NASA Astrophysics Data System (ADS)
Luk, Alex T.; Lin, Yuting; Grimmond, Brian; Sood, Anup; Uzgiris, Egidijus E.; Nalcioglu, Orhan; Gulsen, Gultekin
2013-03-01
Since diffuse optical tomography (DOT) is a low spatial resolution modality, it is desirable to validate its quantitative accuracy with another well-established imaging modality, such as magnetic resonance imaging (MRI). In this work, we have used a polymer based bi-functional MRI-optical contrast agent (Gd-DTPA-polylysine-IR800) in collaboration with GE Global Research. This multi-modality contrast agent provided not only co-localization but also the same kinetics, to cross-validate two imaging modalities. Bi-functional agents are injected to the rats and pharmacokinetics at the bladder are recovered using both optical and MR imaging. DOT results are validated using MRI results as "gold standard"
Diffusion fMRI detects white-matter dysfunction in mice with acute optic neuritis
Lin, Tsen-Hsuan; Spees, William M.; Chiang, Chia-Wen; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei
2014-01-01
Optic neuritis is a frequent and early symptom of multiple sclerosis (MS). Conventional magnetic resonance (MR) techniques provide means to assess multiple MS-related pathologies, including axonal injury, demyelination, and inflammation. A method to directly and non-invasively probe white-matter function could further elucidate the interplay of underlying pathologies and functional impairments. Previously, we demonstrated a significant 27% activation-associated decrease in the apparent diffusion coefficient of water perpendicular to the axonal fibers (ADC⊥) in normal C57BL/6 mouse optic nerve with visual stimulation using diffusion fMRI. Here we apply this approach to explore the relationship between visual acuity, optic nerve pathology, and diffusion fMRI in the experimental autoimmune encephalomyelitis (EAE) mouse model of optic neuritis. Visual stimulation produced a significant 25% (vs. baseline) ADC⊥ decrease in sham EAE optic nerves, while only a 7% (vs. baseline) ADC⊥ decrease was seen in EAE mice with acute optic neuritis. The reduced activation-associated ADC⊥ response correlated with post-MRI immunohistochemistry determined pathologies (including inflammation, demyelination, and axonal injury). The negative correlation between activation-associated ADC⊥ response and visual acuity was also found when pooling EAE-affected and sham groups under our experimental criteria. Results suggest that reduction in diffusion fMRI directly reflects impaired axonal-activation in EAE mice with optic neuritis. Diffusion fMRI holds promise for directly gauging in vivo white-matter dysfunction or therapeutic responses in MS patients. PMID:24632420
Abi-Abdallah Rodriguez, Dima; Durand, Emmanuel; de Rochefort, Ludovic; Boudjemline, Younes; Mousseaux, Elie
2015-01-01
Simultaneous pressure and volume measurements enable the extraction of valuable parameters for left ventricle function assessment. Cardiac MR has proven to be the most accurate method for volume estimation. Nonetheless, measuring pressure simultaneously during MRI acquisitions remains a challenge given the magnetic nature of the widely used pressure transducers. In this study we show the feasibility of simultaneous in vivo pressure-volume acquisitions with MRI using optical pressure sensors. Pressure-volume loops were calculated while inducing three inotropic states in a sheep and functional indices were extracted, using single beat loops, to characterize systolic and diastolic performance. Functional indices evolved as expected in response to positive inotropic stimuli. The end-systolic elastance, representing the contractility index, the diastolic myocardium compliance, and the cardiac work efficiency all increased when inducing inotropic state enhancement. The association of MRI and optical pressure sensors within the left ventricle successfully enabled pressure-volume loop analysis after having respective data simultaneously recorded during the experimentation without the need to move the animal between each inotropic state. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Lin, Peter; Fang, Zhongnan; Liu, Jia; Lee, Jin Hyung
2016-01-01
The investigation of the functional connectivity of precise neural circuits across the entire intact brain can be achieved through optogenetic functional magnetic resonance imaging (ofMRI), which is a novel technique that combines the relatively high spatial resolution of high-field fMRI with the precision of optogenetic stimulation. Fiber optics that enable delivery of specific wavelengths of light deep into the brain in vivo are implanted into regions of interest in order to specifically stimulate targeted cell types that have been genetically induced to express light-sensitive trans-membrane conductance channels, called opsins. fMRI is used to provide a non-invasive method of determining the brain's global dynamic response to optogenetic stimulation of specific neural circuits through measurement of the blood-oxygen-level-dependent (BOLD) signal, which provides an indirect measurement of neuronal activity. This protocol describes the construction of fiber optic implants, the implantation surgeries, the imaging with photostimulation and the data analysis required to successfully perform ofMRI. In summary, the precise stimulation and whole-brain monitoring ability of ofMRI are crucial factors in making ofMRI a powerful tool for the study of the connectomics of the brain in both healthy and diseased states. PMID:27167840
Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review
Iordachita, Iulian I.; Tokuda, Junichi; Hata, Nobuhiko; Liu, Xuan; Seifabadi, Reza; Xu, Sheng; Wood, Bradford; Fischer, Gregory S.
2017-01-01
Magnetic Resonance Imaging (MRI) provides both anatomical imaging with excellent soft tissue contrast and functional MRI imaging (fMRI) of physiological parameters. The last two decades have witnessed the manifestation of increased interest in MRI-guided minimally invasive intervention procedures and fMRI for rehabilitation and neuroscience research. Accompanying the aspiration to utilize MRI to provide imaging feedback during interventions and brain activity for neuroscience study, there is an accumulated effort to utilize force sensors compatible with the MRI environment to meet the growing demand of these procedures, with the goal of enhanced interventional safety and accuracy, improved efficacy and rehabilitation outcome. This paper summarizes the fundamental principles, the state of the art development and challenges of fiber optic force sensors for MRI-guided interventions and rehabilitation. It provides an overview of MRI-compatible fiber optic force sensors based on different sensing principles, including light intensity modulation, wavelength modulation, and phase modulation. Extensive design prototypes are reviewed to illustrate the detailed implementation of these principles. Advantages and disadvantages of the sensor designs are compared and analyzed. A perspective on the future development of fiber optic sensors is also presented which may have additional broad clinical applications. Future surgical interventions or rehabilitation will rely on intelligent force sensors to provide situational awareness to augment or complement human perception in these procedures. PMID:28652857
Schmid, Florian; Wachsmuth, Lydia; Schwalm, Miriam; Prouvot, Pierre-Hugues; Jubal, Eduardo Rosales; Fois, Consuelo; Pramanik, Gautam; Zimmer, Claus; Faber, Cornelius; Stroh, Albrecht
2016-11-01
Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca 2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca 2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca 2+ transients contrasted by an increase of blood oxygenation level-dependent responses, indicating that the optical recordings convey complementary information on neuronal network activity to the corresponding hemodynamic response. To study the similarity of optogenetic and sensory activation, we quantified the density of cells expressing channelrhodopsin-2 and modeled light propagation in the tissue. We estimated the effectively illuminated volume and numbers of optogenetically stimulated neurons, being indicative of sparse activation. At the functional level, upon either sensory or optogenetic stimulation we detected single-peak short-latency primary Ca 2+ responses with similar amplitudes and found that blood oxygenation level-dependent responses showed similar time courses. These data suggest that ofMRI can serve as a representative model for functional brain mapping. © The Author(s) 2015.
Mapping white-matter functional organization at rest and during naturalistic visual perception.
Marussich, Lauren; Lu, Kun-Han; Wen, Haiguang; Liu, Zhongming
2017-02-01
Despite the wide applications of functional magnetic resonance imaging (fMRI) to mapping brain activation and connectivity in cortical gray matter, it has rarely been utilized to study white-matter functions. In this study, we investigated the spatiotemporal characteristics of fMRI data within the white matter acquired from humans both in the resting state and while watching a naturalistic movie. By using independent component analysis and hierarchical clustering, resting-state fMRI data in the white matter were de-noised and decomposed into spatially independent components, which were further assembled into hierarchically organized axonal fiber bundles. Interestingly, such components were partly reorganized during natural vision. Relative to resting state, the visual task specifically induced a stronger degree of temporal coherence within the optic radiations, as well as significant correlations between the optic radiations and multiple cortical visual networks. Therefore, fMRI contains rich functional information about the activity and connectivity within white matter at rest and during tasks, challenging the conventional practice of taking white-matter signals as noise or artifacts. Copyright © 2016 Elsevier Inc. All rights reserved.
Farahani, Ehsan Shahrabi; Choudhury, Samiul H; Cortese, Filomeno; Costello, Fiona; Goodyear, Bradley; Smith, Michael R
2017-07-01
Resting-state fMRI (rs-fMRI) measures the temporal synchrony between different brain regions while the subject is at rest. We present an investigation using visual information propagation transfer functions as potential optic neuritis (ON) markers for the pathways between the lateral geniculate nuclei, the primary visual cortex, the lateral occipital cortex and the superior parietal cortex. We investigate marker reliability in differentiating between healthy controls and ON patients with clinically isolated syndrome (CIS), and relapsing-remitting multiple sclerosis (RRMS) using a three-way receiver operating characteristics analysis. We identify useful and reliable three-way ON related metrics in the rs-fMRI low-frequency band 0.0 Hz to 0.1 Hz, with potential markers associated with the higher frequency harmonics of these signals in the 0.1 Hz to 0.2 Hz and 0.2 Hz to 0.3 Hz bands.
Design of an fMRI-compatible optical touch stripe based on frustrated total internal reflection.
Jarrahi, Behnaz; Wanek, Johann
2014-01-01
Previously we developed a low-cost, multi-configurable handheld response system, using a reflective-type intensity modulated fiber-optic sensor (FOS) to accurately gather participants' behavioral responses during functional magnetic resonance imaging (fMRI). Inspired by the popularity and omnipresence of the fingertip-based touch sensing user interface devices, in this paper we present the design of a prototype fMRI-compatible optical touch stripe (OTS) as an alternative configuration. The prototype device takes advantage of a proven frustrated total internal reflection (FTIR) technique. By using a custom-built wedge-shaped optically transparent acrylic prism as an optical waveguide, and a plano-concave lens to provide the required light beam profile, the position of a fingertip touching the surface of the wedge prism can be determined from the deflected light beams that become trapped within the prism by total internal reflection. To achieve maximum sensitivity, the optical design of the wedge prism and lens were optimized through a series of light beam simulations using WinLens 3D Basic software suite. Furthermore, OTS performance and MRI-compatibility were assessed on a 3.0 Tesla MRI scanner running echo planar imaging (EPI) sequences. The results show that the OTS can detect a touch signal at high spatial resolution (about 0.5 cm), and is well suited for use within the MRI environment with average time-variant signal-to-noise ratio (tSNR) loss < 3%.
Chen, Li M; Turner, Gregory H; Friedman, Robert M; Zhang, Na; Gore, John C; Roe, Anna W; Avison, Malcolm J
2007-08-22
Although blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to explore human brain function, questions remain regarding the ultimate spatial resolution of positive BOLD fMRI, and indeed the extent to which functional maps revealed by positive BOLD correlate spatially with maps obtained with other high-spatial-resolution mapping techniques commonly used in animals, such as optical imaging of intrinsic signal (OIS) and single-unit electrophysiology. Here, we demonstrate that the positive BOLD signal at 9.4T can reveal the fine topography of individual fingerpads in single-condition activation maps in nonhuman primates. These digit maps are similar to maps obtained from the same animal using intrinsic optical imaging. Furthermore, BOLD fMRI reliably resolved submillimeter spatial shifts in activation in area 3b previously identified with OIS (Chen et al., 2003) as neural correlates of the "funneling illusion." These data demonstrate that at high field, high-spatial-resolution topographic maps can be achieved using the positive BOLD signal, weakening previous notions regarding the spatial specificity of the positive BOLD signal.
Prakash, Neal; Uhleman, Falk; Sheth, Sameer A.; Bookheimer, Susan; Martin, Neil; Toga, Arthur W.
2009-01-01
Resection of a cerebral arteriovenous malformation (AVM), epileptic focus, or glioma, ideally has a prerequisite of microscopic delineation of the lesion borders in relation to the normal gray and white matter that mediate critical functions. Currently, Wada testing and functional magnetic resonance imaging (fMRI) are used for preoperative mapping of critical function, whereas electrical stimulation mapping (ESM) is used for intraoperative mapping. For lesion delineation, MRI and positron emission tomography (PET) are used preoperatively, whereas microscopy and histological sectioning are used intraoperatively. However, for lesions near eloquent cortex, these imaging techniques may lack sufficient resolution to define the relationship between the lesion and language function, and thus not accurately determine which patients will benefit from neurosurgical resection of the lesion without iatrogenic aphasia. Optical techniques such as intraoperative optical imaging of intrinsic signals (iOIS) show great promise for the precise functional mapping of cortices, as well as delineation of the borders of AVMs, epileptic foci, and gliomas. Here we first review the physiology of neuroimaging, and then progress towards the validation and justification of using intraoperative optical techniques, especially in relation to neurosurgical planning of resection AVMs, epileptic foci, and gliomas near or in eloquent cortex. We conclude with a short description of potential novel intraoperative optical techniques. PMID:18786643
NASA Astrophysics Data System (ADS)
Marchand, Paul J.; Bouwens, Arno; Shamaei, Vincent; Nguyen, David; Extermann, Jerome; Bolmont, Tristan; Lasser, Theo
2016-03-01
Magnetic Resonance Imaging has revolutionised our understanding of brain function through its ability to image human cerebral structures non-invasively over the entire brain. By exploiting the different magnetic properties of oxygenated and deoxygenated blood, functional MRI can indirectly map areas undergoing neural activation. Alongside the development of fMRI, powerful statistical tools have been developed in an effort to shed light on the neural pathways involved in processing of sensory and cognitive information. In spite of the major improvements made in fMRI technology, the obtained spatial resolution of hundreds of microns prevents MRI in resolving and monitoring processes occurring at the cellular level. In this regard, Optical Coherence Microscopy is an ideal instrumentation as it can image at high spatio-temporal resolution. Moreover, by measuring the mean and the width of the Doppler spectra of light scattered by moving particles, OCM allows extracting the axial and lateral velocity components of red blood cells. The ability to assess quantitatively total blood velocity, as opposed to classical axial velocity Doppler OCM, is of paramount importance in brain imaging as a large proportion of cortical vascular is oriented perpendicularly to the optical axis. We combine here quantitative blood flow imaging with extended-focus Optical Coherence Microscopy and Statistical Parametric Mapping tools to generate maps of stimuli-evoked cortical hemodynamics at the capillary level.
Latest advances in molecular imaging instrumentation.
Pichler, Bernd J; Wehrl, Hans F; Judenhofer, Martin S
2008-06-01
This review concentrates on the latest advances in molecular imaging technology, including PET, MRI, and optical imaging. In PET, significant improvements in tumor detection and image resolution have been achieved by introducing new scintillation materials, iterative image reconstruction, and correction methods. These advances enabled the first clinical scanners capable of time-of-flight detection and incorporating point-spread-function reconstruction to compensate for depth-of-interaction effects. In the field of MRI, the most important developments in recent years have mainly been MRI systems with higher field strengths and improved radiofrequency coil technology. Hyperpolarized imaging, functional MRI, and MR spectroscopy provide molecular information in vivo. A special focus of this review article is multimodality imaging and, in particular, the emerging field of combined PET/MRI.
Park, Si-Woon; Butler, Andrew J.; Cavalheiro, Vanessa; Alberts, Jay L.; Wolf, Steven L.
2013-01-01
The authors examined serial changes in optical topography in a stroke patient performing a functional task, as well as clinical and physiologic measures while undergoing constraint-induced therapy (CIT). A 73-year-old right hemiparetic patient, who had a subcortical stroke 4 months previously, received 2 weeks of CIT. During the therapy, daily optical topography imaging using near-infrared light was measured serially while the participant performed a functional key-turning task. Clinical outcome measures included the Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and functional key grip test. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were also used to map cortical areas and hemodynamic brain responses, respectively. Optical topography measurement showed an overall decrease in oxy-hemoglobin concentration in both hemispheres as therapy progressed and the laterality index increased toward the contralateral hemisphere. An increased TMS motor map area was observed in the contralateral cortex following treatment. Posttreatment fMRI showed bilateral primary motor cortex activation, although slightly greater in the contralateral hemisphere, during affected hand movement. Clinical scores revealed marked improvement in functional activities. In one patient who suffered a stroke, 2 weeks of CIT led to improved function and cortical reorganization in the hemisphere contralateral to the affected hand. PMID:15228805
Hernández-Martin, Estefania; Marcano, Francisco; Casanova, Oscar; Modroño, Cristian; Plata-Bello, Julio; González-Mora, Jose Luis
2017-01-01
Abstract. Diffuse optical tomography (DOT) measures concentration changes in both oxy- and deoxyhemoglobin providing three-dimensional images of local brain activations. A pilot study, which compares both DOT and functional magnetic resonance imaging (fMRI) volumes through t-maps given by canonical statistical parametric mapping (SPM) processing for both data modalities, is presented. The DOT series were processed using a method that is based on a Bayesian filter application on raw DOT data to remove physiological changes and minimum description length application index to select a number of singular values, which reduce the data dimensionality during image reconstruction and adaptation of DOT volume series to normalized standard space. Therefore, statistical analysis is performed with canonical SPM software in the same way as fMRI analysis is done, accepting DOT volumes as if they were fMRI volumes. The results show the reproducibility and ruggedness of the method to process DOT series on group analysis using cognitive paradigms on the prefrontal cortex. Difficulties such as the fact that scalp–brain distances vary between subjects or cerebral activations are difficult to reproduce due to strategies used by the subjects to solve arithmetic problems are considered. T-images given by fMRI and DOT volume series analyzed in SPM show that at the functional level, both DOT and fMRI measures detect the same areas, although DOT provides complementary information to fMRI signals about cerebral activity. PMID:28386575
Falsini, Benedetto; Ziccardi, Lucia; Lazzareschi, Ilaria; Ruggiero, Antonio; Placentino, Luca; Dickmann, Anna; Liotti, Lucia; Piccardi, Marco; Balestrazzi, Emilio; Colosimo, Cesare; Di Rocco, Concezio; Riccardi, Riccardo
2008-05-01
The aim of this study was to evaluate longitudinally functional and neuro-radiologic findings in childhood optic gliomas (OG), by comparing flicker visual evoked potentials (F-VEPs) with brain magnetic resonance imaging (MRI) changes. Fourteen children (age range: 1-13 years) with OGs underwent serial F-VEP, MRI and neuro-ophthalmic examinations over a 38 month (median, range: 6-76) follow-up. F-VEPs were elicited by 8 Hz sine-wave flicker stimuli presented in a mini-Ganzfeld. Contrast-enhanced MRI examinations were performed. Results of both tests were blindly assessed by independent evaluators. F-VEPs were judged to be improved, stable or worsened if changes in the amplitude and/or phase angle of the response exceeded the limits of test-retest variability (+/-90th percentile) established for the same patients. MRI results were judged to show regression, stabilization or progression of OG based on its changes in size (+/-20%) or extension. Two to seven pairs of F-VEP/MRI examinations per patient (median: 4) were collected. Based on a total of 38 pairs of F-VEP/MRI examinations, both tests agreed in showing worsening (progression), stabilization and improvement (regression) in 5, 15 and 10 cases, respectively. In 3 cases, F-VEPs showed a worsening and MRI a stabilization, while in 5 cases F-VEPs showed an improvement and MRI a stabilization. Agreement between F-VEP and MRI changes was 78.9% (95% CI: +/- 37%, K statistics = 0.67, P < 0.001). The results indicate that longitudinal F-VEP changes can predict changes in MRI-assessed OG size and extension, providing a non-invasive functional assay, complementary to neuro-imaging, for OG follow-up.
Optical/MRI Multimodality Molecular Imaging
NASA Astrophysics Data System (ADS)
Ma, Lixin; Smith, Charles; Yu, Ping
2007-03-01
Multimodality molecular imaging that combines anatomical and functional information has shown promise in development of tumor-targeted pharmaceuticals for cancer detection or therapy. We present a new multimodality imaging technique that combines fluorescence molecular tomography (FMT) and magnetic resonance imaging (MRI) for in vivo molecular imaging of preclinical tumor models. Unlike other optical/MRI systems, the new molecular imaging system uses parallel phase acquisition based on heterodyne principle. The system has a higher accuracy of phase measurements, reduced noise bandwidth, and an efficient modulation of the fluorescence diffuse density waves. Fluorescent Bombesin probes were developed for targeting breast cancer cells and prostate cancer cells. Tissue phantom and small animal experiments were performed for calibration of the imaging system and validation of the targeting probes.
Knuttinen, M-G; Parrish, T B; Weiss, C; LaBar, K S; Gitelman, D R; Power, J M; Mesulam, M-M; Disterhoft, J F
2002-10-01
This study was designed to develop a suitable method of recording eyeblink responses while conducting functional magnetic resonance imaging (fMRI). Given the complexity of this behavioral setup outside of the magnet, this study sought to adapt and further optimize an approach to eyeblink conditioning that would be suitable for conducting event-related fMRI experiments. This method involved the acquisition of electromyographic (EMG) signals from the orbicularis oculi of the right eye, which were subsequently amplified and converted into an optical signal outside of the head coil. This optical signal was converted back into an electrical signal once outside the magnet room. Electromyography (EMG)-detected eyeblinks were used to measure responses in a delay eyeblink conditioning paradigm. Our results indicate that: (1) electromyography is a sensitive method for the detection of eyeblinks during fMRI; (2) minimal interactions or artifacts of the EMG signal were created from the magnetic resonance pulse sequence; and (3) no electromyography-related artifacts were detected in the magnetic resonance images. Furthermore, an analysis of the functional data showed areas of activation that have previously been shown in positron emission tomography studies of human eyeblink conditioning. Our results support the strength of this behavioral setup as a suitable method to be used in association with fMRI.
Initial tests of a prototype MRI-compatible PET imager
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan; Velan, S. Sendhil; Kross, Brain; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy
2006-12-01
Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5×5×4 cm 3. Each MRI-PET detector module consists of an array of LSO detector elements (2.5×2.5×15 mm 3) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of ˜60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to ˜85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy .
