Hz rTMS. PMID:27000527

  9. Structural and functional studies of the modulator NS9283 reveal agonist-like mechanism of action at α4β2 nicotinic acetylcholine receptors.

    PubMed

    Olsen, Jeppe A; Ahring, Philip K; Kastrup, Jette S; Gajhede, Michael; Balle, Thomas

    2014-09-05

    Modulation of Cys loop receptor ion channels is a proven drug discovery strategy, but many underlying mechanisms of the mode of action are poorly understood. We report the x-ray structure of the acetylcholine-binding protein from Lymnaea stagnalis with NS9283, a stoichiometry selective positive modulator that targets the α4-α4 interface of α4β2 nicotinic acetylcholine receptors (nAChRs). Together with homology modeling, mutational data, quantum mechanical calculations, and pharmacological studies on α4β2 nAChRs, the structure reveals a modulator binding mode that overlaps the α4-α4 interface agonist (acetylcholine)-binding site. Analysis of contacts to residues known to govern agonist binding and function suggests that modulation occurs by an agonist-like mechanism. Selectivity for α4-α4 over α4-β2 interfaces is determined mainly by steric restrictions from Val-136 on the β2-subunit and favorable interactions between NS9283 and His-142 at the complementary side of α4. In the concentration ranges where modulation is observed, its selectivity prevents NS9283 from directly activating nAChRs because activation requires coordinated action from more than one interface. However, we demonstrate that in a mutant receptor with one natural and two engineered α4-α4 interfaces, NS9283 is an agonist. Modulation via extracellular binding sites is well known for benzodiazepines acting at γ-aminobutyric acid type A receptors. Like NS9283, benzodiazepines increase the apparent agonist potency with a minimal effect on efficacy. The shared modulatory profile along with a binding site located in an extracellular subunit interface suggest that modulation via an agonist-like mechanism may be a common mechanism of action that potentially could apply to Cys loop receptors beyond the α4β2 nAChRs.

  10. Structure-Function Analyses of a Staphylococcus epidermidis Autoinducing Peptide Reveals Motifs Critical for AgrC-type Receptor Modulation.

    PubMed

    Yang, Tian; Tal-Gan, Yftah; Paharik, Alexandra E; Horswill, Alexander R; Blackwell, Helen E

    2016-07-15

    Staphylococcus epidermidis is frequently implicated in human infections associated with indwelling medical devices due to its ubiquity in the skin flora and formation of robust biofilms. The accessory gene regulator (agr) quorum sensing (QS) system plays a prominent role in the establishment of biofilms and infection by this bacterium. Agr activation is mediated by the binding of a peptide signal (or autoinducing peptide, AIP) to its cognate AgrC receptor. Many questions remain about the role of QS in S. epidermidis infections, as well as in mixed-microbial populations on a host, and chemical modulators of its agr system could provide novel insights into this signaling network. The AIP ligand provides an initial scaffold for the development of such probes; however, the structure-activity relationships (SARs) for activation of S. epidermidis AgrC receptors by AIPs are largely unknown. Herein, we report the first SAR analyses of an S. epidermidis AIP by performing systematic alanine and d-amino acid scans of the S. epidermidis AIP-I. On the basis of these results, we designed and identified potent, pan-group inhibitors of the AgrC receptors in the three S. epidermidis agr groups, as well as a set of AIP-I analogs capable of selective AgrC inhibition in either specific S. epidermidis agr groups or in another common staphylococcal species, S. aureus. In addition, we uncovered a non-native peptide agonist of AgrC-I that can strongly inhibit S. epidermidis biofilm growth. Together, these synthetic analogs represent new and readily accessible probes for investigating the roles of QS in S. epidermidis colonization and infections.

  11. Morphological and Proteomic Analyses Reveal that Unsaturated Guluronate Oligosaccharide Modulates Multiple Functional Pathways in Murine Macrophage RAW264.7 Cells

    PubMed Central

    Xu, Xu; Bi, De-Cheng; Li, Chao; Fang, Wei-Shan; Zhou, Rui; Li, Shui-Ming; Chi, Lian-Li; Wan, Min; Shen, Li-Ming

    2015-01-01

    Alginate is a natural polysaccharide extracted from various species of marine brown algae. Alginate-derived guluronate oligosaccharide (GOS) obtained by enzymatic depolymerization has various pharmacological functions. Previous studies have demonstrated that GOS can trigger the production of inducible nitric oxide synthase (iNOS)/nitric oxide (NO), reactive oxygen species (ROS) and tumor necrosis factor (TNF)-α by macrophages and that it is involved in the nuclear factor (NF)-κB and mitogen-activated protein (MAP) kinase signaling pathways. To expand upon the current knowledge regarding the molecular mechanisms associated with the GOS-induced immune response in macrophages, comparative proteomic analysis was employed together with two-dimensional electrophoresis (2-DE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and Western blot verification. Proteins showing significant differences in expression in GOS-treated cells were categorized into multiple functional pathways, including the NF-κB signaling pathway and pathways involved in inflammation, antioxidant activity, glycolysis, cytoskeletal processes and translational elongation. Moreover, GOS-stimulated changes in the morphologies and actin cytoskeleton organization of RAW264.7 cells were also investigated as possible adaptations to GOS. This study is the first to reveal GOS as a promising agent that can modulate the proper balance between the pro- and anti-inflammatory immune responses, and it provides new insights into pharmaceutical applications of polysaccharides. PMID:25830683

  12. 3D structure/function analysis of PilX reveals how minor pilins can modulate the virulence properties of type IV pili

    PubMed Central

    Helaine, Sophie; Dyer, David H.; Nassif, Xavier; Pelicic, Vladimir; Forest, Katrina T.

    2007-01-01

    Type IV pili (Tfp) are widespread filamentous bacterial organelles that mediate multiple virulence-related phenotypes. They are composed mainly of pilin subunits, which are processed before filament assembly by dedicated prepilin peptidases. Other proteins processed by these peptidases, whose molecular nature and mode of action remain enigmatic, play critical roles in Tfp biology. We have performed a detailed structure/function analysis of one such protein, PilX from Neisseria meningitidis, which is crucial for formation of bacterial aggregates and adhesion to human cells. The x-ray crystal structure of PilX reveals the α/β roll fold shared by all pilins, and we show that this protein colocalizes with Tfp. These observations suggest that PilX is a minor, or low abundance, pilin that assembles within the filaments in a similar way to pilin. Deletion of a PilX distinctive structural element, which is predicted to be exposed on the filament surface, abolishes aggregation and adhesion. Our results support a model in which surface-exposed motifs in PilX subunits stabilize bacterial aggregates against the disruptive force of pilus retraction and illustrate how a minor pilus component can enhance the functional properties of pili of rather simple composition and structure. PMID:17893339

  13. In silico screening reveals structurally diverse, nanomolar inhibitors of NQO2 that are functionally active in cells and can modulate NFκB signalling

    PubMed Central

    Nolan, Karen A.; Dunstan, Mark S.; Caraher, Mary C.; Scott, Katherine A.; Leys, David; Stratford, Ian J.

    2011-01-01

    The NCI chemical database has been screened using in silico docking to identify novel nanomolar inhibitors of NRH:quinone oxidoreductase 2 (NQO2). The inhibitors identified from the screen exhibit a diverse range of scaffolds and the structure of one of the inhibitors, NSC13000 co-crystalized with NQO2, has been solved. This has been used to aid the generation of a structure/activity relationship between the computationally derived binding affinity and experimentally measured enzyme inhibitory potency. Many of the compounds are functionally active as inhibitors of NQO2 in cells at non toxic concentrations. To demonstrate this, advantage was taken of the NQO2-mediated toxicity of the chemotherapeutic drug CB1954. The toxicity of this drug is substantially reduced when the function of NQO2 is inhibited and many of the compounds achieve this in cells at nanomolar concentrations. The NQO2 inhibitors also attenuated TNFα-mediated, NFκB-driven transcriptional activity. The link between NQO2 and the regulation of NFκB was confirmed by using siRNA to NQO2 and by the observation that NRH, the cofactor for NQO2 enzyme activity, could regulate NFκB activity in an NQO2 dependent manner. NFκB is a potential therapeutic target and this study reveals an underlying mechanism that may exploitable for developing new anti-cancer drugs. PMID:22090421

  14. Platelet serotonin modulates immune functions.

    PubMed

    Mauler, M; Bode, C; Duerschmied, D

    2016-01-01

    This short review addresses immune functions of platelet serotonin. Platelets transport serotonin at a high concentration in dense granules and release it upon activation. Besides haemostatic, vasotonic and developmental modulation, serotonin also influences a variety of immune functions (mediated by different serotonin receptors). First, platelet serotonergic effects are directed against invading pathogens via activation and proliferation of lymphocytes, modulation of cytokine release, and recruitment of neutrophils to sites of acute inflammation by induction of selectin expression on endothelial cells. Second, serotonin levels are elevated in autoimmune diseases, such as asthma or rheumatoid arthritis, and during tissue regeneration after ischemia of myocardium or brain. Specific antagonism of serotonin receptors appears to improve survival after myocardial infarction or sepsis and to attenuate asthmatic attacks in animal models. It will be of great clinical relevance if these findings can be translated into human applications. In conclusion, targeting immune modulatory effects of platelet serotonin may provide novel therapeutic options for common health problems.

  15. Perilymph Osmolality Modulates Cochlear Function

    PubMed Central

    Choi, Chul-Hee; Oghalai, John S.

    2013-01-01

    Objectives/Hypothesis The cochlear amplifier is required for the exquisite sensitivity of mammalian hearing. Outer hair cells underlie the cochlear amplifier and they are unique in that they maintain an intracellular turgor pressure. Changing the turgor pressure of an isolated outer hair cells through osmotic challenge modulates its ability to produce electromotile force. We sought to determine the effect of osmotic challenge on cochlear function. Study Design In vivo animal study. Methods Hypotonic and hypertonic artificial perilymph was perfused through the scala tympani of anesthetized guinea pigs. Cochlear function was assessed by measuring the compound action potential, distortion product otoacoustic emissions, the cochlear microphonic, and the endocochlear potential. Results Hypotonic perilymph decreased and hypertonic perilymph increased compound action potential and distortion product otoacoustic emission thresholds in a dose-dependent and reversible manner. The cochlear microphonic quadratic distortion product magnitude increased after hypotonic perfusion and decreased with hypertonic perfusion. There were no changes in the stimulus intensity growth curve of the low-frequency cochlear microphonic. The endocochlear potential was not affected by perilymph osmolality. Conclusions These data demonstrate that perilymph osmolality can modulate cochlear function and are consistent with what would be expected if outer hair cells turgor pressure changes the gain of the cochlear amplifier in vivo. PMID:18607303

  16. Natural Compounds Modulating Mitochondrial Functions

    PubMed Central

    Gibellini, Lara; Bianchini, Elena; De Biasi, Sara; Nasi, Milena; Cossarizza, Andrea; Pinti, Marcello

    2015-01-01

    Mitochondria are organelles responsible for several crucial cell functions, including respiration, oxidative phosphorylation, and regulation of apoptosis; they are also the main intracellular source of reactive oxygen species (ROS). In the last years, a particular interest has been devoted to studying the effects on mitochondria of natural compounds of vegetal origin, quercetin (Qu), resveratrol (RSV), and curcumin (Cur) being the most studied molecules. All these natural compounds modulate mitochondrial functions by inhibiting organelle enzymes or metabolic pathways (such as oxidative phosphorylation), by altering the production of mitochondrial ROS and by modulating the activity of transcription factors which regulate the expression of mitochondrial proteins. While Qu displays both pro- and antioxidant activities, RSV and Cur are strong antioxidant, as they efficiently scavenge mitochondrial ROS and upregulate antioxidant transcriptional programmes in cells. All the three compounds display a proapoptotic activity, mediated by the capability to directly cause the release of cytochrome c from mitochondria or indirectly by upregulating the expression of proapoptotic proteins of Bcl-2 family and downregulating antiapoptotic proteins. Interestingly, these effects are particularly evident on proliferating cancer cells and can have important therapeutic implications. PMID:26167193

  17. Second-order temporal modulation transfer functions.

    PubMed

    Lorenzi, C; Soares, C; Vonner, T

    2001-08-01

    Detection thresholds were measured for a sinusoidal modulation applied to the modulation depth of a sinusoidally amplitude-modulated (SAM) white noise carrier as a function of the frequency of the modulation applied to the modulation depth (referred to as f'm). The SAM noise acted therefore as a "carrier" stimulus of frequency fm, and sinusoidal modulation of the SAM-noise modulation depth generated two additional components in the modulation spectrum: fm-f'm and fm+f'm. The tracking variable was the modulation depth of the sinusoidal variation applied to the "carrier" modulation depth. The resulting "second-order" temporal modulation transfer functions (TMTFs) measured on four listeners for "carrier" modulation frequencies fm of 16, 64, and 256 Hz display a low-pass segment followed by a plateau. This indicates that sensitivity to fluctuations in the strength of amplitude modulation is best for fluctuation rates f'm below about 2-4 Hz when using broadband noise carriers. Measurements of masked modulation detection thresholds for the lower and upper modulation sideband suggest that this capacity is possibly related to the detection of a beat in the sound's temporal envelope. The results appear qualitatively consistent with the predictions of an envelope detector model consisting of a low-pass filtering stage followed by a decision stage. Unlike listeners' performance, a modulation filterbank model using Q values > or = 2 should predict that second-order modulation detection thresholds should decrease at high values of f'm due to the spectral resolution of the modulation sidebands (in the modulation domain). This suggests that, if such modulation filters do exist, their selectivity is poor. In the latter case, the Q value of modulation filters would have to be less than 2. This estimate of modulation filter selectivity is consistent with the results of a previous study using a modulation-masking paradigm [S. D. Ewert and T. Dau, J. Acoust. Soc. Am. 108, 1181

  18. Time-resolved metabolomics reveals metabolic modulation in rice foliage

    PubMed Central

    Sato, Shigeru; Arita, Masanori; Soga, Tomoyoshi; Nishioka, Takaaki; Tomita, Masaru

    2008-01-01

    Background To elucidate the interaction of dynamics among modules that constitute biological systems, comprehensive datasets obtained from "omics" technologies have been used. In recent plant metabolomics approaches, the reconstruction of metabolic correlation networks has been attempted using statistical techniques. However, the results were unsatisfactory and effective data-mining techniques that apply appropriate comprehensive datasets are needed. Results Using capillary electrophoresis mass spectrometry (CE-MS) and capillary electrophoresis diode-array detection (CE-DAD), we analyzed the dynamic changes in the level of 56 basic metabolites in plant foliage (Oryza sativa L. ssp. japonica) at hourly intervals over a 24-hr period. Unsupervised clustering of comprehensive metabolic profiles using Kohonen's self-organizing map (SOM) allowed classification of the biochemical pathways activated by the light and dark cycle. The carbon and nitrogen (C/N) metabolism in both periods was also visualized as a phenotypic linkage map that connects network modules on the basis of traditional metabolic pathways rather than pairwise correlations among metabolites. The regulatory networks of C/N assimilation/dissimilation at each time point were consistent with previous works on plant metabolism. In response to environmental stress, glutathione and spermidine fluctuated synchronously with their regulatory targets. Adenine nucleosides and nicotinamide coenzymes were regulated by phosphorylation and dephosphorylation. We also demonstrated that SOM analysis was applicable to the estimation of unidentifiable metabolites in metabolome analysis. Hierarchical clustering of a correlation coefficient matrix could help identify the bottleneck enzymes that regulate metabolic networks. Conclusion Our results showed that our SOM analysis with appropriate metabolic time-courses effectively revealed the synchronous dynamics among metabolic modules and elucidated the underlying biochemical

  19. Functional and structural studies of the disulfide isomerase DsbC from the plant pathogen Xylella fastidiosa reveals a redox-dependent oligomeric modulation in vitro.

    PubMed

    Santos, Clelton A; Toledo, Marcelo A S; Trivella, Daniela B B; Beloti, Lilian L; Schneider, Dilaine R S; Saraiva, Antonio M; Crucello, Aline; Azzoni, Adriano R; Souza, Alessandra A; Aparicio, Ricardo; Souza, Anete P

    2012-10-01

    Xylella fastidiosa is a Gram-negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low-resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small-angle X-ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution.

  20. Open chromatin reveals the functional maize genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Every cellular process mediated through nuclear DNA must contend with chromatin. As results from ENCODE show, open chromatin assays can efficiently integrate across diverse regulatory elements, revealing functional non-coding genome. In this study, we use a MNase hypersensitivity assay to discover o...

  1. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2006-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital one's or zero's. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental physical laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  2. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2004-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital ONEs or ZEROs. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental natural laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  3. Caffeine Modulates Attention Network Function

    DTIC Science & Technology

    2010-03-01

    Function 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...attention. (A. Caramazza Ed.). Cognitive neuropsychology and neurolinguistics (pp. 187- 210). Hillsdale, NJ: Lawrence Erlbaum. Posner, M. I. (2004

  4. Caffeine Modulates Attention Network Function

    ERIC Educational Resources Information Center

    Brunye, Tad T.; Mahoney, Caroline R.; Lieberman, Harris R.; Taylor, Holly A.

    2010-01-01

    The present work investigated the effects of caffeine (0 mg, 100 mg, 200 mg, 400 mg) on a flanker task designed to test Posner's three visual attention network functions: alerting, orienting, and executive control [Posner, M. I. (2004). "Cognitive neuroscience of attention". New York, NY: Guilford Press]. In a placebo-controlled, double-blind…

  5. Caffeine modulates attention network function.

    PubMed

    Brunyé, Tad T; Mahoney, Caroline R; Lieberman, Harris R; Taylor, Holly A

    2010-03-01

    The present work investigated the effects of caffeine (0mg, 100mg, 200mg, 400mg) on a flanker task designed to test Posner's three visual attention network functions: alerting, orienting, and executive control [Posner, M. I. (2004). Cognitive neuroscience of attention. New York, NY: Guilford Press]. In a placebo-controlled, double-blind study using a repeated-measures design, we found that the effects of caffeine on visual attention vary as a function of dose and the attention network under examination. Caffeine improved alerting and executive control function in a dose-response manner, asymptoting at 200mg; this effect is congruent with caffeine's adenosine-mediated effects on dopamine-rich areas of brain, and the involvement of these areas in alerting and the executive control of visual attention. Higher doses of caffeine also led to a marginally less efficient allocation of visual attention towards cued regions during task performance (i.e., orienting). Taken together, results of this study demonstrate that caffeine has differential effects on visual attention networks as a function of dose, and such effects have implications for hypothesized interactions of caffeine, adenosine and dopamine in brain areas mediating visual attention.

  6. A Walsh Function Module Users' Manual

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2014-01-01

    The solution of partial differential equations (PDEs) with Walsh functions offers new opportunities to simulate many challenging problems in mathematical physics. The approach was developed to better simulate hypersonic flows with shocks on unstructured grids. It is unique in that integrals and derivatives are computed using simple matrix multiplication of series representations of functions without the need for divided differences. The product of any two Walsh functions is another Walsh function - a feature that radically changes an algorithm for solving PDEs. A FORTRAN module for supporting Walsh function simulations is documented. A FORTRAN code is also documented with options for solving time-dependent problems: an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the usage of the Walsh function module including such features as operator overloading, Fast Walsh Transforms in multi-dimensions, and a Fast Walsh reciprocal.

  7. Open chromatin reveals the functional maize genome

    PubMed Central

    Rodgers-Melnick, Eli; Vera, Daniel L.; Bass, Hank W.

    2016-01-01

    Cellular processes mediated through nuclear DNA must contend with chromatin. Chromatin structural assays can efficiently integrate information across diverse regulatory elements, revealing the functional noncoding genome. In this study, we use a differential nuclease sensitivity assay based on micrococcal nuclease (MNase) digestion to discover open chromatin regions in the maize genome. We find that maize MNase-hypersensitive (MNase HS) regions localize around active genes and within recombination hotspots, focusing biased gene conversion at their flanks. Although MNase HS regions map to less than 1% of the genome, they consistently explain a remarkably large amount (∼40%) of heritable phenotypic variance in diverse complex traits. MNase HS regions are therefore on par with coding sequences as annotations that demarcate the functional parts of the maize genome. These results imply that less than 3% of the maize genome (coding and MNase HS regions) may give rise to the overwhelming majority of phenotypic variation, greatly narrowing the scope of the functional genome. PMID:27185945

  8. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters.

    PubMed

    de Menezes, Alexandre B; Prendergast-Miller, Miranda T; Richardson, Alan E; Toscas, Peter; Farrell, Mark; Macdonald, Lynne M; Baker, Geoff; Wark, Tim; Thrall, Peter H

    2015-08-01

    Network and multivariate statistical analyses were performed to determine interactions between bacterial and fungal community terminal restriction length polymorphisms as well as soil properties in paired woodland and pasture sites. Canonical correspondence analysis (CCA) revealed that shifts in woodland community composition correlated with soil dissolved organic carbon, while changes in pasture community composition correlated with moisture, nitrogen and phosphorus. Weighted correlation network analysis detected two distinct microbial modules per land use. Bacterial and fungal ribotypes did not group separately, rather all modules comprised of both bacterial and fungal ribotypes. Woodland modules had a similar fungal : bacterial ribotype ratio, while in the pasture, one module was fungal dominated. There was no correspondence between pasture and woodland modules in their ribotype composition. The modules had different relationships to soil variables, and these contrasts were not detected without the use of network analysis. This study demonstrated that fungi and bacteria, components of the soil microbial communities usually treated as separate functional groups as in a CCA approach, were co-correlated and formed distinct associations in these adjacent habitats. Understanding these distinct modular associations may shed more light on their niche space in the soil environment, and allow a more realistic description of soil microbial ecology and function.

  9. Function Specifications for the A-7E Function Driver Module.

    DTIC Science & Technology

    1981-11-27

    Computer interface specifications (HEN181). The services and values provided by the Shared Services module are accurately described in the Shared Services Module...None$) FD.7.l.3.1 FD.7.1.7.1 5517a FD.App3 -5 Appendix 3 Event List (Alphabetical) Events Signalled by other Shared Services submodules @F( ABSCI+ip az...the Shared Services and Device Interface modules. Al; Answer this question for each table that appears in the function driver specification being

  10. Nucleosome competition reveals processive acetylation by the SAGA HAT module

    PubMed Central

    Ringel, Alison E.; Cieniewicz, Anne M.; Taverna, Sean D.; Wolberger, Cynthia

    2015-01-01

    The Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex hyperacetylates histone tails in vivo in a manner that depends upon histone 3 lysine 4 trimethylation (H3K4me3), a histone mark enriched at promoters of actively transcribed genes. SAGA contains a separable subcomplex known as the histone acetyltransferase (HAT) module that contains the HAT, Gcn5, bound to Sgf29, Ada2, and Ada3. Sgf29 contains a tandem Tudor domain that recognizes H3K4me3-containing peptides and is required for histone hyperacetylation in vivo. However, the mechanism by which H3K4me3 recognition leads to lysine hyperacetylation is unknown, as in vitro studies show no effect of the H3K4me3 modification on histone peptide acetylation by Gcn5. To determine how H3K4me3 binding by Sgf29 leads to histone hyperacetylation by Gcn5, we used differential fluorescent labeling of histones to monitor acetylation of individual subpopulations of methylated and unmodified nucleosomes in a mixture. We find that the SAGA HAT module preferentially acetylates H3K4me3 nucleosomes in a mixture containing excess unmodified nucleosomes and that this effect requires the Tudor domain of Sgf29. The H3K4me3 mark promotes processive, multisite acetylation of histone H3 by Gcn5 that can account for the different acetylation patterns established by SAGA at promoters versus coding regions. Our results establish a model for Sgf29 function at gene promoters and define a mechanism governing crosstalk between histone modifications. PMID:26401015

  11. Quantification of Cell Edge Velocities and Traction Forces Reveals Distinct Motility Modules during Cell Spreading

    PubMed Central

    Cai, Yunfei; Xenias, Harry; Spielman, Ingrid; Shneidman, Anna V.; David, Lawrence A.; Döbereiner, Hans-Günther; Wiggins, Chris H.; Sheetz, Michael P.

    2008-01-01

    Actin-based cell motility and force generation are central to immune response, tissue development, and cancer metastasis, and understanding actin cytoskeleton regulation is a major goal of cell biologists. Cell spreading is a commonly used model system for motility experiments – spreading fibroblasts exhibit stereotypic, spatially-isotropic edge dynamics during a reproducible sequence of functional phases: 1) During early spreading, cells form initial contacts with the surface. 2) The middle spreading phase exhibits rapidly increasing attachment area. 3) Late spreading is characterized by periodic contractions and stable adhesions formation. While differences in cytoskeletal regulation between phases are known, a global analysis of the spatial and temporal coordination of motility and force generation is missing. Implementing improved algorithms for analyzing edge dynamics over the entire cell periphery, we observed that a single domain of homogeneous cytoskeletal dynamics dominated each of the three phases of spreading. These domains exhibited a unique combination of biophysical and biochemical parameters – a motility module. Biophysical characterization of the motility modules revealed that the early phase was dominated by periodic, rapid membrane blebbing; the middle phase exhibited continuous protrusion with very low traction force generation; and the late phase was characterized by global periodic contractions and high force generation. Biochemically, each motility module exhibited a different distribution of the actin-related protein VASP, while inhibition of actin polymerization revealed different dependencies on barbed-end polymerization. In addition, our whole-cell analysis revealed that many cells exhibited heterogeneous combinations of motility modules in neighboring regions of the cell edge. Together, these observations support a model of motility in which regions of the cell edge exhibit one of a limited number of motility modules that, together

  12. Multifunctional ferromagnetic disks for modulating cell function

    PubMed Central

    Vitol, Elina A.; Novosad, Valentyn; Rozhkova, Elena A.

    2013-01-01

    In this work, we focus on the methods for controlling cell function with ferromagnetic disk-shaped particles. We will first review the history of magnetically assisted modulation of cell behavior and applications of magnetic particles for studying physical properties of a cell. Then, we consider the biological applications of the microdisks such as the method for induction of cancer cell apoptosis, controlled drug release, hyperthermia and MRI imaging. PMID:23766544

  13. Modulation of Immune Functions by Foods

    PubMed Central

    2004-01-01

    Evidence is rapidly accumulating as to the beneficial effects of foods. However, it is not always clear whether the information is based on data evaluated impartially in a scientific fashion. Human research into whether foods modulate immune functions in either intervention studies or randomized controlled trials can be classified into three categories according to the physical state of subjects enrolled for investigation: (i) studies examining the effect of foods in healthy individuals; (ii) studies analyzing the effect of foods on patients with hypersensitivity; and (iii) studies checking the effect of foods on immunocompromized subjects, including patients who had undergone surgical resection of cancer and newborns. The systematization of reported studies has made it reasonable to conclude that foods are able to modulate immune functions manifesting as either innate immunity (phagocytic activity, NK cell activity) or acquired immunity (T cell response, antibody production). Moreover, improvement of immune functions by foods can normalize the physical state of allergic patients or cancer patients, and may reduce the risk of diseases in healthy individuals. Therefore, it is valuable to assess the immune-modulating abilities of foods by measuring at least one parameter of either innate or acquired immunity. PMID:15841257

  14. Elements and modulation of functional dynamics.

    PubMed

    Gibbs, Alan C

    2014-10-09

    The existing structure-function paradigm of drug discovery has been evolving toward the essential incorporation of dynamics data. This new functional dynamics paradigm emphasizes conformational entropy as a driving force of protein function and intermolecular recognition. Conformational dynamics (a proxy of conformational entropy) impacts the degree of protein (dis)order and the constitution of the conformational ensemble, the mechanisms of allostery and drug resistance, and the free energy of ligand binding. Specific protein and ligand conformations facilitate favorable, reciprocal interactions. The number of protein and ligand conformers that exhibit favorable binding interactions will vary from system to system. All binding scenarios can modulate protein dynamics by various levels of enthalpic and entropic contribution, with significant influence on the functional dynamics of the system. Analysis and consideration of resulting changes of activity, signaling, catalysis, and subsequent phenotypic outcome are powerful motivations in the drug design process.

  15. Modulation transfer functions at Ka band

    NASA Astrophysics Data System (ADS)

    Hesany, Vahid; Sistani, Bita; Salam, Asif; Haimov, Samuel; Gogineni, Prasad; Moore, Richard K.

    The modulation transfer function (MTF) is often used to describe the modulation of the radar signal by the long waves. MTFs were measured at 35 GHz (Ka band) with a switched-beam vector slope gauge/scatterometer on the research platform NORDSEE as part of the SAXON-FPN experiment. Three independent measurements of the scattering were available for each height measurement. This provided the opportunity to average the time series to reduce the effects of fading noise and sea spikes, or, alternatively, to append the time series to achieve more degrees of freedom in the spectral estimates. For upwind measurements, the phase of the VV-polarized Ka-band MTF was always positive, which implies that the maximum of the radar return originates from the forward face of the long-scale waves. This phase increases with increasing wind speed. The magnitude of the MTF decreases with increasing wind speed.

  16. Cholinergic modulation of hippocampal network function

    PubMed Central

    Teles-Grilo Ruivo, Leonor M.; Mellor, Jack R.

    2013-01-01

    Cholinergic septohippocampal projections from the medial septal area to the hippocampus are proposed to have important roles in cognition by modulating properties of the hippocampal network. However, the precise spatial and temporal profile of acetylcholine release in the hippocampus remains unclear making it difficult to define specific roles for cholinergic transmission in hippocampal dependent behaviors. This is partly due to a lack of tools enabling specific intervention in, and recording of, cholinergic transmission. Here, we review the organization of septohippocampal cholinergic projections and hippocampal acetylcholine receptors as well as the role of cholinergic transmission in modulating cellular excitability, synaptic plasticity, and rhythmic network oscillations. We point to a number of open questions that remain unanswered and discuss the potential for recently developed techniques to provide a radical reappraisal of the function of cholinergic inputs to the hippocampus. PMID:23908628

  17. Modulating brain oscillations to drive brain function.

    PubMed

    Thut, Gregor

    2014-12-01

    Do neuronal oscillations play a causal role in brain function? In a study in this issue of PLOS Biology, Helfrich and colleagues address this long-standing question by attempting to drive brain oscillations using transcranial electrical current stimulation. Remarkably, they were able to manipulate visual perception by forcing brain oscillations of the left and right visual hemispheres into synchrony using oscillatory currents over both hemispheres. Under this condition, human observers more often perceived an inherently ambiguous visual stimulus in one of its perceptual instantiations. These findings shed light on the mechanisms underlying neuronal computation. They show that it is the neuronal oscillations that drive the visual experience, not the experience driving the oscillations. And they indicate that synchronized oscillatory activity groups brain areas into functional networks. This points to new ways for controlled experimental and possibly also clinical interventions for the study and modulation of brain oscillations and associated functions.

  18. Modulating Brain Oscillations to Drive Brain Function

    PubMed Central

    Thut, Gregor

    2014-01-01

    Do neuronal oscillations play a causal role in brain function? In a study in this issue of PLOS Biology, Helfrich and colleagues address this long-standing question by attempting to drive brain oscillations using transcranial electrical current stimulation. Remarkably, they were able to manipulate visual perception by forcing brain oscillations of the left and right visual hemispheres into synchrony using oscillatory currents over both hemispheres. Under this condition, human observers more often perceived an inherently ambiguous visual stimulus in one of its perceptual instantiations. These findings shed light on the mechanisms underlying neuronal computation. They show that it is the neuronal oscillations that drive the visual experience, not the experience driving the oscillations. And they indicate that synchronized oscillatory activity groups brain areas into functional networks. This points to new ways for controlled experimental and possibly also clinical interventions for the study and modulation of brain oscillations and associated functions. PMID:25549340

  19. Modulation Based on Probability Density Functions

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2009-01-01

    A proposed method of modulating a sinusoidal carrier signal to convey digital information involves the use of histograms representing probability density functions (PDFs) that characterize samples of the signal waveform. The method is based partly on the observation that when a waveform is sampled (whether by analog or digital means) over a time interval at least as long as one half cycle of the waveform, the samples can be sorted by frequency of occurrence, thereby constructing a histogram representing a PDF of the waveform during that time interval.

  20. Electrical neuroimaging reveals early generator modulation to emotional words.

    PubMed

    Ortigue, Stephanie; Michel, Christoph M; Murray, Micah M; Mohr, Christine; Carbonnel, Serge; Landis, Theodor

    2004-04-01

    Functional electrical neuroimaging investigated incidental emotional word processing. Previous research suggests that the brain may differentially respond to the emotional content of linguistic stimuli pre-lexically (i.e., before distinguishing that these stimuli are words). We investigated the spatiotemporal brain mechanisms of this apparent paradox and in particular whether the initial differentiation of emotional stimuli is marked by different brain generator configurations using high-density, event-related potentials. Such would support the existence of specific cerebral resources dedicated to emotional word processing. A related issue concerns the possibility of right-hemispheric specialization in the processing of emotional stimuli. Thirteen healthy men performed a go/no-go lexical decision task with bilateral word/non-word or non-word/non-word stimulus pairs. Words included equal numbers of neutral and emotional stimuli, but subjects made no explicit discrimination along this dimension. Emotional words appearing in the right visual field (ERVF) yielded the best overall performance, although the difference between emotional and neutral words was larger for left than for right visual field presentations. Electrophysiologically, ERVF presentations were distinguished from all other conditions over the 100-140 ms period by a distinct scalp topography, indicative of different intracranial generator configurations. A distributed linear source estimation (LAURA) of this distinct scalp potential field revealed bilateral lateral-occipital sources with a right hemisphere current density maximum. These data support the existence of a specialized brain network triggered by the emotional connotation of words at a very early processing stage.

  1. Androgen Modulation of Hippocampal Structure and Function.

    PubMed

    Atwi, Sarah; McMahon, Dallan; Scharfman, Helen; MacLusky, Neil J

    2016-02-01

    Androgens have profound effects on hippocampal structure and function, including induction of spines and spine synapses on the dendrites of CA1 pyramidal neurons, as well as alterations in long-term synaptic plasticity (LTP) and hippocampally dependent cognitive behaviors. How these effects occur remains largely unknown. Emerging evidence, however, suggests that one of the key elements in the response mechanism may be modulation of brain-derived neurotrophic factor (BDNF) in the mossy fiber (MF) system. In male rats, orchidectomy increases synaptic transmission and excitability in the MF pathway. Testosterone reverses these effects, suggesting that testosterone exerts tonic suppression on MF BDNF levels. These findings suggest that changes in hippocampal function resulting from declining androgen levels may reflect the outcome of responses mediated through normally balanced, but opposing, mechanisms: loss of androgen effects on the hippocampal circuitry may be compensated, at least in part, by an increase in BDNF-dependent MF plasticity.

  2. Androgen Modulation of Hippocampal Structure and Function

    PubMed Central

    Atwi, Sarah; McMahon, Dallan; Scharfman, Helen; MacLusky, Neil J.

    2016-01-01

    Androgens have profound effects on hippocampal structure and function, including induction of spines and spine synapses on the dendrites of CA1 pyramidal neurons, as well as alterations in long-term synaptic plasticity (LTP) and hippocampally dependent cognitive behaviors. How these effects occur remains largely unknown. Emerging evidence, however, suggests that one of the key elements in the response mechanism may be modulation of brain-derived neurotrophic factor (BDNF) in the mossy fiber (MF) system. In male rats, orchidectomy increases synaptic transmission and excitability in the MF pathway. Testosterone reverses these effects, suggesting that testosterone exerts tonic suppression on MF BDNF levels. These findings suggest that changes in hippocampal function resulting from declining androgen levels may reflect the outcome of responses mediated through normally balanced, but opposing, mechanisms: loss of androgen effects on the hippocampal circuitry may be compensated, at least in part, by an increase in BDNF-dependent MF plasticity. PMID:25416742

  3. Structural and functional studies of titin's fn3 modules reveal conserved surface patterns and binding to myosin S1--a possible role in the Frank-Starling mechanism of the heart.

    PubMed

    Muhle-Goll, C; Habeck, M; Cazorla, O; Nilges, M; Labeit, S; Granzier, H

    2001-10-19

    The A-band part of titin, a striated-muscle specific protein spanning from the Z-line to the M-line, mainly consists of a well-ordered super-repeat array of immunoglobulin-like and fibronectin-type III (fn3)-like domains. Since it has been suspected that the fn3 domains might represent titin's binding sites to myosin, we have developed structural models for all of titin's 132 fn3-like domains. A subset of eight experimentally determined fn3 structures from a range of proteins, including titin itself, was used as homology templates. After grouping the models according to their position within the super-repeat segment of the central A-band titin region, we analyzed the models with respect to side-chain conservation. This showed that conserved residues form an extensive surface pattern predominantly at one side of the domains, whereas domains outside the central C-zone super-repeat region show generally less conserved surfaces. Since the conserved surface residues may function as protein-binding sites, we experimentally studied the binding properties of expressed multi-domain fn3 fragments. This revealed that fn3 fragments specifically bind to the sub-fragment 1 of myosin. We also measured the effect of fn3 fragments on the contractile properties of single cardiac myocytes. At sub-maximal Ca(2+) concentrations, fn3 fragments significantly enhance active tension. This effect is most pronounced at short sarcomere length, and as a result the length-dependence of Ca(2+) activation is reduced. A model of how titin's fn3-like domains may influence actomyosin interaction is proposed.

  4. Differential Network Analysis Reveals Genetic Effects on Catalepsy Modules

    PubMed Central

    Iancu, Ovidiu D.; Oberbeck, Denesa; Darakjian, Priscila; Kawane, Sunita; Erk, Jason; McWeeney, Shannon; Hitzemann, Robert

    2013-01-01

    We performed short-term bi-directional selective breeding for haloperidol-induced catalepsy, starting from three mouse populations of increasingly complex genetic structure: an F2 intercross, a heterogeneous stock (HS) formed by crossing four inbred strains (HS4) and a heterogeneous stock (HS-CC) formed from the inbred strain founders of the Collaborative Cross (CC). All three selections were successful, with large differences in haloperidol response emerging within three generations. Using a custom differential network analysis procedure, we found that gene coexpression patterns changed significantly; importantly, a number of these changes were concordant across genetic backgrounds. In contrast, absolute gene-expression changes were modest and not concordant across genetic backgrounds, in spite of the large and similar phenotypic differences. By inferring strain contributions from the parental lines, we are able to identify significant differences in allelic content between the selected lines concurrent with large changes in transcript connectivity. Importantly, this observation implies that genetic polymorphisms can affect transcript and module connectivity without large changes in absolute expression levels. We conclude that, in this case, selective breeding acts at the subnetwork level, with the same modules but not the same transcripts affected across the three selections. PMID:23555609

  5. Knock-Out Models Reveal New Aquaporin Functions

    PubMed Central

    Verkman, Alan S.

    2013-01-01

    Knockout mice have been informative in the discovery of unexpected biological functions of aquaporins. Knockout mice have confirmed the predicted roles of aquaporins in transepithelial fluid transport, as in the urinary concentrating mechanism and glandular fluid secretion. A less obvious, though predictable role of aquaporins is in tissue swelling under stress, as in the brain in stroke, tumor and infection. Phenotype analysis of aquaporin knockout mice has revealed several unexpected cellular roles of aquaporins whose mechanisms are being elucidated. Aquaporins facilitate cell migration, as seen in aquaporin-dependent tumor angiogenesis and tumor metastasis, by a mechanism that may involve facilitated water transport in lamellipodia of migrating cells. The ‘aquaglyceroporins’, aquaporins that transport both glycerol and water, regulate glycerol content in epidermis, fat and other tissues, and lead to a multiplicity of interesting consequences of gene disruption including dry skin, resistance to skin carcinogenesis, impaired cell proliferation and altered fat metabolism. An even more surprising role of a mammalian aquaporin is in neural signal transduction in the central nervous system. The many roles of aquaporins might be exploited for clinical benefit by modulation of aquaporin expression/function – as diuretics, and in the treatment of brain swelling, glaucoma, epilepsy, obesity and cancer. PMID:19096787

  6. Revealing neuronal function through microelectrode array recordings

    PubMed Central

    Obien, Marie Engelene J.; Deligkaris, Kosmas; Bullmann, Torsten; Bakkum, Douglas J.; Frey, Urs

    2015-01-01

    Microelectrode arrays and microprobes have been widely utilized to measure neuronal activity, both in vitro and in vivo. The key advantage is the capability to record and stimulate neurons at multiple sites simultaneously. However, unlike the single-cell or single-channel resolution of intracellular recording, microelectrodes detect signals from all possible sources around every sensor. Here, we review the current understanding of microelectrode signals and the techniques for analyzing them. We introduce the ongoing advancements in microelectrode technology, with focus on achieving higher resolution and quality of recordings by means of monolithic integration with on-chip circuitry. We show how recent advanced microelectrode array measurement methods facilitate the understanding of single neurons as well as network function. PMID:25610364

  7. Viruses as Modulators of Mitochondrial Functions

    PubMed Central

    Anand, Sanjeev K.; Tikoo, Suresh K.

    2013-01-01

    Mitochondria are multifunctional organelles with diverse roles including energy production and distribution, apoptosis, eliciting host immune response, and causing diseases and aging. Mitochondria-mediated immune responses might be an evolutionary adaptation by which mitochondria might have prevented the entry of invading microorganisms thus establishing them as an integral part of the cell. This makes them a target for all the invading pathogens including viruses. Viruses either induce or inhibit various mitochondrial processes in a highly specific manner so that they can replicate and produce progeny. Some viruses encode the Bcl2 homologues to counter the proapoptotic functions of the cellular and mitochondrial proteins. Others modulate the permeability transition pore and either prevent or induce the release of the apoptotic proteins from the mitochondria. Viruses like Herpes simplex virus 1 deplete the host mitochondrial DNA and some, like human immunodeficiency virus, hijack the host mitochondrial proteins to function fully inside the host cell. All these processes involve the participation of cellular proteins, mitochondrial proteins, and virus specific proteins. This review will summarize the strategies employed by viruses to utilize cellular mitochondria for successful multiplication and production of progeny virus. PMID:24260034

  8. Functional modules of sigma factor regulons guarantee adaptability and evolvability

    PubMed Central

    Binder, Sebastian C.; Eckweiler, Denitsa; Schulz, Sebastian; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Häussler, Susanne; Meyer-Hermann, Michael

    2016-01-01

    The focus of modern molecular biology turns from assigning functions to individual genes towards understanding the expression and regulation of complex sets of molecules. Here, we provide evidence that alternative sigma factor regulons in the pathogen Pseudomonas aeruginosa largely represent insulated functional modules which provide a critical level of biological organization involved in general adaptation and survival processes. Analysis of the operational state of the sigma factor network revealed that transcription factors functionally couple the sigma factor regulons and significantly modulate the transcription levels in the face of challenging environments. The threshold quality of newly evolved transcription factors was reached faster and more robustly in in silico testing when the structural organization of sigma factor networks was taken into account. These results indicate that the modular structures of alternative sigma factor regulons provide P. aeruginosa with a robust framework to function adequately in its environment and at the same time facilitate evolutionary change. Our data support the view that widespread modularity guarantees robustness of biological networks and is a key driver of evolvability. PMID:26915971

  9. Functional modules of sigma factor regulons guarantee adaptability and evolvability

    NASA Astrophysics Data System (ADS)

    Binder, Sebastian C.; Eckweiler, Denitsa; Schulz, Sebastian; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Häussler, Susanne; Meyer-Hermann, Michael

    2016-02-01

    The focus of modern molecular biology turns from assigning functions to individual genes towards understanding the expression and regulation of complex sets of molecules. Here, we provide evidence that alternative sigma factor regulons in the pathogen Pseudomonas aeruginosa largely represent insulated functional modules which provide a critical level of biological organization involved in general adaptation and survival processes. Analysis of the operational state of the sigma factor network revealed that transcription factors functionally couple the sigma factor regulons and significantly modulate the transcription levels in the face of challenging environments. The threshold quality of newly evolved transcription factors was reached faster and more robustly in in silico testing when the structural organization of sigma factor networks was taken into account. These results indicate that the modular structures of alternative sigma factor regulons provide P. aeruginosa with a robust framework to function adequately in its environment and at the same time facilitate evolutionary change. Our data support the view that widespread modularity guarantees robustness of biological networks and is a key driver of evolvability.

  10. Revealing remodeler function: Varied and unique

    NASA Astrophysics Data System (ADS)

    Eastlund, Allen

    Chromatin remodelers perform a necessary and required function for the successful expression of our genetic code. By modifying, shifting, or ejecting nucleosomes from the chromatin structure they allow access to the underlying DNA to the rest of the cell's machinery. This research has focused on two major remodeler motors from major families of chromatin remodelers: the trimeric motor domain of RSC and the motor domain of the ISWI family, ISWI. Using primarily stopped-flow spectrofluorometry, I have categorized the time-dependent motions of these motor domains along their preferred substrate, double-stranded DNA. Combined with collected ATP utilization data, I present the subsequent analysis and associated conclusions that stem from the underlying assumptions and models. Interestingly, there is little in common between the investigated proteins aside from their favored medium. While RSC exhibits modest translocation characteristics and highly effective motion with the ability for large molecular forces, ISWI is not only structurally different but highly inefficient in its motion leading to difficulties in determining its specific translocation mechanics. While chromatin remodeling is a ubiquitous facet of eukaryotic life, there remains much to be understood about their general mechanisms.

  11. Binding of cellulose binding modules reveal differences between cellulose substrates

    PubMed Central

    Arola, Suvi; Linder, Markus B.

    2016-01-01

    The interaction between cellulase enzymes and their substrates is of central importance to several technological and scientific challenges. Here we report that the binding of cellulose binding modules (CBM) from Trichoderma reesei cellulases Cel6A and Cel7A show a major difference in how they interact with substrates originating from wood compared to bacterial cellulose. We found that the CBM from TrCel7A recognizes the two substrates differently and as a consequence shows an unexpected way of binding. We show that the substrate has a large impact on the exchange rate of the studied CBM, and moreover, CBM-TrCel7A seems to have an additional mode of binding on wood derived cellulose but not on cellulose originating from bacterial source. This mode is not seen in double CBM (DCBM) constructs comprising both CBM-TrCel7A and CBM-TrCel6A. The linker length of DCBMs affects the binding properties, and slows down the exchange rates of the proteins and thus, can be used to analyze the differences between the single CBM. These results have impact on the cellulase research and offer new understanding on how these industrially relevant enzymes act. PMID:27748440

  12. Proteasome Modulates Mitochondrial Function During Cellular Senescence

    PubMed Central

    Torres, Claudio A.; Perez, Viviana I.

    2009-01-01

    Proteasome plays fundamental roles in the removal of oxidized proteins and in the normal degradation of short-lived proteins. Previously we have provided evidences that the impairment in proteasome observed during the replicative senescence of human fibroblasts has significant effects on MAPK signaling, proliferation, life span, senescent phenotype and protein oxidative status. These studies have demonstrated that proteasome inhibition and replicative senescence caused accumulation of intracellular protein carbonyl content. In this study, we have investigated the mechanisms by which proteasome dysfunction modulates protein oxidation during cellular senescence. The results indicate that proteasome inhibition during replicative senescence have significant effects on the intra and extracellular ROS production in vitro. The data also show that ROS impaired the proteasome function, which is partially reversible by antioxidants. Increases in ROS after proteasome inhibition correlated with a significant negative effect on the activity of most mitochondrial electron transporters. We propose that failures in proteasome during cellular senescence lead to mitochondrial dysfunction, ROS production and oxidative stress. Furthermore, it is likely that changes in proteasome dynamics could generate a pro-oxidative condition at the immediate extracellular microenvironment that could cause tissue injury during aging, in vivo. PMID:17976388

  13. Interaural attention modulates outer hair cell function.

    PubMed

    Srinivasan, Sridhar; Keil, Andreas; Stratis, Kyle; Osborne, Aaron F; Cerwonka, Colin; Wong, Jennifer; Rieger, Brenda L; Polcz, Valerie; Smith, David W

    2014-12-01

    Mounting evidence suggests that auditory attention tasks may modulate the sensitivity of the cochlea by way of the corticofugal and the medial olivocochlear (MOC) efferent pathways. Here, we studied the extent to which a separate efferent tract, the 'uncrossed' MOC, which functionally connects the two ears, mediates inter-aural selective attention. We compared distortion product otoacoustic emissions (DPOAEs) in one ear with binaurally presented primaries, using an intermodal target detection task in which participants were instructed to report the occurrence of brief target events (visual changes, tones). Three tasks were compared under identical physical stimulation: (i) report brief tones in the ear in which DPOAE responses were recorded; (ii) report brief tones presented to the contralateral, non-recorded ear; and (iii) report brief phase shifts of a visual grating at fixation. Effects of attention were observed as parallel shifts in overall DPOAE contour level, with DPOAEs relatively higher in overall level when subjects ignored the auditory stimuli and attended to the visual stimulus, compared with both of the auditory-attending conditions. Importantly, DPOAE levels were statistically lowest when attention was directed to the ipsilateral ear in which the DPOAE recordings were made. These data corroborate notions that top-down mechanisms, via the corticofugal and medial efferent pathways, mediate cochlear responses during intermodal attention. New findings show attending to one ear can significantly alter the physiological response of the contralateral, unattended ear, probably through the uncrossed-medial olivocochlear efferent fibers connecting the two ears.

  14. Pharmacologic modulation of experimental postischemic hepatic function.

    PubMed Central

    Ontell, S J; Makowka, L; Trager, J; Mazzaferro, V; Ove, P; Starzl, T E

    1989-01-01

    The present study evaluated and compared the effects of SRI 63-441, a potent platelet activating factor antagonist, superoxide dismutase (SOD), an oxygen free radical scavenger, and ibuprofen, a cyclooxygenase inhibitor on hepatic function after 90 minutes of warm ischemia. After warm ischemia, livers were harvested and underwent 90 minutes of warm, oxygenated, sanguinous perfusion on an isolated liver perfusion apparatus. Pretreatment of donor animals with 20 mg/kg intravenous (I.V.) SRI 63-441 5 minutes before induction of total hepatic ischemia resulted in significantly increased bile production, a significant decrease in transaminase release, and a higher tissue adenosine triphosphate (ATP) content when compared with ischemic nontreated controls. SOD resulted in improved bile production and decreased transaminase liberation only when present in the perfusate at the time of in vitro reperfusion. Ibuprofen did not improve postischemic hepatic function in this model. Electron microscopy revealed patchy hepatocellular vacuolization with an intact sinusoidal endothelium in all ischemic livers. However, the degree of damage was less severe in the livers from those rats pretreated with 20 mg/kg SRI 63-441. This study demonstrates that SRI 63-441 pretreatment significantly reduces hepatic warm ischemic injury, and in the present model, appears superior to two other agents that have been advanced in the treatment of ischemic injury. The use of such agents singly or in combinations have important implications as regards gaining a better understanding of the basic mechanisms in organ ischemia, and moreover, for therapeutic applications in organ ischemia and preservation. Images Fig. 3. Figs. 6A-C. Figs. 6A-C. Fig. 7. Figs. 8A-C. Figs. 8A-C. PMID:2916864

  15. GABAB receptor modulation of synaptic function

    PubMed Central

    Chalifoux, Jason R.; Carter, Adam G.

    2011-01-01

    Neuromodulators have complex effects on both the presynaptic release and postsynaptic detection of neurotransmitters. Here we describe recent advances in our understanding of synaptic modulation by metabotropic GABAB receptors. By inhibiting multivesicular release from the presynaptic terminal, these receptors decrease the synaptic glutamate signal. GABAB receptors also inhibit the Ca2+ permeability of NMDA receptors to decrease Ca2+ signals in postsynaptic spines. These new findings highlight the importance of GABAB receptors in regulating many aspects of synaptic transmission. They also point to novel questions about the spatiotemporal dynamics and sources of synaptic modulation in the brain. PMID:21376567

  16. Matrix factorization reveals aging-specific co-expression gene modules in the fat and muscle tissues in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo

    2016-10-01

    Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases.

  17. Matrix factorization reveals aging-specific co-expression gene modules in the fat and muscle tissues in nonhuman primates

    PubMed Central

    Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo

    2016-01-01

    Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases. PMID:27703186

  18. Cross-Functional Globalization Modules: A Learning Experience

    ERIC Educational Resources Information Center

    Cort, Kathryn T.; Das, Jayoti; Synn, Wonhi J.

    2004-01-01

    The purpose of this study is to present cross-functional international teaching modules. The modules presented in this paper are intended to assist higher education institutions in initiating and implementing the first level of internationalization of the business school curriculum. Although the focus is on achieving a level of global awareness,…

  19. Ferrocene Functionalized Endocrine Modulators as Anticancer Agents

    NASA Astrophysics Data System (ADS)

    Hillard, Elizabeth A.; Vessières, Anne; Jaouen, Gerard

    We present here some of our studies on the synthesis and behaviour of ferrocenyl selective endocrine receptor modulators against cancer cells, particularly breast and prostate cancers. The proliferative/anti-proliferative effects of compounds based on steroidal and non-steroidal endocrine modulators have been extensively explored in vitro. Structure-activity relationship studies of such molecules, particularly the hydroxyferrocifens and ferrocene phenols, have shown the effect of (1) the presence and the length of the N,N-dimethylamino side chain, (2) the presence and position of the phenol group, (3) the role of the ferrocenyl moiety, (4) that of conjugation, (5) phenyl functionalisation and (6) the placement of the phenyl group. Compounds possessing a ferrocene moiety linked to a p-phenol by a conjugated π-system are among the most potent of the series, with IC50 values ranging from 0.090 to 0.6µM on hormone independent breast cancer cells. Based on the SAR data and electrochemical studies, we have proposed an original mechanism to explain the unusual behaviour of these bioorganometallic species and coin the term "kronatropic" to qualify this effect, involving ROS production and bio-oxidation. In addition, the importance of formulation is underlined. We also discuss the behaviour of ferrocenyl androgens and anti-androgens for possible use against prostate cancers. In sum, ferrocene has proven to be a fascinating substituent due to its vast potential for oncology.

  20. Functional Module Analysis for Gene Coexpression Networks with Network Integration

    PubMed Central

    Zhang, Shuqin; Zhao, Hongyu

    2015-01-01

    Network has been a general tool for studying the complex interactions between different genes, proteins and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with 3 complete subgraphs, and 11 modules with 2 complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally. PMID:26451826

  1. Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape.

    PubMed

    Baker, Robert L; Leong, Wen Fung; Brock, Marcus T; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Edwards, Christine E; Maloof, Julin; Welch, Stephen; Weinig, Cynthia

    2015-10-01

    Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange.

  2. Key herbivores reveal limited functional redundancy on inshore coral reefs

    NASA Astrophysics Data System (ADS)

    Johansson, C. L.; van de Leemput, I. A.; Depczynski, M.; Hoey, A. S.; Bellwood, D. R.

    2013-12-01

    Marine ecosystems are facing increasing exposure to a range of stressors and declines in critical ecological functions. The likelihood of further loss of functions and resilience is dependent, in part, on the extent of functional redundancy (i.e. the capacity of one species to functionally compensate for the loss of another species) within critical functional groups. We used multiple metrics; species richness, generic richness, abundance and reserve capacity (i.e. the relative number of individuals available to fulfil the function if the numerically dominant species is lost), as indicators to assess the potential functional redundancy of four functional groups of herbivorous fishes (browsers, excavators, grazers and scrapers) in two of the worlds' most intact coral reef ecosystems: the Great Barrier Reef (GBR) and Ningaloo Reef in Western Australia. We found marked variations in potential redundancy among habitats within each reef system and functional groups. Despite negligible fishing of herbivorous fishes, coastal habitats in both reef systems had lower functional redundancy compared to offshore locations for all herbivorous fishes collectively and the four functional groups independently. This pattern was consistent in all four indicators of redundancy. The potential vulnerability of these coastal habitats is highlighted by recent shifts from coral to macroalgal dominance on several coastal reefs of the GBR. Our approach provides a simple yet revealing evaluation of potential functional redundancy. Moreover, it highlights the spatial variation in potential vulnerability and resilience of reef systems.

  3. Dynamic functional modules in co-expressed protein interaction networks of dilated cardiomyopathy

    PubMed Central

    2010-01-01

    Background Molecular networks represent the backbone of molecular activity within cells and provide opportunities for understanding the mechanism of diseases. While protein-protein interaction data constitute static network maps, integration of condition-specific co-expression information provides clues to the dynamic features of these networks. Dilated cardiomyopathy is a leading cause of heart failure. Although previous studies have identified putative biomarkers or therapeutic targets for heart failure, the underlying molecular mechanism of dilated cardiomyopathy remains unclear. Results We developed a network-based comparative analysis approach that integrates protein-protein interactions with gene expression profiles and biological function annotations to reveal dynamic functional modules under different biological states. We found that hub proteins in condition-specific co-expressed protein interaction networks tended to be differentially expressed between biological states. Applying this method to a cohort of heart failure patients, we identified two functional modules that significantly emerged from the interaction networks. The dynamics of these modules between normal and disease states further suggest a potential molecular model of dilated cardiomyopathy. Conclusions We propose a novel framework to analyze the interaction networks in different biological states. It successfully reveals network modules closely related to heart failure; more importantly, these network dynamics provide new insights into the cause of dilated cardiomyopathy. The revealed molecular modules might be used as potential drug targets and provide new directions for heart failure therapy. PMID:20950417

  4. Revealing quantum correlation by negativity of the Wigner function

    NASA Astrophysics Data System (ADS)

    Taghiabadi, Razieh; Akhtarshenas, Seyed Javad; Sarbishaei, Mohsen

    2016-05-01

    We analyze two two-mode continuous variable separable states with the same marginal states. We adopt the definition of classicality in the form of well-defined positive Wigner function describing the state and find that although the states possess positive local Wigner functions, they exhibit negative Wigner functions for the global states. Using the negativity of Wigner function as an indicator of nonclassicality, we show that despite these states possess different negativities of the Wigner function, they do not reveal this difference as phase space nonclassicalities such as negativity of the Mandel Q parameter or quadrature squeezing. We then concentrate on quantum correlation of these states and show that quantum discord and local quantum uncertainty, as two well-defined measures of quantum correlation, manifest the difference between negativity of the Wigner functions. The non-Gaussianity of these states is also examined and show that the difference in behavior of their non-Gaussianity is the same as the difference between negativity of their Wigner functions. We also investigate the influence of correlation rank criterion and find that when the states can be produced locally from classical states, the Wigner functions cannot reveal their quantum correlations.

  5. Glycosylation modulates arenavirus glycoprotein expression and function

    SciTech Connect

    Bonhomme, Cyrille J. Capul, Althea A. Lauron, Elvin J. Bederka, Lydia H. Knopp, Kristeene A. Buchmeier, Michael J.

    2011-01-20

    The glycoprotein of lymphocytic choriomeningitis virus (LCMV) contains nine potential N-linked glycosylation sites. We investigated the function of these N-glycosylations by using alanine-scanning mutagenesis. All the available sites were occupied on GP1 and two of three on GP2. N-linked glycan mutations at positions 87 and 97 on GP1 resulted in reduction of expression and absence of cleavage and were necessary for downstream functions, as confirmed by the loss of GP-mediated fusion activity with T87A and S97A mutants. In contrast, T234A and E379N/A381T mutants impaired GP-mediated cell fusion without altered expression or processing. Infectivity via virus-like particles required glycans and a cleaved glycoprotein. Glycosylation at the first site within GP2, not normally utilized by LCMV, exhibited increased VLP infectivity. We also confirmed the role of the N-linked glycan at position 173 in the masking of the neutralizing epitope GP-1D. Taken together, our results indicated a strong relationship between fusion and infectivity.

  6. Using structure to inform carbohydrate binding module function.

    PubMed

    Abbott, D Wade; van Bueren, Alicia Lammerts

    2014-10-01

    Generally, non-catalytic carbohydrate binding module (CBM) specificity has been shown to parallel the catalytic activity of the carbohydrate active enzyme (CAZyme) module it is appended to. With the rapid expansion in metagenomic sequence space for the potential discovery of new CBMs in addition to the recent emergence of several new CBM families that display diverse binding profiles and novel functions, elucidating the function of these protein modules has become a much more challenging task. This review summarizes several approaches that have been reported for using primary structure to inform CBM specificity and streamlining their biophysical characterization. In addition we discuss general trends in binding site architecture and several newly identified functions for CBMs. Streams of investigation that will facilitate the development and refinement of sequence-based prediction tools are suggested.

  7. Structure of a Virulence Regulatory Factor CvfB Reveals a Novel Winged-helix RNA Binding Module

    PubMed Central

    Matsumoto, Yasuhiko; Xu, Qingping; Miyazaki, Shinya; Kaito, Chikara; Farr, Carol L.; Axelrod, Herbert L.; Chiu, Hsiu-Ju; Klock, Heath E.; Knuth, Mark W.; Miller, Mitchell D.; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Sekimizu, Kazuhisa; Wilson, Ian A.

    2010-01-01

    SUMMARY CvfB is a conserved regulatory protein important for the virulence of Staphylococcus aureus. We show here that CvfB binds RNA. The crystal structure of the CvfB ortholog from Streptococcus pneumoniae at 1.4 Å resolution reveals a unique RNA binding protein that is formed from a concatenation of well-known structural modules that bind nucleic acids: three consecutive S1 RNA-binding domains and a winged-helix (WH) domain. The third S1 and the WH domains are required for cooperative RNA binding and form a continuous surface that likely contributes to the RNA interaction. The WH domain is critical to CvfB function and contains a unique structural motif. Thus CvfB represents a novel assembly of modules for binding RNA. PMID:20399190

  8. Picornaviral polymerase structure, function, and fidelity modulation.

    PubMed

    Peersen, Olve B

    2017-02-02

    Like all positive strand RNA viruses, the picornaviruses replicate their genomes using a virally encoded RNA-dependent RNA polymerase enzyme known as 3D(pol). Over the past decade we have made tremendous advances in our understanding of 3D(pol) structure and function, including the discovery of a novel mechanism for closing the active site that allows these viruses to easily fine tune replication fidelity and quasispecies distributions. This review summarizes current knowledge of picornaviral polymerase structure and how the enzyme interacts with RNA and other viral proteins to form stable and processive elongation complexes. The picornaviral RdRPs are among the smallest viral polymerases, but their fundamental molecular mechanism for catalysis appears to be generally applicable as a common feature of all positive strand RNA virus polymerases.

  9. Low Dose Ionizing Radiation Modulates Immune Function

    SciTech Connect

    Nelson, Gregory A.

    2016-01-12

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the

  10. Diffraction pattern of modulated structures described by Bessel functions

    NASA Astrophysics Data System (ADS)

    Wolny, Janusz; Buganski, Ireneusz; Strzalka, Radoslaw

    2016-05-01

    We performed detailed analysis of 1D modulated structure (MS) with harmonic modulation within the statistical approach. By applying two-mode Fourier transform, we were able to derive analytically the structure factor for MS with single harmonic modulation component. We confirmed in a very smooth way that ordinary Bessel functions of the first kind define envelopes tuning the intensities of the diffraction peaks. This applies not only to main reflections of the diffraction pattern but also to all satellites. In the second part, we discussed in details the similarities between harmonically modulated structures with multiple modulations and 1D model quasicrystal. The Fourier expansion of the nodes' positions in the Fibonacci chain gives direct numerical definition of the atomic arrangement in MS. In that sense, we can define 1D quasicrystal as a MS with infinite number of harmonic modulations. We prove that characteristic measures (like v(u) relation typical for statistical approach and diffraction pattern) calculated for MS asymptotically approach their counterparts for 1D quasicrystal as large enough number of modulation terms is taken into account.

  11. Functional neurosurgery. The modulation of neural and mind circuits.

    PubMed

    Al-Otaibi, Faisal; Al-Khairallah, Thamer

    2012-01-01

    Different complex neuroanatomical and neurochemical circuits regulate a variety of neuronal behaviors and brain functions. Any disturbance in these circuits can generate functional disorders such as movement disorders, epilepsy, pain, memory disorders, and psychiatric disorders. Functional neurosurgery aims to restore these functions, either by removing or isolating the abnormally behaving neurons or by modulating the disturbed circuits. Neuromodulation is a fast-growing field, powered by the recent advances in neuroimaging and technology. Here, we discuss recent advances and new horizons in functional neurosurgery.

  12. Revealing the structural and functional diversity of plant cell walls.

    PubMed

    Knox, J Paul

    2008-06-01

    The extensive knowledge of the chemistry of isolated cell wall polymers, and that relating to the identification and partial annotation of gene families involved in their synthesis and modification, is not yet matched by a sophisticated understanding of the occurrence of the polymers within cell walls of the diverse cell types within a growing organ. Currently, the main sets of tools that are used to determine cell-type-specific configurations of cell wall polymers and aspects of cell wall microstructures are antibodies, carbohydrate-binding modules (CBMs) and microspectroscopies. As these tools are applied we see that cell wall polymers are extensively developmentally regulated and that there is a range of structurally distinct primary and secondary cell walls within organs and across species. The challenge now is to document cell wall structures in relation to diverse cell biological events and to integrate this knowledge with the emerging understanding of polymer functions.

  13. Highly functionalized 7-azaindoles as selective PPAR gamma modulators.

    PubMed

    Debenham, Sheryl D; Chan, Audrey; Lau, Fiona Waiyu; Liu, Weiguo; Wood, Harold B; Lemme, Karen; Colwell, Lawrence; Habulihaz, Bahanu; Akiyama, Taro E; Einstein, Monica; Doebber, Thomas W; Sharma, Neelam; Wang, Chaunlin F; Wu, Margaret; Berger, Joel P; Meinke, Peter T

    2008-09-01

    A series of highly functionalized 3-aroyl and 3-phenoxy-2-methyl-7-azaindoles have been identified, which are potent selective PPARgamma modulators (SPPARgammaMs). Addition of substituents at the 6-position of the 7-azaindoles improves in vitro potency and pharmacokinetics. 7-Azaindoles have significantly improved off-target profiles compared to the parent indole series.

  14. Aerodynamic parameter estimation via Fourier modulating function techniques

    NASA Technical Reports Server (NTRS)

    Pearson, A. E.

    1995-01-01

    Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.