Magnetic resonance in studies of glaucoma
Fiedorowicz, Michał; Dyda, Wojciech; Rejdak, Robert; Grieb, Paweł
2011-01-01
Summary Glaucoma is the second leading cause of blindness. It affects retinal ganglion cells and the optic nerve. However, there is emerging evidence that glaucoma also affects other components of the visual pathway and visual cortex. There is a need to employ new methods of in vivo brain evaluation to characterize these changes. Magnetic resonance (MR) techniques are well suited for this purpose. We review data on the MR evaluation of the visual pathway and the use of MR techniques in the study of glaucoma, both in humans and in animal models. These studies demonstrated decreases in optic nerve diameter, localized white matter loss and decrease in visual cortex density. Studies on rats employing manganese-enhanced MRI showed that axonal transport in the optic nerve is affected. Diffusion tensor MRI revealed signs of degeneration of the optic pathway. Functional MRI showed decreased response of the visual cortex after stimulation of the glaucomatous eye. Magnetic resonance spectroscopy demonstrated changes in metabolite levels in the visual cortex in a rat model of glaucoma, although not in glaucoma patients. Further applications of MR techniques in studies of glaucomatous brains are indicated. PMID:21959626
MRI in multiple sclerosis: current status and future prospects
Bakshi, Rohit; Thompson, Alan J; Rocca, Maria A; Pelletier, Daniel; Dousset, Vincent; Barkhof, Frederik; Inglese, Matilde; Guttmann, Charles R G; Horsfield, Mark A; Filippi, Massimo
2008-01-01
Many promising MRI approaches for research or clinical management of multiple sclerosis (MS) have recently emerged, or are under development or refinement. Advanced MRI methods need to be assessed to determine whether they allow earlier diagnosis or better identification of phenotypes. Improved post-processing should allow more efficient and complete extraction of information from images. Magnetic resonance spectroscopy should improve in sensitivity and specificity with higher field strengths and should enable the detection of a wider array of metabolites. Diffusion imaging is moving closer to the goal of defining structural connectivity and, thereby, determining the functional significance of lesions at specific locations. Cell-specific imaging now seems feasible with new magnetic resonance contrast agents. The imaging of myelin water fraction brings the hope of providing a specific measure of myelin content. Ultra-high-field MRI increases sensitivity, but also presents new technical challenges. Here, we review these recent developments in MRI for MS, and also look forward to refinements in spinal-cord imaging, optic-nerve imaging, perfusion MRI, and functional MRI. Advances in MRI should improve our ability to diagnose, monitor, and understand the pathophysiology of MS. PMID:18565455
Simultaneous MRI and PET imaging of a rat brain
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.
2006-12-01
Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.
Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study.
Fabiani, Monica; Gordon, Brian A; Maclin, Edward L; Pearson, Melanie A; Brumback-Peltz, Carrie R; Low, Kathy A; McAuley, Edward; Sutton, Bradley P; Kramer, Arthur F; Gratton, Gabriele
2014-01-15
Brain aging is characterized by changes in both hemodynamic and neuronal responses, which may be influenced by the cardiorespiratory fitness of the individual. To investigate the relationship between neuronal and hemodynamic changes, we studied the brain activity elicited by visual stimulation (checkerboard reversals at different frequencies) in younger adults and in older adults varying in physical fitness. Four functional brain measures were used to compare neuronal and hemodynamic responses obtained from BA17: two reflecting neuronal activity (the event-related optical signal, EROS, and the C1 response of the ERP), and two reflecting functional hemodynamic changes (functional magnetic resonance imaging, fMRI, and near-infrared spectroscopy, NIRS). The results indicated that both younger and older adults exhibited a quadratic relationship between neuronal and hemodynamic effects, with reduced increases of the hemodynamic response at high levels of neuronal activity. Although older adults showed reduced activation, similar neurovascular coupling functions were observed in the two age groups when fMRI and deoxy-hemoglobin measures were used. However, the coupling between oxy- and deoxy-hemoglobin changes decreased with age and increased with increasing fitness. These data indicate that departures from linearity in neurovascular coupling may be present when using hemodynamic measures to study neuronal function. Copyright © 2013 Elsevier Inc. All rights reserved.
Probing the brain with molecular fMRI.
Ghosh, Souparno; Harvey, Peter; Simon, Jacob C; Jasanoff, Alan
2018-06-01
One of the greatest challenges of modern neuroscience is to incorporate our growing knowledge of molecular and cellular-scale physiology into integrated, organismic-scale models of brain function in behavior and cognition. Molecular-level functional magnetic resonance imaging (molecular fMRI) is a new technology that can help bridge these scales by mapping defined microscopic phenomena over large, optically inaccessible regions of the living brain. In this review, we explain how MRI-detectable imaging probes can be used to sensitize noninvasive imaging to mechanistically significant components of neural processing. We discuss how a combination of innovative probe design, advanced imaging methods, and strategies for brain delivery can make molecular fMRI an increasingly successful approach for spatiotemporally resolved studies of diverse neural phenomena, perhaps eventually in people. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gorges, Martin; Roselli, Francesco; Müller, Hans-Peter; Ludolph, Albert C.; Rasche, Volker; Kassubek, Jan
2017-01-01
“Resting-state” fMRI has substantially contributed to the understanding of human and non-human functional brain organization by the analysis of correlated patterns in spontaneous activity within dedicated brain systems. Spontaneous neural activity is indirectly measured from the blood oxygenation level-dependent signal as acquired by echo planar imaging, when subjects quietly “resting” in the scanner. Animal models including disease or knockout models allow a broad spectrum of experimental manipulations not applicable in humans. The non-invasive fMRI approach provides a promising tool for cross-species comparative investigations. This review focuses on the principles of “resting-state” functional connectivity analysis and its applications to living animals. The translational aspect from in vivo animal models toward clinical applications in humans is emphasized. We introduce the fMRI-based investigation of the non-human brain’s hemodynamics, the methodological issues in the data postprocessing, and the functional data interpretation from different abstraction levels. The longer term goal of integrating fMRI connectivity data with structural connectomes obtained with tracing and optical imaging approaches is presented and will allow the interrogation of fMRI data in terms of directional flow of information and may identify the structural underpinnings of observed functional connectivity patterns. PMID:28539914
D'Andrea, Giancarlo; Trillo', Giuseppe; Picotti, Veronica; Raco, Antonino
2017-01-01
The goal of neurosurgery for cerebral intraparenchymal neoplasms of the eloquent areas is maximal resection with the preservation of normal functions, and minimizing operative risk and postoperative morbidity. Currently, modern technological advances in neuroradiological tools, neuronavigation, and intraoperative magnetic resonance imaging (MRI) have produced great improvements in postoperative morbidity after the surgery of cerebral eloquent areas. The integration of preoperative functional MRI (fMRI), intraoperative MRI (volumetric and diffusion tensor imaging [DTI]), and neuronavigation, defined as "functional neuronavigation" has improved the intraoperative detection of the eloquent areas. We reviewed 142 patients operated between 2004 and 2010 for intraparenchymal neoplasms involving or close to one or more major white matter tracts (corticospinal tract [CST], arcuate fasciculus [AF], optic radiation). All the patients underwent neurosurgery in a BrainSUITE equipped with a 1.5 T MR scanner and were preoperatively studied with fMRI and DTI for tractography for surgical planning. The patients underwent MRI and DTI during surgery after dural opening, after the gross total resection close to the white matter tracts, and at the end of the procedure. We evaluated the impact of fMRI on surgical planning and on the selection of the entry point on the cortical surface. We also evaluated the impact of preoperative and intraoperative DTI, in order to modify the surgical approach, to define the borders of resection, and to correlate this modality with subcortical neurophysiological monitoring. We evaluated the impact of the preoperative fMRI by intraoperative neurophysiological monitoring, performing "neuronavigational" brain mapping, following its data to localize the previously elicited areas after brain shift correction by intraoperative MRI. The mean age of the 142 patients (89 M/53 F) was 59.1 years and the lesion involved the CST in 66 patients (57 %), the language pathways in 24 (21 %), and the optic radiations in 25 (22 %). The integration of tractographic data into the volumetric dataset for neuronavigation was technically possible in all cases. In all patients intraoperative DTI demonstrated a shift of the bundle position caused by the surgical procedure; its dislocation was both outward and inward in the range of +6 mm and -2 mm. We found a high concordance between fMRI/DTI and intraoperative brain mapping; their combination improves the sensitivity of each technique, reducing pitfalls and so defining "functional neuronavigation", increasing the definition of eloquent areas and also reducing the time of surgery.
Ryu, Won Hyung A; Starreveld, Yves; Burton, Jodie M; Liu, Junjie; Costello, Fiona
2017-09-01
Pituitary tumors are one of the most common types of intracranial neoplasms, and can cause progressive visual loss. An ongoing challenge in the management of patients with pituitary tumors is the cost, availability, and reliability of current magnetic resonance imaging (MRI) techniques to capture clinically significant incremental tumor growth. The purpose of this study was to evaluate the various MRI-based structural analyses and to explore the relationship between measures of structure and function in the afferent visual pathway of patients with pituitary tumors. We performed a critical review of literature on MRI-based structural analyses of pituitary adenomas using PubMed, Embase, Cochrane Library, and Google Scholar. In addition, preoperative structural characteristics of the optic apparatus, optic nerve compression, and optic chiasm elevation identified as important in the literature review, were examined in 18 of our patients from October 2010 to January 2014. In our review of literature, a total of 443 citations were obtained from our search strategy and review of bibliographies. Eight of these studies met inclusion/exclusion criteria and were retrieved for critical review. Of the 8 included studies, only 2 studies examined the relationship between MRI-based structural measurements and postoperative visual recovery. In our small case-series, MRI analysis of chiasm elevation, severity of optic nerve compression, chiasm position, height of chiasm, tumor height, and tumor volume failed to differentiate patients with postoperative visual dysfunction vs those with visual recovery (P > 0.05). Although MRI-based structural analysis is an important and useful tool for managing patients with pituitary tumors, there are limited objective measures shown to be predictive of postoperative visual recovery.
MRI-Guided Diffuse Optical Spectroscopy of Malignant and Benign Breast Lesions1
Ntziachristos, Vasilis; Yodh, A G; Schnall, Mitchell D; Chance, Britton
2002-01-01
Abstract We present the clinical implementation of a novel hybrid system that combines magnetic resonance imaging (MRI) and near-infrared (NIR) optical measurements for the noninvasive study of breast cancer in vivo. Fourteen patients were studied with a MR-NIR prototype imager and spectrometer. A diffuse optical tomographic scheme employed the MR images as a priori information to implement an image-guided NIR localized spectroscopic scheme. All patients who entered the study also underwent gadolinium-enhanced MRI and biopsy so that the optical findings were cross-validated with MR readings and histopathology. The technique quantified the oxy- and deoxyhemoglobin of five malignant and nine benign breast lesions in vivo. Breast cancers were found with decreased oxygen saturation and higher blood concentration than most benign lesions. The average hemoglobin concentration ([H]) of cancers was 0.130±0.100 mM, and the average hemoglobin saturation (Y) was 60±9% compared to [H]=0.018±0.005 mM and Y=69±6% of background tissue. Fibroadenomas exhibited high hemoglobin concentration [H]=0.060±0.010 mM and mild decrease in oxygen saturation Y=67±2%. Cysts and other normal lesions were easily differentiated based on intrinsic contrast information. This novel optical technology can be a significant add-on in MR examinations and can be used to characterize functional parameters of cancers with diagnostic and treatment prognosis potential. It is foreseen that the technique can play a major role in functional activation studies of brain and muscle as well. PMID:12082551
Optic Nerve Assessment Using 7-Tesla Magnetic Resonance Imaging.
Singh, Arun D; Platt, Sean M; Lystad, Lisa; Lowe, Mark; Oh, Sehong; Jones, Stephen E; Alzahrani, Yahya; Plesec, Thomas
2016-04-01
The purpose of this study was to correlate high-resolution magnetic resonance imaging (MRI) and histologic findings in a case of juxtapapillary choroidal melanoma with clinical evidence of optic nerve invasion. With institutional review board approval, an enucleated globe with choroidal melanoma and optic nerve invasion was imaged using a 7-tesla MRI followed by histopathologic evaluation. Optical coherence tomography, B-scan ultrasonography, and 1.5-tesla MRI of the orbit (1-mm sections) could not detect optic disc invasion. Ex vivo, 7-tesla MRI detected optic nerve invasion, which correlated with histopathologic features. Our case demonstrates the potential to document the existence of optic nerve invasion in the presence of an intraocular tumor, a feature that has a major bearing on decision making, particularly for consideration of enucleation.
NASA Astrophysics Data System (ADS)
Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Cubik, Jakub; Kepak, Stanislav; Vanus, Jan; Zboril, Ondrej; Vasinek, Vladimir
2017-10-01
Authors of this article focused on the analysis of the influence location of the fiber-optic sensor on the measurement and determination the heart rate of the human body. The sensor uses a Fiber Bragg Grating (FBG) and is encapsulated in the polymer polydimethylsiloxane (PDMS). The combination of fiber-optic technology and its encapsulation in a polymer PDMS allows the use of the sensor e.g. in magnetic resonance environments (MRI). Among currently solved doctors requirements belongs field focusing on the study of hyperventilation and panic attacks of patients during MRI examination due to their very frequent occurrence. Proposed FBG sensor can help doctors to predict (based on heart rate) hyperventilation and panic attacks of patients during MRI examinations. For the most accurate determination of the heart rate, it is necessary to know the influence location of the sensor on the human body. The sensor functionality and analysis of the sensor placement on the heart rate has been verified by a series of real experimental measurements of test subjects in laboratory environment.
Wong, Kee H; Panek, Rafal; Bhide, Shreerang A; Nutting, Christopher M; Harrington, Kevin J; Newbold, Katie L
2017-03-01
Head and neck cancer (HNC) is a challenging tumour site for radiotherapy delivery owing to its complex anatomy and proximity to organs at risk (OARs) such as the spinal cord and optic apparatus. Despite significant advances in radiotherapy planning techniques, radiation-induced morbidities remain substantial. Further improvement would require high-quality imaging and tailored radiotherapy based on intratreatment response. For these reasons, the use of MRI in radiotherapy planning for HNC is rapidly gaining popularity. MRI provides superior soft-tissue contrast in comparison with CT, allowing better definition of the tumour and OARs. The lack of additional radiation exposure is another attractive feature for intratreatment monitoring. In addition, advanced MRI techniques such as diffusion-weighted, dynamic contrast-enhanced and intrinsic susceptibility-weighted MRI techniques are capable of characterizing tumour biology further by providing quantitative functional parameters such as tissue cellularity, vascular permeability/perfusion and hypoxia. These functional parameters are known to have radiobiological relevance, which potentially could guide treatment adaptation based on their changes prior to or during radiotherapy. In this article, we first present an overview of the applications of anatomical MRI sequences in head and neck radiotherapy, followed by the potentials and limitations of functional MRI sequences in personalizing therapy.
Panek, Rafal; Bhide, Shreerang A; Nutting, Christopher M; Harrington, Kevin J; Newbold, Katie L
2017-01-01
Head and neck cancer (HNC) is a challenging tumour site for radiotherapy delivery owing to its complex anatomy and proximity to organs at risk (OARs) such as the spinal cord and optic apparatus. Despite significant advances in radiotherapy planning techniques, radiation-induced morbidities remain substantial. Further improvement would require high-quality imaging and tailored radiotherapy based on intratreatment response. For these reasons, the use of MRI in radiotherapy planning for HNC is rapidly gaining popularity. MRI provides superior soft-tissue contrast in comparison with CT, allowing better definition of the tumour and OARs. The lack of additional radiation exposure is another attractive feature for intratreatment monitoring. In addition, advanced MRI techniques such as diffusion-weighted, dynamic contrast-enhanced and intrinsic susceptibility-weighted MRI techniques are capable of characterizing tumour biology further by providing quantitative functional parameters such as tissue cellularity, vascular permeability/perfusion and hypoxia. These functional parameters are known to have radiobiological relevance, which potentially could guide treatment adaptation based on their changes prior to or during radiotherapy. In this article, we first present an overview of the applications of anatomical MRI sequences in head and neck radiotherapy, followed by the potentials and limitations of functional MRI sequences in personalizing therapy. PMID:28256151
Optic Nerve Assessment Using 7-Tesla Magnetic Resonance Imaging
Singh, Arun D.; Platt, Sean M.; Lystad, Lisa; Lowe, Mark; Oh, Sehong; Jones, Stephen E.; Alzahrani, Yahya; Plesec, Thomas
2016-01-01
Purpose The purpose of this study was to correlate high-resolution magnetic resonance imaging (MRI) and histologic findings in a case of juxtapapillary choroidal melanoma with clinical evidence of optic nerve invasion. Methods With institutional review board approval, an enucleated globe with choroidal melanoma and optic nerve invasion was imaged using a 7-tesla MRI followed by histopathologic evaluation. Results Optical coherence tomography, B-scan ultrasonography, and 1.5-tesla MRI of the orbit (1-mm sections) could not detect optic disc invasion. Ex vivo, 7-tesla MRI detected optic nerve invasion, which correlated with histopathologic features. Conclusions Our case demonstrates the potential to document the existence of optic nerve invasion in the presence of an intraocular tumor, a feature that has a major bearing on decision making, particularly for consideration of enucleation. PMID:27239461
Optical switches and switching methods
Doty, Michael
2008-03-04
A device and method for collecting subject responses, particularly during magnetic imaging experiments and testing using a method such as functional MRI. The device comprises a non-metallic input device which is coupled via fiber optic cables to a computer or other data collection device. One or more optical switches transmit the subject's responses. The input device keeps the subject's fingers comfortably aligned with the switches by partially immobilizing the forearm, wrist, and/or hand of the subject. Also a robust nonmetallic switch, particularly for use with the input device and methods for optical switching.
A direct modulated optical link for MRI RF receive coil interconnection.
Yuan, Jing; Wei, Juan; Shen, G X
2007-11-01
Optical glass fiber is a promising alternative to traditional coaxial cables for MRI RF receive coil interconnection to avoid any crosstalk and electromagnetic interference between multiple channels. A direct modulated optical link is proposed for MRI coil interconnection in this paper. The link performances of power gain, frequency response and dynamic range are measured. Phantom and in vivo human head images have been demonstrated by the connection of this direct modulated optical link to a head coil on a 0.3T MRI scanner for the first time. Comparable image qualities to coaxial cable link verify the feasibility of using the optical link for imaging with minor modification on the existing scanners. This optical link could also be easily extended for multi-channel array interconnections at high field of 1.5 T.
Parks, Nathan A.
2013-01-01
The simultaneous application of transcranial magnetic stimulation (TMS) with non-invasive neuroimaging provides a powerful method for investigating functional connectivity in the human brain and the causal relationships between areas in distributed brain networks. TMS has been combined with numerous neuroimaging techniques including, electroencephalography (EEG), functional magnetic resonance imaging (fMRI), and positron emission tomography (PET). Recent work has also demonstrated the feasibility and utility of combining TMS with non-invasive near-infrared optical imaging techniques, functional near-infrared spectroscopy (fNIRS) and the event-related optical signal (EROS). Simultaneous TMS and optical imaging affords a number of advantages over other neuroimaging methods but also involves a unique set of methodological challenges and considerations. This paper describes the methodology of concurrently performing optical imaging during the administration of TMS, focusing on experimental design, potential artifacts, and approaches to controlling for these artifacts. PMID:24065911
Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J; Grant, Alexander M; Chang, Chen-Ming; Glover, Gary; Levin, Craig S
2015-05-07
The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.
NASA Astrophysics Data System (ADS)
Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J.; Grant, Alexander M.; Chang, Chen-Ming; Glover, Gary; Levin, Craig S.
2015-05-01
The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.
Optical Pumping Spin Exchange 3He Gas Cells for Magnetic Resonance Imaging
NASA Astrophysics Data System (ADS)
Kim, W.; Stepanyan, S. S.; Kim, A.; Jung, Y.; Woo, S.; Yurov, M.; Jang, J.
2009-08-01
We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping is used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the 3He-N2 mixture. The cells could be refilled. The 3He reaches around 50% polarization in 5-15 hours.
NASA Technical Reports Server (NTRS)
Strangman, Gary; Culver, Joseph P.; Thompson, John H.; Boas, David A.; Sutton, J. P. (Principal Investigator)
2002-01-01
Near-infrared spectroscopy (NIRS) has been used to noninvasively monitor adult human brain function in a wide variety of tasks. While rough spatial correspondences with maps generated from functional magnetic resonance imaging (fMRI) have been found in such experiments, the amplitude correspondences between the two recording modalities have not been fully characterized. To do so, we simultaneously acquired NIRS and blood-oxygenation level-dependent (BOLD) fMRI data and compared Delta(1/BOLD) (approximately R(2)(*)) to changes in oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentrations derived from the NIRS data from subjects performing a simple motor task. We expected the correlation with deoxyhemoglobin to be strongest, due to the causal relation between changes in deoxyhemoglobin concentrations and BOLD signal. Instead we found highly variable correlations, suggesting the need to account for individual subject differences in our NIRS calculations. We argue that the variability resulted from systematic errors associated with each of the signals, including: (1) partial volume errors due to focal concentration changes, (2) wavelength dependence of this partial volume effect, (3) tissue model errors, and (4) possible spatial incongruence between oxy- and deoxyhemoglobin concentration changes. After such effects were accounted for, strong correlations were found between fMRI changes and all optical measures, with oxyhemoglobin providing the strongest correlation. Importantly, this finding held even when including scalp, skull, and inactive brain tissue in the average BOLD signal. This may reflect, at least in part, the superior contrast-to-noise ratio for oxyhemoglobin relative to deoxyhemoglobin (from optical measurements), rather than physiology related to BOLD signal interpretation.
Structured Illumination Diffuse Optical Tomography for Mouse Brain Imaging
NASA Astrophysics Data System (ADS)
Reisman, Matthew David
As advances in functional magnetic resonance imaging (fMRI) have transformed the study of human brain function, they have also widened the divide between standard research techniques used in humans and those used in mice, where high quality images are difficult to obtain using fMRI given the small volume of the mouse brain. Optical imaging techniques have been developed to study mouse brain networks, which are highly valuable given the ability to study brain disease treatments or development in a controlled environment. A planar imaging technique known as optical intrinsic signal (OIS) imaging has been a powerful tool for capturing functional brain hemodynamics in rodents. Recent wide field-of-view implementations of OIS have provided efficient maps of functional connectivity from spontaneous brain activity in mice. However, OIS requires scalp retraction and is limited to imaging a 2-dimensional view of superficial cortical tissues. Diffuse optical tomography (DOT) is a non-invasive, volumetric neuroimaging technique that has been valuable for bedside imaging of patients in the clinic, but previous DOT systems for rodent neuroimaging have been limited by either sparse spatial sampling or by slow speed. My research has been to develop diffuse optical tomography for whole brain mouse neuroimaging by expanding previous techniques to achieve high spatial sampling using multiple camera views for detection and high speed using structured illumination sources. I have shown the feasibility of this method to perform non-invasive functional neuroimaging in mice and its capabilities of imaging the entire volume of the brain. Additionally, the system has been built with a custom, flexible framework to accommodate the expansion to imaging multiple dynamic contrasts in the brain and populations that were previously difficult or impossible to image, such as infant mice and awake mice. I have contributed to preliminary feasibility studies of these more advanced techniques using OIS, which can now be carried out using the structured illumination diffuse optical tomography technique to perform longitudinal, non-invasive studies of the whole volume of the mouse brain.
Sisto, Dario; Trojano, Maria; Vetrugno, Michele; Trabucco, Tiziana; Iliceto, Giovanni; Sborgia, Carlo
2005-04-01
To evaluate the effectiveness of visual evoked potentials (VEPs), frequency-doubling perimetry (FDP), standard achromatic perimetry (SAP), contrast sensitivity (CS) test, and magnetic resonance imaging (MRI), isolated or in combination, in detecting subclinical impairment of visual function in multiple sclerosis (MS). Twenty-two eyes of 11 patients affected by clinically definite MS, without a history of optic neuritis and asymptomatic for visual disturbances, underwent full ophthalmic examination and, in addition, VEPs, FDP, SAP, CS, and MRI. Abnormal results were taken to be as follows: for VEPs, a P100 latency >115 ms; for FDP, abnormal mean deviation (MD) or pattern SD (PSD); for SAP, abnormal MD or PSD; for CS, abnormal CS at one spatial frequency, at least; and for MRI, evidence of at least one demyelinating plaque along the visual pathway. VEPs showed abnormal results in 12 eyes (54.4%), FDP in 11 (50%), SAP in 14 (63.6%), CS in 17 (77.1%), and MRI in 16 (72.7%). In only two (9.1%) eyes of the same patient was no abnormality found. No single test detected all the abnormal eyes. Four (18.2%) eyes had pure optic nerve involvement and the remaining 16 (72.7%) had both pre- and postchiasmal involvement. In patients affected by clinically definite MS without history of optic neuritis and no visual symptoms, there is a large prevalence of visual pathway involvement that can be diagnosed only by performing multiple tests. The comparison of the tests is also useful to detect the presence of multiple lesions in the same patient.