  15. Method and system for providing precise multi-function modulation

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Inventor); Sumida, Joe T. (Inventor)

    1989-01-01

    A method and system is disclosed which provides precise multi-function digitally implementable modulation for a communication system. The invention provides a modulation signal for a communication system in response to an input signal from a data source. A digitized time response is generated from samples of a time domain representation of a spectrum profile of a selected modulation scheme. The invention generates and stores coefficients for each input symbol in accordance with the selected modulation scheme. The output signal is provided by a plurality of samples, each sample being generated by summing the products of a predetermined number of the coefficients and a predetermined number of the samples of the digitized time response. In a specific illustrative implementation, the samples of the output signals are converted to analog signals, filtered and used to modulate a carrier in a conventional manner. The invention is versatile in that it allows for the storage of the digitized time responses and corresponding coefficient lookup table of a number of modulation schemes, any of which may then be selected for use in accordance with the teachings of the invention.

  16. Multi-functional Electric Module for a Vehicle

    NASA Technical Reports Server (NTRS)

    Bluethmann, William J. (Inventor); Waligora, Thomas M. (Inventor); Fraser-Chanpong, Nathan (Inventor); Reed, Ryan (Inventor); Akinyode, Akinjide Akinniyi (Inventor); Spain, Ivan (Inventor); Dawson, Andrew D. (Inventor); Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Markee, Mason M. (Inventor)

    2015-01-01

    A multi-functional electric module (eModule) is provided for a vehicle having a chassis, a master controller, and a drive wheel having a propulsion-braking module. The eModule includes a steering control assembly, mounting bracket, propulsion control assembly, brake controller, housing, and control arm. The steering control assembly includes a steering motor controlled by steering controllers in response to control signals from the master controller. A mounting feature of the bracket connects to the chassis. The propulsion control assembly and brake controller are in communication with the propulsion-braking module. The control arm connects to the lower portion and contains elements of a suspension system, with the control arm being connectable to the drive wheel via a wheel input/output block. The controllers are responsive to the master controller to control a respective steering, propulsion, and braking function. The steering motor may have a dual-wound stator with windings controlled via the respective steering controllers.

  17. Response function of modulated grid Faraday cup plasma instruments

    NASA Technical Reports Server (NTRS)

    Barnett, A.; Olbert, S.

    1986-01-01

    Modulated grid Faraday cup plasma analyzers are a very useful tool for making in situ measurements of space plasmas. One of their great attributes is that their simplicity permits their angular response function to be calculated theoretically. An expression is derived for this response function by computing the trajectories of the charged particles inside the cup. The Voyager plasma science experiment is used as a specific example. Two approximations to the rigorous response function useful for data analysis are discussed. Multisensor analysis of solar wind data indicates that the formulas represent the true cup response function for all angles of incidence with a maximum error of only a few percent.

  18. A systems biology approach using metabolomic data reveals genes and pathways interacting to modulate divergent growth in cattle

    PubMed Central

    2013-01-01

    Background Systems biology enables the identification of gene networks that modulate complex traits. Comprehensive metabolomic analyses provide innovative phenotypes that are intermediate between the initiator of genetic variability, the genome, and raw phenotypes that are influenced by a large number of environmental effects. The present study combines two concepts, systems biology and metabolic analyses, in an approach without prior functional hypothesis in order to dissect genes and molecular pathways that modulate differential growth at the onset of puberty in male cattle. Furthermore, this integrative strategy was applied to specifically explore distinctive gene interactions of non-SMC condensin I complex, subunit G (NCAPG) and myostatin (GDF8), known modulators of pre- and postnatal growth that are only partially understood for their molecular pathways affecting differential body weight. Results Our study successfully established gene networks and interacting partners affecting growth at the onset of puberty in cattle. We demonstrated the biological relevance of the created networks by comparison to randomly created networks. Our data showed that GnRH (Gonadotropin-releasing hormone) signaling is associated with divergent growth at the onset of puberty and revealed two highly connected hubs, BTC and DGKH, within the network. Both genes are known to directly interact with the GnRH signaling pathway. Furthermore, a gene interaction network for NCAPG containing 14 densely connected genes revealed novel information concerning the functional role of NCAPG in divergent growth. Conclusions Merging both concepts, systems biology and metabolomic analyses, successfully yielded new insights into gene networks and interacting partners affecting growth at the onset of puberty in cattle. Genetic modulation in GnRH signaling was identified as key modifier of differential cattle growth at the onset of puberty. In addition, the benefit of our innovative concept without prior

  19. Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila

    PubMed Central

    Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette

    2013-01-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules. PMID:24204314

  20. Sodium tungstate modulates ATM function upon DNA damage.

    PubMed

    Rodriguez-Hernandez, C J; Llorens-Agost, M; Calbó, J; Murguia, J R; Guinovart, J J

    2013-05-21

    Both radiotherapy and most effective chemotherapeutic agents induce different types of DNA damage. Here we show that tungstate modulates cell response to DNA damaging agents. Cells treated with tungstate were more sensitive to etoposide, phleomycin and ionizing radiation (IR), all of which induce DNA double-strand breaks (DSBs). Tungstate also modulated the activation of the central DSB signalling kinase, ATM, in response to these agents. These effects required the functionality of the Mre11-Nbs1-Rad50 (MRN) complex and were mimicked by the inhibition of PP2A phosphatase. Therefore, tungstate may have adjuvant activity when combined with DNA-damaging agents in the treatment of several malignancies.

  1. Transcriptome analyses reveal molecular mechanisms underlying functional recovery after spinal cord injury

    PubMed Central

    Duan, Hongmei; Ge, Weihong; Zhang, Aifeng; Xi, Yue; Chen, Zhihua; Luo, Dandan; Cheng, Yin; Fan, Kevin S.; Horvath, Steve; Sofroniew, Michael V.; Cheng, Liming; Yang, Zhaoyang; Sun, Yi E.; Li, Xiaoguang

    2015-01-01

    Spinal cord injury (SCI) is considered incurable because axonal regeneration in the central nervous system (CNS) is extremely challenging, due to harsh CNS injury environment and weak intrinsic regeneration capability of CNS neurons. We discovered that neurotrophin-3 (NT3)-loaded chitosan provided an excellent microenvironment to facilitate nerve growth, new neurogenesis, and functional recovery of completely transected spinal cord in rats. To acquire mechanistic insight, we conducted a series of comprehensive transcriptome analyses of spinal cord segments at the lesion site, as well as regions immediately rostral and caudal to the lesion, over a period of 90 days after SCI. Using weighted gene coexpression network analysis (WGCNA), we established gene modules/programs corresponding to various pathological events at different times after SCI. These objective measures of gene module expression also revealed that enhanced new neurogenesis and angiogenesis, and reduced inflammatory responses were keys to conferring the effect of NT3-chitosan on regeneration. PMID:26460053

  2. Transcriptome analyses reveal molecular mechanisms underlying functional recovery after spinal cord injury.

    PubMed

    Duan, Hongmei; Ge, Weihong; Zhang, Aifeng; Xi, Yue; Chen, Zhihua; Luo, Dandan; Cheng, Yin; Fan, Kevin S; Horvath, Steve; Sofroniew, Michael V; Cheng, Liming; Yang, Zhaoyang; Sun, Yi E; Li, Xiaoguang

    2015-10-27

    Spinal cord injury (SCI) is considered incurable because axonal regeneration in the central nervous system (CNS) is extremely challenging, due to harsh CNS injury environment and weak intrinsic regeneration capability of CNS neurons. We discovered that neurotrophin-3 (NT3)-loaded chitosan provided an excellent microenvironment to facilitate nerve growth, new neurogenesis, and functional recovery of completely transected spinal cord in rats. To acquire mechanistic insight, we conducted a series of comprehensive transcriptome analyses of spinal cord segments at the lesion site, as well as regions immediately rostral and caudal to the lesion, over a period of 90 days after SCI. Using weighted gene coexpression network analysis (WGCNA), we established gene modules/programs corresponding to various pathological events at different times after SCI. These objective measures of gene module expression also revealed that enhanced new neurogenesis and angiogenesis, and reduced inflammatory responses were keys to conferring the effect of NT3-chitosan on regeneration.

  3. Mining functional modules in genetic networks with decomposable graphical models.

    PubMed

    Dejori, Mathäus; Schwaighofer, Anton; Tresp, Volker; Stetter, Martin

    2004-01-01

    In recent years, graphical models have become an increasingly important tool for the structural analysis of genome-wide expression profiles at the systems level. Here we present a new graphical modelling technique, which is based on decomposable graphical models, and apply it to a set of gene expression profiles from acute lymphoblastic leukemia (ALL). The new method explains probabilistic dependencies of expression levels in terms of the concerted action of underlying genetic functional modules, which are represented as so-called "cliques" in the graph. In addition, the method uses continuous-valued (instead of discretized) expression levels, and makes no particular assumption about their probability distribution. We show that the method successfully groups members of known functional modules to cliques. Our method allows the evaluation of the importance of genes for global cellular functions based on both link count and the clique membership count.

  4. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity

    PubMed Central

    Laing, Mark; Rees, Adrian; Vuong, Quoc C.

    2015-01-01

    The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we used amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only, or auditory-visual (AV) trials in the fMRI scanner. On AV trials, the auditory and visual signal could have the same (AV congruent) or different modulation rates (AV incongruent). Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for AV integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies. PMID:26483710

  5. Cholinergic modulation of cognition: Insights from human pharmacological functional neuroimaging

    PubMed Central

    Bentley, Paul; Driver, Jon; Dolan, Raymond J.

    2011-01-01

    Evidence from lesion and cortical-slice studies implicate the neocortical cholinergic system in the modulation of sensory, attentional and memory processing. In this review we consider findings from sixty-three healthy human cholinergic functional neuroimaging studies that probe interactions of cholinergic drugs with brain activation profiles, and relate these to contemporary neurobiological models. Consistent patterns that emerge are: (1) the direction of cholinergic modulation of sensory cortex activations depends upon top-down influences; (2) cholinergic hyperstimulation reduces top-down selective modulation of sensory cortices; (3) cholinergic hyperstimulation interacts with task-specific frontoparietal activations according to one of several patterns, including: suppression of parietal-mediated reorienting; decreasing ‘effort’-associated activations in prefrontal regions; and deactivation of a ‘resting-state network’ in medial cortex, with reciprocal recruitment of dorsolateral frontoparietal regions during performance-challenging conditions; (4) encoding-related activations in both neocortical and hippocampal regions are disrupted by cholinergic blockade, or enhanced with cholinergic stimulation, while the opposite profile is observed during retrieval; (5) many examples exist of an ‘inverted-U shaped’ pattern of cholinergic influences by which the direction of functional neural activation (and performance) depends upon both task (e.g. relative difficulty) and subject (e.g. age) factors. Overall, human cholinergic functional neuroimaging studies both corroborate and extend physiological accounts of cholinergic function arising from other experimental contexts, while providing mechanistic insights into cholinergic-acting drugs and their potential clinical applications. PMID:21708219

  6. An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens

    PubMed Central

    Chater, Caspar C.; Kamisugi, Yasuko

    2016-01-01

    The patterning of stomata plays a vital role in plant development and has emerged as a paradigm for the role of peptide signals in the spatial control of cellular differentiation. Research in Arabidopsis has identified a series of epidermal patterning factors (EPFs), which interact with an array of membrane-localised receptors and associated proteins (encoded by ERECTA and TMM genes) to control stomatal density and distribution. However, although it is well-established that stomata arose very early in the evolution of land plants, until now it has been unclear whether the established angiosperm stomatal patterning system represented by the EPF/TMM/ERECTA module reflects a conserved, universal mechanism in the plant kingdom. Here, we use molecular genetics to show that the moss Physcomitrella patens has conserved homologues of angiosperm EPF, TMM and at least one ERECTA gene that function together to permit the correct patterning of stomata and that, moreover, elements of the module retain function when transferred to Arabidopsis. Our data characterise the stomatal patterning system in an evolutionarily distinct branch of plants and support the hypothesis that the EPF/TMM/ERECTA module represents an ancient patterning system. PMID:27407102

  7. Functional Connectivity Modulation by Acupuncture in Patients with Bell's Palsy

    PubMed Central

    He, Xiaoxuan; Hu, Sheng; Li, Chuanfu; Xu, Chunsheng; Kan, Hongxing; Xue, Qiuju; Qiu, Bensheng

    2016-01-01

    Bell's palsy (BP), an acute unilateral facial paralysis, is frequently treated with acupuncture in many countries. However, the mechanism of treatment is not clear so far. In order to explore the potential mechanism, 22 healthy volunteers and 17 BP patients with different clinical duration were recruited. The resting-state functional magnetic resonance imaging scans were conducted before and after acupuncture at LI4 (Hegu), respectively. By comparing BP-induced functional connectivity (FC) changes with acupuncture-induced FC changes in the patients, the abnormal increased FC that could be reduced by acupuncture was selected. The FC strength of the selected FC at various stages was analyzed subsequently. Our results show that FC modulation of acupuncture is specific and consistent with the tendency of recovery. Therefore, we propose that FC modulation by acupuncture may be beneficial to recovery from the disease. PMID:27293461

  8. Soluble Axoplasm Enriched from Injured CNS Axons Reveals the Early Modulation of the Actin Cytoskeleton

    PubMed Central

    Garland, Patrick; Broom, Lucy J.; Quraishe, Shmma; Dalton, Paul D.; Skipp, Paul; Newman, Tracey A.; Perry, V. Hugh

    2012-01-01

    Axon injury and degeneration is a common consequence of diverse neurological conditions including multiple sclerosis, traumatic brain injury and spinal cord injury. The molecular events underlying axon degeneration are poorly understood. We have developed a novel method to enrich for axoplasm from rodent optic nerve and characterised the early events in Wallerian degeneration using an unbiased proteomics screen. Our detergent-free method draws axoplasm into a dehydrated hydrogel of the polymer poly(2-hydroxyethyl methacrylate), which is then recovered using centrifugation. This technique is able to recover axonal proteins and significantly deplete glial contamination as confirmed by immunoblotting. We have used iTRAQ to compare axoplasm-enriched samples from naïve vs injured optic nerves, which has revealed a pronounced modulation of proteins associated with the actin cytoskeleton. To confirm the modulation of the actin cytoskeleton in injured axons we focused on the RhoA pathway. Western blotting revealed an augmentation of RhoA and phosphorylated cofilin in axoplasm-enriched samples from injured optic nerve. To investigate the localisation of these components of the RhoA pathway in injured axons we transected axons of primary hippocampal neurons in vitro. We observed an early modulation of filamentous actin with a concomitant redistribution of phosphorylated cofilin in injured axons. At later time-points, RhoA is found to accumulate in axonal swellings and also colocalises with filamentous actin. The actin cytoskeleton is a known sensor of cell viability across multiple eukaryotes, and our results suggest a similar role for the actin cytoskeleton following axon injury. In agreement with other reports, our data also highlights the role of the RhoA pathway in axon degeneration. These findings highlight a previously unexplored area of axon biology, which may open novel avenues to prevent axon degeneration. Our method for isolating CNS axoplasm also represents a new

  9. Timing Correlations in Proteins Predict Functional Modules and Dynamic Allostery.

    PubMed

    Lin, Milo M

    2016-04-20

    How protein structure encodes functionality is not fully understood. For example, long-range intraprotein communication can occur without measurable conformational change and is often not captured by existing structural correlation functions. It is shown here that important functional information is encoded in the timing of protein motions, rather than motion itself. I introduce the conditional activity function to quantify such timing correlations among the degrees of freedom within proteins. For three proteins, the conditional activities between side-chain dihedral angles were computed using the output of microseconds-long atomistic simulations. The new approach demonstrates that a sparse fraction of side-chain pairs are dynamically correlated over long distances (spanning protein lengths up to 7 nm), in sharp contrast to structural correlations, which are short-ranged (<1 nm). Regions of high self- and inter-side-chain dynamical correlations are found, corresponding to experimentally determined functional modules and allosteric connections, respectively.

  10. Parametric dependence of ocean wave-radar modulation transfer functions

    NASA Technical Reports Server (NTRS)

    Plant, W. J.; Keller, W. C.; Cross, A.

    1983-01-01

    Microwave techniques at X and L band were used to determine the dependence of ocean-wave radar modulation transfer functions (MTFs) on various environmental and radar parameters during the Marine Remote Sensing experiment of 1979 (MARSEN 79). These MIF are presented, as are coherence functions between the AM and FM parts of the backscattered microwave signal. It is shown that they both depend on several of these parameters. Besides confirming many of the properties of transfer functions reported by previous authors, indications are found that MTFs decrease with increasing angle between wave propagation and antenna-look directions but are essentially independent of small changes in air-sea temperature difference. However, coherence functions are much smaller when the antennas are pointed perpendicular to long waves. It is found that X band transfer functions measured with horizontally polarized microwave radiation have larger magnitudes than those obtained by using vertical polarization.

  11. Brain cannabinoid receptor 2: expression, function and modulation.

    PubMed

    Chen, De-Jie; Gao, Ming; Gao, Fen-Fei; Su, Quan-Xi; Wu, Jie

    2017-03-01

    Cannabis sativa (marijuana) is a fibrous flowering plant that produces an abundant variety of molecules, some with psychoactive effects. At least 4% of the world's adult population uses cannabis annually, making it one of the most frequently used illicit drugs in the world. The psychoactive effects of cannabis are mediated primarily through cannabinoid receptor (CBR) subtypes. The prevailing view is that CB1Rs are mainly expressed in the central neurons, whereas CB2Rs are predominantly expressed in peripheral immune cells. However, this traditional view has been challenged by emerging strong evidence that shows CB2Rs are moderately expressed and function in specific brain areas. New evidence has demonstrated that brain CB2Rs modulate animal drug-seeking behaviors, suggesting that these receptors may exist in brain regions that regulate drug addiction. Recently, we further confirmed that functional CB2Rs are expressed in mouse ventral tegmental area (VTA) dopamine (DA) neurons and that the activation of VTA CB2Rs reduces neuronal excitability and cocaine-seeking behavior. In addition, CB2R-mediated modulation of hippocampal CA3 neuronal excitability and network synchronization has been reported. Here, we briefly summarize recent lines of evidence showing how CB2Rs modulate function and pathophysiology in the CNS.

  12. Brain cannabinoid receptor 2: expression, function and modulation

    PubMed Central

    Chen, De-jie; Gao, Ming; Gao, Fen-fei; Su, Quan-xi; Wu, Jie

    2017-01-01

    Cannabis sativa (marijuana) is a fibrous flowering plant that produces an abundant variety of molecules, some with psychoactive effects. At least 4% of the world's adult population uses cannabis annually, making it one of the most frequently used illicit drugs in the world. The psychoactive effects of cannabis are mediated primarily through cannabinoid receptor (CBR) subtypes. The prevailing view is that CB1Rs are mainly expressed in the central neurons, whereas CB2Rs are predominantly expressed in peripheral immune cells. However, this traditional view has been challenged by emerging strong evidence that shows CB2Rs are moderately expressed and function in specific brain areas. New evidence has demonstrated that brain CB2Rs modulate animal drug-seeking behaviors, suggesting that these receptors may exist in brain regions that regulate drug addiction. Recently, we further confirmed that functional CB2Rs are expressed in mouse ventral tegmental area (VTA) dopamine (DA) neurons and that the activation of VTA CB2Rs reduces neuronal excitability and cocaine-seeking behavior. In addition, CB2R-mediated modulation of hippocampal CA3 neuronal excitability and network synchronization has been reported. Here, we briefly summarize recent lines of evidence showing how CB2Rs modulate function and pathophysiology in the CNS. PMID:28065934

  13. A functional network module for Smith-Magenis syndrome.

    PubMed

    Girirajan, S; Truong, H T; Blanchard, C L; Elsea, S H

    2009-04-01

    Disorders with overlapping diagnostic features are grouped into a network module. Based on phenotypic similarities or differential diagnoses, it is possible to identify functional pathways leading to individual features. We generated a Smith-Magenis syndrome (SMS)-specific network module utilizing patient clinical data, text mining from the Online Mendelian Inheritance in Man database, and in vitro functional analysis. We tested our module by functional studies based on a hypothesis that RAI1 acts through phenotype-specific pathways involving several downstream genes, which are altered due to RAI1 haploinsufficiency. A preliminary genome-wide gene expression study was performed using microarrays on RAI1 haploinsufficient cells created by RNAi-based approximately 50% knockdown of RAI1 in HEK293T cells. The top dysregulated genes were involved in growth signaling and insulin sensitivity, neuronal differentiation, lipid biosynthesis and fat mobilization, circadian activity, behavior, renal, cardiovascular and skeletal development, gene expression, and cell-cycle regulation and recombination, reflecting the spectrum of clinical features observed in SMS. Validation using real-time quantitative reverse transcriptase polymerase chain reaction confirmed the gene expression profile of 75% of the selected genes analyzed in both HEK293T RAI1 knockdown cells and SMS lymphoblastoid cell lines. Overall, these data support a method for identifying genes and pathways responsible for individual clinical features in a complex disorder such as SMS.

  14. Temporal changes in milk proteomes reveal developing milk functions.

    PubMed

    Gao, Xinliu; McMahon, Robert J; Woo, Jessica G; Davidson, Barbara S; Morrow, Ardythe L; Zhang, Qiang

    2012-07-06

    Human milk proteins provide essential nutrition for growth and development, and support a number of vital developmental processes in the neonate. A complete understanding of the possible functions of human milk proteins has been limited by incomplete knowledge of the human milk proteome. In this report, we have analyzed the proteomes of whey from human transitional and mature milk using ion-exchange and SDS-PAGE based protein fractionation methods. With a larger-than-normal sample loading approach, we are able to largely extend human milk proteome to 976 proteins. Among them, 152 proteins are found to render significant regulatory changes between transitional milk and mature milk. We further found that immunoglobulins sIgA and IgM are more abundant in transitional milk, whereas IgG is more abundant in mature milk, suggesting a transformation in defense mechanism from newborns to young infants. Additionally, we report a more comprehensive view of a complement system and associated regulatory apparatus in human milk, demonstrating the presence and function of a system similar to that found in the circulation but prevailed by alternative pathway in complement activation. Proteins involved in various aspects of carbohydrate metabolism are also described, revealing either a transition in milk functionality to accommodate carbohydrate-rich secretions as lactation progresses, or a potentially novel way of looking at the metabolic state of the mammary tissue. Lately, a number of extracellular matrix (ECM) proteins are found to be in higher abundance in transitional milk and may be relevant to the development of infants' gastrointestinal tract in early life. In contrast, the ECM protein fibronectin and several of the actin cytoskeleton proteins that it regulates are more abundant in mature milk, which may indicate the important functional role for milk in regulating reactive oxygen species.

  15. Investigation of electrostatic performance for a conical surrounding gate MOSFET with linearly modulated work-function

    NASA Astrophysics Data System (ADS)

    Ramkrishna, B. S.; Jena, B.; Dash, S.; Mishra, G. P.

    2017-01-01

    In this paper, for the first time a continuous variation of work-function based gate metal has been introduced in conical surrounding gate MOSFET. Here, a comparative study of the electrostatic as well as RF characteristics for basic conical surrounding gate MOSFET and the work-function modulated conical MOSFET is carried out using TCAD device simulator. These simulated results reveal that the work-function modulated conical model provides better electrostatic and RF performance in terms of drain current, transconductance, transconductance generation factor, unity gain cut-off frequency and intrinsic delay. An overall performance investigation has been presented for both the aforementioned models and verified using TCAD device simulator from Synopsys.

  16. Co-expression network analyses identify functional modules associated with development and stress response in Gossypium arboreum

    PubMed Central

    You, Qi; Zhang, Liwei; Yi, Xin; Zhang, Kang; Yao, Dongxia; Zhang, Xueyan; Wang, Qianhua; Zhao, Xinhua; Ling, Yi; Xu, Wenying; Li, Fuguang; Su, Zhen

    2016-01-01

    Cotton is an economically important crop, essential for the agriculture and textile industries. Through integrating transcriptomic data, we discovered that multi-dimensional co-expression network analysis was powerful for predicting cotton gene functions and functional modules. Here, the recently available transcriptomic data on Gossypium arboreum, including data on multiple growth stages of tissues and stress treatment samples were applied to construct a co-expression network exploring multi-dimensional expression (development and stress) through multi-layered approaches. Based on differential gene expression and network analysis, a fibre development regulatory module of the gene GaKNL1 was found to regulate the second cell wall through repressing the activity of REVOLUTA, and a tissue-selective module of GaJAZ1a was examined in response to water stress. Moreover, comparative genomics analysis of the JAZ1-related regulatory module revealed high conservation across plant species. In addition, 1155 functional modules were identified through integrating the co-expression network, module classification and function enrichment tools, which cover functions such as metabolism, stress responses, and transcriptional regulation. In the end, an online platform was built for network analysis (http://structuralbiology.cau.edu.cn/arboreum), which could help to refine the annotation of cotton gene function and establish a data mining system to identify functional genes or modules with important agronomic traits. PMID:27922095

  17. Functional modules, structural topology, and optimal activity in metabolic networks.

    PubMed

    Resendis-Antonio, Osbaldo; Hernández, Magdalena; Mora, Yolanda; Encarnación, Sergio

    2012-01-01

    Modular organization in biological networks has been suggested as a natural mechanism by which a cell coordinates its metabolic strategies for evolving and responding to environmental perturbations. To understand how this occurs, there is a need for developing computational schemes that contribute to integration of genomic-scale information and assist investigators in formulating biological hypotheses in a quantitative and systematic fashion. In this work, we combined metabolome data and constraint-based modeling to elucidate the relationships among structural modules, functional organization, and the optimal metabolic phenotype of Rhizobium etli, a bacterium that fixes nitrogen in symbiosis with Phaseolus vulgaris. To experimentally characterize the metabolic phenotype of this microorganism, we obtained the metabolic profile of 220 metabolites at two physiological stages: under free-living conditions, and during nitrogen fixation with P. vulgaris. By integrating these data into a constraint-based model, we built a refined computational platform with the capability to survey the metabolic activity underlying nitrogen fixation in R. etli. Topological analysis of the metabolic reconstruction led us to identify modular structures with functional activities. Consistent with modular activity in metabolism, we found that most of the metabolites experimentally detected in each module simultaneously increased their relative abundances during nitrogen fixation. In this work, we explore the relationships among topology, biological function, and optimal activity in the metabolism of R. etli through an integrative analysis based on modeling and metabolome data. Our findings suggest that the metabolic activity during nitrogen fixation is supported by interacting structural modules that correlate with three functional classifications: nucleic acids, peptides, and lipids. More fundamentally, we supply evidence that such modular organization during functional nitrogen fixation is

  18. The response function of modulated grid Faraday cup plasma instruments

    NASA Astrophysics Data System (ADS)

    Barnett, A.; Olbert, S.

    Modulated grid Faraday cup plasma analyzers are a very useful tool for making in situ measurements of space plasmas. One of their great attributes is that their simplicity permits their angular response function to be calculated theoretically. An expression is derived for this response function by computing the trajectories of the charged particles inside the cup. The Voyager Plasma Science (PLS) experiment is used as a specific example. Two approximations to the rigorous response function useful for data analysis are discussed. The theoretical formulas were tested by multi-sensor analysis of solar wind data. The tests indicate that the formulas represent the true cup response function for all angles of incidence with a maximum error of only a few percent.

  19. Opioid System Modulates the Immune Function: A Review

    PubMed Central

    Liang, Xuan; Liu, Renyu; Chen, Chunhua; Ji, Fang; Li, Tianzuo

    2016-01-01

    Opioid receptors and their ligands produce powerful analgesia that is effective in perioperative period and chronic pain managements accompanied with various side effects including respiratory depression, constipation and addiction etc. Opioids can also interfere with the immune system, not only participating in the function of the immune cells, but also modulating innate and acquired immune responses. The traditional notion of opioids is immunosuppressive. Recent studies indicate that the role of opioid receptors on immune function is complicated, working through various different mechanisms. Different opioids or opioids administrations show various effects on the immune system: immunosuppressive, immunostimulatory, or dual effect. It is important to elucidate the relationship between opioids and immune function, since immune system plays critical role in various physiological and pathophysiological processes, including the inflammation, tumor growth and metastasis, drug abuse, and so on. This review article tends to have an overview of the recent work and perspectives on opioids and the immune function. PMID:26985446

  20. Opioid System Modulates the Immune Function: A Review.

    PubMed

    Liang, Xuan; Liu, Renyu; Chen, Chunhua; Ji, Fang; Li, Tianzuo

    Opioid receptors and their ligands produce powerful analgesia that is effective in perioperative period and chronic pain managements accompanied with various side effects including respiratory depression, constipation and addiction etc. Opioids can also interfere with the immune system, not only participating in the function of the immune cells, but also modulating innate and acquired immune responses. The traditional notion of opioids is immunosuppressive. Recent studies indicate that the role of opioid receptors on immune function is complicated, working through various different mechanisms. Different opioids or opioids administrations show various effects on the immune system: immunosuppressive, immunostimulatory, or dual effect. It is important to elucidate the relationship between opioids and immune function, since immune system plays critical role in various physiological and pathophysiological processes, including the inflammation, tumor growth and metastasis, drug abuse, and so on. This review article tends to have an overview of the recent work and perspectives on opioids and the immune function.

  1. The response function of modulated grid Faraday cup plasma instruments

    NASA Technical Reports Server (NTRS)

    Barnett, A.; Olbert, S.

    1986-01-01

    Modulated grid Faraday cup plasma analyzers are a very useful tool for making in situ measurements of space plasmas. One of their great attributes is that their simplicity permits their angular response function to be calculated theoretically. An expression is derived for this response function by computing the trajectories of the charged particles inside the cup. The Voyager Plasma Science (PLS) experiment is used as a specific example. Two approximations to the rigorous response function useful for data analysis are discussed. The theoretical formulas were tested by multi-sensor analysis of solar wind data. The tests indicate that the formulas represent the true cup response function for all angles of incidence with a maximum error of only a few percent.

  2. Modulation of vascular cell function by bim expression.

    PubMed

    Morrison, Margaret E; Palenski, Tammy L; Jamali, Nasim; Sheibani, Nader; Sorenson, Christine M

    2013-01-01

    Apoptosis of vascular cells, including pericytes and endothelial cells, contributes to disease pathogenesis in which vascular rarefaction plays a central role. Bim is a proapoptotic protein that modulates not only apoptosis but also cellular functions such as migration and extracellular matrix (ECM) protein expression. Endothelial cells and pericytes each make a unique contribution to vascular formation and function although the details require further delineation. Here we set out to determine the cell autonomous impact of Bim expression on retinal endothelial cell and pericyte function using cells prepared from Bim deficient (Bim(-/-)) mice. Bim(-/-) endothelial cells displayed an increased production of ECM proteins, proliferation, migration, adhesion, and VEGF expression but, a decreased eNOS expression and nitric oxide production. In contrast, pericyte proliferation decreased in the absence of Bim while migration, adhesion, and VEGF expression were increased. In addition, we demonstrated that the coculturing of either wild-type or Bim(-/-) endothelial cells with Bim(-/-) pericytes diminished their capillary morphogenesis. Thus, our data further emphasizes the importance of vascular cell autonomous regulatory mechanisms in modulation of vascular function.

  3. Nanotopographical Modulation of Cell Function through Nuclear Deformation

    PubMed Central

    Wang, Kai; Bruce, Allison; Mezan, Ryan; Kadiyala, Anand; Wang, Liying; Dawson, Jeremy; Rojanasakul, Yon; Yang, Yong

    2016-01-01

    Although nanotopography has been shown to be a potent modulator of cell behavior, it is unclear how the nanotopographical cue, through focal adhesions, affects the nucleus, eventually influencing cell phenotype and function. Thus, current methods to apply nanotopography to regulate cell behavior are basically empirical. We, herein, engineered nanotopographies of various shapes (gratings and pillars) and dimensions (feature size, spacing and height), and thoroughly investigated cell spreading, focal adhesion organization and nuclear deformation of human primary fibroblasts as the model cell grown on the nanotopographies. We examined the correlation between nuclear deformation and cell functions such as cell proliferation, transfection and extracellular matrix protein type I collagen production. It was found that the nanoscale gratings and pillars could facilitate focal adhesion elongation by providing anchoring sites, and the nanogratings could orient focal adhesions and nuclei along the nanograting direction, depending on not only the feature size but also the spacing of the nanogratings. Compared with continuous nanogratings, discrete nanopillars tended to disrupt the formation and growth of focal adhesions and thus had less profound effects on nuclear deformation. Notably, nuclear volume could be effectively modulated by the height of nanotopography. Further, we demonstrated that cell proliferation, transfection, and type I collagen production were strongly associated with the nuclear volume, indicating that the nucleus serves as a critical mechanosensor for cell regulation. Our study delineated the relationships between focal adhesions, nucleus and cell function and highlighted that the nanotopography could regulate cell phenotype and function by modulating nuclear deformation. This study provides insight into the rational design of nanotopography for new biomaterials and the cell–substrate interfaces of implants and medical devices. PMID:26844365

  4. Interspecies cathelicidin comparison reveals divergence in antimicrobial activity, TLR modulation, chemokine induction and regulation of phagocytosis

    PubMed Central

    Coorens, Maarten; Scheenstra, Maaike R.; Veldhuizen, Edwin J. A.; Haagsman, Henk P.

    2017-01-01

    Cathelicidins are short cationic peptides initially described as antimicrobial peptides, which can also modulate the immune system. Because most findings have been described in the context of human LL-37 or murine CRAMP, or have been investigated under varying conditions, it is unclear which functions are cathelicidin specific and which functions are general cathelicidin properties. This study compares 12 cathelicidins from 6 species under standardized conditions to better understand the conservation of cathelicidin functions. Most tested cathelicidins had strong antimicrobial activity against E. coli and/or MRSA. Interestingly, while more physiological culture conditions limit the antimicrobial activity of almost all cathelicidins against E. coli, activity against MRSA is enhanced. Seven out of 12 cathelicidins were able to neutralize LPS and another 7 cathelicidins were able to neutralize LTA; however, there was no correlation found with LPS neutralization. In contrast, only 4 cathelicidins enhanced DNA-induced TLR9 activation. In conclusion, these results provide new insight in the functional differences of cathelicidins both within and between species. In addition, these results underline the importance not to generalize cathelicidin functions and indicates that caution should be taken in extrapolating results from LL-37- or CRAMP-related studies to other animal settings. PMID:28102367

  5. Functional specification of the Performance Measurement (PM) module

    NASA Technical Reports Server (NTRS)

    Berliner, J. E.

    1980-01-01

    The design of the Performance Measurement Module is described with emphasis on what the PM Module would do, and what it would look like to the user. The PM Module as described could take several man-years to develop. An evolutionary approach to the implementation of the PM Module is presented which would provide an operational baseline PM Module within a few months.

  6. Methylene blue modulates functional connectivity in the human brain.

    PubMed

    Rodriguez, Pavel; Singh, Amar P; Malloy, Kristen E; Zhou, Wei; Barrett, Douglas W; Franklin, Crystal G; Altmeyer, Wilson B; Gutierrez, Juan E; Li, Jinqi; Heyl, Betty L; Lancaster, Jack L; Gonzalez-Lima, F; Duong, Timothy Q

    2016-03-10

    Methylene blue USP (MB) is a FDA-grandfathered drug used in clinics to treat methemoglobinemia, carbon monoxide poisoning and cyanide poisoning that has been shown to increase fMRI evoked blood oxygenation level dependent (BOLD) response in rodents. Low dose MB also has memory enhancing effect in rodents and humans. However, the neural correlates of the effects of MB in the human brain are unknown. We tested the hypothesis that a single low oral dose of MB modulates the functional connectivity of neural networks in healthy adults. Task-based and task-free fMRI were performed before and one hour after MB or placebo administration utilizing a randomized, double-blinded, placebo-controlled design. MB administration was associated with a reduction in cerebral blood flow in a task-related network during a visuomotor task, and with stronger resting-state functional connectivity in multiple regions linking perception and memory functions. These findings demonstrate for the first time that low-dose MB can modulate task-related and resting-state neural networks in the human brain. These neuroimaging findings support further investigations in healthy and disease populations.

  7. Selective Androgen Receptor Modulators (SARMs) as Function Promoting Therapies

    PubMed Central

    Bhasin, Shalender; Jasuja, Ravi

    2010-01-01

    Purpose of review The last decade has witnessed unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Recent Findings While steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5α-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with AR contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. Summary SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis. PMID:19357508

  8. Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data

    PubMed Central

    2012-01-01

    Background Identification of protein complexes and functional modules from protein-protein interaction (PPI) networks is crucial to understanding the principles of cellular organization and predicting protein functions. In the past few years, many computational methods have been proposed. However, most of them considered the PPI networks as static graphs and overlooked the dynamics inherent within these networks. Moreover, few of them can distinguish between protein complexes and functional modules. Results In this paper, a new framework is proposed to distinguish between protein complexes and functional modules by integrating gene expression data into protein-protein interaction (PPI) data. A series of time-sequenced subnetworks (TSNs) is constructed according to the time that the interactions were activated. The algorithm TSN-PCD was then developed to identify protein complexes from these TSNs. As protein complexes are significantly related to functional modules, a new algorithm DFM-CIN is proposed to discover functional modules based on the identified complexes. The experimental results show that the combination of temporal gene expression data with PPI data contributes to identifying protein complexes more precisely. A quantitative comparison based on f-measure reveals that our algorithm TSN-PCD outperforms the other previous protein complex discovery algorithms. Furthermore, we evaluate the identified functional modules by using “Biological Process” annotated in GO (Gene Ontology). The validation shows that the identified functional modules are statistically significant in terms of “Biological Process”. More importantly, the relationship between protein complexes and functional modules are studied. Conclusions The proposed framework based on the integration of PPI data and gene expression data makes it possible to identify protein complexes and functional modules more effectively. Moveover, the proposed new framework and algorithms can distinguish

  9. Modulation transfer function of a trapezoidal pixel array detector

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Guo, Rongli; Ni, Jinping; Dong, Tao

    2016-01-01

    The modulation transfer function (MTF) is the tool most commonly used for quantifying the performance of an electro-optical imaging system. Recently, trapezoid-shaped pixels were designed and used in a retina-like sensor in place of rectangular-shaped pixels. The MTF of a detector with a trapezoidal pixel array is determined according to its definition. Additionally, the MTFs of detectors with differently shaped pixels, but the same pixel areas, are compared. The results show that the MTF values of the trapezoidal pixel array detector are obviously larger than those of rectangular and triangular pixel array detectors at the same frequencies.

  10. Changes in macrophage function modulated by the lipid environment

    PubMed Central

    Williams, Michael R; Cauvi, David M; Rivera, Isabel; Hawisher, Dennis; De Maio, Antonio

    2016-01-01

    Macrophages (Mϕs) play a critical role in the defense against pathogens, orchestrating the inflammatory response during injury and maintaining tissue homeostasis. During these processes, macrophages encounter a variety of environmental conditions that are likely to change their gene expression pattern, which modulates their function. In this study, we found that murine Mϕs displayed two different subpopulations characterized by differences in morphologies, expression of surface markers and phagocytic capacity under non-stimulated conditions. These two subpopulations could be recapitulated by changes in the culture conditions. Thus, Mϕs grown in suspension in the presence of serum were highly phagocytic, whereas subtraction of serum resulted in rapid attachment and reduced phagocytic activity. The difference in phagocytosis between these subpopulations was correlated with the expression levels of FcγR. These two cell subpopulations also differed in their responses to LPS and the expression of surface markers, including CD14, CD86, scavenger receptor A1, TLR4 and low-density lipoprotein receptor. Moreover, we found that the lipid/cholesterol content in the culture medium mediated the differences between these two cell subpopulations. Thus, we described a mechanism that modulatesfunction depending on the exposure to lipids within their surrounding microenvironment. PMID:26951856

  11. Enhancing NMDA Receptor Function: Recent Progress on Allosteric Modulators

    PubMed Central

    2017-01-01

    The N-methyl-D-aspartate receptors (NMDARs) are subtype glutamate receptors that play important roles in excitatory neurotransmission and synaptic plasticity. Their hypo- or hyperactivation are proposed to contribute to the genesis or progression of various brain diseases, including stroke, schizophrenia, depression, and Alzheimer's disease. Past efforts in targeting NMDARs for therapeutic intervention have largely been on inhibitors of NMDARs. In light of the discovery of NMDAR hypofunction in psychiatric disorders and perhaps Alzheimer's disease, efforts in boosting NMDAR activity/functions have surged in recent years. In this review, we will focus on enhancing NMDAR functions, especially on the recent progress in the generation of subunit-selective, allosteric positive modulators (PAMs) of NMDARs. We shall also discuss the usefulness of these newly developed NMDAR-PAMs. PMID:28163934

  12. Fatty acids as modulators of neutrophil recruitment, function and survival.

    PubMed

    Rodrigues, Hosana G; Takeo Sato, Fabio; Curi, Rui; Vinolo, Marco A R

    2016-08-15

    Neutrophils are well-known to act in the destruction of invading microorganisms. They have also been implicated in the activation of other immune cells including B- and T-lymphocytes and in the resolution of inflammation and tissue regeneration. Neutrophils are produced in the bone marrow and released into the circulation from where they migrate to tissues to perform their effector functions. Neutrophils are in constant contact with fatty acids that can modulate their function, activation and fate (survival or cell death) through different mechanisms. In this review, the effects of fatty acids pertaining to five classes, namely, long-chain saturated fatty acids (LCSFAs), short-chain fatty acids (SCFAs), and omega-3 (n-3), omega-6 (n-6) and omega-9 (n-9) unsaturated fatty acids, on neutrophils and the relevance of these effects for disease development are discussed.

  13. Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP10 small GTPase in Arabidopsis.

    PubMed

    Xin, Zeyu; Zhao, Yihong; Zheng, Zhi-Liang

    2005-11-01

    Abscisic acid (ABA) is a hormone that modulates a variety of agronomically important growth and developmental processes and various stresses responses, but its signal transduction pathways remain poorly understood. ROP10, a member of ROP small GTPases in Arabidopsis (Arabidopsis thaliana), is a plasma membrane-associated protein specifically involved in negative regulation of ABA responses. To dissect the ROP10-mediated ABA signaling, we carried out transcriptome analysis using the Arabidopsis full-genome chip. Our analysis revealed a total of 262 and 125 genes that were, respectively, up- and down-regulated (> or =2-fold cutoff) by 1 mum ABA in wild type (Wassilewskija [Ws]); 42 up-regulated and 38 down-regulated genes have not been identified in other studies. Consistent with the nonpleiotropic phenotypes of rop10-1, only three genes were altered in rop10-1 in the absence of ABA treatment. In response to 1 microm ABA, 341 and 127 genes were, respectively, activated and repressed in rop10-1. Interestingly, a particular subset of 21 genes that were not altered by 1 microm ABA in Ws but only activated in rop10-1 was identified. Reverse transcription-polymerase chain reaction analysis revealed the existence of three distinct categories of ABA dose-response patterns. One novel category is characterized by their ABA unresponsiveness in Ws and activation in rop10-1 at 1 microm but not 10 and 100 microm of ABA. This indicates that ROP10 gates the expression of genes that are specific to low concentrations of ABA. Furthermore, almost all of these 21 genes are known to be highly induced by various biotic and abiotic stresses. Consequently, we found that rop10-1 enhanced the sensitivity of seed germination inhibition to mannitol and sodium chloride. Our results suggest that ROP10 negatively regulates ABA responses by specifically and differentially modulating the ABA sensitivity of a subset of genes including protein kinases and zinc-finger family proteins.

  14. Modulation of Different Human Immunodeficiency Virus Type 1 Nef Functions during Progression to AIDS

    PubMed Central

    Carl, Silke; Greenough, Thomas C.; Krumbiegel, Mandy; Greenberg, Michael; Skowronski, Jacek; Sullivan, John L.; Kirchhoff, Frank

    2001-01-01

    The human immunodeficiency virus type 1 (HIV-1) Nef protein has several independent functions that might contribute to efficient viral replication in vivo. Since HIV-1 adapts rapidly to its host environment, we investigated if different Nef properties are associated with disease progression. Functional analysis revealed that nef alleles obtained during late stages of infection did not efficiently downmodulate class I major histocompatibility complex but were highly active in the stimulation of viral replication. In comparison, functional activity in downregulation of CD4 and enhancement of HIV-1 infectivity were maintained or enhanced after AIDS progression. Our results demonstrate that various Nef activities are modulated during the course of HIV-1 infection to maintain high viral loads at different stages of disease progression. These findings suggest that all in vitro Nef functions investigated contribute to AIDS pathogenesis and indicate that nef variants with increased pathogenicity emerge in a significant number of HIV-1-infected individuals. PMID:11264355

  15. System identification and model reduction using modulating function techniques

    NASA Technical Reports Server (NTRS)

    Shen, Yan

    1993-01-01

    Weighted least squares (WLS) and adaptive weighted least squares (AWLS) algorithms are initiated for continuous-time system identification using Fourier type modulating function techniques. Two stochastic signal models are examined using the mean square properties of the stochastic calculus: an equation error signal model with white noise residuals, and a more realistic white measurement noise signal model. The covariance matrices in each model are shown to be banded and sparse, and a joint likelihood cost function is developed which links the real and imaginary parts of the modulated quantities. The superior performance of above algorithms is demonstrated by comparing them with the LS/MFT and popular predicting error method (PEM) through 200 Monte Carlo simulations. A model reduction problem is formulated with the AWLS/MFT algorithm, and comparisons are made via six examples with a variety of model reduction techniques, including the well-known balanced realization method. Here the AWLS/MFT algorithm manifests higher accuracy in almost all cases, and exhibits its unique flexibility and versatility. Armed with this model reduction, the AWLS/MFT algorithm is extended into MIMO transfer function system identification problems. The impact due to the discrepancy in bandwidths and gains among subsystem is explored through five examples. Finally, as a comprehensive application, the stability derivatives of the longitudinal and lateral dynamics of an F-18 aircraft are identified using physical flight data provided by NASA. A pole-constrained SIMO and MIMO AWLS/MFT algorithm is devised and analyzed. Monte Carlo simulations illustrate its high-noise rejecting properties. Utilizing the flight data, comparisons among different MFT algorithms are tabulated and the AWLS is found to be strongly favored in almost all facets.

  16. Distinct profiles of alpha7 nAChR positive allosteric modulation revealed by structurally diverse chemotypes.

    PubMed

    Grønlien, Jens Halvard; Håkerud, Monika; Ween, Hilde; Thorin-Hagene, Kirsten; Briggs, Clark A; Gopalakrishnan, Murali; Malysz, John

    2007-09-01

    Selective modulation of alpha7 nicotinic acetylcholine receptors (nAChRs) is thought to regulate processes impaired in schizophrenia, Alzheimer's disease, and other dementias. One approach to target alpha7 nAChRs is by positive allosteric modulation. Structurally diverse compounds, including PNU-120596, 4-naphthalene-1-yl-3a,4,5,9b-tetrahydro-3-H-cyclopenta[c]quinoline-8-sulfonic acid amide (TQS), and 5-hydroxyindole (5-HI) have been identified as positive allosteric modulators (PAMs), but their receptor interactions and pharmacological profiles remain to be fully elucidated. In this study, we investigated interactions of these compounds at human alpha7 nAChRs, expressed in Xenopus laevis oocytes, along with genistein, a tyrosine kinase inhibitor. Genistein was found to function as a PAM. Two types of PAM profiles were observed. 5-HI and genistein predominantly affected the apparent peak current (type I) whereas PNU-120596 and TQS increased the apparent peak current and evoked a distinct weakly decaying current (type II). Concentration-responses to agonists [ACh, 3-[(3E)-3-[(2,4-dimethoxyphenyl)methylidene]-5,6-dihydro-4H-pyridin-2-yl]pyridine dihydrochloride (GTS-21), and N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride (PNU-282987)] were potentiated by both types, although type II PAMs had greater effects. When applied after alpha7 nAChRs were desensitized, type II, but not type I, PAMs could reactivate alpha7 currents. Both types of PAMs also increased the ACh-evoked alpha7 window currents, with type II PAMs generally showing larger potentiation. None of the PAMs tested increased nicotine-evoked Ca(2+) transients in human embryonic kidney 293 cells expressing human alpha4beta2 or alpha3beta4 nAChRs, although some inhibition was noted for 5-HI, genistein, and TQS. In summary, our studies reveal two distinct alpha7 PAM profiles, which could offer unique opportunities for modulating alpha7 nAChRs in vivo and in the development of novel

  17. Modulating functional and dysfunctional mentalizing by transcranial magnetic stimulation

    PubMed Central

    Schuwerk, Tobias; Langguth, Berthold; Sommer, Monika

    2014-01-01

    Mentalizing, the ability to attribute mental states to others and oneself, is a cognitive function with high relevance for social interactions. Recent neuroscientific research has increasingly contributed to attempts to decompose this complex social cognitive function into constituting neurocognitive building blocks. Additionally, clinical research that focuses on social cognition to find links between impaired social functioning and neurophysiological deviations has accumulated evidence that mentalizing is affected in most psychiatric disorders. Recently, both lines of research have started to employ transcranial magnetic stimulation: the first to modulate mentalizing in order to specify its neurocognitive components, the latter to treat impaired mentalizing in clinical conditions. This review integrates findings of these two different approaches to draw a more detailed picture of the neurocognitive basis of mentalizing and its deviations in psychiatric disorders. Moreover, we evaluate the effectiveness of hitherto employed stimulation techniques and protocols, paradigms and outcome measures. Based on this overview we highlight new directions for future research on the neurocognitive basis of functional and dysfunctional social cognition. PMID:25477838

  18. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function.

    PubMed

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-08-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions.

  19. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function

    PubMed Central

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-01-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions. PMID:25749299

  20. Network analysis reveals common host protein/s modulating pathogenesis of neurotropic viruses

    PubMed Central

    Ghosh, Sourish; Mukherjee, Sriparna; Sengupta, Nabonita; Roy, Arunava; Dey, Dhritiman; Chakraborty, Surajit; Chattopadhyay, Dhrubajyoti; Banerjee, Arpan; Basu, Anirban

    2016-01-01

    Network analysis through graph theory provides a quantitative approach to characterize specific proteins and their constituent assemblies that underlie host-pathogen interactions. In the present study, graph theory was used to analyze the interactome designed out of 50 differentially expressing proteins from proteomic analysis of Chandipura Virus (CHPV, Family: Rhabdoviridae) infected mouse brain tissue to identify the primary candidates for intervention. Using the measure of degree centrality, that quantifies the connectedness of a single protein within a milieu of several other interacting proteins, DJ-1 was selected for further molecular validation. To elucidate the generality of DJ-1’s role in propagating infection its role was also monitored in another RNA virus, Japanese Encephalitis Virus (JEV, Family: Flaviviridae) infection. Concurrently, DJ-1 got over-expressed in response to reactive oxygen species (ROS) generation following viral infection which in the early phase of infection migrated to mitochondria to remove dysfunctional mitochondria through the process of mitophagy. DJ-1 was also observed to modulate the viral replication and interferon responses along with low-density lipoprotein (LDL) receptor expression in neurons. Collectively these evidences reveal a comprehensive role for DJ-1 in neurotropic virus infection in the brain. PMID:27581498

  1. Modulation of microsaccade rate by task difficulty revealed through between- and within-trial comparisons.

    PubMed

    Gao, Xin; Yan, Hongmei; Sun, Hong-Jin

    2015-03-04

    Microsaccades (MSs) are small eye movements that occur during attempted visual fixation. While most studies concerning MSs focus on their roles in visual processing, some also suggest that the MS rate can be modulated by the amount of mental exertion involved in nonvisual processing. The current study focused on the effects of task difficulty on MS rate in a nonvisual mental arithmetic task. Experiment 1 revealed a general inverse relationship between MS rate and subjective task difficulty. During Experiment 2, three task phases with different requirements were identified: during calculation (between stimulus presentation and response), postcalculation (after reporting an answer), and a control condition (undergoing a matching sequence of events without the need to make a calculation). MS rate was observed to approximately double from the during-calculation phase to the postcalculation phase, and was significantly higher in the control condition compared to postcalculation. Only during calculation was the MS rate generally decreased with greater task difficulty. Our results suggest that the nonvisual cognitive processing can suppress MS rate, and that the extent of such suppression is related to the task difficulty.

  2. Phase noise reveals early category-specific modulation of the event-related potentials.

    PubMed

    Németh, Kornél; Kovács, Petra; Vakli, Pál; Kovács, Gyula; Zimmer, Márta

    2014-01-01

    Previous studies have found that the amplitude of the early event-related potential (ERP) components evoked by faces, such as N170 and P2, changes systematically as a function of noise added to the stimuli. This change has been linked to an increased perceptual processing demand and to enhanced difficulty in perceptual decision making about faces. However, to date it has not yet been tested whether noise manipulation affects the neural correlates of decisions about face and non-face stimuli similarly. To this end, we measured the ERPs for faces and cars at three different phase noise levels. Subjects performed the same two-alternative age-discrimination task on stimuli chosen from young-old morphing continua that were created from faces as well as cars and were calibrated to lead to similar performances at each noise-level. Adding phase noise to the stimuli reduced performance and enhanced response latency for the two categories to the same extent. Parallel to that, phase noise reduced the amplitude and prolonged the latency of the face-specific N170 component. The amplitude of the P1 showed category-specific noise dependence: it was enhanced over the right hemisphere for cars and over the left hemisphere for faces as a result of adding phase noise to the stimuli, but remained stable across noise levels for cars over the left and for faces over the right hemisphere. Moreover, noise modulation altered the category-selectivity of the N170, while the P2 ERP component, typically associated with task decision difficulty, was larger for the more noisy stimuli regardless of stimulus category. Our results suggest that the category-specificity of noise-induced modulations of ERP responses starts at around 100 ms post-stimulus.

  3. Control over the strength of connections between modules: a double dissociation between stimulus format and task revealed by Granger causality mapping in fMRI.

    PubMed

    Anderson, Britt; Soliman, Sherif; O'Malley, Shannon; Danckert, James; Besner, Derek

    2015-01-01

    Drawing on theoretical and computational work with the localist dual route reading model and results from behavioral studies, Besner et al. (2011) proposed that the ability to perform tasks that require overriding stimulus-specific defaults (e.g., semantics when naming Arabic numerals, and phonology when evaluating the parity of number words) necessitate the ability to modulate the strength of connections between cognitive modules for lexical representation, semantics, and phonology on a task- and stimulus-specific basis. We used functional magnetic resonance imaging to evaluate this account by assessing changes in functional connectivity while participants performed tasks that did and did not require such stimulus-task default overrides. The occipital region showing the greatest modulation of BOLD signal strength for the two stimulus types was used as the seed region for Granger causality mapping (GCM). Our GCM analysis revealed a region of rostromedial frontal cortex with a crossover interaction. When participants performed tasks that required overriding stimulus type defaults (i.e., parity judgments of number words and naming Arabic numerals) functional connectivity between the occipital region and rostromedial frontal cortex was present. Statistically significant functional connectivity was absent when the tasks were the default for the stimulus type (i.e., parity judgments of Arabic numerals and reading number words). This frontal region (BA 10) has previously been shown to be involved in goal-directed behavior and maintenance of a specific task set. We conclude that overriding stimulus-task defaults requires a modulation of connection strengths between cognitive modules and that the override mechanism predicted from cognitive theory is instantiated by frontal modulation of neural activity of brain regions specialized for sensory processing.

  4. Proteome-wide Light/Dark Modulation of Thiol Oxidation in Cyanobacteria Revealed by Quantitative Site-specific Redox Proteomics*

    PubMed Central

    Guo, Jia; Nguyen, Amelia Y.; Dai, Ziyu; Su, Dian; Gaffrey, Matthew J.; Moore, Ronald J.; Jacobs, Jon M.; Monroe, Matthew E.; Smith, Richard D.; Koppenaal, David W.; Pakrasi, Himadri B.; Qian, Wei-Jun

    2014-01-01

    Reversible protein thiol oxidation is an essential regulatory mechanism of photosynthesis, metabolism, and gene expression in photosynthetic organisms. Herein, we present proteome-wide quantitative and site-specific profiling of in vivo thiol oxidation modulated by light/dark in the cyanobacterium Synechocystis sp. PCC 6803, an oxygenic photosynthetic prokaryote, using a resin-assisted thiol enrichment approach. Our proteomic approach integrates resin-assisted enrichment with isobaric tandem mass tag labeling to enable site-specific and quantitative measurements of reversibly oxidized thiols. The redox dynamics of ∼2,100 Cys-sites from 1,060 proteins under light, dark, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosystem II inhibitor) conditions were quantified. In addition to relative quantification, the stoichiometry or percentage of oxidation (reversibly oxidized/total thiols) for ∼1,350 Cys-sites was also quantified. The overall results revealed broad changes in thiol oxidation in many key biological processes, including photosynthetic electron transport, carbon fixation, and glycolysis. Moreover, the redox sensitivity along with the stoichiometric data enabled prediction of potential functional Cys-sites for proteins of interest. The functional significance of redox-sensitive Cys-sites in NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxin (AhpC/TSA family protein Sll1621), and glucose 6-phosphate dehydrogenase was further confirmed with site-specific mutagenesis and biochemical studies. Together, our findings provide significant insights into the broad redox regulation of photosynthetic organisms. PMID:25118246

  5. A genome-wide screen reveals a role for microRNA-1 in modulating cardiac cell polarity.

    PubMed

    King, Isabelle N; Qian, Li; Liang, Jianping; Huang, Yu; Shieh, Joseph T C; Kwon, Chulan; Srivastava, Deepak

    2011-04-19

    Many molecular pathways involved in heart disease have their roots in evolutionarily ancient developmental programs that depend critically on gene dosage and timing. MicroRNAs (miRNAs) modulate gene dosage posttranscriptionally, and among these, the muscle-specific miR-1 is particularly important for developing and maintaining somatic/skeletal and cardiac muscle. To identify pathways regulated by miR-1, we performed a forward genetic screen in Drosophila using wing-vein patterning as a biological assay. We identified several unexpected genes that genetically interacted with dmiR-1, one of which was kayak, encodes a developmentally regulated transcription factor. Additional studies directed at this genetic relationship revealed a previously unappreciated function of dmiR-1 in regulating the polarity of cardiac progenitor cells. The mammalian ortholog of kayak, c-Fos, was dysregulated in hearts of gain- or loss-of-function miR-1 mutant mice in a stress-dependent manner. These findings illustrate the power of Drosophila-based screens to find points of intersection between miRNAs and conserved pathways in mammals.

  6. Cannabinoid Modulation of Functional Connectivity within Regions Processing Attentional Salience

    PubMed Central

    Bhattacharyya, Sagnik; Falkenberg, Irina; Martin-Santos, Rocio; Atakan, Zerrin; Crippa, Jose A; Giampietro, Vincent; Brammer, Mick; McGuire, Philip

    2015-01-01

    There is now considerable evidence to support the hypothesis that psychotic symptoms are the result of abnormal salience attribution, and that the attribution of salience is largely mediated through the prefrontal cortex, the striatum, and the hippocampus. Although these areas show differential activation under the influence of delta-9-tetrahydrocannabinol (delta-9-THC) and cannabidiol (CBD), the two major derivatives of cannabis sativa, little is known about the effects of these cannabinoids on the functional connectivity between these regions. We investigated this in healthy occasional cannabis users by employing event-related functional magnetic resonance imaging (fMRI) following oral administration of delta-9-THC, CBD, or a placebo capsule. Employing a seed cluster-based functional connectivity analysis that involved using the average time series from each seed cluster for a whole-brain correlational analysis, we investigated the effect of drug condition on functional connectivity between the seed clusters and the rest of the brain during an oddball salience processing task. Relative to the placebo condition, delta-9-THC and CBD had opposite effects on the functional connectivity between the dorsal striatum, the prefrontal cortex, and the hippocampus. Delta-9-THC reduced fronto-striatal connectivity, which was related to its effect on task performance, whereas this connection was enhanced by CBD. Conversely, mediotemporal-prefrontal connectivity was enhanced by delta-9-THC and reduced by CBD. Our results suggest that the functional integration of brain regions involved in salience processing is differentially modulated by single doses of delta-9-THC and CBD and that this relates to the processing of salient stimuli. PMID:25249057

  7. Beta function measurement in the Tevatron using quadrupole gradient modulation

    SciTech Connect

    Jansson, A.; Lebrun, P.; Volk, J.T.; /Fermilab

    2005-05-01

    Early in Run2, there was an effort to compare the different emittance measurements in the Tevatron (flying wires and synchrotron light) and understand the origin of the observed differences. To measure the beta function at a few key locations near the instruments, air-core quadrupoles were installed. By modulating the gradient of these magnets and measuring the effect on the tune, the lattice parameters can be extracted. Initially, the results seem to disagree with other methods. At the time, the lattice was strongly coupled due to a skew component in the main dipoles, caused by sagging of the cryostat. After a large fraction of the superconducting magnets were shimmed to remove a strong skew quadrupole component, the results now agree with the theoretical values to within 20%.

  8. Inclusion of filter modulation in synthetic-discriminant-function construction

    NASA Technical Reports Server (NTRS)

    Jared, David A.; Ennis, David J.

    1989-01-01

    A technique in which the filter modulation is included in the synthesis of a synthetic-discriminant-function (SDF) matched spatial filter is presented. In the filter synthesis, a system of simultaneous nonlinear equations is solved with an iteration procedure. A computer simulation of the new method using thresholded images of the Space Shuttle over a range of aspect angles was performed for phase-only filters (POFs) and binary-phase-only filters (BPOFs). The filters constructed are capable of obtaining the specified peak-correlation response to within 1 percent with a high signal-to-clutter-ratio for the one-class problem, the two-class problem, and the multilevel problem. In contrast, conventional projection SDF POFs and BPOFs are unable to produce the desired peak-correlation response.

  9. Simplified Approach to Work Function Modulation in Polyelectrolyte Multilayers.

    PubMed

    Torasso, Nicolás; Armaleo, Juan M; Tagliazucchi, Mario; Williams, Federico J

    2017-03-07

    The layer-by-layer (LbL) method is based on sequential deposition of polycations and polyanions. Many of the properties of polyelectrolyte thin films deposited via this method depend on the nature of the topmost layer. Thus, these properties show odd-even oscillations during multilayer growth as the topmost layer alternates from polycations to polyanions. The work function of a (semi)conductive substrate modified with an LbL polyelectrolyte multilayer also displays an oscillatory behavior independent of film thickness. The topmost layer modulates the work function of a substrate buried well below the film. In agreement with previous observations, in this work, we show that the work function of a gold substrate changes periodically with the number of adsorbed layers, as different combinations of polycations and polyanions are deposited using the LbL method. For the first time, we rationalize this behavior in terms of formation of a dipole layer between the excess charge at the topmost layer and the charge of the metal substrate, and we put forward a semiquantitative model based on a continuum description of the electrostatics of the system that reproduces the experimental observations.

  10. Methylphenidate Modulates Functional Network Connectivity to Enhance Attention

    PubMed Central

    Zhang, Sheng; Hsu, Wei-Ting; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Constable, R. Todd; Li, Chiang-Shan R.; Chun, Marvin M.

    2016-01-01

    Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a high-attention network, comprising connections positively correlated with performance on a sustained attention task, and a low-attention network, comprising connections negatively correlated with performance. Validating the networks as generalizable biomarkers of attention, models based on network strength at rest predicted attention-deficit/hyperactivity disorder (ADHD) symptoms in an independent group of individuals (Rosenberg et al., 2016). To investigate whether these networks play a causal role in attention, here we examined their strength in healthy adults given methylphenidate (Ritalin), a common ADHD treatment, compared with unmedicated controls. As predicted, individuals given methylphenidate showed patterns of connectivity associated with better sustained attention: higher high-attention and lower low-attention network strength than controls. There was significant overlap between the high-attention network and a network with greater strength in the methylphenidate group, and between the low-attention network and a network with greater strength in the control group. Network strength also predicted behavior on a stop-signal task, such that participants with higher go response rates showed higher high-attention and lower low-attention network strength. These results suggest that methylphenidate acts by modulating functional brain networks related to sustained attention, and that changing whole-brain connectivity patterns may help improve attention. SIGNIFICANCE STATEMENT Recent work identified a promising neuromarker of sustained attention based on whole

  11. Apolipoprotein E ε4 modulates functional brain connectome in Alzheimer's disease.

    PubMed

    Wang, Jinhui; Wang, Xiao; He, Yi; Yu, Xin; Wang, Huali; He, Yong

    2015-05-01

    The apolipoprotein E (APOE) ɛ4 allele is a well-established genetic risk factor for Alzheimer's disease (AD). Recent research has demonstrated an APOE ɛ4-mediated modulation of intrinsic functional brain networks in cognitively normal individuals. However, it remains largely unknown whether and how APOE ɛ4 affects the brain's functional network architecture in patients with AD. Using resting-state functional MRI and graph-theory approaches, we systematically investigated the topological organization of whole-brain functional networks in 16 APOE ɛ4 carriers and 26 matched noncarriers with AD at three levels: global whole-brain, intermediate module, and regional node/connection. Neuropsychological analysis showed that the APOE ɛ4 carriers performed worse on delayed memory but better on a late item generation of a verbal fluency task (associated with executive function) than noncarriers. Whole-brain graph analyses revealed that APOE ɛ4 significantly disrupted whole-brain topological organization as characterized by (i) reduced parallel information transformation efficiency; (ii) decreased intramodular connectivity within the posterior default mode network (pDMN) and intermodular connectivity of the pDMN and executive control network (ECN) with other neuroanatomical systems; and (iii) impaired functional hubs and their rich-club connectivities that primarily involve the pDMN, ECN, and sensorimotor systems. Further simulation analysis indicated that these altered connectivity profiles of the pDMN and ECN largely accounted for the abnormal global network topology. Finally, the changes in network topology exhibited significant correlations with the patients' cognitive performances. Together, our findings suggest that the APOE genotype modulates large-scale brain networks in AD and shed new light on the gene-connectome interaction in this disease.