Yan, Xuejie; Song, Xiaoyan; Wang, Zhenbo
2017-05-01
The purpose of the study was to construct specific magnetic resonance imaging (MRI)/optical dual-modality molecular probe. Tumor-bearing animal models were established. MRI/optical dual-modality molecular probe was construed by coupling polyethylene glycol (PEG)-modified nano-Fe 3 O 4 with specific targeted cyclopeptide GX1 and near-infrared fluorescent dyes Cy5.5. MRI/optical imaging effects of the probe were observed and the feasibility of in vivo double-modality imaging was discussed. It was found that, the double-modality probe was of high stability; tumor signal of the experimental group tended to be weak after injection of the probe, but rose to a level which was close to the previous level after 18 h (p > 0.05). We successively completed the construction of an ideal MRI/optical dual-modality molecular probe. MRI/optical dual-modality molecular probe which can selectively gather in gastric cancer is expected to be a novel probe used for diagnosing gastric cancer in the early stage.
Steinborn, M; Fiegler, J; Kraus, V; Denne, C; Hapfelmeier, A; Wurzinger, L; Hahn, H
2011-12-01
We performed a cadaver study to evaluate the accuracy of measurements of the optic nerve and the optic nerve sheath for high resolution US (HRUS) and magnetic resonance imaging (MRI). Five Thiel-fixated cadaver specimens of the optic nerve were examined with HRUS and MRI. Measurements of the optic nerve and the ONSD were performed before and after the filling of the optic nerve sheath with saline solution. Statistical analysis included the calculation of the agreement of measurements and the evaluation of the intraobserver and interobserver variation. Overall a good correlation of measurement values between HRUS and MRI can be found (mean difference: 0.02-0.97 mm). The repeatability coefficient (RC) and concordance correlation coefficient (CCC) values were good to excellent for most acquisitions (RC 0.2-1.11 mm; CCC 0.684-0.949). The highest variation of measurement values was found for transbulbar sonography (RC 0.58-1.83 mm; CCC 0.615/0.608). If decisive anatomic structures are clearly depicted and the measuring points are set correctly, there is a good correlation between HRUS and MRI measurements of the optic nerve and the ONSD even on transbulbar sonography. As most of the standard and cut-off values that have been published for ultrasound are significantly lower than the results obtained with MRI, a reevaluation of sonographic ONSD measurement with correlation to MRI is necessary. © Georg Thieme Verlag KG Stuttgart · New York.
Feasibility study using MRI and two optical CT scanners for readout of polymer gel and PresageTM
NASA Astrophysics Data System (ADS)
Svensson, H.; Skyt, P. S.; Ceberg, S.; Doran, S.; Muren, L. P.; Balling, P.; Petersen, J. B. B.; Bäck, S. Å. J.
2013-06-01
The aim of this study was to compare the conventional combination of three-dimensional dosimeter (nPAG gel) and readout method (MRI) with other combinations of three-dimensional dosimeters (nPAG gel/PresageTM) and readout methods (optical CT scanners). In the first experiment, the dose readout of a gel irradiated with a four field-box technique was performed with both an Octopus IQ scanner and MRI. It was seen that the MRI readout agreed slightly better to the TPS. In another experiment, a gel and a PresageTM sample were irradiated with a VMAT field and read out using MRI and a fast laser scanner, respectively. A comparison between the TPS and the volumes revealed that the MRI/gel readout had closer resemblance to the TPS than the optical CT/PresageTM readout. There are clearly potential in the evaluated optical CT scanners, but more time has to be invested in the particular scanning scenario than was possible in this study.
Triaxial fiber optic magnetic field sensor for MRI applications
NASA Astrophysics Data System (ADS)
Filograno, Massimo L.; Pisco, Marco; Catalano, Angelo; Forte, Ernesto; Aiello, Marco; Soricelli, Andrea; Davino, Daniele; Visone, Ciro; Cutolo, Antonello; Cusano, Andrea
2016-05-01
In this paper, we report a fiber-optic triaxial magnetic field sensor, based on Fiber Bragg Gratings (FBGs) integrated with giant magnetostrictive material, the Terfenol-D. The realized sensor has been designed and engineered for Magnetic Resonance Imaging (MRI) applications. A full magneto-optical characterization of the triaxial sensing probe has been carried out, providing the complex relationship among the FBGs wavelength shift and the applied magnetostatic field vector. Finally, the developed fiber optic sensors have been arranged in a sensor network composed of 20 triaxial sensors for mapping the magnetic field distribution in a MRI-room at a diagnostic center in Naples (SDN), equipped with Positron emission tomography/magnetic resonance (PET/MR) instrumentation. Experimental results reveal that the proposed sensor network can be efficiently used in MRI centers for performing quality assurance tests, paving the way for novel integrated tools to measure the magnetic dose accumulated day by day by MRI operators.
2016-01-01
When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a ‘golden technique’ that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574313
Ugurbil, Kamil
2016-10-05
When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).
Calibrated LCD/TFT stimulus presentation for visual psychophysics in fMRI.
Strasburger, H; Wüstenberg, T; Jäncke, L
2002-11-15
Standard projection techniques using liquid crystal (LCD) or thin-film transistor (TFT) technology show drastic distortions in luminance and contrast characteristics across the screen and across grey levels. Common luminance measurement and calibration techniques are not applicable in the vicinity of MRI scanners. With the aid of a fibre optic, we measured screen luminances for the full space of screen position and image grey values and on that basis developed a compensation technique that involves both luminance homogenisation and position-dependent gamma correction. By the technique described, images displayed to a subject in functional MRI can be specified with high precision by a matrix of desired luminance values rather than by local grey value.
SU-F-T-477: Investigation of DEFGEL Dosimetry Using MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matrosic, C; McMillan, A; Bednarz, B
Purpose: The DEFGEL dosimeter/phantom allows for the measurement of 3D dose distributions while maintaining tissue equivalence and deformability. Although DEFGEL is traditionally read out with optical CT, the use of MRI would permit the measurement of 3D dose distributions in optically interfering configurations, like while embedded in a phantom. To the knowledge of the authors, this work is the first investigation that uses MRI to measure dose distributions in DEFGEL dosimeters. Methods: The DEFGEL (6%T) formula was used to create 1 cm thick, 4.5 cm diameter cylindrical dosimeters. The dosimeters were irradiated using a Varian Clinac 21EX linac. The MRImore » based transverse relaxation rate (R2) of the gel was measured in a central slice of the dosimeter with a Spin-Echo (SE) pulse sequence on a 3T GE SIGNA PET/MR scanner. The R2 values were fit to a monoexponential dose response equation using in-house software (MATLAB). Results: The data was well fit using a monoexponential fit for R2 as a function of absorbed dose (R{sup 2} = 0.9997). The fitting parameters of the monoexponential fit resulted in a 0.1229 Gy{sub −1}s{sub −1} slope. The data also resulted in an average standard deviation of 1.8% for the R2 values within the evaluated ROI. Conclusion: The close fit for the dose response curve shows that a DEFGEL based dosimeter can be paired with a SE MRI acquisition. The Type A uncertainty of the MRI method shows adequate precision, while the slope of the fit curve is large enough that R2 differences between different gel doses are distinguishable. These results suggest that the gel could potentially be used in configurations where an optical readout is not viable, such as measurements with the gel dosimeter positioned inside larger or optically opaque phantoms. This work is partially funded by NIH grant R01CA190298.« less
Olcott, Peter D; Peng, Hao; Levin, Craig S
2009-01-01
A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.
NASA Astrophysics Data System (ADS)
Paar, Steffen; Umathum, Reiner; Jiang, Xiaoming; Majer, Charles L.; Peter, Jörg
2015-09-01
A noncontact optical detector for in vivo imaging has been developed that is compatible with magnetic resonance imaging (MRI). The optical detector employs microlens arrays and might be classified as a plenoptic camera. As a resulting of its design, the detector possesses a slim thickness and is self-shielding against radio frequency (RF) pulses. For experimental investigation, a total of six optical detectors were arranged in a cylindrical fashion, with the imaged object positioned in the center of this assembly. A purposely designed RF volume resonator coil has been developed and is incorporated within the optical imaging system. The whole assembly was placed into the bore of a 1.5 T patient-sized MRI scanner. Simple-geometry phantom studies were performed to assess compatibility and performance characteristics regarding both optical and MR imaging systems. A bimodal ex vivo nude mouse measurement was conducted. From the MRI data, the subject surface was extracted. Optical images were projected on this surface by means of an inverse mapping algorithm. Simultaneous measurements did not reveal influences from the magnetic field and RF pulses onto optical detector performance (spatial resolution, sensitivity). No significant influence of the optical imaging system onto MRI performance was detectable.
Paar, Steffen; Umathum, Reiner; Jiang, Xiaoming; Majer, Charles L; Peter, Jörg
2015-09-01
A noncontact optical detector for in vivo imaging has been developed that is compatible with magnetic resonance imaging (MRI). The optical detector employs microlens arrays and might be classified as a plenoptic camera. As a resulting of its design, the detector possesses a slim thickness and is self-shielding against radio frequency (RF) pulses. For experimental investigation, a total of six optical detectors were arranged in a cylindrical fashion, with the imaged object positioned in the center of this assembly. A purposely designed RF volume resonator coil has been developed and is incorporated within the optical imaging system. The whole assembly was placed into the bore of a 1.5 T patient-sized MRI scanner. Simple-geometry phantom studies were performed to assess compatibility and performance characteristics regarding both optical and MR imaging systems. A bimodal ex vivo nude mouse measurement was conducted. From the MRI data, the subject surface was extracted. Optical images were projected on this surface by means of an inverse mapping algorithm. Simultaneous measurements did not reveal influences from the magnetic field and RF pulses onto optical detector performance (spatial resolution, sensitivity). No significant influence of the optical imaging system onto MRI performance was detectable.
Applications of optically detected MRI for enhanced contrast and penetration in metal
NASA Astrophysics Data System (ADS)
Ruangchaithaweesuk, Songtham; Yu, Dindi S.; Garcia, Nissa C.; Yao, Li; Xu, Shoujun
2012-10-01
We report quantitative measurements using optically detected magnetic resonance imaging (MRI) for enhanced pH contrast and flow inside porous metals. Using a gadolinium chelate as the pH contrast agent, we show the response is 0.6 s-1 mM-1 per pH unit at the ambient magnetic field for the pH range 6-8.5. A stopped flow scheme was used to directly measure T1 relaxation time to determine the relaxivity. Flow profiles and images were obtained for a series of porous metals with different average pore sizes. The signal amplitudes and spatial distributions were compared. A clogged region in one of the samples was revealed using optically detected MRI but not optical imaging or scanning electron microscopy. These applications will significantly broaden the impact of optically detected MRI in chemical imaging and materials research.
Armour, Micki D; Broome, Michael; Dell'Anna, Giuseppe; Blades, Natalie J; Esson, Douglas W
2011-07-01
To review the distribution of orbital and intracranial disease in canine and feline patients undergoing magnetic resonance imaging (MRI) following referral to a veterinary ophthalmologist and to correlate results of MRI with pathologic conditions including neoplasia, suspected optic neuritis (ON) and orbital cellulitis. Recognized and emerging imaging techniques are reviewed. Medical records of 79 canine and 13 feline patients were reviewed. Neoplasia was diagnosed in 53/92 (57.6%) of patients. The most prevalent types of neoplasia were carcinoma (16/53, 30.1%), sarcoma (11/53, 20.8%), lymphoma (8/53, 15.1%) and presumptive meningioma (9/53, 17.0%). Carcinomas and sarcomas were characterized by bony lysis and intracranial/sinonasal extension. Lymphoma was generally unilateral, less invasive and originated from the ventromedial orbit. Intracranial masses representing presumptive meningiomas frequently exhibited a 'dural tail' sign. Diagnosis of suspected ON was made in 13 of 92 (14.1%) patients. Results of MRI in patients with suspected ON included unilateral optic nerve hyperintensity (3/13, 23.0%), bilateral optic nerve hyperintensity (1/13, 7.7%) and optic chiasmal hyperintensity (3/13, 23.0%). Seven suspected ON patients demonstrated intracranial multifocal patchy contrast enhancement (7/13, 53.8%). Diagnosis of orbital cellulitis was made in 12/92 (13.0%) patients. Orbital neoplasia was the most common pathologic condition detected. Essential Roentgen characteristics are helpful when diagnosing pathologic processes and providing prognoses in cases of orbital or intracranial disease. Magnetic resonance imaging comprises an important diagnostic component in cases of suspected ON. Emerging contrast and functional MRI techniques as well as SI data may increase our ability to characterize disease processes. © 2011 American College of Veterinary Ophthalmologists.
Dynamic Imaging of the Eye, Optic Nerve, and Extraocular Muscles With Golden Angle Radial MRI
Smith, David S.; Smith, Alex K.; Welch, E. Brian; Smith, Seth A.
2017-01-01
Purpose The eye and its accessory structures, the optic nerve and the extraocular muscles, form a complex dynamic system. In vivo magnetic resonance imaging (MRI) of this system in motion can have substantial benefits in understanding oculomotor functioning in health and disease, but has been restricted to date to imaging of static gazes only. The purpose of this work was to develop a technique to image the eye and its accessory visual structures in motion. Methods Dynamic imaging of the eye was developed on a 3-Tesla MRI scanner, based on a golden angle radial sequence that allows freely selectable frame-rate and temporal-span image reconstructions from the same acquired data set. Retrospective image reconstructions at a chosen frame rate of 57 ms per image yielded high-quality in vivo movies of various eye motion tasks performed in the scanner. Motion analysis was performed for a left–right version task where motion paths, lengths, and strains/globe angle of the medial and lateral extraocular muscles and the optic nerves were estimated. Results Offline image reconstructions resulted in dynamic images of bilateral visual structures of healthy adults in only ∼15-s imaging time. Qualitative and quantitative analyses of the motion enabled estimation of trajectories, lengths, and strains on the optic nerves and extraocular muscles at very high frame rates of ∼18 frames/s. Conclusions This work presents an MRI technique that enables high-frame-rate dynamic imaging of the eyes and orbital structures. The presented sequence has the potential to be used in furthering the understanding of oculomotor mechanics in vivo, both in health and disease. PMID:28813574
NASA Astrophysics Data System (ADS)
Smolin, Sergey; Scafetta, Mark; Choquette, Amber; Sfeir, Matthew; Baxter, Jason; May, Steven
We study optical absorption and recombination dynamics in La1-xSrxFeO3-δ thin films, uncovering the effects of tuning nominal Fe valence via A-site substitution and oxygen stoichiometry. Variable angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy, revealing similar nanosecond photoexcited carrier lifetimes for oxygen deficient and stoichiometric films with the same nominal Fe valence. These results demonstrate that while the static optical absorption is strongly dependent on Fe valence tuned through cation or anion stoichiometry, oxygen vacancies do not appear to play a significantly detrimental role in the recombination kinetics. Nsf: ECCS-1201957, MRI DMR-0922929, MRI DMR-1040166. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.
Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI.
Erdoğan, Sinem B; Yücel, Meryem A; Akın, Ata
2014-02-15
Functional near infrared spectroscopy (fNIRS) is a promising method for monitoring cerebral hemodynamics with a wide range of clinical applications. fNIRS signals are contaminated with systemic physiological interferences from both the brain and superficial tissues, resulting in a poor estimation of the task related neuronal activation. In this study, we use the anatomical resolution of functional magnetic resonance imaging (fMRI) to extract scalp and brain vascular signals separately and construct an optically weighted spatial average of the fMRI blood oxygen level-dependent (BOLD) signal for characterizing the scalp signal contribution to fNIRS measurements. We introduce an extended superficial signal regression (ESSR) method for canceling physiology-based systemic interference where the effects of cerebral and superficial systemic interference are treated separately. We apply and validate our method on the optically weighted BOLD signals, which are obtained by projecting the fMRI image onto optical measurement space by use of the optical forward problem. The performance of ESSR method in removing physiological artifacts is compared to i) a global signal regression (GSR) method and ii) a superficial signal regression (SSR) method. The retrieved signals from each method are compared with the neural signals that represent the 'ground truth' brain activation cleaned from cerebral systemic fluctuations. We report significant improvements in the recovery of task induced neural activation with the ESSR method when compared to the other two methods as reflected in the Pearson R(2) coefficient and mean square error (MSE) metrics (two tailed paired t-tests, p<0.05). The signal quality is enhanced most when ESSR method is applied with higher spatial localization, lower inter-trial variability, a clear canonical waveform and higher contrast-to-noise (CNR) improvement (60%). Our findings suggest that, during a cognitive task i) superficial scalp signal contribution to fNIRS signals varies significantly among different regions on the forehead and ii) using an average scalp measurement together with a local measure of superficial hemodynamics better accounts for the systemic interference inherent in the brain as well as superficial scalp tissue. We conclude that maximizing the overlap between the optical pathlength of superficial and deeper penetration measurements is of crucial importance for accurate recovery of the evoked hemodynamic response in fNIRS recordings. © 2013 Elsevier Inc. All rights reserved.
Yang, Meng; Cheng, Kai; Qi, Shibo; Liu, Hongguang; Jiang, Yuxin; Jiang, Han; Li, Jinbo; Chen, Kai; Zhang, Huimao; Cheng, Zhen
2013-01-01
A highly monodispersed hetero-nanostructure with two different functional nanomaterials (gold (Au) and iron oxide (Fe3O4, IO)) within one structure was successfully developed as Affibody based trimodality nanoprobe (positron emission tomography, PET; optical imaging; and magnetic resonance imaging, MRI) for imaging of epidermal growth factor receptor (EGFR) positive tumors. Unlike other regular nanostructures with a single component, the Au-IO hetero-nanostructures (Au-IONPs) with unique chemical and physical properties have capability to combine several imaging modalities together to provide complementary information. The IO component within hetero-nanostructures serve as a T2 reporter for MRI; and gold component serve as both optical and PET reporters. Moreover, such hetero-nanoprobes could provide a robust nano-platform for surface-specific modification with both targeting molecules (anti-EGFR Affibody protein) and PET imaging reporters (radiometal 64Cu chelators) in highly efficient and reliable manner. In vitro and in vivo study showed that the resultant nanoprobe provided high specificity, sensitivity, and excellent tumor contrast for both PET and MRI imaging in the human EGFR-expressing cells and tumors. Our study data also highlighted the EGFR targeting efficiency of hetero-nanoparticles and the feasibility for their further theranostic applications. PMID:23343632
MR-eyetracker: a new method for eye movement recording in functional magnetic resonance imaging.
Kimmig, H; Greenlee, M W; Huethe, F; Mergner, T
1999-06-01
We present a method for recording saccadic and pursuit eye movements in the magnetic resonance tomograph designed for visual functional magnetic resonance imaging (fMRI) experiments. To reliably classify brain areas as pursuit or saccade related it is important to carefully measure the actual eye movements. For this purpose, infrared light, created outside the scanner by light-emitting diodes (LEDs), is guided via optic fibers into the head coil and onto the eye of the subject. Two additional fiber optical cables pick up the light reflected by the iris. The illuminating and detecting cables are mounted in a plastic eyepiece that is manually lowered to the level of the eye. By means of differential amplification, we obtain a signal that covaries with the horizontal position of the eye. Calibration of eye position within the scanner yields an estimate of eye position with a resolution of 0.2 degrees at a sampling rate of 1000 Hz. Experiments are presented that employ echoplanar imaging with 12 image planes through visual, parietal and frontal cortex while subjects performed saccadic and pursuit eye movements. The distribution of BOLD (blood oxygen level dependent) responses is shown to depend on the type of eye movement performed. Our method yields high temporal and spatial resolution of the horizontal component of eye movements during fMRI scanning. Since the signal is purely optical, there is no interaction between the eye movement signals and the echoplanar images. This reasonably priced eye tracker can be used to control eye position and monitor eye movements during fMRI.
Niu, Haijing; Wang, Jinhui; Zhao, Tengda; Shu, Ni; He, Yong
2012-01-01
The human brain is a highly complex system that can be represented as a structurally interconnected and functionally synchronized network, which assures both the segregation and integration of information processing. Recent studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to explore the topological organization of human brain networks. However, little is known about whether functional near infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of the human brain and reveal meaningful and reproducible topological characteristics. We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46 channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These results were highly reproducible both across participants and over time and were consistent with previous findings based on other functional imaging techniques. Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical imaging techniques to explore the topological organization of human brain networks. These results may expand a methodological framework for utilizing fNIRS to study functional network changes that occur in association with development, aging and neurological and psychiatric disorders.
fMRI-Compatible Electromagnetic Haptic Interface.
Riener, R; Villgrattner, T; Kleiser, R; Nef, T; Kollias, S
2005-01-01
A new haptic interface device is suggested, which can be used for functional magnetic resonance imaging (fMRI) studies. The basic component of this 1 DOF haptic device are two coils that produce a Lorentz force induced by the large static magnetic field of the MR scanner. A MR-compatible optical angular encoder and a optical force sensor enable the implementation of different control architectures for haptic interactions. The challenge was to provide a large torque, and not to affect image quality by the currents applied in the device. The haptic device was tested in a 3T MR scanner. With a current of up to 1A and a distance of 1m to the focal point of the MR-scanner it was possible to generate torques of up to 4 Nm. Within these boundaries image quality was not affected.
Jiménez de la Peña, M; Gil Robles, S; Recio Rodríguez, M; Ruiz Ocaña, C; Martínez de Vega, V
2013-01-01
To describe the detection of cortical areas and subcortical pathways involved in language observed in MRI activation studies and tractography in a 3T MRI scanner and to correlate the findings of these functional studies with direct intraoperative cortical and subcortical stimulation. We present a series of 14 patients with focal brain tumors adjacent to eloquent brain areas. All patients underwent neuropsychological evaluation before and after surgery. All patients underwent MRI examination including structural sequences, perfusion imaging, spectroscopy, functional imaging to determine activation of motor and language areas, and 3D tractography. All patients underwent cortical mapping through cortical and subcortical stimulation during the operation to resect the tumor. Postoperative follow-up studies were done 24 hours after surgery. The correlation of motor function and of the corticospinal tract determined by functional MRI and tractography with intraoperative mapping of cortical and subcortical motor areas was complete. The eloquent brain areas of language expression and reception were strongly correlated with intraoperative cortical mapping in all but two cases (a high grade infiltrating glioma and a low grade glioma located in the frontal lobe). 3D tractography identified the arcuate fasciculus, the lateral part of the superior longitudinal fasciculus, the subcallosal fasciculus, the inferior fronto-occipital fasciculus, and the optic radiations, which made it possible to mark the limits of the resection. The correlation with the subcortical mapping of the anatomic arrangement of the fasciculi with respect to the lesions was complete. The best treatment for brain tumors is maximum resection without associated deficits, so high quality functional studies are necessary for preoperative planning. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Yuting; Ghijsen, Michael; Thayer, David; Nalcioglu, Orhan; Gulsen, Gultekin
2011-03-01
Dynamic contrast enhanced MRI (DCE-MRI) has been proven to be the most sensitive modality in detecting breast lesions. Currently available MR contrast agent, Gd-DTPA, is a low molecular weight extracellular agent and can diffuse freely from the vascular space into interstitial space. Due to this reason, DCE-MRI has low sensitivity in differentiating benign and malignant tumors. Meanwhile, diffuse optical tomography (DOT) can be used to provide enhancement kinetics of an FDA approved optical contrast agent, ICG, which behaves like a large molecular weight optical agent due to its binding to albumin. The enhancement kinetics of ICG may have a potential to distinguish between the malignant and benign tumors and hence improve the specificity. Our group has developed a high speed hybrid MRI-DOT system. The DOT is a fully automated, MR-compatible, multi-frequency and multi-spectral imaging system. Fischer-344 rats bearing subcutaneous R3230 tumor are injected simultaneously with Gd-DTPA (0.1nmol/kg) and IC-Green (2.5mg/kg). The enhancement kinetics of both contrast agents are recorded simultaneously with this hybrid MRI-DOT system and evaluated for different tumors.