  12. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease

    PubMed Central

    Lipinski, Marta M.; Zheng, Bin; Lu, Tao; Yan, Zhenyu; Py, Bénédicte F.; Ng, Aylwin; Xavier, Ramnik J.; Li, Cheng; Yankner, Bruce A.; Scherzer, Clemens R.; Yuan, Junying

    2010-01-01

    Dysregulation of autophagy, a cellular catabolic mechanism essential for degradation of misfolded proteins, has been implicated in multiple neurodegenerative diseases. However, the mechanisms that lead to the autophagy dysfunction are still not clear. Based on the results of a genome-wide screen, we show that reactive oxygen species (ROS) serve as common mediators upstream of the activation of the type III PI3 kinase, which is critical for the initiation of autophagy. Furthermore, ROS play an essential function in the induction of the type III PI3 kinase and autophagy in response to amyloid β peptide, the main pathogenic mediator of Alzheimer's disease (AD). However, lysosomal blockage also caused by Aβ is independent of ROS. In addition, we demonstrate that autophagy is transcriptionally down-regulated during normal aging in the human brain. Strikingly, in contrast to normal aging, we observe transcriptional up-regulation of autophagy in the brains of AD patients, suggesting that there might be a compensatory regulation of autophagy. Interestingly, we show that an AD drug and an AD drug candidate have inhibitory effects on autophagy, raising the possibility that decreasing input into the lysosomal system may help to reduce cellular stress in AD. Finally, we provide a list of candidate drug targets that can be used to safely modulate levels of autophagy without causing cell death. PMID:20660724

  13. Modulation of Chloride Channel Functions by the Plant Lignan Compounds Kobusin and Eudesmin

    PubMed Central

    Jiang, Yu; Yu, Bo; Fang, Fang; Cao, Huanhuan; Ma, Tonghui; Yang, Hong

    2015-01-01

    Plant lignans are diphenolic compounds widely present in vegetables, fruits, and grains. These compounds have been demonstrated to have protective effect against cancer, hypertension and diabetes. In the present study, we showed that two lignan compounds, kobusin and eudesmin, isolated from Magnoliae Flos, could modulate intestinal chloride transport mediated by cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride channels (CaCCs). The compounds activated CFTR channel function in both FRT cells and in HT-29 cells. The modulating effects of kobusin and eudesmin on the activity of CaCCgie (CaCC expressed in gastrointestinal epithelial cells) were also investigated, and the result showed that both compounds could stimulate CaCCgie-mediated short-circuit currents and the stimulation was synergistic with ATP. In ex vivo studies, both compounds activated CFTR and CaCCgie chloride channel activities in mouse colonic epithelia. Remarkably, the compounds showed inhibitory effects toward ANO1/CaCC-mediated short-circuit currents in ANO1/CaCC-expressing FRT cells, with IC50 values of 100 μM for kobusin and 200 μM for eudesmin. In charcoal transit study, both compounds mildly reduced gastrointestinal motility in mice. Taken together, these results revealed a new kind of activity displayed by the lignan compounds, one that is concerned with the modulation of chloride channel function. PMID:26635857

  14. Multiple Functional Variants in cis Modulate PDYN Expression.

    PubMed

    Babbitt, Courtney C; Silverman, Jesse S; Haygood, Ralph; Reininga, Jennifer M; Rockman, Matthew V; Wray, Gregory A

    2010-02-01

    Understanding genetic variation and its functional consequences within cis-regulatory regions remains an important challenge in human genetics and evolution. Here, we present a fine-scale functional analysis of segregating variation within the cis-regulatory region of prodynorphin, a gene that encodes an endogenous opioid precursor with roles in cognition and disease. In order to characterize the functional consequences of segregating variation in cis in a region under balancing selection in different human populations, we examined associations between specific polymorphisms and gene expression in vivo and in vitro. We identified five polymorphisms within the 5' flanking region that affect transcript abundance: a 68-bp repeat recognized in prior studies, as well as two microsatellites and two single nucleotide polymorphisms not previously implicated as functional variants. The impact of these variants on transcription differs by brain region, sex, and cell type, implying interactions between cis genotype and the differentiated state of cells. The effects of individual variants on expression level are not additive in some combinations, implying epistatic interactions between nearby variants. These data reveal an unexpectedly complex relationship between segregating genetic variation and its expression-trait consequences and highlights the importance of close functional scrutiny of natural genetic variation within even relatively well-studied cis-regulatory regions.

  15. The small GTPase Arf1 modulates mitochondrial morphology and function.

    PubMed

    Ackema, Karin B; Hench, Jürgen; Böckler, Stefan; Wang, Shyi Chyi; Sauder, Ursula; Mergentaler, Heidi; Westermann, Benedikt; Bard, Frédéric; Frank, Stephan; Spang, Anne

    2014-11-18

    The small GTPase Arf1 plays critical roles in membrane traffic by initiating the recruitment of coat proteins and by modulating the activity of lipid-modifying enzymes. Here, we report an unexpected but evolutionarily conserved role for Arf1 and the ArfGEF GBF1 at mitochondria. Loss of function of ARF-1 or GBF-1 impaired mitochondrial morphology and activity in Caenorhabditis elegans. Similarly, mitochondrial defects were observed in mammalian and yeast cells. In Saccharomyces cerevisiae, aberrant clusters of the mitofusin Fzo1 accumulated in arf1-11 mutants and were resolved by overexpression of Cdc48, an AAA-ATPase involved in ER and mitochondria-associated degradation processes. Yeast Arf1 co-fractionated with ER and mitochondrial membranes and interacted genetically with the contact site component Gem1. Furthermore, similar mitochondrial abnormalities resulted from knockdown of either GBF-1 or contact site components in worms, suggesting that the role of Arf1 in mitochondrial functioning is linked to ER-mitochondrial contacts. Thus, Arf1 is involved in mitochondrial homeostasis and dynamics, independent of its role in vesicular traffic.

  16. Probiotic modulation of dendritic cell function is influenced by ageing.

    PubMed

    You, Jialu; Dong, Honglin; Mann, Elizabeth R; Knight, Stella C; Yaqoob, Parveen

    2014-02-01

    Dendritic cells (DCs) are critical for the generation of T-cell responses. DC function may be modulated by probiotics, which confer health benefits in immunocompromised individuals, such as the elderly. This study investigated the effects of four probiotics, Bifidobacterium longum bv. infantis CCUG 52486, B. longum SP 07/3, Lactobacillus rhamnosus GG (L.GG) and L. casei Shirota (LcS), on DC function in an allogeneic mixed leucocyte reaction (MLR) model, using DCs and T-cells from young and older donors in different combinations. All four probiotics enhanced expression of CD40, CD80 and CCR7 on both young and older DCs, but enhanced cytokine production (TGF-β, TNF-α) by old DCs only. LcS induced IL-12 and IFNγ production by DC to a greater degree than other strains, while B. longum bv. infantis CCUG 52486 favoured IL-10 production. Stimulation of young T cells in an allogeneic MLR with DC was enhanced by probiotic pretreatment of old DCs, which demonstrated greater activation (CD25) than untreated controls. However, pretreatment of young or old DCs with LPS or probiotics failed to enhance the proliferation of T-cells derived from older donors. In conclusion, this study demonstrates that ageing increases the responsiveness of DCs to probiotics, but this is not sufficient to overcome the impact of immunosenescence in the MLR.

  17. Acidic bile salts modulate the squamous epithelial barrier function by modulating tight junction proteins.

    PubMed

    Chen, Xin; Oshima, Tadayuki; Tomita, Toshihiko; Fukui, Hirokazu; Watari, Jiro; Matsumoto, Takayuki; Miwa, Hiroto

    2011-08-01

    Experimental models for esophageal epithelium in vitro either suffer from poor differentiation or complicated culture systems. An air-liquid interface system with normal human bronchial epithelial cells can serve as a model of esophageal-like squamous epithelial cell layers. Here, we explore the influence of bile acids on barrier function and tight junction (TJ) proteins. The cells were treated with taurocholic acid (TCA), glycocholic acid (GCA), or deoxycholic acid (DCA) at different pH values, or with pepsin. Barrier function was measured by transepithelial electrical resistance (TEER) and the diffusion of paracellular tracers (permeability). The expression of TJ proteins, including claudin-1 and claudin-4, was examined by Western blotting of 1% Nonidet P-40-soluble and -insoluble fractions. TCA and GCA dose-dependently decreased TEER and increased paracellular permeability at pH 3 after 1 h. TCA (4 mM) or GCA (4 mM) did not change TEER and permeability at pH 7.4 or pH 4. The combination of TCA and GCA at pH 3 significantly decreased TEER and increased permeability at lower concentrations (2 mM). Pepsin (4 mg/ml, pH 3) did not have any effect on barrier function. DCA significantly decreased the TEER and increased permeability at pH 6, a weakly acidic condition. TCA (4 mM) and GCA (4 mM) significantly decreased the insoluble fractions of claudin-1 and claudin-4 at pH 3. In conclusion, acidic bile salts disrupted the squamous epithelial barrier function partly by modulating the amounts of claudin-1 and claudin-4. These results provide new insights for understanding the role of TJ proteins in esophagitis.

  18. PLEKHA7 modulates epithelial tight junction barrier function

    PubMed Central

    Paschoud, Serge; Jond, Lionel; Guerrera, Diego; Citi, Sandra

    2014-01-01

    PLEKHA7 is a recently identified protein of the epithelial zonula adhaerens (ZA), and is part of a protein complex that stabilizes the ZA, by linking it to microtubules. Since the ZA is important in the assembly and disassembly of tight junctions (TJ), we asked whether PLEKHA7 is involved in modulating epithelial TJ barrier function. We generated clonal MDCK cell lines in which one of four different constructs of PLEKHA7 was inducibly expressed. All constructs were localized at junctions, but constructs lacking the C-terminal region were also distributed diffusely in the cytoplasm. Inducible expression of PLEKHA7 constructs did not affect the expression and localization of TJ proteins, the steady-state value of transepithelial resistance (TER), the development of TER during the calcium switch, and the flux of large molecules across confluent monolayers. In contrast, expression of three out of four constructs resulted both in enhanced recruitment of E-cadherin and associated proteins at the apical ZA and at lateral puncta adherentia (PA), a decreased TER at 18 h after assembly at normal calcium, and an attenuation in the fall in TER after extracellular calcium removal. This latter effect was inhibited when cells were treated with nocodazole. Immunoprecipitation analysis showed that PLEKHA7 forms a complex with the cytoplasmic TJ proteins ZO-1 and cingulin, and this association does not depend on the integrity of microtubules. These results suggest that PLEKHA7 modulates the dynamics of assembly and disassembly of the TJ barrier, through E-cadherin protein complex- and microtubule-dependent mechanisms. PMID:24843844

  19. Viscumins functionally modulate cell motility-associated gene expression.

    PubMed

    Schötterl, Sonja; Hübner, Miriam; Armento, Angela; Veninga, Vivien; Wirsik, Naita Maren; Bernatz, Simon; Lentzen, Hans; Mittelbronn, Michel; Naumann, Ulrike

    2017-02-01

    In Europe extracts from Viscum album L., the European white-berry mistletoe, are widely used as a complementary cancer therapy. Viscumins (mistletoe lectins, ML) have been scrutinized as important active components of mistletoe and exhibit a variety of anticancer effects such as stimulation of the immune system, induction of cytotoxicity, reduction of tumor cell motility as well as changes in the expression of genes associated with cancer development and progression. By microarray expression analysis, quantitative RT-PCR and RT-PCR based validation of microarray data we demonstrate for the Viscum album extract Iscador Qu and for the lectins Aviscumine and ML-1 that in glioma cells these drugs differentially modulate the expression of genes involved in the regulation of cell migration and invasion, including processes modulating cell architecture and cell adhesion. A variety of differentially expressed genes in ML treated cells are associated with the transforming growth factor (TGF)-β signaling pathway or are targets of TGF-β. ML treatment downregulated the expression of TGF-β itself, of the TGF-β receptor II (TGFBR2), of the TGF-β intracellular signal transducer protein SMAD2, and of matrix-metalloproteinases (MMP) MMP-2 and MMP-14. Even if the changes in gene expression differ between Aviscumine, Iscador Qu and ML-1, the overall regulation of motility associated gene expression by all drugs showed functional effects since tumor cell motility was reduced in a ML-dependent manner. Therefore, ML containing compounds might provide clinical benefit as adjuvant therapeutics in the treatment of patients with invasively growing tumors such as glioblastomas.

  20. In-silico identification of phenotype-biased functional modules

    PubMed Central

    2012-01-01

    Background Phenotypes exhibited by microorganisms can be useful for several purposes, e.g., ethanol as an alternate fuel. Sometimes, the target phenotype maybe required in combination with other phenotypes, in order to be useful, for e.g., an industrial process may require that the organism survive in an anaerobic, alcohol rich environment and be able to feed on both hexose and pentose sugars to produce ethanol. This combination of traits may not be available in any existing organism or if they do exist, the mechanisms involved in the phenotype-expression may not be efficient enough to be useful. Thus, it may be required to genetically modify microorganisms. However, before any genetic modification can take place, it is important to identify the underlying cellular subsystems responsible for the expression of the target phenotype. Results In this paper, we develop a method to identify statistically significant and phenotypically-biased functional modules. The method can compare the organismal network information from hundreds of phenotype expressing and phenotype non-expressing organisms to identify cellular subsystems that are more prone to occur in phenotype-expressing organisms than in phenotype non-expressing organisms. We have provided literature evidence that the phenotype-biased modules identified for phenotypes such as hydrogen production (dark and light fermentation), respiration, gram-positive, gram-negative and motility, are indeed phenotype-related. Conclusion Thus we have proposed a methodology to identify phenotype-biased cellular subsystems. We have shown the effectiveness of our methodology by applying it to several target phenotypes. The code and all supplemental files can be downloaded from (http://freescience.org/cs/phenotype-biased-biclusters/). PMID:22759578

  1. Synthetic Nucleosomes Reveal that GlcNAcylation Modulates Direct Interaction with the FACT Complex

    PubMed Central

    Raj, Ritu; Lercher, Lukas; Mohammed, Shabaz

    2016-01-01

    Abstract Transcriptional regulation can be established by various post‐translational modifications (PTMs) on histone proteins in the nucleosome and by nucleobase modifications on chromosomal DNA. Functional consequences of histone O‐GlcNAcylation (O‐GlcNAc=O‐linked β‐N‐acetylglucosamine) are largely unexplored. Herein, we generate homogeneously GlcNAcylated histones and nucleosomes by chemical post‐translational modification. Mass‐spectrometry‐based quantitative interaction proteomics reveals a direct interaction between GlcNAcylated nucleosomes and the “facilitates chromatin transcription” (FACT) complex. Preferential binding of FACT to GlcNAcylated nucleosomes may point towards O‐GlcNAcylation as one of the triggers for FACT‐driven transcriptional control. PMID:27272618

  2. Attentional load modulates large-scale functional brain connectivity beyond the core attention networks.

    PubMed

    Alnæs, Dag; Kaufmann, Tobias; Richard, Geneviève; Duff, Eugene P; Sneve, Markus H; Endestad, Tor; Nordvik, Jan Egil; Andreassen, Ole A; Smith, Stephen M; Westlye, Lars T

    2015-04-01

    In line with the notion of a continuously active and dynamic brain, functional networks identified during rest correspond with those revealed by task-fMRI. Characterizing the dynamic cross-talk between these network nodes is key to understanding the successful implementation of effortful cognitive processing in healthy individuals and its breakdown in a variety of conditions involving aberrant brain biology and cognitive dysfunction. We employed advanced network modeling on fMRI data collected during a task involving sustained attentive tracking of objects at two load levels and during rest. Using multivariate techniques, we demonstrate that attentional load levels can be significantly discriminated, and from a resting-state condition, the accuracy approaches 100%, by means of estimates of between-node functional connectivity. Several network edges were modulated during task engagement: The dorsal attention network increased connectivity with a visual node, while decreasing connectivity with motor and sensory nodes. Also, we observed a decoupling between left and right hemisphere dorsal visual streams. These results support the notion of dynamic network reconfigurations based on attentional effort. No simple correspondence between node signal amplitude change and node connectivity modulations was found, thus network modeling provides novel information beyond what is revealed by conventional task-fMRI analysis. The current decoding of attentional states confirms that edge connectivity contains highly predictive information about the mental state of the individual, and the approach shows promise for the utilization in clinical contexts.

  3. Unsuspected functional disparity in Devonian fishes revealed by tooth morphometrics?

    NASA Astrophysics Data System (ADS)

    Gauchey, Samuel; Girard, Catherine; Adnet, Sylvain; Renaud, Sabrina

    2014-09-01

    The shape of features involved in key biological functions, such as teeth in nutrition, can provide insights into ecological processes even in ancient time, by linking the occupation of the morphological space (disparity) to the occupation of the ecological space. Investigating disparity in radiating groups may provide insights into the ecological diversification underlying evolution of morphological diversity. Actinopterygian fishes initiated their radiation in the Devonian, a period characterized by the diversification of marine ecosystem. Although a former morpho-functional analysis of jaw shape concluded to conservative and poorly diversified morphologies in this early part of their history, fish tooth disparity evidenced here an unsuspected diversity of possible functional significance in the pivotal period of the Late Devonian (Famennian). All teeth being caniniforms, some were stocky and robust, in agreement with expectations for active generalist predators. More surprisingly, elongated teeth also occurred at the beginning of Famennian. Their needle-like shape challenges morpho-functional interpretations by making them fragile in response to bending or torsion. The occurrence of both types of fish teeth during the beginning of the Famennian points to a discrete but real increase in disparity, thus testifying a first burst of feeding specialization despite overall conservative jaw morphology. The disappearance of these needle-like teeth in the Late Famennian might have been related to a relay in dental diversity with abundant co-occurring groups, namely conodonts and chondrichthyans (sharks).

  4. A selective screen reveals discrete functional domains in Drosophila Nanos.

    PubMed Central

    Arrizabalaga, G; Lehmann, R

    1999-01-01

    The Drosophila protein Nanos encodes an evolutionarily conserved protein with two zinc finger motifs. In the embryo, Nanos protein function is required for establishment of the anterior-posterior body pattern and for the migration of primordial germ cells. During oogenesis, Nanos protein is involved in the establishment and maintenance of germ-line stem cells and the differentiation of oocyte precursor cells. To establish proper embryonic patterning, Nanos acts as a translational regulator of hunchback RNA. Nanos' targets for germ cell migration and development are not known. Here, we describe a selective genetic screen aimed at isolating new nanos alleles. The molecular and genetic analysis of 68 new alleles has allowed us to identify amino acids critical for nanos function. This analysis shows that the CCHC motifs, which coordinate two metal ions, are essential for all known functions of Nanos protein. Furthermore, a region C-terminal to the zinc fingers seems to constitute a novel functional domain within the Nanos protein. This "tail region" of Nanos is required for abdomen formation and germ cell migration, but not for oogenesis. PMID:10581288

  5. Advances in cell surface glycoengineering reveal biological function.

    PubMed

    Nischan, Nicole; Kohler, Jennifer J

    2016-08-01

    Cell surface glycans are critical mediators of cell-cell, cell-ligand, and cell-pathogen interactions. By controlling the set of glycans displayed on the surface of a cell, it is possible to gain insight into the biological functions of glycans. Moreover, control of glycan expression can be used to direct cellular behavior. While genetic approaches to manipulate glycosyltransferase gene expression are available, their utility in glycan engineering has limitations due to the combinatorial nature of glycan biosynthesis and the functional redundancy of glycosyltransferase genes. Biochemical and chemical strategies offer valuable complements to these genetic approaches, notably by enabling introduction of unnatural functionalities, such as fluorophores, into cell surface glycans. Here, we describe some of the most recent developments in glycoengineering of cell surfaces, with an emphasis on strategies that employ novel chemical reagents. We highlight key examples of how these advances in cell surface glycan engineering enable study of cell surface glycans and their function. Exciting new technologies include synthetic lipid-glycans, new chemical reporters for metabolic oligosaccharide engineering to allow tandem and in vivo labeling of glycans, improved chemical and enzymatic methods for glycoproteomics, and metabolic glycosyltransferase inhibitors. Many chemical and biochemical reagents for glycan engineering are commercially available, facilitating their adoption by the biological community.

  6. Genome-Wide Association and Functional Follow-Up Reveals New Loci for Kidney Function

    PubMed Central

    Fuchsberger, Christian; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Chouraki, Vincent; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank B.; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H.-Erich; Kolcic, Ivana; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Endlich, Karlhans; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Giulianini, Franco; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Metzger, Marie; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid; Kardia, Sharon L. R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline C. M.; Hayward, Caroline; Ridker, Paul; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Goessling, Wolfram; Chasman, Daniel I.; Kao, W. H. Linda; Fox, Caroline S.

    2012-01-01

    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD. PMID:22479191

  7. Quetiapine modulates functional connectivity in brain aggression networks.

    PubMed

    Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

    2013-07-15

    Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine.

  8. Conformational diversity analysis reveals three functional mechanisms in proteins

    PubMed Central

    Fornasari, María Silvina

    2017-01-01

    Protein motions are a key feature to understand biological function. Recently, a large-scale analysis of protein conformational diversity showed a positively skewed distribution with a peak at 0.5 Å C-alpha root-mean-square-deviation (RMSD). To understand this distribution in terms of structure-function relationships, we studied a well curated and large dataset of ~5,000 proteins with experimentally determined conformational diversity. We searched for global behaviour patterns studying how structure-based features change among the available conformer population for each protein. This procedure allowed us to describe the RMSD distribution in terms of three main protein classes sharing given properties. The largest of these protein subsets (~60%), which we call “rigid” (average RMSD = 0.83 Å), has no disordered regions, shows low conformational diversity, the largest tunnels and smaller and buried cavities. The two additional subsets contain disordered regions, but with differential sequence composition and behaviour. Partially disordered proteins have on average 67% of their conformers with disordered regions, average RMSD = 1.1 Å, the highest number of hinges and the longest disordered regions. In contrast, malleable proteins have on average only 25% of disordered conformers and average RMSD = 1.3 Å, flexible cavities affected in size by the presence of disordered regions and show the highest diversity of cognate ligands. Proteins in each set are mostly non-homologous to each other, share no given fold class, nor functional similarity but do share features derived from their conformer population. These shared features could represent conformational mechanisms related with biological functions. PMID:28192432

  9. Functional asymmetries revealed in visually guided saccades: an FMRI study.

    PubMed

    Petit, Laurent; Zago, Laure; Vigneau, Mathieu; Andersson, Frédéric; Crivello, Fabrice; Mazoyer, Bernard; Mellet, Emmanuel; Tzourio-Mazoyer, Nathalie

    2009-11-01

    Because eye movements are a fundamental tool for spatial exploration, we hypothesized that the neural bases of these movements in humans should be under right cerebral dominance, as already described for spatial attention. We used functional magnetic resonance imaging in 27 right-handed participants who alternated central fixation with either large or small visually guided saccades (VGS), equally performed in both directions. Hemispheric functional asymmetry was analyzed to identify whether brain regions showing VGS activation elicited hemispheric asymmetries. Hemispheric anatomical asymmetry was also estimated to assess its influence on the VGS functional lateralization. Right asymmetrical activations of a saccadic/attentional system were observed in the lateral frontal eye fields (FEF), the anterior part of the intraparietal sulcus (aIPS), the posterior third of the superior temporal sulcus (STS), the occipitotemporal junction (MT/V5 area), the middle occipital gyrus, and medially along the calcarine fissure (V1). The present rightward functional asymmetries were not related to differences in gray matter (GM) density/sulci positions between right and left hemispheres in the precentral, intraparietal, superior temporal, and extrastriate regions. Only V1 asymmetries were explained for almost 20% of the variance by a difference in the position of the right and left calcarine fissures. Left asymmetrical activations of a saccadic motor system were observed in the medial FEF and in the motor strip eye field along the Rolando sulcus. They were not explained by GM asymmetries. We suggest that the leftward saccadic motor asymmetry is part of a general dominance of the left motor cortex in right-handers, which must include an effect of sighting dominance. Our results demonstrate that, although bilateral by nature, the brain network involved in the execution of VGSs, irrespective of their direction, presented specific right and left asymmetries that were not related to

  10. Yeast studies reveal moonlighting functions of the ancient actin cytoskeleton

    PubMed Central

    Sattlegger, Evelyn; Chernova, Tatiana A.; Gogoi, Neeku M.; Pillai, Indu V.; Chernoff, Yury O.; Munn, Alan L.

    2014-01-01

    Classic functions of the actin cytoskeleton include control of cell size and shape and the internal organisation of cells. These functions are manifest in cellular processes of fundamental importance throughout biology such as the generation of cell polarity, cell migration, cell adhesion and cell division. However, studies in the unicellular model eukaryote Saccharomyces cerevisiae (Baker's yeast) are giving insights into other functions in which the actin cytoskeleton plays a critical role. These include endocytosis, control of protein translation and determination of protein 3-dimensional shape (especially conversion of normal cellular proteins into prions). Here we present a concise overview of these new "moonlighting" roles for the actin cytoskeleton and how some of these roles might lie at the heart of important molecular switches. This is an exciting time for researchers interested in the actin cytoskeleton. We show here how studies of actin are leading us into many new and exciting realms at the interface of genetics, biochemistry and cell biology. While many of the pioneering studies have been conducted using yeast, the conservation of the actin cytoskeleton and its component proteins throughout eukaryotes suggests that these new roles for the actin cytoskeleton may not be restricted to yeast cells but rather may reflect new roles for the actin cytoskeleton of all eukaryotes. PMID:25138357

  11. Strehl ratio and modulation transfer function for segmented mirror telescopes as functions of segment phase error.

    PubMed

    Chanan, G; Troy, M

    1999-11-01

    We derive the Strehl ratio for a segmented mirror telescope as a function of the rms segment phase error and the observing wavelength, with and without the effects of the atmosphere. A simple analytical expression is given for the atmosphere-free case. Although our specific results are in the context of the Keck telescope, they are presented in a way that should be readily adaptable to other segmented geometries. We also derive the corresponding modulation transfer functions. These results are useful in determining how accurately a segmented mirror telescope needs to be phased for a variety of observing applications.

  12. Primer Sets Developed for Functional Genes Reveal Shifts in Functionality of Fungal Community in Soils

    PubMed Central

    Hannula, S. Emilia; van Veen, Johannes A.

    2016-01-01

    Phylogenetic diversity of soil microbes is a hot topic at the moment. However, the molecular tools for the assessment of functional diversity in the fungal community are less developed than tools based on genes encoding the ribosomal operon. Here 20 sets of primers targeting genes involved mainly in carbon cycling were designed and/or validated and the functioning of soil fungal communities along a chronosequence of land abandonment from agriculture was evaluated using them. We hypothesized that changes in fungal community structure during secondary succession would lead to difference in the types of genes present in soils and that these changes would be directional. We expected an increase in genes involved in degradation of recalcitrant organic matter in time since agriculture. Out of the investigated genes, the richness of the genes related to carbon cycling was significantly higher in fields abandoned for longer time. The composition of six of the genes analyzed revealed significant differences between fields abandoned for shorter and longer time. However, all genes revealed significant variance over the fields studied, and this could be related to other parameters than the time since agriculture such as pH, organic matter, and the amount of available nitrogen. Contrary to our initial hypothesis, the genes significantly different between fields were not related to the decomposition of more recalcitrant matter but rather involved in degradation of cellulose and hemicellulose. PMID:27965632

  13. Primer Sets Developed for Functional Genes Reveal Shifts in Functionality of Fungal Community in Soils.

    PubMed

    Hannula, S Emilia; van Veen, Johannes A

    2016-01-01

    Phylogenetic diversity of soil microbes is a hot topic at the moment. However, the molecular tools for the assessment of functional diversity in the fungal community are less developed than tools based on genes encoding the ribosomal operon. Here 20 sets of primers targeting genes involved mainly in carbon cycling were designed and/or validated and the functioning of soil fungal communities along a chronosequence of land abandonment from agriculture was evaluated using them. We hypothesized that changes in fungal community structure during secondary succession would lead to difference in the types of genes present in soils and that these changes would be directional. We expected an increase in genes involved in degradation of recalcitrant organic matter in time since agriculture. Out of the investigated genes, the richness of the genes related to carbon cycling was significantly higher in fields abandoned for longer time. The composition of six of the genes analyzed revealed significant differences between fields abandoned for shorter and longer time. However, all genes revealed significant variance over the fields studied, and this could be related to other parameters than the time since agriculture such as pH, organic matter, and the amount of available nitrogen. Contrary to our initial hypothesis, the genes significantly different between fields were not related to the decomposition of more recalcitrant matter but rather involved in degradation of cellulose and hemicellulose.

  14. Functional proteomics reveal the effect of Salvia miltiorrhiza aqueous extract against vascular atherosclerotic lesions.

    PubMed

    Hung, Yu-Chiang; Wang, Pei-Wen; Pan, Tai-Long

    2010-06-01

    Salvia miltiorrhiza is a Chinese herb widely used for cardiovascular disorder regimens, yet little is known about the cellular mechanisms that contribute to attenuated growth of smooth muscle cells (SMCs) under oxidative stress such as homocysteine (Hcy) treatment. As anticipated, a low dose (0.015 mg/mL) of S.miltiorrhiza aqueous extract (SMAE) significantly inhibited (>60%) the growth of a rat smooth muscle cell line (A10) under Hcy stimulation and the intracellular reactive oxygen species (ROS) concentration obviously decreased after SMAE treatment in terms of reducing p47(phox) translocation and increasing catalase activity. Signaling profile suggests that SMAE inhibited Hcy-induced A10 cell growth via the PKC/MAPK-dependent pathway. Two-dimensional electrophoresis (2-DE) coupled with mass spectrometry revealed statistically significant changes in the intensity of 14 proteins in response to Hcy and Hcy/SMAE. Meanwhile, SMAE attenuated carbonyl-modification of specific cytoskeleton and chaperone proteins leading to cell type transformation. Moreover, a network analysis using MetaCore shed more light on the molecular basis associated with SMAE efficacy. SMAE exerts its protective effect through the scavenging of ROS and subsequent modulation of protein carbonylation to inhibit cell proliferation. These signature networks and functional proteomics highlighted herein may facilitate the evaluation of potential therapeutic targets and elucidate novel mechanisms through which protein functions can be regulated by the redox status.

  15. Nucleome Analysis Reveals Structure-function Relationships for Colon Cancer.

    PubMed

    Seaman, Laura; Chen, Haiming; Brown, Markus; Wangsa, Darawalee; Patterson, Geoff; Camps, Jordi; Omenn, Gilbert S; Ried, Thomas; Rajapakse, Indika

    2017-03-03

    Chromosomal translocations and aneuploidy are hallmarks of cancer genomes; however, the impact of these aberrations on the nucleome (i.e., nuclear structure and gene expression) are not yet understood. Here, the nucleome of the colorectal cancer cell line HT-29 was analyzed using chromosome conformation capture (Hi-C) to study genome structure, complemented by RNA sequencing (RNA-seq) to determine consequent changes in genome function. Importantly, translocations and copy number changes were identified at high resolution from Hi-C data and the structure-function relationships present in normal cells were maintained in cancer. In addition, a new copy number-based normalization method for Hi-C data was developed to analyze the effect of chromosomal aberrations on local chromatin structure. The data demonstrate that at the site of translocations the correlation between chromatin organization and gene expression increases; thus, chromatin accessibility more directly reflects transcription. Additionally, the homogeneously staining region of chromosome band 8q24 of HT-29, which includes the MYC oncogene, interacts with various loci throughout the genome and is composed of open chromatin. The methods, described herein, can be applied to the assessment of the nucleome in other cell types with chromosomal aberrations.

  16. Statistical universals reveal the structures and functions of human music.

    PubMed

    Savage, Patrick E; Brown, Steven; Sakai, Emi; Currie, Thomas E

    2015-07-21

    Music has been called "the universal language of mankind." Although contemporary theories of music evolution often invoke various musical universals, the existence of such universals has been disputed for decades and has never been empirically demonstrated. Here we combine a music-classification scheme with statistical analyses, including phylogenetic comparative methods, to examine a well-sampled global set of 304 music recordings. Our analyses reveal no absolute universals but strong support for many statistical universals that are consistent across all nine geographic regions sampled. These universals include 18 musical features that are common individually as well as a network of 10 features that are commonly associated with one another. They span not only features related to pitch and rhythm that are often cited as putative universals but also rarely cited domains including performance style and social context. These cross-cultural structural regularities of human music may relate to roles in facilitating group coordination and cohesion, as exemplified by the universal tendency to sing, play percussion instruments, and dance to simple, repetitive music in groups. Our findings highlight the need for scientists studying music evolution to expand the range of musical cultures and musical features under consideration. The statistical universals we identified represent important candidates for future investigation.

  17. Widespread distribution of encapsulin nanocompartments reveals functional diversity.

    PubMed

    Giessen, Tobias W; Silver, Pamela A

    2017-03-06

    Cells organize and regulate their metabolism via membrane- or protein-bound organelles. In this way, incompatible processes can be spatially separated and controlled. In prokaryotes, protein-based compartments are used to sequester harmful reactions and store useful compounds. These protein compartments play key roles in various metabolic and ecological processes, ranging from iron homeostasis to carbon fixation. One of the newest types of protein organelle are encapsulin nanocompartments. They are able to encapsulate specific protein cargo and are proposed to be involved in redox-related processes. We identified more than 900 putative encapsulin systems in bacterial and archaeal genomes. Encapsulins can be found in fifteen bacterial and two archaeal phyla. Our analysis reveals one new capsid type and nine previously unknown cargo proteins targeted to the interior of encapsulins. We experimentally characterize three newly identified encapsulin systems and illustrate their probable involvement in iron mineralization, oxidative and nitrosative stress resistance and anaerobic ammonium oxidation, a process responsible for 30% of the nitrogen lost from the oceans.

  18. Statistical universals reveal the structures and functions of human music

    PubMed Central

    Savage, Patrick E.; Brown, Steven; Sakai, Emi; Currie, Thomas E.

    2015-01-01

    Music has been called “the universal language of mankind.” Although contemporary theories of music evolution often invoke various musical universals, the existence of such universals has been disputed for decades and has never been empirically demonstrated. Here we combine a music-classification scheme with statistical analyses, including phylogenetic comparative methods, to examine a well-sampled global set of 304 music recordings. Our analyses reveal no absolute universals but strong support for many statistical universals that are consistent across all nine geographic regions sampled. These universals include 18 musical features that are common individually as well as a network of 10 features that are commonly associated with one another. They span not only features related to pitch and rhythm that are often cited as putative universals but also rarely cited domains including performance style and social context. These cross-cultural structural regularities of human music may relate to roles in facilitating group coordination and cohesion, as exemplified by the universal tendency to sing, play percussion instruments, and dance to simple, repetitive music in groups. Our findings highlight the need for scientists studying music evolution to expand the range of musical cultures and musical features under consideration. The statistical universals we identified represent important candidates for future investigation. PMID:26124105

  19. Role of sex hormones in the modulation of cholangiocyte function

    PubMed Central

    Mancinelli, Romina; Onori, Paolo; DeMorrow, Sharon; Francis, Heather; Glaser, Shannon; Franchitto, Antonio; Carpino, Guido; Alpini, Gianfranco; Gaudio, Eugenio

    2010-01-01

    Over the last years, cholangiocytes, the cells that line the biliary tree, have been considered an important object of study for their biological properties which involves bile formation, proliferation, injury repair, fibrosis and angiogenesis. Cholangiocyte proliferation occurs in all pathologic conditions of liver injury where it is associated with inflammation and regeneration. During these processes, biliary cells start to secrete different cytokines, growth factors, neuropeptides and hormones which represent potential mechanisms for cross talk with other liver cells. Several studies suggest that hormones, and in particular, sex hormones, play a fundamental role in the modulation of the growth of this compartment in the injured liver which functionally conditions the progression of liver disease. Understanding the mechanisms of action and the intracellular pathways of these compounds on cholangiocyte pathophysiology will provide new potential strategies for the management of chronic liver diseases. The purpose of this review is to summarize the recent findings on the role of sex hormones in cholangiocyte proliferation and biology. PMID:21607142

  20. Pharmacological and kinetic characterization of two functional classes of serotonergic modulation in Aplysia sensory neurons.

    PubMed

    Stark, L L; Mercer, A R; Emptage, N J; Carew, T J

    1996-02-01

    1. Modulation of mechanoafferent sensory neurons (SNs) by the neutrotransmitter serotonin (5HT) plays a significant role in behavioral sensitization of several withdrawal reflexes in Aplysia. The modulatory effects of 5HT on these SNs include increased excitability, increased input resistance, action potential broadening, and increased synaptic transmission. Based on a previously described dissociation of some of these modulatory effects, revealed with the 5HT-receptor antagonist, cyproheptadine, we investigated whether a similar dissociation could be found by systematically varying the concentration of the endogenous agonist, 5HT. 2. We first applied a range of 5HT concentrations to isolated pleural/pedal ganglia (containing tail SNs and tail motor neurons, respectively), and measured the magnitude of 5HT-induced modulation of spike broadening and increased excitability. The resulting dose-response curve showed that both forms of modulation increase monotonically as a function of 5HT concentration, but that excitability has a lower threshold for modulation by 5HT than does spike duration. 3. We further characterized the modulatory effects of 5HT on Aplysia SNs by comparing the time course of onset of modulation by 5HT and the time course of recovery after washout. Independent of 5HT concentration, modulation of excitability increases rapidly in the presence of 5HT and recovers rapidly (< 3 min) after washout. Similarly, input resistance increases and recovers rapidly, mirroring the profile of increased excitability. However, modulation of spike duration exhibits two profiles, dependent on 5HT concentration. Low concentrations of 5HT (0.5 and 1 microM) induce a rapid-onset and transient-recovery form of spike broadening, which resembles the kinetics of increased excitability and increased input resistance. Higher concentrations of 5HT (2.5 and 5 microM) induce a more slowly developing and prolonged-recovery form of spike broadening (> 9 min). At these higher

  1. Akting up in the GABA hypothesis of schizophrenia: Akt1 deficiency modulates GABAergic functions and hippocampus-dependent functions

    PubMed Central

    Chang, Chia-Yuan; Chen, Yi-Wen; Wang, Tsu-Wei; Lai, Wen-Sung

    2016-01-01

    Accumulating evidence implies that both AKT1 and GABAA receptor (GABAAR) subunit genes are involved in schizophrenia pathogenesis. Activated Akt promotes GABAergic neuron differentiation and increases GABAAR expression on the plasma membrane. To elucidate the role of Akt1 in modulating GABAergic functions and schizophrenia-related cognitive deficits, a set of 6 in vitro and in vivo experiments was conducted. First, an Akt1/2 inhibitor was applied to evaluate its effect on GABAergic neuron-like cell formation from P19 cells. Inhibiting Akt resulted in a reduction in parvalbumin-positive neuron-like cells. In Akt1−/− and wild-type mice, seizures induced using pentylenetetrazol (a GABAAR antagonist) were measured, and GABAAR expression and GABAergic interneuron abundance in the brain were examined. Female Akt1−/− mice, but not male Akt1−/− mice, exhibited less pentylenetetrazol-induced convulsive activity than their corresponding wild-type controls. Reduced parvalbumin-positive interneuron abundance and GABAAR subunit expression, especially in the hippocampus, were also observed in female Akt1−/− mice compared to female wild-type mice. Neuromorphometric analyses revealed significantly reduced neurite complexity in hippocampal pyramidal neurons. Additionally, female Akt1−/− mice displayed increased hippocampal oscillation power and impaired spatial memory compared to female wild-type mice. Our findings suggest that Akt1 deficiency modulates GABAergic interneurons and GABAAR expression, contributing to hippocampus-dependent cognitive functional impairment. PMID:27615800

  2. Acupuncture Modulates the Functional Connectivity of the Default Mode Network in Stroke Patients

    PubMed Central

    Zhang, Yong; Li, Kuangshi; Ren, Yi; Cui, Fangyuan; Xie, Zijing; Shin, Jae-Young; Tan, Zhongjian; Tang, Lixin; Bai, Lijun; Zou, Yihuai

    2014-01-01

    Abundant evidence from previous fMRI studies on acupuncture has revealed significant modulatory effects at widespread brain regions. However, few reports on the modulation to the default mode network (DMN) of stroke patients have been investigated in the field of acupuncture. To study the modulatory effects of acupuncture on the DMN of stroke patients, eight right hemispheric infarction and stable ischemic stroke patients and ten healthy subjects were recruited to undergo resting state fMRI scanning before and after acupuncture stimulation. Functional connectivity analysis was applied with the bilateral posterior cingulate cortices chosen as the seed regions. The main finding demonstrated that the interregional interactions between the ACC and PCC especially enhanced after acupuncture at GB34 in stroke patients, compared with healthy controls. The results indicated that the possible mechanisms of the modulatory effects of acupuncture on the DMN of stroke patients could be interpreted in terms of cognitive ability and motor function recovery. PMID:24734113

  3. Task-modulated activation and functional connectivity of the temporal and frontal areas during speech comprehension.

    PubMed

    Yue, Q; Zhang, L; Xu, G; Shu, H; Li, P

    2013-05-01

    There is general consensus in the literature that a distributed network of temporal and frontal brain areas is involved in speech comprehension. However, how active versus passive tasks modulate the activation and the functional connectivity of the critical brain areas is not clearly understood. In this study, we used functional magnetic resonance imaging (fMRI) to identify intelligibility and task-related effects in speech comprehension. Participants performed a semantic judgment task on normal and time-reversed sentences, or passively listened to the sentences without making an overt response. The subtraction analysis demonstrated that passive sentence comprehension mainly engaged brain areas in the left anterior and posterior superior temporal sulcus and middle temporal gyrus (aSTS/MTG and pSTS/MTG), whereas active sentence comprehension recruited bilateral frontal regions in addition to the aSTS/MTG and pSTS/MTG regions. Functional connectivity analysis revealed that during passive sentence comprehension, the left aSTS/MTG was functionally connected with the left Heschl's gyrus (HG) and bilateral superior temporal gyrus (STG) but no area was functionally connected with the left pSTS/MTG; during active sentence comprehension, however, both the left aSTS/MTG and pSTS/MTG were functionally connected with bilateral superior temporal and inferior frontal areas. While these results are consistent with the view that the ventral stream of the temporo-frontal network subserves semantic processing, our findings further indicate that both the activation and the functional connectivity of the temporal and frontal areas are modulated by task demands.

  4. Structure and Function of the SWIRM Domain, a Conserved Protein Module Found in Chromatin Regulatory Complexes

    SciTech Connect

    Da,G.; Lenkart, J.; Zhao, K.; Shiekhattar, R.; Cairns, B.; Marmorstein, R.

    2006-01-01

    The SWIRM domain is a module found in the Swi3 and Rsc8 subunits of SWI/SNF-family chromatin remodeling complexes, and the Ada2 and BHC110/LSD1 subunits of chromatin modification complexes. Here we report the high-resolution crystal structure of the SWIRM domain from Swi3 and characterize the in vitro and in vivo function of the SWIRM domains from Saccharomyces cerevisiae Swi3 and Rsc8. The Swi3 SWIRM forms a four-helix bundle containing a pseudo 2-fold axis and a helix-turn-helix motif commonly found in DNA-binding proteins. We show that the Swi3 SWIRM binds free DNA and mononucleosomes with high and comparable affinity and that a subset of Swi3 substitution mutants that display growth defects in vivo also show impaired DNA-binding activity in vitro, consistent with a nucleosome targeting function of this domain. Genetic and biochemical studies also reveal that the Rsc8 and Swi3 SWIRM domains are essential for the proper assembly and in vivo functions of their respective complexes. Together, these studies identify the SWIRM domain as an essential multifunctional module for the regulation of gene expression.

  5. Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes.

    PubMed

    Da, Guoping; Lenkart, Jeffrey; Zhao, Kehao; Shiekhattar, Ramin; Cairns, Bradley R; Marmorstein, Ronen

    2006-02-14

    The SWIRM domain is a module found in the Swi3 and Rsc8 subunits of SWI/SNF-family chromatin remodeling complexes, and the Ada2 and BHC110/LSD1 subunits of chromatin modification complexes. Here we report the high-resolution crystal structure of the SWIRM domain from Swi3 and characterize the in vitro and in vivo function of the SWIRM domains from Saccharomyces cerevisiae Swi3 and Rsc8. The Swi3 SWIRM forms a four-helix bundle containing a pseudo 2-fold axis and a helix-turn-helix motif commonly found in DNA-binding proteins. We show that the Swi3 SWIRM binds free DNA and mononucleosomes with high and comparable affinity and that a subset of Swi3 substitution mutants that display growth defects in vivo also show impaired DNA-binding activity in vitro, consistent with a nucleosome targeting function of this domain. Genetic and biochemical studies also reveal that the Rsc8 and Swi3 SWIRM domains are essential for the proper assembly and in vivo functions of their respective complexes. Together, these studies identify the SWIRM domain as an essential multifunctional module for the regulation of gene expression.

  6. Mfn2 modulates the UPR and mitochondrial function via repression of PERK.

    PubMed

    Muñoz, Juan Pablo; Ivanova, Saška; Sánchez-Wandelmer, Jana; Martínez-Cristóbal, Paula; Noguera, Eduard; Sancho, Ana; Díaz-Ramos, Angels; Hernández-Alvarez, María Isabel; Sebastián, David; Mauvezin, Caroline; Palacín, Manuel; Zorzano, Antonio

    2013-08-28

    Mitofusin 2 (Mfn2) is a key protein in mitochondrial fusion and it participates in the bridging of mitochondria to the endoplasmic reticulum (ER). Recent data indicate that Mfn2 ablation leads to ER stress. Here we report on the mechanisms by which Mfn2 modulates cellular responses to ER stress. Induction of ER stress in Mfn2-deficient cells caused massive ER expansion and excessive activation of all three Unfolded Protein Response (UPR) branches (PERK, XBP-1, and ATF6). In spite of an enhanced UPR, these cells showed reduced activation of apoptosis and autophagy during ER stress. Silencing of PERK increased the apoptosis of Mfn2-ablated cells in response to ER stress. XBP-1 loss-of-function ameliorated autophagic activity of these cells upon ER stress. Mfn2 physically interacts with PERK, and Mfn2-ablated cells showed sustained activation of this protein kinase under basal conditions. Unexpectedly, PERK silencing in these cells reduced ROS production, normalized mitochondrial calcium, and improved mitochondrial morphology. In summary, our data indicate that Mfn2 is an upstream modulator of PERK. Furthermore, Mfn2 loss-of-function reveals that PERK is a key regulator of mitochondrial morphology and function.

  7. Targeted deletion of Wwox reveals a tumor suppressor function.

    PubMed

    Aqeilan, Rami I; Trapasso, Francesco; Hussain, Sadiq; Costinean, Stefan; Marshall, Dean; Pekarsky, Yuri; Hagan, John P; Zanesi, Nicola; Kaou, Mohamed; Stein, Gary S; Lian, Jane B; Croce, Carlo M

    2007-03-06

    The WW domain-containing oxidoreductase (WWOX) spans the second most common fragile site of the human genome, FRA16D, located at 16q23, and its expression is altered in several types of human cancer. We have previously shown that restoration of WWOX expression in cancer cells suppresses tumorigenicity. To investigate WWOX tumor suppressor function in vivo, we generated mice carrying a targeted deletion of the Wwox gene and monitored incidence of tumor formation. Osteosarcomas in juvenile Wwox(-/-) and lung papillary carcinoma in adult Wwox(+/-) mice occurred spontaneously. In addition, Wwox(+/-) mice develop significantly more ethyl nitrosourea-induced lung tumors and lymphomas in comparison to wild-type littermate mice. Intriguingly, these tumors still express Wwox protein, suggesting haploinsuffiency of WWOX itself is cancer predisposing. These results indicate that WWOX is a bona fide tumor suppressor.

  8. Global Analysis of ATM Polymorphism Reveals Significant Functional Constraint

    PubMed Central

    Thorstenson, Yvonne R.; Shen, Peidong; Tusher, Virginia G.; Wayne, Tierney L.; Davis, Ronald W.; Chu, Gilbert; Oefner, Peter J.

    2001-01-01

    ATM, the gene that is mutated in ataxia-telangiectasia, is associated with cerebellar degeneration, abnormal proliferation of small blood vessels, and cancer. These clinically important manifestations have stimulated interest in defining the sequence variation in the ATM gene. Therefore, we undertook a comprehensive survey of sequence variation in ATM in diverse human populations. The protein-encoding exons of the gene (9,168 bp) and the adjacent intron and untranslated sequences (14,661 bp) were analyzed in 93 individuals from seven major human populations. In addition, the coding sequence was analyzed in one chimpanzee, one gorilla, one orangutan, and one Old World monkey. In human ATM, 88 variant sites were discovered by denaturing high-performance liquid chromatography, which is 96%–100% sensitive for detection of DNA sequence variation. ATM was compared to 14 other autosomal genes for nucleotide diversity. The noncoding regions of ATM had diversity values comparable to other genes, but the coding regions had very low diversity, especially in the last 29% of the protein sequence. A test of the neutral evolution hypothesis, through use of the Hudson/Kreitman/Aguadé statistic, revealed that this region of the human ATM gene was significantly constrained relative to that of the orangutan, the Old World monkey, and the mouse, but not relative to that of the chimpanzee or the gorilla. ATM displayed extensive linkage disequilibrium, consistent with suppression of meiotic recombination at this locus. Seven haplotypes were defined. Two haplotypes accounted for 82% of all chromosomes analyzed in all major populations; two others carrying the same D126E missense polymorphism accounted for 33% of chromosomes in Africa but were never observed outside of Africa. The high frequency of this polymorphism may be due either to a population expansion within Africa or to selective pressure. PMID:11443540

  9. Form and Function: An Organic Chemistry Module. Teacher's Guide.

    ERIC Educational Resources Information Center

    Jarvis, Bruce; Mazzocchi, Paul; Hearle, Robert

    This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching organic chemistry. In this book, the diverse field of organic chemistry modules is introduced. The material in this book can be integrated with the other modules in a sequence that helps students to see that chemistry is a unified…

  10. Analysis and measurement of the modulation transfer function of harmonic shear wave induced phase encoding imaging.

    PubMed

    McAleavey, Stephen A

    2014-05-01

    Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5 MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency.

  11. P-wave Receiver Functions reveal the Bohemian Massif crust

    NASA Astrophysics Data System (ADS)

    Kampfova Exnerova, Hana; Plomerova, Jaroslava; Vecsey, Ludek

    2015-04-01

    In this study we present initial results of P-wave Receiver Functions (RF) calculated from broad-band waveforms of teleseismic events recorded by temporary and permanent stations in the Bohemian Massif (BM, Central Europe). Temporary arrays BOHEMA I (2001-2003), BOHEMA II (2004-2005) and BOHEMA III (2005-2006) operated during passive seismic experiments oriented towards studying velocity structure of the lithosphere and the upper mantle. Receiver Functions show relative response of the Earth structure under a seismic station and nowadays represent frequently-used method to retrieve structure of the crust, whose knowledge is needed in various studies of the upper mantle. The recorded waveforms are composites of direct P and P-to-S converted waves that reverberate in the structure beneath the receiver (Ammon, 1997). The RFs are sensitive to seismic velocity contrast and are thus suited to identifying velocity discontinuities in the crust, including the Mohorovičić discontinuity (Moho). Relative travel-time delays of the converted phases detected in the RFs are transformed into estimates of discontinuity depths assuming external information on the vp/vs and P velocity. To evaluate RFs we use the Multiple-taper spectral correlation (MTC) method (Park and Levin, 2000) and process signals from teleseismic events at epicentral distances of 30 - 100° with magnitude Mw > 5.5. Recordings are filtered with Butterworth band-pass filter of 2 - 8 s. To select automatically signals which are strong enough, we calculate signal-to-noise ratios (SNR) in two steps. In the first step we calculate SNR for signals from intervals (-1s, 3s)/(-10s, -2s), where P-arrival time represent time zero. In the second step we broaden the intervals and calculate SNR for (-1s, 9s)/(-60s, -2s). We also employ forward modelling of the RFs using Interactive Receiver Functions Forward Modeller (IRFFM) (Tkalčić et al., 2010) to produce, in the first step, one-dimensional velocity models under

  12. Proteomic profiling of high risk medulloblastoma reveals functional biology.

    PubMed

    Staal, Jerome A; Lau, Ling San; Zhang, Huizhen; Ingram, Wendy J; Hallahan, Andrew R; Northcott, Paul A; Pfister, Stefan M; Wechsler-Reya, Robert J; Rusert, Jessica M; Taylor, Michael D; Cho, Yoon-Jae; Packer, Roger J; Brown, Kristy J; Rood, Brian R

    2015-06-10

    Genomic characterization of medulloblastoma has improved molecular risk classification but struggles to define functional biological processes, particularly for the most aggressive subgroups. We present here a novel proteomic approach to this problem using a reference library of stable isotope labeled medulloblastoma-specific proteins as a spike-in standard for accurate quantification of the tumor proteome. Utilizing high-resolution mass spectrometry, we quantified the tumor proteome of group 3 medulloblastoma cells and demonstrate that high-risk MYC amplified tumors can be segregated based on protein expression patterns. We cross-validated the differentially expressed protein candidates using an independent transcriptomic data set and further confirmed them in a separate cohort of medulloblastoma tissue samples to identify the most robust proteogenomic differences. Interestingly, highly expressed proteins associated with MYC-amplified tumors were significantly related to glycolytic metabolic pathways via alternative splicing of pyruvate kinase (PKM) by heterogeneous ribonucleoproteins (HNRNPs). Furthermore, when maintained under hypoxic conditions, these MYC-amplified tumors demonstrated increased viability compared to non-amplified tumors within the same subgroup. Taken together, these findings highlight the power of proteomics as an integrative platform to help prioritize genetic and molecular drivers of cancer biology and behavior.

  13. Revealing humans’ sensorimotor functions with electrical cortical stimulation

    PubMed Central

    Desmurget, Michel; Sirigu, Angela

    2015-01-01

    Direct electrical stimulation (DES) of the human brain has been used by neurosurgeons for almost a century. Although this procedure serves only clinical purposes, it generates data that have a great scientific interest. Had DES not been employed, our comprehension of the organization of the sensorimotor systems involved in movement execution, language production, the emergence of action intentionality or the subjective feeling of movement awareness would have been greatly undermined. This does not mean, of course, that DES is a gold standard devoid of limitations and that other approaches are not of primary importance, including electrophysiology, modelling, neuroimaging or psychophysics in patients and healthy subjects. Rather, this indicates that the contribution of DES cannot be restricted, in humans, to the ubiquitous concepts of homunculus and somatotopy. DES is a fundamental tool in our attempt to understand the human brain because it represents a unique method for mapping sensorimotor pathways and interfering with the functioning of localized neural populations during the performance of well-defined behavioural tasks. PMID:26240422

  14. Epistatic relationships reveal the functional organization of yeast transcription factors.

    PubMed

    Zheng, Jiashun; Benschop, Joris J; Shales, Michael; Kemmeren, Patrick; Greenblatt, Jack; Cagney, Gerard; Holstege, Frank; Li, Hao; Krogan, Nevan J

    2010-10-05

    The regulation of gene expression is, in large part, mediated by interplay between the general transcription factors (GTFs) that function to bring about the expression of many genes and site-specific DNA-binding transcription factors (STFs). Here, quantitative genetic profiling using the epistatic miniarray profile (E-MAP) approach allowed us to measure 48 391 pairwise genetic interactions, both negative (aggravating) and positive (alleviating), between and among genes encoding STFs and GTFs in Saccharomyces cerevisiae. This allowed us to both reconstruct regulatory models for specific subsets of transcription factors and identify global epistatic patterns. Overall, there was a much stronger preference for negative relative to positive genetic interactions among STFs than there was among GTFs. Negative genetic interactions, which often identify factors working in non-essential, redundant pathways, were also enriched for pairs of STFs that co-regulate similar sets of genes. Microarray analysis demonstrated that pairs of STFs that display negative genetic interactions regulate gene expression in an independent rather than coordinated manner. Collectively, these data suggest that parallel/compensating relationships between regulators, rather than linear pathways, often characterize transcriptional circuits.

  15. Synthetic actin-binding domains reveal compositional constraints for function.

    PubMed

    Lorenzi, Maria; Gimona, Mario

    2008-01-01

    The actin-binding domains of many proteins consist of a canonical type 1/type 2 arrangement of the structurally conserved calponin homology domain. Using the actin-binding domain of alpha-actinin-1 as a scaffold we have generated synthetic actin-binding domains by altering position and composition of the calponin homology domains. We show that the presence of two calponin homology domains alone and in the context of an actin-binding domain is not sufficient for actin-binding, and that both single and homotypic type 2 calponin homology domain tandems fail to bind to actin in vitro and in transfected cells. In contrast, single and tandem type 1 calponin homology domain arrays bind actin directly but result in defective turnover rates on actin filaments, and in aberrant actin bundling when introduced into the full-length alpha-actinin molecule. An actin-binding domain harboring the calponin homology domains in an inverted position, however, functions both in isolation and in the context of the dimeric alpha-actinin molecule. Our data demonstrate that the dynamics and specificity of actin-binding via actin-binding domains requires both the filament binding properties of the type 1, and regulation by type 2 calponin homology domains, and appear independent of their position.

  16. Functional Tissue Analysis Reveals Successful Cryopreservation of Human Osteoarthritic Synovium

    PubMed Central

    de Vries, Marieke; Bennink, Miranda B.; van Lent, Peter L. E. M.; van der Kraan, Peter M.; Koenders, Marije I.; Thurlings, Rogier M.; van de Loo, Fons A. J.

    2016-01-01

    Osteoarthritis (OA) is a degenerative joint disease affecting cartilage and is the most common form of arthritis worldwide. One third of OA patients have severe synovitis and less than 10% have no evidence of synovitis. Moreover, synovitis is predictive for more severe disease progression. This offers a target for therapy but more research on the pathophysiological processes in the synovial tissue of these patients is needed. Functional studies performed with synovial tissue will be more approachable when this material, that becomes available by joint replacement surgery, can be stored for later use. We set out to determine the consequences of slow-freezing of human OA synovial tissue. Therefore, we validated a method that can be applied in every routine laboratory and performed a comparative study of five cryoprotective agent (CPA) solutions. To determine possible deleterious cryopreservation-thaw effects on viability, the synovial tissue architecture, metabolic activity, RNA quality, expression of cryopreservation associated stress genes, and expression of OA characteristic disease genes was studied. Furthermore, the biological activity of the cryopreserved tissue was determined by measuring cytokine secretion induced by the TLR ligands lipopolysaccharides and Pam3Cys. Compared to non frozen synovium, no difference in cell and tissue morphology could be identified in the conditions using the CS10, standard and CryoSFM CPA solution for cryopreservation. However, we observed significantly lower preservation of tissue morphology with the Biofreeze and CS2 media. The other viability assays showed trends in the same direction but were not sensitive enough to detect significant differences between conditions. In all assays tested a clearly lower viability was detected in the condition in which synovium was frozen without CPA solution. This detailed analysis showed that OA synovial tissue explants can be cryopreserved while maintaining the morphology, viability and

  17. Vascular Endothelial Growth Factor Modulates Skeletal Myoblast Function

    PubMed Central

    Germani, Antonia; Di Carlo, Anna; Mangoni, Antonella; Straino, Stefania; Giacinti, Cristina; Turrini, Paolo; Biglioli, Paolo; Capogrossi, Maurizio C.

    2003-01-01

    Vascular endothelial growth factor (VEGF) expression is enhanced in ischemic skeletal muscle and is thought to play a key role in the angiogenic response to ischemia. However, it is still unknown whether, in addition to new blood vessel growth, VEGF modulates skeletal muscle cell function. In the present study immunohistochemical analysis showed that, in normoperfused mouse hindlimb, VEGF and its receptors Flk-1 and Flt-1 were expressed mostly in quiescent satellite cells. Unilateral hindlimb ischemia was induced by left femoral artery ligation. At day 3 and day 7 after the induction of ischemia, Flk-1 and Flt-1 were expressed in regenerating muscle fibers and VEGF expression by these fibers was markedly enhanced. Additional in vitro experiments showed that in growing medium both cultured satellite cells and myoblast cell line C2C12 expressed VEGF and its receptors. Under these conditions, Flk-1 receptor exhibited constitutive tyrosine phosphorylation that was increased by VEGF treatment. During myogenic differentiation Flk-1 and Flt-1 were down-regulated. In a modified Boyden Chamber assay, VEGF enhanced C2C12 myoblasts migration approximately fivefold. Moreover, VEGF administration to differentiating C2C12 myoblasts prevented apoptosis, while inhibition of VEGF signaling either with selective VEGF receptor inhibitors (SU1498 and CB676475) or a neutralizing Flk-1 antibody, enhanced cell death approximately 3.5-fold. Finally, adenovirus-mediated VEGF165 gene transfer inhibited ischemia-induced apoptosis in skeletal muscle. These results support a role for VEGF in myoblast migration and survival, and suggest a novel autocrine role of VEGF in skeletal muscle repair during ischemia. PMID:14507649

  18. Dynamic functional connectivity revealed by resting-state functional near-infrared spectroscopy

    PubMed Central

    Li, Zhen; Liu, Hanli; Liao, Xuhong; Xu, Jingping; Liu, Wenli; Tian, Fenghua; He, Yong; Niu, Haijing

    2015-01-01

    The brain is a complex network with time-varying functional connectivity (FC) and network organization. However, it remains largely unknown whether resting-state fNIRS measurements can be used to characterize dynamic characteristics of intrinsic brain organization. In this study, for the first time, we used the whole-cortical fNIRS time series and a sliding-window correlation approach to demonstrate that fNIRS measurement can be ultimately used to quantify the dynamic characteristics of resting-state brain connectivity. Our results reveal that the fNIRS-derived FC is time-varying, and the variability strength (Q) is correlated negatively with the time-averaged, static FC. Furthermore, the Q values also show significant differences in connectivity between different spatial locations (e.g., intrahemispheric and homotopic connections). The findings are reproducible across both sliding-window lengths and different brain scanning sessions, suggesting that the dynamic characteristics in fNIRS-derived cerebral functional correlation results from true cerebral fluctuation. PMID:26203365

  19. Temporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cues.

    PubMed

    Fraser, Matthew; McKay, Colette M

    2012-01-01

    Temporal modulation transfer functions (TMTFs) were measured for six users of cochlear implants, using different carrier rates and levels. Unlike most previous studies investigating modulation detection, the experimental design limited potential effects of overall loudness cues. Psychometric functions (percent correct discrimination of modulated from unmodulated stimuli versus modulation depth) were obtained. For each modulation depth, each modulated stimulus was loudness balanced to the unmodulated reference stimulus, and level jitter was applied in the discrimination task. The loudness-balance data showed that the modulated stimuli were louder than the unmodulated reference stimuli with the same average current, thus confirming the need to limit loudness cues when measuring modulation detection. TMTFs measured in this way had a low-pass characteristic, with a cut-off frequency (at comfortably loud levels) similar to that for normal-hearing listeners. A reduction in level caused degradation in modulation detection efficiency and a lower-cut-off frequency (i.e. poorer temporal resolution). An increase in carrier rate also led to a degradation in modulation detection efficiency, but only at lower levels or higher modulation frequencies. When detection thresholds were expressed as a proportion of dynamic range, there was no effect of carrier rate for the lowest modulation frequency (50 Hz) at either level.

  20. Comprehensive profiling of lysine acetylproteome analysis reveals diverse functions of lysine acetylation in common wheat

    PubMed Central

    Zhang, Yumei; Song, Limin; Liang, Wenxing; Mu, Ping; Wang, Shu; Lin, Qi

    2016-01-01

    Lysine acetylation of proteins, a dynamic and reversible post-translational modification, plays a critical regulatory role in both eukaryotes and prokaryotes. Several researches have been carried out on acetylproteome in plants. However, until now, there have been no data on common wheat, the major cereal crop in the world. In this study, we performed a global acetylproteome analysis of common wheat variety (Triticum aestivum L.), Chinese Spring. In total, 416 lysine modification sites were identified on 277 proteins, which are involved in a wide variety of biological processes. Consistent with previous studies, a large proportion of the acetylated proteins are involved in metabolic process. Interestingly, according to the functional enrichment analysis, 26 acetylated proteins are involved in photosynthesis and Calvin cycle, suggesting an important role of lysine acetylation in these processes. Moreover, protein interaction network analysis reveals that diverse interactions are modulated by protein acetylation. These data represent the first report of acetylome in common wheat and serve as an important resource for exploring the physiological role of lysine acetylation in this organism and likely in all plants. PMID:26875666

  1. The Proteomic Investigation of Chromatin Functional Domains Reveals Novel Synergisms among Distinct Heterochromatin Components*

    PubMed Central

    Soldi, Monica; Bonaldi, Tiziana

    2013-01-01

    Chromatin is a highly dynamic, well-structured nucleoprotein complex of DNA and proteins that controls virtually all DNA transactions. Chromatin dynamicity is regulated at specific loci by the presence of various associated proteins, histones, post-translational modifications, histone variants, and DNA methylation. Until now the characterization of the proteomic component of chromatin domains has been held back by the challenge of enriching distinguishable, homogeneous regions for subsequent mass spectrometry analysis. Here we describe a modified protocol for chromatin immunoprecipitation combined with quantitative proteomics based on stable isotope labeling by amino acids in cell culture to identify known and novel histone modifications, variants, and complexes that specifically associate with silent and active chromatin domains. Our chromatin proteomics strategy revealed unique functional interactions among various chromatin modifiers, suggesting new regulatory pathways, such as a heterochromatin-specific modulation of DNA damage response involving H2A.X and WICH, both enriched in silent domains. Chromatin proteomics expands the arsenal of tools for deciphering how all the distinct protein components act together to enforce a given region-specific chromatin status. PMID:23319141

  2. CXCL1 contributes to host defense in polymicrobial sepsis via modulating T cell and neutrophil functions.

    PubMed

    Jin, Liliang; Batra, Sanjay; Douda, David Nobuhiro; Palaniyar, Nades; Jeyaseelan, Samithamby

    2014-10-01

    Severe bacterial sepsis leads to a proinflammatory condition that can manifest as septic shock, multiple organ failure, and death. Neutrophils are critical for the rapid elimination of bacteria; however, the role of neutrophil chemoattractant CXCL1 in bacterial clearance during sepsis remains elusive. To test the hypothesis that CXCL1 is critical to host defense during sepsis, we used CXCL1-deficient mice and bone marrow chimeras to demonstrate the importance of this molecule in sepsis. We demonstrate that CXCL1 plays a pivotal role in mediating host defense to polymicrobial sepsis after cecal ligation and puncture in gene-deficient mice. CXCL1 appears to be essential for restricting bacterial outgrowth and death in mice. CXCL1 derived from both hematopoietic and resident cells contributed to bacterial clearance. Moreover, CXCL1 is essential for neutrophil migration, expression of proinflammatory mediators, activation of NF-κB and MAPKs, and upregulation of adhesion molecule ICAM-1. rIL-17 rescued impaired host defenses in cxcl1(-/-) mice. CXCL1 is important for IL-17A production via Th17 differentiation. CXCL1 is essential for NADPH oxidase-mediated reactive oxygen species production and neutrophil extracellular trap formation. This study reveals a novel role for CXCL1 in neutrophil recruitment via modulating T cell function and neutrophil-related bactericidal functions. These studies suggest that modulation of CXCL1 levels in tissues and blood could reduce bacterial burden in sepsis.