Readout Strategy of an Electro-optical Coupled PET Detector for Time-of-Flight PET/MRI
Bieniosek, M F; Olcott, P D; Levin, C S
2013-01-01
Combining PET with MRI in a single system provides clinicians with complementary molecular and anatomical information. However, existing integrated PET/MRI systems do not have time-of-flight PET capabilities. This work describes an MRI-compatible front-end electronic system with ToF capabilities. The approach employs a fast arrival-time pickoff comparator to digitize the timing information, and a laser diode to drive a 10m fiber-optic cable to optically transmit asynchronous timing information to a photodiode receiver readout system. The comparator and this electo-optical link show a combined 11.5ps fwhm jitter in response to a fast digital pulse. When configured with LYSO scintillation crystals and Hamamatsu MPPC silicon photo-multipliers the comparator and electro-optical link achieved a 511keV coincidence time resolution of 254.7ps +/− 8.0ps fwhm with 3×3×20mm crystals and 166.5 +/− 2.5ps fwhm with 3×3×5mm crystals. PMID:24061218
Quantitative characterization of optic nerve atrophy in patients with multiple sclerosis
Smith, Alex K; Lyttle, Bailey; Box, Bailey; Landman, Bennett A; Bagnato, Francesca; Pawate, Siddharama; Smith, Seth A
2017-01-01
Background Optic neuritis (ON) is one of the most common presentations of multiple sclerosis (MS). Magnetic resonance imaging (MRI) of the optic nerves is challenging because of retrobulbar motion, orbital fat and susceptibility artifacts from maxillary sinuses; therefore, axonal loss is investigated with the surrogate measure of a single heuristically defined point along the nerve as opposed to volumetric investigation. Objective The objective of this paper is to derive optic nerve volumetrics along the entire nerve length in patients with MS and healthy controls in vivo using high-resolution, clinically viable MRI. Methods An advanced, isotropic T2-weighted turbo spin echo MRI was applied to 29 MS patients with (14 patients ON+) or without (15 patients ON–) history of ON and 42 healthy volunteers. An automated tool was used to estimate and compare whole optic nerve and surrounding cerebrospinal fluid radii along the length of the nerve. Results and conclusion Only ON+ MS patients had a significantly reduced optic nerve radius compared to healthy controls in the central segment of the optic nerve. Using clinically available MRI methods, we show and quantify ON volume loss for the first time in MS patients. PMID:28932410
Direct estimation of evoked hemoglobin changes by multimodality fusion imaging
Huppert, Theodore J.; Diamond, Solomon G.; Boas, David A.
2009-01-01
In the last two decades, both diffuse optical tomography (DOT) and blood oxygen level dependent (BOLD)-based functional magnetic resonance imaging (fMRI) methods have been developed as noninvasive tools for imaging evoked cerebral hemodynamic changes in studies of brain activity. Although these two technologies measure functional contrast from similar physiological sources, i.e., changes in hemoglobin levels, these two modalities are based on distinct physical and biophysical principles leading to both limitations and strengths to each method. In this work, we describe a unified linear model to combine the complimentary spatial, temporal, and spectroscopic resolutions of concurrently measured optical tomography and fMRI signals. Using numerical simulations, we demonstrate that concurrent optical and BOLD measurements can be used to create cross-calibrated estimates of absolute micromolar deoxyhemoglobin changes. We apply this new analysis tool to experimental data acquired simultaneously with both DOT and BOLD imaging during a motor task, demonstrate the ability to more robustly estimate hemoglobin changes in comparison to DOT alone, and show how this approach can provide cross-calibrated estimates of hemoglobin changes. Using this multimodal method, we estimate the calibration of the 3 tesla BOLD signal to be −0.55% ± 0.40% signal change per micromolar change of deoxyhemoglobin. PMID:19021411
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Kenji; Fuma, Kazuya; Tabata, Kaori
Magnetic resonance imaging (MRI) is a minimally invasive way to provide high spatial resolution tomograms. However, MRI has been considered to be useless for gene expression imaging compared to optical imaging. In this study, we used a ferritin reporter, binding with biogenic iron, to make it a powerful tool for gene expression imaging in MRI studies. GL261 mouse glioma cells were over-expressed with dual-reporter ferritin-DsRed under {beta}-actin promoter, then gene expression was observed by optical imaging and MRI in a brain tumor model. GL261 cells expressing ferritin-DsRed fusion protein showed enhanced visualizing effect by reducing T2-weighted signal intensity for inmore » vitro and in vivo MRI studies, as well as DsRed fluorescence for optical imaging. Furthermore, a higher contrast was achieved on T2-weighted images when permeating the plasma membrane of ferritin-DsRed-expressing GL261. Thus, a ferritin expression vector can be used as an MRI reporter to monitor in vivo gene expression.« less
NASA Astrophysics Data System (ADS)
Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting
2018-02-01
Image segmentation plays an important role in medical science. One application is multimodality imaging, especially the fusion of structural imaging with functional imaging, which includes CT, MRI and new types of imaging technology such as optical imaging to obtain functional images. The fusion process require precisely extracted structural information, in order to register the image to it. Here we used image enhancement, morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in deep learning way. Such approach greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. The contours of the borders of different tissues on all images were accurately extracted and 3D visualized. This can be used in low-level light therapy and optical simulation software such as MCVM. We obtained a precise three-dimensional distribution of brain, which offered doctors and researchers quantitative volume data and detailed morphological characterization for personal precise medicine of Cerebral atrophy/expansion. We hope this technique can bring convenience to visualization medical and personalized medicine.
Development of sound measurement systems for auditory functional magnetic resonance imaging.
Nam, Eui-Cheol; Kim, Sam Soo; Lee, Kang Uk; Kim, Sang Sik
2008-06-01
Auditory functional magnetic resonance imaging (fMRI) requires quantification of sound stimuli in the magnetic environment and adequate isolation of background noise. We report the development of two novel sound measurement systems that accurately measure the sound intensity inside the ear, which can simultaneously provide the similar or greater amount of scanner- noise protection than ear-muffs. First, we placed a 2.6 x 2.6-mm microphone in an insert phone that was connected to a headphone [microphone-integrated, foam-tipped insert-phone with a headphone (MIHP)]. This attenuated scanner noise by 37.8+/-4.6 dB, a level better than the reference amount obtained using earmuffs. The nonmetallic optical microphone was integrated with a headphone [optical microphone in a headphone (OMHP)] and it effectively detected the change of sound intensity caused by variable compression on the cushions of the headphone. Wearing the OMHP reduced the noise by 28.5+/-5.9 dB and did not affect echoplanar magnetic resonance images. We also performed an auditory fMRI study using the MIHP system and presented increase in the auditory cortical activation following 10-dB increment in the intensity of sound stimulation. These two newly developed sound measurement systems successfully achieved the accurate quantification of sound stimuli with maintaining the similar level of noise protection of wearing earmuffs in the auditory fMRI experiment.
Concurrent multiscale imaging with magnetic resonance imaging and optical coherence tomography
NASA Astrophysics Data System (ADS)
Liang, Chia-Pin; Yang, Bo; Kim, Il Kyoon; Makris, George; Desai, Jaydev P.; Gullapalli, Rao P.; Chen, Yu
2013-04-01
We develop a novel platform based on a tele-operated robot to perform high-resolution optical coherence tomography (OCT) imaging under continuous large field-of-view magnetic resonance imaging (MRI) guidance. Intra-operative MRI (iMRI) is a promising guidance tool for high-precision surgery, but it may not have sufficient resolution or contrast to visualize certain small targets. To address these limitations, we develop an MRI-compatible OCT needle probe, which is capable of providing microscale tissue architecture in conjunction with macroscale MRI tissue morphology in real time. Coregistered MRI/OCT images on ex vivo chicken breast and human brain tissues demonstrate that the complementary imaging scales and contrast mechanisms have great potential to improve the efficiency and the accuracy of iMRI procedure.
A 4-channel coil array interconnection by analog direct modulation optical link for 1.5-T MRI.
Yuan, Jing; Wei, Juan; Shen, Gary X
2008-10-01
Optical glass fiber shows great advantages over coaxial cables in terms of electromagnetic interference, thus, it should be considered a potential alternative for magnetic resonance imaging (MRI) receive coil interconnection, especially for a large number coil array at high field. In this paper, we propose a 4-channel analog direct modulation optical link for a 1.5-T MRI coil array interconnection. First, a general direct modulated optical link is compared to an external modulated optical link. And then the link performances of the proposed direct modulated optical link, including power gain, frequency response, and dynamic range, are analyzed and measured. Phantom and in vivo head images obtained using this optical link are demonstrated for comparison with those obtained by cable connections. The signal-to-noise (SNR) analysis shows that the optical link achieves 6%-8% SNR a improvement over coaxial cables by elimination of electrical interference between cables during MR signal transmission.
Visual stimulus presentation using fiber optics in the MRI scanner.
Huang, Ruey-Song; Sereno, Martin I
2008-03-30
Imaging the neural basis of visuomotor actions using fMRI is a topic of increasing interest in the field of cognitive neuroscience. One challenge is to present realistic three-dimensional (3-D) stimuli in the subject's peripersonal space inside the MRI scanner. The stimulus generating apparatus must be compatible with strong magnetic fields and must not interfere with image acquisition. Virtual 3-D stimuli can be generated with a stereo image pair projected onto screens or via binocular goggles. Here, we describe designs and implementations for automatically presenting physical 3-D stimuli (point-light targets) in peripersonal and near-face space using fiber optics in the MRI scanner. The feasibility of fiber-optic based displays was demonstrated in two experiments. The first presented a point-light array along a slanted surface near the body, and the second presented multiple point-light targets around the face. Stimuli were presented using phase-encoded paradigms in both experiments. The results suggest that fiber-optic based displays can be a complementary approach for visual stimulus presentation in the MRI scanner.
2010-01-01
Background The overall objective of this study was to develop a nanoparticle formulation for dual modality imaging of head and neck cancer. Here, we report the synthesis and characterization of polymeric phospholipid-based nanomicelles encapsulating near-infrared (NIR) phosphorescent molecules of Pt(II)-tetraphenyltetranaphthoporphyrin [Pt(TPNP)] and surface functionalized with gadolinium [Pt(TPNP)-Gd] for combined magnetic resonance imaging (MRI) and NIR optical imaging applications. Methods Dynamic light scattering, electron microscopy, optical spectroscopy and MR relaxometric measurements were performed to characterize the optical and magnetic properties of nanoparticles in vitro. Subsequently, in vivo imaging experiments were carried out using nude mice bearing primary patient tumor-derived human head and neck squamous cell carcinoma xenografts. Results The nanomicelles were ~100 nm in size and stable in aqueous suspension. T1-weighted MRI and relaxation rate (R1 = 1/T1) measurements carried out at 4.7 T revealed enhancement in the tumor immediately post injection with nanomicelles, particularly in the tumor periphery which persisted up to 24 hours post administration. Maximum intensity projections (MIPs) generated from 3D T1-weighted images also demonstrated visible enhancement in contrast within the tumor, liver and blood vessels. NIR optical imaging performed (in vivo and ex vivo) following completion of MRI at the 24 h time point confirmed tumor localization of the nanoparticles. The large spectral separation between the Pt(TPNP) absorption (~700 nm) and phosphorescence emission (~900 nm) provided a dramatic decrease in the level of background, resulting in high contrast optical (NIR phosphorescence) imaging. Conclusions In conclusion, Pt(TPNP)-Gd nanomicelles exhibit a high degree of tumor-avidity and favorable imaging properties that allow for combined MR and optical imaging of head and neck tumors. Further investigation into the potential of Pt(TPNP)-Gd nanomicelles for combined imaging and therapy of cancer is currently underway. PMID:21110873
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, W.; Korea Basic Science Institute; Stepanyan, S. S.
We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping ismore » used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the {sup 3}He-N{sub 2} mixture. The cells could be refilled. The {sup 3}He reaches around 50% polarization in 5-15 hours.« less
NASA Astrophysics Data System (ADS)
Senarathna, Janaka; Hadjiabadi, Darian; Gil, Stacy; Thakor, Nitish V.; Pathak, Arvind P.
2017-02-01
Different brain regions exhibit complex information processing even at rest. Therefore, assessing temporal correlations between regions permits task-free visualization of their `resting state connectivity'. Although functional MRI (fMRI) is widely used for mapping resting state connectivity in the human brain, it is not well suited for `microvascular scale' imaging in rodents because of its limited spatial resolution. Moreover, co-registered cerebral blood flow (CBF) and total hemoglobin (HbT) data are often unavailable in conventional fMRI experiments. Therefore, we built a customized system that combines laser speckle contrast imaging (LSCI), intrinsic optical signal (IOS) imaging and fluorescence imaging (FI) to generate multi-contrast functional connectivity maps at a spatial resolution of 10 μm. This system comprised of three illumination sources: a 632 nm HeNe laser (for LSCI), a 570 nm ± 5 nm filtered white light source (for IOS), and a 473 nm blue laser (for FI), as well as a sensitive CCD camera operating at 10 frames per second for image acquisition. The acquired data enabled visualization of changes in resting state neurophysiology at microvascular spatial scales. Moreover, concurrent mapping of CBF and HbT-based temporal correlations enabled in vivo mapping of how resting brain regions were linked in terms of their hemodynamics. Additionally, we complemented this approach by exploiting the transit times of a fluorescent tracer (Dextran-FITC) to distinguish arterial from venous perfusion. Overall, we demonstrated the feasibility of wide area mapping of resting state connectivity at microvascular resolution and created a new toolbox for interrogating neurovascular function.
Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Mushotzky, R. F.; Edelson, R.; Baumgartner, W. H.; Gandhi, P.
2012-01-01
Over three quarters in 2010 - 2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with approx 30 min sampling, > 90% duty cycle and approx < 0.1% repeatability. These data determined the AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.
Lafer-Sousa, Rosa; Liu, Yang O; Lafer-Sousa, Luis; Wiest, Michael C; Conway, Bevil R
2012-05-01
Colors defined by the two intermediate directions in color space, "orange-cyan" and "lime-magenta," elicit the same spatiotemporal average response from the two cardinal chromatic channels in the lateral geniculate nucleus (LGN). While we found LGN functional magnetic resonance imaging (fMRI) responses to these pairs of colors were statistically indistinguishable, primary visual cortex (V1) fMRI responses were stronger to orange-cyan. Moreover, linear combinations of single-cell responses to cone-isolating stimuli of V1 cone-opponent cells also yielded stronger predicted responses to orange-cyan over lime-magenta, suggesting these neurons underlie the fMRI result. These observations are consistent with the hypothesis that V1 recombines LGN signals into "higher-order" mechanisms tuned to noncardinal color directions. In light of work showing that natural images and daylight samples are biased toward orange-cyan, our findings further suggest that V1 is adapted to daylight. V1, especially double-opponent cells, may function to extract spatial information from color boundaries correlated with scene-structure cues, such as shadows lit by ambient blue sky juxtaposed with surfaces reflecting sunshine. © 2012 Optical Society of America
Ho, Leon C.; Wang, Bo; Conner, Ian P.; van der Merwe, Yolandi; Bilonick, Richard A.; Kim, Seong-Gi; Wu, Ed X.; Sigal, Ian A.; Wollstein, Gadi; Schuman, Joel S.; Chan, Kevin C.
2015-01-01
Purpose. Excitotoxicity has been linked to the pathogenesis of ocular diseases and injuries and may involve early degeneration of both anterior and posterior visual pathways. However, their spatiotemporal relationships remain unclear. We hypothesized that the effects of excitotoxic retinal injury (ERI) on the visual system can be revealed in vivo by diffusion tensor magnetic resonance imagining (DTI), manganese-enhanced magnetic resonance imagining (MRI), and optical coherence tomography (OCT). Methods. Diffusion tensor MRI was performed at 9.4 Tesla to monitor white matter integrity changes after unilateral N-methyl-D-aspartate (NMDA)-induced ERI in six Sprague-Dawley rats and six C57BL/6J mice. Additionally, four rats and four mice were intravitreally injected with saline to compare with NMDA-injected animals. Optical coherence tomography of the retina and manganese-enhanced MRI of anterograde transport were evaluated and correlated with DTI parameters. Results. In the rat optic nerve, the largest axial diffusivity decrease and radial diffusivity increase occurred within the first 3 and 7 days post ERI, respectively, suggestive of early axonal degeneration and delayed demyelination. The optic tract showed smaller directional diffusivity changes and weaker DTI correlations with retinal thickness compared with optic nerve, indicative of anterograde degeneration. The splenium of corpus callosum was also reorganized at 4 weeks post ERI. The DTI profiles appeared comparable between rat and mouse models. Furthermore, the NMDA-injured visual pathway showed reduced anterograde manganese transport, which correlated with diffusivity changes along but not perpendicular to optic nerve. Conclusions. Diffusion tensor MRI, manganese-enhanced MRI, and OCT provided an in vivo model system for characterizing the spatiotemporal changes in white matter integrity, the eye–brain relationships and structural–physiological relationships in the visual system after ERI. PMID:26066747
Ramakrishnaiah, Raghu H; Shelton, Julie B; Glasier, Charles M; Phillips, Paul H
2014-01-01
It is essential to identify hypopituitarism in children with optic nerve hypoplasia (ONH) because they are at risk for developmental delay, seizures, or death. The purpose of this study is to determine the reliability of neurohypophyseal abnormalities on magnetic resonance imaging (MRI) for the detection of hypopituitarism in children with ONH. Cross-sectional study. One hundred one children with clinical ONH who underwent MRI of the brain and orbits and a detailed pediatric endocrinologic evaluation. Magnetic resonance imaging studies were performed on 1.5-Tesla scanners. The imaging protocol included sagittal T1-weighted images, axial fast fluid-attenuated inversion-recovery/T2-weighted images, and diffusion-weighted images of the brain. Orbital imaging included fat-saturated axial and coronal images and high-resolution axial T2-weighted images. The MRI studies were reviewed by 2 pediatric neuroradiologists for optic nerve hypoplasia, absent or ectopic posterior pituitary, absent pituitary infundibulum, absent septum pellucidum, migration anomalies, and hemispheric injury. Medical records were reviewed for clinical examination findings and endocrinologic status. All patients underwent a clinical evaluation by a pediatric endocrinologist and a standardized panel of serologic testing that included serum insulin-like growth factor-1, insulin-like growth factor binding protein-3, prolactin, cortisol, adrenocorticotropic hormone, thyroid-stimulating hormone, and free thyroxine levels. Radiologists were masked to patients' endocrinologic status and funduscopic findings. Sensitivity and specificity of MRI findings for the detection of hypopituitarism. Neurohypophyseal abnormalities, including absent pituitary infundibulum, ectopic posterior pituitary bright spot, and absent posterior pituitary bright spot, occurred in 33 children. Magnetic resonance imaging disclosed neurohypophyseal abnormalities in 27 of the 28 children with hypopituitarism (sensitivity, 96%). A normal neurohypophysis occurred in 67 of 73 children with normal endocrinologic function (specificity, 92%). Neurohypophyseal abnormalities on MRI are sensitive and specific indicators of hypopituitarism in children with ONH. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Studies in nonlinear optics and functional magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Dai, Tehui
There are two parts in this thesis. The first part will involve a study in the anomalous dispersion phase matched second-harmonic generation, and the second part will be a study in functional magnetic resonance imaging (fMRI) and a biophysical model of the human muscle. In part I, we report on a series of tricyanovinylaniline chromophores for use as dopants in poled poly(methyl methacrylate) waveguides for anomalous-dispersion phase- matched second-harmonic generation. Second-harmonic generation measurements as a function of mode index confirmed anomalous dispersion phase-matching efficiencies as large as 245%/Wcm2 over a propagation length of ~35 μm. The waveguide coupling technique limited the interaction length. The photostability of the chromophores was measured directly and found to agree qualitatively with second-harmonic measurements over time and was found to be improved over previously reported materials. In part II, we designed a system that could record joint force and surface electromyography (EMG) simultaneously with fMRI data. I-Egh quality force and EMG data were obtained at the same time that excellent fMRI brain images were achieved. Using this system we determined the relationship between the fMRI-measured brain activation and the handgrip force, and between the fMRI-measured brain activation and the EMG of finger flexor muscles. We found that in the whole brain and in the majority of motor function-related cortical fields, the degree of muscle activation is directly proportional to the amplitude of the brain signal determined by the fMRI measurement. The similarity in the relationship between muscle output and fMRI signal in a number of brain areas suggests that multiple cortical fields are involved in controlling muscle force. The factors that may contribute to the fMRI signals are discussed. A biophysical twitch force model was developed to predict force response under electrical stimulation. Comparison between experimental and modeled force profiles, peak forces, and force duration shows excellent agreement between the model and the experimental data. It is concluded that the present model allows us to reproduce the main features of muscle activation under stimulation.
NASA Astrophysics Data System (ADS)
Yamamoto, Toru; Kato, Toshinori
2002-04-01
Signal increases in functional magnetic resonance imaging (fMRI) are believed to be a result of decreased paramagnetic deoxygenated haemoglobin (deoxyHb) content in the neural activation area. However, discrepancies in this canonical blood oxygenation level dependent (BOLD) theory have been pointed out in studies using optical techniques, which directly measure haemoglobin changes. To explain the discrepancies, we developed a new theory bridging magnetic resonance (MR) signal and haemoglobin changes. We focused on capillary influences, which have been neglected in most previous fMRI studies and performed a combined fMRI and near-infrared spectroscopy (NIRS) study using a language task. Paradoxically, both the MR signal and deoxyHb content increased in Broca's area. On the other hand, fMRI activation in the auditory area near large veins correlated with a mirror-image decrease in deoxyHb and increase in oxygenated haemoglobin (oxyHb), in agreement with canonical BOLD theory. All fMRI signal changes correlated consistently with changes in oxyHb, the diamagnetism of which is insensitive to MR. We concluded that the discrepancy with the canonical BOLD theory is caused by the fact that the BOLD theory ignores the effect of the capillaries. Our theory explains the paradoxical phenomena of the oxyHb and deoxyHb contributions to the MR signal and gives a new insight into the precise haemodynamics of activation by analysing fMRI and NIRS data.