  3. Temperature-induced protein secretion by Leishmania mexicana modulates macrophage signalling and function.

    PubMed

    Hassani, Kasra; Antoniak, Elisabeth; Jardim, Armando; Olivier, Martin

    2011-05-03

    Protozoan parasites of genus Leishmania are the causative agents of leishmaniasis. These digenetic microorganisms undergo a marked environmental temperature shift (TS) during transmission from the sandfly vector (ambient temperature, 25-26°C) to the mammalian host (37°C). We have observed that this TS induces a rapid and dramatic increase in protein release from Leishmania mexicana (cutaneous leishmaniasis) within 4 h. Proteomic identification of the TS-induced secreted proteins revealed 72 proteins, the majority of which lack a signal peptide and are thus thought to be secreted via nonconventional mechanisms. Interestingly, this protein release is accompanied by alterations in parasite morphology including an augmentation in the budding of exovesicles from its surface. Here we show that the exoproteome of L. mexicana upon TS induces cleavage and activation of the host protein tyrosine phosphatases, specifically SHP-1 and PTP1-B, in a murine bone-marrow-derived macrophage cell line. Furthermore, translocation of prominent inflammatory transcription factors, namely NF-κB and AP-1 is altered. The exoproteome also caused inhibition of nitric oxide production, a crucial leishmanicidal function of the macrophage. Overall, our results provide strong evidence that within early moments of interaction with the mammalian host, L. mexicana rapidly releases proteins and exovesicles that modulate signalling and function of the macrophage. These modulations can result in attenuation of the inflammatory response and deactivation of the macrophage aiding the parasite in the establishment of infection.

  4. Analysis of her1 and her7 mutants reveals a spatio temporal separation of the somite clock module.

    PubMed

    Choorapoikayil, Suma; Willems, Bernd; Ströhle, Peter; Gajewski, Martin

    2012-01-01

    Somitogenesis is controlled by a genetic network consisting of an oscillator (clock) and a gradient (wavefront). The "hairy and Enhancer of Split"- related (her) genes act downstream of the Delta/Notch (D/N) signaling pathway, and are crucial components of the segmentation clock. Due to genome duplication events, the zebrafish genome, possesses two gene copies of the mouse Hes7 homologue: her1 and her7. To better understand the functional consequences of this gene duplication, and to determine possible independent roles for these two genes during segmentation, two zebrafish mutants her1(hu2124) and her7(hu2526) were analyzed. In the course of embryonic development, her1(hu2124) mutants exhibit disruption of the three anterior-most somite borders, whereas her7(hu2526) mutants display somite border defects restricted to somites 8 (+/-3) to 17 (+/-3) along the anterior-posterior axis. Analysis of the molecular defects in her1(hu2124) mutants reveals a her1 auto regulatory feedback loop during early somitogenesis that is crucial for correct patterning and independent of her7 oscillation. This feedback loop appears to be restricted to early segmentation, as cyclic her1 expression is restored in her1(hu2124) embryos at later stages of development. Moreover, only the anterior deltaC expression pattern is disrupted in the presomitic mesoderm of her1(hu2124) mutants, while the posterior expression pattern of deltaC remains unaltered. Together, this data indicates the existence of an independent and genetically separable anterior and posterior deltaC clock modules in the presomitic mesdorm (PSM).

  5. Membrane proteins bind lipids selectively to modulate their structure and function

    PubMed Central

    Allison, Timothy M.; Ulmschneider, Martin B.; Degiacomi, Matteo T.; Baldwin, Andrew J.; Robinson, Carol V.

    2014-01-01

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments1-7 and that lipids can bind to specific sites, for example in potassium channels8. Fundamental questions remain however regarding the extent of membrane protein selectivity toward lipids. Here we report a mass spectrometry (MS) approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL), aquaporin Z (AqpZ), and the ammonia channel (AmtB) using ion mobility MS (IM-MS), which reports gas-phase collision cross sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas-phase. By resolving lipid-bound states we then rank bound lipids based on their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Results show that lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability, the highest-ranking lipid however is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation9. AqpZ is also stabilized by many lipids with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays, we discover that cardiolipin modulates AqpZ function. Analogous experiments identify AmtB as being highly selective for phosphatidylglycerol prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that reposition AmtB residues to interact with the lipid bilayer. Overall our results demonstrate that resistance to unfolding correlates with specific lipid-binding events enabling distinction of lipids that merely bind from those that modulate membrane protein structure and/or function. We anticipate that these

  6. Functional malignant cell heterogeneity in pancreatic neuroendocrine tumors revealed by targeting of PDGF-DD.

    PubMed

    Cortez, Eliane; Gladh, Hanna; Braun, Sebastian; Bocci, Matteo; Cordero, Eugenia; Björkström, Niklas K; Miyazaki, Hideki; Michael, Iacovos P; Eriksson, Ulf; Folestad, Erika; Pietras, Kristian

    2016-02-16

    Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRβ, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRβ. The presence of a subclonal population of tumor cells characterized by PDGFRβ expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRβ axis.

  7. Functional malignant cell heterogeneity in pancreatic neuroendocrine tumors revealed by targeting of PDGF-DD

    PubMed Central

    Cortez, Eliane; Gladh, Hanna; Braun, Sebastian; Bocci, Matteo; Cordero, Eugenia; Björkström, Niklas K.; Miyazaki, Hideki; Michael, Iacovos P.; Eriksson, Ulf; Folestad, Erika; Pietras, Kristian

    2016-01-01

    Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRβ, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRβ. The presence of a subclonal population of tumor cells characterized by PDGFRβ expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRβ axis. PMID:26831065

  8. Functional chromatography reveals three natural products that target the same protein with distinct mechanisms of action

    PubMed Central

    Kang, MinJin; Wu, Tongde; Wijeratne, E. M. Kithsiri; Lau, Eric C.; Mason, Damian J.; Mesa, Celestina; Tillotson, Joseph; Zhang, Donna D.; Gunatilaka, A. A. Leslie; La Clair, James J.

    2014-01-01

    Access to lead compounds with defined molecular targets continues to be a barrier to the translation of natural product resources. As a solution, we have developed a system that uses discreet, recombinant proteins as the vehicles for natural product isolation. Here, we describe the use of this functional chromatographic method to identify natural products that bind to the AAA+ chaperone, p97, a promising cancer target. Application of this method to a panel of fungal and plant extracts identified rheoemodin, 1-hydroxydehydroherbarin and phomapyrrolidone A as distinct p97 modulators. Excitingly, each of these molecules displayed a unique mechanism of p97 modulation. This discovery provides strong support for the application of functional chromatography to the discovery of protein modulators that would likely escape traditional high-throughput or phenotypic screening platforms. PMID:25125376

  9. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach

    PubMed Central

    Li, Jun; Zhao, Patrick X.

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/. PMID:27446133

  10. Modulation of working memory function by motivation through loss-aversion.

    PubMed

    Krawczyk, Daniel C; D'Esposito, Mark

    2013-04-01

    Cognitive performance is affected by motivation. Few studies, however, have investigated the neural mechanisms of the influence of motivation through potential monetary punishment on working memory. We employed functional MRI during a delayed recognition task that manipulated top-down control demands with added monetary incentives to some trials in the form of potential losses of bonus money. Behavioral performance on the task was influenced by loss-threatening incentives in the form of faster and more accurate performance. As shown previously, we found enhancement of activity for relevant stimuli occurs throughout all task periods (e.g., stimulus encoding, maintenance, and response) in both prefrontal and visual association cortex. Further, these activation patterns were enhanced for trials with possible monetary loss relative to nonincentive trials. During the incentive cue, the amygdala and striatum showed significantly greater activation when money was at a possible loss on the trial. We also evaluated patterns of functional connectivity between regions responsive to monetary consequences and prefrontal areas responsive to the task. This analysis revealed greater delay period connectivity between and the left insula and prefrontal cortex with possible monetary loss relative to nonincentive trials. Overall, these results reveal that incentive motivation can modulate performance on working memory tasks through top-down signals via amplification of activity within prefrontal and visual association regions selective to processing the perceptual inputs of the stimuli to be remembered.

  11. Therapeutic Modulation of Gut Microbiota in Functional Bowel Disorders

    PubMed Central

    Lee, Hyo Jeong; Choi, Jong Kyoung; Ryu, Han Seung; Choi, Chang Hwan; Kang, Eun Hee; Park, Kyung Sik; Min, Yang Won; Hong, Kyoung Sup

    2017-01-01

    Functional bowel disorders (FBDs) are functional gastrointestinal disorders with symptoms attributable to the middle or lower gastrointestinal tract. These include irritable bowel syndrome, functional bloating, functional constipation, functional diarrhea, and unspecified FBD. Increasing evidence has emerged of late that intestinal microbiota is involved in the pathogenesis of FBDs. In this review, the therapeutic benefits and future perspectives of the currently available strategies for modifying the gut microbiota in FBDs are described, focusing primarily on irritable bowel syndrome and functional constipation. PMID:28049862

  12. Therapeutic Modulation of Gut Microbiota in Functional Bowel Disorders.

    PubMed

    Lee, Hyo Jeong; Choi, Jong Kyoung; Ryu, Han Seung; Choi, Chang Hwan; Kang, Eun Hee; Park, Kyung Sik; Min, Yang Won; Hong, Kyoung Sup

    2017-01-30

    Functional bowel disorders (FBDs) are functional gastrointestinal disorders with symptoms attributable to the middle or lower gastrointestinal tract. These include irritable bowel syndrome, functional bloating, functional constipation, functional diarrhea, and unspecified FBD. Increasing evidence has emerged of late that intestinal microbiota is involved in the pathogenesis of FBDs. In this review, the therapeutic benefits and future perspectives of the currently available strategies for modifying the gut microbiota in FBDs are described, focusing primarily on irritable bowel syndrome and functional constipation.

  13. Finite-element modelling reveals force modulation of jaw adductors in stag beetles.

    PubMed

    Goyens, J; Soons, J; Aerts, P; Dirckx, J

    2014-12-06

    Male stag beetles carry large and heavy mandibles that arose through sexual selection over mating rights. Although the mandibles of Cyclommatus metallifer males are used in pugnacious fights, they are surprisingly slender. Our bite force measurements show a muscle force reduction of 18% for tip biting when compared with bites with the teeth located halfway along the mandibles. This suggests a behavioural adaptation to prevent failure. We confirmed this by constructing finite-element (FE) models that mimic both natural bite situations as well as the hypothetical situation of tip biting without muscle force modulation. These models, based on micro-CT images, investigate the material stresses in the mandibles for different combinations of bite location and muscle force. Young's modulus of the cuticle was experimentally determined to be 5.1 GPa with the double indentation method, and the model was validated by digital image correlation on living beetles. FE analysis proves to be a valuable tool in the investigation of the trade-offs of (animal) weapon morphology and usage. Furthermore, the demonstrated bite force modulation in male stag beetles suggests the presence of mechanosensors inside the armature.

  14. Finite-element modelling reveals force modulation of jaw adductors in stag beetles

    PubMed Central

    Goyens, J.; Soons, J.; Aerts, P.; Dirckx, J.

    2014-01-01

    Male stag beetles carry large and heavy mandibles that arose through sexual selection over mating rights. Although the mandibles of Cyclommatus metallifer males are used in pugnacious fights, they are surprisingly slender. Our bite force measurements show a muscle force reduction of 18% for tip biting when compared with bites with the teeth located halfway along the mandibles. This suggests a behavioural adaptation to prevent failure. We confirmed this by constructing finite-element (FE) models that mimic both natural bite situations as well as the hypothetical situation of tip biting without muscle force modulation. These models, based on micro-CT images, investigate the material stresses in the mandibles for different combinations of bite location and muscle force. Young's modulus of the cuticle was experimentally determined to be 5.1 GPa with the double indentation method, and the model was validated by digital image correlation on living beetles. FE analysis proves to be a valuable tool in the investigation of the trade-offs of (animal) weapon morphology and usage. Furthermore, the demonstrated bite force modulation in male stag beetles suggests the presence of mechanosensors inside the armature. PMID:25297317

  15. Theoretical model of the modulation transfer function for fiber optic taper

    NASA Astrophysics Data System (ADS)

    Wang, Yaoxiang; Tian, Weijian; Bin, XiangLi

    2005-02-01

    Fiber optic taper has been used more and more widely as a relay optical component in the integrated taper assembly image intensified sensors for military and medical imaging application. In this paper, the transmission characteristic of energy in the taper is analyzed, and following the generalized definition of the modulation transfer function for sampled imaging system, a spatial averaged impulse response and a corresponding MTF component that are inherent in the sampling process of taper are deduced, and the mathematical model for evaluating the modulation transfer function of fiber optic taper is built. Finally, the dynamic and static modulation transfer function curves simulated by computer have been exhibited.

  16. Facilitating Structure-Function Studies of CFTR Modulator Sites with Efficiencies in Mutagenesis and Functional Screening.

    PubMed

    Molinski, Steven V; Ahmadi, Saumel; Hung, Maurita; Bear, Christine E

    2015-12-01

    There are nearly 2000 mutations in the CFTR gene associated with cystic fibrosis disease, and to date, the only approved drug, Kalydeco, has been effective in rescuing the functional expression of a small subset of these mutant proteins with defects in channel activation. However, there is currently an urgent need to assess other mutations for possible rescue by Kalydeco, and further, definition of the binding site of such modulators on CFTR would enhance our understanding of the mechanism of action of such therapeutics. Here, we describe a simple and rapid one-step PCR-based site-directed mutagenesis method to generate mutations in the CFTR gene. This method was used to generate CFTR mutants bearing deletions (p.Gln2_Trp846del, p.Ser700_Asp835del, p.Ile1234_Arg1239del) and truncation with polyhistidine tag insertion (p.Glu1172-3Gly-6-His*), which either recapitulate a disease phenotype or render tools for modulator binding site identification, with subsequent evaluation of drug responses using a high-throughput (384-well) membrane potential-sensitive fluorescence assay of CFTR channel activity within a 1 wk time frame. This proof-of-concept study shows that these methods enable rapid and quantitative comparison of multiple CFTR mutants to emerging drugs, facilitating future large-scale efforts to stratify mutants according to their "theratype" or most promising targeted therapy.

  17. Modulation of α power and functional connectivity during facial affect recognition.

    PubMed

    Popov, Tzvetan; Miller, Gregory A; Rockstroh, Brigitte; Weisz, Nathan

    2013-04-03

    Research has linked oscillatory activity in the α frequency range, particularly in sensorimotor cortex, to processing of social actions. Results further suggest involvement of sensorimotor α in the processing of facial expressions, including affect. The sensorimotor face area may be critical for perception of emotional face expression, but the role it plays is unclear. The present study sought to clarify how oscillatory brain activity contributes to or reflects processing of facial affect during changes in facial expression. Neuromagnetic oscillatory brain activity was monitored while 30 volunteers viewed videos of human faces that changed their expression from neutral to fearful, neutral, or happy expressions. Induced changes in α power during the different morphs, source analysis, and graph-theoretic metrics served to identify the role of α power modulation and cross-regional coupling by means of phase synchrony during facial affect recognition. Changes from neutral to emotional faces were associated with a 10-15 Hz power increase localized in bilateral sensorimotor areas, together with occipital power decrease, preceding reported emotional expression recognition. Graph-theoretic analysis revealed that, in the course of a trial, the balance between sensorimotor power increase and decrease was associated with decreased and increased transregional connectedness as measured by node degree. Results suggest that modulations in α power facilitate early registration, with sensorimotor cortex including the sensorimotor face area largely functionally decoupled and thereby protected from additional, disruptive input and that subsequent α power decrease together with increased connectedness of sensorimotor areas facilitates successful facial affect recognition.

  18. Interspecies activity correlations reveal functional correspondence between monkey and human brain areas.

    PubMed

    Mantini, Dante; Hasson, Uri; Betti, Viviana; Perrucci, Mauro G; Romani, Gian Luca; Corbetta, Maurizio; Orban, Guy A; Vanduffel, Wim

    2012-02-05

    Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. For cases in which functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assessed similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by temporal correlation. Using natural vision data, we revealed regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models.

  19. Nuclear Technology. Course 30: Mechanical Inspection. Module 30-2, Pump Functional Testing.

    ERIC Educational Resources Information Center

    Wasel, Ed; Espy, John

    This second in a series of eight modules for a course titled Mechanical Inspection describes typical pump functional tests which are performed after pump installation and prior to release of the plant for unrestricted power operation. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  20. Tethering toxins and peptide ligands for modulation of neuronal function

    PubMed Central

    Ibañez-Tallon, Inés; Nitabach, Michael N.

    2011-01-01

    Tethering genetically encoded peptide toxins or ligands close to their point of activity at the cell plasma membrane provides a new approach to the study of cell networks and neuronal circuits, as it allows selective targeting of specific cell populations, enhances the working concentration of the ligand or blocker peptide, and permits the engineering of a large variety of t-peptides (e.g., including use of fluorescent markers, viral vectors and point mutation variants). This review describes the development of tethered toxins and peptides derived from the identification of the cell surface nAChR modulator lynx1, the existence of related endogenous cell surface modulators of nAChR and AMPA receptors, and the application of the t-toxin and t-neuropeptide technology to the dissection of neuronal circuits in metazoans. PMID:22119144

  1. Genetic Disruption of 2-Arachidonoylglycerol Synthesis Reveals a Key Role for Endocannabinoid Signaling in Anxiety Modulation

    PubMed Central

    Shonesy, Brian C.; Bluett, Rebecca J.; Ramikie, Teniel S.; Báldi, Rita; Hermanson, Daniel J.; Kingsley, Philip J.; Marnett, Lawrence J.; Winder, Danny G.; Colbran, Roger J.; Patel, Sachin

    2014-01-01

    SUMMARY Endocannabinoid (eCB) signaling has been heavily implicated in the modulation of anxiety, depressive behaviors and emotional learning. However, the role of the most abundant endocannabinoid 2-arachidonoylglycerol (2-AG) in the physiological regulation of affective behaviors is not well understood. Here we show that genetic deletion of the 2-AG synthetic enzyme diacylglycerol lipase α (DAGLα) in mice reduces brain, but not circulating, 2-AG levels. DAGLα deletion also results in anxiety-like and sex-specific anhedonic phenotypes associated with impaired activity-dependent eCB retrograde signaling at amygdala glutamatergic synapses. Importantly, acute pharmacological normalization of 2-AG levels reverses both phenotypes of DAGLα deficient mice. These data suggest 2-AG deficiency could contribute to the pathogenesis of affective disorders and that pharmacological normalization of 2-AG signaling could represent a novel approach for the treatment of mood and anxiety disorders. PMID:25466252

  2. A screen for modulators reveals that orexin-A rapidly stimulates thyrotropin releasing hormone expression and release in hypothalamic cell culture.

    PubMed

    Cote-Vélez, Antonieta; Martínez Báez, Anabel; Lezama, Leticia; Uribe, Rosa María; Joseph-Bravo, Patricia; Charli, Jean-Louis

    2017-02-02

    In the paraventricular nucleus of the mammalian hypothalamus, hypophysiotropic thyrotropin releasing hormone (TRH) neurons integrate metabolic information and control the activity of the thyroid axis. Additional populations of TRH neurons reside in various hypothalamic areas, with poorly defined connections and functions, albeit there is evidence that some may be related to energy balance. To establish extracellular modulators of TRH hypothalamic neurons activity, we performed a screen of neurotransmitters effects in hypothalamic cultures. Cell culture conditions were chosen to facilitate the full differentiation of the TRH neurons; these conditions had permitted the characterization of the effects of known modulators of hypophysiotropic TRH neurons. The major end-point of the screen was Trh mRNA levels, since they are generally rapidly (0.5-3h) modified by synaptic inputs onto TRH neurons; in some experiments, TRH cell content or release was also analyzed. Various modulators, including histamine, serotonin, β-endorphin, met-enkephalin, and melanin concentrating hormone, had no effect. Glutamate, as well as ionotropic agonists (kainate and N-Methyl-d-aspartic acid), increased Trh mRNA levels. Baclofen, a GABAB receptor agonist, and dopamine enhanced Trh mRNA levels. An endocannabinoid receptor 1 inverse agonist promoted TRH release. Somatostatin increased Trh mRNA levels and TRH cell content. Orexin-A rapidly increased Trh mRNA levels, TRH cell content and release, while orexin-B decreased Trh mRNA levels. These data reveal unaccounted regulators, which exert potent effects on hypothalamic TRH neurons in vitro.

  3. A Statistical Model of Protein Sequence Similarity and Function Similarity Reveals Overly-Specific Function Predictions

    PubMed Central

    Kolker, Eugene

    2009-01-01

    Background Predicting protein function from primary sequence is an important open problem in modern biology. Not only are there many thousands of proteins of unknown function, current approaches for predicting function must be improved upon. One problem in particular is overly-specific function predictions which we address here with a new statistical model of the relationship between protein sequence similarity and protein function similarity. Methodology Our statistical model is based on sets of proteins with experimentally validated functions and numeric measures of function specificity and function similarity derived from the Gene Ontology. The model predicts the similarity of function between two proteins given their amino acid sequence similarity measured by statistics from the BLAST sequence alignment algorithm. A novel aspect of our model is that it predicts the degree of function similarity shared between two proteins over a continuous range of sequence similarity, facilitating prediction of function with an appropriate level of specificity. Significance Our model shows nearly exact function similarity for proteins with high sequence similarity (bit score >244.7, e-value >1e−62, non-redundant NCBI protein database (NRDB)) and only small likelihood of specific function match for proteins with low sequence similarity (bit score <54.6, e-value <1e−05, NRDB). For sequence similarity ranges in between our annotation model shows an increasing relationship between function similarity and sequence similarity, but with considerable variability. We applied the model to a large set of proteins of unknown function, and predicted functions for thousands of these proteins ranging from general to very specific. We also applied the model to a data set of proteins with previously assigned, specific functions that were electronically based. We show that, on average, these prior function predictions are more specific (quite possibly overly-specific) compared to

  4. Energetic changes caused by antigenic module insertion in a virus-like particle revealed by experiment and molecular dynamics simulations.

    PubMed

    Zhang, Lin; Tang, Ronghong; Bai, Shu; Connors, Natalie K; Lua, Linda H L; Chuan, Yap P; Middelberg, Anton P J; Sun, Yan

    2014-01-01

    The success of recombinant virus-like particles (VLPs) for human papillomavirus and hepatitis B demonstrates the potential of VLPs as safe and efficacious vaccines. With new modular designs emerging, the effects of antigen module insertion on the self-assembly and structural integrity of VLPs should be clarified so as to better enabling improved design. Previous work has revealed insights into the molecular energetics of a VLP subunit, capsomere, comparing energetics within various solution conditions known to drive or inhibit self-assembly. In the present study, molecular dynamics (MD) simulations coupled with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method were performed to examine the molecular interactions and energetics in a modular capsomere of a murine polyomavirus (MPV) VLP designed to protect against influenza. Insertion of an influenza antigenic module is found to lower the binding energy within the capsomere, and a more active state is observed in Assembly Buffer as compared with that in Stabilization Buffer, which has been experimentally validated through measurements using differential scanning calorimetry. Further in-depth analysis based on free-energy decomposition indicates that destabilized binding can be attributed to electrostatic interaction induced by the chosen antigen module. These results provide molecular insights into the conformational stability of capsomeres and their abilities to be exploited for antigen presentation, and are expected to be beneficial for the biomolecular engineering of VLP vaccines.

  5. Energetic Changes Caused by Antigenic Module Insertion in a Virus-Like Particle Revealed by Experiment and Molecular Dynamics Simulations

    PubMed Central

    Zhang, Lin; Tang, Ronghong; Bai, Shu; Connors, Natalie K.; Lua, Linda H. L.; Chuan, Yap P.; Middelberg, Anton P. J.; Sun, Yan

    2014-01-01

    The success of recombinant virus-like particles (VLPs) for human papillomavirus and hepatitis B demonstrates the potential of VLPs as safe and efficacious vaccines. With new modular designs emerging, the effects of antigen module insertion on the self-assembly and structural integrity of VLPs should be clarified so as to better enabling improved design. Previous work has revealed insights into the molecular energetics of a VLP subunit, capsomere, comparing energetics within various solution conditions known to drive or inhibit self-assembly. In the present study, molecular dynamics (MD) simulations coupled with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method were performed to examine the molecular interactions and energetics in a modular capsomere of a murine polyomavirus (MPV) VLP designed to protect against influenza. Insertion of an influenza antigenic module is found to lower the binding energy within the capsomere, and a more active state is observed in Assembly Buffer as compared with that in Stabilization Buffer, which has been experimentally validated through measurements using differential scanning calorimetry. Further in-depth analysis based on free-energy decomposition indicates that destabilized binding can be attributed to electrostatic interaction induced by the chosen antigen module. These results provide molecular insights into the conformational stability of capsomeres and their abilities to be exploited for antigen presentation, and are expected to be beneficial for the biomolecular engineering of VLP vaccines. PMID:25215874

  6. TULA-2, a novel histidine phosphatase regulates bone remodeling by modulating osteoclast function

    PubMed Central

    Back, Steven H.; Adapala, Naga Suresh; Barbe, Mary F.; Carpino, Nick C.; Tsygankov, Alexander Y.; Sanjay, Archana

    2013-01-01

    Bone is a dynamic tissue that depends on the intricate relationship between protein tyrosine kinases (PTK) and protein tyrosine phosphatases (PTP) for maintaining homeostasis. PTKs and PTPs act like molecular on and off switches and help modulate differentiation and the attachment of osteoclasts to bone matrix regulating bone resorption. The novel protein T-cell Ubiquitin Ligand-2 (TULA-2), which is abundantly expressed in osteoclasts, is a novel histidine phosphatase. Our results show that of the two family members only TULA-2 is expressed in osteoclasts and that its expression is sustained throughout the course of osteoclast differentiation suggesting that TULA-2 may play a role during early as well late stages of osteoclast differentiation. Skeletal analysis of mice that do not express TULA or TULA-2 proteins (DKO Mice) revealed that there was a decrease in bone volume due to increased osteoclast numbers and function. Furthermore, in vitro experiments indicated that bone marrow precursor cells from DKO mice have an increased potential to form osteoclasts. At the molecular level, the absence of TULA-2 in osteoclasts results in increased Syk phosphorylation at the Y352 and Y525/526 residues and activation of phospholipase C gamma 2 (PLCγ2) upon engagement of Immune-receptor-Tyrosine-based-Activation-Motif (ITAM)–mediated signaling. Furthermore, expression of a phosphatase-dead TULA-2 leads to increased osteoclast function. Taken together, these results suggest that TULA-2 negatively regulates osteoclast differentiation and function. PMID:23149425

  7. AMIGO2 modulates T cell functions and its deficiency in mice ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Li, Zhilin; Khan, Mohd Moin; Kuja-Panula, Juha; Wang, Hongyun; Chen, Yu; Guo, Deyin; Chen, Zhi Jane; Lahesmaa, Riitta; Rauvala, Heikki; Tian, Li

    2017-05-01

    The immune function of AMIGO2 is currently unknown. Here, we revealed novel roles of AMIGO2 in modulating T-cell functions and EAE using Amigo2-knockout (AMG2KO) mice. Amigo2 was abundantly expressed by murine T helper (Th) cells. Its deficiency impaired transplanted T-cell infiltration into the secondary lymphoid organs and dampened Th-cell activation, but promoted splenic Th-cell proliferation and abundancy therein. AMG2KO Th cells had respectively elevated T-bet in Th1- and GATA-3 in Th2-lineage during early Th-cell differentiation, accompanied with increased IFN-γ and IL-10 but decreased IL-17A production. AMG2KO mice exhibited ameliorated EAE, dampened spinal T-cell accumulation, decreased serum IL-17A levels and enhanced splenic IL-10 production. Adoptive transfer of encephalitogenic AMG2KO T cells induced milder EAE and dampened spinal Th-cell accumulation and Tnf expression. Mechanistically, Amigo2-overexpression in 293T cells dampened NF-kB transcriptional activity, while Amigo2-deficiency enhanced Akt but suppressed GSK-3β phosphorylation and promoted nuclear translocations of NF-kB and NFAT1 in Th-cells. Collectively, our data demonstrate that AMIGO2 is important in regulating T-cell functions and EAE, and may be harnessed as a potential therapeutic target for multiple sclerosis.

  8. Optimization of current modulation function for proton spread-out Bragg peak fields

    SciTech Connect

    Lu, H.-M.; Kooy, Hanne

    2006-05-15

    Proton treatments with spread-out Bragg peak (SOBP) fields often use a rotating modulation wheel of varying thickness to modulate the pristine Bragg peak in depth and intensity. The technique of modulating also the beam current independently over the wheel rotation provides an additional control over the intensities of the pulled-back Bragg peaks. As a result, a single wheel can be used over a large range of energies and SOBP parameters and field-specific wheels are no longer necessary. An essential task in commissioning a particular treatment depth is the determination of this current modulation function. We have developed a method for the optimization of the current modulation function. The basic idea is to treat the entire beam nozzle, housing the various beam scattering and modulating components, as a whole and to characterize its effect as a transformation from a modulating beam current to a depth-dose distribution. While this transformation is difficult to calculate theoretically due to the complex scattering paths in the nozzle and the phantom, it can, however, be determined by time-resolved dose measurements. Using this transformation, we can calculate SOBP depth-dose distributions for any current modulation function and optimize it by a simple numerical optimization. We have applied the new method to a number of proton beams with satisfactory results.

  9. Auditory steady-state responses reveal amplitude modulation gap detection thresholds

    NASA Astrophysics Data System (ADS)

    Ross, Bernhard; Pantev, Christo

    2004-05-01

    Auditory evoked magnetic fields were recorded from the left hemisphere of healthy subjects using a 37-channel magnetometer while stimulating the right ear with 40-Hz amplitude modulated (AM) tone-bursts with 500-Hz carrier frequency in order to study the time-courses of amplitude and phase of auditory steady-state responses (ASSRs). The stimulus duration of 300 ms and the duration of the silent periods (3-300 ms) between succeeding stimuli were chosen to address the question whether the time-course of the ASSR can reflect both temporal integration and temporal resolution in the central auditory processing. Long lasting perturbations of the ASSR were found after gaps in the AM sound, even for gaps of short duration. These were interpreted as evidences for an auditory reset mechanism. Concomitant psycho-acoustical tests corroborated that gap durations perturbing the ASSR were in the same range as the threshold for AM gap detection. Magnetic source localizations estimated the ASSR sources in the primary auditory cortex, suggesting that the processing of temporal structures in the sound is performed at or below the cortical level.

  10. Radiation inactivation reveals discrete cation binding sites that modulate dihydropyridine binding sites

    SciTech Connect

    Bolger, G.T.; Skolnick, P.; Kempner, E.S. )

    1989-08-01

    In low ionic strength buffer (5 mM Tris.HCl), the binding of (3H) nitrendipine to dihydropyridine calcium antagonist binding sites of mouse forebrain membranes is increased by both Na{sup +} and Ca{sup 2+}. Radiation inactivation was used to determine the target size of ({sup 3}H)nitrendipine binding sites in 5 mM Tris.HCl buffer, in the presence and absence of these cations. After irradiation, ({sup 3}H) nitrendipine binding in buffer with or without Na+ was diminished, due to a loss of binding sites and also to an increase in Kd. After accounting for radiation effects on the dissociation constant, the target size for the nitrendipine binding site in buffer was 160-170 kDa and was 170-180 kDa in the presence of sodium. In the presence of calcium ions, ({sup 3}H)nitrendipine binding showed no radiation effects on Kd and yielded a target size of 150-170 kDa. These findings suggest, as in the case of opioid receptors, the presence of high molecular weight membrane components that modulate cation-induced alterations in radioligand binding to dihydropyridine binding sites.

  11. Multi-function Mach-Zehnder modulator for pulse shaping and generation.

    PubMed

    Gao, Jing; Wu, Hui

    2016-09-19

    We present a multi-function electronic-photonic integrated circuit (EPIC) design which exploits a new operation mode of a Mach-Zehnder modulator (MZM). Different from the conventional design, the two arms of the modulator are driven by time-shifted signals of tunable amplitude. We study its operation in the linear and quadratic regions where the MZM is biased at π/2 and π initial phase difference, respectively. In the linear region, the modulator sums the waveforms of the driving signals in the two arms, which can be used to add pre-emphasis function to the modulator, and hence it obviates an electrical pre-emphasis driver. Furthermore, when operating in the quadratic region, the modulator can produce optical pulses with tunable pulse width at double clock rate. Prototype circuits are designed first using a suit of device, electromagnetic simulators to build compact models, and then importing into a photonic circuit simulator for complete circuit performance evaluation.

  12. Pharmacological, antioxidant, genotoxic studies and modulation of rat splenocyte functions by Cyperus rotundus extracts

    PubMed Central

    2013-01-01

    Background Cyperus rotundus Linn. (Cyperaceae) is a Tunisian medicinal plant used in folkloric (traditional) medicine to treat stomach disorders and inflammatory diseases. The present study explored the analgesic, anti-inflammatory and genotoxic activities of extracts from the aerial parts of C. rotundus. The antioxidant capacity and the modulation of splenocyte functions by these extracts were also investigated in mice. The phytochemical analysis was carried out using standard methods. Methods Aqueous, ethyl acetate, methanol and TOF-enriched extracts (300, 150, and 50 μg/ml) were evaluated for their analgesic and anti-inflammatory activities. 4, 2, and 1 mg/ml of each extract were tested to investigate their effect on lipid peroxidation. The genotoxic study was monitored by measuring the structural chromosome aberrations of mice treated with 300 mg/kg of extract. The proliferation of lymphocytes in the absence and presence of mitogens was assessed at a concentration range 1–1000 μg/ml. Results The tested extracts were able to decrease the mouse ear oedema induced by xylene. Furthermore, it was shown that the same extracts reduced the number of abdominal contractions caused by acetic acid in mice, revealing the peripheral analgesic activity of these extracts. It is worth noting that mice treated with doses up to 300 mg/kg b.w. of Cyperus rotundus extracts did not exhibit any toxicity. The tested extracts significantly enhance lymphocyte proliferation at 1 mg/ml. Conclusions It appears that C. rotundus extracts contain potent components such as flavonoids that may potentially be useful for modulating the immune cell functions, provoking analgesic, anti-inflammatory and antioxidant effects. PMID:23388107

  13. Androgens Modulate Structure and Function of the Suprachiasmatic Nucleus Brain Clock

    PubMed Central

    Karatsoreos, Ilia N.; Butler, Matthew P.; LeSauter, Joseph

    2011-01-01

    Gonadal hormones can modulate circadian rhythms in rodents and humans, and androgen receptors are highly localized within the core region of the mouse suprachiasmatic nucleus (SCN) brain clock. Although androgens are known to modulate neural plasticity in other CNS compartments, the role of androgens and their receptors on plasticity in the SCN is unexplored. In the present study, we ask whether androgens influence the structure and function of the mouse SCN by examining the effects of gonadectomy (GDX) on the structure of the SCN circuit and its responses to light, including induction of clock genes and behavioral phase shifting. We found that after GDX, glial fibrillary acidic protein increased with concomitant decreases in the expression of the synaptic proteins synaptophysin and postsynaptic density 95. We also found that GDX exerts effects on the molecular and behavioral responses to light that are phase dependent. In late night [circadian time (CT)21], GDX increased light-induced mPer1 but not mPer2 expression compared with intact (INT) controls. In contrast, in early night (CT13.5), GDX decreased light induced mPer2 but had no effect on mPer1. At CT13.5, GDX animals also showed larger phase delays than did INT. Treatment of GDX animals with the nonaromatizable androgen dihydrotestosterone restored glial fibrillary acidic protein, postsynaptic density 95, and synaptophysin in the SCN and reinstated the INT pattern of molecular and behavioral responses to light. Together, the results reveal a role for androgens in regulating circuitry in the mouse SCN, with functional consequences for clock gene expression and behavioral responses to photic phase resetting stimuli. PMID:21363939

  14. Drosophila Dicer-2 has an RNA interference–independent function that modulates Toll immune signaling

    PubMed Central

    Wang, Zhaowei; Wu, Di; Liu, Yongxiang; Xia, Xiaoling; Gong, Wanyun; Qiu, Yang; Yang, Jie; Zheng, Ya; Li, Jingjing; Wang, Yu-Feng; Xiang, Ye; Hu, Yuanyang; Zhou, Xi

    2015-01-01

    Dicer-2 is the central player for small interfering RNA biogenesis in the Drosophila RNA interference (RNAi) pathway. Intriguingly, we found that Dicer-2 has an unconventional RNAi-independent function that positively modulates Toll immune signaling, which defends against Gram-positive bacteria, fungi, and some viruses, in both cells and adult flies. The loss of Dicer-2 expression makes fruit flies more susceptible to fungal infection. We further revealed that Dicer-2 posttranscriptionally modulates Toll signaling because Dicer-2 is required for the proper expression of Toll protein but not for Toll protein stability or Toll mRNA transcription. Moreover, Dicer-2 directly binds to the 3′ untranslated region (3′UTR) of Toll mRNA via its PAZ (Piwi/Argonaute/Zwille) domain and is required for protein translation mediated by Toll 3′UTR. The loss of Toll 3′UTR binding activity makes Dicer-2 incapable of promoting Toll signaling. These data indicate that the interaction between Dicer-2 and Toll mRNA plays a pivotal role in Toll immune signaling. In addition, we found that Dicer-2 is also required for the Toll signaling induced by two different RNA viruses in Drosophila cells. Consequently, our findings uncover a novel RNAi-independent function of Dicer-2 in the posttranscriptional regulation of Toll protein expression and signaling, indicate an unexpected intersection of the RNAi pathway and the Toll pathway, and provide new insights into Toll immune signaling, Drosophila Dicer-2, and probably Dicer and Dicer-related proteins in other organisms. PMID:26601278

  15. Electronic structure modulation of graphene edges by chemical functionalization

    NASA Astrophysics Data System (ADS)

    Taira, Remi; Yamanaka, Ayaka; Okada, Susumu

    2016-11-01

    Using the density functional theory with the effective screening medium method, we study the electronic properties of graphene nanoribbons with zigzag edges that are terminated by hydrogen and ketone, hydroxyl, carbonyl, and carboxyl functional groups. Our calculations showed that the work function and electronic structures of the edges of the nanoribbons are sensitive to the functional groups attached to the edges. The nearly free electron state emerges in the vacuum region outside the hydroxylated edges and crosses the Fermi level, indicating the possibility of negative electron affinity at the edges.

  16. Size product modulation by enzyme concentration reveals two distinct levan elongation mechanisms in Bacillus subtilis levansucrase.

    PubMed

    Raga-Carbajal, Enrique; Carrillo-Nava, Ernesto; Costas, Miguel; Porras-Dominguez, Jaime; López-Munguía, Agustín; Olvera, Clarita

    2016-04-01

    Two levan distributions are produced typically by Bacillus subtilis levansucrase (SacB): a high-molecular weight (HMW) levan with an average molecular weight of 2300 kDa, and a low-molecular weight (LMW) levan with 7.2 kDa. Previous results have demonstrated how reaction conditions modulate levan molecular weight distribution. Here we demonstrate that the SacB enzyme is able to perform two mechanisms: a processive mechanism for the synthesis of HMW levan and a non-processive mechanism for the synthesis of LMW levan. Furthermore, the effect of enzyme and substrate concentration on the elongation mechanism was studied. While a negligible effect of substrate concentration was observed, we found that SacB elongation mechanism is determined by enzyme concentration. A high concentration of enzyme is required to synthesize LMW levan, involving the sequential formation of a wide variety of intermediate size levan oligosaccharides with a degree of polymerization (DP) up to ∼70. In contrast, an HMW levan distribution is synthesized through a processive mechanism producing oligosaccharides with DP <20, in reactions occurring at low enzyme concentration. Additionally, reactions where levansucrase concentration was varied while the total enzyme activity was kept constant (using a combination of active SacB and an inactive SacB E342A/D86A) allowed us to demonstrate that enzyme concentration and not enzyme activity affects the final levan molecular weight distribution. The effect of enzyme concentration on the elongation mechanism is discussed in detail, finding that protein-product interactions are responsible for the mechanism shift.

  17. The RSC chromatin remodeling complex bears an essential fungal-specific protein module with broad functional roles.

    PubMed

    Wilson, Boris; Erdjument-Bromage, Hediye; Tempst, Paul; Cairns, Bradley R

    2006-02-01

    RSC is an essential and abundant ATP-dependent chromatin remodeling complex from Saccharomyces cerevisiae. Here we show that the RSC components Rsc7/Npl6 and Rsc14/Ldb7 interact physically and/or functionally with Rsc3, Rsc30, and Htl1 to form a module important for a broad range of RSC functions. A strain lacking Rsc7 fails to properly assemble RSC, which confers sensitivity to temperature and to agents that cause DNA damage, microtubule depolymerization, or cell wall stress (likely via transcriptional misregulation). Cells lacking Rsc14 display sensitivity to cell wall stress and are deficient in the assembly of Rsc3 and Rsc30. Interestingly, certain rsc7delta and rsc14delta phenotypes are suppressed by an increased dosage of Rsc3, an essential RSC member with roles in cell wall integrity and spindle checkpoint pathways. Thus, Rsc7 and Rsc14 have different roles in the module as well as sharing physical and functional connections to Rsc3. Using a genetic array of nonessential null mutations (SGA) we identified mutations that are sick/lethal in combination with the rsc7delta mutation, which revealed connections to a surprisingly large number of chromatin remodeling complexes and cellular processes. Taken together, we define a protein module on the RSC complex with links to a broad spectrum of cellular functions.

  18. Comparative Systems Biology Reveals Allelic Variation Modulating Tocochromanol Profiles in Barley (Hordeum vulgare L.)

    PubMed Central

    Oliver, Rebekah E.; Islamovic, Emir; Obert, Donald E.; Wise, Mitchell L.; Herrin, Lauri L.; Hang, An; Harrison, Stephen A.; Ibrahim, Amir; Marshall, Juliet M.; Miclaus, Kelci J.; Lazo, Gerard R.; Hu, Gongshe; Jackson, Eric W.

    2014-01-01

    Tocochromanols are recognized for nutritional content, plant stress response, and seed longevity. Here we present a systems biological approach to characterize and develop predictive assays for genes affecting tocochromanol variation in barley. Major QTL, detected in three regions of a SNP linkage map, affected multiple tocochromanol forms. Candidate genes were identified through barley/rice orthology and sequenced in genotypes with disparate tocochromanol profiles. Gene-specific markers, designed based on observed polymorphism, mapped to the originating QTL, increasing R2 values at the respective loci. Polymorphism within promoter regions corresponded to motifs known to influence gene expression. Quantitative PCR analysis revealed a trend of increased expression in tissues grown at cold temperatures. These results demonstrate utility of a novel method for rapid gene identification and characterization, and provide a resource for efficient development of barley lines with improved tocochromanol profiles. PMID:24820172

  19. Revealing Ozgur's Thoughts of a Quadratic Function with a Clinical Interview: Concepts and Their Underlying Reasons

    ERIC Educational Resources Information Center

    Ozaltun Celik, Aytug; Bukova Guzel, Esra

    2017-01-01

    The quadratic function is an important concept for calculus but the students at high school have many difficulties related to this concept. It is important that the teaching of the quadratic function is realized considering the students' thinking. In this context, the aim of this study conducted through a qualitative case study is to reveal the…

  20. Utilization of alkyne bioconjugations to modulate protein function.

    PubMed

    Maza, Johnathan C; Howard, Christina A; Vipani, Megha A; Travis, Christopher R; Young, Douglas D

    2017-01-01

    The ability to introduce or modify protein function has widespread application to multiple scientific disciplines. The introduction of unique unnatural amino acids represents an excellent mechanism to incorporate new functionality; however, this approach is limited by ability of the translational machinery to recognize and incorporate the chemical moiety. To overcome this potential limitation, we aimed to exploit the functionality of existing unnatural amino acids to perform bioorthogonal reactions to introduce the desired protein modification, altering its function. Specifically, via the introduction of a terminal alkyne containing unnatural amino acid, we demonstrated chemically programmable protein modification through the Glaser-Hay coupling to other terminal alkynes, altering the function of a protein. In a proof-of-concept experiment, this approach has been utilized to modify the fluorescence spectrum of green fluorescent protein.

  1. Markov State Models Provide Insights into Dynamic Modulation of Protein Function

    PubMed Central

    2015-01-01

    Conspectus Protein function is inextricably linked to protein dynamics. As we move from a static structural picture to a dynamic ensemble view of protein structure and function, novel computational paradigms are required for observing and understanding conformational dynamics of proteins and its functional implications. In principle, molecular dynamics simulations can provide the time evolution of atomistic models of proteins, but the long time scales associated with functional dynamics make it difficult to observe rare dynamical transitions. The issue of extracting essential functional components of protein dynamics from noisy simulation data presents another set of challenges in obtaining an unbiased understanding of protein motions. Therefore, a methodology that provides a statistical framework for efficient sampling and a human-readable view of the key aspects of functional dynamics from data analysis is required. The Markov state model (MSM), which has recently become popular worldwide for studying protein dynamics, is an example of such a framework. In this Account, we review the use of Markov state models for efficient sampling of the hierarchy of time scales associated with protein dynamics, automatic identification of key conformational states, and the degrees of freedom associated with slow dynamical processes. Applications of MSMs for studying long time scale phenomena such as activation mechanisms of cellular signaling proteins has yielded novel insights into protein function. In particular, from MSMs built using large-scale simulations of GPCRs and kinases, we have shown that complex conformational changes in proteins can be described in terms of structural changes in key structural motifs or “molecular switches” within the protein, the transitions between functionally active and inactive states of proteins proceed via multiple pathways, and ligand or substrate binding modulates the flux through these pathways. Finally, MSMs also provide a

  2. Markov state models provide insights into dynamic modulation of protein function.

    PubMed

    Shukla, Diwakar; Hernández, Carlos X; Weber, Jeffrey K; Pande, Vijay S

    2015-02-17

    CONSPECTUS: Protein function is inextricably linked to protein dynamics. As we move from a static structural picture to a dynamic ensemble view of protein structure and function, novel computational paradigms are required for observing and understanding conformational dynamics of proteins and its functional implications. In principle, molecular dynamics simulations can provide the time evolution of atomistic models of proteins, but the long time scales associated with functional dynamics make it difficult to observe rare dynamical transitions. The issue of extracting essential functional components of protein dynamics from noisy simulation data presents another set of challenges in obtaining an unbiased understanding of protein motions. Therefore, a methodology that provides a statistical framework for efficient sampling and a human-readable view of the key aspects of functional dynamics from data analysis is required. The Markov state model (MSM), which has recently become popular worldwide for studying protein dynamics, is an example of such a framework. In this Account, we review the use of Markov state models for efficient sampling of the hierarchy of time scales associated with protein dynamics, automatic identification of key conformational states, and the degrees of freedom associated with slow dynamical processes. Applications of MSMs for studying long time scale phenomena such as activation mechanisms of cellular signaling proteins has yielded novel insights into protein function. In particular, from MSMs built using large-scale simulations of GPCRs and kinases, we have shown that complex conformational changes in proteins can be described in terms of structural changes in key structural motifs or "molecular switches" within the protein, the transitions between functionally active and inactive states of proteins proceed via multiple pathways, and ligand or substrate binding modulates the flux through these pathways. Finally, MSMs also provide a theoretical

  3. Genome-wide occupancy profile of mediator and the Srb8-11 module reveals interactions with coding regions.

    PubMed

    Zhu, Xuefeng; Wirén, Marianna; Sinha, Indranil; Rasmussen, Nina N; Linder, Tomas; Holmberg, Steen; Ekwall, Karl; Gustafsson, Claes M

    2006-04-21

    Mediator exists in a free form containing the Med12, Med13, CDK8, and CycC subunits (the Srb8-11 module) and a smaller form, which lacks these four subunits and associates with RNA polymerase II (Pol II), forming a holoenzyme. We use chromatin immunoprecipitation (ChIP) and DNA microarrays to investigate genome-wide localization of Mediator and the Srb8-11 module in fission yeast. Mediator and the Srb8-11 module display similar binding patterns, and interactions with promoters and upstream activating sequences correlate with increased transcription activity. Unexpectedly, Mediator also interacts with the downstream coding region of many genes. These interactions display a negative bias for positions closer to the 5' ends of open reading frames (ORFs) and appear functionally important, because downregulation of transcription in a temperature-sensitive med17 mutant strain correlates with increased Mediator occupancy in the coding region. We propose that Mediator coordinates transcription initiation with transcriptional events in the coding region of eukaryotic genes.

  4. Functional modulation of AMP-activated protein kinase by cereblon.

    PubMed

    Lee, Kwang Min; Jo, Sooyeon; Kim, Hyunyoung; Lee, Jongwon; Park, Chul-Seung

    2011-03-01

    Mutations in cereblon (CRBN), a substrate binding component of the E3 ubiquitin ligase complex, cause a form of mental retardation in humans. However, the cellular proteins that interact with CRBN remain largely unknown. Here, we report that CRBN directly interacts with the α1 subunit of AMP-activated protein kinase (AMPK α1) and inhibits the activation of AMPK activation. The ectopic expression of CRBN reduces phosphorylation of AMPK α1 and, thus, inhibits the enzyme in a nutrient-independent manner. Moreover, AMPK α1 can be potently activated by suppressing endogenous CRBN using CRBN-specific small hairpin RNAs. Thus, CRBN may act as a negative modulator of the AMPK signaling pathway in vivo.

  5. Guide RNA functional modules direct Cas9 activity and orthogonality.

    PubMed

    Briner, Alexandra E; Donohoue, Paul D; Gomaa, Ahmed A; Selle, Kurt; Slorach, Euan M; Nye, Christopher H; Haurwitz, Rachel E; Beisel, Chase L; May, Andrew P; Barrangou, Rodolphe

    2014-10-23

    The RNA-guided Cas9 endonuclease specifically targets and cleaves DNA in a sequence-dependent manner and has been widely used for programmable genome editing. Cas9 activity is dependent on interactions with guide RNAs, and evolutionarily divergent Cas9 nucleases have been shown to work orthogonally. However, the molecular basis of selective Cas9:guide-RNA interactions is poorly understood. Here, we identify and characterize six conserved modules within native crRNA:tracrRNA duplexes and single guide RNAs (sgRNAs) that direct Cas9 endonuclease activity. We show the bulge and nexus are necessary for DNA cleavage and demonstrate that the nexus and hairpins are instrumental in defining orthogonality between systems. In contrast, the crRNA:tracrRNA complementary region can be modified or partially removed. Collectively, our results establish guide RNA features that drive DNA targeting by Cas9 and open new design and engineering avenues for CRISPR technologies.

  6. Modulation of Potassium Channel Function by Methionine Oxidation and Reduction

    NASA Astrophysics Data System (ADS)

    Ciorba, Matthew A.; Heinemann, Stefan H.; Weissbach, Herbert; Brot, Nathan; Hoshi, Toshinori

    1997-09-01

    Oxidation of amino acid residues in proteins can be caused by a variety of oxidizing agents normally produced by cells. The oxidation of methionine in proteins to methionine sulfoxide is implicated in aging as well as in pathological conditions, and it is a reversible reaction mediated by a ubiquitous enzyme, peptide methionine sulfoxide reductase. The reversibility of methionine oxidation suggests that it could act as a cellular regulatory mechanism although no such in vivo activity has been demonstrated. We show here that oxidation of a methionine residue in a voltage-dependent potassium channel modulates its inactivation. When this methionine residue is oxidized to methionine sulfoxide, the inactivation is disrupted, and it is reversed by coexpression with peptide methionine sulfoxide reductase. The results suggest that oxidation and reduction of methionine could play a dynamic role in the cellular signal transduction process in a variety of systems.

  7. Cadmium modulates adipocyte functions in metallothionein-null mice

    SciTech Connect

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito; Sato, Masao; Inoue, Masahisa; Suzuki, Shinya

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WAT with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.

  8. Binocular functional architecture for detection of contrast-modulated gratings.

    PubMed

    Georgeson, Mark A; Schofield, Andrew J

    2016-11-01

    Combination of signals from the two eyes is the gateway to stereo vision. To gain insight into binocular signal processing, we studied binocular summation for luminance-modulated gratings (L or LM) and contrast-modulated gratings (CM). We measured 2AFC detection thresholds for a signal grating (0.75c/deg, 216ms) shown to one eye, both eyes, or both eyes out-of-phase. For LM and CM, the carrier noise was in both eyes, even when the signal was monocular. Mean binocular thresholds for luminance gratings (L) were 5.4dB better than monocular thresholds - close to perfect linear summation (6dB). For LM and CM the binocular advantage was again 5-6dB, even when the carrier noise was uncorrelated, anti-correlated, or at orthogonal orientations in the two eyes. Binocular combination for CM probably arises from summation of envelope responses, and not from summation of these conflicting carrier patterns. Antiphase signals produced no binocular advantage, but thresholds were about 1-3dB higher than monocular ones. This is not consistent with simple linear summation, which should give complete cancellation and unmeasurably high thresholds. We propose a three-channel model in which noisy monocular responses to the envelope are binocularly combined in a contrast-weighted sum, but also remain separately available to perception via a max operator. Vision selects the largest of the three responses. With in-phase gratings the binocular channel dominates, but antiphase gratings cancel in the binocular channel and the monocular channels mediate detection. The small antiphase disadvantage might be explained by a subtle influence of background responses on binocular and monocular detection.

  9. Functional Constraint Profiling of a Viral Protein Reveals Discordance of Evolutionary Conservation and Functionality

    PubMed Central

    Wu, Nicholas C.; Olson, C. Anders; Du, Yushen; Le, Shuai; Tran, Kevin; Remenyi, Roland; Gong, Danyang; Al-Mawsawi, Laith Q.; Qi, Hangfei; Wu, Ting-Ting; Sun, Ren

    2015-01-01

    Viruses often encode proteins with multiple functions due to their compact genomes. Existing approaches to identify functional residues largely rely on sequence conservation analysis. Inferring functional residues from sequence conservation can produce false positives, in which the conserved residues are functionally silent, or false negatives, where functional residues are not identified since they are species-specific and therefore non-conserved. Furthermore, the tedious process of constructing and analyzing individual mutations limits the number of residues that can be examined in a single study. Here, we developed a systematic approach to identify the functional residues of a viral protein by coupling experimental fitness profiling with protein stability prediction using the influenza virus polymerase PA subunit as the target protein. We identified a significant number of functional residues that were influenza type-specific and were evolutionarily non-conserved among different influenza types. Our results indicate that type-specific functional residues are prevalent and may not otherwise be identified by sequence conservation analysis alone. More importantly, this technique can be adapted to any viral (and potentially non-viral) protein where structural information is available. PMID:26132554

  10. Exercise and fitness modulate cognitive function in older adults.

    PubMed

    Chu, Chien-Heng; Chen, Ai-Guo; Hung, Tsung-Min; Wang, Chun-Chih; Chang, Yu-Kai

    2015-12-01

    This study investigated the effects of acute exercise on cognitive function and the modulatory role of fitness in the relationship between exercise and cognition. Forty-six healthy older adults, categorized into higher or lower fitness groups, completed the Stroop test after both 30 min of aerobic exercise and a reading control with a counterbalanced order. Our findings demonstrated that acute exercise leads to general improvements in 2 types of cognitive functions and to specific improvements in executive function. Additionally, older adults with initially higher fitness levels experienced greater beneficial effects from acute exercise.

  11. Rasd1 modulates the coactivator function of NonO in the cyclic AMP pathway.

    PubMed

    Ong, Shufen Angeline; Tan, Jen Jen; Tew, Wai Loon; Chen, Ken-Shiung

    2011-01-01

    All living organisms exhibit autonomous daily physiological and behavioural rhythms to help them synchronize with the environment. Entrainment of circadian rhythm is achieved via activation of cyclic AMP (cAMP) and mitogen-activated protein kinase signaling pathways. NonO (p54nrb) is a multifunctional protein involved in transcriptional activation of the cAMP pathway and is involved in circadian rhythm control. Rasd1 is a monomeric G protein implicated to play a pivotal role in potentiating both photic and nonphotic responses of the circadian rhythm. In this study, we have identified and validated NonO as an interacting partner of Rasd1 via affinity pulldown, co-immunoprecipitation and indirect immunofluorescence studies. The GTP-hydrolysis activity of Rasd1 is required for the functional interaction. Functional interaction of Rasd1-NonO in the cAMP pathway was investigated via reporter gene assays, chromatin immunoprecipitation and gene knockdown. We showed that Rasd1 and NonO interact at the CRE-site of specific target genes. These findings reveal a novel mechanism by which the coregulator activity of NonO can be modulated.

  12. Modulation transfer function evaluation of cone beam computed tomography for dental use with the oversampling method

    PubMed Central

    Watanabe, H; Honda, E; Kurabayashi, T

    2010-01-01

    Objectives The aim was to investigate the possibility of evaluating the modulation transfer function (MTF) of cone beam CT (CBCT) for dental use using the oversampling method. Methods The CBCT apparatus (3D Accuitomo) with an image intensifier was used with a 100 μm tungsten wire placed inside the scanner at a slight angle to the plane perpendicular to the plane of interest and scanned. 200 contiguous reconstructed images were used to obtain the oversampling line-spread function (LSF). The MTF curve was obtained by computing the Fourier transformation from the oversampled LSF. Line pair tests were also performed using Catphan®. Results The oversampling method provided smooth and reproducible MTF curves. The MTF curves revealed that the spatial resolution in the z-axis direction was significantly higher than that in the axial direction. This result was also confirmed by the line pair test. Conclusions MTF analysis was performed successfully using the oversampling method. In addition, this study clarified that the 3D Accuitomo had high spatial resolution, especially in the z-axis direction. PMID:20089741

  13. Psychometric functions for sentence recognition in sinusoidally amplitude-modulated noises

    PubMed Central

    Shen, Yi; Manzano, Nicole K.; Richards, Virginia M.

    2015-01-01

    Listeners' speech reception is better when speech is masked by a modulated masker compared to an unmodulated masker with the same long-term root-mean-square level. It has been suggested that listeners take advantage of brief periods of quiescence in a modulated masker to extract speech information. Two experiments examined the contribution of such “dip-listening” models. The first experiment estimated psychometric functions for speech intelligibility using sentences masked by sinusoidally modulated and unmodulated speech-shaped noises and the second experiment estimated detection thresholds for a tone pip added at the central dip in the masker. Modulation rates ranging from 1 to 64 Hz were tested. In experiment 1 the slopes of the psychometric functions were shallower for lower modulation rates and the pattern of speech reception thresholds as a function of modulation rate was nonmonotonic with a minimum near 16 Hz. In contrast, the detection thresholds from experiment 2 increased monotonically with modulation rate. The results suggest that the benefits of listening to speech in temporally fluctuating maskers cannot be solely ascribed to the temporal acuity of the auditory system. PMID:26723318

  14. Modulation of the Immune Response by Nematode Secreted Acetylcholinesterase Revealed by Heterologous Expression in Trypanosoma musculi

    PubMed Central

    Vaux, Rachel; Schnoeller, Corinna; Berkachy, Rita; Roberts, Luke B.; Hagen, Jana; Gounaris, Kleoniki

    2016-01-01

    Nematode parasites secrete molecules which regulate the mammalian immune system, but their genetic intractability is a major impediment to identifying and characterising the biological effects of these molecules. We describe here a novel system for heterologous expression of helminth secreted proteins in the natural parasite of mice, Trypanosoma musculi, which can be used to analyse putative immunomodulatory functions. Trypanosomes were engineered to express a secreted acetylcholinesterase from Nippostrongylus brasiliensis. Infection of mice with transgenic parasites expressing acetylcholinesterase resulted in truncated infection, with trypanosomes cleared early from the circulation. Analysis of cellular phenotypes indicated that exposure to acetylcholinesterase in vivo promoted classical activation of macrophages (M1), with elevated production of nitric oxide and lowered arginase activity. This most likely occurred due to the altered cytokine environment, as splenocytes from mice infected with T. musculi expressing acetylcholinesterase showed enhanced production of IFNγ and TNFα, with diminished IL-4, IL-13 and IL-5. These results suggest that one of the functions of nematode secreted acetylcholinesterase may be to alter the cytokine environment in order to inhibit development of M2 macrophages which are deleterious to parasite survival. Transgenic T. musculi represents a valuable new vehicle to screen for novel immunoregulatory proteins by extracellular delivery in vivo to the murine host. PMID:27802350

  15. An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator

    PubMed Central

    Lee, Dong-Sung; Shin, Jong-Yeon; Tonge, Peter D.; Puri, Mira C.; Lee, Seungbok; Park, Hansoo; Lee, Won-Chul; Hussein, Samer M. I.; Bleazard, Thomas; Yun, Ji-Young; Kim, Jihye; Li, Mira; Cloonan, Nicole; Wood, David; Clancy, Jennifer L.; Mosbergen, Rowland; Yi, Jae-Hyuk; Yang, Kap-Seok; Kim, Hyungtae; Rhee, Hwanseok; Wells, Christine A.; Preiss, Thomas; Grimmond, Sean M.; Rogers, Ian M.; Nagy, Andras; Seo, Jeong-Sun

    2014-01-01

    Reprogramming of somatic cells to induced pluripotent stem cells involves a dynamic rearrangement of the epigenetic landscape. To characterize this epigenomic roadmap, we have performed MethylC-seq, ChIP-seq (H3K4/K27/K36me3) and RNA-Seq on samples taken at several time points during murine secondary reprogramming as part of Project Grandiose. We find that DNA methylation gain during reprogramming occurs gradually, while loss is achieved only at the ESC-like state. Binding sites of activated factors exhibit focal demethylation during reprogramming, while ESC-like pluripotent cells are distinguished by extension of demethylation to the wider neighbourhood. We observed that genes with CpG-rich promoters demonstrate stable low methylation and strong engagement of histone marks, whereas genes with CpG-poor promoters are safeguarded by methylation. Such DNA methylation-driven control is the key to the regulation of ESC-pluripotency genes, including Dppa4, Dppa5a and Esrrb. These results reveal the crucial role that DNA methylation plays as an epigenetic switch driving somatic cells to pluripotency. PMID:25493341

  16. Additive Functions in Boolean Models of Gene Regulatory Network Modules

    PubMed Central

    Darabos, Christian; Di Cunto, Ferdinando; Tomassini, Marco; Moore, Jason H.; Provero, Paolo; Giacobini, Mario

    2011-01-01

    Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity

  17. Additive functions in boolean models of gene regulatory network modules.

    PubMed

    Darabos, Christian; Di Cunto, Ferdinando; Tomassini, Marco; Moore, Jason H; Provero, Paolo; Giacobini, Mario

    2011-01-01

    Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity

  18. Gut microbial communities modulating brain development and function.

    PubMed

    Al-Asmakh, Maha; Anuar, Farhana; Zadjali, Fahad; Rafter, Joseph; Pettersson, Sven

    2012-01-01

    Mammalian brain development is initiated in utero and internal and external environmental signals can affect this process all the way until adulthood. Recent observations suggest that one such external cue is the indigenous microbiota which has been shown to affect developmental programming of the brain. This may have consequences for brain maturation and function that impact on cognitive functions later in life. This review discusses these recent findings from a developmental perspective.

  19. Modulation of the pupil function of microscope objective lens for multifocal multi-photon microscopy using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Matsumoto, Naoya; Okazaki, Shigetoshi; Takamoto, Hisayoshi; Inoue, Takashi; Terakawa, Susumu

    2014-02-01

    We propose a method for high precision modulation of the pupil function of a microscope objective lens to improve the performance of multifocal multi-photon microscopy (MMM). To modulate the pupil function, we adopt a spatial light modulator (SLM) and place it at the conjugate position of the objective lens. The SLM can generate an arbitrary number of spots to excite the multiple fluorescence spots (MFS) at the desired positions and intensities by applying an appropriate computer-generated hologram (CGH). This flexibility allows us to control the MFS according to the photobleaching level of a fluorescent protein and phototoxicity of a specimen. However, when a large number of excitation spots are generated, the intensity distribution of the MFS is significantly different from the one originally designed due to misalignment of the optical setup and characteristics of the SLM. As a result, the image of a specimen obtained using laser scanning for the MFS has block noise segments because the SLM could not generate a uniform MFS. To improve the intensity distribution of the MFS, we adaptively redesigned the CGH based on the observed MFS. We experimentally demonstrate an improvement in the uniformity of a 10 × 10 MFS grid using a dye solution. The simplicity of the proposed method will allow it to be applied for calibration of MMM before observing living tissue. After the MMM calibration, we performed laser scanning with two-photon excitation to observe a real specimen without detecting block noise segments.

  20. Harmonic and frequency modulated ultrasonic vocalizations reveal differences in conditioned and unconditioned reward processing.

    PubMed

    Garcia, Erik J; McCowan, Talus J; Cain, Mary E

    2015-01-01

    Novelty and sensation seeking (NSS) and ultrasonic vocalizations (USVs) are both used as measures of individual differences in reward sensitivity in rodent models. High responders in the inescapable novelty screen have a greater response to low doses of amphetamine and acquire self-administration more rapidly, while the novelty place preference screen is positively correlated with compulsive drug seeking. These screens are uncorrelated and implicated in separate drug abuse models. 50 kHz USVs measure affective state in rats and are evoked by positive stimuli. NSS and USVs are each implicated in drug response, self-administration, and reveal differences in individual behavior, yet their relationship with each other is not understood. The present study screened rats for their response to novelty and measured USVs of all call types in response to heterospecific play to determine the relationships between these individual difference traits. Generally, we hypothesized that 50k Hz USVs would be positively correlated with the NPP screen, and that 22 kHz would be positively correlated with the IEN screen. Results indicate none of the screens were correlated indicating they are measuring different individual difference traits. However, examination of the subtypes of USVs indicated harmonic USVs and the novelty place preference were positively correlated. Harmonic 50 kHz USVs increased in response to reward associated context, suggesting animals conditioned to the heterospecific tickle arena and anticipated rewarding stimuli, while FM only increased in response to tickling. USV subtypes can be used to elucidate differences in attribution of incentive value across conditioned stimuli and receipt of rewarding stimuli. These data provide strong support that harmonic and FM USVs can be used to understand reward processing in addition to NSS.

  1. Genetic variants of ApoE and ApoER2 differentially modulate endothelial function.

    PubMed

    Ulrich, Victoria; Konaniah, Eddy S; Herz, Joachim; Gerard, Robert D; Jung, Eunjeong; Yuhanna, Ivan S; Ahmed, Mohamed; Hui, David Y; Mineo, Chieko; Shaul, Philip W

    2014-09-16

    It is poorly understood why there is greater cardiovascular disease risk associated with the apolipoprotein E4 (apoE) allele vs. apoE3, and also greater risk with the LRP8/apolipoprotein E receptor 2 (ApoER2) variant ApoER2-R952Q. Little is known about the function of the apoE-ApoER2 tandem outside of the central nervous system. We now report that in endothelial cells apoE3 binding to ApoER2 stimulates endothelial NO synthase (eNOS) and endothelial cell migration, and it also attenuates monocyte-endothelial cell adhesion. However, apoE4 does not stimulate eNOS or endothelial cell migration or dampen cell adhesion, and alternatively it selectively antagonizes apoE3/ApoER2 actions. The contrasting endothelial actions of apoE4 vs. apoE3 require the N-terminal to C-terminal interaction in apoE4 that distinguishes it structurally from apoE3. Reconstitution experiments further reveal that ApoER2-R952Q is a loss-of-function variant of the receptor in endothelium. Carotid artery reendothelialization is decreased in ApoER2(-/-) mice, and whereas adenoviral-driven apoE3 expression in wild-type mice has no effect, apoE4 impairs reendothelialization. Moreover, in a model of neointima formation invoked by carotid artery endothelial denudation, ApoER2(-/-) mice display exaggerated neointima development. Thus, the apoE3/ApoER2 tandem promotes endothelial NO production, endothelial repair, and endothelial anti-inflammatory properties, and it prevents neointima formation. In contrast, apoE4 and ApoER2-R952Q display dominant-negative action and loss of function, respectively. Thus, genetic variants of apoE and ApoER2 impact cardiovascular health by differentially modulating endothelial function.

  2. The Bacterial Virulence Factor Lymphostatin Compromises Intestinal Epithelial Barrier Function by Modulating Rho GTPases

    PubMed Central

    Babbin, Brian A.; Sasaki, Maiko; Gerner-Schmidt, Kirsten W.; Nusrat, Asma; Klapproth, Jan-Michael A.

    2009-01-01

    Lymphocyte inhibitory factor A (lifA) in Citrobacter rodentium encodes the large toxin lymphostatin, which contains two enzymatic motifs associated with bacterial pathogenesis, a glucosyltransferase and a protease. Our aim was to determine the effects of each lymphostatin motif on intestinal epithelial-barrier function. In-frame mutations of C. rodentium lifA glucosyltransferase (CrGlM21) and protease (CrPrM5) were generated by homologous recombination. Infection of both model intestinal epithelial monolayers and mice with C. rodentium wild type resulted in compromised epithelial barrier function and mislocalization of key intercellular junction proteins in the tight junction and adherens junction. In contrast, CrGlM21 was impaired in its ability to reduce barrier function and influenced the tight junction proteins ZO-1 and occludin. CrPrM5 demonstrated decreased effects on the adherens junction proteins β-catenin and E-cadherin. Analysis of the mechanisms revealed that C. rodentium wild type differentially influenced Rho GTPase activation, suppressed Cdc42 activation, and induced Rho GTPase activation. CrGlM21 lost its suppressive effects on Cdc42 activation, whereas CrPrM5 was unable to activate Rho signaling. Rescue experiments using constitutively active Cdc42 or C3 exotoxin to inhibit Rho GTPase supported a role of Rho GTPases in the epithelial barrier compromise induced by C. rodentium. Taken together, our results suggest that lymphostatin is a bacterial virulence factor that contributes to the disruption of intestinal epithelial-barrier function via the modulation of Rho GTPase activities. PMID:19286565

  3. Endothelial Mineralocorticoid Receptors Differentially Contribute to Coronary and Mesenteric Vascular Function Without Modulating Blood Pressure.

    PubMed

    Mueller, Katelee Barrett; Bender, Shawn B; Hong, Kwangseok; Yang, Yan; Aronovitz, Mark; Jaisser, Frederic; Hill, Michael A; Jaffe, Iris Z

    2015-11-01

    Arteriolar vasoreactivity tightly regulates tissue-specific blood flow and contributes to systemic blood pressure (BP) but becomes dysfunctional in the setting of cardiovascular disease. The mineralocorticoid receptor (MR) is known to regulate BP via the kidney and by vasoconstriction in smooth muscle cells. Although endothelial cells (EC) express MR, the contribution of EC-MR to BP and resistance vessel function remains unclear. To address this, we created a mouse with MR specifically deleted from EC (EC-MR knockout [EC-MR-KO]) but with intact leukocyte MR expression and normal renal MR function. Telemetric BP studies reveal no difference between male EC-MR-KO mice and MR-intact littermates in systolic, diastolic, circadian, or salt-sensitive BP or in the hypertensive responses to aldosterone±salt or angiotensin II±l-nitroarginine methyl ester. Vessel myography demonstrated normal vasorelaxation in mesenteric and coronary arterioles from EC-MR-KO mice. After exposure to angiotensin II-induced hypertension, impaired endothelial-dependent relaxation was prevented in EC-MR-KO mice in mesenteric vessels but not in coronary vessels. Mesenteric vessels from angiotensin II-exposed EC-MR-KO mice showed increased maximum responsiveness to acetylcholine when compared with MR-intact vessels, a difference that is lost with indomethacin+l-nitroarginine methyl ester pretreatment. These data support that EC-MR plays a role in regulating endothelial function in hypertension. Although there was no effect of EC-MR deletion on mesenteric vasoconstriction, coronary arterioles from EC-MR-KO mice showed decreased constriction to endothelin-1 and thromboxane agonist at baseline and also after exposure to hypertension. These data support that EC-MR participates in regulation of vasomotor function in a vascular bed-specific manner that is also modulated by risk factors, such as hypertension.

  4. Individual preferences modulate incentive values: Evidence from functional MRI

    PubMed Central

    Koeneke, Susan; Pedroni, Andreas F; Dieckmann, Anja; Bosch, Volker; Jäncke, Lutz

    2008-01-01

    Background In most studies on human reward processing, reward intensity has been manipulated on an objective scale (e.g., varying monetary value). Everyday experience, however, teaches us that objectively equivalent rewards may differ substantially in their subjective incentive values. One factor influencing incentive value in humans is branding. The current study explores the hypothesis that individual brand preferences modulate activity in reward areas similarly to objectively measurable differences in reward intensity. Methods A wheel-of-fortune game comprising an anticipation phase and a subsequent outcome evaluation phase was implemented. Inside a 3 Tesla MRI scanner, 19 participants played for chocolate bars of three different brands that differed in subjective attractiveness. Results Parametrical analysis of the obtained fMRI data demonstrated that the level of activity in anatomically distinct neural networks was linearly associated with the subjective preference hierarchy of the brands played for. During the anticipation phases, preference-dependent neural activity has been registered in premotor areas, insular cortex, orbitofrontal cortex, and in the midbrain. During the outcome phases, neural activity in the caudate nucleus, precuneus, lingual gyrus, cerebellum, and in the pallidum was influenced by individual preference. Conclusion Our results suggest a graded effect of differently preferred brands onto the incentive value of objectively equivalent rewards. Regarding the anticipation phase, the results reflect an intensified state of wanting that facilitates action preparation when the participants play for their favorite brand. This mechanism may underlie approach behavior in real-life choice situations. PMID:19032746

  5. Serotonin modulates muscle function in the medicinal leech Hirudo verbana

    PubMed Central

    Gerry, Shannon P.; Ellerby, David J.

    2011-01-01

    The body wall muscles of sanguivorous leeches power mechanically diverse behaviours: suction feeding, crawling and swimming. These require longitudinal muscle to exert force over an extremely large length range, from 145 to 46 per cent of the mean segmental swimming length. Previous data, however, suggest that leech body wall muscle has limited capacity for force production when elongated. Serotonin (5-HT) alters the passive properties of the body wall and stimulates feeding. We hypothesized that 5-HT may also have a role in allowing force production in elongated muscle by changing the shape of the length–tension relationship (LTR). LTRs were measured from longitudinal muscle strips in vitro in physiological saline with and without the presence of 10 µM 5-HT. The LTR was much broader than previously measured for leech muscle. Rather than shifting the LTR, 5-HT reduced passive muscle tonus and increased active stress at all lengths. In addition to modulating leech behaviour and passive mechanical properties, 5-HT probably enhances muscle force and work production during locomotion and feeding. PMID:21561963

  6. The Neuropsychopharmacology of Fronto-Executive Function: Monoaminergic Modulation

    PubMed Central

    Robbins, T.W.; Arnsten, A.F.T.

    2010-01-01

    We review the modulatory effects of the catecholamine neurotransmitters noradrenaline and dopamine on prefrontal cortical function. The effects of pharmacologic manipulations of these systems, sometimes in comparison with the indoleamine serotonin (5-HT), on performance on a variety of tasks that tap working memory, attentional-set formation and shifting, reversal learning, and response inhibition are compared in rodents, nonhuman primates, and humans using, in a behavioral context, several techniques ranging from microiontophoresis and single-cell electrophysiological recording to pharmacologic functional magnetic resonance imaging. Dissociable effects of drugs and neurotoxins affecting these monoamine systems suggest new ways of conceptualizing state-dependent fronto-executive functions, with implications for understanding the molecular genetic basis of mental illness and its treatment. PMID:19555290

  7. Quantum Theta Functions and Gabor Frames for Modulation Spaces

    NASA Astrophysics Data System (ADS)

    Luef, Franz; Manin, Yuri I.

    2009-06-01

    Representations of the celebrated Heisenberg commutation relations in quantum mechanics (and their exponentiated versions) form the starting point for a number of basic constructions, both in mathematics and mathematical physics (geometric quantization, quantum tori, classical and quantum theta functions) and signal analysis (Gabor analysis). In this paper we will try to bridge the two communities, represented by the two co-authors: that of noncommutative geometry and that of signal analysis. After providing a brief comparative dictionary of the two languages, we will show, e.g. that the Janssen representation of Gabor frames with generalized Gaussians as Gabor atoms yields in a natural way quantum theta functions, and that the Rieffel scalar product and associativity relations underlie both the functional equations for quantum thetas and the Fundamental Identity of Gabor analysis.

  8. The neuropsychopharmacology of fronto-executive function: monoaminergic modulation.

    PubMed

    Robbins, T W; Arnsten, A F T

    2009-01-01

    We review the modulatory effects of the catecholamine neurotransmitters noradrenaline and dopamine on prefrontal cortical function. The effects of pharmacologic manipulations of these systems, sometimes in comparison with the indoleamine serotonin (5-HT), on performance on a variety of tasks that tap working memory, attentional-set formation and shifting, reversal learning, and response inhibition are compared in rodents, nonhuman primates, and humans using, in a behavioral context, several techniques ranging from microiontophoresis and single-cell electrophysiological recording to pharmacologic functional magnetic resonance imaging. Dissociable effects of drugs and neurotoxins affecting these monoamine systems suggest new ways of conceptualizing state-dependent fronto-executive functions, with implications for understanding the molecular genetic basis of mental illness and its treatment.

  9. Finding type 2 diabetes causal single nucleotide polymorphism combinations and functional modules from genome-wide association data

    PubMed Central

    2013-01-01

    Background Due to the low statistical power of individual markers from a genome-wide association study (GWAS), detecting causal single nucleotide polymorphisms (SNPs) for complex diseases is a challenge. SNP combinations are suggested to compensate for the low statistical power of individual markers, but SNP combinations from GWAS generate high computational complexity. Methods We aim to detect type 2 diabetes (T2D) causal SNP combinations from a GWAS dataset with optimal filtration and to discover the biological meaning of the detected SNP combinations. Optimal filtration can enhance the statistical power of SNP combinations by comparing the error rates of SNP combinations from various Bonferroni thresholds and p-value range-based thresholds combined with linkage disequilibrium (LD) pruning. T2D causal SNP combinations are selected using random forests with variable selection from an optimal SNP dataset. T2D causal SNP combinations and genome-wide SNPs are mapped into functional modules using expanded gene set enrichment analysis (GSEA) considering pathway, transcription factor (TF)-target, miRNA-target, gene ontology, and protein complex functional modules. The prediction error rates are measured for SNP sets from functional module-based filtration that selects SNPs within functional modules from genome-wide SNPs based expanded GSEA. Results A T2D causal SNP combination containing 101 SNPs from the Wellcome Trust Case Control Consortium (WTCCC) GWAS dataset are selected using optimal filtration criteria, with an error rate of 10.25%. Matching 101 SNPs with known T2D genes and functional modules reveals the relationships between T2D and SNP combinations. The prediction error rates of SNP sets from functional module-based filtration record no significance compared to the prediction error rates of randomly selected SNP sets and T2D causal SNP combinations from optimal filtration. Conclusions We propose a detection method for complex disease causal SNP combinations

  10. Inflammation modulates human HDL composition and function in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inflammation may directly impair HDL functions, in particular reverse cholesterol transport (RCT), but limited data support this concept in humans. Our study was designed to investigate this relationship. We employed low-dose human endotoxemia to assess the effects of inflammation on HDL and RCT-rel...

  11. Assessing upper limb function in nonambulant SMA patients: development of a new module.

    PubMed

    Mazzone, Elena; Bianco, Flaviana; Martinelli, Diego; Glanzman, Allan M; Messina, Sonia; De Sanctis, Roberto; Main, Marion; Eagle, Michelle; Florence, Julaine; Krosschell, Kristin; Vasco, Gessica; Pelliccioni, Marco; Lombardo, Marilena; Pane, Marika; Finkel, Richard; Muntoni, Francesco; Bertini, Enrico; Mercuri, Eugenio

    2011-06-01

    We report the development of a module specifically designed for assessing upper limb function in nonambulant SMA patients, including young children and those with severe contractures. The application of the module to a preschool cohort of 40 children (age 30-48 months) showed that all the items could be completed by 30 months. The module was also used in 45 nonambulant SMA patients (age 30 months to 27 years). Their scores were more variable than in the preschool cohort, ranging from 0 to 18. The magnitude of scores was not related to age (r=-0.19). The upper limb scores had a good correlation with the Hammersmith Functional Motor Scale, r=0.75, but the upper limb function did not always strictly follow the overall gross motor function. These findings suggest that even some of the very weak nonambulant children possess upper limb skills that can be measured.

  12. Travelling-wave Mach-Zehnder modulators functioning as optical isolators.

    PubMed

    Dong, Po

    2015-04-20

    On-chip optical isolators not requiring the use of magneto-optical materials has become a long-standing challenge in integrated optics. Here, we demonstrate that a traditional travelling-wave modulator can effectively function as an optical isolator, when driven under a prescribed modulation condition. By using an off-shelve lithium niobate modulator, we achieve more than 12.5 dB isolation over an 11.3-THz bandwidth at telecommunication wavelengths with a fiber-to-fiber insertion loss of 5.5 dB, by employing only a single radio-frequency drive signal. We also verify that the proposed active isolator can be functional in a laser system to effectively prevent instability due to strong back reflections. Since travelling-wave modulators are common devices in III-V and silicon photonics, our simple but efficient architecture may provide a practical solution to non-reciprocal light routing in photonic integrated circuits.

  13. Identification of functional modules in a PPI network by clique percolation clustering.

    PubMed

    Zhang, Shihua; Ning, Xuemei; Zhang, Xiang-Sun

    2006-12-01

    Large-scale experiments and data integration have provided the opportunity to systematically analyze and comprehensively understand the topology of biological networks and biochemical processes in cells. Modular architecture which encompasses groups of genes/proteins involved in elementary biological functional units is a basic form of the organization of interacting proteins. Here we apply a graph clustering algorithm based on clique percolation clustering to detect overlapping network modules of a protein-protein interaction (PPI) network. Our analysis of the yeast Sacchromyces cerevisiae suggests that most of the detected modules correspond to one or more experimentally functional modules and half of these annotated modules match well with experimentally determined protein complexes. Our method of analysis can of course be applied to protein-protein interaction data for any species and even other biological networks.

  14. [The assessment of modulated radiofrequence electromagnetic radiation on cognitive function in rats of different ages].

    PubMed

    Priakhin, E A; Triapitsyna, G A; Andreev, S S; Kolomiets, I A; Polevik, N D; Akleev, A V

    2007-01-01

    The modulated radiofrequence electromagnetic radiation influence on cognitive function of male uninbred Wister rat exposed at the age of sexual maturation (2 months) and at the age of morphofunctional maturity (3.5 months) was examined. Animals were subjected to pulse electromagnetic radiation (925 MHz) modulated as a GSM standard with the power density 1.2 mW/cm2 for 10 minutes every day for 12 days. At day 8 of exposure the cognitive function were examined with the Morris water maze. In the result of investigation it was determines that modulated radiofrequence electromagnetic radiation at the sexual maturation age did not affect the spatial learning and improve the visual orientation performance. Modulated radiofrequence electromagnetic exposure of animals at the sex maturity age did not affect the visual performance and improve the spatial performance of male rats.

  15. Genomic Heterogeneity of Osteosarcoma - Shift from Single Candidates to Functional Modules

    PubMed Central

    Maugg, Doris; Eckstein, Gertrud; Baumhoer, Daniel; Nathrath, Michaela; Korsching, Eberhard

    2015-01-01

    Osteosarcoma (OS), a bone tumor, exhibit a complex karyotype. On the genomic level a highly variable degree of alterations in nearly all chromosomal regions and between individual tumors is observable. This hampers the identification of common drivers in OS biology. To identify the common molecular mechanisms involved in the maintenance of OS, we follow the hypothesis that all the copy number-associated differences between the patients are intercepted on the level of the functional modules. The implementation is based on a network approach utilizing copy number associated genes in OS, paired expression data and protein interaction data. The resulting functional modules of tightly connected genes were interpreted regarding their biological functions in OS and their potential prognostic significance. We identified an osteosarcoma network assembling well-known and lesser-known candidates. The derived network shows a significant connectivity and modularity suggesting that the genes affected by the heterogeneous genetic alterations share the same biological context. The network modules participate in several critical aspects of cancer biology like DNA damage response, cell growth, and cell motility which is in line with the hypothesis of specifically deregulated but functional modules in cancer. Further, we could deduce genes with possible prognostic significance in OS for further investigation (e.g. EZR, CDKN2A, MAP3K5). Several of those module genes were located on chromosome 6q. The given systems biological approach provides evidence that heterogeneity on the genomic and expression level is ordered by the biological system on the level of the functional modules. Different genomic aberrations are pointing to the same cellular network vicinity to form vital, but already neoplastically altered, functional modules maintaining OS. This observation, exemplarily now shown for OS, has been under discussion already for a longer time, but often in a hypothetical manner, and

  16. Sexual hormones modulate compensatory renal growth and function.

    PubMed

    Azurmendi, Pablo J; Oddo, Elisabet M; Toledo, Jorge E; Martin, Rodolfo S; Ibarra, Fernando R; Arrizurieta, Elvira E

    2013-01-01

    The role played by sexual hormones and vasoactive substances in the compensatory renal growth (CRG) that follows uninephrectomy (uNx) is still controversial. Intact and gonadectomized adult Wistar rats of both sexes, with and without uNx, performed at 90 days age, were studied at age 150 days. Daily urine volume, electrolyte excretion and kallikrein activity (UKa) were determined. Afterwards, glomerular filtration rate and blood pressure were measured, the kidneys weighed and DNA, protein and RNA studied to determine nuclei content and cell size. When the remnant kidney weight at age 150 days was compared with the weight of the kidney removed at the time of uNx, male uNx rats showed the greatest CRG (50%) while growth in the other uNx groups was 25%, 15% and 19% in orchidectomized, female and ovariectomized rats, respectively. The small CRG observed in the uNx female rats was accompanied by the lowest glomerular filtration value, 0.56 ± 0.02 ml/ min/g kwt compared, with the other uNx groups, p < 0.05. Cell size (protein or RNA/DNA) was similar for all the groups except for uNx orchidectomized rats. In this group the cytoplasmatic protein or RNA content was lower than in the other groups while DNA (nuclei content) was similar. Some degree of hyperplasia was determined by DNA content in the uNx groups. Male sexual hormones positively influenced CRG and its absence modulated cell size. Female sexual hormones, instead, did not appear to stimulate CRG. The kallikrein kinin system may not be involved in CRG.

  17. Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder

    PubMed Central

    Tornador, Cristian; Falcón, Carles; López‐Solà, Marina; Hernández‐Ribas, Rosa; Pujol, Jesús; Menchón, José M.; Ritter, Petra; Cardoner, Narcis; Soriano‐Mas, Carles; Deco, Gustavo

    2016-01-01

    Abstract Resting‐state fMRI (RS‐fMRI) has become a useful tool to investigate the connectivity structure of mental health disorders. In the case of major depressive disorder (MDD), recent studies regarding the RS‐fMRI have found abnormal connectivity in several regions of the brain, particularly in the default mode network (DMN). Thus, the relevance of the DMN to self‐referential thoughts and ruminations has made the use of the resting‐state approach particularly important for MDD. The majority of such research has relied on the grand averaged functional connectivity measures based on the temporal correlations between the BOLD time series of various brain regions. We, in our study, investigated the variations in the functional connectivity over time at global and local level using RS‐fMRI BOLD time series of 27 MDD patients and 27 healthy control subjects. We found that global synchronization and temporal stability were significantly increased in the MDD patients. Furthermore, the participants with MDD showed significantly increased overall average (static) functional connectivity (sFC) but decreased variability of functional connectivity (vFC) within specific networks. Static FC increased to predominance among the regions pertaining to the default mode network (DMN), while the decreased variability of FC was observed in the connections between the DMN and the frontoparietal network. Hum Brain Mapp 37:2918–2930, 2016. © 2016 Wiley Periodicals, Inc. PMID:27120982

  18. Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder.

    PubMed

    Demirtaş, Murat; Tornador, Cristian; Falcón, Carles; López-Solà, Marina; Hernández-Ribas, Rosa; Pujol, Jesús; Menchón, José M; Ritter, Petra; Cardoner, Narcis; Soriano-Mas, Carles; Deco, Gustavo

    2016-08-01

    Resting-state fMRI (RS-fMRI) has become a useful tool to investigate the connectivity structure of mental health disorders. In the case of major depressive disorder (MDD), recent studies regarding the RS-fMRI have found abnormal connectivity in several regions of the brain, particularly in the default mode network (DMN). Thus, the relevance of the DMN to self-referential thoughts and ruminations has made the use of the resting-state approach particularly important for MDD. The majority of such research has relied on the grand averaged functional connectivity measures based on the temporal correlations between the BOLD time series of various brain regions. We, in our study, investigated the variations in the functional connectivity over time at global and local level using RS-fMRI BOLD time series of 27 MDD patients and 27 healthy control subjects. We found that global synchronization and temporal stability were significantly increased in the MDD patients. Furthermore, the participants with MDD showed significantly increased overall average (static) functional connectivity (sFC) but decreased variability of functional connectivity (vFC) within specific networks. Static FC increased to predominance among the regions pertaining to the default mode network (DMN), while the decreased variability of FC was observed in the connections between the DMN and the frontoparietal network. Hum Brain Mapp 37:2918-2930, 2016. © 2016 Wiley Periodicals, Inc.

  19. Essential Functional Modules for Pathogenic and Defensive Mechanisms in Candida albicans Infections

    PubMed Central

    Tsai, I-Chun; Lin, Che; Chuang, Yung-Jen

    2014-01-01

    The clinical and biological significance of the study of fungal pathogen Candida albicans (C. albicans) has markedly increased. However, the explicit pathogenic and invasive mechanisms of such host-pathogen interactions have not yet been fully elucidated. Therefore, the essential functional modules involved in C. albicans-zebrafish interactions were investigated in this study. Adopting a systems biology approach, the early-stage and late-stage protein-protein interaction (PPI) networks for both C. albicans and zebrafish were constructed. By comparing PPI networks at the early and late stages of the infection process, several critical functional modules were identified in both pathogenic and defensive mechanisms. Functional modules in C. albicans, like those involved in hyphal morphogenesis, ion and small molecule transport, protein secretion, and shifts in carbon utilization, were seen to play important roles in pathogen invasion and damage caused to host cells. Moreover, the functional modules in zebrafish, such as those involved in immune response, apoptosis mechanisms, ion transport, protein secretion, and hemostasis-related processes, were found to be significant as defensive mechanisms during C. albicans infection. The essential functional modules thus determined could provide insights into the molecular mechanisms of host-pathogen interactions during the infection process and thereby devise potential therapeutic strategies to treat C. albicans infection. PMID:24757665

  20. C-element: a new clustering algorithm to find high quality functional modules in PPI networks.

    PubMed

    Ghasemi, Mahdieh; Rahgozar, Maseud; Bidkhori, Gholamreza; Masoudi-Nejad, Ali

    2013-01-01

    Graph clustering algorithms are widely used in the analysis of biological networks. Extracting functional modules in protein-protein interaction (PPI) networks is one such use. Most clustering algorithms whose focuses are on finding functional modules try either to find a clique like sub networks or to grow clusters starting from vertices with high degrees as seeds. These algorithms do not make any difference between a biological network and any other networks. In the current research, we present a new procedure to find functional modules in PPI networks. Our main idea is to model a biological concept and to use this concept for finding good functional modules in PPI networks. In order to evaluate the quality of the obtained clusters, we compared the results of our algorithm with those of some other widely used clustering algorithms on three high throughput PPI networks from Sacchromyces Cerevisiae, Homo sapiens and Caenorhabditis elegans as well as on some tissue specific networks. Gene Ontology (GO) analyses were used to compare the results of different algorithms. Each algorithm's result was then compared with GO-term derived functional modules. We also analyzed the effect of using tissue specific networks on the quality of the obtained clusters. The experimental results indicate that the new algorithm outperforms most of the others, and this improvement is more significant when tissue specific networks are used.

  1. Scaling behavior in turbulent Rayleigh-Bénard convection revealed by conditional structure functions.

    PubMed

    Ching, Emily S C; Tsang, Yue-Kin; Fok, T N; He, Xiaozhou; Tong, Penger

    2013-01-01

    We show that the nature of the scaling behavior can be revealed by studying the conditional structure functions evaluated at given values of the locally averaged thermal dissipation rate. These conditional structure functions have power-law dependence on the value of the locally averaged thermal dissipation rate, and such dependence for the Bolgiano-Obukhov scaling is different from the other scaling behaviors. Our analysis of experimental measurements verifies the power-law dependence and reveals the Bolgiano-Obukhov scaling behavior at the center of the bottom plate of the convection cell.

  2. Functional modulation on macrophage by low dose naltrexone (LDN).

    PubMed

    Yi, Zhe; Guo, Shengnan; Hu, Xu; Wang, Xiaonan; Zhang, Xiaoqing; Griffin, Noreen; Shan, Fengping

    2016-10-01

    Previously it was confirmed that naltrexone, a non-peptide δ-opioid receptor selective antagonist is mainly used for alcoholic dependence and opioid addiction treatment. However, there is increasing data on immune regulation of low dose naltrexone (LDN). The aim of this work was to explore the effect of LDN on the phenotype and function of macrophage. The changes of macrophage after treatment with LDN were examined using flow cytometry (FCM); FITC-dextran phagocytosis and enzyme-linked immunosorbent assay (ELISA). We have found that LDN enhances function of macrophage as confirmed by up-regulating MHC II molecule and CD64 on macrophage while down-regulating CD206 expression. Furthermore the productions of TNF-α, IL-6, IL-1β, increased significantly. Macrophages in LDN treated group performed the enhanced phagocytosis. Therefore it is concluded that LDN could promote function of macrophage and this work has provided concrete data of impact on immune system by LDN. Especially the data would support interaction between CD4+T cell and macrophage in AIDS treatment with LDN in Africa (LDN has already been approved in Nigeria for the use in AIDS treatment).

  3. The structure of mouse cytomegalovirus m04 protein obtained from sparse NMR data reveals a conserved fold of the m02-m06 viral immune modulator family.

    PubMed

    Sgourakis, Nikolaos G; Natarajan, Kannan; Ying, Jinfa; Vogeli, Beat; Boyd, Lisa F; Margulies, David H; Bax, Ad

    2014-09-02

    Immunoevasins are key proteins used by viruses to subvert host immune responses. Determining their high-resolution structures is key to understanding virus-host interactions toward the design of vaccines and other antiviral therapies. Mouse cytomegalovirus encodes a unique set of immunoevasins, the m02-m06 family, that modulates major histocompatibility complex class I (MHC-I) antigen presentation to CD8+ T cells and natural killer cells. Notwithstanding the large number of genetic and functional studies, the structural biology of immunoevasins remains incompletely understood, largely because of crystallization bottlenecks. Here we implement a technology using sparse nuclear magnetic resonance data and integrative Rosetta modeling to determine the structure of the m04/gp34 immunoevasin extracellular domain. The structure reveals a β fold that is representative of the m02-m06 family of viral proteins, several of which are known to bind MHC-I molecules and interfere with antigen presentation, suggesting its role as a diversified immune regulation module.

  4. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate.

    PubMed

    De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; Gilbert, Jack A; Ercolini, Danilo

    2016-02-25

    Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipid catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. The results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.

  5. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate

    SciTech Connect

    De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; Gilbert, Jack A.; Ercolini, Danilo

    2016-02-25

    Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipid catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. Finally, the results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.

  6. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate

    PubMed Central

    De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; Gilbert, Jack A.; Ercolini, Danilo

    2016-01-01

    Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipid catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. The results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality. PMID:26911915

  7. Principles of motivation revealed by the diverse functions of neuropharmacological and neuroanatomical substrates underlying feeding behavior

    PubMed Central

    Baldo, Brian A.; Pratt, Wayne E.; Will, Matthew J.; Hanlon, Erin C.; Bakshi, Vaishali P.; Cador, Martine

    2013-01-01

    Circuits that participate in specific subcomponents of feeding (e.g., gustatory perception, peripheral feedback relevant to satiety and energy balance, reward coding, etc.) are found at all levels of the neural axis. Further complexity is conferred by the wide variety of feeding-modulatory neurotransmitters and neuropeptides that act within these circuits. An ongoing challenge has been to refine the understanding of the functional specificity of these neurotransmitters and circuits, and there have been exciting advances in recent years. We focus here on foundational work of Dr. Ann Kelley that identified distinguishable actions of striatal opioid peptide modulation and dopamine transmission in subcomponents of reward processing. We also discuss her work in overlaying these neuropharmacological effects upon anatomical pathways that link the telencephalon (cortex and basal ganglia) with feeding-control circuits in the hypothalamus. Using these seminal contributions as a starting point, we will discuss new findings that expand our understanding of (1) the specific, differentiable motivational processes that are governed by central dopamine and opioid transmission, (2) the manner in which other striatal neuromodulators, specifically acetylcholine, endocannabinoids and adenosine, modulate these motivational processes (including via interactions with opioid systems), and (3) the organization of the cortical-subcortical network that subserves opioid-driven feeding. The findings discussed here strengthen the view that incentive-motivational properties of food are coded by substrates and neural circuits that are distinguishable from those that mediate the acute hedonic experience of food reward. Striatal opioid transmission modulates reward processing by engaging frontotemporal circuits, possibly via a hypothalamic-thalamic axis, that ultimately impinges upon hypothalamic modules dedicated to autonomic function and motor pattern control. We will conclude by discussing

  8. Bio-mimicking of proline-rich motif applied to carbon nanotube reveals unexpected subtleties underlying nanoparticle functionalization.

    PubMed

    Zhang, Yuanzhao; Jimenez-Cruz, Camilo A; Wang, Jian; Zhou, Bo; Yang, Zaixing; Zhou, Ruhong

    2014-11-27

    Here, we report computational studies of the SH3 protein domain interacting with various single-walled carbon nanotubes (SWCNT) either bare or functionalized by mimicking the proline-rich motif (PRM) ligand (PPPVPPRR) and compare it to the SH3-PRM complex binding. With prolines or a single arginine attached, the SWCNT gained slightly on specificity when compared with the bare control, whereas with multi-arginine systems the specificity dropped dramatically to our surprise. Although the electrostatic interaction provided by arginines is crucial in the recognition between PRM and SH3 domain, our results suggest that attaching multiple arginines to the SWCNT has a detrimental effect on the binding affinity. Detailed analysis of the MD trajectories found two main factors that modulate the specificity of the binding: the existence of competing acidic patches at the surface of SH3 that leads to "trapping and clamping" by the arginines, and the rigidity of the SWCNT introducing entropic penalties in the proper binding. Further investigation revealed that the same "clamping" phenomenon exits in the PRM-SH3 system, which has not been reported in previous literature. The competing effects between nanoparticle and its functionalization components revealed by our model system should be of value to current and future nanomedicine designs.

  9. Bio-mimicking of Proline-Rich Motif Applied to Carbon Nanotube Reveals Unexpected Subtleties Underlying Nanoparticle Functionalization

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanzhao; Jimenez-Cruz, Camilo A.; Wang, Jian; Zhou, Bo; Yang, Zaixing; Zhou, Ruhong

    2014-11-01

    Here, we report computational studies of the SH3 protein domain interacting with various single-walled carbon nanotubes (SWCNT) either bare or functionalized by mimicking the proline-rich motif (PRM) ligand (PPPVPPRR) and compare it to the SH3-PRM complex binding. With prolines or a single arginine attached, the SWCNT gained slightly on specificity when compared with the bare control, whereas with multi-arginine systems the specificity dropped dramatically to our surprise. Although the electrostatic interaction provided by arginines is crucial in the recognition between PRM and SH3 domain, our results suggest that attaching multiple arginines to the SWCNT has a detrimental effect on the binding affinity. Detailed analysis of the MD trajectories found two main factors that modulate the specificity of the binding: the existence of competing acidic patches at the surface of SH3 that leads to ``trapping and clamping'' by the arginines, and the rigidity of the SWCNT introducing entropic penalties in the proper binding. Further investigation revealed that the same ``clamping'' phenomenon exits in the PRM-SH3 system, which has not been reported in previous literature. The competing effects between nanoparticle and its functionalization components revealed by our model system should be of value to current and future nanomedicine designs.

  10. Revealing the role of the endocannabinoid system modulators, SR141716A, URB597 and VDM-11, in sleep homeostasis.

    PubMed

    Murillo-Rodríguez, Eric; Machado, Sergio; Rocha, Nuno Barbosa; Budde, Henning; Yuan, Ti-Fei; Arias-Carrión, Oscar

    2016-12-17

    The endocannabinoid system comprises receptors (CB1 and CB2 cannabinoid receptors), enzymes (Fatty Acid Amide Hydrolase [FAAH], which synthesizes the endocannabinoid anandamide), as well as the anandamide membrane transporter (AMT). Importantly, previous experiments have demonstrated that the endocannabinoid system modulates multiple neurobiological functions, including sleep. For instance, SR141716A (the CB1 cannabinoid receptor antagonist) as well as URB597 (the FAAH inhibitor) increase waking in rats whereas VDM-11 (the blocker of the AMT) enhances sleep in rodents. However, no further evidence is available regarding the neurobiological role of the endocannabinoid system in the homeostatic control of sleep. Therefore, the aim of the current experiment was to test if SR141716A, URB597 or VDM-11 would modulate the sleep rebound after sleep deprivation. Thus, these compounds were systemically injected (5, 10, 20mg/kg; ip; separately each one) into rats after prolonged waking. We found that SR141716A and URB597 blocked in dose-dependent fashion the sleep rebound whereas animals treated with VDM-11 displayed sleep rebound during the recovery period. Complementary, injection after sleep deprivation of either SR141716A or URB597 enhanced dose-dependently the extracellular levels of dopamine (DA), norepinephrine (NE), epinephrine (EP), serotonin (5-HT), as well as adenosine (AD) while VDM-11 caused a decline in contents of these molecules. These findings suggest that SR141716A or URB597 behave as a potent stimulants since they suppressed the sleep recovery period after prolonged waking. It can be concluded that elements of the endocannabinoid system, such as the CB1 cannabinoid receptor, FAAH and AMT, modulate the sleep homeostasis after prolonged waking.

  11. Sigma-1 receptors modulate functional activity of rat splenocytes.

    PubMed

    Liu, Y; Whitlock, B B; Pultz, J A; Wolfe, S A

    1995-06-01

    Neuroleptics, opiates, and cocaine are commonly prescribed for or abused by humans. Although primarily used for their actions at other receptors in brain, these compounds also act at sigma receptors. We have previously identified sigma-1 receptors on human peripheral blood leukocytes and rat spleen, and in the present study we demonstrate a correlation between the pharmacology of these receptors and the ability of drugs to suppress concanavalin A-induced splenocyte proliferation. These results support the hypothesis that sigma-1 receptors regulate functional activities of immune cells, and suggest that sigma agonists may cause changes in immune competence in vivo.

  12. Predictability of Genetic Interactions from Functional Gene Modules

    PubMed Central

    Young, Jonathan H.; Marcotte, Edward M.

    2016-01-01

    Characterizing genetic interactions is crucial to understanding cellular and organismal response to gene-level perturbations. Such knowledge can inform the selection of candidate disease therapy targets, yet experimentally determining whether genes interact is technically nontrivial and time-consuming. High-fidelity prediction of different classes of genetic interactions in multiple organisms would substantially alleviate this experimental burden. Under the hypothesis that functionally related genes tend to share common genetic interaction partners, we evaluate a computational approach to predict genetic interactions in Homo sapiens, Drosophila melanogaster, and Saccharomyces cerevisiae. By leveraging knowledge of functional relationships between genes, we cross-validate predictions on known genetic interactions and observe high predictive power of multiple classes of genetic interactions in all three organisms. Additionally, our method suggests high-confidence candidate interaction pairs that can be directly experimentally tested. A web application is provided for users to query genes for predicted novel genetic interaction partners. Finally, by subsampling the known yeast genetic interaction network, we found that novel genetic interactions are predictable even when knowledge of currently known interactions is minimal. PMID:28007839

  13. Myocyte repolarization modulates myocardial function in aging dogs.

    PubMed

    Sorrentino, Andrea; Signore, Sergio; Qanud, Khaled; Borghetti, Giulia; Meo, Marianna; Cannata, Antonio; Zhou, Yu; Wybieralska, Ewa; Luciani, Marco; Kannappan, Ramaswamy; Zhang, Eric; Matsuda, Alex; Webster, Andrew; Cimini, Maria; Kertowidjojo, Elizabeth; D'Alessandro, David A; Wunimenghe, Oriyanhan; Michler, Robert E; Royer, Christopher; Goichberg, Polina; Leri, Annarosa; Barrett, Edward G; Anversa, Piero; Hintze, Thomas H; Rota, Marcello

    2016-04-01

    Studies of myocardial aging are complex and the mechanisms involved in the deterioration of ventricular performance and decreased functional reserve of the old heart remain to be properly defined. We have studied a colony of beagle dogs from 3 to 14 yr of age kept under a highly regulated environment to define the effects of aging on the myocardium. Ventricular, myocardial, and myocyte function, together with anatomical and structural properties of the organ and cardiomyocytes, were evaluated. Ventricular hypertrophy was not observed with aging and the structural composition of the myocardium was modestly affected. Alterations in the myocyte compartment were identified in aged dogs, and these factors negatively interfere with the contractile reserve typical of the young heart. The duration of the action potential is prolonged in old cardiomyocytes contributing to the slower electrical recovery of the myocardium. Also, the remodeled repolarization of cardiomyocytes with aging provides inotropic support to the senescent muscle but compromises its contractile reserve, rendering the old heart ineffective under conditions of high hemodynamic demand. The defects in the electrical and mechanical properties of cardiomyocytes with aging suggest that this cell population is an important determinant of the cardiac senescent phenotype. Collectively, the delayed electrical repolarization of aging cardiomyocytes may be viewed as a critical variable of the aging myopathy and its propensity to evolve into ventricular decompensation under stressful conditions.

  14. Modulation of lipoprotein receptor functions by intracellular adaptor proteins.

    PubMed

    Stolt, Peggy C; Bock, Hans H

    2006-10-01

    Members of the low density lipoprotein (LDL) receptor gene family are critically involved in a wide range of physiological processes including lipid and vitamin homeostasis, cellular migration, neurodevelopment, and synaptic plasticity, to name a few. Lipoprotein receptors exert these diverse biological functions by acting as cellular uptake receptors or by inducing intracellular signaling cascades. It was discovered that a short sequence in the intracellular region of all lipoprotein receptors, Asn-Pro-X-Tyr (NPXY) is important for mediating either endocytosis or signal transduction events, and that this motif serves as a binding site for phosphotyrosine-binding (PTB) domain containing scaffold proteins. These molecular adaptors connect the transmembrane receptors with the endocytosis machinery and regulate cellular trafficking, or function as assembly sites for dynamic multi-protein signaling complexes. Whereas the LDL receptor represents the archetype of an endocytic lipoprotein receptor, the structurally closely related apolipoprotein E receptor 2 (apoER2) and very low density lipoprotein (VLDL) receptor activate a kinase-dependent intracellular signaling cascade after binding to the neuronal signaling molecule Reelin. This review focuses on two related PTB domain containing adaptor proteins that mediate these divergent lipoprotein receptor responses, ARH (autosomal recessive hypercholesterolemia protein) and Dab1 (disabled-1), and discusses the structural and molecular basis of this different behaviour.

  15. Functional Analysis of GLRX5 Mutants Reveals Distinct Functionalities of GLRX5 Protein.

    PubMed

    Liu, Gang; Wang, Yongwei; Anderson, Gregory J; Camaschella, Clara; Chang, Yanzhong; Nie, Guangjun

    2016-01-01

    Glutaredoxin 5 (GLRX5) is a 156 amino acid mitochondrial protein that plays an essential role in mitochondrial iron-sulfur cluster transfer. Mutations in this protein were reported to result in sideroblastic anemia and variant nonketotic hyperglycinemia in human. Recently, we have characterized a Chinese congenital sideroblastic anemia patient who has two compound heterozygous missense mutations (c. 301 A>C and c. 443 T>C) in his GLRX5 gene. Herein, we developed a GLRX5 knockout K562 cell line and studied the biochemical functions of the identified pathogenic mutations and other conserved amino acids with predicted essential functions. We observed that the K101Q mutation (due to c. 301 A>C mutation) may prevent the binding of [Fe-S] to GLRX5 protein, while L148S (due to c. 443 T>C mutation) may interfere with [Fe-S] transfer from GLRX5 to iron regulatory protein 1 (IRP1), mitochondrial aconitase (m-aconitase) and ferrochelatase. We also demonstrated that L148S is functionally complementary to the K51del mutant with respect to Fe/S-ferrochelatase, Fe/S-IRP1, Fe/S-succinate dehydrogenase, and Fe/S-m-aconitase biosynthesis and lipoylation of pyruvate dehydrogenase complex and α-ketoglutarate dehydrogenase complex. Furthermore, we demonstrated that the mutations of highly conserved amino acid residues in GLRX5 protein can have different effects on downstream Fe/S proteins. Collectively, our current work demonstrates that GLRX5 protein is multifunctional in [Fe-S] protein synthesis and maturation and defects of the different amino acids of the protein will lead to distinct effects on downstream Fe/S biosynthesis.

  16. Complexing receptor pharmacology: modulation of family B G protein-coupled receptor function by RAMPs.

    PubMed

    Sexton, Patrick M; Morfis, Maria; Tilakaratne, Nanda; Hay, Debbie L; Udawela, Madhara; Christopoulos, George; Christopoulos, Arthur

    2006-07-01

    The most well-characterized subgroup of family B G protein-coupledreceptors (GPCRs) comprises receptors for peptide hormones, such as secretin, calcitonin (CT), glucagon, and vasoactive intestinal peptide (VIP). Recent data suggest that many of these receptors can interact with a novel family of GPCR accessory proteins termed receptor activity modifying proteins (RAMPs). RAMP interaction with receptors can lead to a variety of actions that include chaperoning of the receptor protein to the cell surface as is the case for the calcitonin receptor-like receptor (CLR) and the generation of novel receptor phenotypes. RAMP heterodimerization with the CLR and related CT receptor is required for the formation of specific CT gene-related peptide, adrenomedullin (AM) or amylin receptors. More recent work has revealed that the specific RAMP present in a heterodimer may modulate other functions such as receptor internalization and recycling and also the strength of activation of downstream signaling pathways. In this article we review our current state of knowledge of the consequence of RAMP interaction with family B GPCRs.

  17. CTCF modulates Estrogen Receptor function through specific chromatin and nuclear matrix interactions

    PubMed Central

    Fiorito, Elisa; Sharma, Yogita; Gilfillan, Siv; Wang, Shixiong; Singh, Sachin Kumar; Satheesh, Somisetty V.; Katika, Madhumohan R.; Urbanucci, Alfonso; Thiede, Bernd; Mills, Ian G.; Hurtado, Antoni

    2016-01-01

    Enhancer regions and transcription start sites of estrogen-target regulated genes are connected by means of Estrogen Receptor long-range chromatin interactions. Yet, the complete molecular mechanisms controlling the transcriptional output of engaged enhancers and subsequent activation of coding genes remain elusive. Here, we report that CTCF binding to enhancer RNAs is enriched when breast cancer cells are stimulated with estrogen. CTCF binding to enhancer regions results in modulation of estrogen-induced gene transcription by preventing Estrogen Receptor chromatin binding and by hindering the formation of additional enhancer-promoter ER looping. Furthermore, the depletion of CTCF facilitates the expression of target genes associated with cell division and increases the rate of breast cancer cell proliferation. We have also uncovered a genomic network connecting loci enriched in cell cycle regulator genes to nuclear lamina that mediates the CTCF function. The nuclear lamina and chromatin interactions are regulated by estrogen-ER. We have observed that the chromatin loops formed when cells are treated with estrogen establish contacts with the nuclear lamina. Once there, the portion of CTCF associated with the nuclear lamina interacts with enhancer regions, limiting the formation of ER loops and the induction of genes present in the loop. Collectively, our results reveal an important, unanticipated interplay between CTCF and nuclear lamina to control the transcription of ER target genes, which has great implications in the rate of growth of breast cancer cells. PMID:27638884

  18. Antioxidant Defenses of Francisella tularensis Modulate Macrophage Function and Production of Proinflammatory Cytokines.

    PubMed

    Rabadi, Seham M; Sanchez, Belkys C; Varanat, Mrudula; Ma, Zhuo; Catlett, Sally V; Melendez, Juan Andres; Malik, Meenakshi; Bakshi, Chandra Shekhar

    2016-03-04

    Francisella tularensis, the causative agent of a fatal human disease known as tularemia, has been used in the bioweapon programs of several countries in the past, and now it is considered a potential bioterror agent. Extreme infectivity and virulence of F. tularensis is due to its ability to evade immune detection and to suppress the host's innate immune responses. However, Francisella-encoded factors and mechanisms responsible for causing immune suppression are not completely understood. Macrophages and neutrophils generate reactive oxygen species (ROS)/reactive nitrogen species as a defense mechanism for the clearance of phagocytosed microorganisms. ROS serve a dual role; at high concentrations they act as microbicidal effector molecules that destroy intracellular pathogens, and at low concentrations they serve as secondary signaling messengers that regulate the expression of various inflammatory mediators. We hypothesized that the antioxidant defenses of F. tularensis maintain redox homeostasis in infected macrophages to prevent activation of redox-sensitive signaling components that ultimately result in suppression of pro-inflammatory cytokine production and macrophage microbicidal activity. We demonstrate that antioxidant enzymes of F. tularensis prevent the activation of redox-sensitive MAPK signaling components, NF-κB signaling, and the production of pro-inflammatory cytokines by inhibiting the accumulation of ROS in infected macrophages. We also report that F. tularensis inhibits ROS-dependent autophagy to promote its intramacrophage survival. Collectively, this study reveals novel pathogenic mechanisms adopted by F. tularensis to modulate macrophage innate immune functions to create an environment permissive for its intracellular survival and growth.

  19. Structural Insights into the Assembly and Function of the SAGA Deubiquitinating Module

    SciTech Connect

    Samara, Nadine L.; Datta, Ajit B.; Berndsen, Christopher E.; Zhang, Xiangbin; Yao, Tingting; Cohen, Robert E.; Wolberger, Cynthia

    2010-08-18

    SAGA is a transcriptional coactivator complex that is conserved across eukaryotes and performs multiple functions during transcriptional activation and elongation. One role is deubiquitination of histone H2B, and this activity resides in a distinct subcomplex called the deubiquitinating module (DUBm), which contains the ubiquitin-specific protease Ubp8, bound to Sgf11, Sus1, and Sgf73. The deubiquitinating activity depends on the presence of all four DUBm proteins. We report here the 1.90 angstrom resolution crystal structure of the DUBm bound to ubiquitin aldehyde, as well as the 2.45 angstrom resolution structure of the uncomplexed DUBm. The structure reveals an arrangement of protein domains that gives rise to a highly interconnected complex, which is stabilized by eight structural zinc atoms that are critical for enzymatic activity. The structure suggests a model for how interactions with the other DUBm proteins activate Ubp8 and allows us to speculate about how the DUBm binds to monoubiquitinated histone H2B in nucleosomes.

  20. Fc glycan-modulated immunoglobulin G effector functions.

    PubMed

    Quast, Isaak; Lünemann, Jan D

    2014-07-01

    Immunoglobulin G (IgG) molecules are glycoproteins and residues in the sugar moiety attached to the IgG constant fragment (Fc) are essential for IgG functionality such as binding to cellular Fc receptors and complement activation. The core of this sugar moiety consists of a bi-antennary heptameric structure of mannose and N-acetylglucosamine (GlcNAc), further decorated with terminal and branching residues including galactose, sialic acid, fucose, and GlcNAc. Presence or absence of distinct residues such as fucose and sialic acid can dramatically alter pro- and anti-inflammatory IgG activities which could be harnessed for immunotherapeutic purposes. Here we review recent advances in understanding the role of the IgG-Fc glycan during immune responses and for immunotherapy with a focus on sialic acid and intravenous immunoglobulin (IVIG) treatment.

  1. Can Cholesterol Metabolism Modulation Affect Brain Function and Behavior?

    PubMed

    Cartocci, Veronica; Servadio, Michela; Trezza, Viviana; Pallottini, Valentina

    2017-02-01

    Cholesterol is an important component for cell physiology. It regulates the fluidity of cell membranes and determines the physical and biochemical properties of proteins. In the central nervous system, cholesterol controls synapse formation and function and supports the saltatory conduction of action potential. In recent years, the role of cholesterol in the brain has caught the attention of several research groups since a breakdown of cholesterol metabolism has been associated with different neurodevelopmental and neurodegenerative diseases, and interestingly also with psychiatric conditions. The aim of this review is to summarize the current knowledge about the connection between cholesterol dysregulation and various neurologic and psychiatric disorders based on clinical and preclinical studies. J. Cell. Physiol. 232: 281-286, 2017. © 2016 Wiley Periodicals, Inc.

  2. Prenatal exposure to cypermethrin modulates rat NK cell cytotoxic functions.

    PubMed

    Santoni, G; Cantalamessa, F; Mazzucca, L; Romagnoli, S; Piccoli, M

    1997-07-11

    The synthetic pyrethroid insecticide, cypermethrin, was given during gestation to pregnant rats by gavage in corn oil. Peripheral blood and spleen cytotoxic activity of dams and their offspring were then evaluated at different times (30, 60, 90, 120 days) after birth. Pups showed a significant increase in peripheral blood natural killer (NK) and antibody-dependent (ADCC) cytotoxic activity paralleled with a similar increase in the percentage of NK-RP1+ cells and decreased activity in the spleen. Pregnant cypermethrin-exposed dams showed no changes in peripheral blood or spleen cytotoxic function during the postnatal period. Overall, these results suggest that immunomodulation of cytotoxic activity observed in the offspring is likely attributable to a specific effect of cypermethrin administered during the prenatal period.

  3. Oct4 Targets Regulatory Nodes to Modulate Stem Cell Function

    PubMed Central

    Campbell, Pearl A.; Perez-Iratxeta, Carolina; Andrade-Navarro, Miguel A.; Rudnicki, Michael A.

    2007-01-01

    Stem cells are characterized by two defining features, the ability to self-renew and to differentiate into highly specialized cell types. The POU homeodomain transcription factor Oct4 (Pou5f1) is an essential mediator of the embryonic stem cell state and has been implicated in lineage specific differentiation, adult stem cell identity, and cancer. Recent description of the regulatory networks which maintain ‘ES’ have highlighted a dual role for Oct4 in the transcriptional activation of genes required to maintain self-renewal and pluripotency while concomitantly repressing genes which facilitate lineage specific differentiation. However, the molecular mechanism by which Oct4 mediates differential activation or repression at these loci to either maintain stem cell identity or facilitate the emergence of alternate transcriptional programs required for the realization of lineage remains to be elucidated. To further investigate Oct4 function, we employed gene expression profiling together with a robust statistical analysis to identify genes highly correlated to Oct4. Gene Ontology analysis to categorize overrepresented genes has led to the identification of themes which may prove essential to stem cell identity, including chromatin structure, nuclear architecture, cell cycle control, DNA repair, and apoptosis. Our experiments have identified previously unappreciated roles for Oct4 for firstly, regulating chromatin structure in a state consistent with self-renewal and pluripotency, and secondly, facilitating the expression of genes that keeps the cell poised to respond to cues that lead to differentiation. Together, these data define the mechanism by which Oct4 orchestrates cellular regulatory pathways to enforce the stem cell state and provides important insight into stem cell function and cancer. PMID:17579724

  4. Interactions between alveolar macrophage subpopulations modulate their migratory function.

    PubMed Central

    Laplante, C.; Lemaire, I.

    1990-01-01

    To better understand the mechanisms by which alveolar macrophages (AM) are attracted to local sites in the lung, the locomotion of AM in response to N-formyl-methionyl-leucyl-phenylalanine (FMLP) was investigated. Total bronchoalveolar cells (99% AM) obtained by a nondiscriminating bronchoalveolar lavage procedure migrated toward FMLP over a range of concentrations of 10(-12) M to 10(-6) M. Dose-response experiments showed a biphasic response with two peaks of migration obtained respectively at 5 x 10(-10) M and 10(-8) M. Analysis in the presence and absence of a positive gradient of FMLP revealed that the first peak of migration (5 x 10(-10) M FMLP) corresponded predominantly to chemotactic activity whereas the second peak of migration (10(-8) M FMLP) was associated with chemokinetic activity. To further evaluate these activities of oriented (chemotaxis) vs. random (chemokinesis) migration, AM were separated into two fractions by a two-step bronchoalveolar lavage procedure. Whereas fraction 1 displayed exclusively chemokinesis in response to higher concentrations of FMLP (10(-8) M), fraction 2 was totally unresponsive to FMLP over a wide range of concentrations (5 x 10(-11) M - 10(-7) M). When both fractions were combined, however, the chemotactic response to low concentrations of FMLP (5 x 10(-10) M) was restored. Additional analysis of these two AM fractions indicated that fraction 1 AM had a significantly lower degree of adherence and aggregation than fraction 2 AM. These data suggest that cell-cell cooperation is important for AM chemotactic response to FMLP and that such interaction may involve changes in adherence and aggregation. Images Figure 5 PMID:2297048

  5. Identification of Functional Modules by Integration of Multiple Data Sources Using a Bayesian Network Classifier

    PubMed Central

    Wang, Jinlian; Zuo, Yiming; Liu, Lun; Man, Yangao; Tadesse, Mahlet G.; Ressom, Habtom W

    2014-01-01

    Background Prediction of functional modules is indispensable for detecting protein deregulation in human complex diseases such as cancer. Bayesian network (BN) is one of the most commonly used models to integrate heterogeneous data from multiple sources such as protein domain, interactome, functional annotation, genome-wide gene expression, and the literature. Methods and Results In this paper, we present a BN classifier that is customized to: 1) increase the ability to integrate diverse information from different sources, 2) effectively predict protein-protein interactions, 3) infer aberrant networks with scale-free and small world properties, and 4) group molecules into functional modules or pathways based on the primary function and biological features. Application of this model on discovering protein biomarkers of hepatocelluar carcinoma (HCC) leads to the identification of functional modules that provide insights into the mechanism of the development and progression of HCC. These functional modules include cell cycle deregulation, increased angiogenesis (e.g., vascular endothelial growth factor, blood vessel morphogenesis), oxidative metabolic alterations, and aberrant activation of signaling pathways involved in cellular proliferation, survival, and differentiation. Conclusion The discoveries and conclusions derived from our customized BN classifier are consistent with previously published results. The proposed approach for determining BN structure facilitates the integration of heterogeneous data from multiple sources to elucidate the mechanisms of complex diseases. PMID:24736851

  6. Quantitative Imaging of Cholinergic Interneurons Reveals a Distinctive Spatial Organization and a Functional Gradient across the Mouse Striatum

    PubMed Central

    Götz, Jürgen; Bertran-Gonzalez, Jesus

    2016-01-01

    Information processing in the striatum requires the postsynaptic integration of glutamatergic and dopaminergic signals, which are then relayed to the output nuclei of the basal ganglia to influence behavior. Although cellularly homogeneous in appearance, the striatum contains several rare interneuron populations which tightly modulate striatal function. Of these, cholinergic interneurons (CINs) have been recently shown to play a critical role in the control of reward-related learning; however how the striatal cholinergic network is functionally organized at the mesoscopic level and the way this organization influences striatal function remains poorly understood. Here, we systematically mapped and digitally reconstructed the entire ensemble of CINs in the mouse striatum and quantitatively assessed differences in densities, spatial arrangement and neuropil content across striatal functional territories. This approach demonstrated that the rostral portion of the striatum contained a higher concentration of CINs than the caudal striatum and that the cholinergic content in the core of the ventral striatum was significantly lower than in the rest of the regions. Additionally, statistical comparison of spatial point patterns in the striatal cholinergic ensemble revealed that only a minor portion of CINs (17%) aggregated into cluster and that they were predominantly organized in a random fashion. Furthermore, we used a fluorescence reporter to estimate the activity of over two thousand CINs in naïve mice and found that there was a decreasing gradient of CIN overall function along the dorsomedial-to-ventrolateral axis, which appeared to be independent of their propensity to aggregate within the striatum. Altogether this work suggests that the regulation of striatal function by acetylcholine across the striatum is highly heterogeneous, and that signals originating in external afferent systems may be principally determining the function of CINs in the striatum. PMID:27314496

  7. Proteome-wide Structural Analysis of PTM Hotspots Reveals Regulatory Elements Predicted to Impact Biological Function and Disease*

    PubMed Central

    Dewhurst, Henry; Sundararaman, Niveda

    2016-01-01

    Post-translational modifications (PTMs) regulate protein behavior through modulation of protein-protein interactions, enzymatic activity, and protein stability essential in the translation of genotype to phenotype in eukaryotes. Currently, less than 4% of all eukaryotic PTMs are reported to have biological function - a statistic that continues to decrease with an increasing rate of PTM detection. Previously, we developed SAPH-ire (Structural Analysis of PTM Hotspots) - a method for the prioritization of PTM function potential that has been used effectively to reveal novel PTM regulatory elements in discrete protein families (Dewhurst et al., 2015). Here, we apply SAPH-ire to the set of eukaryotic protein families containing experimental PTM and 3D structure data - capturing 1,325 protein families with 50,839 unique PTM sites organized into 31,747 modified alignment positions (MAPs), of which 2010 (∼6%) possess known biological function. Here, we show that using an artificial neural network model (SAPH-ire NN) trained to identify MAP hotspots with biological function results in prediction outcomes that far surpass the use of single hotspot features, including nearest neighbor PTM clustering methods. We find the greatest enhancement in prediction for positions with PTM counts of five or less, which represent 98% of all MAPs in the eukaryotic proteome and 90% of all MAPs found to have biological function. Analysis of the top 1092 MAP hotspots revealed 267 of truly unknown function (containing 5443 distinct PTMs). Of these, 165 hotspots could be mapped to human KEGG pathways for normal and/or disease physiology. Many high-ranking hotspots were also found to be disease-associated pathogenic sites of amino acid substitution despite the lack of observable PTM in the human protein family member. Taken together, these experiments demonstrate that the functional relevance of a PTM can be predicted very effectively by neural network models, revealing a large but testable

  8. Structure of an Arrestin2-clathrin Complex Reveals a Novel Clathrin Binding Domain that Modulates Receptor Trafficking

    SciTech Connect

    Kang, D.; Kern, R; Puthenveedu, M; von Zastrow, M; Williams, J; Benovic, J

    2009-01-01

    Non-visual arrestins play a pivotal role as adaptor proteins in regulating the signaling and trafficking of multiple classes of receptors. Although arrestin interaction with clathrin, AP-2, and phosphoinositides contributes to receptor trafficking, little is known about the configuration and dynamics of these interactions. Here, we identify a novel interface between arrestin2 and clathrin through x-ray diffraction analysis. The intrinsically disordered clathrin binding box of arrestin2 interacts with a groove between blades 1 and 2 in the clathrin {beta}-propeller domain, whereas an 8-amino acid splice loop found solely in the long isoform of arrestin2 (arrestin2L) interacts with a binding pocket formed by blades 4 and 5 in clathrin. The apposition of the two binding sites in arrestin2L suggests that they are exclusive and may function in higher order macromolecular structures. Biochemical analysis demonstrates direct binding of clathrin to the splice loop in arrestin2L, whereas functional analysis reveals that both binding domains contribute to the receptor-dependent redistribution of arrestin2L to clathrin-coated pits. Mutagenesis studies reveal that the clathrin binding motif in the splice loop is (L/I){sub 2}GXL. Taken together, these data provide a framework for understanding the dynamic interactions between arrestin2 and clathrin and reveal an essential role for this interaction in arrestin-mediated endocytosis.

  9. Taurine supplementation modulates glucose homeostasis and islet function.

    PubMed

    Carneiro, Everardo M; Latorraca, Marcia Q; Araujo, Eliana; Beltrá, Marta; Oliveras, Maria J; Navarro, Mónica; Berná, Genoveva; Bedoya, Francisco J; Velloso, Licio A; Soria, Bernat; Martín, Franz

    2009-07-01

    Taurine is a conditionally essential amino acid for human that is involved in the control of glucose homeostasis; however, the mechanisms by which the amino acid affects blood glucose levels are unknown. Using an animal model, we have studied these mechanisms. Mice were supplemented with taurine for 30 d. Blood glucose homeostasis was assessed by intraperitoneal glucose tolerance tests (IPGTT). Islet cell function was determined by insulin secretion, cytosolic Ca2+ measurements and glucose metabolism from isolated islets. Islet cell gene expression and translocation was examined via immunohistochemistry and quantitative real-time polymerase chain reaction. Insulin signaling was studied by Western blot. Islets from taurine-supplemented mice had: (i) significantly higher insulin content, (ii) increased insulin secretion at stimulatory glucose concentrations, (iii) significantly displaced the dose-response curve for glucose-induced insulin release to the left, (iv) increased glucose metabolism at 5.6 and 11.1-mmol/L concentrations; (v) slowed cytosolic Ca2+ concentration ([Ca2+]i) oscillations in response to stimulatory glucose concentrations; (vi) increased insulin, sulfonylurea receptor-1, glucokinase, Glut-2, proconvertase and pancreas duodenum homeobox-1 (PDX-1) gene expression and (vii) increased PDX-1 expression in the nucleus. Moreover, taurine supplementation significantly increased both basal and insulin stimulated tyrosine phosphorylation of the insulin receptor in skeletal muscle and liver tissues. Finally, taurine supplemented mice showed an improved IPGTT. These results indicate that taurine controls glucose homeostasis by regulating the expression of genes required for glucose-stimulated insulin secretion. In addition, taurine enhances peripheral insulin sensitivity.

  10. In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans

    NASA Astrophysics Data System (ADS)

    Tanimoto, Yuki; Zheng, Ying Grace; Fei, Xianfeng; Fujie, Yukako; Hashimoto, Koichi; Kimura, Koutarou D.

    2016-05-01

    Many neuronal groups such as dopamine-releasing (dopaminergic) neurons are functionally divergent, although the details of such divergence are not well understood. Dopamine in the nematode Caenorhabditis elegans modulates various neural functions and is released from four left-right pairs of neurons. The terminal identities of these dopaminergic neurons are regulated by the same genetic program, and previous studies have suggested that they are functionally redundant. In this study, however, we show functional divergence within the dopaminergic neurons of C. elegans. Because dopaminergic neurons of the animals were supposedly activated by mechanical stimulus upon entry into a lawn of their food bacteria, we developed a novel integrated microscope system that can auto-track a freely-moving (in actio) C. elegans to individually monitor and stimulate the neuronal activities of multiple neurons. We found that only head-dorsal pair of dopaminergic neurons (CEPD), but not head-ventral or posterior pairs, were preferentially activated upon food entry. In addition, the optogenetic activation of CEPD neurons alone exhibited effects similar to those observed upon food entry. Thus, our results demonstrated functional divergence in the genetically similar dopaminergic neurons, which may provide a new entry point toward understanding functional diversity of neurons beyond genetic terminal identification.