Single slice US-MRI registration for neurosurgical MRI-guided US
NASA Astrophysics Data System (ADS)
Pardasani, Utsav; Baxter, John S. H.; Peters, Terry M.; Khan, Ali R.
2016-03-01
Image-based ultrasound to magnetic resonance image (US-MRI) registration can be an invaluable tool in image-guided neuronavigation systems. State-of-the-art commercial and research systems utilize image-based registration to assist in functions such as brain-shift correction, image fusion, and probe calibration. Since traditional US-MRI registration techniques use reconstructed US volumes or a series of tracked US slices, the functionality of this approach can be compromised by the limitations of optical or magnetic tracking systems in the neurosurgical operating room. These drawbacks include ergonomic issues, line-of-sight/magnetic interference, and maintenance of the sterile field. For those seeking a US vendor-agnostic system, these issues are compounded with the challenge of instrumenting the probe without permanent modification and calibrating the probe face to the tracking tool. To address these challenges, this paper explores the feasibility of a real-time US-MRI volume registration in a small virtual craniotomy site using a single slice. We employ the Linear Correlation of Linear Combination (LC2) similarity metric in its patch-based form on data from MNI's Brain Images for Tumour Evaluation (BITE) dataset as a PyCUDA enabled Python module in Slicer. By retaining the original orientation information, we are able to improve on the poses using this approach. To further assist the challenge of US-MRI registration, we also present the BOXLC2 metric which demonstrates a speed improvement to LC2, while retaining a similar accuracy in this context.
Sanganahalli, Basavaraju G.; Rebello, Michelle R.; Herman, Peter; Papademetris, Xenophon; Shepherd, Gordon M.; Verhagen, Justus V.; Hyder, Fahmeed
2015-01-01
Functional imaging signals arise from distinct metabolic and hemodynamic events at the neuropil, but how these processes are influenced by pre- and post-synaptic activities need to be understood for quantitative interpretation of stimulus-evoked mapping data. The olfactory bulb (OB) glomeruli, spherical neuropil regions with well-defined neuronal circuitry, can provide insights into this issue. Optical calcium-sensitive fluorescent dye imaging (OICa2+) reflects dynamics of pre-synaptic input to glomeruli, whereas high-resolution functional magnetic resonance imaging (fMRI) using deoxyhemoglobin contrast reveals neuropil function within the glomerular layer where both pre- and post-synaptic activities contribute. We imaged odor-specific activity patterns of the dorsal OB in the same anesthetized rats with fMRI and OICa2+ and then co-registered the respective maps to compare patterns in the same space. Maps by each modality were very reproducible as trial-to-trial patterns for a given odor, overlapping by ~80%. Maps evoked by ethyl butyrate and methyl valerate for a given modality overlapped by ~80%, suggesting activation of similar dorsal glomerular networks by these odors. Comparison of maps generated by both methods for a given odor showed ~70% overlap, indicating similar odor-specific maps by each method. These results suggest that odor-specific glomerular patterns by high-resolution fMRI primarily tracks pre-synaptic input to the OB. Thus combining OICa2+ and fMRI lays the framework for studies of OB processing over a range of spatiotemporal scales, where OICa2+ can feature the fast dynamics of dorsal glomerular clusters and fMRI can map the entire glomerular sheet in the OB. PMID:26631819
Morawski, Markus; Kirilina, Evgeniya; Scherf, Nico; Jäger, Carsten; Reimann, Katja; Trampel, Robert; Gavriilidis, Filippos; Geyer, Stefan; Biedermann, Bernd; Arendt, Thomas; Weiskopf, Nikolaus
2017-11-28
Recent breakthroughs in magnetic resonance imaging (MRI) enabled quantitative relaxometry and diffusion-weighted imaging with sub-millimeter resolution. Combined with biophysical models of MR contrast the emerging methods promise in vivo mapping of cyto- and myelo-architectonics, i.e., in vivo histology using MRI (hMRI) in humans. The hMRI methods require histological reference data for model building and validation. This is currently provided by MRI on post mortem human brain tissue in combination with classical histology on sections. However, this well established approach is limited to qualitative 2D information, while a systematic validation of hMRI requires quantitative 3D information on macroscopic voxels. We present a promising histological method based on optical 3D imaging combined with a tissue clearing method, Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging compatible Tissue hYdrogel (CLARITY), adapted for hMRI validation. Adapting CLARITY to the needs of hMRI is challenging due to poor antibody penetration into large sample volumes and high opacity of aged post mortem human brain tissue. In a pilot experiment we achieved transparency of up to 8 mm-thick and immunohistochemical staining of up to 5 mm-thick post mortem brain tissue by a combination of active and passive clearing, prolonged clearing and staining times. We combined 3D optical imaging of the cleared samples with tailored image processing methods. We demonstrated the feasibility for quantification of neuron density, fiber orientation distribution and cell type classification within a volume with size similar to a typical MRI voxel. The presented combination of MRI, 3D optical microscopy and image processing is a promising tool for validation of MRI-based microstructure estimates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Mattei, E; Calcagnini, G; Triventi, M; Delogu, A; Del Guercio, M; Angeloni, A; Bartolini, P
2013-01-01
The time-varying gradient fields generated during Magnetic Resonance Imaging (MRI) procedures have the potential to induce electrical current on implanted endocardial leads. Whether this current can result in undesired cardiac stimulation is unknown. This paper presents an optically coupled system with the potential to quantitatively measure the currents induced by the gradient fields into endocardial leads during MRI procedures. Our system is based on a microcontroller that works as analog-to-digital (A/D) converter and sends the current signal acquired from the lead to an optical high-speed light-emitting-diode transmitter. Plastic fiber guides the light outside the MRI chamber, to a photodiode receiver and then to an acquisition board connected to a PC. The preliminary characterization of the performances of the system is also presented.
Jiang, Lu; Greenwood, Tiffany R.; Amstalden van Hove, Erika R.; Chughtai, Kamila; Raman, Venu; Winnard, Paul T.; Heeren, Ron; Artemov, Dmitri; Glunde, Kristine
2014-01-01
Applications of molecular imaging in cancer and other diseases frequently require combining in vivo imaging modalities, such as magnetic resonance and optical imaging, with ex vivo optical, fluorescence, histology, and immunohistochemical (IHC) imaging, to investigate and relate molecular and biological processes to imaging parameters within the same region of interest. We have developed a multimodal image reconstruction and fusion framework that accurately combines in vivo magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI), ex vivo brightfield and fluorescence microscopic imaging, and ex vivo histology imaging. Ex vivo brightfield microscopic imaging was used as an intermediate modality to facilitate the ultimate link between ex vivo histology and in vivo MRI/MRSI. Tissue sectioning necessary for optical and histology imaging required generation of a three-dimensional (3D) reconstruction module for 2D ex vivo optical and histology imaging data. We developed an external fiducial marker based 3D reconstruction method, which was able to fuse optical brightfield and fluorescence with histology imaging data. Registration of 3D tumor shape was pursued to combine in vivo MRI/MRSI and ex vivo optical brightfield and fluorescence imaging data. This registration strategy was applied to in vivo MRI/MRSI, ex vivo optical brightfield/fluorescence, as well as histology imaging data sets obtained from human breast tumor models. 3D human breast tumor data sets were successfully reconstructed and fused with this platform. PMID:22945331
Beck, Roy W; Trobe, Jonathan D; Moke, Pamela S; Gal, Robin L; Xing, Dongyuan; Bhatti, M Tariq; Brodsky, Michael C; Buckley, Edward G; Chrousos, Georgia A; Corbett, James; Eggenberger, Eric; Goodwin, James A; Katz, Barrett; Kaufman, David I; Keltner, John L; Kupersmith, Mark J; Miller, Neil R; Nazarian, Sarkis; Orengo-Nania, Silvia; Savino, Peter J; Shults, William T; Smith, Craig H; Wall, Michael
2003-07-01
To identify factors associated with a high and low risk of developing multiple sclerosis after an initial episode of optic neuritis. Three hundred eighty-eight patients who experienced acute optic neuritis between July 1, 1988, and June 30, 1991, were followed up prospectively for the development of multiple sclerosis. Consenting patients were reassessed after 10 to 13 years. The 10-year risk of multiple sclerosis was 38% (95% confidence interval, 33%-43%). Patients (160) who had 1 or more typical lesions on the baseline magnetic resonance imaging (MRI) scan of the brain had a 56% risk; those with no lesions (191) had a 22% risk (P<.001, log rank test). Among the patients who had no lesions on MRI, male gender and optic disc swelling were associated with a lower risk of multiple sclerosis, as was the presence of the following atypical features for optic neuritis: no light perception vision; absence of pain; and ophthalmoscopic findings of severe optic disc edema, peripapillary hemorrhages, or retinal exudates. The 10-year risk of multiple sclerosis following an initial episode of acute optic neuritis is significantly higher if there is a single brain MRI lesion; higher numbers of lesions do not appreciably increase that risk. However, even when brain lesions are seen on MRI, more than 40% of the patients will not develop clinical multiple sclerosis after 10 years. In the absence of MRI lesions, certain demographic and clinical features seem to predict a very low likelihood of developing multiple sclerosis. This natural history information is a critical input for estimating a patient's 10-year multiple sclerosis risk and for weighing the benefit of initiating prophylactic treatment at the time of optic neuritis or other initial demyelinating events in the central nervous system.
MRI-guided fiber-based fluorescence molecular tomography for preclinical atherosclerosis imaging
NASA Astrophysics Data System (ADS)
Li, Baoqiang; Pouliot, Philippe; Lesage, Frederic
2014-09-01
Multi-modal imaging combining fluorescent molecular tomography (FMT) with MRI could provide information in these two modalities as well as optimize the recovery of functional information with MR-guidance. Here, we present a MRI-guided FMT system. An optical probe was designed consisting of a fiber plate on the top and bottom sides of the animal bed, respectively. In experiment, animal was installed between the two plates. Mounting fibers on each plate, transmission measuring could be conducted from both sides of the animal. Moreover, an accurate fluorescence reconstruction was achieved with MRI-derived anatomical guidance. The sensitivity of the FMT system was evaluated with a phantom showing that with long fibers, it was sufficient to detect 10nM Cy5.5 solution with ~28.5 dB in the phantom. The system was eventually used to image MMP activity involved in atherosclerosis with two ATX mice and two control mice. The reconstruction results were in agreement with ex vivo measurement.
Duncan, Robert O; Sample, Pamela A; Bowd, Christopher; Weinreb, Robert N; Zangwill, Linda M
2012-05-01
Altered metabolic activity has been identified as a potential contributing factor to the neurodegeneration associated with primary open angle glaucoma (POAG). Consequently, we sought to determine whether there is a relationship between the loss of visual function in human glaucoma and resting blood perfusion within primary visual cortex (V1). Arterial spin labeling (ASL) functional magnetic resonance imaging (fMRI) was conducted in 10 participants with POAG. Resting cerebral blood flow (CBF) was measured from dorsal and ventral V1. Behavioral measurements of visual function were obtained using standard automated perimetry (SAP), short-wavelength automated perimetry (SWAP), and frequency-doubling technology perimetry (FDT). Measurements of CBF were compared to differences in visual function for the superior and inferior hemifield. Differences in CBF between ventral and dorsal V1 were correlated with differences in visual function for the superior versus inferior visual field. A statistical bootstrapping analysis indicated that the observed correlations between fMRI responses and measurements of visual function for SAP (r=0.49), SWAP (r=0.63), and FDT (r=0.43) were statistically significant (all p<0.05). Resting blood perfusion in human V1 is correlated with the loss of visual function in POAG. Altered CBF may be a contributing factor to glaucomatous optic neuropathy, or it may be an indication of post-retinal glaucomatous neurodegeneration caused by damage to the retinal ganglion cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ritter, Markus; Hummer, Allan; Ledolter, Anna A; Holder, Graham E; Windischberger, Christian; Schmidt-Erfurth, Ursula M
2018-04-26
The present study describes retinotopic mapping of the primary visual cortex using functional MRI (fMRI) in patients with retinal disease. It addresses the relationship between fMRI data and data obtained by conventional assessment including microperimetry (MP) and structural imaging. Initial testing involved eight patients with central retinal disease (Stargardt disease, STGD) and eight with peripheral retinal disease (retinitis pigmentosa, RP), who were examined using fMRI and MP (Nidek MP-1). All had a secure clinical diagnosis supported by electrophysiological data. fMRI used population-receptive field (pRF) mapping to provide retinotopic data that were then compared with the results of MP, optical coherence tomography and fundus autofluorescence imaging. Full analysis, following assessment of fMRI data reliability criteria, was performed in five patients with STGD and seven patients with RP; unstable fixation was responsible for unreliable pRF measurements in three patients excluded from final analysis. The macular regions in patients with STGD with central visual field defects and outer retinal atrophy (ORA) at the macula correlated well with pRF coverage maps showing reduced density of activated voxels at the occipital pole. Patients with RP exhibited peripheral ORA and concentric visual field defects both on MP and pRF mapping. Anterior V1 voxels, corresponding to peripheral regions, showed no significant activation. Correspondence between MP and pRF mapping was quantified by calculating the simple matching coefficient. Retinotopic maps acquired by fMRI provide a valuable adjunct in the assessment of retinal dysfunction. The addition of microperimetric data to pRF maps allowed better assessment of macular function than MP alone. Unlike MP, pRF mapping provides objective data independent of psychophysical perception from the patient. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Design and validation of a bimodal MRI-optics endoluminal probe for colorectal cancer diagnosis
NASA Astrophysics Data System (ADS)
Ramgolam, A.; Sablong, R.; Saint-Jalmes, H.; Beuf, O.
2009-07-01
In the light of the bimodal technical innovations put forward in the diagnosis of early stage colorectal cancer, we present a preliminary study based on a first prototype of a high Resolution MRI-Optics probe along with the first tests carried out and the results obtained.
Magnetic resonance imaging of optic nerve
Gala, Foram
2015-01-01
Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies. PMID:26752822
Validation of a Prototype Optical Computed Tomography System
Zakariaee, Seyed Salman; Molazadeh, Mikaeil; Takavar, Abbas; Shirazi, Alireza; Mesbahi, Asghar; Zeinali, Ahad
2015-01-01
In radiation cancer treatments, the most of the side effects could be minimized using a proper dosimeter. Gel dosimeter is the only three-dimensional dosimeter and magnetic resonance imaging (MRI) is the gold standard method for gel dosimeter readout. Because of hard accessibility and high cost of sample reading by MRI systems, some other alternative methods were developed. The optical computed tomography (OCT) method could be considered as the most promising alternative method that has been studied widely. In the current study, gel dosimeter scanning using a prototype optical scanner and validation of this optical scanner was performed. Optical absorbance of the irradiated gel samples was determined by both of conventional spectrophotometer and the fabricated OCT system at 632 nm. Furthermore, these irradiated vials were scanned by a 1.5 T MRI. The slope of the curves was extracted as the dose-response sensitivity. The R2-dose sensitivity measured by MRI method was 0.1904 and 0.113 for NIPAM and PAGAT gels, respectively. The optical dose sensitivity obtained by conventional spectrophotometer and the fabricated optical scanner was 0.0453 and 0.0442 for NIPAM gels and 0.0244 and 0.0242 for PAGAT gels, respectively. The scanning results of the absorbed dose values showed that the new OCT and conventional spectrophotometer were in fair agreement. From the results, it could be concluded that the fabricated system is able to quantize the absorbed dose values in polymer gel samples with acceptable accuracy. PMID:26120572
Dynamic physiological modeling for functional diffuse optical tomography
Diamond, Solomon Gilbert; Huppert, Theodore J.; Kolehmainen, Ville; Franceschini, Maria Angela; Kaipio, Jari P.; Arridge, Simon R.; Boas, David A.
2009-01-01
Diffuse optical tomography (DOT) is a noninvasive imaging technology that is sensitive to local concentration changes in oxy- and deoxyhemoglobin. When applied to functional neuroimaging, DOT measures hemodynamics in the scalp and brain that reflect competing metabolic demands and cardiovascular dynamics. The diffuse nature of near-infrared photon migration in tissue and the multitude of physiological systems that affect hemodynamics motivate the use of anatomical and physiological models to improve estimates of the functional hemodynamic response. In this paper, we present a linear state-space model for DOT analysis that models the physiological fluctuations present in the data with either static or dynamic estimation. We demonstrate the approach by using auxiliary measurements of blood pressure variability and heart rate variability as inputs to model the background physiology in DOT data. We evaluate the improvements accorded by modeling this physiology on ten human subjects with simulated functional hemodynamic responses added to the baseline physiology. Adding physiological modeling with a static estimator significantly improved estimates of the simulated functional response, and further significant improvements were achieved with a dynamic Kalman filter estimator (paired t tests, n = 10, P < 0.05). These results suggest that physiological modeling can improve DOT analysis. The further improvement with the Kalman filter encourages continued research into dynamic linear modeling of the physiology present in DOT. Cardiovascular dynamics also affect the blood-oxygen-dependent (BOLD) signal in functional magnetic resonance imaging (fMRI). This state-space approach to DOT analysis could be extended to BOLD fMRI analysis, multimodal studies and real-time analysis. PMID:16242967
Posterior Eye Shape Measurement With Retinal OCT Compared to MRI
Kuo, Anthony N.; Verkicharla, Pavan K.; McNabb, Ryan P.; Cheung, Carol Y.; Hilal, Saima; Farsiu, Sina; Chen, Christopher; Wong, Tien Y.; Ikram, M. Kamran; Cheng, Ching Y.; Young, Terri L.; Saw, Seang M.; Izatt, Joseph A.
2016-01-01
Purpose Posterior eye shape assessment by magnetic resonance imaging (MRI) is used to study myopia. We tested the hypothesis that optical coherence tomography (OCT), as an alternative, could measure posterior eye shape similarly to MRI. Methods Macular spectral-domain OCT and brain MRI images previously acquired as part of the Singapore Epidemiology of Eye Diseases study were analyzed. The right eye in the MRI and OCT images was automatically segmented. Optical coherence tomography segmentations were corrected for optical and display distortions requiring biometry data. The segmentations were fitted to spheres and ellipsoids to obtain the posterior eye radius of curvature (Rc) and asphericity (Qxz). The differences in Rc and Qxz measured by MRI and OCT were tested using paired t-tests. Categorical assignments of prolateness or oblateness using Qxz were compared. Results Fifty-two subjects (67.8 ± 5.6 years old) with spherical equivalent refraction from +0.50 to −5.38 were included. The mean paired difference between MRI and original OCT posterior eye Rc was 24.03 ± 46.49 mm (P = 0.0005). For corrected OCT images, the difference in Rc decreased to −0.23 ± 2.47 mm (P = 0.51). The difference between MRI and OCT asphericity, Qxz, was −0.052 ± 0.343 (P = 0.28). However, categorical agreement was only moderate (κ = 0.50). Conclusions Distortion-corrected OCT measurements of Rc and Qxz were not statistically significantly different from MRI, although the moderate categorical agreement suggests that individual differences remained. This study provides evidence that with distortion correction, noninvasive office-based OCT could potentially be used instead of MRI for the study of posterior eye shape. PMID:27409473
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, G; Guo, Y; Yin, Y
Purpose: To study the contour and dosimetric feature of organs at risk (OARs) applying magnetic resonance imaging (MRI) images in intensity modulated radiation therapy (IMRT) of nasopharyngeal carcinoma (NPC) compared to computed tomography (CT) images. Methods: 35 NPC patients was selected into this trail. CT simulation with non-contrast and contrast enhanced scan, MRI simulation with non-contrast and contrast enhanced T1, T2 and diffusion weighted imaging were achieved sequentially. And the OARs were contoured on the CT and MRI images after rigid registration respectively. 9 beams IMRT plan with equal division angle were designed for every patients, and the prescription dosemore » for tumor target was set as 72Gy (2.4Gy/ fration). The boundary display, volume and dose-volume indices of each organ were compared between on MRI and CT images. Results: Compared to CT, MRI showed clearer boundary of brainstem, spinal cord, the deep lobe of Parotid gland and the optical nerve in canal. MRI images increase the volume of lens, optical nerve, while reducing the volume of eye slightly, and the maximum dose of lens, the mean dose of eyes and optical raised in different percentage, while there was no statistical differences were found. The left and right parotid volume on MRI increased by 7.07%, 8.13%, and the mean dose raised by 14.95% (4.01Gy), 18.76% (4.95Gy) with statistical significant difference (p<0.05). The brainstem volume reduced by 9.33% (p<0.05), and the dose of 0.1cm3 volume (D0.1cm3) reduced by mean 8.46% (4.32Gy), and D0.1cm3 of spinal cord increased by 1.5Gy on MRI. Conclusion: It is credible to evaluate the radiation dose of lens, eye and the spinal cord, while it should be necessary to evaluate the dose of brainstem, parotid and the optical nerve applying MRI images sometime, it will be more meaningful for these organs with high risk of radiation injury.« less
Karageorgis, Anastassia; Dufort, Sandrine; Sancey, Lucie; Henry, Maxime; Hirsjärvi, Samuli; Passirani, Catherine; Benoit, Jean-Pierre; Gravier, Julien; Texier, Isabelle; Montigon, Olivier; Benmerad, Mériem; Siroux, Valérie; Barbier, Emmanuel L.; Coll, Jean-Luc
2016-01-01
Nanoparticles are useful tools in oncology because of their capacity to passively accumulate in tumors in particular via the enhanced permeability and retention (EPR) effect. However, the importance and reliability of this effect remains controversial and quite often unpredictable. In this preclinical study, we used optical imaging to detect the accumulation of three types of fluorescent nanoparticles in eight different subcutaneous and orthotopic tumor models, and dynamic contrast-enhanced and vessel size index Magnetic Resonance Imaging (MRI) to measure the functional parameters of these tumors. The results demonstrate that the permeability and blood volume fraction determined by MRI are useful parameters for predicting the capacity of a tumor to accumulate nanoparticles. Translated to a clinical situation, this strategy could help anticipate the EPR effect of a particular tumor and thus its accessibility to nanomedicines. PMID:26892874
Karageorgis, Anastassia; Dufort, Sandrine; Sancey, Lucie; Henry, Maxime; Hirsjärvi, Samuli; Passirani, Catherine; Benoit, Jean-Pierre; Gravier, Julien; Texier, Isabelle; Montigon, Olivier; Benmerad, Mériem; Siroux, Valérie; Barbier, Emmanuel L; Coll, Jean-Luc
2016-02-19
Nanoparticles are useful tools in oncology because of their capacity to passively accumulate in tumors in particular via the enhanced permeability and retention (EPR) effect. However, the importance and reliability of this effect remains controversial and quite often unpredictable. In this preclinical study, we used optical imaging to detect the accumulation of three types of fluorescent nanoparticles in eight different subcutaneous and orthotopic tumor models, and dynamic contrast-enhanced and vessel size index Magnetic Resonance Imaging (MRI) to measure the functional parameters of these tumors. The results demonstrate that the permeability and blood volume fraction determined by MRI are useful parameters for predicting the capacity of a tumor to accumulate nanoparticles. Translated to a clinical situation, this strategy could help anticipate the EPR effect of a particular tumor and thus its accessibility to nanomedicines.