  11. MODULATION OF CHONDROCYTE BEHAVIOR THROUGH TAILORING FUNCTIONAL SYNTHETIC SACCHARIDE-PEPTIDE HYDROGELS

    PubMed Central

    Chawla, Kanika; Yu, Ting-bin; Stutts, Lisa; Yen, Max; Guan, Zhibin

    2012-01-01

    Tailoring three-dimensional (3D) biomaterial environments to provide specific cues in order to modulate function of encapsulated cells could potentially eliminate the need for addition of exogenous cues in cartilage tissue engineering. We recently developed saccharide-peptide copolymer hydrogels for cell culture and tissue engineering applications. In this study, we aim to tailor our saccharide-peptide hydrogel for encapsulating and culturing chondrocytes in 3D and examine the effects of changing single amino acid moieties differing in hydrophobicity/hydrophilicity (valine (V), cysteine (C), tyrosine (Y)) on modulation of chondrocyte function. Encapsulated chondrocytes remained viable over 21 days in vitro. Glycosaminoglycan and collagen content was significantly higher in Y-functionalized hydrogels compared to V-functionalized hydrogels. Extensive matrix accumulation and concomitant increase in mechanical properties was evident over time, particularly with the presence of Y amino acid. After 21 days in vitro, Y-functionalized hydrogels attained a modulus of 193±46 kPa, compared to 44±21 kPa for V-functionalized hydrogels. Remarkably, mechanical and biochemical properties of chondrocyte-laden hydrogels were modulated by change in a single amino acid moiety. This unique property, combined with the versatility and biocompatibility, makes our saccharide-peptide hydrogels promising candidates for further investigation of combinatorial effects of multiple functional groups on controlling chondrocyte and other cellular function and behavior. PMID:22672831

  12. Insulin modulates cocaine-sensitive monoamine transporter function and impulsive behavior.

    PubMed

    Schoffelmeer, Anton N M; Drukarch, Benjamin; De Vries, Taco J; Hogenboom, François; Schetters, Dustin; Pattij, Tommy

    2011-01-26

    Because insulin acutely enhances the function of dopamine transporters, the tyrosine kinase receptors activated by this hormone may modulate transporter-dependent neurochemical and behavioral effects of psychoactive drugs. In this respect, we examined the effects of insulin on exocytotic monoamine release and the efficacy of the monoamine transporter blocker cocaine in rat nucleus accumbens. Whereas insulin reduced electrically evoked exocytotic [(3)H]dopamine release in nucleus accumbens slices, the hormone potentiated the release-enhancing effect of cocaine thereon. The phosphatidylinositol 3-kinase inhibitor LY294002 abolished these effects, indicating the involvement of insulin receptors. Similar insulin effects were observed on the release of [(3)H]norepinephrine in nucleus accumbens slices, but not on that of [(3)H]serotonin, and were also apparent in medial prefrontal cortex slices. As might then be expected, insulin also potentiated the dopamine and norepinephrine release-enhancing effects of the selective monoamine uptake inhibitors GBR12909 and desmethylimipramine, respectively. In subsequent behavioral experiments, we investigated the role of insulin in motor impulsivity that depends on monoamine neurotransmission in the nucleus accumbens. Intracranial administration of insulin in the nucleus accumbens alone reduced premature responses in the five-choice serial reaction time task and enhanced the stimulatory effect of peripheral cocaine administration on impulsivity, resembling the observed neurochemical effects of the hormone. In contrast, cocaine-induced locomotor activity remained unchanged by intra-accumbal insulin application. These data reveal that insulin presynaptically regulates cocaine-sensitive monoamine transporter function in the nucleus accumbens and, as a consequence, impulsivity. Therefore, insulin signaling proteins may represent targets for the treatment of inhibitory control deficits such as addictive behaviors.

  13. N-Glycans Modulate the Function of Human Corticosteroid-Binding Globulin*

    PubMed Central

    Sumer-Bayraktar, Zeynep; Kolarich, Daniel; Campbell, Matthew P.; Ali, Sinan; Packer, Nicolle H.; Thaysen-Andersen, Morten

    2011-01-01

    Human corticosteroid-binding globulin (CBG), a heavily glycosylated protein containing six N-linked glycosylation sites, transports cortisol and other corticosteroids in blood circulation. Here, we investigate the biological importance of the N-glycans of CBG derived from human serum by performing a structural and functional characterization of CBG N-glycosylation. Liquid chromatography-tandem MS-based glycoproteomics and glycomics combined with exoglycosidase treatment revealed 26 complex type N-glycoforms, all of which were terminated with α2,3-linked neuraminic acid (NeuAc) residues. The CBG N-glycans showed predominantly bi- and tri-antennary branching, but higher branching was also observed. N-glycans from all six N-glycosylation sites were identified with high site occupancies (70.5–99.5%) and glycoforms from all sites contained a relatively low degree of core-fucosylation (0–34.9%). CBG showed site-specific glycosylation and the site-to-site differences in core-fucosylation and branching could be in silico correlated with the accessibility to the individual glycosylation sites on the maturely folded protein. Deglycosylated and desialylated CBG analogs were generated to investigate the biological importance of CBG N-glycans. As a functional assay, MCF-7 cells were challenged with native and glycan-modified CBG and the amount of cAMP, which is produced as a quantitative response upon CBG binding to its cell surface receptor, was used to evaluate the CBG:receptor interaction. The removal of both CBG N-glycans and NeuAc residues increased the production of cAMP significantly. This confirms that N-glycans are involved in the CBG:receptor interaction and indicates that the modulation is performed by steric and/or electrostatic means through the terminal NeuAc residues. PMID:21558494

  14. Plasmid Replicons from Pseudomonas Are Natural Chimeras of Functional, Exchangeable Modules

    PubMed Central

    Bardaji, Leire; Añorga, Maite; Ruiz-Masó, José A.; del Solar, Gloria; Murillo, Jesús

    2017-01-01

    Plasmids are a main factor for the evolution of bacteria through horizontal gene exchange, including the dissemination of pathogenicity genes, resistance to antibiotics and degradation of pollutants. Their capacity to duplicate is dependent on their replication determinants (replicon), which also define their bacterial host range and the inability to coexist with related replicons. We characterize a second replicon from the virulence plasmid pPsv48C, from Pseudomonas syringae pv. savastanoi, which appears to be a natural chimera between the gene encoding a newly described replication protein and a putative replication control region present in the widespread family of PFP virulence plasmids. We present extensive evidence of this type of chimerism in structurally similar replicons from species of Pseudomonas, including environmental bacteria as well as plant, animal and human pathogens. We establish that these replicons consist of two functional modules corresponding to putative control (REx-C module) and replication (REx-R module) regions. These modules are functionally separable, do not show specificity for each other, and are dynamically exchanged among replicons of four distinct plasmid families. Only the REx-C module displays strong incompatibility, which is overcome by a few nucleotide changes clustered in a stem-and-loop structure of a putative antisense RNA. Additionally, a REx-C module from pPsv48C conferred replication ability to a non-replicative chromosomal DNA region containing features associated to replicons. Thus, the organization of plasmid replicons as independent and exchangeable functional modules is likely facilitating rapid replicon evolution, fostering their diversification and survival, besides allowing the potential co-option of appropriate genes into novel replicons and the artificial construction of new replicon specificities. PMID:28243228

  15. Plasmid Replicons from Pseudomonas Are Natural Chimeras of Functional, Exchangeable Modules.

    PubMed

    Bardaji, Leire; Añorga, Maite; Ruiz-Masó, José A; Del Solar, Gloria; Murillo, Jesús

    2017-01-01

    Plasmids are a main factor for the evolution of bacteria through horizontal gene exchange, including the dissemination of pathogenicity genes, resistance to antibiotics and degradation of pollutants. Their capacity to duplicate is dependent on their replication determinants (replicon), which also define their bacterial host range and the inability to coexist with related replicons. We characterize a second replicon from the virulence plasmid pPsv48C, from Pseudomonas syringae pv. savastanoi, which appears to be a natural chimera between the gene encoding a newly described replication protein and a putative replication control region present in the widespread family of PFP virulence plasmids. We present extensive evidence of this type of chimerism in structurally similar replicons from species of Pseudomonas, including environmental bacteria as well as plant, animal and human pathogens. We establish that these replicons consist of two functional modules corresponding to putative control (REx-C module) and replication (REx-R module) regions. These modules are functionally separable, do not show specificity for each other, and are dynamically exchanged among replicons of four distinct plasmid families. Only the REx-C module displays strong incompatibility, which is overcome by a few nucleotide changes clustered in a stem-and-loop structure of a putative antisense RNA. Additionally, a REx-C module from pPsv48C conferred replication ability to a non-replicative chromosomal DNA region containing features associated to replicons. Thus, the organization of plasmid replicons as independent and exchangeable functional modules is likely facilitating rapid replicon evolution, fostering their diversification and survival, besides allowing the potential co-option of appropriate genes into novel replicons and the artificial construction of new replicon specificities.

  16. Metagenomic analysis reveals significant changes of microbial compositions and protective functions during drinking water treatment.

    PubMed

    Chao, Yuanqing; Ma, Liping; Yang, Ying; Ju, Feng; Zhang, Xu-Xiang; Wu, Wei-Min; Zhang, Tong

    2013-12-19

    The metagenomic approach was applied to characterize variations of microbial structure and functions in raw (RW) and treated water (TW) in a drinking water treatment plant (DWTP) at Pearl River Delta, China. Microbial structure was significantly influenced by the treatment processes, shifting from Gammaproteobacteria and Betaproteobacteria in RW to Alphaproteobacteria in TW. Further functional analysis indicated the basic metabolic functions of microorganisms in TW did not vary considerably. However, protective functions, i.e. glutathione synthesis genes in 'oxidative stress' and 'detoxification' subsystems, significantly increased, revealing the surviving bacteria may have higher chlorine resistance. Similar results were also found in glutathione metabolism pathway, which identified the major reaction for glutathione synthesis and supported more genes for glutathione metabolism existed in TW. This metagenomic study largely enhanced our knowledge about the influences of treatment processes, especially chlorination, on bacterial community structure and protective functions (e.g. glutathione metabolism) in ecosystems of DWTPs.

  17. Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions.

    PubMed

    Nomi, Jason S; Farrant, Kristafor; Damaraju, Eswar; Rachakonda, Srinivas; Calhoun, Vince D; Uddin, Lucina Q

    2016-05-01

    The human insular cortex consists of functionally diverse subdivisions that engage during tasks ranging from interoception to cognitive control. The multiplicity of functions subserved by insular subdivisions calls for a nuanced investigation of their functional connectivity profiles. Four insula subdivisions (dorsal anterior, dAI; ventral, VI; posterior, PI; middle, MI) derived using a data-driven approach were subjected to static- and dynamic functional network connectivity (s-FNC and d-FNC) analyses. Static-FNC analyses replicated previous work demonstrating a cognition-emotion-interoception division of the insula, where the dAI is functionally connected to frontal areas, the VI to limbic areas, and the PI and MI to sensorimotor areas. Dynamic-FNC analyses consisted of k-means clustering of sliding windows to identify variable insula connectivity states. The d-FNC analysis revealed that the most frequently occurring dynamic state mirrored the cognition-emotion-interoception division observed from the s-FNC analysis, with less frequently occurring states showing overlapping and unique subdivision connectivity profiles. In two of the states, all subdivisions exhibited largely overlapping profiles, consisting of subcortical, sensory, motor, and frontal connections. Two other states showed the dAI exhibited a unique connectivity profile compared with other insula subdivisions. Additionally, the dAI exhibited the most variable functional connections across the s-FNC and d-FNC analyses, and was the only subdivision to exhibit dynamic functional connections with regions of the default mode network. These results highlight how a d-FNC approach can capture functional dynamics masked by s-FNC approaches, and reveal dynamic functional connections enabling the functional flexibility of the insula across time. Hum Brain Mapp 37:1770-1787, 2016. © 2016 Wiley Periodicals, Inc.

  18. Abiotic regulation: a common way for proteins to modulate their functions.

    PubMed

    Zou, Zhi; Fu, Xinmiao

    2015-01-01

    Modulation of protein intrinsic activity in cells is generally carried out via a combination of four common ways, i.e., allosteric regulation, covalent modification, proteolytic cleavage and association of other regulatory proteins. Accumulated evidence indicate that changes of certain abiotic factors (e.g., temperature, pH, light and mechanical force) within or outside the cells directly influence protein structure and thus profoundly modulate the functions of a wide range of proteins, termed as abiotic regulatory proteins (e.g., heat shock factor, small heat shock protein, hemoglobin, zymogen, integrin, rhodopsin). Such abiotic regulation apparently differs from the four classic ways in perceiving and response to the signals. Importantly, it enables cells to directly and also immediately response to extracellular stimuli, thus facilitating the ability of organisms to resist against and adapt to the abiotic stress and thereby playing crucial roles in life evolution. Altogether, abiotic regulation may be considered as a common way for proteins to modulate their functions.

  19. Kinetics of Salicylate-Mediated Suppression of Jasmonate Signaling Reveal a Role for Redox Modulation1[OA

    PubMed Central

    Koornneef, Annemart; Leon-Reyes, Antonio; Ritsema, Tita; Verhage, Adriaan; Den Otter, Floor C.; Van Loon, L.C.; Pieterse, Corné M.J.

    2008-01-01

    Cross talk between salicylic acid (SA) and jasmonic acid (JA) signaling pathways plays an important role in the regulation and fine tuning of induced defenses that are activated upon pathogen or insect attack. Pharmacological experiments revealed that transcription of JA-responsive marker genes, such as PDF1.2 and VSP2, is highly sensitive to suppression by SA. This antagonistic effect of SA on JA signaling was also observed when the JA pathway was biologically activated by necrotrophic pathogens or insect herbivores, and when the SA pathway was triggered by a biotrophic pathogen. Furthermore, all 18 Arabidopsis (Arabidopsis thaliana) accessions tested displayed SA-mediated suppression of JA-responsive gene expression, highlighting the potential significance of this phenomenon in induced plant defenses in nature. During plant-attacker interactions, the kinetics of SA and JA signaling are highly dynamic. Mimicking this dynamic response by applying SA and methyl jasmonate (MeJA) at different concentrations and time intervals revealed that PDF1.2 transcription is readily suppressed when the SA response was activated at or after the onset of the JA response, and that this SA-JA antagonism is long lasting. However, when SA was applied more than 30 h prior to the onset of the JA response, the suppressive effect of SA was completely absent. The window of opportunity of SA to suppress MeJA-induced PDF1.2 transcription coincided with a transient increase in glutathione levels. The glutathione biosynthesis inhibitor l-buthionine-sulfoximine strongly reduced PDF1.2 suppression by SA, suggesting that SA-mediated redox modulation plays an important role in the SA-mediated attenuation of the JA signaling pathway. PMID:18539774

  20. Computational analysis of negative and positive allosteric modulator binding and function in metabotropic glutamate receptor 5 (in)activation.

    PubMed

    Dalton, James A R; Gómez-Santacana, Xavier; Llebaria, Amadeu; Giraldo, Jesús

    2014-05-27

    Metabotropic glutamate receptors (mGluRs) are high-profile G-protein coupled receptors drug targets because of their involvement in several neurological disease states, and mGluR5 in particular is a subtype whose controlled allosteric modulation, both positive and negative, can potentially be useful for the treatment of schizophrenia and relief of chronic pain, respectively. Here we model mGluR5 with a collection of positive and negative allosteric modulators (PAMs and NAMs) in both active and inactive receptor states, in a manner that is consistent with experimental information, using a specialized protocol that includes homology to increase docking accuracy, and receptor relaxation to generate an individual induced fit with each allosteric modulator. Results implicate two residues in particular for NAM and PAM function: NAM interaction with W785 for receptor inactivation, and NAM/PAM H-bonding with S809 for receptor (in)activation. Models suggest the orientation of the H-bond between allosteric modulator and S809, controlled by PAM/NAM chemistry, influences the position of TM7, which in turn influences the shape of the allosteric site, and potentially the receptor state. NAM-bound and PAM-bound mGluR5 models also reveal that although PAMs and NAMs bind in the same pocket and share similar binding modes, they have distinct effects on the conformation of the receptor. Our models, together with the identification of a possible activation mechanism, may be useful in the rational design of new allosteric modulators for mGluR5.

  1. CCR7-mediated LFA-1 functions in T cells are regulated by 2 independent ADAP/SKAP55 modules.

    PubMed

    Kliche, Stefanie; Worbs, Tim; Wang, Xiaoqian; Degen, Janine; Patzak, Irene; Meineke, Bernhard; Togni, Mauro; Moser, Markus; Reinhold, Annegret; Kiefer, Friedemann; Freund, Christian; Förster, Reinhold; Schraven, Burkhart

    2012-01-19

    The β2-integrin lymphocyte function-associated antigen-1 (LFA-1) plays a crucial role within the immune system. It regulates the interaction between T cells and antigen-presenting cells and facilitates T-cell adhesion to the endothelium, a process that is important for lymphocyte extravasation and homing. Signals mediated via the T-cell receptor and the chemokine receptor CCR7 activate LFA-1 through processes known as inside-out signaling. The molecular mechanisms underlying inside-out signaling are not completely understood. Here, we have assessed the role of the ADAP/SKAP55 module for CCR7-mediated signaling. We show that loss of the module delays homing and reduces intranodal T-cell motility in vivo. This is probably because of a defect in CCR7-mediated adhesion that affects both affinity and avidity regulation of LFA-1. Further analysis of how the ADAP/SKAP55 module regulates CCR7-induced integrin activation revealed that 2 independent pools of the module are expressed in T cells. One pool interacts with a RAPL/Mst1 complex, whereas the other pool is linked to a RIAM/Mst1/Kindlin-3 complex. Importantly, both the RAPL/Mst1 and the RIAM/Mst1/Kindlin-3 complexes require ADAP/SKAP55 for binding to LFA-1 upon CCR7 stimulation. Hence, 2 independent ADAP/SKAP55 modules are essential components of the signaling machinery that regulates affinity and avidity of LFA-1 in response to CCR7.

  2. Biology-oriented synthesis of a withanolide-inspired compound collection reveals novel modulators of hedgehog signaling.

    PubMed

    Švenda, Jakub; Sheremet, Michael; Kremer, Lea; Maier, Lukáš; Bauer, Jonathan O; Strohmann, Carsten; Ziegler, Slava; Kumar, Kamal; Waldmann, Herbert

    2015-05-04

    Biology-oriented synthesis employs the structural information encoded in complex natural products to guide the synthesis of compound collections enriched in bioactivity. The trans-hydrindane dehydro-δ-lactone motif defines the characteristic scaffold of the steroid-like withanolides, a plant-derived natural product class with a diverse pattern of bioactivity. A withanolide-inspired compound collection was synthesized by making use of three key intermediates that contain this characteristic framework derivatized with different reactive functional groups. Biological evaluation of the compound collection in cell-based assays that monitored biological signal-transduction processes revealed a novel class of Hedgehog signaling inhibitors that target the protein Smoothened.

  3. Statistical method for revealing form-function relations in biological networks

    PubMed Central

    Mugler, Andrew; Grinshpun, Boris; Franks, Riley

    2011-01-01

    Over the past decade, a number of researchers in systems biology have sought to relate the function of biological systems to their network-level descriptions—lists of the most important players and the pairwise interactions between them. Both for large networks (in which statistical analysis is often framed in terms of the abundance of repeated small subgraphs) and for small networks which can be analyzed in greater detail (or even synthesized in vivo and subjected to experiment), revealing the relationship between the topology of small subgraphs and their biological function has been a central goal. We here seek to pose this revelation as a statistical task, illustrated using a particular setup which has been constructed experimentally and for which parameterized models of transcriptional regulation have been studied extensively. The question “how does function follow form” is here mathematized by identifying which topological attributes correlate with the diverse possible information-processing tasks which a transcriptional regulatory network can realize. The resulting method reveals one form-function relationship which had earlier been predicted based on analytic results, and reveals a second for which we can provide an analytic interpretation. Resulting source code is distributed via http://formfunction.sourceforge.net. PMID:21183719

  4. Multiple components of surround modulation in primary visual cortex: multiple neural circuits with multiple functions?

    PubMed

    Nurminen, Lauri; Angelucci, Alessandra

    2014-11-01

    The responses of neurons in primary visual cortex (V1) to stimulation of their receptive field (RF) are modulated by stimuli in the RF surround. This modulation is suppressive when the stimuli in the RF and surround are of similar orientation, but less suppressive or facilitatory when they are cross-oriented. Similarly, in human vision surround stimuli selectively suppress the perceived contrast of a central stimulus. Although the properties of surround modulation have been thoroughly characterized in many species, cortical areas and sensory modalities, its role in perception remains unknown. Here we argue that surround modulation in V1 consists of multiple components having different spatio-temporal and tuning properties, generated by different neural circuits and serving different visual functions. One component arises from LGN afferents, is fast, untuned for orientation, and spatially restricted to the surround region nearest to the RF (the near-surround); its function is to normalize V1 cell responses to local contrast. Intra-V1 horizontal connections contribute a slower, narrowly orientation-tuned component to near-surround modulation, whose function is to increase the coding efficiency of natural images in manner that leads to the extraction of object boundaries. The third component is generated by topdown feedback connections to V1, is fast, broadly orientation-tuned, and extends into the far-surround; its function is to enhance the salience of behaviorally relevant visual features. Far- and near-surround modulation, thus, act as parallel mechanisms: the former quickly detects and guides saccades/attention to salient visual scene locations, the latter segments object boundaries in the scene.

  5. Multiple components of surround modulation in primary visual cortex: multiple neural circuits with multiple functions?

    PubMed Central

    Nurminen, Lauri; Angelucci, Alessandra

    2014-01-01

    The responses of neurons in primary visual cortex (V1) to stimulation of their receptive field (RF) are modulated by stimuli in the RF surround. This modulation is suppressive when the stimuli in the RF and surround are of similar orientation, but less suppressive or facilitatory when they are cross-oriented. Similarly, in human vision surround stimuli selectively suppress the perceived contrast of a central stimulus. Although the properties of surround modulation have been thoroughly characterized in many species, cortical areas and sensory modalities, its role in perception remains unknown. Here we argue that surround modulation in V1 consists of multiple components having different spatio-temporal and tuning properties, generated by different neural circuits and serving different visual functions. One component arises from LGN afferents, is fast, untuned for orientation, and spatially restricted to the surround region nearest to the RF (the near-surround); its function is to normalize V1 cell responses to local contrast. Intra-V1 horizontal connections contribute a slower, narrowly orientation-tuned component to near-surround modulation, whose function is to increase the coding efficiency of natural images in manner that leads to the extraction of object boundaries. The third component is generated by topdown feedback connections to V1, is fast, broadly orientation-tuned, and extends into the far-surround; its function is to enhance the salience of behaviorally relevant visual features. Far- and near-surround modulation, thus, act as parallel mechanisms: the former quickly detects and guides saccades/attention to salient visual scene locations, the latter segments object boundaries in the scene. PMID:25204770

  6. Large-Scale Meta-Analysis of Human Medial Frontal Cortex Reveals Tripartite Functional Organization

    PubMed Central

    Chang, Luke J.; Banich, Marie T.; Wager, Tor D.; Yarkoni, Tal

    2016-01-01

    The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been few large-scale efforts to comprehensively map specific psychological functions to subregions of medial frontal anatomy. Here we applied a meta-analytic data-driven approach to nearly 10,000 fMRI studies to identify putatively separable regions of MFC and determine which psychological states preferentially recruit their activation. We identified regions at several spatial scales on the basis of meta-analytic coactivation, revealing three broad functional zones along a rostrocaudal axis composed of 2–4 smaller subregions each. Multivariate classification analyses aimed at identifying the psychological functions most strongly predictive of activity in each region revealed a tripartite division within MFC, with each zone displaying a relatively distinct functional signature. The posterior zone was associated preferentially with motor function, the middle zone with cognitive control, pain, and affect, and the anterior with reward, social processing, and episodic memory. Within each zone, the more fine-grained subregions showed distinct, but subtler, variations in psychological function. These results provide hypotheses about the functional organization of medial prefrontal cortex that can be tested explicitly in future studies. SIGNIFICANCE STATEMENT Activation of medial frontal cortex in fMRI studies is associated with a wide range of psychological states ranging from cognitive control to pain. However, this high rate of activation makes it challenging to determine how these various processes are topologically organized across medial frontal anatomy. We conducted a meta-analysis across nearly 10,000 studies to comprehensively map psychological states to discrete subregions in medial frontal cortex

  7. Transcriptomic comparison between Brassica oleracea and rice (Oryza sativa) reveals diverse modulations on cell death in response to Sclerotinia sclerotiorum

    PubMed Central

    Mei, Jiaqin; Ding, Yijuan; Li, Yuehua; Tong, Chaobo; Du, Hai; Yu, Yang; Wan, Huafan; Xiong, Qing; Yu, Jingyin; Liu, Shengyi; Li, Jiana; Qian, Wei

    2016-01-01

    Sclerotinia stem rot caused by Sclerotinia sclerotiorum is a devastating disease of Brassica crops, but not in rice. The leaves of a rice line, a partial resistant (R) and a susceptible (S) Brassica oleracea pool that bulked from a resistance-segregating F2 population were employed for transcriptome sequencing before and after inoculation by S. sclerotiorum for 6 and 12 h. Distinct transcriptome profiles were revealed between B. oleracea and rice in response to S. sclerotiorum. Enrichment analyses of GO and KEGG indicated an enhancement of antioxidant activity in the R B. oleracea and rice, and histochemical staining exhibited obvious lighter reactive oxygen species (ROS) accumulation and cell death in rice and the R B. oleracea as compared to that in the S B. oleracea. Significant enhancement of Ca2+ signalling, a positive regulator of ROS and cell death, were detected in S B. oleracea after inoculation, while it was significantly repressed in the R B. oleracea group. Obvious difference was detected between two B. oleracea groups for WRKY transcription factors, particularly for those regulating cell death. These findings suggest diverse modulations on cell death in host in response to S. sclerotiorum. Our study provides useful insight into the resistant mechanism to S. sclerotiorum. PMID:27647523

  8. MALDI mass spectrometry reveals that cumulus cells modulate the lipid profile of in vitro-matured bovine oocytes.

    PubMed

    Vireque, Alessandra A; Tata, Alessandra; Belaz, Katia Roberta A; Grázia, João Gabriel V; Santos, Fábio N; Arnold, Daniel R; Basso, Andrea C; Eberlin, Marcos N; Silva-de-Sá, Marcos Felipe; Ferriani, Rui A; Sá Rosa-E-Silva, Ana Carolina J

    2017-04-01

    The influence of cumulus cells (CC) on the lipid profile of bovine oocytes matured in two different lipid sources was investigated. Cumulus-oocyte complexes (COC) or denuded oocytes (DO) were matured in tissue culture medium (TCM) supplemented with fetal bovine serum (FBS) or serum substitute supplement (SSS). Lipid profiles of TCM, serum supplements, immature CC and oocyte (IO), and in vitro-matured oocytes from COC and DO were then analyzed by matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) and submitted to partial least squares-discriminant analysis (PLS-DA). The developmental competence of such oocytes was also assessed. Differences in lipid composition were observed between two types of sera and distinctly influenced the lipid profile of CC. As revealed by PLS-DA, the abundance of specific ions corresponding to triacylglycerols (TAG) or phospholipids (PL) were higher in COC compared to DO both supplemented with FBS or SSS and to some extent affected the subsequent DO in vitro embryo development. DO exposed to SSS had however a marked diminished ability to develop to the blastocyst stage. These results indicate a modulation by CC of the oocyte TAG and PL profiles associated with a specific cell response to the serum supplement used for in vitro maturation.

  9. QM/MM Studies Reveal How Substrate-Substrate and Enzyme-Substrate Interactions Modulate Retaining Glycosyltransferases Catalysis and Mechanism.

    PubMed

    Gómez, Hansel; Mendoza, Fernanda; Lluch, José M; Masgrau, Laura

    2015-01-01

    Glycosyltransferases (GTs) catalyze the biosynthesis of glycosidic linkages by transferring a monosaccharide from a nucleotide sugar donor to an acceptor substrate, and they do that with exquisite regio- and stereospecificity. Retaining GTs act with retention of the configuration at the anomeric carbon of the transferred sugar. Their chemical mechanism has been under debate for long as conclusive experimental data to confirm the mechanism have been elusive. In the past years, quantum mechanical/molecular mechanical (QM/MM) calculations have shed light on the mechanistic discussion. Here, we review the work carried out in our group investigating three of these retaining enzymes (LgtC, α3GalT, and GalNAc-T2). Our results support the controversial front-side attack mechanism as the general mechanism for most retaining GTs. The latest structural data are in agreement with these findings. QM/MM calculations have revealed how enzyme-substrate and substrate-substrate interactions modulate the transfer reaction catalyzed by these enzymes. Moreover, they provide an explanation on why in some cases a strong nucleophilic residue is found on the β-face of the sugar, opening the door to a shift toward a double-displacement mechanism.

  10. Transcriptomic comparison between Brassica oleracea and rice (Oryza sativa) reveals diverse modulations on cell death in response to Sclerotinia sclerotiorum.

    PubMed

    Mei, Jiaqin; Ding, Yijuan; Li, Yuehua; Tong, Chaobo; Du, Hai; Yu, Yang; Wan, Huafan; Xiong, Qing; Yu, Jingyin; Liu, Shengyi; Li, Jiana; Qian, Wei

    2016-09-20

    Sclerotinia stem rot caused by Sclerotinia sclerotiorum is a devastating disease of Brassica crops, but not in rice. The leaves of a rice line, a partial resistant (R) and a susceptible (S) Brassica oleracea pool that bulked from a resistance-segregating F2 population were employed for transcriptome sequencing before and after inoculation by S. sclerotiorum for 6 and 12 h. Distinct transcriptome profiles were revealed between B. oleracea and rice in response to S. sclerotiorum. Enrichment analyses of GO and KEGG indicated an enhancement of antioxidant activity in the R B. oleracea and rice, and histochemical staining exhibited obvious lighter reactive oxygen species (ROS) accumulation and cell death in rice and the R B. oleracea as compared to that in the S B. oleracea. Significant enhancement of Ca(2+) signalling, a positive regulator of ROS and cell death, were detected in S B. oleracea after inoculation, while it was significantly repressed in the R B. oleracea group. Obvious difference was detected between two B. oleracea groups for WRKY transcription factors, particularly for those regulating cell death. These findings suggest diverse modulations on cell death in host in response to S. sclerotiorum. Our study provides useful insight into the resistant mechanism to S. sclerotiorum.

  11. Chemical states of the N-terminal "lid" of MDM2 regulate p53 binding: simulations reveal complexities of modulation.

    PubMed

    Dastidar, Shubhra Ghosh; Raghunathan, Devanathan; Nicholson, Judith; Hupp, Ted R; Lane, David P; Verma, Chandra S

    2011-01-01

    Phosphorylation of S17 in the N-terminal "lid" of MDM2 (residues 1-24) is proposed to regulate the binding of p53. The lid is composed of an intrinsically disordered peptide motif that is not resolved in the crystal structure of the MDM2 N-terminal domain. Molecular dynamics simulations of MDM2 provide novel insight into how the lid undergoes complex dynamics depending on its phosphorylation state that have not been revealed by NMR analyses. The difference in charges between the phosphate and the phosphomimetic 'Asp' and the change in shape from tetrahedral to planar are manifested in differences in strengths and durations of interactions that appear to modulate access of the binding site to ligands and peptides differentially. These findings unveil the complexities that underlie protein-protein interactions and reconcile some differences between the biochemical and NMR data suggesting that lid mutation or deletion can change the specific activity of MDM2 and provide concepts for future approaches to evaluate the effects of S17 modification on p53 binding.

  12. Functional Connectivity Estimated from Resting-State fMRI Reveals Selective Alterations in Male Adolescents with Pure Conduct Disorder

    PubMed Central

    Lu, Feng-Mei; Zhou, Jian-Song; Zhang, Jiang; Xiang, Yu-Tao; Zhang, Jian; Liu, Qi; Wang, Xiao-Ping; Yuan, Zhen

    2015-01-01

    Conduct disorder (CD) is characterized by a persistent pattern of antisocial behavior and aggression in childhood and adolescence. Previous task-based and resting-state functional magnetic resonance imaging (fMRI) studies have revealed widespread brain regional abnormalities in adolescents with CD. However, whether the resting-state networks (RSNs) are altered in adolescents with CD remains unknown. In this study, resting-state fMRI data were first acquired from eighteen male adolescents with pure CD and eighteen age- and gender-matched typically developing (TD) individuals. Independent component analysis (ICA) was implemented to extract nine representative RSNs, and the generated RSNs were then compared to show the differences between the CD and TD groups. Interestingly, it was observed from the brain mapping results that compared with the TD group, the CD group manifested decreased functional connectivity in four representative RSNs: the anterior default mode network (left middle frontal gyrus), which is considered to be correlated with impaired social cognition, the somatosensory network (bilateral supplementary motor area and right postcentral gyrus), the lateral visual network (left superior occipital gyrus), and the medial visual network (right fusiform, left lingual gyrus and right calcarine), which are expected to be relevant to the perceptual systems responsible for perceptual dysfunction in male adolescents with CD. Importantly, the novel findings suggested that male adolescents with pure CD were identified to have dysfunctions in both low-level perceptual networks (the somatosensory network and visual network) and a high-order cognitive network (the default mode network). Revealing the changes in the functional connectivity of these RSNs enhances our understanding of the neural mechanisms underlying the modulation of emotion and social cognition and the regulation of perception in adolescents with CD. PMID:26713867

  13. Measurement of MODIS optics effective focal length, distortion, and modulation transfer function

    NASA Astrophysics Data System (ADS)

    Thurlow, Paul E.; Cline, Richard W.

    1993-08-01

    A combination MODIS optics characteristics, short back focal length, and relatively distorting optics, has required major revisions in techniques used earlier to characterize effective focal length (EFL) and modulation transfer function (MTF) in the thematic mapper (TM) project. This paper compares measurement approaches used to characterize TM optics and revised methodology intended to characterize MODIS optics at an integration and assembly level.

  14. MODULATION OF RAT LEYDIG CELL STEROIDOGENIC FUNCTION BY DI(2-ETHYLHEXYL)PHTHALATE

    EPA Science Inventory

    Modulation of rat Leydig cell steroidogenic function by di(2-ethylhexyl)phthalate.

    Akingbemi BT, Youker RT, Sottas CM, Ge R, Katz E, Klinefelter GR, Zirkin BR, Hardy MP.

    Center for Biomedical Research, Population Council, New York, New York 10021, USA. benson@popcbr...

  15. Modulation Transfer Function (MTF) measurement techniques for lenses and linear detector arrays

    NASA Technical Reports Server (NTRS)

    Schnabel, J. J., Jr.; Kaishoven, J. E., Jr.; Tom, D.

    1984-01-01

    Application is the determination of the Modulation Transfer Function (MTF) for linear detector arrays. A system set up requires knowledge of the MTF of the imaging lens. Procedure for this measurement is described for standard optical lab equipment. Given this information, various possible approaches to MTF measurement for linear arrays is described. The knife edge method is then described in detail.

  16. Reduced activity in functional networks during reward processing is modulated by abstinence in cocaine addicts.

    PubMed

    Costumero, Víctor; Bustamante, Juan Carlos; Rosell-Negre, Patricia; Fuentes, Paola; Llopis, Juan José; Ávila, César; Barrós-Loscertales, Alfonso

    2017-03-01

    Cocaine addiction is characterized by alterations in motivational and cognitive processes. Recent studies have shown that some alterations present in cocaine users may be related to the activity of large functional networks. The aim of this study was to investigate how these functional networks are modulated by non-drug rewarding stimuli in cocaine-dependent individuals. Twenty abstinent cocaine-dependent and 21 healthy matched male controls viewed erotic and neutral pictures while undergoing a functional magnetic resonance imaging scan. Group independent component analysis was then performed in order to investigate how functional networks were modulated by reward in cocaine addicts. The results showed that cocaine addicts, compared with healthy controls, displayed diminished modulation of the left frontoparietal network in response to erotic pictures, specifically when they were unpredicted. Additionally, a positive correlation between the length of cocaine abstinence and the modulation of the left frontoparietal network by unpredicted erotic images was found. In agreement with current addiction models, our results suggest that cocaine addiction contributes to reduce sensitivity to rewarding stimuli and that abstinence may mitigate this effect.

  17. Moire modulation transfer function of alexandrite rods and their thresholds as lasers

    SciTech Connect

    Kafri, O.; Samelson, H.; Chin, T.; Heller, D.F.

    1986-04-01

    We show that there is a simple correlation between the modulation transfer function (MTF) of alexandrite laser rods and the thresholds of these rods as cw lasers. Thus the MTF provides a novel and important way to evaluate material (before or after fabrication) for use in solid-state lasers. This approach should be generally applicable to all solid-state laser materials.

  18. Accuracy and uncertainty in random speckle modulation transfer function measurement of infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Barnard, Kenneth J.; Jacobs, Eddie L.; Plummer, Philip J.

    2016-12-01

    This paper expands upon a previously reported random speckle technique for measuring the modulation transfer function of midwave infrared focal plane arrays by considering a number of factors that impact the accuracy of the estimated modulation transfer function. These factors arise from assumptions in the theoretical derivation and bias in the estimation procedure. Each factor is examined and guidelines are determined to maintain accuracy within 2% of the true value. The uncertainty of the measurement is found by applying a one-factor ANOVA analysis and confidence intervals are established for the results. The small magnitude of the confidence intervals indicates a very robust technique capable of distinguishing differences in modulation transfer function among focal plane arrays on the order of a few percent. This analysis directly indicates the high quality of the random speckle modulation transfer function measurement technique. The methodology is applied to a focal plane array and results are presented that emphasize the need for generating independent random speckle realizations to accurately assess measured values.

  19. Computational Modeling Reveals that Signaling Lipids Modulate the Orientation of K-Ras4A at the Membrane Reflecting Protein Topology.

    PubMed

    Li, Zhen-Lu; Buck, Matthias

    2017-04-04

    The structural, dynamical, and functional characterization of the small GTPase K-Ras has become a research area of intense focus due to its high occurrence in human cancers. Ras proteins are only fully functional when they interact with the plasma membrane. Here we present all-atom molecular dynamics simulations (totaling 5.8 μs) to investigate the K-Ras4A protein at membranes that contain anionic lipids (phosphatidyl serine or phosphatidylinositol bisphosphate). We find that similarly to the homologous and highly studied K-Ras4B, K-Ras4A prefers a few distinct orientations at the membrane. Remarkably, the protein surface charge and certain lipids can strongly modulate the orientation preference. In a novel analysis, we reveal that the electrostatic interaction (attraction but also repulsion) between the protein's charged residues and anionic lipids determines the K-Ras4A orientation, but that this is also influenced by the topology of the protein, reflecting the geometry of its surfaces.

  20. Mitofusin 2 regulates the oocytes development and quality by modulating meiosis and mitochondrial function

    PubMed Central

    Liu, Qun; Kang, Lina; Wang, Lingjuan; Zhang, Ling; Xiang, Wenpei

    2016-01-01

    Mitofusin-2 (Mfn2), one of the mitochondrial dynamic proteins plays a key role in maintaining the integrity of mitochondrial morphology and function. However, it is unknown if Mfn2 influences the quality of oocytes in the process of development by modulating mitochondrial function in vitro. In this study, immature oocytes were transfected with Mfn2-siRNA for 16 h. We found that the expression level of the Mfn2 gene was significantly lower than those of the control group. The rates of maturation and fertility were also found to have declined. Moreover, mitochondrial structure and function, especially the morphogenesis of spindles, were observed as abnormal during meiosis. Thus, the above findings indicate that down-regulation of Mfn2 may have an impact on the maturation and fertilization of immature oocytes in vitro by modulating meiosis and mitochondrial function. PMID:27469431

  1. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions

    SciTech Connect

    Merchant, Sabeeha S

    2007-04-09

    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.

  2. Central Nervous System Control of Gastrointestinal Motility and Secretion and Modulation of Gastrointestinal Functions

    PubMed Central

    Browning, Kirsteen N.; Travagli, R. Alberto

    2016-01-01

    Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers. PMID:25428846

  3. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions.

    PubMed

    Browning, Kirsteen N; Travagli, R Alberto

    2014-10-01

    Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers.

  4. Identification of a novel role for dematin in regulating red cell membrane function by modulating spectrin-actin interaction.

    PubMed

    Koshino, Ichiro; Mohandas, Narla; Takakuwa, Yuichi

    2012-10-12

    The membrane skeleton plays a central role in maintaining the elasticity and stability of the erythrocyte membrane, two biophysical features critical for optimal functioning and survival of red cells. Many constituent proteins of the membrane skeleton are phosphorylated by various kinases, and phosphorylation of β-spectrin by casein kinase and of protein 4.1R by PKC has been documented to modulate erythrocyte membrane mechanical stability. In this study, we show that activation of endogenous PKA by cAMP decreases membrane mechanical stability and that this effect is mediated primarily by phosphorylation of dematin. Co-sedimentation assay showed that dematin facilitated interaction between spectrin and F-actin, and phosphorylation of dematin by PKA markedly diminished this activity. Quartz crystal microbalance measurement revealed that purified dematin specifically bound the tail region of the spectrin dimer in a saturable manner with a submicromolar affinity. Pulldown assay using recombinant spectrin fragments showed that dematin, but not phospho-dematin, bound to the tail region of the spectrin dimer. These findings imply that dematin contributes to the maintenance of erythrocyte membrane mechanical stability by facilitating spectrin-actin interaction and that phosphorylation of dematin by PKA can modulate these effects. In this study, we have uncovered a novel functional role for dematin in regulating erythrocyte membrane function.

  5. The modulating effects of propofol and its lipid carrier on canine neutrophil functions

    PubMed Central

    SATO, Reeko; AOKI, Takuma; KOBAYASHI, Saori; UCHIDA, Naohiro; SIMAMURA, Shunsuke; YAMASAKI, Masahiro

    2016-01-01

    Propofol (2,6-diisopropylphenol), being used as an intravenous sedative and anesthetic agent, influences not only upon nervous system but also for host inflammatory response through modulating neutrophil functions. This study is designed to evaluate the modulating effects of propofol and its lipid carrier administration at clinically relevant rate on canine neutrophil functions. Clinically healthy beagle dogs were received propofol (8.8 mg/kg) from cephalic vein and maintained with propofol dropping infusion (26.4 mg/kg/hr). Blood samples were collected from the dogs before infusion and 30 min after the start of propofol administration, and neutrophil functions were evaluated. The dogs were also administered lipid carrier, and neutrophil functions were evaluated in the same manner as propofol administration. Peripheral white blood cell and neutrophil counts decreased after the propofol or lipid carrier administration. The administration of propofol or lipid carrier significantly reduced neutrophil adherence ability. The superoxide production of neutrophils was measured by luminol-dependent chemiluminescence response using with opsonized zymosan. Peak height of neutrophil chemiluminescence curve was reduced by propofol and lipid carrier administration, on the contrary, peak time of neutrophil chemiluminescence curve was delayed. Administration of propofol or lipid carrier also reduced neutrophil adherence ability to nylon fibers. In the present study, we showed the modulating effects of propofol and its lipid carrier on canine neutrophil functions. However, there was no significant difference in the modulating effects between propofol group and lipid carrier group. Therefore, the modulating effects observed here were deeply concerned in lipid carrier administration. PMID:27665993

  6. Thermodynamic and functional characteristics of deep-sea enzymes revealed by pressure effects.

    PubMed

    Ohmae, Eiji; Miyashita, Yurina; Kato, Chiaki

    2013-09-01

    Hydrostatic pressure analysis is an ideal approach for studying protein dynamics and hydration. The development of full ocean depth submersibles and high pressure biological techniques allows us to investigate enzymes from deep-sea organisms at the molecular level. The aim of this review was to overview the thermodynamic and functional characteristics of deep-sea enzymes as revealed by pressure axis analysis after giving a brief introduction to the thermodynamic principles underlying the effects of pressure on the structural stability and function of enzymes.

  7. A comprehensive excitatory input map of the striatum reveals novel functional organization

    PubMed Central

    Hunnicutt, Barbara J; Jongbloets, Bart C; Birdsong, William T; Gertz, Katrina J; Zhong, Haining; Mao, Tianyi

    2016-01-01

    The striatum integrates excitatory inputs from the cortex and the thalamus to control diverse functions. Although the striatum is thought to consist of sensorimotor, associative and limbic domains, their precise demarcations and whether additional functional subdivisions exist remain unclear. How striatal inputs are differentially segregated into each domain is also poorly understood. This study presents a comprehensive map of the excitatory inputs to the mouse striatum. The input patterns reveal boundaries between the known striatal domains. The most posterior striatum likely represents the 4th functional subdivision, and the dorsomedial striatum integrates highly heterogeneous, multimodal inputs. The complete thalamo-cortico-striatal loop is also presented, which reveals that the thalamic subregions innervated by the basal ganglia preferentially interconnect with motor-related cortical areas. Optogenetic experiments show the subregion-specific heterogeneity in the synaptic properties of striatal inputs from both the cortex and the thalamus. This projectome will guide functional studies investigating diverse striatal functions. DOI: http://dx.doi.org/10.7554/eLife.19103.001 PMID:27892854

  8. Inferring modules of functionally interacting proteins using the Bond Energy Algorithm

    PubMed Central

    Watanabe, Ryosuke LA; Morett, Enrique; Vallejo, Edgar E

    2008-01-01

    Background Non-homology based methods such as phylogenetic profiles are effective for predicting functional relationships between proteins with no considerable sequence or structure similarity. Those methods rely heavily on traditional similarity metrics defined on pairs of phylogenetic patterns. Proteins do not exclusively interact in pairs as the final biological function of a protein in the cellular context is often hold by a group of proteins. In order to accurately infer modules of functionally interacting proteins, the consideration of not only direct but also indirect relationships is required. In this paper, we used the Bond Energy Algorithm (BEA) to predict functionally related groups of proteins. With BEA we create clusters of phylogenetic profiles based on the associations of the surrounding elements of the analyzed data using a metric that considers linked relationships among elements in the data set. Results Using phylogenetic profiles obtained from the Cluster of Orthologous Groups of Proteins (COG) database, we conducted a series of clustering experiments using BEA to predict (upper level) relationships between profiles. We evaluated our results by comparing with COG's functional categories, And even more, with the experimentally determined functional relationships between proteins provided by the DIP and ECOCYC databases. Our results demonstrate that BEA is capable of predicting meaningful modules of functionally related proteins. BEA outperforms traditionally used clustering methods, such as k-means and hierarchical clustering by predicting functional relationships between proteins with higher accuracy. Conclusion This study shows that the linked relationships of phylogenetic profiles obtained by BEA is useful for detecting functional associations between profiles and extending functional modules not found by traditional methods. BEA is capable of detecting relationship among phylogenetic patterns by linking them through a common element shared in

  9. Systematic probing of the bacterial RNA structurome to reveal new functions.

    PubMed

    Ignatova, Zoya; Narberhaus, Franz

    2017-02-01

    RNA folds into intricate structures. Recent discoveries using next-generation sequencing (NGS) approaches have revealed unprecedented structural complexity with a pivotal role in regulating RNA function and stability. Here, we present new discoveries from the transcriptome-wide determination of RNA structuromes in bacteria and discuss emerging concepts in the role of mRNA structures in regulating transcription, translation and degradation. We also provide critical viewpoints on the use of NGS approaches for elucidating of RNA structuromes at the systems level.

  10. Launch and Functional Considerations Guiding the Scaling and Design of Rigid Inflatable Habitat Modules

    NASA Astrophysics Data System (ADS)

    Bell, L.

    2002-01-01

    The Sasakawa International Center for Space Architecture (SICSA) has a long history of projects that involve design of space structures, including habitats for low-Earth orbit (LEO) and planetary applications. Most of these facilities and component systems are planned to comply with size, geometry and mass restrictions imposed by the Space Shuttle Orbiter's payload and lift/landing abort restrictions. These constraints limit launch elements to approximately 15 ft. diameter, 40 ft. long cylindrical dimensions weighing no more than approximately 25 metric tons. It is clear that future success of commercial space programs such as tourism will hinge upon the availability of bigger and more efficient Earth to LEO launch vehicles which can greatly reduce transportation and operational costs. This will enable development and utilization of larger habitat modules and other infrastructure elements which can be deployed with fewer launches and on-orbit assembly procedures. The sizing of these new heavy lift launchers should be scaled to optimize habitat functionality and efficiency, just as the habitat designs must consider optimization of launch vehicle economy. SICSA's planning studies address these vehicle and habitat optimization priorities as parallel and interdependent considerations. The allowable diameter of habitat modules established by launch vehicle capacity dictates functionally acceptable internal configuration options. Analyses of these options relative to practical dimensions for Earth-to-orbit launch vehicle scaling were conducted for two general schemes. The "bologna slice" configuration stacks the floors within a predominately cylindrical or spherical envelope, producing circular areas. The "banana split" approach divides a cylindrical module longitudinally, creating floors that are generally rectangular in shape. The assessments established minimum sizes for reasonable utility and efficiency. The bologna slice option. This configuration is only acceptable

  11. Comprehensive analysis of cellular galectin-3 reveals no consistent oncogenic function in pancreatic cancer cells.

    PubMed

    Hann, Alexander; Gruner, Anja; Chen, Ying; Gress, Thomas M; Buchholz, Malte

    2011-01-01

    Galectin-3 (Gal-3), a 31 kDa member of the family of beta-galactoside-binding proteins, has been implicated in the progression of different human cancers. However, the proposed roles differ widely, ranging from tumor-promoting cellular functions and negative impact on patient prognosis to tumor-suppressive properties and positive prognostic impact. We and others have previously identified Gal-3 as overexpressed in pancreatic cancer as compared to chronic pancreatitis and normal pancreatic tissue. The purpose of this study was thus the comprehensive analysis of putative cellular functions of Gal-3 by transient as well as stable silencing or overexpression of Gal-3 in a panel of 6 well-established pancreatic cancer cell lines. Our results confirm that galectin-3 is upregulated at the mRNA level in pancreatic cancer and strongly expressed in the majority of pancreatic cancer cell lines. In individual cell lines, transient knockdown of Gal-3 expression resulted in moderate inhibitory effects on proliferation, migration or anchorage-independent growth of the cells, but these effects were not consistent across the spectrum of analyzed cell lines. Moreover, functional effects of the modulation of Gal-3 expression were not observed in stable knockdown or overexpression approaches in vitro and did not alter the growth characteristics of nude mouse xenograft tumors in vivo. Our data thus do not support a direct functional role of Gal-3 in the malignant transformation of pancreatic epithelial cells, although paracrine or systemic effects of Gal-3 expression are not excluded.

  12. 50-Gb/s NRZ and RZ Modulator Driver ICs Based on Functional Distributed Circuits

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuyuki; Mamada, Masayuki

    We have developed two modulator driver ICs that are based on the functional distributed circuit (FDC) topology for over 40-Gb/s optical transmission systems using InP HBT technology. The FDC topology enables both a wide bandwidth amplifier and high-speed digital functions. The none-return-to-zero (NRZ) driver IC, which is integrated with a D-type flip-flop, exhibits 2.6-Vp-p (differential output: 5.2Vp-p) output-voltage swings with a high signal quality at 43 and 50Gb/s. The return-to-zero (RZ) driver IC, which is integrated with a NRZ to RZ converter, produces 2.4-Vp-p (differential output: 4.8Vp-p) output-voltage swings and excellent eye openings at 43 and 50Gb/s. Furthermore, we conducted electro-optical modulation experiments using the developed modulator driver ICs and a dual drive LiNbO3 Mach-Zehnder modulator. We were able to obtain NRZ and RZ clear optical eye openings with low jitters and sufficient extinction ratios of more than 12dB, at 43 and 50Gb/s. These results indicate that the FDC has the potential to achieve a large output voltage and create high-speed functional ICs for over-40-Gb/s transmission systems.

  13. Functional Traits Reveal Processes Driving Natural Afforestation at Large Spatial Scales

    PubMed Central

    Mason, Norman W. H.; Wiser, Susan K.; Richardson, Sarah J.; Thorsen, Michael J.; Holdaway, Robert J.; Dray, Stéphane; Thomson, Fiona J.; Carswell, Fiona E.

    2013-01-01

    An understanding of the processes governing natural afforestation over large spatial scales is vital for enhancing forest carbon sequestration. Models of tree species occurrence probability in non-forest vegetation could potentially identify the primary variables determining natural afforestation. However, inferring processes governing afforestation using tree species occurrence is potentially problematic, since it is impossible to know whether observed occurrences are due to recruitment or persistence of existing trees following disturbance. Plant functional traits have the potential to reveal the processes by which key environmental and land cover variables influence afforestation. We used 10,061 survey plots to identify the primary environmental and land cover variables influencing tree occurrence probability in non-forest vegetation in New Zealand. We also examined how these variables influenced diversity of functional traits linked to plant ecological strategy and dispersal ability. Mean annual temperature was the most important environmental predictor of tree occurrence. Local woody cover and distance to forest were the most important land cover variables. Relationships between these variables and ecological strategy traits revealed a trade-off between ability to compete for light and colonize sites that were marginal for tree occurrence. Biotically dispersed species occurred less frequently with declining temperature and local woody cover, suggesting that abiotic stress limited their establishment and that biotic dispersal did not increase ability to colonize non-woody vegetation. Functional diversity for ecological strategy traits declined with declining temperature and woody cover and increasing distance to forest. Functional diversity for dispersal traits showed the opposite trend. This suggests that low temperatures and woody cover and high distance to forest may limit tree species establishment through filtering on ecological strategy traits, but not on

  14. Functional traits reveal processes driving natural afforestation at large spatial scales.

    PubMed

    Mason, Norman W H; Wiser, Susan K; Richardson, Sarah J; Thorsen, Michael J; Holdaway, Robert J; Dray, Stéphane; Thomson, Fiona J; Carswell, Fiona E

    2013-01-01

    An understanding of the processes governing natural afforestation over large spatial scales is vital for enhancing forest carbon sequestration. Models of tree species occurrence probability in non-forest vegetation could potentially identify the primary variables determining natural afforestation. However, inferring processes governing afforestation using tree species occurrence is potentially problematic, since it is impossible to know whether observed occurrences are due to recruitment or persistence of existing trees following disturbance. Plant functional traits have the potential to reveal the processes by which key environmental and land cover variables influence afforestation. We used 10,061 survey plots to identify the primary environmental and land cover variables influencing tree occurrence probability in non-forest vegetation in New Zealand. We also examined how these variables influenced diversity of functional traits linked to plant ecological strategy and dispersal ability. Mean annual temperature was the most important environmental predictor of tree occurrence. Local woody cover and distance to forest were the most important land cover variables. Relationships between these variables and ecological strategy traits revealed a trade-off between ability to compete for light and colonize sites that were marginal for tree occurrence. Biotically dispersed species occurred less frequently with declining temperature and local woody cover, suggesting that abiotic stress limited their establishment and that biotic dispersal did not increase ability to colonize non-woody vegetation. Functional diversity for ecological strategy traits declined with declining temperature and woody cover and increasing distance to forest. Functional diversity for dispersal traits showed the opposite trend. This suggests that low temperatures and woody cover and high distance to forest may limit tree species establishment through filtering on ecological strategy traits, but not on

  15. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate

    DOE PAGES

    De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; ...

    2016-02-25

    Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipidmore » catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. Finally, the results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.« less

  16. The CWB2 Cell Wall-Anchoring Module Is Revealed by the Crystal Structures of the Clostridium difficile Cell Wall Proteins Cwp8 and Cwp6.

    PubMed

    Usenik, Aleksandra; Renko, Miha; Mihelič, Marko; Lindič, Nataša; Borišek, Jure; Perdih, Andrej; Pretnar, Gregor; Müller, Uwe; Turk, Dušan

    2017-03-07

    Bacterial cell wall proteins play crucial roles in cell survival, growth, and environmental interactions. In Gram-positive bacteria, cell wall proteins include several types that are non-covalently attached via cell wall binding domains. Of the two conserved surface-layer (S-layer)-anchoring modules composed of three tandem SLH or CWB2 domains, the latter have so far eluded structural insight. The crystal structures of Cwp8 and Cwp6 reveal multi-domain proteins, each containing an embedded CWB2 module. It consists of a triangular trimer of Rossmann-fold CWB2 domains, a feature common to 29 cell wall proteins in Clostridium difficile 630. The structural basis of the intact module fold necessary for its binding to the cell wall is revealed. A comparison with previously reported atomic force microscopy data of S-layers suggests that C. difficile S-layers are complex oligomeric structures, likely composed of several different proteins.

  17. System identification of two-dimensional continuous-time systems using wavelets as modulating functions.

    PubMed

    Sadabadi, Mahdiye Sadat; Shafiee, Masoud; Karrari, Mehdi

    2008-07-01

    In this paper, parameter identification of two-dimensional continuous-time systems via two-dimensional modulating functions is proposed. In the proposed method, trigonometric functions and sine-cosine wavelets are used as modulating functions. By this, a partial differential equation on the finite-time intervals is converted into an algebraic equation linear in parameters. The parameters of the system can then be estimated using the least square algorithms. The underlying computations utilize a two-dimensional fast Fourier transform algorithm, without the need for estimating the unknown initial or boundary conditions, at the beginning of each finite-time interval. Numerical simulations are presented to show the effectiveness of the proposed algorithm.

  18. [Identification of gene functional modules shared by cancers based on biclustering].

    PubMed

    Zhang, Fan; Lin, Ai-Hua; Lin, Mei-Hua; Ding, Yuan-Lin; Rao, Shao-Qi

    2013-03-01

    Pleiotropy is a common phenomenon in the genetics of cancers, which is rarely systematically evaluated. A novel idea for identifying shared gene functional modules using biclustering was proposed in this paper to explore the common molecular mechanisms among cancers and the relationships between different types of cancers. Gene expression datasets for 20 cancers were obtained. And genes differentially expressing in at least two types of cancers were selected using both moderated t-statistic and fold change to construct a 10417 × 20 matrix (gene-cancer matrix). 22 gene clusters shared by cancers were found by using the biclustering method. Further, Gene Ontology (GO)-based enrichment analysis identified 17 gene functional modules (Bonferroni corrected P < 0.05). The involved biological processes primarily included regulation of chromatids separation during mitosis, cell differentiation, immune and inflammatory response, and collagen fibril organization. These modules undertook molecular functions of ATP binding and microtubule motor activity, MHC class II receptor activity, endopeptidase inhibitor activity and so on. And their activity sites were mostly located in cytoskeleton, chromosome, MHC protein complex, intermediate filament, fibrillar collagen and so on. The network constructed based on these modules indicates that gastric cancer, ovarian adenocarcinoma, cervical cancer and mesothelioma were highly relevant to each other. However, the molecular mechanisms of two hematologic malignancies (acute myeloid leukemia and multiple myeloma) seem very different from other cancers. It can be seen that gene functional modules shared by cancers are associated with many biological mechanisms, and similarities among cancers are probably attributed to cellular origin and shared carcinogenic mechanisms. The proposed method for analysis of pleiotropy in this paper will help understand the common molecular mechanisms for complex human diseases.

  19. Heme Oxygenase-1 Regulates Dendritic Cell Function through Modulation of p38 MAPK-CREB/ATF1 Signaling*

    PubMed Central

    Al-Huseini, Laith M. A.; Aw Yeang, Han Xian; Hamdam, Junnat M.; Sethu, Swaminathan; Alhumeed, Naif; Wong, Wai; Sathish, Jean G.

    2014-01-01

    Dendritic cells (DCs) are critical for the initiation of immune responses including activation of CD8 T cells. Intracellular reactive oxygen species (ROS) levels influence DC maturation and function. Intracellular heme, a product of catabolism of heme-containing metalloproteins, is a key inducer of ROS. Intracellular heme levels are regulated by heme oxygenase-1 (HO-1), which catalyzes the degradation of heme. Heme oxygenase-1 has been implicated in regulating DC maturation; however, its role in other DC functions is unclear. Furthermore, the signaling pathways modulated by HO-1 in DCs are unknown. In this study, we demonstrate that inhibition of HO-1 activity in murine bone marrow-derived immature DCs (iDCs) resulted in DCs with raised intracellular ROS levels, a mature phenotype, impaired phagocytic and endocytic function, and increased capacity to stimulate antigen-specific CD8 T cells. Interestingly, our results reveal that the increased ROS levels following HO-1 inhibition did not underlie the changes in phenotype and functions observed in these iDCs. Importantly, we show that the p38 mitogen-activated protein kinase (p38 MAPK), cAMP-responsive element binding protein (CREB), and activating transcription factor 1 (ATF1) pathway is involved in the mediation of the phenotypic and functional changes arising from HO-1 inhibition. Furthermore, up-regulation of HO-1 activity rendered iDCs refractory to lipopolysaccharide-induced activation of p38 MAPK-CREB/ATF1 pathway and DC maturation. Finally, we demonstrate that treatment of iDC with the HO-1 substrate, heme, recapitulates the effects that result from HO-1 inhibition. Based on these results, we conclude that HO-1 regulates DC maturation and function by modulating the p38 MAPK-CREB/ATF1 signaling axis. PMID:24719331

  20. Human EAG channels are directly modulated by PIP2 as revealed by electrophysiological and optical interference investigations.

    PubMed

    Han, Bo; He, Kunyan; Cai, Chunlin; Tang, Yin; Yang, Linli; Heinemann, Stefan H; Hoshi, Toshinori; Hou, Shangwei

    2016-03-23

    Voltage-gated ether à go-go (EAG) K(+) channels are expressed in various types of cancer cells and also in the central nervous system. Aberrant overactivation of human EAG1 (hEAG1) channels is associated with cancer and neuronal disorders such as Zimmermann-Laband and Temple-Baraitser syndromes. Although hEAG1 channels are recognized as potential therapeutic targets, regulation of their functional properties is only poorly understood. Here, we show that the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) is a potent inhibitory gating modifier of hEAG1 channels. PIP2 inhibits the channel activity by directly binding to a short N-terminal segment of the channel important for Ca(2+)/calmodulin (CaM) binding as evidenced by bio-layer interferometry measurements. Conversely, depletion of endogenous PIP2 either by serotonin-induced phospholipase C (PLC) activation or by a rapamycin-induced translocation system enhances the channel activity at physiological membrane potentials, suggesting that PIP2 exerts a tonic inhibitory influence. Our study, combining electrophysiological and direct binding assays, demonstrates that hEAG1 channels are subject to potent inhibitory modulation by multiple phospholipids and suggests that manipulations of the PIP2 signaling pathway may represent a strategy to treat hEAG1 channel-associated diseases.

  1. Top-down Modulation of Neural Activity in Anticipatory Visual Attention: Control Mechanisms Revealed by Simultaneous EEG-fMRI.

    PubMed

    Liu, Yuelu; Bengson, Jesse; Huang, Haiqing; Mangun, George R; Ding, Mingzhou

    2016-02-01

    In covert visual attention, frontoparietal attention control areas are thought to issue signals to selectively bias sensory neurons to facilitate behaviorally relevant information and suppress distraction. We investigated the relationship between activity in attention control areas and attention-related modulation of posterior alpha activity using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging in humans during cued visual-spatial attention. Correlating single-trial EEG alpha power with blood-oxygen-level dependent (BOLD) activity, we found that BOLD in the intraparietal sulcus (IPS) and left middle frontal gyrus was inversely correlated with occipital alpha power. Importantly, in IPS, inverse correlations were stronger for alpha within the hemisphere contralateral to the attended hemifield, implicating the IPS in the enhancement of task-relevant sensory areas. Positive BOLD-alpha correlations were observed in sensorimotor cortices and the default mode network, suggesting a mechanism of active suppression over task-irrelevant areas. The magnitude of cue-induced alpha lateralization was positively correlated with BOLD in dorsal anterior cingulate cortex and dorsolateral prefrontal cortex, implicating a role of executive control in attention. These results show that IPS and frontal executive areas are the main sources of biasing influences on task-relevant visual cortex, whereas task-irrelevant default mode network and sensorimotor cortex are inhibited during visual attention.

  2. Human EAG channels are directly modulated by PIP2 as revealed by electrophysiological and optical interference investigations

    PubMed Central

    Han, Bo; He, Kunyan; Cai, Chunlin; Tang, Yin; Yang, Linli; Heinemann, Stefan H.; Hoshi, Toshinori; Hou, Shangwei

    2016-01-01

    Voltage-gated ether à go-go (EAG) K+ channels are expressed in various types of cancer cells and also in the central nervous system. Aberrant overactivation of human EAG1 (hEAG1) channels is associated with cancer and neuronal disorders such as Zimmermann-Laband and Temple-Baraitser syndromes. Although hEAG1 channels are recognized as potential therapeutic targets, regulation of their functional properties is only poorly understood. Here, we show that the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) is a potent inhibitory gating modifier of hEAG1 channels. PIP2 inhibits the channel activity by directly binding to a short N-terminal segment of the channel important for Ca2+/calmodulin (CaM) binding as evidenced by bio-layer interferometry measurements. Conversely, depletion of endogenous PIP2 either by serotonin-induced phospholipase C (PLC) activation or by a rapamycin-induced translocation system enhances the channel activity at physiological membrane potentials, suggesting that PIP2 exerts a tonic inhibitory influence. Our study, combining electrophysiological and direct binding assays, demonstrates that hEAG1 channels are subject to potent inhibitory modulation by multiple phospholipids and suggests that manipulations of the PIP2 signaling pathway may represent a strategy to treat hEAG1 channel-associated diseases. PMID:27005320

  3. Proteomic analysis reveals a FANCA-modulated neddylation pathway involved in CXCR5 membrane targeting and cell mobility.

    PubMed

    Renaudin, Xavier; Guervilly, Jean-Hugues; Aoufouchi, Said; Rosselli, Filippo

    2014-08-15

    The aim of this study was to identify novel substrates of the FANCcore complex, the inactivation of which leads to the genetic disorder Fanconi anemia, which is associated with bone marrow failure, developmental abnormalities and a predisposition to cancer. Eight FANC proteins participate in the nuclear FANCcore complex, which functions as an E3 ubiquitin-ligase that monoubiquitylates FANCD2 and FANCI in response to replicative stress. Here, we use mass spectrometry to compare proteins from FANCcore-complex-deficient cells to those of rescued control cells after treatment with hydroxyurea, an inducer of FANCD2 monoubiquitylation. FANCD2 and FANCI appear to be the only targets of the FANCcore complex. We identify other proteins that are post-translationally modified in a FANCA- or FANCC-dependent manner. The majority of these potential targets localize to the cell membrane. Finally, we demonstrate that (a) the chemokine receptor CXCR5 is neddylated; (b) FANCA but not FANCC appears to modulate CXCR5 neddylation through an unknown mechanism; (c) CXCR5 neddylation is involved in targeting the receptor to the cell membrane; and (d) CXCR5 neddylation stimulates cell migration and motility. Our work has uncovered a pathway involving FANCA in neddylation and cell motility.