A home-built digital optical MRI console using high-speed serial links.
Tang, Weinan; Wang, Weimin; Liu, Wentao; Ma, Yajun; Tang, Xin; Xiao, Liang; Gao, Jia-Hong
2015-08-01
To develop a high performance, cost-effective digital optical console for scalable multichannel MRI. The console system was implemented with flexibility and efficiency based on a modular architecture with distributed pulse sequencers. High-speed serial links were optimally utilized to interconnect the system, providing fast digital communication with a multi-gigabit data rate. The conventional analog radio frequency (RF) chain was replaced with a digital RF manipulation. The acquisition electronics were designed in close proximity to RF coils and preamplifiers, using a digital optical link to transmit the MR signal. A prototype of the console was constructed with a broad frequency range from direct current to 100 MHz. A temporal resolution of 1 μs was achieved for both the RF and gradient operations. The MR signal was digitized in the scanner room with an overall dynamic range between 16 and 24 bits and was transmitted to a master controller over a duplex optic fiber with a high data rate of 3.125 gigabits per second. High-quality phantom and human images were obtained using the prototype on both 0.36T and 1.5T clinical MRI scanners. A homemade digital optical MRI console with high-speed serial interconnection has been developed to better serve imaging research and clinical applications. © 2014 Wiley Periodicals, Inc.
A novel optically transparent RF shielding for fully integrated PET/MRI systems
NASA Astrophysics Data System (ADS)
Parl, C.; Kolb, A.; Schmid, A. M.; Wehrl, H. F.; Disselhorst, J. A.; Soubiran, P. D.; Stricker-Shaver, D.; Pichler, B. J.
2017-09-01
Preclinical imaging benefits from simultaneous acquisition of high-resolution anatomical and molecular data. Additionally, PET/MRI systems can provide functional PET and functional MRI data. To optimize PET sensitivity, we propose a system design that fully integrates the MRI coil into the PET system. This allows positioning the scintillators near the object but requires an optimized design of the MRI coil and PET detector. It further requires a new approach in realizing the radiofrequency (RF) shielding. Thus, we propose the use of an optically transparent RF shielding material between the PET scintillator and the light sensor, suppressing the interference between both systems. We evaluated two conductive foils (ITO, 9900) and a wire mesh. The PET performance was tested on a dual-layer scintillator consisting of 12 × 12 LSO matrices, shifted by half a pitch. The pixel size was 0.9 × 0.9 mm2 the lengths were 10.0 mm and 5.0 mm, respectively. For a light sensor, we used a 4 × 4 SiPM array. The RF attenuation was measured from 320 kHz to 420 MHz using two pick-up coils. MRI-compatibility and shielding effect of the materials were evaluated with an MRI system. The average FWHM energy resolution at 511 keV of all 144 crystals of the layer next to the SiPM was deteriorated from 15.73 ± 0.24% to 16.32 ± 0.13%, 16.60 ± 0.25%, and 19.16 ± 0.21% by the ITO foil, 9900 foil, mesh material, respectively. The average peak-to-valley ratio of the PET detector changed from 5.77 ± 0.29 to 4.50 ± 0.39, 4.78 ± 0.48, 3.62 ± 0.16, respectively. The ITO, 9900, mesh attenuated the scintillation light by 11.3 ± 1.6%, 11.0 ± 1.8%, 54.3 ± 0.4%, respectively. To attenuate the RF from 20 MHz to 200 MHz, mesh performed better than copper. The results show that an RF shielding material that is sufficiently transparent for scintillation light and is MRI compatible can be obtained. This result enables the development of a fully integrated PET detector and MRI coil assembly.
Duffy, Ben A; Choy, ManKin; Chuapoco, Miguel R; Madsen, Michael; Lee, Jin Hyung
2017-01-01
In preclinical studies, implanted electrodes can cause severe degradation of MRI images and hence are seldom used for chronic studies employing functional magnetic resonance imaging. In this study, we developed carbon fiber optrodes (optical fiber and electrode hybrid devices), which can be utilised in chronic longitudinal studies aiming to take advantage of emerging optogenetic technologies, and compared them with the more widely used tungsten optrodes. We find that optrodes constructed using small diameter (~130 μm) carbon fiber electrodes cause significantly reduced artifact on functional MRI images compared those made with 50 μm diameter tungsten wire and at the same time the carbon electrodes have lower impedance, which leads to higher quality intracranial LFP recordings. In order to validate this approach, we use these devices to study optogenetically-induced seizure-like afterdischarges in rats sedated with dexmedetomidine and compare these to sub (seizure) threshold stimulations in the same animals. The results indicate that seizure-like afterdischarges involve several extrahippocampal brain regions that are not recruited by subthreshold optogenetic stimulation of the hippocampus at 20 Hz. Subthreshold stimulation led to activation of the entire ipsilateral hippocampus, whereas afterdischarges additionally produced activations in the contralateral hippocampal formation, septum, neocortex, cerebellum, nucleus accumbens, and thalamus. Although we demonstrate just one application, given the ease of fabrication, we anticipate that carbon fiber optrodes could be utilised in a variety of studies that could benefit from longitudinal optogenetic functional magnetic resonance imaging. PMID:26208873
Imaging separation of neuronal from vascular effects of cocaine on rat cortical brain in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Z.; Du, C.; Yuan, Z.
MRI techniques to study brain function assume coupling between neuronal activity, metabolism and flow. However, recent evidence of physiological uncoupling between neuronal and cerebrovascular events highlights the need for methods to simultaneously measure these three properties. We report a multimodality optical approach that integrates dual-wavelength laser speckle imaging (measures changes in blood flow, blood volume and hemoglobin oxygenation), digital-frequency-ramping optical coherence tomography (images quantitative 3D vascular network) and Rhod2 fluorescence (images intracellular calcium for measure of neuronal activity) at high spatiotemporal resolutions (30 {micro}m, 10 Hz) and over a large field of view (3 x 5 mm{sup 2}). We applymore » it to assess cocaine's effects in rat cortical brain and show an immediate decrease 3.5 {+-} 0.9 min, phase (1) in the oxygen content of hemoglobin and the cerebral blood flow followed by an overshoot 7.1 {+-} 0.2 min, phase (2) lasting over 20 min whereas Ca{sup 2+} increased immediately (peaked at t = 4.1 {+-} 0.4 min) and remained elevated. This enabled us to identify a delay (2.9 {+-} 0.5 min) between peak neuronal and vascular responses in phase 2. The ability of this multimodality optical approach for simultaneous imaging at high spatiotemporal resolutions permits us to distinguish the vascular versus cellular changes of the brain, thus complimenting other neuroimaging modalities for brain functional studies (e. g., PET, fMRI).« less
[Devic disease: a rare cause of retrobulbar optic neuritis: a case report].
Sempińska-Szewczyk, J; Weglewski, A; Juryńczyk, J; Cybulska, B
2000-01-01
A case of 58-year-old woman with recurrent retrobulbar optic neuritis (ron) and transverse myelitis is presented. The patient was admitted to the opthalmology unit because of acute right retrobulbar optic neuritis. In 1997 she complained of left retrobulbar optic neuritis. One year later transverse myelitis of thoracic spine with spastic paraparesis occurred. MRI examination showed T2 hyperintensive focus in the thoracic spine (Th8-Th9, probably demyelinisation). Nowadays MRI examination of the optic nerves and brain showed demyelinisation focus in the right optic nerve. There was no pathological changes in the brain. The diagnosis of Devic disease was established. Treatment with intravenous methyloprednisolon was administered with slight improvement. The pathology and clinical course of Devic disease are discussed.
Seibel, Ira; Riechardt, Aline I; Erb-Eigner, Katharina; Böker, Alexander; Cordini, Dino; Heufelder, Jens; Joussen, Antonia M
2018-04-12
This study was performed to show long-term outcomes concerning metastasis rates and local recurrence rates after primary proton beam therapy in uveal melanoma with posterior extraocular extension (EOE) with the main focus on optic nerve invasion. Retrospective case series METHODS: All patients treated with primary proton beam therapy for choroidal or ciliary body melanoma with posterior EOE between July 1998 and August 2010 were included. EOE was either detected upon sonography at primary examination or during the surgical application of tantalum clips onto the sclera. Ultrasound was performed in each patient before surgery, and if EOE was detected, a magnetic resonance imaging (MRI) scan was performed to confirm EOE. All patients with tumors exceeding 6 mm in thickness or abutting the optic disc received a 1.5 Tesla MRI scan after clip surgery. To asses EOE during follow-up, either ultrasound examinations or-if initially detected only by MRI-MRI scans were performed during follow-up. A total of 27 patients underwent primary proton beam therapy. The EOE was separated into 3 growth types: Optic nerve infiltration in 10 patients, vortex vein infiltration in 9 patients, and transscleral growth post-equatorially in 8 patients. No local recurrences were found during the overall median follow-up of 80 months (11-168 months). Metastasis rates correlated with AJCC stages but not EOE volume. This study shows that posterior EOE can safely be treated by proton beam therapy, even if the optic nerve is infiltrated. MRI enables safe detection of optic nerve invasion. Copyright © 2018 Elsevier Inc. All rights reserved.
Seruca, Cristina; Ródenas, Sergio; Leiva, Marta; Peña, Teresa; Añor, Sònia
2010-09-01
To describe the ophthalmologic, neurologic, and magnetic resonance imaging (MRI) findings of seven animals with acute postretinal blindness as sole neurologic deficit. Medical records were reviewed to identify dogs and cats with postretinal blindness of acute presentation, that had a cranial MRI performed as part of the diagnostic workup. Only animals lacking other neurologic signs at presentation were included. Complete physical, ophthalmic, and neurologic examinations, routine laboratory evaluations, thoracic radiographs, abdominal ultrasound, electroretinography, and brain MRI were performed in all animals. Cerebrospinal fluid analysis and postmortem histopathologic results were recorded when available. Four dogs and three cats met the inclusion criteria. Lesions affecting the visual pathways were observed on magnetic resonance (MR) images in six cases. Location, extension, and MRI features were described. Neuroanatomic localization included: olfactory region with involvement of the optic chiasm (n = 4), pituitary fossa with involvement of the optic chiasm and optic tracts (n = 1), and optic nerves (n = 1). Of all lesions detected, five were consistent with intracranial tumors (two meningiomas, one pituitary tumor, two nasal tumors with intracranial extension), and one with bilateral optic neuritis that was confirmed by cerebrospinal fluid analysis. Histologic diagnosis was obtained in four cases and included one meningioma, one pituitary carcinoma, one nasal osteosarcoma, and one nasal carcinoma. Central nervous system (CNS) disease should be considered in dogs and cats with acute blindness, even when other neurologic deficits are absent. This study emphasizes the relevance of MRI as a diagnostic tool for detection and characterization of CNS lesions affecting the visual pathways.
NASA Astrophysics Data System (ADS)
Yao, Xiuya; Chaganti, Shikha; Nabar, Kunal P.; Nelson, Katrina; Plassard, Andrew; Harrigan, Rob L.; Mawn, Louise A.; Landman, Bennett A.
2017-02-01
Eye diseases and visual impairment affect millions of Americans and induce billions of dollars in annual economic burdens. Expounding upon existing knowledge of eye diseases could lead to improved treatment and disease prevention. This research investigated the relationship between structural metrics of the eye orbit and visual function measurements in a cohort of 470 patients from a retrospective study of ophthalmology records for patients (with thyroid eye disease, orbital inflammation, optic nerve edema, glaucoma, intrinsic optic nerve disease), clinical imaging, and visual function assessments. Orbital magnetic resonance imaging (MRI) and computed tomography (CT) images were retrieved and labeled in 3D using multi-atlas label fusion. Based on the 3D structures, both traditional radiology measures (e.g., Barrett index, volumetric crowding index, optic nerve length) and novel volumetric metrics were computed. Using stepwise regression, the associations between structural metrics and visual field scores (visual acuity, functional acuity, visual field, functional field, and functional vision) were assessed. Across all models, the explained variance was reasonable (R2 0.1-0.2) but highly significant (p < 0.001). Instead of analyzing a specific pathology, this study aimed to analyze data across a variety of pathologies. This approach yielded a general model for the connection between orbital structural imaging biomarkers and visual function.
Oida, Takenori; Kobayashi, Tetsuo
2013-01-01
Ultra-low field magnetic resonance imaging (ULF-MRI) has attracted attention because of its low running costs and minimum patient exposure. An optically pumped atomic magnetometer (OPAM) is a magnetic sensor with high sensitivity in the low frequency range, which does not require a cryogenic cooling system. In an effort to develop a ULF-MRI, we attempted to measure the free induction decay MR signals with an OPAM. We successfully detected the MR signals by combining an OPAM and a flux transformer, demonstrating the feasibility of the proposed system.
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Majewski, Stan; Velan, S. Sendhil; Lemieux, Susan; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.
2007-06-01
Multi-modality imaging (such as PET-CT) is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET, fused with anatomical images created by MRI, allow the correlation of form with function. Perhaps more exciting than the combination of anatomical MRI with PET, is the melding of PET with MR spectroscopy (MRS). Thus, two aspects of physiology could be combined in novel ways to produce new insights into the physiology of normal and pathological processes. Our team is developing a system to acquire MRI images and MRS spectra, and PET images contemporaneously. The prototype MR-compatible PET system consists of two opposed detector heads (appropriate in size for small animal imaging), operating in coincidence mode with an active field-of-view of ˜14 cm in diameter. Each detector consists of an array of LSO detector elements coupled through a 2-m long fiber optic light guide to a single position-sensitive photomultiplier tube. The use of light guides allows these magnetic field-sensitive elements of the PET imager to be positioned outside the strong magnetic field of our 3T MRI scanner. The PET scanner imager was integrated with a 12-cm diameter, 12-leg custom, birdcage coil. Simultaneous MRS spectra and PET images were successfully acquired from a multi-modality phantom consisting of a sphere filled with 17 brain relevant substances and a positron-emitting radionuclide. There were no significant changes in MRI or PET scanner performance when both were present in the MRI magnet bore. This successful initial test demonstrates the potential for using such a multi-modality to obtain complementary MRS and PET data.
Choy, Garry; Choyke, Peter; Libutti, Steven K
2003-10-01
Recently, there has been tremendous interest in developing techniques such as MRI, micro-CT, micro-PET, and SPECT to image function and processes in small animals. These technologies offer deep tissue penetration and high spatial resolution, but compared with noninvasive small animal optical imaging, these techniques are very costly and time consuming to implement. Optical imaging is cost-effective, rapid, easy to use, and can be readily applied to studying disease processes and biology in vivo. In vivo optical imaging is the result of a coalescence of technologies from chemistry, physics, and biology. The development of highly sensitive light detection systems has allowed biologists to use imaging in studying physiological processes. Over the last few decades, biochemists have also worked to isolate and further develop optical reporters such as GFP, luciferase, and cyanine dyes. This article reviews the common types of fluorescent and bioluminescent optical imaging, the typical system platforms and configurations, and the applications in the investigation of cancer biology.
Castonguay, Alexandre; Lefebvre, Joël; Pouliot, Philippe; Avti, Pramod; Moeini, Mohammad; Lesage, Frédéric
2017-01-01
Normal aging is accompanied by structural changes in the heart architecture. To explore this remodeling, we used a serial optical coherence tomography scanner to image entire mouse hearts at micron scale resolution. Ex vivo hearts of 7 young (4 months) and 5 old (24 months) C57BL/6 mice were acquired with the imaging platform. OCT of the myocardium revealed myofiber orientation changing linearly from the endocardium to the epicardium. In old mice, this rate of change was lower when compared to young mice while the average volume of old mice hearts was significantly larger (p<0.05). Myocardial wall thickening was also accompanied by extracellular spacing in the endocardium, resulting in a lower OCT attenuation coefficient in old mice endocardium (p<0.05). Prior to serial sectioning, cardiac function of the same hearts was imaged in vivo using MRI and revealed a reduced ejection fraction with aging. The use of a serial optical coherence tomography scanner allows new insight into fine age-related changes of the heart associated with changes in heart function. PMID:29188099
Image-guided Navigation of Single-element Focused Ultrasound Transducer
Kim, Hyungmin; Chiu, Alan; Park, Shinsuk; Yoo, Seung-Schik
2014-01-01
The spatial specificity and controllability of focused ultrasound (FUS), in addition to its ability to modify the excitability of neural tissue, allows for the selective and reversible neuromodulation of the brain function, with great potential in neurotherapeutics. Intra-operative magnetic resonance imaging (MRI) guidance (in short, MRg) has limitations due to its complicated examination logistics, such as fixation through skull screws to mount the stereotactic frame, simultaneous sonication in the MRI environment, and restrictions in choosing MR-compatible materials. In order to overcome these limitations, an image-guidance system based on optical tracking and pre-operative imaging data is developed, separating the imaging acquisition for guidance and sonication procedure for treatment. Techniques to define the local coordinates of the focal point of sonication are presented. First, mechanical calibration detects the concentric rotational motion of a rigid-body optical tracker, attached to a straight rod mimicking the sonication path, pivoted at the virtual FUS focus. The spatial error presented in the mechanical calibration was compensated further by MRI-based calibration, which estimates the spatial offset between the navigated focal point and the ground-truth location of the sonication focus obtained from a temperature-sensitive MR sequence. MRI-based calibration offered a significant decrease in spatial errors (1.9±0.8 mm; 57% reduction) compared to the mechanical calibration method alone (4.4±0.9 mm). Using the presented method, pulse-mode FUS was applied to the motor area of the rat brain, and successfully stimulated the motor cortex. The presented techniques can be readily adapted for the transcranial application of FUS to intact human brain. PMID:25232203
NASA Astrophysics Data System (ADS)
Medvedev, Andrei V.; Kainerstorfer, Jana M.; Borisov, Sergey V.; Vanmeter, John
2011-01-01
Near-infrared spectroscopy (NIRS) is a developing technology for low-cost noninvasive functional brain imaging. With multichannel optical instruments, it becomes possible to measure not only local changes in hemoglobin concentrations but also temporal correlations of those changes in different brain regions which gives an optical analog of functional connectivity traditionally measured by fMRI. We recorded hemodynamic activity during the Go-NoGo task from 11 right-handed subjects with probes placed bilaterally over prefrontal areas. Subjects were detecting animals as targets in natural scenes pressing a mouse button. Data were low-pass filtered <1 Hz and cardiac/respiration/superficial layers artifacts were removed using Independent Component Analysis. Fisher's transformed correlations of poststimulus responses (30 s) were averaged over groups of channels unilaterally in each hemisphere (intrahemispheric connectivity) and the corresponding channels between hemispheres (interhemispheric connectivity). The hemodynamic response showed task-related activation (an increase/decrease in oxygenated/deoxygenated hemoglobin, respectively) greater in the right versus left hemisphere. Intra- and interhemispheric functional connectivity was also significantly stronger during the task compared to baseline. Functional connectivity between the inferior and the middle frontal regions was significantly stronger in the right hemisphere. Our results demonstrate that optical methods can be used to detect transient changes in functional connectivity during rapid cognitive processes.
Bayesian estimation of optical properties of the human head via 3D structural MRI
NASA Astrophysics Data System (ADS)
Barnett, Alexander H.; Culver, Joseph P.; Sorensen, A. Gregory; Dale, Anders M.; Boas, David A.
2003-10-01
Knowledge of the baseline optical properties of the tissues of the human head is essential for absolute cerebral oximetry, and for quantitative studies of brain activation. In this work we numerically model the utility of signals from a small 6-optode time-resolved diffuse optical tomographic apparatus for inferring baseline scattering and absorption coefficients of the scalp, skull and brain, when complete geometric information is available from magnetic resonance imaging (MRI). We use an optical model where MRI-segmented tissues are assumed homogeneous. We introduce a noise model capturing both photon shot noise and forward model numerical accuracy, and use Bayesian inference to predict errorbars and correlations on the measurments. We also sample from the full posterior distribution using Markov chain Monte Carlo. We conclude that ~ 106 detected photons are sufficient to measure the brain"s scattering and absorption to a few percent. We present preliminary results using a fast multi-layer slab model, comparing the case when layer thicknesses are known versus unknown.
Tabei, Ken-ichi; Satoh, Masayuki; Kida, Hirotaka; Kizaki, Moeni; Sakuma, Haruno; Sakuma, Hajime; Tomimoto, Hidekazu
2015-01-01
Research on the neural processing of optical illusions can provide clues for understanding the neural mechanisms underlying visual perception. Previous studies have shown that some visual areas contribute to the perception of optical illusions such as the Kanizsa triangle and Müller-Lyer figure; however, the neural mechanisms underlying the processing of these and other optical illusions have not been clearly identified. Using functional magnetic resonance imaging (fMRI), we determined which brain regions are active during the perception of optical illusions. For our study, we enrolled 18 participants. The illusory optical stimuli consisted of many kana letters, which are Japanese phonograms. During the shape task, participants stated aloud whether they perceived the shapes of two optical illusions as being the same or not. During the word task, participants read aloud the kana letters in the stimuli. A direct comparison between the shape and word tasks showed activation of the right inferior frontal gyrus, left medial frontal gyrus, and right pulvinar. It is well known that there are two visual pathways, the geniculate and extrageniculate systems, which belong to the higher-level and primary visual systems, respectively. The pulvinar belongs to the latter system, and the findings of the present study suggest that the extrageniculate system is involved in the cognitive processing of optical illusions. PMID:26083375
Galetta, Steven L.; Villoslada, Pablo; Levin, Netta; Shindler, Kenneth; Ishikawa, Hiroshi; Parr, Edward; Cadavid, Diego
2015-01-01
Idiopathic demyelinating optic neuritis (ON) most commonly presents as acute unilateral vision loss and eye pain and is frequently associated with multiple sclerosis. Although emphasis is often placed on the good recovery of high-contrast visual acuity, persistent deficits are frequently observed in other aspects of vision, including contrast sensitivity, visual field testing, color vision, motion perception, and vision-related quality of life. Persistent and profound structural and functional changes are often revealed by imaging and electrophysiologic techniques, including optical coherence tomography, visual-evoked potentials, and nonconventional MRI. These abnormalities can impair patients' abilities to perform daily activities (e.g., driving, working) so they have important implications for patients' quality of life. In this article, we review the sequelae from ON, including clinical, structural, and functional changes and their interrelationships. The unmet needs in each of these areas are considered and the progress made toward meeting those needs is examined. Finally, we provide an overview of past and present investigational approaches for disease modification in ON. PMID:26236761
Hidese, Shinsuke; Ota, Miho; Matsuo, Junko; Ishida, Ikki; Hiraishi, Moeko; Yoshida, Sumiko; Noda, Takamasa; Sato, Noriko; Teraishi, Toshiya; Hattori, Kotaro; Kunugi, Hiroshi
2018-01-01
Obesity has been implicated in the pathophysiology of major depressive disorder (MDD), which prompted us to examine the possible association of obesity with cognitive function and brain structure in patients with MDD. Three hundred and seven patients with MDD and 294 healthy participants, matched for age, sex, ethnicity (Japanese), and handedness (right) were recruited for the study. Cognitive function was assessed using the Brief Assessment of Cognition in Schizophrenia (BACS). Gray and white matter structures were analyzed using voxel-based morphometry and diffusion tensor imaging in a subsample of patients (n = 114) whose magnetic resonance imaging (MRI) data were obtained using a 1.5 T MRI system. Verbal memory, working memory, motor speed, attention, executive function, and BACS composite scores were lower for the MDD patients than for the healthy participants (p < 0.05). Among the patient group, working memory, motor speed, executive function, and BACS composite scores were lower in obese patients (body mass index ≥ 30, n = 17) than in non-obese patients (n = 290, p < 0.05, corrected). MRI determined frontal, temporal, thalamic, and hippocampal volumes, and white matter fractional anisotropy values in the internal capsule and left optic radiation were reduced in obese patients (n = 7) compared with non-obese patients (n = 107, p < 0.05, corrected). Sample size for obese population was not very large. Obesity is associated with decreased cognitive function, reduced gray matter volume, and impaired white matter integrity in cognition-related brain areas in patients with MDD. Copyright © 2017 Elsevier B.V. All rights reserved.
Jarockyte, Greta; Daugelaite, Egle; Stasys, Marius; Statkute, Urte; Poderys, Vilius; Tseng, Ting-Chen; Hsu, Shan-Hui; Karabanovas, Vitalijus; Rotomskis, Ricardas
2016-08-19
The uptake and distribution of negatively charged superparamagnetic iron oxide (Fe₃O₄) nanoparticles (SPIONs) in mouse embryonic fibroblasts NIH3T3, and magnetic resonance imaging (MRI) signal influenced by SPIONs injected into experimental animals, were visualized and investigated. Cellular uptake and distribution of the SPIONs in NIH3T3 after staining with Prussian Blue were investigated by a bright-field microscope equipped with digital color camera. SPIONs were localized in vesicles, mostly placed near the nucleus. Toxicity of SPION nanoparticles tested with cell viability assay (XTT) was estimated. The viability of NIH3T3 cells remains approximately 95% within 3-24 h of incubation, and only a slight decrease of viability was observed after 48 h of incubation. MRI studies on Wistar rats using a clinical 1.5 T MRI scanner were showing that SPIONs give a negative contrast in the MRI. The dynamic MRI measurements of the SPION clearance from the injection site shows that SPIONs slowly disappear from injection sites and only a low concentration of nanoparticles was completely eliminated within three weeks. No functionalized SPIONs accumulate in cells by endocytic mechanism, none accumulate in the nucleus, and none are toxic at a desirable concentration. Therefore, they could be used as a dual imaging agent: as contrast agents for MRI and for traditional optical biopsy by using Prussian Blue staining.
Jarockyte, Greta; Daugelaite, Egle; Stasys, Marius; Statkute, Urte; Poderys, Vilius; Tseng, Ting-Chen; Hsu, Shan-Hui; Karabanovas, Vitalijus; Rotomskis, Ricardas
2016-01-01
The uptake and distribution of negatively charged superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs) in mouse embryonic fibroblasts NIH3T3, and magnetic resonance imaging (MRI) signal influenced by SPIONs injected into experimental animals, were visualized and investigated. Cellular uptake and distribution of the SPIONs in NIH3T3 after staining with Prussian Blue were investigated by a bright-field microscope equipped with digital color camera. SPIONs were localized in vesicles, mostly placed near the nucleus. Toxicity of SPION nanoparticles tested with cell viability assay (XTT) was estimated. The viability of NIH3T3 cells remains approximately 95% within 3–24 h of incubation, and only a slight decrease of viability was observed after 48 h of incubation. MRI studies on Wistar rats using a clinical 1.5 T MRI scanner were showing that SPIONs give a negative contrast in the MRI. The dynamic MRI measurements of the SPION clearance from the injection site shows that SPIONs slowly disappear from injection sites and only a low concentration of nanoparticles was completely eliminated within three weeks. No functionalized SPIONs accumulate in cells by endocytic mechanism, none accumulate in the nucleus, and none are toxic at a desirable concentration. Therefore, they could be used as a dual imaging agent: as contrast agents for MRI and for traditional optical biopsy by using Prussian Blue staining. PMID:27548152
Magnetomotive Molecular Nanoprobes
John, Renu; Boppart, Stephen A.
2012-01-01
Tremendous developments in the field of biomedical imaging in the past two decades have resulted in the transformation of anatomical imaging to molecular-specific imaging. The main approaches towards imaging at a molecular level are the development of high resolution imaging modalities with high penetration depths and increased sensitivity, and the development of molecular probes with high specificity. The development of novel molecular contrast agents and their success in molecular optical imaging modalities have lead to the emergence of molecular optical imaging as a more versatile and capable technique for providing morphological, spatial, and functional information at the molecular level with high sensitivity and precision, compared to other imaging modalities. In this review, we discuss a new class of dynamic contrast agents called magnetomotive molecular nanoprobes for molecular-specific imaging. Magnetomotive agents are superparamagnetic nanoparticles, typically iron-oxide, that are physically displaced by the application of a small modulating external magnetic field. Dynamic phase-sensitive position measurements are performed using any high resolution imaging modality, including optical coherence tomography (OCT), ultrasonography, or magnetic resonance imaging (MRI). The dynamics of the magnetomotive agents can be used to extract the biomechanical tissue properties in which the nanoparticles are bound, and the agents can be used to deliver therapy via magnetomotive displacements to modulate or disrupt cell function, or hyperthermia to kill cells. These agents can be targeted via conjugation to antibodies, and in vivo targeted imaging has been shown in a carcinogen-induced rat mammary tumor model. The iron-oxide nanoparticles also exhibit negative T2 contrast in MRI, and modulations can produce ultrasound imaging contrast for multimodal imaging applications. PMID:21517766
Simultaneous GCaMP6-based fiber photometry and fMRI in rats.
Liang, Zhifeng; Ma, Yuncong; Watson, Glenn D R; Zhang, Nanyin
2017-09-01
Understanding the relationship between neural and vascular signals is essential for interpretation of functional MRI (fMRI) results with respect to underlying neuronal activity. Simultaneously measuring neural activity using electrophysiology with fMRI has been highly valuable in elucidating the neural basis of the blood oxygenation-level dependent (BOLD) signal. However, this approach is also technically challenging due to the electromagnetic interference that is observed in electrophysiological recordings during MRI scanning. Recording optical correlates of neural activity, such as calcium signals, avoids this issue, and has opened a new avenue to simultaneously acquire neural and BOLD signals. The present study is the first to demonstrate the feasibility of simultaneously and repeatedly acquiring calcium and BOLD signals in animals using a genetically encoded calcium indicator, GCaMP6. This approach was validated with a visual stimulation experiment, during which robust increases of both calcium and BOLD signals in the superior colliculus were observed. In addition, repeated measurement in the same animal demonstrated reproducible calcium and BOLD responses to the same stimuli. Taken together, simultaneous GCaMP6-based fiber photometry and fMRI recording presents a novel, artifact-free approach to simultaneously measuring neural and fMRI signals. Furthermore, given the cell-type specificity of GCaMP6, this approach has the potential to mechanistically dissect the contributions of individual neuron populations to BOLD signal, and ultimately reveal its underlying neural mechanisms. The current study established the method for simultaneous GCaMP6-based fiber photometry and fMRI in rats. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessing the future of diffuse optical imaging technologies for breast cancer management
Tromberg, Bruce J.; Pogue, Brian W.; Paulsen, Keith D.; Yodh, Arjun G.; Boas, David A.; Cerussi, Albert E.
2008-01-01
Diffuse optical imaging (DOI) is a noninvasive optical technique that employs near-infrared (NIR) light to quantitatively characterize the optical properties of thick tissues. Although NIR methods were first applied to breast transillumination (also called diaphanography) nearly 80 years ago, quantitative DOI methods employing time- or frequency-domain photon migration technologies have only recently been used for breast imaging (i.e., since the mid-1990s). In this review, the state of the art in DOI for breast cancer is outlined and a multi-institutional Network for Translational Research in Optical Imaging (NTROI) is described, which has been formed by the National Cancer Institute to advance diffuse optical spectroscopy and imaging (DOSI) for the purpose of improving breast cancer detection and clinical management. DOSI employs broadband technology both in near-infrared spectral and temporal signal domains in order to separate absorption from scattering and quantify uptake of multiple molecular probes based on absorption or fluorescence contrast. Additional dimensionality in the data is provided by integrating and co-registering the functional information of DOSI with x-ray mammography and magnetic resonance imaging (MRI), which provide structural information or vascular flow information, respectively. Factors affecting DOSI performance, such as intrinsic and extrinsic contrast mechanisms, quantitation of biochemical components, image formation∕visualization, and multimodality co-registration are under investigation in the ongoing research NTROI sites. One of the goals is to develop standardized DOSI platforms that can be used as stand-alone devices or in conjunction with MRI, mammography, or ultrasound. This broad-based, multidisciplinary effort is expected to provide new insight regarding the origins of breast disease and practical approaches for addressing several key challenges in breast cancer, including: Detecting disease in mammographically dense tissue, distinguishing between malignant and benign lesions, and understanding the impact of neoadjuvant chemotherapies. PMID:18649477
NASA Astrophysics Data System (ADS)
Khadka, Sabin; Chityala, Srujan R.; Tian, Fenghua; Liu, Hanli
2011-03-01
Stroop test is commonly used as a behavior-testing tool for psychological examinations that are related to attention and cognitive control of the human brain. Studies have shown activations in Broadmann area 10 (BA10) of prefrontal cortex (PFC) during attention and cognitive process. The use of diffuse optical tomography (DOT) for human brain mapping is becoming more prevalent. In this study we expect to find neural correlates between the performed cognitive tasks and hemodynamic signals detected by a DOT system. Our initial observation showed activation of oxy-hemoglobin concentration in BA 10, which is consistent with some results seen by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Our study demonstrates the possibility of combining DOT with Stroop test to quantitatively investigate cognitive functions of the human brain at the prefrontal cortex.
... optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when it becomes suddenly ... may include: Color vision testing MRI of the brain , including special images of the optic nerve Visual acuity testing Visual field testing Examination of the ...
Recording high quality speech during tagged cine-MRI studies using a fiber optic microphone.
NessAiver, Moriel S; Stone, Maureen; Parthasarathy, Vijay; Kahana, Yuvi; Paritsky, Alexander; Paritsky, Alex
2006-01-01
To investigate the feasibility of obtaining high quality speech recordings during cine imaging of tongue movement using a fiber optic microphone. A Complementary Spatial Modulation of Magnetization (C-SPAMM) tagged cine sequence triggered by an electrocardiogram (ECG) simulator was used to image a volunteer while speaking the syllable pairs /a/-/u/, /i/-/u/, and the words "golly" and "Tamil" in sync with the imaging sequence. A noise-canceling, optical microphone was fastened approximately 1-2 inches above the mouth of the volunteer. The microphone was attached via optical fiber to a laptop computer, where the speech was sampled at 44.1 kHz. A reference recording of gradient activity with no speech was subtracted from target recordings. Good quality speech was discernible above the background gradient sound using the fiber optic microphone without reference subtraction. The audio waveform of gradient activity was extremely stable and reproducible. Subtraction of the reference gradient recording further reduced gradient noise by roughly 21 dB, resulting in exceptionally high quality speech waveforms. It is possible to obtain high quality speech recordings using an optical microphone even during exceptionally loud cine imaging sequences. This opens up the possibility of more elaborate MRI studies of speech including spectral analysis of the speech signal in all types of MRI.
Optic nerve compression as a late complication of a hydrogel explant with silicone encircling band.
Crama, Niels; Kluijtmans, Leo; Klevering, B Jeroen
2018-06-01
To present a complication of compressive optic neuropathy caused by a swollen hydrogel explant and posteriorly displaced silicone encircling band. A 72-year-old female patient presented with progressive visual loss and a tilted optic disc. Her medical history included a retinal detachment in 1993 that was treated with a hydrogel explant under a solid silicone encircling band. Visual acuity had decreased from 6/10 to 6/20 and perimetry showed a scotoma in the temporal superior quadrant. On Magnetic Resonance Imaging (MRI), compression of the optic nerve by a displaced silicone encircling band inferior nasally in combination with a swollen episcleral hydrogel explant was observed. Surgical removal of the hydrogel explant and silicone encircling band was uneventful and resulted in improvement of visual acuity and visual field loss. This is the first report on compressive optic neuropathy caused by swelling of a hydrogel explant resulting in a dislocated silicone encircling band. The loss of visual function resolved upon removal of the explant and encircling band.
NASA Astrophysics Data System (ADS)
Mastanduno, Michael A.; Davis, Scott C.; Jiang, Shudong; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.
2012-03-01
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is used to image high-risk patients for breast cancer because of its higher sensitivity to tumors (approaching 100%) than traditional x-ray mammography. We focus on Near Infrared Spectroscopy (NIRS) as an emerging functional and molecular imaging technique that non-invasively quantifies optical properties of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration to increase the relatively low specificity of DCE-MRI. Our optical imaging system combines six frequency domain wavelengths, measured using PMT detectors with three continuous wave wavelengths measured using CCD/spectrometers. We present methods on combining the synergistic attributes of DCE-MR and NIRS for in-vivo imaging of breast cancer in three dimensions using a custom optical MR breast coil and diffusion based light modeling software, NIRFAST. We present results from phantom studies, healthy subjects, and breast cancer patients. Preliminary results show contrast recovery within 10% in phantoms and spatial resolution less than 5mm. Images from healthy subjects were recovered with properties similar to literature values and previous studies. Patient images have shown elevated total hemoglobin values and water fraction, agreeing with histology and previous results. The additional information gained from NIRS may improve the ability to distinguish between malignant and benign lesions during MR imaging. These dual modality instruments will provide complex anatomical and molecular prognostic information, and may decrease the number of biopsies, thereby improving patient care.
NASA Astrophysics Data System (ADS)
Pekar, Martin; van der Mark, Martin B.
2017-02-01
Smart medical catheters face a connectivity challenge. An example is found in ultrasound imaging where the supply of power at the distal end and the signal transmission requires many thin and fragile wires in order to keep the catheter thin and flexible and this leads to a relatively high cost of production. We have built a fully functional benchtop demonstrator that is immediately scalable to catheter dimensions, in which all electrical wires are replaced by just two optical fibers. We show signal transfer of synthetic aperture ultrasound images as well as photovoltaic conversion to supply all electronics. The absence of conductors provides excellent galvanic isolation as well as RF and MRI compatibility and the simple design utilizing off the shelf components holds a promise of cost effectiveness all of which may help translation of these advanced devices into the clinic. We show photovoltaic conversion of 405 nm light to 45 V and 1.8 V by two blue LEDs as well as 200 MHz broad-band signal transfer using modulated 850 nm VCSEL light. Synthetic aperture ultrasound images are acquired at a frequency of 12 MHz with a collapse-mode capacitive-micromachined ultrasonic transducer. Bandwidth, noise level and dynamic range are nearly identical as shown in comparison of the images acquired with the optical link and its electrical equivalent. In conclusion, we have successfully demonstrated low-cost and scalable optical signal and power transmission for an ultrasound imaging system enjoying intrinsic RF / MRI compatibility and galvanic isolation.
Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodson, Boyd McLean
1999-12-01
Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permitmore » a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.« less
Patel, Saharsh; Fargen, Kyle M; Peters, Keith; Krall, Peter; Samy, Hazem; Hoh, Brian L
2014-01-10
Large and giant paraclinoid aneurysms are challenging to treat by either surgical or endovascular means. Visual dysfunction secondary to optic nerve compression and its relationship with aneurysm size, pulsation and thrombosis is poorly understood. We present a patient with a giant paraclinoid aneurysm resulting in bilateral visual loss that worsened following placement of a Pipeline Embolization Device and adjunctive coiling. Visual worsening occurred in conjunction with aneurysm thrombosis, increase in maximal aneurysm diameter and new adjacent edema. Her visual function spontaneously improved in a delayed fashion to better than pre-procedure, in conjunction with reduced aneurysmal mass effect, size and pulsation artifact on MRI. This report documents detailed ophthalmologic and MRI evidence for the role of thrombosis, aneurysm mass effect and aneurysm pulsation as causative etiologies for both cranial nerve dysfunction and delayed resolution following flow diversion treatment of large cerebral aneurysms.
Neuronal current magnetic resonance imaging of evoked potentials and neural oscillations
NASA Astrophysics Data System (ADS)
Jiang, Xia
Despite its great success, the current functional magnetic resonance imaging (MRI) technique relies on changes in cerebral hemodynamic parameters to infer the underlying neural activities, and as a result is limited in its spatial and temporal resolutions. In this dissertation, we discuss the feasibility of neuronal current MRI (nc-MRI), a novel technique in which the small magnetic field changes caused by neuronal electrical activities are directly measured by MRI. Two studies are described. In the first study, we investigated the feasibility of detecting the magnetic field produced by sensory evoked potentials. To eliminate the blood-oxygen-level-dependent (BOLD) effect on the MRI signal, which confounded most previous studies, an octopus visual system model was developed, which, for the first time, allowed for an in vivo investigation of nc-MRI in a BOLD-free environment. Electrophysiological responses were measured in the octopus retina and optical lobe to guide the nc-MRI acquisition. Our results indicated that no nc-MRI signal change related to neuronal activation could be detected at 0.2°/0.2% threshold for signal phase/magnitude respectively, while robust electrophysiological responses were recorded. In the second study, we discuss the feasibility of detecting neural oscillations with MRI, Based on previous studies, a novel approach was proposed in which an external oscillatory field was exploited as the excitation pulse under a spin-locked condition. This approach has the advantages of increased sensitivity and lowered physiological noise. Successful detection of sub-nanotesla field was demonstrated in phantom. Our results suggest that evoked potentials are too weak for nc-MRI detection with the current hardware, and that previous positive findings were likely due to hemodynamic confounders. On the other hand, oscillatory magnetic field can be efficiently detected in phantom. Given the stronger equivalent current dipoles produced by neural oscillations compared to evoked potentials, they might be a more promising candidate for future nc-MRI studies.
Optical textile tests MRI patients from afar
NASA Astrophysics Data System (ADS)
Gould, Paula
2008-11-01
Researchers in Europe have developed a wearable textile fitted with optical sensors that could be used to remotely monitor a patient's breathing patterns while they undergo magnetic resonance imaging (MRI) scans. The new textile will allow medical staff to keep an eye on children and other vulnerable patients who often have to be calmed with sedatives or anaesthetic drugs to keep them still during a scan. The technique will be particularly useful if proposed European Union (EU) legislation that is designed to protect medical staff from being exposed to the high magnetic fields of MRI systems comes into force in 2012. The new rules would prevent nurses from being in the room where the scan is taking place.
Post-surgical management of non-functioning pituitary adenoma.
Cortet-Rudelli, Christine; Bonneville, Jean-François; Borson-Chazot, Françoise; Clavier, Lorraine; Coche Dequéant, Bernard; Desailloud, Rachel; Maiter, Dominique; Rohmer, Vincent; Sadoul, Jean Louis; Sonnet, Emmanuel; Toussaint, Patrick; Chanson, Philippe
2015-07-01
Post-surgical surveillance of non-functioning pituitary adenoma (NFPA) is based on magnetic resonance imaging (MRI) at 3 or 6 months then 1 year. When there is no adenomatous residue, annual surveillance is recommended for 5 years and then at 7, 10 and 15 years. In case of residue or doubtful MRI, prolonged annual surveillance monitors any progression. Reintervention is indicated if complete residue resection is feasible, or for symptomatic optic pathway compression, to create a safety margin between the tumor and the optic pathways ahead of complementary radiation therapy (RT), or in case of post-RT progression. In case of residue, unless the tumor displays elevated growth potential, it is usually recommended to postpone RT until progression is manifest, as efficacy is comparable whether treatment is immediate or postponed. The efficacy of the various RT techniques in terms of tumor volume control is likewise comparable. RT-induced hypopituitarism is frequent, whatever the technique. The choice thus depends basically on residue characteristics: size, delineation, and proximity to neighboring radiation-sensitive structures. Reduced rates of vascular complications and secondary brain tumor can be hoped for with one-dose or hypofractionated stereotactic RT, but there has been insufficient follow-up to provide evidence. Somatostatin analogs and dopaminergic agonists have yet to demonstrate sufficient efficacy. Temozolomide is an option in aggressive NFPA resistant to surgery and RT. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Zienkiewicz, Aleksandra; Huotari, Niko; Raitamaa, Lauri; Raatikainen, Ville; Ferdinando, Hany; Vihriälä, Erkki; Korhonen, Vesa; Myllylä, Teemu; Kiviniemi, Vesa
2017-03-01
The lymph system is responsible for cleaning the tissues of metabolic waste products, soluble proteins and other harmful fluids etc. Lymph flow in the body is driven by body movements and muscle contractions. Moreover, it is indirectly dependent on the cardiovascular system, where the heart beat and blood pressure maintain force of pressure in lymphatic channels. Over the last few years, studies revealed that the brain contains the so-called glymphatic system, which is the counterpart of the systemic lymphatic system in the brain. Similarly, the flow in the glymphatic system is assumed to be mostly driven by physiological pulsations such as cardiovascular pulses. Thus, continuous measurement of blood pressure and heart function simultaneously with functional brain imaging is of great interest, particularly in studies of the glymphatic system. We present our MRI compatible optics based sensing system for continuous blood pressure measurement and show our current results on the effects of blood pressure variations on cerebral brain dynamics, with a focus on the glymphatic system. Blood pressure was measured simultaneously with near-infrared spectroscopy (NIRS) combined with an ultrafast functional brain imaging (fMRI) sequence magnetic resonance encephalography (MREG, 3D brain 10 Hz sampling rate).
Optical imaging: new tools for arthritis.
Chamberland, David; Jiang, Yebin; Wang, Xueding
2010-10-01
Conventional radiography, ultrasound, CT, MRI, and nuclear imaging are the current imaging modalities used for clinical evaluation of arthritis which is highly prevalent and a leading cause of disability. Some of these types of imaging are also used for monitoring disease progression and treatment response of arthritis. However, their disadvantages limit their utilities, such as ionizing radiation for radiography, CT, and nuclear imaging; suboptimal tissue contrast resolution for radiography, CT, ultrasound, and nuclear imaging; high cost for CT and MRI and nuclear imaging; and long data-acquisition time with ensuing patient discomfort for MRI. Recently, there have been considerable advances in nonionizing noninvasive optical imaging which has demonstrated promise for early diagnosis, monitoring therapeutic interventions and disease progression of arthritis. Optical based molecular imaging modalities such as fluorescence imaging have shown high sensitivity in detection of optical contrast agents and can aid early diagnosis and ongoing evaluation of chronic inflammatory arthritis. Optical transillumination imaging or diffuse optical tomography may differentiate normal joint clear synovial fluid from turbid and pink medium early in the inflammatory process. Fourier transform infrared spectroscopy has been used to evaluate fluid composition from joints affected by arthritis. Hemodynamic changes such as angiogenesis, hypervascularization, and hypoxia in arthritic articular tissue can potentially be observed by diffuse optical tomography and photoacoustic tomography. Optical measurements could also facilitate quantification of hemodynamic properties such as blood volume and oxygenation levels at early stages of inflammatory arthritis. Optical imaging provides methodologies which should contribute to detection of early changes and monitoring of progression in pathological characteristics of arthritis, with relatively simple instrumentation.