  4. Stability for function trade-offs in the enolase superfamily "catalytic module".

    PubMed

    Nagatani, Ray A; Gonzalez, Ana; Shoichet, Brian K; Brinen, Linda S; Babbitt, Patricia C

    2007-06-12

    Enzyme catalysis reflects a dynamic interplay between charged and polar active site residues that facilitate function, stabilize transition states, and maintain overall protein stability. Previous studies show that substituting neutral for charged residues in the active site often significantly stabilizes a protein, suggesting a stability trade-off for functionality. In the enolase superfamily, a set of conserved active site residues (the "catalytic module") has repeatedly been used in nature in the evolution of many different enzymes for the performance of unique overall reactions involving a chemically diverse set of substrates. This catalytic module provides a robust solution for catalysis that delivers the common underlying partial reaction that supports all of the different overall chemical reactions of the superfamily. As this module has been so broadly conserved in the evolution of new functions, we sought to investigate the extent to which it follows the stability-function trade-off. Alanine substitutions were made for individual residues, groups of residues, and the entire catalytic module of o-succinylbenzoate synthase (OSBS), a member of the enolase superfamily from Escherichia coli. Of six individual residue substitutions, four (K131A, D161A, E190A, and D213A) substantially increased protein stability (by 0.46-4.23 kcal/mol), broadly consistent with prediction of a stability-activity trade-off. The residue most conserved across the superfamily, E190, is by far the most destabilizing. When the individual substitutions were combined into groups (as they are structurally and functionally organized), nonadditive stability effects emerged, supporting previous observations that residues within the module interact as two functional groups within a larger catalytic system. Thus, whereas the multiple-mutant enzymes D161A/E190A/D213A and K131A/K133A/D161A/E190A/D213A/K235A (termed 3KDED) are stabilized relative to the wild-type enzyme (by 1.77 and 3.68 kcal

  5. Genetic diversity of coastal bottlenose dolphins revealed by structurally and functionally diverse hemoglobins.

    PubMed

    Remington, Nicole; Stevens, Robert D; Wells, Randall S; Holn, Aleta; Dhungana, Suraj; Taboy, Celine H; Crumbliss, Alvin L; Henkens, Robert; Bonaventura, Celia

    2007-08-15

    Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhances oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their alpha and beta globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community.

  6. Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures.

    PubMed

    Raherison, Elie S M; Giguère, Isabelle; Caron, Sébastien; Lamara, Mebarek; MacKay, John J

    2015-07-01

    Transcript profiling has shown the molecular bases of several biological processes in plants but few studies have developed an understanding of overall transcriptome variation. We investigated transcriptome structure in white spruce (Picea glauca), aiming to delineate its modular organization and associated functional and evolutionary attributes. Microarray analyses were used to: identify and functionally characterize groups of co-expressed genes; investigate expressional and functional diversity of vascular tissue preferential genes which were conserved among Picea species, and identify expression networks underlying wood formation. We classified 22 857 genes as variable (79%; 22 coexpression groups) or invariant (21%) by profiling across several vegetative tissues. Modular organization and complex transcriptome restructuring among vascular tissue preferential genes was revealed by their assignment to coexpression groups with partially overlapping profiles and partially distinct functions. Integrated analyses of tissue-based and temporally variable profiles identified secondary xylem gene networks, showed their remodelling over a growing season and identified PgNAC-7 (no apical meristerm (NAM), Arabidopsis transcription activation factor (ATAF) and cup-shaped cotyledon (CUC) transcription factor 007 in Picea glauca) as a major hub gene specific to earlywood formation. Reference profiling identified comprehensive, statistically robust coexpressed groups, revealing that modular organization underpins the evolutionary conservation of the transcriptome structure.

  7. Meta-Analytic Connectivity Modeling Reveals Differential Functional Connectivity of the Medial and Lateral Orbitofrontal Cortex

    PubMed Central

    Zald, David H.; McHugo, Maureen; Ray, Kimberly L.; Glahn, David C.; Eickhoff, Simon B.; Laird, Angela R.

    2014-01-01

    The orbitofrontal cortex (OFC) is implicated in a broad range of behaviors and neuropsychiatric disorders. Anatomical tracing studies in nonhuman primates reveal differences in connectivity across subregions of the OFC, but data on the connectivity of the human OFC remain limited. We applied meta-analytic connectivity modeling in order to examine which brain regions are most frequently coactivated with the medial and lateral portions of the OFC in published functional neuroimaging studies. The analysis revealed a clear divergence in the pattern of connectivity for the medial OFC (mOFC) and lateral OFC (lOFC) regions. The lOFC showed coactivations with a network of prefrontal regions and areas involved in cognitive functions including language and memory. In contrast, the mOFC showed connectivity with default mode, autonomic, and limbic regions. Convergent patterns of coactivations were observed in the amygdala, hippocampus, striatum, and thalamus. A small number of regions showed connectivity specific to the anterior or posterior sectors of the OFC. Task domains involving memory, semantic processing, face processing, and reward were additionally analyzed in order to identify the different patterns of OFC functional connectivity associated with specific cognitive and affective processes. These data provide a framework for understanding the human OFC's position within widespread functional networks. PMID:23042731

  8. Characterizing Thalamocortical Disturbances in Cervical Spondylotic Myelopathy: Revealed by Functional Connectivity under Two Slow Frequency Bands

    PubMed Central

    Zhou, Fuqing; Wu, Lin; Liu, Xiaojia; Gong, Honghan; Luk, Keith Dip-Kei; Hu, Yong

    2015-01-01

    Background and Purpose Recent advanced MRI studies on cervical spondylotic myelopathy (CSM) revealed alterations of sensorimotor cortex, but the disturbances of large-scale thalamocortical systems remains elusive. The purpose of this study was to characterizing the CSM-related thalamocortical disturbances, which were associated with spinal cord structural injury, and clinical measures. Methods A total of 17 patients with degenerative CSM and well-matched control subjects participated. Thalamocortical disturbances were quantified using thalamus seed-based functional connectivity in two distinct low frequencies bands (slow-5 and slow-4), with different neural manifestations. The clinical measures were evaluated by Japanese Orthopaedic Association (JOA) score system and Neck Disability Index (NDI) questionnaires. Results Decreased functional connectivity was found in the thalamo-motor, -somatosensory, and -temporal circuits in the slow-5 band, indicating impairment of thalamo-cortical circuit degeneration or axon/synaptic impairment. By contrast, increased functional connectivity between thalami and the bilateral primary motor (M1), primary and secondary somatosensory (S1/S2), premotor cortex (PMC), and right temporal cortex was detected in the slow-4 band, and were associated with higher fractional anisotropy values in the cervical cord, corresponding to mild spinal cord structural injury. Conclusions These thalamocortical disturbances revealed by two slow frequency bands inform basic understanding and vital clues about the sensorimotor dysfunction in CSM. Further work is needed to evaluate its contribution in central functional reorganization during spinal cord degeneration. PMID:26053316

  9. Yeast gain-of-function mutations reveal structure–function relationships conserved among different subfamilies of transient receptor potential channels

    PubMed Central

    Su, Zhenwei; Zhou, Xinliang; Haynes, W. John; Loukin, Stephen H.; Anishkin, Andriy; Saimi, Yoshiro; Kung, Ching

    2007-01-01

    Transient receptor potential (TRP) channels found in animals, protists, and fungi are primary chemo-, thermo-, or mechanosensors. Current research emphasizes the characteristics of individual channels in each animal TRP subfamily but not the mechanisms common across subfamilies. A forward genetic screen of the TrpY1, the yeast TRP channel, recovered gain-of-function (GOF) mutations with phenotype in vivo and in vitro. Single-channel patch-clamp analyses of these GOF-mutant channels show prominent aberrations in open probability and channel kinetics. These mutations revealed functionally important aromatic amino acid residues in four locations: at the intracellular end of the fifth transmembrane helix (TM5), at both ends of TM6, and at the immediate extension of TM6. These aromatics have counterparts in most TRP subfamilies. The one in TM5 (F380L) aligns precisely with an exceptional Drosophila mutant allele (F550I) that causes constitutive activity in the canonical TRP channel, resulting in rapid and severe retinal degeneration beyond mere loss of phototaxis. Thus, this phenylalanine maintains the balance of various functional states (conformations) of a channel for insect phototransduction as well as one for fungal mechanotransduction. This residue is among a small cluster of phenylalanines found in all known subfamilies of TRP channels. This unique case illustrates that GOF mutations can reveal structure–function principles that can be generalized across different TRP subfamilies. It appears that the conserved aromatics in the four locations have conserved functions in most TRP channels. The possible mechanistic roles of these aromatics and the further use of yeast genetics to dissect TRP channels are discussed. PMID:18042709

  10. Modulation of BK Channel Function by Auxiliary Beta and Gamma Subunits

    PubMed Central

    Li, Q.; Yan, J.

    2016-01-01

    The large-conductance, Ca2+- and voltage-activated K+ (BK) channel is ubiquitously expressed in mammalian tissues and displays diverse biophysical or pharmacological characteristics. This diversity is in part conferred by channel modulation with different regulatory auxiliary subunits. To date, two distinct classes of BK channel auxiliary subunits have been identified: β subunits and γ subunits. Modulation of BK channels by the four auxiliary β (β1–β4) subunits has been well established and intensively investigated over the past two decades. The auxiliary γ subunits, however, were identified only very recently, which adds a new dimension to BK channel regulation and improves our understanding of the physiological functions of BK channels in various tissues and cell types. This chapter will review the current understanding of BK channel modulation by auxiliary β and γ subunits, especially the latest findings. PMID:27238261

  11. Tamoxifen Augments the Innate Immune Function of Neutrophils Through Modulation of Intracellular Ceramide

    PubMed Central

    Corriden, Ross; Hollands, Andrew; Olson, Joshua; Derieux, Jaclyn; Lopez, Justine; Chang, John T.; Gonzalez, David J.; Nizet, Victor

    2015-01-01

    Tamoxifen is a selective estrogen receptor modulator widely used for the treatment of breast cancer. In addition to its activity as an estrogen receptor agonist/antagonist, tamoxifen also modulates sphingolipid biosynthesis, which has been shown to play an important role in the regulation of neutrophil activity. Here, we find that tamoxifen stimulation enhances several pro-inflammatory pathways in human neutrophils, including chemotaxis, phagocytosis and neutrophil extracellular trap (NET) formation. The enhancement of NET production occurs via a ceramide/PKCζ-mediated pathway, and treatment with synthetic ceramide is sufficient to promote NET formation. Pretreatment of human neutrophils with tamoxifen boosts neutrophil bactericidal capacity against a variety of pathogens in vitro and enhances clearance of the leading human pathogen methicillin-resistant Staphylococcus aureus in vivo. Our results suggest that tamoxifen, and the lipid signaling pathways it modulates, merit further exploration as targets for boosting host innate immune function. PMID:26458291

  12. Monoclonal antibodies to reovirus reveal structure/function relationships between capsid proteins and genetics of susceptibility to antibody action.

    PubMed Central

    Virgin, H W; Mann, M A; Fields, B N; Tyler, K L

    1991-01-01

    Thirteen newly isolated monoclonal antibodies (MAbs) were used to study relationships between reovirus outer capsid proteins sigma 3, mu 1c, and lambda 2 (core spike) and the cell attachment protein sigma 1. We focused on sigma 1-associated properties of serotype specificity and hemagglutination (HA). Competition between MAbs revealed two surface epitopes on mu 1c that were highly conserved between reovirus serotype 1 Lang (T1L) and serotype 3 Dearing (T3D). There were several differences between T1L and T3D sigma 3 epitope maps. Studies using T1L x T3D reassortants showed that primary sequence differences between T1L and T3D sigma 3 proteins accounted for differences in sigma 3 epitope maps. Four of 12 non-sigma 1 MAbs showed a serotype-associated pattern of binding to 25 reovirus field isolates. Thus, for reovirus field isolates, different sigma 1 proteins are associated with preferred epitopes on other outer capsid proteins. Further evidence for a close structural and functional interrelationship between sigma 3/mu 1c and sigma 1 included (i) inhibition by sigma 3 and mu 1c MAbs of sigma 1-mediated HA, (ii) enhancement of sigma 1-mediated HA by proteolytic cleavage of sigma 3 and mu 1c, and (iii) genetic studies demonstrating that sigma 1 controlled the capacity of sigma 3 MAbs to inhibit HA. These data suggest that (i) epitopes on sigma 3 and mu 1c lie in close proximity to sigma 1 and that MAbs to these epitopes can modulate sigma 1-mediated functions, (ii) these spatial relationships have functional significance, since removal of sigma 3 and/or cleavage of mu 1c to delta can enhance sigma 1 function, (iii) in nature, the sigma 1 protein places selective constraints on the epitope structure of the other capsid proteins, and (iv) viral susceptibility to antibody action can be determined by genes other than that encoding an antibody's epitope. PMID:1719233

  13. Microfluidic Screening Reveals Heparan Sulfate Enhances Human Mesenchymal Stem Cell Growth by Modulating Fibroblast Growth Factor-2 Transport.

    PubMed

    Titmarsh, Drew M; Tan, Clarissa L L; Glass, Nick R; Nurcombe, Victor; Cooper-White, Justin J; Cool, Simon M

    2017-04-01

    Cost-effective expansion of human mesenchymal stem/stromal cells (hMSCs) remains a key challenge for their widespread clinical deployment. Fibroblast growth factor-2 (FGF-2) is a key hMSC mitogen often supplemented to increase hMSC growth rates. However, hMSCs also produce endogenous FGF-2, which critically interacts with cell surface heparan sulfate (HS). We assessed the interplay of FGF-2 with a heparan sulfate variant (HS8) engineered to bind FGF-2 and potentiate its activity. Bone marrow-derived hMSCs were screened in perfused microbioreactor arrays (MBAs), showing that HS8 (50 μg/ml) increased hMSC proliferation and cell number after 3 days, with an effect equivalent to FGF-2 (50 ng/ml). In combination, the effects of HS8 and FGF-2 were additive. Differential cell responses, from upstream to downstream culture chambers under constant flow of media in the MBA, provided insights into modulation of FGF-2 transport by HS8. HS8 treatment induced proliferation mainly in the downstream chambers, suggesting a requirement for endogenous FGF-2 accumulation, whereas responses to FGF-2 occurred primarily in the upstream chambers. Adding HS8 along with FGF-2, however, maximized the range of FGF-2 effectiveness. Measurements of FGF-2 in static cultures then revealed that this was because HS8 caused increased endogenous FGF-2 production and liberated FGF-2 from the cell surface into the supernatant. HS8 also sustained levels of supplemented FGF-2 available over 3 days. These results suggest HS8 enhances hMSC proliferation and expansion by leveraging endogenous FGF-2 production and maximizing the effect of supplemented FGF-2. This is an exciting strategy for cost-effective expansion of hMSCs. Stem Cells Translational Medicine 2017;6:1178-1190.

  14. Frequency modulation reveals the phasing of orbital eccentricity during Cretaceous Oceanic Anoxic Event II and the Eocene hyperthermals

    NASA Astrophysics Data System (ADS)

    Laurin, Jiří; Meyers, Stephen R.; Galeotti, Simone; Lanci, Luca

    2016-05-01

    Major advances in our understanding of paleoclimate change derive from a precise reconstruction of the periods, amplitudes and phases of the 'Milankovitch cycles' of precession, obliquity and eccentricity. While numerous quantitative approaches exist for the identification of these astronomical cycles in stratigraphic data, limitations in radioisotopic dating, and instability of the theoretical astronomical solutions beyond ∼50 Myr ago, can challenge identification of the phase relationships needed to constrain climate response and anchor floating astrochronologies. Here we demonstrate that interference patterns accompanying frequency modulation (FM) of short eccentricity provide a robust basis for identifying the phase of long eccentricity forcing in stratigraphic data. One- and two-dimensional models of sedimentary distortion of the astronomical signal are used to evaluate the veracity of the FM method, and indicate that pristine eccentricity FM can be readily distinguished in paleo-records. Apart from paleoclimatic implications, the FM approach provides a quantitative technique for testing and calibrating theoretical astronomical solutions, and for refining chronologies for the deep past. We present two case studies that use the FM approach to evaluate major carbon-cycle perturbations of the Eocene and Late Cretaceous. Interference patterns in the short-eccentricity band reveal that Eocene hyperthermals ETM2 ('Elmo'), H2, I1 and ETM3 (X; ∼52-54 Myr ago) were associated with maxima in the 405-kyr cycle of orbital eccentricity. The same eccentricity configuration favored regional anoxic episodes in the Mediterranean during the Middle and Late Cenomanian (∼94.5-97 Myr ago). The initial phase of the global Oceanic Anoxic Event II (OAE II; ∼93.9-94.5 Myr ago) coincides with maximum and falling 405-kyr eccentricity, and the recovery phase occurs during minimum and rising 405-kyr eccentricity. On a Myr scale, the event overlaps with a node in eccentricity

  15. Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms

    SciTech Connect

    Kober, Daniel L.; Alexander-Brett, Jennifer M.; Karch, Celeste M.; Cruchaga, Carlos; Colonna, Marco; Holtzman, Michael J.; Brett, Thomas J.

    2016-12-20

    Genetic variations in the myeloid immune receptor TREM2 are linked to several neurodegenerative diseases. To determine how TREM2 variants contribute to these diseases, we performed structural and functional studies of wild-type and variant proteins. Our 3.1 Å TREM2 crystal structure revealed that mutations found in Nasu-Hakola disease are buried whereas Alzheimer’s disease risk variants are found on the surface, suggesting that these mutations have distinct effects on TREM2 function. Biophysical and cellular methods indicate that Nasu-Hakola mutations impact protein stability and decrease folded TREM2 surface expression, whereas Alzheimer’s risk variants impact binding to a TREM2 ligand. Additionally, the Alzheimer’s risk variants appear to epitope map a functional surface on TREM2 that is unique within the larger TREM family. These findings provide a guide to structural and functional differences among genetic variants of TREM2, indicating that therapies targeting the TREM2 pathway should be tailored to these genetic and functional differences with patient-specific medicine approaches for neurodegenerative disorders.

  16. Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms

    PubMed Central

    Kober, Daniel L; Alexander-Brett, Jennifer M; Karch, Celeste M; Cruchaga, Carlos; Colonna, Marco; Holtzman, Michael J; Brett, Thomas J

    2016-01-01

    Genetic variations in the myeloid immune receptor TREM2 are linked to several neurodegenerative diseases. To determine how TREM2 variants contribute to these diseases, we performed structural and functional studies of wild-type and variant proteins. Our 3.1 Å TREM2 crystal structure revealed that mutations found in Nasu-Hakola disease are buried whereas Alzheimer’s disease risk variants are found on the surface, suggesting that these mutations have distinct effects on TREM2 function. Biophysical and cellular methods indicate that Nasu-Hakola mutations impact protein stability and decrease folded TREM2 surface expression, whereas Alzheimer’s risk variants impact binding to a TREM2 ligand. Additionally, the Alzheimer’s risk variants appear to epitope map a functional surface on TREM2 that is unique within the larger TREM family. These findings provide a guide to structural and functional differences among genetic variants of TREM2, indicating that therapies targeting the TREM2 pathway should be tailored to these genetic and functional differences with patient-specific medicine approaches for neurodegenerative disorders. DOI: http://dx.doi.org/10.7554/eLife.20391.001 PMID:27995897

  17. Two-dimensional, phase modulated lattice sums with application to the Helmholtz Green’s function

    SciTech Connect

    Linton, C. M.

    2015-01-15

    A class of two-dimensional phase modulated lattice sums in which the denominator is an indefinite quadratic polynomial Q is expressed in terms of a single, exponentially convergent series of elementary functions. This expression provides an extremely efficient method for the computation of the quasi-periodic Green’s function for the Helmholtz equation that arises in a number of physical contexts when studying wave propagation through a doubly periodic medium. For a class of sums in which Q is positive definite, our new result can be used to generate representations in terms of θ-functions which are significant generalisations of known results.

  18. Extracellular Acidification Acts as a Key Modulator of Neutrophil Apoptosis and Functions

    PubMed Central

    Cao, Shannan; Liu, Peng; Zhu, Haiyan; Gong, Haiyan; Yao, Jianfeng; Sun, Yawei; Geng, Guangfeng; Wang, Tong; Feng, Sizhou; Han, Mingzhe; Zhou, Jiaxi; Xu, Yuanfu

    2015-01-01

    In human pathological conditions, the acidification of local environment is a frequent feature, such as tumor and inflammation. As the pH of microenvironment alters, the functions of immune cells are about to change. It makes the extracellular acidification a key modulator of innate immunity. Here we detected the impact of extracellular acidification on neutrophil apoptosis and functions, including cell death, respiratory burst, migration and phagocytosis. As a result, we found that under the acid environment, neutrophil apoptosis delayed, respiratory burst inhibited, polarization augmented, chemotaxis differed, endocytosis enhanced and bacteria killing suppressed. These findings suggested that extracellular acidification acts as a key regulator of neutrophil apoptosis and functions. PMID:26340269

  19. Functional 5-HT1a receptor polymorphism selectively modulates error-specific subprocesses of performance monitoring.

    PubMed

    Beste, Christian; Domschke, Katharina; Kolev, Vasil; Yordanova, Juliana; Baffa, Anna; Falkenstein, Michael; Konrad, Carsten

    2010-04-01

    Our study investigates the dependence of response monitoring and error detection on genetic influences modulating the serotonergic system. This was done using the event-related potentials (ERPs) after error (Ne/ERN) and correct trials (Nc/CRN). To induce a sufficient amount of errors, a standard flanker task was used. The subjects (N = 94) were genotyped for the functional 5-HT1A C(-1019)G polymorphism. The results show that the 5-HT1A C(-1019)G polymorphism specifically modulates error detection. Neurophysiological modulations on error detection were paralleled by a similar modulation of response slowing after an error, reflecting the behavioral adaptation. The 5-HT1A -1019 CC genotype group showed a larger Ne and stronger posterror slowing than the CG and GG genotype groups. More general processes of performance monitoring, as reflected in the Nc/CRN, were not affected. The finding that error-specific processes, but not general response monitoring processes, are modulated by the 5-HT1A C(-1019)G polymorphism is underlined by a wavelet analysis. In summary, the results suggest a specific effect of the 5-HT1A C(-1019)G polymorphism on error monitoring, as reflected in the Ne, and suggest a neurobiological dissociation between processes of error monitoring and general response monitoring at the level of the serotonin 1A receptor system.

  20. Brain functional correlates of working memory: reduced load-modulated activation and deactivation in aging without hyperactivation or functional reorganization.

    PubMed

    Kaup, Allison R; Drummond, Sean P A; Eyler, Lisa T

    2014-10-01

    We aimed to identify brain functional correlates of working memory performance in aging, in hopes of facilitating understanding of mechanisms that promote better versus worse working memory in late-life. Among 64 healthy adults, aged 23 to 78, we examined the relationship between age, working memory performance, and brain functional response during task performance. We focused on the association between working memory load-modulated functional response and individual differences in performance and whether these function-performance relationships differed with age. As expected, older age was associated with poorer working memory performance. Older age was also associated with reduced load-modulated activation including in bilateral prefrontal and parietal regions and left caudate as well as reduced deactivation including in the medial prefrontal cortex. Contrary to findings of hyperactivation in aging, we found no evidence of increased activation with older age. Positive associations identified between brain response and performance did not differ with age. Our findings suggest that the neural mechanisms underlying better versus worse working memory performance are age-invariant across adulthood, and argue against a pattern of functional reorganization in aging. Results are discussed within the broader literature, in which significant heterogeneity in findings between studies has been common.

  1. Modulation of phenotypic and functional maturation of murine dendritic cells (DCs) by purified Achyranthes bidentata polysaccharide (ABP).

    PubMed

    Zou, Yaxuan; Meng, Jingjuan; Chen, Wenna; Liu, Jingling; Li, Xuan; Li, Weiwei; Lu, Changlong; Shan, Fengping

    2011-08-01

    There are a large number of interactions at molecular and cellular levels between the plant polysaccharides and immune system. Plant polysaccharides present an interesting effects as immunomodulators, particularly in the induction of the cells both in innate and adaptive immune systems. Activation of DCs could improve antitumoral responses usually diminished in cancer patients, and natural adjuvants provide a possibility of inducing this activation. ABP is a purified polysaccharide isolated from Achyranthes bidentata, a traditional Chinese medicine (TCM). The aim of this study is to investigate modulation of phenotypic and functional maturation of murine DCs by ABP. Both phenotypic and functional activities were assessed with use of conventional scanning electronic microscopy (SEM) for the morphology of the DC, transmitted electron microscopy (TEM) for intracellular lysosomes inside the DC, cellular immunohistochemistry for phagocytosis by the DCs, flow cytometry (FCM) for the changes in key surface molecules, bio-assay for the activity of acidic phosphatases (ACP), and ELISA for the production of pro-inflammatory cytokine IL-12. In fact, we found that purified ABP induced phenotypic maturation revealed by increased expression of CD86, CD40, and MHC II. Functional experiments showed the down-regulation of ACP inside DCs (which occurs when phagocytosis of DCs is decreased, and antigen presentation increased with maturation). Finally, ABP increased the production of IL-12. These data reveal that ABP promotes effective activation of murine DCs. This adjuvant-like activity may have therapeutic applications in clinical settings where immune responses need boosting. It is therefore concluded that ABP can exert positive modulation to murine DCs.

  2. Thyroid, brain and mood modulation in affective disorder: insights from molecular research and functional brain imaging.

    PubMed

    Bauer, M; London, E D; Silverman, D H; Rasgon, N; Kirchheiner, J; Whybrow, P C

    2003-11-01

    The efficacy resulting from adjunctive use of supraphysiological doses of levothyroxine has emerged as a promising approach to therapy and prophylaxis for refractory mood disorders. Most patients with mood disorders who receive treatment with supraphysiological doses of levothyroxine have normal peripheral thyroid hormone levels, and also respond differently to the hormone and tolerate it better than healthy individuals and patients with primary thyroid diseases. Progress in molecular and functional brain imaging techniques has provided a new understanding of these phenomena, illuminating the relationship between thyroid function, mood modulation and behavior. Thyroid hormones are widely distributed in the brain and have a multitude of effects on the central nervous system. Notably many of the limbic system structures where thyroid hormone receptors are prevalent have been implicated in the pathogenesis of mood disorders. The influence of the thyroid system on neurotransmitters (particularly serotonin and norepinephrine), which putatively play a major role in the regulation of mood and behavior, may contribute to the mechanisms of mood modulation. Recent functional brain imaging studies using positron emission tomography (PET) with [ (18)F]-fluorodeoxyglucose demonstrated that thyroid hormone treatment with levothyroxine affects regional brain metabolism in patients with hypothyroidism and bipolar disorder. Theses studies confirm that thyroid hormones are active in modulating metabolic function in the mature adult brain, and provide intriging neuroanatomic clues that may guide future research.

  3. An Artificial Reaction Promoter Modulates Mitochondrial Functions via Chemically Promoting Protein Acetylation

    PubMed Central

    Shindo, Yutaka; Komatsu, Hirokazu; Hotta, Kohji; Ariga, Katsuhiko; Oka, Kotaro

    2016-01-01

    Acetylation, which modulates protein function, is an important process in intracellular signalling. In mitochondria, protein acetylation regulates a number of enzymatic activities and, therefore, modulates mitochondrial functions. Our previous report showed that tributylphosphine (PBu3), an artificial reaction promoter that promotes acetylransfer reactions in vitro, also promotes the reaction between acetyl-CoA and an exogenously introduced fluorescent probe in mitochondria. In this study, we demonstrate that PBu3 induces the acetylation of mitochondrial proteins and a decrease in acetyl-CoA concentration in PBu3-treated HeLa cells. This indicates that PBu3 can promote the acetyltransfer reaction between acetyl-CoA and mitochondrial proteins in living cells. PBu3-induced acetylation gradually reduced mitochondrial ATP concentrations in HeLa cells without changing the cytoplasmic ATP concentration, suggesting that PBu3 mainly affects mitochondrial functions. In addition, pyruvate, which is converted into acetyl-CoA in mitochondria and transiently increases ATP concentrations in the absence of PBu3, elicited a further decrease in mitochondrial ATP concentrations in the presence of PBu3. Moreover, the application and removal of PBu3 reversibly alternated mitochondrial fragmentation and elongation. These results indicate that PBu3 enhances acetyltransfer reactions in mitochondria and modulates mitochondrial functions in living cells. PMID:27374857

  4. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells

    PubMed Central

    Linster, Christiane

    2015-01-01

    Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function. PMID:26334007

  5. Functional brain asymmetry, attentional modulation, and interhemispheric transfer in boys with Tourette syndrome

    PubMed Central

    Plessen, Kerstin J.; Lundervold, Arvid; Grüner, Renate; Hammar, Åsa; Lundervold, Astri; Peterson, Bradley S.; Hugdahl, Kenneth

    2008-01-01

    We tested the hypothesis that children with Tourette syndrome (TS) would exhibit aberrant brain lateralization compared to a healthy control (HC) group in an attention-modulation version of a verbal dichotic listening task using consonant-vowel syllables. The modulation of attention to focus on the right ear stimulus in the dichotic listening situation is thought to involve the same prefrontal attentional and executive functions that are involved in the suppression of tics, whereas, performance when focusing attention on the left ear stimulus additionally involves a callosal transfer of information. In light of presumed disturbances in transfer of information across the corpus callosum, we hypothesized that children with TS would, however, have difficulty modulating the functional lateralization that ensues through a shift of attention to the left side. This hypothesis was tested by exploring the correlations between CC size and left ear score in the forced-left condition. Twenty boys with TS were compared with 20 age- and handedness-matched healthy boys. Results indicated similar performance in the TS and HC groups for lateralization of hemispheric function. TS subjects were also able to shift attention normally when instructed to focus on the right ear stimulus. When instructed to focus attention on the left ear stimulus, however, performance deteriorated in the TS group. Correlations with CC area further supported the hypothesized presence of deviant callosal functioning in the TS group. PMID:17045315

  6. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells.

    PubMed

    Li, Guoshi; Linster, Christiane; Cleland, Thomas A

    2015-12-01

    Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function.

  7. Microwave influence on the isolated heart function. 1: Effect of modulation

    SciTech Connect

    Pakhomov, A.G.; Dubovick, B.V.; Degtyariov, I.G.; Pronkevich, A.N.

    1995-09-01

    Dependence of the microwave effect on modulation parameters (pulse width, duty ratio, and peak intensity) was studied in an isolated frog auricle preparation. The rate and amplitude of spontaneous auricle twitches were measured during and after a 2 min exposure to 915 or 885 MHz microwaves and were compared to preexposure values. The studied ranges of modulation parameters were: pulse width, 10{sup {minus}6}--10{sup {minus}2} s; duty ratio, 7:100000, and peak specific absorption rate, 100--3,000 W/kg. Combinations of the parameters were chosen by chance, and about 400 various exposure regimes were tested. The experiments established that no regime was effective unless the average microwave power was high enough to induce preparation heating (0.1--0.4 C). The twitch rate instantly increased, and the amplitude decreased, as the temperature rose; similar changes could be induced by equivalent conventional heating. the data provide evidence that the effect of short-term microwave exposure on the isolated heart pacemaker and contractile functions depends on pulse modulation just as much as modulation determines the average absorbed power. These functions demonstrated no specific dependence on exposure parameters such as frequency or power windows.

  8. Microwave influence on the isolated heart function: I. Effect of modulation.

    PubMed

    Pakhomov, A G; Dubovick, B V; Degtyariov, I G; Pronkevich, A N

    1995-01-01

    Dependence of the microwave effect on modulation parameters (pulse width, duty ratio, and peak intensity) was studied in an isolated frog auricle preparation. The rate and amplitude of spontaneous auricle twitches were measured during and after a 2 min exposure to 915 or 885 MHz microwaves and were compared to preexposure values. The studied ranges of modulation parameters were: pulse width, 10(-6)-10(-2) s; duty ratio, 7:100000, and peak specific absorption rate, 100-3000 W/kg. Combinations of the parameters were chosen by chance, and about 400 various exposure regimes were tested. The experiments established that no regime was effective unless the average microwave power was high enough to induce preparation heating (0.1-0.4 degree C). The twitch rate instantly increased, and the amplitude decreased, as the temperature rose; similar changes could be induced by equivalent conventional heating. The data provide evidence that the effect of short-term microwave exposure on the isolated heart pacemaker and contractile functions depends on pulse modulation just as much as modulation determines the average absorbed power. These functions demonstrated no specific dependence on exposure parameters such as frequency or power windows.

  9. Gene Co-Expression Network Analysis for Identifying Modules and Functionally Enriched Pathways in Type 1 Diabetes

    PubMed Central

    Riquelme Medina, Ignacio; Lubovac-Pilav, Zelmina

    2016-01-01

    Type 1 diabetes (T1D) is a complex disease, caused by the autoimmune destruction of the insulin producing pancreatic beta cells, resulting in the body’s inability to produce insulin. While great efforts have been put into understanding the genetic and environmental factors that contribute to the etiology of the disease, the exact molecular mechanisms are still largely unknown. T1D is a heterogeneous disease, and previous research in this field is mainly focused on the analysis of single genes, or using traditional gene expression profiling, which generally does not reveal the functional context of a gene associated with a complex disorder. However, network-based analysis does take into account the interactions between the diabetes specific genes or proteins and contributes to new knowledge about disease modules, which in turn can be used for identification of potential new biomarkers for T1D. In this study, we analyzed public microarray data of T1D patients and healthy controls by applying a systems biology approach that combines network-based Weighted Gene Co-Expression Network Analysis (WGCNA) with functional enrichment analysis. Novel co-expression gene network modules associated with T1D were elucidated, which in turn provided a basis for the identification of potential pathways and biomarker genes that may be involved in development of T1D. PMID:27257970

  10. Specific polyunsaturated fatty acids modulate lipid delivery and oocyte development in C. elegans revealed by molecular-selective label-free imaging

    PubMed Central

    Chen, Wei-Wen; Yi, Yung-Hsiang; Chien, Cheng-Hao; Hsiung, Kuei-Ching; Ma, Tian-Hsiang; Lin, Yi-Chun; Lo, Szecheng J.; Chang, Ta-Chau

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) exhibit critical functions in biological systems and their importance during animal oocyte maturation has been increasingly recognized. However, the detailed mechanism of lipid transportation for oocyte development remains largely unknown. In this study, the transportation of yolk lipoprotein (lipid carrier) and the rate of lipid delivery into oocytes in live C. elegans were examined for the first time by using coherent anti-Stokes Raman scattering (CARS) microscopy. The accumulation of secreted yolk lipoprotein in the pseudocoelom of live C. elegans can be detected by CARS microscopy at both protein (~1665 cm−1) and lipid (~2845 cm−1) Raman bands. In addition, an image analysis protocol was established to quantitatively measure the levels of secreted yolk lipoprotein aberrantly accumulated in PUFA-deficient fat mutants (fat-1, fat-2, fat-3, fat-4) and PUFA-supplemented fat-2 worms (the PUFA add-back experiments). Our results revealed that the omega-6 PUFAs, not omega-3 PUFAs, play a critical role in modulating lipid/yolk level in the oocytes and regulating reproductive efficiency of C. elegans. This work demonstrates the value of using CARS microscopy as a molecular-selective label-free imaging technique for the study of PUFA regulation and oocyte development in C. elegans. PMID:27535493

  11. Specific polyunsaturated fatty acids modulate lipid delivery and oocyte development in C. elegans revealed by molecular-selective label-free imaging

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Wen; Yi, Yung-Hsiang; Chien, Cheng-Hao; Hsiung, Kuei-Ching; Ma, Tian-Hsiang; Lin, Yi-Chun; Lo, Szecheng J.; Chang, Ta-Chau

    2016-08-01

    Polyunsaturated fatty acids (PUFAs) exhibit critical functions in biological systems and their importance during animal oocyte maturation has been increasingly recognized. However, the detailed mechanism of lipid transportation for oocyte development remains largely unknown. In this study, the transportation of yolk lipoprotein (lipid carrier) and the rate of lipid delivery into oocytes in live C. elegans were examined for the first time by using coherent anti-Stokes Raman scattering (CARS) microscopy. The accumulation of secreted yolk lipoprotein in the pseudocoelom of live C. elegans can be detected by CARS microscopy at both protein (~1665 cm‑1) and lipid (~2845 cm‑1) Raman bands. In addition, an image analysis protocol was established to quantitatively measure the levels of secreted yolk lipoprotein aberrantly accumulated in PUFA-deficient fat mutants (fat-1, fat-2, fat-3, fat-4) and PUFA-supplemented fat-2 worms (the PUFA add-back experiments). Our results revealed that the omega-6 PUFAs, not omega-3 PUFAs, play a critical role in modulating lipid/yolk level in the oocytes and regulating reproductive efficiency of C. elegans. This work demonstrates the value of using CARS microscopy as a molecular-selective label-free imaging technique for the study of PUFA regulation and oocyte development in C. elegans.

  12. The modulation of brain functional connectivity with manual acupuncture in healthy subjects: An electroencephalograph case study

    NASA Astrophysics Data System (ADS)

    Yi, Guo-Sheng; Wang, Jiang; Han, Chun-Xiao; Deng, Bin; Wei, Xi-Le; Li, Nuo

    2013-02-01

    Manual acupuncture is widely used for pain relief and stress control. Previous studies on acupuncture have shown its modulatory effects on the functional connectivity associated with one or a few preselected brain regions. To investigate how manual acupuncture modulates the organization of functional networks at a whole-brain level, we acupuncture at ST36 of a right leg to obtain electroencephalograph (EEG) signals. By coherence estimation, we determine the synchronizations between all pairwise combinations of EEG channels in three acupuncture states. The resulting synchronization matrices are converted into functional networks by applying a threshold, and the clustering coefficients and path lengths are computed as a function of threshold. The results show that acupuncture can increase functional connections and synchronizations between different brain areas. For a wide range of thresholds, the clustering coefficient during acupuncture and post-acupuncture period is higher than that during the pre-acupuncture control period, whereas the characteristic path length is shorter. We provide further support for the presence of “small-world" network characteristics in functional networks by using acupuncture. These preliminary results highlight the beneficial modulations of functional connectivity by manual acupuncture, which could contribute to the understanding of the effects of acupuncture on the entire brain, as well as the neurophysiological mechanisms underlying acupuncture. Moreover, the proposed method may be a useful approach to the further investigation of the complexity of patterns of interrelations between EEG channels.

  13. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia.

    PubMed

    Damaraju, E; Allen, E A; Belger, A; Ford, J M; McEwen, S; Mathalon, D H; Mueller, B A; Pearlson, G D; Potkin, S G; Preda, A; Turner, J A; Vaidya, J G; van Erp, T G; Calhoun, V D

    2014-01-01

    Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical-subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group

  14. Individual-based analyses reveal limited functional overlap in a coral reef fish community.

    PubMed

    Brandl, Simon J; Bellwood, David R

    2014-05-01

    Detailed knowledge of a species' functional niche is crucial for the study of ecological communities and processes. The extent of niche overlap, functional redundancy and functional complementarity is of particular importance if we are to understand ecosystem processes and their vulnerability to disturbances. Coral reefs are among the most threatened marine systems, and anthropogenic activity is changing the functional composition of reefs. The loss of herbivorous fishes is particularly concerning as the removal of algae is crucial for the growth and survival of corals. Yet, the foraging patterns of the various herbivorous fish species are poorly understood. Using a multidimensional framework, we present novel individual-based analyses of species' realized functional niches, which we apply to a herbivorous coral reef fish community. In calculating niche volumes for 21 species, based on their microhabitat utilization patterns during foraging, and computing functional overlaps, we provide a measurement of functional redundancy or complementarity. Complementarity is the inverse of redundancy and is defined as less than 50% overlap in niche volumes. The analyses reveal extensive complementarity with an average functional overlap of just 15.2%. Furthermore, the analyses divide herbivorous reef fishes into two broad groups. The first group (predominantly surgeonfishes and parrotfishes) comprises species feeding on exposed surfaces and predominantly open reef matrix or sandy substrata, resulting in small niche volumes and extensive complementarity. In contrast, the second group consists of species (predominantly rabbitfishes) that feed over a wider range of microhabitats, penetrating the reef matrix to exploit concealed surfaces of various substratum types. These species show high variation among individuals, leading to large niche volumes, more overlap and less complementarity. These results may have crucial consequences for our understanding of herbivorous processes on

  15. A functional genomics screen in planarians reveals regulators of whole-brain regeneration

    PubMed Central

    Roberts-Galbraith, Rachel H; Brubacher, John L; Newmark, Phillip A

    2016-01-01

    Planarians regenerate all body parts after injury, including the central nervous system (CNS). We capitalized on this distinctive trait and completed a gene expression-guided functional screen to identify factors that regulate diverse aspects of neural regeneration in Schmidtea mediterranea. Our screen revealed molecules that influence neural cell fates, support the formation of a major connective hub, and promote reestablishment of chemosensory behavior. We also identified genes that encode signaling molecules with roles in head regeneration, including some that are produced in a previously uncharacterized parenchymal population of cells. Finally, we explored genes downregulated during planarian regeneration and characterized, for the first time, glial cells in the planarian CNS that respond to injury by repressing several transcripts. Collectively, our studies revealed diverse molecules and cell types that underlie an animal’s ability to regenerate its brain. DOI: http://dx.doi.org/10.7554/eLife.17002.001 PMID:27612384

  16. A functional genomics screen in planarians reveals regulators of whole-brain regeneration.

    PubMed

    Roberts-Galbraith, Rachel H; Brubacher, John L; Newmark, Phillip A

    2016-09-09

    Planarians regenerate all body parts after injury, including the central nervous system (CNS). We capitalized on this distinctive trait and completed a gene expression-guided functional screen to identify factors that regulate diverse aspects of neural regeneration in Schmidtea mediterranea. Our screen revealed molecules that influence neural cell fates, support the formation of a major connective hub, and promote reestablishment of chemosensory behavior. We also identified genes that encode signaling molecules with roles in head regeneration, including some that are produced in a previously uncharacterized parenchymal population of cells. Finally, we explored genes downregulated during planarian regeneration and characterized, for the first time, glial cells in the planarian CNS that respond to injury by repressing several transcripts. Collectively, our studies revealed diverse molecules and cell types that underlie an animal's ability to regenerate its brain.

  17. Combining functional and anatomical connectivity reveals brain networks for auditory language comprehension.

    PubMed

    Saur, Dorothee; Schelter, Björn; Schnell, Susanne; Kratochvil, David; Küpper, Hanna; Kellmeyer, Philipp; Kümmerer, Dorothee; Klöppel, Stefan; Glauche, Volkmar; Lange, Rüdiger; Mader, Wolfgang; Feess, David; Timmer, Jens; Weiller, Cornelius

    2010-02-15

    Cognitive functions are organized in distributed, overlapping, and interacting brain networks. Investigation of those large-scale brain networks is a major task in neuroimaging research. Here, we introduce a novel combination of functional and anatomical connectivity to study the network topology subserving a cognitive function of interest. (i) In a given network, direct interactions between network nodes are identified by analyzing functional MRI time series with the multivariate method of directed partial correlation (dPC). This method provides important improvements over shortcomings that are typical for ordinary (partial) correlation techniques. (ii) For directly interacting pairs of nodes, a region-to-region probabilistic fiber tracking on diffusion tensor imaging data is performed to identify the most probable anatomical white matter fiber tracts mediating the functional interactions. This combined approach is applied to the language domain to investigate the network topology of two levels of auditory comprehension: lower-level speech perception (i.e., phonological processing) and higher-level speech recognition (i.e., semantic processing). For both processing levels, dPC analyses revealed the functional network topology and identified central network nodes by the number of direct interactions with other nodes. Tractography showed that these interactions are mediated by distinct ventral (via the extreme capsule) and dorsal (via the arcuate/superior longitudinal fascicle fiber system) long- and short-distance association tracts as well as commissural fibers. Our findings demonstrate how both processing routines are segregated in the brain on a large-scale network level. Combining dPC with probabilistic tractography is a promising approach to unveil how cognitive functions emerge through interaction of functionally interacting and anatomically interconnected brain regions.

  18. Structural and functional analysis of amphioxus HIFα reveals ancient features of the HIFα family.

    PubMed

    Gao, Shan; Lu, Ling; Bai, Yan; Zhang, Peng; Song, Weibo; Duan, Cunming

    2014-04-01

    Hypoxia-inducible factors (HIFs) are master regulators of the transcriptional response to hypoxia. To gain insight into the structural and functional evolution of the HIF family, we characterized the HIFα gene from amphioxus, an invertebrate chordate, and identified several alternatively spliced HIFα isoforms. Whereas HIFα Ia, the full-length isoform, contained a complete oxygen-dependent degradation (ODD) domain, the isoforms Ib, Ic, and Id had 1 or 2 deletions in the ODD domain. When tagged with GFP and tested in mammalian cells, the amphioxus HIFα Ia protein level increased in response to hypoxia or CoCl2 treatment, whereas HIFα Ib, Ic, and Id showed reduced or no hypoxia regulation. Deletion of the ODD sequence in HIFα Ia up-regulated the HIFα Ia levels under normoxia. Gene expression analysis revealed HIFα Ic to be the predominant isoform in embryos and larvae, whereas isoform Ia was the most abundant form in the adult stage. The expression levels of Ib and Id were very low. Hypoxia treatment of adults had no effect on the mRNA levels of these HIFα isoforms. Functional analyses in mammalian cells showed all 4 HIFα isoforms capable of entering the nucleus and activating hypoxia response element-dependent reporter gene expression. The functional nuclear location signal (NLS) mapped to 3 clusters of basic residues. (775)KKARL functioned as the primary NLS, but (737)KRK and (754)KK also contributed to the nuclear localization. All amphioxus HIFα isoforms had 2 functional transactivation domains (TADs). Its C-terminal transactivation (C-TAD) shared high sequence identity with the human HIF-1α and HIF-2α C-TAD. This domain contained a conserved asparagine, and its mutation resulted in an increase in transcriptional activity. These findings reveal many ancient features of the HIFα family and provide novel insights into the evolution of the HIFα family.

  19. Acetylproteomic analysis reveals functional implications of lysine acetylation in human spermatozoa (sperm).

    PubMed

    Yu, Heguo; Diao, Hua; Wang, Chunmei; Lin, Yan; Yu, Fudong; Lu, Hui; Xu, Wei; Li, Zheng; Shi, Huijuan; Zhao, Shimin; Zhou, Yuchuan; Zhang, Yonglian

    2015-04-01

    Male infertility is a medical condition that has been on the rise globally. Lysine acetylation of human sperm, an essential posttranslational modification involved in the etiology of sperm abnormality, is not fully understood. Therefore, we first generated a qualified pan-anti-acetyllysine monoclonal antibody to characterize the global lysine acetylation of uncapacitated normal human sperm with a proteomics approach. With high enrichment ratios that were up to 31%, 973 lysine-acetylated sites that matched to 456 human sperm proteins, including 671 novel lysine acetylation sites and 205 novel lysine-acetylated proteins, were identified. These proteins exhibited conserved motifs XXXKYXXX, XXXKFXXX, and XXXKHXXX, were annotated to function in multiple metabolic processes, and were localized predominantly in the mitochondrion and cytoplasmic fractions. Between the uncapacitated and capacitated sperm, different acetylation profiles in regard to functional proteins involved in sperm capacitation, sperm-egg recognition, sperm-egg plasma fusion, and fertilization were observed, indicating that acetylation of functional proteins may be required during sperm capacitation. Bioinformatics analysis revealed association of acetylated proteins with diseases and drugs. Novel acetylation of voltage-dependent anion channel proteins was also found. With clinical sperm samples, we observed differed lysine acetyltransferases and lysine deacetylases expression between normal sperm and abnormal sperm of asthenospermia or necrospermia. Furthermore, with sperm samples impaired by epigallocatechin gallate to mimic asthenospermia, we observed that inhibition of sperm motility was partly through the blockade of voltage-dependent anion channel 2 Lys-74 acetylation combined with reduced ATP levels and mitochondrial membrane potential. Taken together, we obtained a qualified pan-anti-acetyllysine monoclonal antibody, analyzed the acetylproteome of uncapacitated human sperm, and revealed

  20. Genome-wide search for eliminylating domains reveals novel function for BLES03-like proteins.

    PubMed

    Khater, Shradha; Mohanty, Debasisa

    2014-07-24

    Bacterial phosphothreonine lyases catalyze a novel posttranslational modification involving formation of dehydrobutyrine/dehyroalanine by β elimination of the phosphate group of phosphothreonine or phosphoserine residues in their substrate proteins. Though there is experimental evidence for presence of dehydro amino acids in human proteins, no eukaryotic homologs of these lyases have been identified as of today. A comprehensive genome-wide search for identifying phosphothreonine lyase homologs in eukaryotes was carried out. Our fold-based search revealed structural and catalytic site similarity between bacterial phosphothreonine lyases and BLES03 (basophilic leukemia-expressed protein 03), a human protein with unknown function. Ligand induced conformational changes similar to bacterial phosphothreonine lyases, and movement of crucial arginines in the loop region to the catalytic pocket upon binding of phosphothreonine-containing peptides was seen during docking and molecular dynamics studies. Genome-wide search for BLES03 homologs using sensitive profile-based methods revealed their presence not only in eukaryotic classes such as chordata and fungi but also in bacterial and archaebacterial classes. The synteny of these archaebacterial BLES03-like proteins was remarkably similar to that of type IV lantibiotic synthetases which harbor LanL-like phosphothreonine lyase domains. Hence, context-based analysis reinforced our earlier sequence/structure-based prediction of phosphothreonine lyase catalytic function for BLES03. Our in silico analysis has revealed that BLES03-like proteins with previously unknown function are novel eukaryotic phosphothreonine lyases involved in biosynthesis of dehydro amino acids, whereas their bacterial and archaebacterial counterparts might be involved in biosynthesis of natural products similar to lantibiotics.

  1. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession

    NASA Astrophysics Data System (ADS)

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-05-01

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth’s biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.

  2. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession

    PubMed Central

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-01-01

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth’s biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession. PMID:25943705

  3. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession.

    PubMed

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-05-06

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth's biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.

  4. Targeted capture and resequencing of 1040 genes reveal environmentally driven functional variation in grey wolves.

    PubMed

    Schweizer, Rena M; Robinson, Jacqueline; Harrigan, Ryan; Silva, Pedro; Galverni, Marco; Musiani, Marco; Green, Richard E; Novembre, John; Wayne, Robert K

    2016-01-01

    In an era of ever-increasing amounts of whole-genome sequence data for individuals and populations, the utility of traditional single nucleotide polymorphisms (SNPs) array-based genome scans is uncertain. We previously performed a SNP array-based genome scan to identify candidate genes under selection in six distinct grey wolf (Canis lupus) ecotypes. Using this information, we designed a targeted capture array for 1040 genes, including all exons and flanking regions, as well as 5000 1-kb nongenic neutral regions, and resequenced these regions in 107 wolves. Selection tests revealed striking patterns of variation within candidate genes relative to noncandidate regions and identified potentially functional variants related to local adaptation. We found 27% and 47% of candidate genes from the previous SNP array study had functional changes that were outliers in sweed and bayenv analyses, respectively. This result verifies the use of genomewide SNP surveys to tag genes that contain functional variants between populations. We highlight nonsynonymous variants in APOB, LIPG and USH2A that occur in functional domains of these proteins, and that demonstrate high correlation with precipitation seasonality and vegetation. We find Arctic and High Arctic wolf ecotypes have higher numbers of genes under selection, which highlight their conservation value and heightened threat due to climate change. This study demonstrates that combining genomewide genotyping arrays with large-scale resequencing and environmental data provides a powerful approach to discern candidate functional variants in natural populations.

  5. The emerging role of nitrite as an endogenous modulator and therapeutic agent of cardiovascular function.

    PubMed

    Tota, B; Quintieri, A M; Angelone, T

    2010-01-01

    Recently, the circulating anion nitrite (NO2-), the largest physiological reservoir of nitric oxide (NO) in the body, has revealed itself as a signalling molecule mediating numerous biological responses. Since it was estimated that as much as 70% of plasma nitrite originates from nitric oxide synthases (NOSs), mainly in the endothelium by endothelial NOS, nitrite is considered an index of NOSs activity. Exogenous sources, principally environmental pollutants and intake of vegetables, also contribute to this NO reserve. In mammalian blood, nitrite, present at nanomolar concentrations, can be reduced to bioactive NO along a physiological oxygen and pH gradient either non-enzymatically (acidic disproportionation) or by a number of enzymes including xanthine oxidoreductase, NOS, mitochondrial cytochromes and deoxygenated haemoglobin and myoglobin. The various NO-dependent nitrite-induced biological responses include hypoxic vasodilation, inhibition of mitochondrial respiration, cytoprotection following ischemia/reperfusion, and regulation of protein and gene expression. Since NO is a major paracrine-autocrine cardiovascular modulator and nitrite acts mainly as an endocrine store of NO, it is not surprising that NO2 - exerts important cardiovascular actions both under normal and physio-pathological conditions. In the interdisciplinary framework of the NO cycle concept, this review illustrates the actions exerted by nitrite on the cardiovascular system. Since the majority of the NO2 - -oriented studies focused on the systemic and regional control of blood flow both under physiological and ischemia/reperfusion conditions, we will firstly consider this issue. Secondly, the nitrite- induced effects on myocardial contractile and relaxation processes will be discussed, emphasizing the biomedical interest of nitrite as a new therapeutic agent. The importance of cardiac myoglobin as nitrite-reductase able to exert cardioprotection through a novel function, in addition to its

  6. Dual-functional polymeric waveguide with optical amplification and electro-optic modulation

    NASA Astrophysics Data System (ADS)

    An, Dechang; Yue, ZuZhou; Chen, Ray T.

    1997-12-01

    Optical amplification and electro-optic modulation have been observed simultaneously in one polymeric material photo-lime gel which has been used as a volume holographic material to produce dichromated gelatin (DCG) films. In this paper, the dual functions were achieved by doping neodymium chloride hexahydrate (NdCl3(DOT)6H2O) and chlorophenol red (C19H12Cl2O5S). The optimized doping concentrations of Nd+3 and chlorophenol red were 6.7 X 1019/cm3 and 23% respectively. We observed a gain of 3.8 dB at 1.04 micrometers and an electro-optic coefficient of 30 pm/V at 633 nm. The experimental results confirms that the co-doping process does not degrade the respective functions of Nd+3 for optical amplification and chlorophenol red for electro-optic modulation.

  7. Measurements of ocean wave spectra and modulation transfer function with the airborne two frequency scatterometer

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1984-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  8. Structural insights into the functional cycle of the ATPase module of the 26S proteasome.

    PubMed

    Wehmer, Marc; Rudack, Till; Beck, Florian; Aufderheide, Antje; Pfeifer, Günter; Plitzko, Jürgen M; Förster, Friedrich; Schulten, Klaus; Baumeister, Wolfgang; Sakata, Eri

    2017-02-07

    In eukaryotic cells, the ubiquitin-proteasome system (UPS) is responsible for the regulated degradation of intracellular proteins. The 26S holocomplex comprises the core particle (CP), where proteolysis takes place, and one or two regulatory particles (RPs). The base of the RP is formed by a heterohexameric AAA(+) ATPase module, which unfolds and translocates substrates into the CP. Applying single-particle cryo-electron microscopy (cryo-EM) and image classification to samples in the presence of different nucleotides and nucleotide analogs, we were able to observe four distinct conformational states (s1 to s4). The resolution of the four conformers allowed for the construction of atomic models of the AAA(+) ATPase module as it progresses through the functional cycle. In a hitherto unobserved state (s4), the gate controlling access to the CP is open. The structures described in this study allow us to put forward a model for the 26S functional cycle driven by ATP hydrolysis.

  9. Functional module search in protein networks based on semantic similarity improves the analysis of proteomics data.

    PubMed

    Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus

    2014-07-01

    The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system.

  10. Alu-miRNA interactions modulate transcript isoform diversity in stress response and reveal signatures of positive selection

    NASA Astrophysics Data System (ADS)

    Pandey, Rajesh; Bhattacharya, Aniket; Bhardwaj, Vivek; Jha, Vineet; Mandal, Amit K.; Mukerji, Mitali

    2016-09-01

    Primate-specific Alus harbor different regulatory features, including miRNA targets. In this study, we provide evidence for miRNA-mediated modulation of transcript isoform levels during heat-shock response through exaptation of Alu-miRNA sites in mature mRNA. We performed genome-wide expression profiling coupled with functional validation of miRNA target sites within exonized Alus, and analyzed conservation of these targets across primates. We observed that two miRNAs (miR-15a-3p and miR-302d-3p) elevated in stress response, target RAD1, GTSE1, NR2C1, FKBP9 and UBE2I exclusively within Alu. These genes map onto the p53 regulatory network. Ectopic overexpression of miR-15a-3p downregulates GTSE1 and RAD1 at the protein level and enhances cell survival. This Alu-mediated fine-tuning seems to be unique to humans as evident from the absence of orthologous sites in other primate lineages. We further analyzed signatures of selection on Alu-miRNA targets in the genome, using 1000 Genomes Phase-I data. We found that 198 out of 3177 Alu-exonized genes exhibit signatures of selection within Alu-miRNA sites, with 60 of them containing SNPs supported by multiple evidences (global-FST > 0.3, pair-wise-FST > 0.5, Fay-Wu’s H < ‑20, iHS > 2.0, high ΔDAF) and implicated in p53 network. We propose that by affecting multiple genes, Alu-miRNA interactions have the potential to facilitate population-level adaptations in response to environmental challenges.

  11. Alu-miRNA interactions modulate transcript isoform diversity in stress response and reveal signatures of positive selection

    PubMed Central

    Pandey, Rajesh; Bhattacharya, Aniket; Bhardwaj, Vivek; Jha, Vineet; Mandal, Amit K.; Mukerji, Mitali

    2016-01-01

    Primate-specific Alus harbor different regulatory features, including miRNA targets. In this study, we provide evidence for miRNA-mediated modulation of transcript isoform levels during heat-shock response through exaptation of Alu-miRNA sites in mature mRNA. We performed genome-wide expression profiling coupled with functional validation of miRNA target sites within exonized Alus, and analyzed conservation of these targets across primates. We observed that two miRNAs (miR-15a-3p and miR-302d-3p) elevated in stress response, target RAD1, GTSE1, NR2C1, FKBP9 and UBE2I exclusively within Alu. These genes map onto the p53 regulatory network. Ectopic overexpression of miR-15a-3p downregulates GTSE1 and RAD1 at the protein level and enhances cell survival. This Alu-mediated fine-tuning seems to be unique to humans as evident from the absence of orthologous sites in other primate lineages. We further analyzed signatures of selection on Alu-miRNA targets in the genome, using 1000 Genomes Phase-I data. We found that 198 out of 3177 Alu-exonized genes exhibit signatures of selection within Alu-miRNA sites, with 60 of them containing SNPs supported by multiple evidences (global-FST > 0.3, pair-wise-FST > 0.5, Fay-Wu’s H < −20, iHS > 2.0, high ΔDAF) and implicated in p53 network. We propose that by affecting multiple genes, Alu-miRNA interactions have the potential to facilitate population-level adaptations in response to environmental challenges. PMID:27586304

  12. Axonal and dendritic synaptotagmin isoforms revealed by a pHluorin-syt functional screen.

    PubMed

    Dean, Camin; Dunning, F Mark; Liu, Huisheng; Bomba-Warczak, Ewa; Martens, Henrik; Bharat, Vinita; Ahmed, Saheeb; Chapman, Edwin R

    2012-05-01

    The synaptotagmins (syts) are a family of molecules that regulate membrane fusion. There are 17 mammalian syt isoforms, most of which are expressed in the brain. However, little is known regarding the subcellular location and function of the majority of these syts in neurons, largely due to a lack of isoform-specific antibodies. Here we generated pHluorin-syt constructs harboring a luminal domain pH sensor, which reports localization, pH of organelles to which syts are targeted, and the kinetics and sites of exocytosis and endocytosis. Of interest, only syt-1 and 2 are targeted to synaptic vesicles, whereas other isoforms selectively recycle in dendrites (syt-3 and 11), axons (syt-5, 7, 10, and 17), or both axons and dendrites (syt-4, 6, 9, and 12), where they undergo exocytosis and endocytosis with distinctive kinetics. Hence most syt isoforms localize to distinct secretory organelles in both axons and dendrites and may regulate neuropeptide/neurotrophin release to modulate neuronal function.

  13. Speech processing asymmetry revealed by dichotic listening and functional brain imaging.

    PubMed

    Hugdahl, Kenneth; Westerhausen, René

    2016-12-01

    In this article, we review research in our laboratory from the last 25 to 30 years on the neuronal basis for laterality of speech perception focusing on the upper, posterior parts of the temporal lobes, and its functional and structural connections to other brain regions. We review both behavioral and brain imaging data, with a focus on dichotic listening experiments, and using a variety of imaging modalities. The data have come in most parts from healthy individuals and from studies on normally functioning brain, although we also review a few selected clinical examples. We first review and discuss the structural model for the explanation of the right-ear advantage (REA) and left hemisphere asymmetry for auditory language processing. A common theme across many studies have been our interest in the interaction between bottom-up, stimulus-driven, and top-down, instruction-driven, aspects of hemispheric asymmetry, and how perceptual factors interact with cognitive factors to shape asymmetry of auditory language information processing. In summary, our research have shown laterality for the initial processing of consonant-vowel syllables, first observed as a behavioral REA when subjects are required to report which syllable of a dichotic syllable-pair they perceive. In subsequent work we have corroborated the REA with brain imaging, and have shown that the REA is modulated through both bottom-up manipulations of stimulus properties, like sound intensity, and top-down manipulations of cognitive properties, like attention focus.

  14. Modulation of hypothalamic-pituitary-interrenal axis function by social status in rainbow trout.

    PubMed

    Jeffrey, Jennifer D; Esbaugh, Andrew J; Vijayan, Mathilakath M; Gilmour, Kathleen M

    2012-04-01

    Juvenile rainbow trout (Oncorhynchus mykiss) form stable dominance hierarchies when confined in pairs. These hierarchies are driven by aggressive competition over limited resources and result in one fish becoming dominant over the other. An important indicator of low social status is sustained elevation of circulating cortisol levels as a result of chronic activation of the hypothalamic-pituitary-interrenal (HPI) axis. In the present study it was hypothesized that social status modulates the expression of key proteins involved in the functioning of the HPI axis. Cortisol treatment and fasting were used to assess whether these characteristics seen in subordinate fish also affected HPI axis function. Social status modulated plasma adrenocorticotropic hormone (ACTH) levels, cortisol synthesis, and liver glucocorticoid receptor (GR) expression. Plasma ACTH levels were lower by approximately 2-fold in subordinate and cortisol-treated fish, consistent with a negative feedback role for cortisol in modulating HPI axis function. Although cortisol-treated fish exhibited differences in corticotropin-releasing factor (CRF) and CRF-binding protein (CRF-BP) mRNA relative abundances in the preoptic area and telencephalon, respectively, no effect of social status on CRF or CRF-BP was detected. Head kidney melanocortin 2 receptor (MC2R) mRNA relative levels were unaffected by social status, while mRNA relative abundances of steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage (P450scc) enzyme were elevated in dominant fish. Liver GR2 mRNA and total GR protein levels in subordinate fish were lower than control values by approximately 2-fold. In conclusion, social status modulated the functioning of the HPI axis in rainbow trout. Our results suggest altered cortisol dynamics and reduced target tissue response to this steroid in subordinate fish, while the higher transcript levels for steroid biosynthesis in dominant fish leads us to propose an

  15. Sesame seed lignans: potent physiological modulators and possible ingredients in functional foods & nutraceuticals.

    PubMed

    Kamal-Eldin, Afaf; Moazzami, Ali; Washi, Sidiga

    2011-01-01

    Sesame seed contains very high levels (up to 2.5%) of furofuran lignans with beneficial physiological activities, mainly sesamin, sesamolin, and sesaminol glucosides. Reported activities of sesame seed lignans include inter alias modulation of fatty acid metabolism, inhibition of cholesterol absorption and biosynthesis, antioxidant and vitamin E-sparing effects, hypotensive effects, improvement of liver functions in connection with alcohol metabolism, and antiaging effects. This review comprehends patents pertinent to the preparations and uses of sesame seed lignans in health promotion.

  16. Adhesion-modulating/matricellular ECM protein families: a structural, functional and evolutionary appraisal.

    PubMed

    Mosher, Deane F; Adams, Josephine C

    2012-04-01

    The thrombospondins are a family of secreted, oligomeric glycoproteins that interact with cell surfaces, multiple components of the extracellular matrix, growth factors and proteases. These interactions underlie complex roles in cell interactions and tissue homeostasis in animals. Thrombospondins have been grouped functionally with SPARCs, tenascins and CCN proteins as adhesion-modulating or matricellular components of the extracellular milieu. Although all these multi-domain proteins share various commonalities of domains, the grouping is not based on structural homologies. Instead, the terms emphasise the general observations that these proteins do not form large-scale ECM structures, yet act at cell surfaces and function in coordination with the structural ECM and associated extracellular proteins. The designation of adhesion-modulation thus depends on observed tissue and cell culture ECM distributions and on experimentally identified functional properties. To date, the evolutionary relationships of these proteins have not been critically compared: yet, knowledge of their evolutionary histories is clearly relevant to any consideration of functional similarities. In this article, we survey briefly the structural and functional knowledge of these protein families, consider the evolution of each family, and outline a perspective on their functional roles.

  17. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.

    PubMed

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-03-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  18. Functional splicing network reveals extensive regulatory potential of the core spliceosomal machinery.

    PubMed

    Papasaikas, Panagiotis; Tejedor, J Ramón; Vigevani, Luisa; Valcárcel, Juan

    2015-01-08

    Pre-mRNA splicing relies on the poorly understood dynamic interplay between >150 protein components of the spliceosome. The steps at which splicing can be regulated remain largely unknown. We systematically analyzed the effect of knocking down the components of the splicing machinery on alternative splicing events relevant for cell proliferation and apoptosis and used this information to reconstruct a network of functional interactions. The network accurately captures known physical and functional associations and identifies new ones, revealing remarkable regulatory potential of core spliceosomal components, related to the order and duration of their recruitment during spliceosome assembly. In contrast with standard models of regulation at early steps of splice site recognition, factors involved in catalytic activation of the spliceosome display regulatory properties. The network also sheds light on the antagonism between hnRNP C and U2AF, and on targets of antitumor drugs, and can be widely used to identify mechanisms of splicing regulation.

  19. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment

    PubMed Central

    van Wolfswinkel, Josien C.; Wagner, Daniel E.; Reddien, Peter W.

    2014-01-01

    Planarians are flatworms capable of regenerating any missing body region. This capacity is mediated by neoblasts, a proliferative cell population that contains pluripotent stem cells. Although population-based studies have revealed many neoblast characteristics, whether functionally distinct classes exist within this population is unclear. Here, we used high-dimensional single-cell transcriptional profiling from over a thousand individual neoblasts to directly compare gene expression fingerprints during homeostasis and regeneration. We identified two prominent neoblast classes that we named ζ (zeta) and σ (sigma). Zeta-neoblasts encompass specified cells that give rise to an abundant postmitotic lineage including epidermal cells, and are not required for regeneration. By contrast, sigma-neoblasts proliferate in response to injury, possess broad lineage capacity, and can give rise to zeta-neoblasts. These findings present a new view of planarian neoblasts, in which the population is comprised of two major and functionally distinct cellular compartments. PMID:25017721

  20. Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease

    PubMed Central

    Wang, Jinfeng; Qi, Ji; Zhao, Hui; He, Shu; Zhang, Yifei; Wei, Shicheng; Zhao, Fangqing

    2013-01-01

    Although attempts have been made to reveal the relationships between bacteria and human health, little is known about the species and function of the microbial community associated with oral diseases. In this study, we report the sequencing of 16 metagenomic samples collected from dental swabs and plaques representing four periodontal states. Insights into the microbial community structure and the metabolic variation associated with periodontal health and disease were obtained. We observed a strong correlation between community structure and disease status, and described a core disease-associated community. A number of functional genes and metabolic pathways including bacterial chemotaxis and glycan biosynthesis were over-represented in the microbiomes of periodontal disease. A significant amount of novel species and genes were identified in the metagenomic assemblies. Our study enriches the understanding of the oral microbiome and sheds light on the contribution of microorganisms to the formation and succession of dental plaques and oral diseases. PMID:23673380

  1. Positive Allosteric Modulation of Insect Olfactory Receptor Function by ORco Agonists

    PubMed Central

    Tsitoura, Panagiota; Iatrou, Kostas

    2016-01-01

    Insect olfactory receptors (ORs) are heteromeric ligand-gated cation channels composed of a common olfactory receptor subunit (ORco) and a variable subunit (ORx) of as yet unknown structures and undetermined stoichiometries. In this study, we examined the allosteric modulation exerted on Anopheles gambiae heteromeric ORx/ORco olfactory receptors in vitro by a specific class of ORco agonists (OAs) comprising ORcoRAM2 and VUAA1. High OA concentrations produced stronger functional responses in cells expressing heteromeric receptor channels relative to cells expressing ORco alone. These OA-induced responses of ORx/ORco channels were also notably much stronger than those obtained upon administration of ORx-specific ligands to the same receptors. Most importantly, small concentrations of OAs were found to act as strong potentiators of ORx/ORco function, increasing dramatically both the efficacy and potency of ORx-specific odorants. These results suggest that insect heteromeric ORs are highly dynamic complexes adopting different conformations that change in a concerted fashion as a result of the interplay between the subunits of the oligomeric assemblies, and that allosteric modulation may constitute an important element in the modulation and fining tuning of olfactory reception function. PMID:28018173

  2. Sex, hormones and neurogenesis in the hippocampus: hormonal modulation of neurogenesis and potential functional implications.

    PubMed

    Galea, L A M; Wainwright, S R; Roes, M M; Duarte-Guterman, P; Chow, C; Hamson, D K

    2013-11-01

    The hippocampus is an area of the brain that undergoes dramatic plasticity in response to experience and hormone exposure. The hippocampus retains the ability to produce new neurones in most mammalian species and is a structure that is targeted in a number of neurodegenerative and neuropsychiatric diseases, many of which are influenced by both sex and sex hormone exposure. Intriguingly, gonadal and adrenal hormones affect the structure and function of the hippocampus differently in males and females. Adult neurogenesis in the hippocampus is regulated by both gonadal and adrenal hormones in a sex- and experience-dependent way. Sex differences in the effects of steroid hormones to modulate hippocampal plasticity should not be completely unexpected because the physiology of males and females is different, with the most notable difference being that females gestate and nurse the offspring. Furthermore, reproductive experience (i.e. pregnancy and mothering) results in permanent changes to the maternal brain, including the hippocampus. This review outlines the ability of gonadal and stress hormones to modulate multiple aspects of neurogenesis (cell proliferation and cell survival) in both male and female rodents. The function of adult neurogenesis in the hippocampus is linked to spatial memory and depression, and the present review provides early evidence of the functional links between the hormonal modulation of neurogenesis that may contribute to the regulation of cognition and stress.

  3. Modulation of attention functions by anodal tDCS on right PPC.

    PubMed

    Roy, Lucia B; Sparing, Roland; Fink, Gereon R; Hesse, Maike D

    2015-07-01

    Attention is a complex construct that comprises at least three major subcomponents: alerting, spatial (re-)orienting, and executive functions, all of which have specific neural correlates along frontoparietal networks. Attention deficits are a common consequence of brain damage. Transcranial direct current stimulation (tDCS) has been shown to modulate spatial attention. We investigated whether tDCS of different stimulation targets differentially modulates alerting, spatial (re-)orienting, and executive functions. Twenty-four healthy participants were included in this randomized, double-blinded study, which employed a within-subject design. On four different days, the effects of 1.5 mA anodal tDCS (real and sham) on the left dorsolateral (EEG 10-20 point F3), left parietal (P3) and right parietal cortex (P4) were assessed using a modified attention network test. tDCS of the right parietal cortex enhanced spatial re-orienting, while tDCS of the other cortical targets did not modulate the assessed attention functions. With regard to visual field asymmetries in attentional processing, right parietal tDCS selectively enhanced mean network efficiency for targets presented in the contralateral left visual field. The observed visual field specific tDCS effects on reorienting suggest that systematic investigations into novel approaches for the treatment of patients suffering from spatial neglect patients are warranted.

  4. Extinction of cocaine self-administration reveals functionally and temporally distinct dopaminergic signals in the nucleus accumbens.

    PubMed

    Stuber, Garret D; Wightman, R Mark; Carelli, Regina M

    2005-05-19

    While Pavlovian and operant conditioning influence drug-seeking behavior, the role of rapid dopamine signaling in modulating these processes is unknown. During self-administration of cocaine, two dopaminergic signals, measured with 100 ms resolution, occurred immediately before and after the lever press (termed pre- and post-response dopamine transients). Extinction of self-administration revealed that these two signals were functionally distinct. Pre-response transients, which could reflect the motivation to obtain the drug, did not decline during extinction. Remarkably, post-response dopamine transients attenuated as extinction progressed, suggesting that they encode the learned association between environmental cues and cocaine. A third type of dopamine transient, not time locked to overt stimuli, decreased in frequency during extinction and correlated with calculated cocaine concentrations. These results show that dopamine release transients involved in different aspects of cocaine self-administration are highly plastic--differentially governed by motivation, learned associations linked with environmental stimuli, and the pharmacological actions of cocaine.

  5. DENSE: efficient and prior knowledge-driven discovery of phenotype-associated protein functional modules

    PubMed Central

    2011-01-01

    Background Identifying cellular subsystems that are involved in the expression of a target phenotype has been a very active research area for the past several years. In this paper, cellular subsystem refers to a group of genes (or proteins) that interact and carry out a common function in the cell. Most studies identify genes associated with a phenotype on the basis of some statistical bias, others have extended these statistical methods to analyze functional modules and biological pathways for phenotype-relatedness. However, a biologist might often have a specific question in mind while performing such analysis and most of the resulting subsystems obtained by the existing methods might be largely irrelevant to the question in hand. Arguably, it would be valuable to incorporate biologist's knowledge about the phenotype into the algorithm. This way, it is anticipated that the resulting subsytems would not only be related to the target phenotype but also contain information that the biologist is likely to be interested in. Results In this paper we introduce a fast and theoretically guranteed method called DENSE (Dense and ENriched Subgraph Enumeration) that can take in as input a biologist's prior knowledge as a set of query proteins and identify all the dense functional modules in a biological network that contain some part of the query vertices. The density (in terms of the number of network egdes) and the enrichment (the number of query proteins in the resulting functional module) can be manipulated via two parameters γ and μ, respectively. Conclusion This algorithm has been applied to the protein functional association network of Clostridium acetobutylicum ATCC 824, a hydrogen producing, acid-tolerant organism. The algorithm was able to verify relationships known to exist in literature and also some previously unknown relationships including those with regulatory and signaling functions. Additionally, we were also able to hypothesize that some uncharacterized

  6. Salivary gland proteome analysis reveals modulation of anopheline unique proteins in insensitive acetylcholinesterase resistant Anopheles gambiae mosquitoes.

    PubMed

    Cornelie, Sylvie; Rossignol, Marie; Seveno, Martial; Demettre, Edith; Mouchet, François; Djègbè, Innocent; Marin, Philippe; Chandre, Fabrice; Corbel, Vincent; Remoué, Franck; Mathieu-Daudé, Françoise

    2014-01-01

    Insensitive acetylcholinesterase resistance due to a mutation in the acetylcholinesterase (ace) encoding ace-1 gene confers cross-resistance to organophosphate and carbamate insecticides in Anopheles gambiae populations from Central and West Africa. This mutation is associated with a strong genetic cost revealed through alterations of some life history traits but little is known about the physiological and behavioural changes in insects bearing the ace-1(R) allele. Comparative analysis of the salivary gland contents between An. gambiae susceptible and ace-1(R) resistant strains was carried out to charaterize factors that could be involved in modifications of blood meal process, trophic behaviour or pathogen interaction in the insecticide-resistant mosquitoes. Differential analysis of the salivary gland protein profiles revealed differences in abundance for several proteins, two of them showing major differences between the two strains. These two proteins identified as saglin and TRIO are salivary gland-1 related proteins, a family unique to anopheline mosquitoes, one of them playing a crucial role in salivary gland invasion by Plasmodium falciparum sporozoites. Differential expression of two other proteins previously identified in the Anopheles sialome was also observed. The differentially regulated proteins are involved in pathogen invasion, blood feeding process, and protection against oxidation, relevant steps in the outcome of malaria infection. Further functional studies and insect behaviour experiments would confirm the impact of the modification of the sialome composition on blood feeding and pathogen transmission abilities of the resistant mosquitoes. The data supports the hypothesis of alterations linked to insecticide resistance in the biology of the primary vector of human malaria in Africa.

  7. Salivary Gland Proteome Analysis Reveals Modulation of Anopheline Unique Proteins in Insensitive Acetylcholinesterase Resistant Anopheles gambiae Mosquitoes

    PubMed Central

    Cornelie, Sylvie; Rossignol, Marie; Seveno, Martial; Demettre, Edith; Mouchet, François; Djègbè, Innocent; Marin, Philippe; Chandre, Fabrice; Corbel, Vincent; Remoué, Franck; Mathieu-Daudé, Françoise

    2014-01-01

    Insensitive acetylcholinesterase resistance due to a mutation in the acetylcholinesterase (ace) encoding ace-1 gene confers cross-resistance to organophosphate and carbamate insecticides in Anopheles gambiae populations from Central and West Africa. This mutation is associated with a strong genetic cost revealed through alterations of some life history traits but little is known about the physiological and behavioural changes in insects bearing the ace-1R allele. Comparative analysis of the salivary gland contents between An. gambiae susceptible and ace-1R resistant strains was carried out to charaterize factors that could be involved in modifications of blood meal process, trophic behaviour or pathogen interaction in the insecticide-resistant mosquitoes. Differential analysis of the salivary gland protein profiles revealed differences in abundance for several proteins, two of them showing major differences between the two strains. These two proteins identified as saglin and TRIO are salivary gland-1 related proteins, a family unique to anopheline mosquitoes, one of them playing a crucial role in salivary gland invasion by Plasmodium falciparum sporozoites. Differential expression of two other proteins previously identified in the Anopheles sialome was also observed. The differentially regulated proteins are involved in pathogen invasion, blood feeding process, and protection against oxidation, relevant steps in the outcome of malaria infection. Further functional studies and insect behaviour experiments would confirm the impact of the modification of the sialome composition on blood feeding and pathogen transmission abilities of the resistant mosquitoes. The data supports the hypothesis of alterations linked to insecticide resistance in the biology of the primary vector of human malaria in Africa. PMID:25102176

  8. Angiogenic functions of voltage-gated Na+ Channels in human endothelial cells: modulation of vascular endothelial growth factor (VEGF) signaling.

    PubMed

    Andrikopoulos, Petros; Fraser, Scott P; Patterson, Lisa; Ahmad, Zahida; Burcu, Hakan; Ottaviani, Diego; Diss, James K J; Box, Carol; Eccles, Suzanne A; Djamgoz, Mustafa B A

    2011-05-13

    Voltage-gated sodium channel (VGSC) activity has previously been reported in endothelial cells (ECs). However, the exact isoforms of VGSCs present, their mode(s) of action, and potential role(s) in angiogenesis have not been investigated. The main aims of this study were to determine the role of VGSC activity in angiogenic functions and to elucidate the potentially associated signaling mechanisms using human umbilical vein endothelial cells (HUVECs) as a model system. Real-time PCR showed that the primary functional VGSC α- and β-subunit isoforms in HUVECs were Nav1.5, Nav1.7, VGSCβ1, and VGSCβ3. Western blots verified that VGSCα proteins were expressed in HUVECs, and immunohistochemistry revealed VGSCα expression in mouse aortic ECs in vivo. Electrophysiological recordings showed that the channels were functional and suppressed by tetrodotoxin (TTX). VGSC activity modulated the following angiogenic properties of HUVECs: VEGF-induced proliferation or chemotaxis, tubular differentiation, and substrate adhesion. Interestingly, different aspects of angiogenesis were controlled by the different VGSC isoforms based on TTX sensitivity and effects of siRNA-mediated gene silencing. Additionally, we show for the first time that TTX-resistant (TTX-R) VGSCs (Nav1.5) potentiate VEGF-induced ERK1/2 activation through the PKCα-B-RAF signaling axis. We postulate that this potentiation occurs through modulation of VEGF-induced HUVEC depolarization and [Ca(2+)](i). We conclude that VGSCs regulate multiple angiogenic functions and VEGF signaling in HUVECs. Our results imply that targeting VGSC expression/activity could be a novel strategy for controlling angiogenesis.

  9. Thermodynamic Characterization of a Triheme Cytochrome Family from Geobacter sulfurreducens Reveals Mechanistic and Functional Diversity

    PubMed Central

    Morgado, Leonor; Bruix, Marta; Pessanha, Miguel; Londer, Yuri Y.; Salgueiro, Carlos A.

    2010-01-01

    Abstract A family of five periplasmic triheme cytochromes (PpcA-E) was identified in Geobacter sulfurreducens, where they play a crucial role by driving electron transfer from the cytoplasm to the cell exterior and assisting the reduction of extracellular acceptors. The thermodynamic characterization of PpcA using NMR and visible spectroscopies was previously achieved under experimental conditions identical to those used for the triheme cytochrome c7 from Desulfuromonas acetoxidans. Under such conditions, attempts to obtain NMR data were complicated by the relatively fast intermolecular electron exchange. This work reports the detailed thermodynamic characterization of PpcB, PpcD, and PpcE under optimal experimental conditions. The thermodynamic characterization of PpcA was redone under these new conditions to allow a proper comparison of the redox properties with those of other members of this family. The heme reduction potentials of the four proteins are negative, differ from each other, and cover different functional ranges. These reduction potentials are strongly modulated by heme-heme interactions and by interactions with protonated groups (the redox-Bohr effect) establishing different cooperative networks for each protein, which indicates that they are designed to perform different functions in the cell. PpcA and PpcD appear to be optimized to interact with specific redox partners involving e−/H+ transfer via different mechanisms. Although no evidence of preferential electron transfer pathway or e−/H+ coupling was found for PpcB and PpcE, the difference in their working potential ranges suggests that they may also have different physiological redox partners. This is the first study, to our knowledge, to characterize homologous cytochromes from the same microorganism and provide evidence of their different mechanistic and functional properties. These findings provide an explanation for the coexistence of five periplasmic triheme cytochromes in G

  10. Separable roles of UFO during floral development revealed by conditional restoration of gene function.

    PubMed

    Laufs, Patrick; Coen, Enrico; Kronenberger, Jocelyne; Traas, Jan; Doonan, John

    2003-02-01

    The UNUSUAL FLORAL ORGANS (UFO) gene is required for several aspects of floral development in Arabidopsis including specification of organ identity in the second and third whorls and the proper pattern of primordium initiation in the inner three whorls. UFO is expressed in a dynamic pattern during the early phases of flower development. Here we dissect the role of UFO by ubiquitously expressing it in ufo loss-of-function flowers at different developmental stages and for various durations using an ethanol-inducible expression system. The previously known functions of UFO could be separated and related to its expression at specific stages of development. We show that a 24- to 48-hour period of UFO expression from floral stage 2, before any floral organs are visible, is sufficient to restore normal petal and stamen development. The earliest requirement for UFO is during stage 2, when the endogenous UFO gene is transiently expressed in the centre of the wild-type flower and is required to specify the initiation patterns of petal, stamen and carpel primordia. Petal and stamen identity is determined during stages 2 or 3, when UFO is normally expressed in the presumptive second and third whorl. Although endogenous UFO expression is absent from the stamen whorl from stage 4 onwards, stamen identity can be restored by UFO activation up to stage 6. We also observed floral phenotypes not observed in loss-of-function or constitutive gain-of-function backgrounds, revealing additional roles of UFO in outgrowth of petal primordia.

  11. Quantification of Left Ventricular Function with Premature Ventricular Complexes Reveals Variable Hemodynamics

    PubMed Central

    Contijoch, Francisco; Rogers, Kelly; Rears, Hannah; Shahid, Mohammed; Kellman, Peter; Gorman, Joseph; Gorman, Robert C.; Yushkevich, Paul; Zado, Erica S.; Supple, Gregory E.; Marchlinski, Francis E.; Witschey, Walter R.T.; Han, Yuchi

    2016-01-01

    Background Premature ventricular complexes (PVC) are prevalent in the general population and are sometimes associated with reduced ventricular function. Current echocardiographic and cardiovascular magnetic resonance imaging (CMR) techniques do not adequately address the effect of PVCs on left ventricular function. Methods and Results Fifteen subjects with a history of frequent PVCs undergoing CMR had real-time slice volume quantification performed using a 2D real-time CMR imaging technique. Synchronization of 2D real-time imaging with patient ECG allowed for different beats to be categorized by the loading beat RR-duration and beat RR-duration. For each beat type, global volumes were quantified via summation over all slices covering the entire ventricle. Different patterns of ectopy including isolated PVCs, bigeminy, trigeminy, and interpolated PVCs were observed. Global functional measurement of the different beat types based on timing demonstrated differences in preload, stroke volume, and ejection fraction. An average of hemodynamic function was quantified for each subject depending on the frequency of each observed beat type. Conclusions Application of real-time CMR imaging in patients with PVCs revealed differential contribution of PVCs to hemodynamics. PMID:27009416

  12. Approximate methods to determine the modulation transfer function of a hololens system: a comparative study

    NASA Astrophysics Data System (ADS)

    Varela, Alberto J.; Calvo, Maria L.

    1995-04-01

    We present a comparative study between two experimental methods to determine the modulation transfer function (MTF) of a hololens system. The two hololenses were previously recorded and tested for filtering pseudocolor. In the first method we used the classical Foucault test. The second, alternative method is based on the digital image processing of a perfect edge under incoherent illumination. From the digitized intensity line profiles we obtain the MTF and cutoff frequency of the optical system according to the reciprocity between line spread function and MTF. Comments are made on the applicability and accuracy of these two methods.

  13. Cryptic biodiversity effects: importance of functional redundancy revealed through addition of food web complexity.

    PubMed

    Philpott, Stacy M; Pardee, Gabriella L; Gonthier, David J

    2012-05-01

    Interactions between predators and the degree of functional redundancy among multiple predator species may determine whether herbivores experience increased or decreased predation risk. Specialist parasites can modify predator behavior, yet rarely have cascading effects on multiple predator species and prey been evaluated. We examined influences of specialist phorid parasites (Pseudacteon spp.) on three predatory ant species and herbivores in a coffee agroecosystem. Specifically, we examined whether changes in ant richness affected fruit damage by the coffee berry borer (Hypothenemus hampei) and whether phorids altered multi-predator effects. Each ant species reduced borer damage, and without phorids, increasing predator richness did not further decrease borer damage. However, with phorids, activity of one ant species was reduced, indicating that the presence of multiple ant species was necessary to limit borer damage. In addition, phorid presence revealed synergistic effects of multiple ant species, not observed without the presence of this parasite. Thus, a trait-mediated cascade resulting from a parasite-induced predator behavioral change revealed the importance of functional redundancy, predator diversity, and food web complexity for control of this important pest.

  14. Cluster analysis reveals a binary effect of storage on boar sperm motility function.

    PubMed

    Henning, Heiko; Petrunkina, Anna M; Harrison, Robin A P; Waberski, Dagmar

    2014-06-01

    Storage of liquid-preserved boar spermatozoa is associated with a loss of fertilising ability of the preserved spermatozoa, which standard semen parameters barely reflect. Monitoring responses to molecular effectors of sperm function (e.g. bicarbonate) has proven to be a more sensitive approach to investigating storage effects. Bicarbonate not only initiates capacitation in spermatozoa, but also induces motility activation. This occurs at ejaculation, but also happens throughout passage through the oviduct. In the present study we tested whether the specific response of boar sperm subpopulations to bicarbonate, as assessed by motility activation, is altered with the duration of storage in vitro. Three ejaculates from each of seven boars were diluted in Beltsville thawing solution and stored at 17°C. Only minor changes in the parameters of diluted semen were revealed over a period of 72h storage. For assessment of bicarbonate responses, subsamples of diluted spermatozoa were centrifuged through a discontinuous Percoll gradient after 12, 24 and 72h storage. Subsequently, spermatozoa were incubated in two Ca2+-free variants of Tyrode's medium either without (TyrControl) or with (TyrBic) 15mM bicarbonate, and computer-aided sperm analysis motility measurements were made. Cluster analysis of imaging data from motile spermatozoa revealed the presence of five major sperm subpopulations with distinct motility characteristics, differing between TyrBic and TyrControl at any given time (P<0.001). Although there was an increasing loss of motility function in both media, bicarbonate induced an increase in a 'fast linear' cohort of spermatozoa in TyrBic regardless of storage (66.4% at 12h and 63.9% at 72h). These results imply a binary pattern in response of sperm motility function descriptors to storage: although the quantitative descriptor (percentage of motile spermatozoa) declines in washed semen samples, the qualitative descriptor (percentage of spermatozoa stimulated into

  15. Flexible establishment of functional brain networks supports attentional modulation of unconscious cognition.

    PubMed

    Ulrich, Martin; Adams, Sarah C; Kiefer, Markus

    2014-11-01

    In classical theories of attention, unconscious automatic processes are thought to be independent of higher-level attentional influences. Here, we propose that unconscious processing depends on attentional enhancement of task-congruent processing pathways implemented by a dynamic modulation of the functional communication between brain regions. Using functional magnetic resonance imaging, we tested our model with a subliminally primed lexical decision task preceded by an induction task preparing either a semantic or a perceptual task set. Subliminal semantic priming was significantly greater after semantic compared to perceptual induction in ventral occipito-temporal (vOT) and inferior frontal cortex, brain areas known to be involved in semantic processing. The functional connectivity pattern of vOT varied depending on the induction task and successfully predicted the magnitude of behavioral and neural priming. Together, these findings support the proposal that dynamic establishment of functional networks by task sets is an important mechanism in the attentional control of unconscious processing.

  16. Modulation of the exfoliated graphene work function through cycloaddition of nitrile imines.

    PubMed

    Barrejón, Myriam; Gómez-Escalonilla, María J; Fierro, José Luis G; Prieto, Pilar; Carrillo, José R; Rodríguez, Antonio M; Abellán, Gonzalo; López-Escalante, Ma Cruz; Gabás, Mercedes; López-Navarrete, Juan T; Langa, Fernando

    2016-10-26

    After the feasibility of the 1,3-dipolar cycloaddition reaction between nitrile imines and exfoliated graphene by density functional theory calculations was proved, very few-layer graphene was effectively functionalized using this procedure. Hydrazones with different electronic properties were used as precursors for the 1,3-dipoles, and microwave irradiation as an energy source enabled the reaction to be performed in a few minutes. The anchoring of organic addends on the graphene surface was confirmed by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis. Ultraviolet photoelectron spectroscopy (UPS) was used to measure the work function and band gap of these new hybrids. Our results demonstrate that it is possible to modulate these important electronic valence band parameters by tailoring the electron richness of the organic addends and/or the degree of functionalization.

  17. How emotional abilities modulate the influence of early life stress on hippocampal functioning.

    PubMed

    Aust, Sabine; Alkan Härtwig, Elif; Koelsch, Stefan; Heekeren, Hauke R; Heuser, Isabella; Bajbouj, Malek

    2014-07-01

    Early life stress (ELS) is known to have considerable influence on brain development, mental health and affective functioning. Previous investigations have shown that alexithymia, a prevalent personality trait associated with difficulties experiencing and verbalizing emotions, is particularly related to ELS. The aim of the present study was to investigate how neural correlates of emotional experiences in alexithymia are altered in the presence and absence of ELS. Therefore, 50 healthy individuals with different levels of alexithymia were matched regarding ELS and investigated with respect to neural correlates of audio-visually induced emotional experiences via functional magnetic resonance imaging. The main finding was that ELS modulated hippocampal responses to pleasant (>neutral) stimuli in high-alexithymic individuals, whereas there was no such modulation in low-alexithymic individuals matched for ELS. Behavioral and psychophysiological results followed a similar pattern. When considered independent of ELS, alexithymia was associated with decreased responses in insula (pleasant > neutral) and temporal pole (unpleasant > neutral). Our results show that the influence of ELS on emotional brain responses seems to be modulated by an individual's degree of alexithymia. Potentially, protective and adverse effects of emotional abilities on brain responses to emotional experiences are discussed.

  18. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress

    PubMed Central

    Picard, Martin; McManus, Meagan J.; Gray, Jason D.; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K.; Seifert, Erin L.; McEwen, Bruce S.; Wallace, Douglas C.

    2015-01-01

    The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism’s multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic–pituitary–adrenal axis, sympathetic adrenal–medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253

  19. Modulation of the Contrast Response Function by Electrical Microstimulation of the Macaque Frontal Eye Field

    PubMed Central

    Ekstrom, Leeland B.; Roelfsema, Pieter R.; Arsenault, John T.; Kolster, Hauke; Vanduffel, Wim

    2009-01-01

    Spatial attention influences representations in visual cortical areas as well as perception. Some models predict a contrast gain, while others a response or activity gain when attention is directed to a contrast varying stimulus. Recent evidence has indicated that microstimulating the Frontal Eye Field (FEF) can produce modulations of V4 neuronal firing rates that resemble spatial attention-like effects, and we have shown similar modulations of functional magnetic resonance imaging activity throughout the visual system. Here, we used fMRI in awake, fixating monkeys to first measure the response in twelve visual cortical areas to stimuli of varying luminance contrast. Next, we simultaneously microstimulated sub-regions of the FEF with movement fields that overlapped the stimulus locations and measured how microstimulation modulated these contrast response functions (CRFs) throughout visual cortex. In general, we found evidence for a non-proportional scaling of the CRF under these conditions, resembling a contrast gain effect. Representations of low contrast stimuli were enhanced by stimulation of the FEF below the threshold needed to evoke saccades, while high contrast stimuli were unaffected or in some areas even suppressed. Further, we measured a characteristic spatial pattern of enhancement and suppression across the cortical surface, from which we propose a simple schematic of this contrast-dependent fMRI response. PMID:19710320

  20. Functional Polymorphisms in Dopaminergic Genes Modulate Neurobehavioral and Neurophysiological Consequences of Sleep Deprivation

    PubMed Central

    Holst, Sebastian C.; Müller, Thomas; Valomon, Amandine; Seebauer, Britta; Berger, Wolfgang; Landolt, Hans-Peter

    2017-01-01

    Sleep deprivation impairs cognitive performance and reliably alters brain activation in wakefulness and sleep. Nevertheless, the molecular regulators of prolonged wakefulness remain poorly understood. Evidence from genetic, behavioral, pharmacologic and imaging studies suggest that dopaminergic signaling contributes to the behavioral and electroencephalographic (EEG) consequences of sleep loss, although direct human evidence thereof is missing. We tested whether dopamine neurotransmission regulate sustained attention and evolution of EEG power during prolonged wakefulness. Here, we studied the effects of functional genetic variation in the dopamine transporter (DAT1) and the dopamine D2 receptor (DRD2) genes, on psychomotor performance and standardized waking EEG oscillations during 40 hours of wakefulness in 64 to 82 healthy volunteers. Sleep deprivation consistently enhanced sleepiness, lapses of attention and the theta-to-alpha power ratio (TAR) in the waking EEG. Importantly, DAT1 and DRD2 genotypes distinctly modulated sleep loss-induced changes in subjective sleepiness, PVT lapses and TAR, according to inverted U-shaped relationships. Together, the data suggest that genetically determined differences in DAT1 and DRD2 expression modulate functional consequences of sleep deprivation, supporting the hypothesis that striato-thalamo-cortical dopaminergic pathways modulate the neurobehavioral and neurophysiological consequences of sleep loss in humans. PMID:28393838

  1. How emotional abilities modulate the influence of early life stress on hippocampal functioning

    PubMed Central

    Alkan Härtwig, Elif; Koelsch, Stefan; Heekeren, Hauke R.; Heuser, Isabella; Bajbouj, Malek

    2014-01-01

    Early life stress (ELS) is known to have considerable influence on brain development, mental health and affective functioning. Previous investigations have shown that alexithymia, a prevalent personality trait associated with difficulties experiencing and verbalizing emotions, is particularly related to ELS. The aim of the present study was to investigate how neural correlates of emotional experiences in alexithymia are altered in the presence and absence of ELS. Therefore, 50 healthy individuals with different levels of alexithymia were matched regarding ELS and investigated with respect to neural correlates of audio-visually induced emotional experiences via functional magnetic resonance imaging. The main finding was that ELS modulated hippocampal responses to pleasant (>neutral) stimuli in high-alexithymic individuals, whereas there was no such modulation in low-alexithymic individuals matched for ELS. Behavioral and psychophysiological results followed a similar pattern. When considered independent of ELS, alexithymia was associated with decreased responses in insula (pleasant > neutral) and temporal pole (unpleasant > neutral). Our results show that the influence of ELS on emotional brain responses seems to be modulated by an individual’s degree of alexithymia. Potentially, protective and adverse effects of emotional abilities on brain responses to emotional experiences are discussed. PMID:23685776

  2. Modulation of Chemokine Receptor Function by Cholesterol: New Prospects for Pharmacological Intervention.

    PubMed

    Legler, Daniel F; Matti, Christoph; Laufer, Julia M; Jakobs, Barbara D; Purvanov, Vladimir; Uetz-von Allmen, Edith; Thelen, Marcus

    2017-04-01

    Chemokine receptors are seven transmembrane-domain receptors belonging to class A of G-protein-coupled receptors (GPCRs). The receptors together with their chemokine ligands constitute the chemokine system, which is essential for directing cell migration and plays a crucial role in a variety of physiologic and pathologic processes. Given the importance of orchestrating cell migration, it is vital that chemokine receptor signaling is tightly regulated to ensure appropriate responses. Recent studies highlight a key role for cholesterol in modulating chemokine receptor activities. The steroid influences the spatial organization of GPCRs within the membrane bilayer, and consequently can tune chemokine receptor signaling. The effects of cholesterol on the organization and function of chemokine receptors and GPCRs in general include direct and indirect effects (Fig. 1). Here, we review how cholesterol and some key metabolites modulate functions of the chemokine system in multiple ways. We emphasize the role of cholesterol in chemokine receptor oligomerization, thereby promoting the formation of a signaling hub enabling integration of distinct signaling pathways at the receptor-membrane interface. Moreover, we discuss the role of cholesterol in stabilizing particular receptor conformations and its consequence for chemokine binding. Finally, we highlight how cholesterol accumulation, its deprivation, or cholesterol metabolites contribute to modulating cell orchestration during inflammation, induction of an adaptive immune response, as well as to dampening an anti-tumor immune response.

  3. Decreased Modulation of EEG Oscillations in High-Functioning Autism during a Motor Control Task

    PubMed Central

    Ewen, Joshua B.; Lakshmanan, Balaji M.; Pillai, Ajay S.; McAuliffe, Danielle; Nettles, Carrie; Hallett, Mark; Crone, Nathan E.; Mostofsky, Stewart H.

    2016-01-01

    Autism spectrum disorders (ASD) are thought to result in part from altered cortical excitatory-inhibitory balance; this pathophysiology may impact the generation of oscillations on electroencephalogram (EEG). We investigated premotor-parietal cortical physiology associated with praxis, which has strong theoretical and empirical associations with ASD symptomatology. Twenty five children with high-functioning ASD (HFA) and 33 controls performed a praxis task involving the pantomiming of tool use, while EEG was recorded. We assessed task-related modulation of signal power in alpha and beta frequency bands. Compared with controls, subjects with HFA showed 27% less left central (motor/premotor) beta (18–22 Hz) event-related desynchronization (ERD; p = 0.030), as well as 24% less left parietal alpha (7–13 Hz) ERD (p = 0.046). Within the HFA group, blunting of central ERD attenuation was associated with impairments in clinical measures of praxis imitation (r = −0.4; p = 0.04) and increased autism severity (r = 0.48; p = 0.016). The modulation of central beta activity is associated, among other things, with motor imagery, which may be necessary for imitation. Impaired imitation has been associated with core features of ASD. Altered modulation of oscillatory activity may be mechanistically involved in those aspects of motor network function that relate to the core symptoms of ASD. PMID:27199719

  4. A Naturally-Occurring Transcript Variant of MARCO Reveals the SRCR Domain is Critical for Function

    PubMed Central

    Novakowski, Kyle E.; Huynh, Angela; Han, SeongJun; Dorrington, Michael G.; Yin, Charles; Tu, Zhongyuan; Pelka, Peter; Whyte, Peter; Guarné, Alba; Sakamoto, Kaori; Bowdish, Dawn M.E.

    2016-01-01

    Macrophage receptor with collagenous structure (MARCO) is a Class A Scavenger Receptor (cA-SR) that recognizes and phagocytoses of a wide variety of pathogens. Most cA-SRs that contain a C-terminal Scavenger Receptor Cysteine Rich (SRCR) domain use the proximal collagenous domain to bind ligands. In contrast, for the role of the SRCR domain of MARCO in phagocytosis, adhesion and pro-inflammatory signalling is less clear. The discovery of a naturally-occurring transcript variant lacking the SRCR domain, MARCOII, provided the opportunity to study the role of the SRCR domain of MARCO. We tested whether the SRCR domain is required for ligand binding, promoting downstream signalling, and enhancing cellular adhesion. Unlike cells expressing full-length MARCO, ligand binding was abolished in MARCOII-expressing cells. Furthermore, co-expression of MARCO and MARCOII impaired phagocytic function, indicating that MARCOII acts as a dominant negative variant. Unlike MARCO, expression of MARCOII did not enhance Toll-Like Receptor 2 (TLR2)-mediated pro-inflammatory signalling in response to bacterial stimulation. MARCO-expressing cells were more adherent and exhibited a dendritic-like phenotype, while MARCOII-expressing cells were less adherent and did not exhibit changes in morphology. These data suggest the SRCR domain of MARCO is the key domain in modulating ligand binding, enhancing downstream pro-inflammatory signalling, and MARCO-mediated cellular adhesion. PMID:26888252

  5. A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic

    PubMed Central

    Patrascu, Orlane; Béguet-Crespel, Fabienne; Marinelli, Ludovica; Le Chatelier, Emmanuelle; Abraham, Anne-Laure; Leclerc, Marion; Klopp, Christophe; Terrapon, Nicolas; Henrissat, Bernard; Blottière, Hervé M.; Doré, Joël; Béra-Maillet, Christel

    2017-01-01

    The digestion of dietary fibers is a major function of the human intestinal microbiota. So far this function has been attributed to the microorganisms inhabiting the colon, and many studies have focused on this distal part of the gastrointestinal tract using easily accessible fecal material. However, microbial fermentations, supported by the presence of short-chain fatty acids, are suspected to occur in the upper small intestine, particularly in the ileum. Using a fosmid library from the human ileal mucosa, we screened 20,000 clones for their activities against carboxymethylcellulose and xylans chosen as models of the major plant cell wall (PCW) polysaccharides from dietary fibres. Eleven positive clones revealed a broad range of CAZyme encoding genes from Bacteroides and Clostridiales species, as well as Polysaccharide Utilization Loci (PULs). The functional glycoside hydrolase genes were identified, and oligosaccharide break-down products examined from different polysaccharides including mixed-linkage β-glucans. CAZymes and PULs were also examined for their prevalence in human gut microbiome. Several clusters of genes of low prevalence in fecal microbiome suggested they belong to unidentified strains rather specifically established upstream the colon, in the ileum. Thus, the ileal mucosa-associated microbiota encompasses the enzymatic potential for PCW polysaccharide degradation in the small intestine. PMID:28091525

  6. Conditional Degradation of Plasmodium Calcineurin Reveals Functions in Parasite Colonization of both Host and Vector

    PubMed Central

    Philip, Nisha; Waters, Andrew P.

    2015-01-01

    Summary Functional analysis of essential genes in the malarial parasite, Plasmodium, is hindered by lack of efficient strategies for conditional protein regulation. We report the development of a rapid, specific, and inducible chemical-genetic tool in the rodent malaria parasite, P. berghei, in which endogenous proteins engineered to contain the auxin-inducible degron (AID) are selectively degraded upon adding auxin. Application of AID to the calcium-regulated protein phosphatase, calcineurin, revealed functions in host and vector stages of parasite development. Whereas depletion of calcineurin in late-stage schizonts demonstrated its critical role in erythrocyte attachment and invasion in vivo, stage-specific depletion uncovered roles in gamete development, fertilization, and ookinete-to-oocyst and sporozoite-to-liver stage transitions. Furthermore, AID technology facilitated concurrent generation and phenotyping of transgenic lines, allowing multiple lines to be assessed simultaneously with significant reductions in animal use. This study highlights the broad applicability of AID for functional analysis of proteins across the Plasmodium life cycle. PMID:26118994

  7. Diurnal Changes in Mitochondrial Function Reveal Daily Optimization of Light and Dark Respiratory Metabolism in Arabidopsis*

    PubMed Central

    Lee, Chun Pong; Eubel, Holger; Millar, A. Harvey

    2010-01-01

    Biomass production by plants is often negatively correlated with respiratory rate, but the value of this rate changes dramatically during diurnal cycles, and hence, biomass is the cumulative result of complex environment-dependent metabolic processes. Mitochondria in photosynthetic plant tissues undertake substantially different metabolic roles during light and dark periods that are dictated by substrate availability and the functional capacity of mitochondria defined by their protein composition. We surveyed the heterogeneity of the mitochondrial proteome and its function during a typical night and day cycle in Arabidopsis shoots. This used a staged, quantitative analysis of the proteome across 10 time points covering 24 h of the life of 3-week-old Arabidopsis shoots grown under 12-h dark and 12-h light conditions. Detailed analysis of enzyme capacities and substrate-dependent respiratory processes of isolated mitochondria were also undertaken during the same time course. Together these data reveal a range of dynamic changes in mitochondrial capacity and uncover day- and night-enhanced protein components. Clear diurnal changes were evident in mitochondrial capacities to drive the TCA cycle and to undertake functions associated with nitrogen and sulfur metabolism, redox poise, and mitochondrial antioxidant defense. These data quantify the nature and nuances of a daily rhythm in Arabidopsis mitochondrial respiratory capacity. PMID:20601493

  8. Comparative proteomics reveal fundamental structural and functional differences between the two progeny phenotypes of a baculovirus.

    PubMed

    Hou, Dianhai; Zhang, Leike; Deng, Fei; Fang, Wei; Wang, Ranran; Liu, Xijia; Guo, Lin; Rayner, Simon; Chen, Xinwen; Wang, Hualin; Hu, Zhihong

    2013-01-01

    The replication of lepidopteran baculoviruses is characterized by the production of two progeny phenotypes: the occlusion-derived virus (ODV), which establishes infection in midgut cells, and the budded virus (BV), which disseminates infection to different tissues within a susceptible host. To understand the structural, and hence functional, differences between BV and ODV, we employed multiple proteomic methods to reveal the protein compositions and posttranslational modifications of the two phenotypes of Helicoverpa armigera nucleopolyhedrovirus. In addition, Western blotting and quantitative mass spectrometry were used to identify the localization of proteins in the envelope or nucleocapsid fractions. Comparative protein portfolios of BV and ODV showing the distribution of 54 proteins, encompassing the 21 proteins shared by BV and ODV, the 12 BV-specific proteins, and the 21 ODV-specific proteins, were obtained. Among the 11 ODV-specific envelope proteins, 8 either are essential for or contribute to oral infection. Twenty-three phosphorylated and 6 N-glycosylated viral proteins were also identified. While the proteins that are shared by the two phenotypes appear to be important for nucleocapsid assembly and trafficking, the structural and functional differences between the two phenotypes are evidently characterized by the envelope proteins and posttranslational modifications. This comparative proteomics study provides new insight into how BV and ODV are formed and why they function differently.

  9. Functional analysis reveals that RBM10 mutations contribute to lung adenocarcinoma pathogenesis by deregulating splicing

    PubMed Central

    Zhao, Jiawei; Sun, Yue; Huang, Yin; Song, Fan; Huang, Zengshu; Bao, Yufang; Zuo, Ji; Saffen, David; Shao, Zhen; Liu, Wen; Wang, Yongbo

    2017-01-01

    RBM10 is an RNA splicing regulator that is frequently mutated in lung adenocarcinoma (LUAD) and has recently been proposed to be a cancer gene. How RBM10 mutations observed in LUAD affect its normal functions, however, remains largely unknown. Here integrative analysis of RBM10 mutation and RNA expression data revealed that LUAD-associated RBM10 mutations exhibit a mutational spectrum similar to that of tumor suppressor genes. In addition, this analysis showed that RBM10 mutations identified in LUAD patients lacking canonical oncogenes are associated with significantly reduced RBM10 expression. To systematically investigate RBM10 mutations, we developed an experimental pipeline for elucidating their functional effects. Among six representative LUAD-associated RBM10 mutations, one nonsense and one frameshift mutation caused loss-of-function as expected, whereas four missense mutations differentially affected RBM10-mediated splicing. Importantly, changes in proliferation rates of LUAD-derived cells caused by these RBM10 missense mutants correlated with alterations in RNA splicing of RBM10 target genes. Together, our data implies that RBM10 mutations contribute to LUAD pathogenesis, at least in large part, by deregulating splicing. The methods described in this study should be useful for analyzing mutations in additional cancer-associated RNA splicing regulators. PMID:28091594

  10. Conditional Degradation of Plasmodium Calcineurin Reveals Functions in Parasite Colonization of both Host and Vector.

    PubMed

    Philip, Nisha; Waters, Andrew P

    2015-07-08

    Functional analysis of essential genes in the malarial parasite, Plasmodium, is hindered by lack of efficient strategies for conditional protein regulation. We report the development of a rapid, specific, and inducible chemical-genetic tool in the rodent malaria parasite, P. berghei, in which endogenous proteins engineered to contain the auxin-inducible degron (AID) are selectively degraded upon adding auxin. Application of AID to the calcium-regulated protein phosphatase, calcineurin, revealed functions in host and vector stages of parasite development. Whereas depletion of calcineurin in late-stage schizonts demonstrated its critical role in erythrocyte attachment and invasion in vivo, stage-specific depletion uncovered roles in gamete development, fertilization, and ookinete-to-oocyst and sporozoite-to-liver stage transitions. Furthermore, AID technology facilitated concurrent generation and phenotyping of transgenic lines, allowing multiple lines to be assessed simultaneously with significant reductions in animal use. This study highlights the broad applicability of AID for functional analysis of proteins across the Plasmodium life cycle.

  11. Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis.

    PubMed

    Zhao, Lihua; He, Jiangman; Cai, Hanyang; Lin, Haiyan; Li, Yanqiang; Liu, Renyi; Yang, Zhenbiao; Qin, Yuan

    2014-11-01

    Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis.

  12. Gas7-Deficient Mouse Reveals Roles in Motor Function and Muscle Fiber Composition during Aging

    PubMed Central

    Huang, Bo-Tsang; Chang, Pu-Yuan; Su, Ching-Hua; Chao, Chuck C.-K.; Lin-Chao, Sue

    2012-01-01

    Background Growth arrest-specific gene 7 (Gas7) has previously been shown to be involved in neurite outgrowth in vitro; however, its actual role has yet to be determined. To investigate the physiological function of Gas7 in vivo, here we generated a Gas7-deficient mouse strain with a labile Gas7 mutant protein whose functions are similar to wild-type Gas7. Methodology/Principal Findings Our data show that aged Gas7-deficient mice have motor activity defects due to decreases in the number of spinal motor neurons and in muscle strength, of which the latter may be caused by changes in muscle fiber composition as shown in the soleus. In cross sections of the soleus of Gas7-deficient mice, gross morphological features and levels of myosin heavy chain I (MHC I) and MHC II markers revealed significantly fewer fast fibers. In addition, we found that nerve terminal sprouting, which may be associated with slow and fast muscle fiber composition, was considerably reduced at neuromuscular junctions (NMJ) during aging. Conclusions/Significance These findings indicate that Gas7 is involved in motor neuron function associated with muscle strength maintenance. PMID:22662195

  13. Edge reconstruction in armchair phosphorene nanoribbons revealed by discontinuous Galerkin density functional theory.

    PubMed

    Hu, Wei; Lin, Lin; Yang, Chao

    2015-12-21

    With the help of our recently developed massively parallel DGDFT (Discontinuous Galerkin Density Functional Theory) methodology, we perform large-scale Kohn-Sham density functional theory calculations on phosphorene nanoribbons with armchair edges (ACPNRs) containing a few thousands to ten thousand atoms. The use of DGDFT allows us to systematically achieve a conventional plane wave basis set type of accuracy, but with a much smaller number (about 15) of adaptive local basis (ALB) functions per atom for this system. The relatively small number of degrees of freedom required to represent the Kohn-Sham Hamiltonian, together with the use of the pole expansion the selected inversion (PEXSI) technique that circumvents the need to diagonalize the Hamiltonian, results in a highly efficient and scalable computational scheme for analyzing the electronic structures of ACPNRs as well as their dynamics. The total wall clock time for calculating the electronic structures of large-scale ACPNRs containing 1080-10,800 atoms is only 10-25 s per self-consistent field (SCF) iteration, with accuracy fully comparable to that obtained from conventional planewave DFT calculations. For the ACPNR system, we observe that the DGDFT methodology can scale to 5000-50,000 processors. We use DGDFT based ab initio molecular dynamics (AIMD) calculations to study the thermodynamic stability of ACPNRs. Our calculations reveal that a 2 × 1 edge reconstruction appears in ACPNRs at room temperature.

  14. Functional Magnetic Resonance Imaging of Rats with Experimental Autoimmune Encephalomyelitis Reveals Brain Cortex Remodeling

    PubMed Central

    Tambalo, Stefano; Peruzzotti-Jametti, Luca; Rigolio, Roberta; Fiorini, Silvia; Bontempi, Pietro; Mallucci, Giulia; Balzarotti, Beatrice; Marmiroli, Paola; Sbarbati, Andrea; Cavaletti, Guido

    2015-01-01

    Cortical reorganization occurring in multiple sclerosis (MS) patients is thought to play a key role in limiting the effect of structural tissue damage. Conversely, its exhaustion may contribute to the irreversible disability that accumulates with disease progression. Several aspects of MS-related cortical reorganization, including the overall functional effect and likely modulation by therapies, still remain to be elucidated. The aim of this work was to assess the extent of functional cortical reorganization and its brain structural/pathological correlates in Dark Agouti rats with experimental autoimmune encephalomyelitis (EAE), a widely accepted preclinical model of chronic MS. Morphological and functional MRI (fMRI) were performed before disease induction and during the relapsing and chronic phases of EAE. During somatosensory stimulation of the right forepaw, fMRI demonstrated that cortical reorganization occurs in both relapsing and chronic phases of EAE with increased activated volume and decreased laterality index versus baseline values. Voxel-based morphometry demonstrated gray matter (GM) atrophy in the cerebral cortex, and both GM and white matter atrophy were assessed by ex vivo pathology of the sensorimotor cortex and corpus callosum. Neuroinflammation persisted in the relapsing and chronic phases, with dendritic spine density in the layer IV sensory neurons inversely correlating with the number of cluster of differentiation 45-positive inflammatory lesions. Our work provides an innovative experimental platform that may be pivotal for the comprehension of key mechanisms responsible for the accumulation of irreversible brain damage and for the development of innovative therapies to reduce disability in EAE/MS. SIGNIFICANCE STATEMENT Since the early 2000s, functional MRI (fMRI) has demonstrated profound modifications in the recruitment of cortical areas during motor, cognitive, and sensory tasks in multiple sclerosis (MS) patients. Experimental autoimmune

  15. Modulation transfer function measurement of sparse-array sensors using a self-calibrating fringe pattern.

    PubMed

    Greivenkamp, J E; Lowman, A E

    1994-08-01

    A simple method for the measurement of the pixel modulation transfer function (MTF) of sparse-array (extended MTF) sensors has been developed. We use a phase-shifting Twyman-Green interferometer to generate a series of single spatial-frequency fringe patterns incident on the sensor The resulting signal modulation is measured. We achieve self-calibration by restricting the measured spatial frequencies to multiples of the Nyquist frequency. The aliased patterns at these frequencies are unique and easily identifiable. Spatial frequencies of 480 cycles/mm are generated and measured. This frequency value is more than ten times that of the sensor sampling frequency. The expected MTF shape is obtained at multiples of the sampling frequency. At odd multiples of the Nyquist frequency, the MTF's are affected by the electronic bandwidth and cross talk in the charge-injection device sensor.

  16. Tat is a multifunctional viral protein that modulates cellular gene expression and functions.

    PubMed

    Clark, Evan; Nava, Brenda; Caputi, Massimo

    2017-02-07

    The human immunodeficiency virus type I (HIV-1) has developed several strategies to condition the host environment to promote viral replication and spread. Viral proteins have evolved to perform multiple functions, aiding in the replication of the viral genome and modulating the cellular response to the infection. Tat is a small, versatile, viral protein that controls transcription of the HIV genome, regulates cellular gene expression and generates a permissive environment for viral replication by altering the immune response and facilitating viral spread to multiple tissues. Studies carried out utilizing biochemical, cellular, and genomic approaches show that the expression and activity of hundreds of genes and multiple molecular networks are modulated by Tat via multiple mechanisms.

  17. Tail and Kinase Modules Differently Regulate Core Mediator Recruitment and Function In Vivo.

    PubMed

    Jeronimo, Célia; Langelier, Marie-France; Bataille, Alain R; Pascal, John M; Pugh, B Franklin; Robert, François

    2016-11-03

    Mediator is a highly conserved transcriptional coactivator organized into four modules, namely Tail, Middle, Head, and Kinase (CKM). Previous work suggests regulatory roles for Tail and CKM, but an integrated model for these activities is lacking. Here, we analyzed the genome-wide distribution of Mediator subunits in wild-type and mutant yeast cells in which RNA polymerase II promoter escape is blocked, allowing detection of transient Mediator forms. We found that although all modules are recruited to upstream activated regions (UAS), assembly of Mediator within the pre-initiation complex is accompanied by the release of CKM. Interestingly, our data show that CKM regulates Mediator-UAS interaction rather than Mediator-promoter association. In addition, although Tail is required for Mediator recruitment to UAS, Tailless Mediator nevertheless interacts with core promoters. Collectively, our data suggest that the essential function of Mediator is mediated by Head and Middle at core promoters, while Tail and CKM play regulatory roles.

  18. Selected phenolic compounds in cultivated plants: ecologic functions, health implications, and modulation by pesticides.

    PubMed Central

    Daniel, O; Meier, M S; Schlatter, J; Frischknecht, P

    1999-01-01

    Phenolic compounds are widely distributed in the plant kingdom. Plant tissues may contain up to several grams per kilogram. External stimuli such as microbial infections, ultraviolet radiation, and chemical stressors induce their synthesis. The phenolic compounds resveratrol, flavonoids, and furanocoumarins have many ecologic functions and affect human health. Ecologic functions include defense against microbial pathogens and herbivorous animals. Phenolic compounds may have both beneficial and toxic effects on human health. Effects on low-density lipoproteins and aggregation of platelets are beneficial because they reduce the risk of coronary heart disease. Mutagenic, cancerogenic, and phototoxic effects are risk factors of human health. The synthesis of phenolic compounds in plants can be modulated by the application of herbicides and, to a lesser extent, insecticides and fungicides. The effects on ecosystem functioning and human health are complex and cannot be predicted with great certainty. The consequences of the combined natural and pesticide-induced modulating effects for ecologic functions and human health should be further evaluated. PMID:10229712

  19. Insights into the Modulation of Dopamine Transporter Function by Amphetamine, Orphenadrine, and Cocaine Binding

    PubMed Central

    Cheng, Mary Hongying; Block, Ethan; Hu, Feizhuo; Cobanoglu, Murat Can; Sorkin, Alexander; Bahar, Ivet

    2015-01-01

    Human dopamine (DA) transporter (hDAT) regulates dopaminergic signaling in the central nervous system by maintaining the synaptic concentration of DA at physiological levels, upon reuptake of DA into presynaptic terminals. DA translocation involves the co-transport of two sodium ions and the channeling of a chloride ion, and it is achieved via alternating access between outward-facing (OF) and inward-facing states of DAT. hDAT is a target for addictive drugs, such as cocaine, amphetamine (AMPH), and therapeutic antidepressants. Our recent quantitative systems pharmacology study suggested that orphenadrine (ORPH), an anticholinergic agent and anti-Parkinson drug, might be repurposable as a DAT drug. Previous studies have shown that DAT-substrates like AMPH or -blockers like cocaine modulate the function of DAT in different ways. However, the molecular mechanisms of modulation remained elusive due to the lack of structural data on DAT. The newly resolved DAT structure from Drosophila melanogaster opens the way to a deeper understanding of the mechanism and time evolution of DAT–drug/ligand interactions. Using a combination of homology modeling, docking analysis, molecular dynamics simulations, and molecular biology experiments, we performed a comparative study of the binding properties of DA, AMPH, ORPH, and cocaine and their modulation of hDAT function. Simulations demonstrate that binding DA or AMPH drives a structural transition toward a functional form predisposed to translocate the ligand. In contrast, ORPH appears to inhibit DAT function by arresting it in the OF open conformation. The analysis shows that cocaine and ORPH competitively bind DAT, with the binding pose and affinity dependent on the conformational state of DAT. Further assays show that the effect of ORPH on DAT uptake and endocytosis is comparable to that of cocaine. PMID:26106364

  20. Structure of Prokaryotic Polyamine Deacetylase Reveals Evolutionary Functional Relationships with Eukaryotic Histone Deacetylases

    PubMed Central

    Lombardi, Patrick M.; Angell, Heather D.; Whittington, Douglas A.; Flynn, Erin F.; Rajashankar, Kanagalaghatta R.; Christianson, David W.

    2011-01-01

    Polyamines are a ubiquitous class of polycationic small molecules that can influence gene expression by binding to nucleic acids. Reversible polyamine acetylation regulates nucleic acid binding and is required for normal cell cycle progression and proliferation. Here, we report the structures of Mycoplana ramosa acetylpolyamine amidohydrolase (APAH) complexed with a transition state analogue and a hydroxamate inhibitor, and an inactive mutant complexed with two acetylpolyamine substrates. The structure of APAH is the first of a histone deacetylase-like oligomer and reveals that an 18-residue insert in the L2 loop promotes dimerization and the formation of an 18-Å long “L”-shaped active site tunnel at the dimer interface, accessible only to narrow and flexible substrates. The importance of dimerization for polyamine deacetylase function leads to the suggestion that a comparable dimeric or double-domain histone deacetylase could catalyze polyamine deacetylation reactions in eukaryotes. PMID:21268586

  1. Spatiotemporal analysis with a genetically encoded fluorescent RNA probe reveals TERRA function around telomeres

    PubMed Central

    Yamada, Toshimichi; Yoshimura, Hideaki; Shimada, Rintaro; Hattori, Mitsuru; Eguchi, Masatoshi; Fujiwara, Takahiro K.; Kusumi, Akihiro; Ozawa, Takeaki

    2016-01-01

    Telomeric repeat-containing RNA (TERRA) controls the structure and length of telomeres through interactions with numerous telomere-binding proteins. However, little is known about the mechanism by which TERRA regulates the accessibility of the proteins to telomeres, mainly because of the lack of spatiotemporal information of TERRA and its-interacting proteins. We developed a fluorescent probe to visualize endogenous TERRA to investigate its dynamics in living cells. Single-particle fluorescence imaging revealed that TERRA accumulated in a telomere-neighboring region and trapped diffusive heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), thereby inhibiting hnRNPA1 localization to the telomere. These results suggest that TERRA regulates binding of hnRNPA1 to the telomere in a region surrounding the telomere, leading to a deeper understanding of the mechanism of TERRA function. PMID:27958374

  2. Structure of Prokaryotic Polyamine Deacetylase Reveals Evolutionary Functional Relationships with Eukaryotic Histone Deacetylases

    SciTech Connect

    P Lombardi; H Angell; D Whittington; E Flynn; K Rajashankar; D Christianson

    2011-12-31

    Polyamines are a ubiquitous class of polycationic small molecules that can influence gene expression by binding to nucleic acids. Reversible polyamine acetylation regulates nucleic acid binding and is required for normal cell cycle progression and proliferation. Here, we report the structures of Mycoplana ramosa acetylpolyamine amidohydrolase (APAH) complexed with a transition state analogue and a hydroxamate inhibitor and an inactive mutant complexed with two acetylpolyamine substrates. The structure of APAH is the first of a histone deacetylase-like oligomer and reveals that an 18-residue insert in the L2 loop promotes dimerization and the formation of an 18 {angstrom} long 'L'-shaped active site tunnel at the dimer interface, accessible only to narrow and flexible substrates. The importance of dimerization for polyamine deacetylase function leads to the suggestion that a comparable dimeric or double-domain histone deacetylase could catalyze polyamine deacetylation reactions in eukaryotes.

  3. Real-time Redox Measurements during Endoplasmic Reticulum Stress Reveal Interlinked Protein Folding Functions

    PubMed Central

    Merksamer, Philip I.; Trusina, Ala; Papa, Feroz R.

    2008-01-01

    SUMMARY Disruption of protein folding in the endoplasmic reticulum (ER) causes unfolded proteins to accumulate, triggering the unfolded protein response (UPR). UPR outputs in turn decrease ER unfolded proteins to close a negative feedback loop. However, because it is infeasible to directly measure the concentration of unfolded proteins in vivo, cells are generically described as experiencing “ER stress” whenever the UPR is active. Because ER redox potential is optimized for oxidative protein folding, we reasoned that measureable redox changes should accompany unfolded protein accumulation. To test this concept, we employed fluorescent protein reporters to dynamically measure ER redox status and UPR activity in single cells. Using these tools, we show that diverse stressors, both experimental and physiological, compromise ER protein oxidation when UPR-imposed homeostatic control is lost. Using genetic analysis we uncovered redox heterogeneities in isogenic cell populations, and revealed functional interlinks between ER protein folding, modification, and quality control systems. PMID:19026441

  4. Presence and Function of Dopamine Transporter (DAT) in Stallion Sperm: Dopamine Modulates Sperm Motility and Acrosomal Integrity

    PubMed Central

    Covarrubias, Alejandra A.; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I.

    2014-01-01

    Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP+), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility. PMID:25402186

  5. Targeted mutagenesis of zebrafish antithrombin III triggers disseminated intravascular coagulation and thrombosis, revealing insight into function

    PubMed Central

    Liu, Yang; Kretz, Colin A.; Maeder, Morgan L.; Richter, Catherine E.; Tsao, Philip; Vo, Andy H.; Huarng, Michael C.; Rode, Thomas; Hu, Zhilian; Mehra, Rohit; Olson, Steven T.; Joung, J. Keith

    2014-01-01

    Pathologic blood clotting is a leading cause of morbidity and mortality in the developed world, underlying deep vein thrombosis, myocardial infarction, and stroke. Genetic predisposition to thrombosis is still poorly understood, and we hypothesize that there are many additional risk alleles and modifying factors remaining to be discovered. Mammalian models have contributed to our understanding of thrombosis, but are low throughput and costly. We have turned to the zebrafish, a tool for high-throughput genetic analysis. Using zinc finger nucleases, we show that disruption of the zebrafish antithrombin III (at3) locus results in spontaneous venous thrombosis in larvae. Although homozygous mutants survive into early adulthood, they eventually succumb to massive intracardiac thrombosis. Characterization of null fish revealed disseminated intravascular coagulation in larvae secondary to unopposed thrombin activity and fibrinogen consumption, which could be rescued by both human and zebrafish at3 complementary DNAs. Mutation of the human AT3-reactive center loop abolished the ability to rescue, but the heparin-binding site was dispensable. These results demonstrate overall conservation of AT3 function in zebrafish, but reveal developmental variances in the ability to tolerate excessive clot formation. The accessibility of early zebrafish development will provide unique methods for dissection of the underlying mechanisms of thrombosis. PMID:24782510

  6. Algebraic Topology of Multi-Brain Connectivity Networks Reveals Dissimilarity in Functional Patterns during Spoken Communications

    PubMed Central

    Tadić, Bosiljka; Andjelković, Miroslav; Boshkoska, Biljana Mileva; Levnajić, Zoran

    2016-01-01

    Human behaviour in various circumstances mirrors the corresponding brain connectivity patterns, which are suitably represented by functional brain networks. While the objective analysis of these networks by graph theory tools deepened our understanding of brain functions, the multi-brain structures and connections underlying human social behaviour remain largely unexplored. In this study, we analyse the aggregate graph that maps coordination of EEG signals previously recorded during spoken communications in two groups of six listeners and two speakers. Applying an innovative approach based on the algebraic topology of graphs, we analyse higher-order topological complexes consisting of mutually interwoven cliques of a high order to which the identified functional connections organise. Our results reveal that the topological quantifiers provide new suitable measures for differences in the brain activity patterns and inter-brain synchronisation between speakers and listeners. Moreover, the higher topological complexity correlates with the listener’s concentration to the story, confirmed by self-rating, and closeness to the speaker’s brain activity pattern, which is measured by network-to-network distance. The connectivity structures of the frontal and parietal lobe consistently constitute distinct clusters, which extend across the listener’s group. Formally, the topology quantifiers of the multi-brain communities exceed the sum of those of the participating individuals and also reflect the listener’s rated attributes of the speaker and the narrated subject. In the broader context, the presented study exposes the relevance of higher topological structures (besides standard graph measures) for characterising functional brain networks under different stimuli. PMID:27880802

  7. Sparse representation of HCP grayordinate data reveals novel functional architecture of cerebral cortex.

    PubMed

    Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhang, Tuo; Zhang, Shu; Guo, Lei; Liu, Tianming

    2015-12-01

    The recently publicly released Human Connectome Project (HCP) grayordinate-based fMRI data not only has high spatial and temporal resolution, but also offers group-corresponding fMRI signals across a large population for the first time in the brain imaging field, thus significantly facilitating mapping the functional brain architecture with much higher resolution and in a group-wise fashion. In this article, we adopt the HCP grayordinate task-based fMRI (tfMRI) data to systematically identify and characterize task-based heterogeneous functional regions (THFRs) on cortical surface, i.e., the regions that are activated during multiple tasks conditions and contribute to multiple task-evoked systems during a specific task performance, and to assess the spatial patterns of identified THFRs on cortical gyri and sulci by applying a computational framework of sparse representations of grayordinate brain tfMRI signals. Experimental results demonstrate that both consistent task-evoked networks and intrinsic connectivity networks across all subjects and tasks in HCP grayordinate data are effectively and robustly reconstructed via the proposed sparse representation framework. Moreover, it is found that there are relatively consistent THFRs locating at bilateral parietal lobe, frontal lobe, and visual association cortices across all subjects and tasks. Particularly, those identified THFRs locate significantly more on gyral regions than on sulcal regions. These results based on sparse representation of HCP grayordinate data reveal novel functional architecture of cortical gyri and sulci, and might provide a foundation to better understand functional mechanisms of the human cerebral cortex in the future.

  8. Metagenomes from High-Temperature Chemotrophic Systems Reveal Geochemical Controls on Microbial Community Structure and Function

    PubMed Central

    Inskeep, William P.; Rusch, Douglas B.; Jay, Zackary J.; Herrgard, Markus J.; Kozubal, Mark A.; Richardson, Toby H.; Macur, Richard E.; Hamamura, Natsuko; Jennings, Ryan deM.; Fouke, Bruce W.; Reysenbach, Anna-Louise; Roberto, Frank; Young, Mark; Schwartz, Ariel; Boyd, Eric S.; Badger, Jonathan H.; Mathur, Eric J.; Ortmann, Alice C.; Bateson, Mary; Geesey, Gill; Frazier, Marvin

    2010-01-01

    The Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensive array of unique high-tempe