Brown, Trecia A; Joanisse, Marc F; Gati, Joseph S; Hughes, Sarah M; Nixon, Pam L; Menon, Ravi S; Lomber, Stephen G
2013-01-01
Much of what is known about the cortical organization for audition in humans draws from studies of auditory cortex in the cat. However, these data build largely on electrophysiological recordings that are both highly invasive and provide less evidence concerning macroscopic patterns of brain activation. Optical imaging, using intrinsic signals or dyes, allows visualization of surface-based activity but is also quite invasive. Functional magnetic resonance imaging (fMRI) overcomes these limitations by providing a large-scale perspective of distributed activity across the brain in a non-invasive manner. The present study used fMRI to characterize stimulus-evoked activity in auditory cortex of an anesthetized (ketamine/isoflurane) cat, focusing specifically on the blood-oxygen-level-dependent (BOLD) signal time course. Functional images were acquired for adult cats in a 7 T MRI scanner. To determine the BOLD signal time course, we presented 1s broadband noise bursts between widely spaced scan acquisitions at randomized delays (1-12 s in 1s increments) prior to each scan. Baseline trials in which no stimulus was presented were also acquired. Our results indicate that the BOLD response peaks at about 3.5s in primary auditory cortex (AI) and at about 4.5 s in non-primary areas (AII, PAF) of cat auditory cortex. The observed peak latency is within the range reported for humans and non-human primates (3-4 s). The time course of hemodynamic activity in cat auditory cortex also occurs on a comparatively shorter scale than in cat visual cortex. The results of this study will provide a foundation for future auditory fMRI studies in the cat to incorporate these hemodynamic response properties into appropriate analyses of cat auditory cortex. Copyright © 2012 Elsevier Inc. All rights reserved.
Validating a new methodology for optical probe design and image registration in fNIRS studies
Wijeakumar, Sobanawartiny; Spencer, John P.; Bohache, Kevin; Boas, David A.; Magnotta, Vincent A.
2015-01-01
Functional near-infrared spectroscopy (fNIRS) is an imaging technique that relies on the principle of shining near-infrared light through tissue to detect changes in hemodynamic activation. An important methodological issue encountered is the creation of optimized probe geometry for fNIRS recordings. Here, across three experiments, we describe and validate a processing pipeline designed to create an optimized, yet scalable probe geometry based on selected regions of interest (ROIs) from the functional magnetic resonance imaging (fMRI) literature. In experiment 1, we created a probe geometry optimized to record changes in activation from target ROIs important for visual working memory. Positions of the sources and detectors of the probe geometry on an adult head were digitized using a motion sensor and projected onto a generic adult atlas and a segmented head obtained from the subject's MRI scan. In experiment 2, the same probe geometry was scaled down to fit a child's head and later digitized and projected onto the generic adult atlas and a segmented volume obtained from the child's MRI scan. Using visualization tools and by quantifying the amount of intersection between target ROIs and channels, we show that out of 21 ROIs, 17 and 19 ROIs intersected with fNIRS channels from the adult and child probe geometries, respectively. Further, both the adult atlas and adult subject-specific MRI approaches yielded similar results and can be used interchangeably. However, results suggest that segmented heads obtained from MRI scans be used for registering children's data. Finally, in experiment 3, we further validated our processing pipeline by creating a different probe geometry designed to record from target ROIs involved in language and motor processing. PMID:25705757
Fundamentals of Filament Interaction
2017-05-19
MRI was very specific. Based in on our other studies we focused this MRI program in two very important areas –filament interaction with gases, and...shown in the figure adjacent. The focus of this MRI was very specific. Based in on our other studies we focused this MRI program in two very important...PROJECT. 2.0.0 Program on Interaction with Gases 2.1.0 Molecular alignment studies Following the observations by Béjot et al. [Optics Express 16
Characterization of optically actuated MRI-compatible active needles for medical interventions
NASA Astrophysics Data System (ADS)
Black, Richard J.; Ryu, Seokchang; Moslehi, Behzad; Costa, Joannes M.
2014-03-01
The development of a Magnetic Resonance Imaging (MRI) compatible optically-actuated active needle for guided percutaneous surgery and biopsy procedures is described. Electrically passive MRI-compatible actuation in the small diameter needle is provided by non-magnetic materials including a shape memory alloy (SMA) subject to precise fiber laser operation that can be from a remote (e.g., MRI control room) location. Characterization and optimization of the needle is facilitated using optical fiber Bragg grating (FBG) temperature sensors arrays. Active bending of the needle during insertion allows the needle to be accurately guided to even relatively small targets in an organ while avoiding obstacles and overcoming undesirable deviations away from the planned path due to unforeseen or unknowable tissue interactions. This feature makes the needle especially suitable for use in image-guided surgical procedures (ranging from MRI to CT and ultrasound) when accurate targeting is imperative for good treatment outcomes. Such interventions include reaching small tumors in biopsies, delineating freezing areas in, for example, cryosurgery and improving the accuracy of seed placement in brachytherapy. Particularly relevant are prostate procedures, which may be subject to pubic arch interference. Combining diagnostic imaging and actuation assisted biopsy into one treatment can obviate the need for a second exam for guided biopsy, shorten overall procedure times (thus increasing operating room efficiencies), address healthcare reimbursement constraints and, most importantly, improve patient comfort and clinical outcomes.
The accuracy of ultrashort echo time MRI sequences for medical additive manufacturing.
van Eijnatten, Maureen; Rijkhorst, Erik-Jan; Hofman, Mark; Forouzanfar, Tymour; Wolff, Jan
2016-01-01
Additively manufactured bone models, implants and drill guides are becoming increasingly popular amongst maxillofacial surgeons and dentists. To date, such constructs are commonly manufactured using CT technology that induces ionizing radiation. Recently, ultrashort echo time (UTE) MRI sequences have been developed that allow radiation-free imaging of facial bones. The aim of the present study was to assess the feasibility of UTE MRI sequences for medical additive manufacturing (AM). Three morphologically different dry human mandibles were scanned using a CT and MRI scanner. Additionally, optical scans of all three mandibles were made to acquire a "gold standard". All CT and MRI scans were converted into Standard Tessellation Language (STL) models and geometrically compared with the gold standard. To quantify the accuracy of the AM process, the CT, MRI and gold-standard STL models of one of the mandibles were additively manufactured, optically scanned and compared with the original gold-standard STL model. Geometric differences between all three CT-derived STL models and the gold standard were <1.0 mm. All three MRI-derived STL models generally presented deviations <1.5 mm in the symphyseal and mandibular area. The AM process introduced minor deviations of <0.5 mm. This study demonstrates that MRI using UTE sequences is a feasible alternative to CT in generating STL models of the mandible and would therefore be suitable for surgical planning and AM. Further in vivo studies are necessary to assess the usability of UTE MRI sequences in clinical settings.
Design of an MR-compatible fNIRS instrument
NASA Astrophysics Data System (ADS)
Emir, Uzay; Ademoglu, Ahmet; Ozturk, Cengizhan; Aydin, Kubilay; Demiralp, Tamer; Kurt, Adnan; Dincer, Alp; Akin, Ata
2005-04-01
Acquiring functional near infrared spectroscopy (fNIRS) and functional magnetic resonance-imaging (fMRI) data are usually done asynchronously. In order to correlate these two different modalities" data, measurements must be performed at the same time. In this study, we have designed a new MR compatible continuous wave intensity based fNIRS device to overcome this problem. For MR compatible fNIRS, we used two LEDs with wavelengths at 660 and 870 nm. There are four photodiodes for light detection. LEDs operated in a sequential multiplexing mode with adjustable "on" time for each LED. Emitted and diffused light was transferred to and from the tissue through 10 m long single mode plastic optical fibers (INDUSTRIAL FIBER OPTICS, INC.). By using fibers, we overcome MR compatibility problems that can be caused by semi-conductors on probe. This MR compatible fNIRS design can provide synchronous measurements with low cost.
Towards Optical Coherence Tomography-based elastographic evaluation of human cartilage.
Nebelung, Sven; Brill, Nicolai; Müller, Felix; Tingart, Markus; Pufe, Thomas; Merhof, Dorit; Schmitt, Robert; Jahr, Holger; Truhn, Daniel
2016-03-01
Optical Coherence Tomography (OCT) is an imaging technique that allows the surface and subsurface evaluation of semitransparent tissues by generating microscopic cross-sectional images in real time, to millimetre depths and at micrometre resolutions. As the differentiation of cartilage degeneration remains diagnostically challenging to standard imaging modalities, an OCT- and MRI-compatible indentation device for the assessment of cartilage functional properties was developed and validated in the present study. After describing the system design and performing its comprehensive validation, macroscopically intact human cartilage samples (n=5) were indented under control of displacement (δ1=202µm; δ2=405µm; δ3=607µm; δ4=810µm) and simultaneous OCT imaging through a transparent indenter piston in direct contact with the sample; thus, 3-D OCT datasets from surface and subsurface areas were obtained. OCT-based evaluation of loading-induced changes included qualitative assessment of image morphology and signal characteristics. For inter-method cross referencing, the device׳s compatibility with MRI as well as qualitative morphology changes under analogous indentation loading conditions were evaluated by a series of T2 weighted gradient echo sequences. Cartilage thickness measurements were performed using the needle-probe technique prior to OCT and MRI imaging, and subsequently referenced to sample thickness as determined by MRI and histology. Dynamic indentation testing was performed to determine Young׳s modulus for biomechanical reference purposes. Distinct differences in sample thickness as well as corresponding strains were found; however, no significant differences in cartilage thickness were found between the used techniques. Qualitative assessment of OCT and MRI images revealed either distinct or absent sample-specific patterns of morphological changes in relation to indentation loading. For OCT, the tissue area underneath the indenter piston could be qualitatively assessed and displayed in multiple reconstructions, while for MRI, T2 signal characteristics indicated the presence of water and related tissue pressurisation within the sample. In conclusion, the present indentation device has been developed, constructed and validated for qualitative assessment of human cartilage and its response to loading by OCT and MRI. Thereby, it may provide the basis for future quantitative approaches that measure loading-induced deformations within the tissue to generate maps of local tissue properties as well as investigate their relation to degeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Du, Bin; Han, Shuping; Li, Hongyan; Zhao, Feifei; Su, Xiangjie; Cao, Xiaohui; Zhang, Zhenzhong
2015-03-12
Recently, nanoplatforms with multiple functions, such as tumor-targeting drug carriers, MRI, optical imaging, thermal therapy etc., have become popular in the field of cancer research. The present study reports a novel multi-functional liposome for cancer theranostics. A dual targeted drug delivery with radiofrequency-triggered drug release and imaging based on the magnetic field influence was used advantageously for tumor multi-mechanism therapy. In this system, the surface of fullerene (C60) was decorated with iron oxide nanoparticles, and PEGylation formed a hybrid nanosystem (C60-Fe3O4-PEG2000). Thermosensitive liposomes (dipalmitoylphosphatidylcholine, DPPC) with DSPE-PEG2000-folate wrapped up the hybrid nanosystem and docetaxel (DTX), which were designed to combine features of biological and physical (magnetic) drug targeting for fullerene radiofrequency-triggered drug release. The magnetic liposomes not only served as powerful tumor diagnostic magnetic resonance imaging (MRI) contrast agents, but also as powerful agents for photothermal ablation of tumors. Furthermore, a remarkable thermal therapy combined chemotherapy multi-functional liposome nanoplatform converted radiofrequency energy into thermal energy to release drugs from thermosensitive liposomes, which was also observed during both in vitro and in vivo treatment. The multi-functional liposomes also could selectively kill cancer cells in highly localized regions via their excellent active tumor targeting and magnetic targeted abilities.
Optical resonance imaging: An optical analog to MRI with sub-diffraction-limited capabilities.
Allodi, Marco A; Dahlberg, Peter D; Mazuski, Richard J; Davis, Hunter C; Otto, John P; Engel, Gregory S
2016-12-21
We propose here optical resonance imaging (ORI), a direct optical analog to magnetic resonance imaging (MRI). The proposed pulse sequence for ORI maps space to time and recovers an image from a heterodyne-detected third-order nonlinear photon echo measurement. As opposed to traditional photon echo measurements, the third pulse in the ORI pulse sequence has significant pulse-front tilt that acts as a temporal gradient. This gradient couples space to time by stimulating the emission of a photon echo signal from different lateral spatial locations of a sample at different times, providing a widefield ultrafast microscopy. We circumvent the diffraction limit of the optics by mapping the lateral spatial coordinate of the sample with the emission time of the signal, which can be measured to high precision using interferometric heterodyne detection. This technique is thus an optical analog of MRI, where magnetic-field gradients are used to localize the spin-echo emission to a point below the diffraction limit of the radio-frequency wave used. We calculate the expected ORI signal using 15 fs pulses and 87° of pulse-front tilt, collected using f /2 optics and find a two-point resolution 275 nm using 800 nm light that satisfies the Rayleigh criterion. We also derive a general equation for resolution in optical resonance imaging that indicates that there is a possibility of superresolution imaging using this technique. The photon echo sequence also enables spectroscopic determination of the input and output energy. The technique thus correlates the input energy with the final position and energy of the exciton.
Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe
2018-03-16
A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.
Characterization of task-free and task-performance brain states via functional connectome patterns.
Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming
2013-12-01
Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACPs) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain. Copyright © 2013 Elsevier B.V. All rights reserved.
Characterization of Task-free and Task-performance Brain States via Functional Connectome Patterns
Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming
2014-01-01
Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACP) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain. PMID:23938590
The power of using functional fMRI on small rodents to study brain pharmacology and disease
Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie
2015-01-01
Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest. In addition, fMRI techniques allow one to dissect how specific modifications (e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI, phMRI) and how functional connectivity (rsfMRI) between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with several methodological considerations. PMID:26539115
NASA Astrophysics Data System (ADS)
Rotenberg, David J.
Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.
The future of quantum dots in drug discovery.
Lin, Guimiao; Yin, Feng; Yong, Ken-Tye
2014-09-01
The rapid development of drug discovery today is inseparable from the interaction of advanced particle technologies and new drug synthesis protocols. Quantum dots (QDs) are regarded as a unique class of fluorescent labels, with unique optical properties such as high brightness and long-term colloidal and optical stability; these are suitable for optical imaging, drug delivery and optical tracking, fluorescence immunoassay and other medicinal applications. More importantly, QD possesses a rich surface chemistry property that is useful for incorporating various drug molecules, targeting ligands, and additional contrast agents (e.g., MRI, PET, etc.) onto the nanoparticle surface for achieving targeted and traceable drug delivery therapy at both cellular and systemic levels. In recent times, the advancement of QD technology has promoted the use of functionalized nanocrystals for in vivo applications. Such research is paving the way for drug discovery using various bioconjugated QD formulations. In this editorial, the authors highlight the current research progress and future applications of QDs in drug discovery.
Ma, Ying; Shaik, Mohammed A; Kozberg, Mariel G; Kim, Sharon H; Portes, Jacob P; Timerman, Dmitriy; Hillman, Elizabeth M C
2016-12-27
Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (<0.04 Hz) hemodynamic fluctuations that were not well-predicted by local Thy1-GCaMP recordings. These results support that resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI.
Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Portes, Jacob P.; Timerman, Dmitriy
2016-01-01
Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (<0.04 Hz) hemodynamic fluctuations that were not well-predicted by local Thy1-GCaMP recordings. These results support that resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI. PMID:27974609
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pantelis, Evaggelos, E-mail: vpantelis@phys.uoa.g; Medical Physics Laboratory, Medical School, University of Athens, Athens; Papadakis, Nikolaos
Purpose: To study the efficacy of the integration of functional magnetic resonance imaging (fMRI) and diffusion tensor imaging tractography data into stereotactic radiosurgery clinical practice. Methods and Materials: fMRI and tractography data sets were acquired and fused with corresponding anatomical MR and computed tomography images of patients with arteriovenous malformation (AVM), astrocytoma, brain metastasis, or hemangioma and referred for stereotactic radiosurgery. The acquired data sets were imported into a CyberKnife stereotactic radiosurgery system and used to delineate the target, organs at risk, and nearby functional structures and fiber tracts. Treatment plans with and without the incorporation of the functional structuresmore » and the fiber tracts into the optimization process were developed and compared. Results: The nearby functional structures and fiber tracts could receive doses of >50% of the maximum dose if they were excluded from the planning process. In the AVM case, the doses received by the Broadmann-17 structure and the optic tract were reduced to 700 cGy from 1,400 cGy and to 1,200 cGy from 2,000 cGy, respectively, upon inclusion into the optimization process. In the metastasis case, the motor cortex received 850 cGy instead of 1,400 cGy; and in the hemangioma case, the pyramidal tracts received 780 cGy instead of 990 cGy. In the astrocytoma case, the dose to the motor cortex bordering the lesion was reduced to 1,900 cGy from 2,100 cGy, and therefore, the biologically equivalent dose in three fractions was delivered instead. Conclusions: Functional structures and fiber tracts could receive high doses if they were not considered during treatment planning. With the aid of fMRI and tractography images, they can be delineated and spared.« less
The brain's dress code: How The Dress allows to decode the neuronal pathway of an optical illusion.
Schlaffke, Lara; Golisch, Anne; Haag, Lauren M; Lenz, Melanie; Heba, Stefanie; Lissek, Silke; Schmidt-Wilcke, Tobias; Eysel, Ulf T; Tegenthoff, Martin
2015-12-01
Optical illusions have broadened our understanding of the brain's role in visual perception. A modern day optical illusion emerged from a posted photo of a striped dress, which some perceived as white and gold and others as blue and black. Here we show, using functional magnetic resonance imaging (fMRI), that those who perceive The Dress as white/gold have higher activation in response to the image of The Dress in brain regions critically involved in higher cognition (frontal and parietal brain areas). These results are consistent with theories of top-down modulation and present a neural signature associated with the differences in perceiving The Dress as white/gold or blue/black. Furthermore the results support recent psychophysiological data on this phenomenon and provide a fundamental building block to study interindividual differences in visual processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Simultaneous dual modality optical and MR imaging of mouse dorsal skin-fold window chamber
NASA Astrophysics Data System (ADS)
Salek, Mir Farrokh; Pagel, Mark D.; Gmitro, Arthur F.
2011-02-01
Optical imaging and MRI have both been used extensively to study tumor microenvironment. The two imaging modalities are complementary and can be used to cross-validate one another for specific measurements. We have developed a modular platform that is capable of doing optical microscopy inside an MRI instrument. To do this, an optical relay system transfers the image to outside of the MR bore to a commercial grade CCD camera. This enables simultaneous optical and MR imaging of the same tissue and thus creates the ideal situation for comparative or complementary studies using both modalities. Initial experiments have been done using GFP labeled prostate cancer cells implanted in mouse dorsal skin fold window chamber. Vascular hemodynamics and vascular permeability were studied using our imaging system. Towards this goal, we developed a dual MR-Optical contrast agent by labeling BSA with both Gd-DTPA and Alexa Fluor. Overall system design and results of these preliminary vascular studies are presented.
The accuracy of ultrashort echo time MRI sequences for medical additive manufacturing
Rijkhorst, Erik-Jan; Hofman, Mark; Forouzanfar, Tymour; Wolff, Jan
2016-01-01
Objectives: Additively manufactured bone models, implants and drill guides are becoming increasingly popular amongst maxillofacial surgeons and dentists. To date, such constructs are commonly manufactured using CT technology that induces ionizing radiation. Recently, ultrashort echo time (UTE) MRI sequences have been developed that allow radiation-free imaging of facial bones. The aim of the present study was to assess the feasibility of UTE MRI sequences for medical additive manufacturing (AM). Methods: Three morphologically different dry human mandibles were scanned using a CT and MRI scanner. Additionally, optical scans of all three mandibles were made to acquire a “gold standard”. All CT and MRI scans were converted into Standard Tessellation Language (STL) models and geometrically compared with the gold standard. To quantify the accuracy of the AM process, the CT, MRI and gold-standard STL models of one of the mandibles were additively manufactured, optically scanned and compared with the original gold-standard STL model. Results: Geometric differences between all three CT-derived STL models and the gold standard were <1.0 mm. All three MRI-derived STL models generally presented deviations <1.5 mm in the symphyseal and mandibular area. The AM process introduced minor deviations of <0.5 mm. Conclusions: This study demonstrates that MRI using UTE sequences is a feasible alternative to CT in generating STL models of the mandible and would therefore be suitable for surgical planning and AM. Further in vivo studies are necessary to assess the usability of UTE MRI sequences in clinical settings. PMID:26943179
Watcharin, Waralee; Schmithals, Christian; Pleli, Thomas; Köberle, Verena; Korkusuz, Hüdayi; Huebner, Frank; Zeuzem, Stefan; Korf, Hans W; Vogl, Thomas J; Rittmeyer, Claudia; Terfort, Andreas; Piiper, Albrecht; Gelperina, Svetlana; Kreuter, Jörg
2014-05-01
Tumor visualization by magnetic resonance imaging (MRI) and nanoparticle-based contrast agents may improve the imaging of solid tumors such as hepatocellular carcinoma (HCC). In particular, human serum albumin (HSA) nanoparticles appear to be a suitable carrier due to their safety and feasibility of functionalization. In the present study HSA nanoparticles were conjugated with gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) using carbodiimide chemistry. The nanoparticles had a uniform spherical shape and a diameter of 235±19nm. For better optical visualization in vitro and in vivo, the HSA-Gd nanoparticles were additionally labeled with rhodamine 123. As shown by confocal microscopy and flow cytometry analysis, the fluorescent nanoparticles were readily taken up by Huh-7 hepatocellular carcinoma cells. After 24h incubation in blood serum, less than 5% of the Gd(III) was released from the particles, which suggests that this nanoparticulate system may be stable in vivo and, therefore, may serve as potentially safe T1 MRI contrast agent for MRI of hepatocellular carcinoma. Copyright © 2013 Elsevier B.V. All rights reserved.
The potential of multiparametric MRI of the breast
Pinker, Katja; Helbich, Thomas H
2017-01-01
MRI is an essential tool in breast imaging, with multiple established indications. Dynamic contrast-enhanced MRI (DCE-MRI) is the backbone of any breast MRI protocol and has an excellent sensitivity and good specificity for breast cancer diagnosis. DCE-MRI provides high-resolution morphological information, as well as some functional information about neoangiogenesis as a tumour-specific feature. To overcome limitations in specificity, several other functional MRI parameters have been investigated and the application of these combined parameters is defined as multiparametric MRI (mpMRI) of the breast. MpMRI of the breast can be performed at different field strengths (1.5–7 T) and includes both established (diffusion-weighted imaging, MR spectroscopic imaging) and novel MRI parameters (sodium imaging, chemical exchange saturation transfer imaging, blood oxygen level-dependent MRI), as well as hybrid imaging with positron emission tomography (PET)/MRI and different radiotracers. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the underlying oncogenic processes of cancer development and progression and can provide additional specificity. This article will review the current and emerging functional parameters for mpMRI of the breast for improved diagnostic accuracy in breast cancer. PMID:27805423
[See the thinking brain: a story about water].
Le Bihan, D
2008-01-01
Among the astonishing Einstein's papers from 1905, there is one which unexpectedly gave birth to a powerful method to explore the brain. Molecular diffusion was explained by Einstein on the basis of the random translational motion of molecules which results from their thermal energy. In the mid 1980s it was shown that water diffusion in the brain could be imaged using MRI. During their random displacements water molecules probe tissue structure at a microscopic scale, interacting with cell membranes and, thus, providing unique information on the functional architecture of tissues. A dramatic application of diffusion MRI has been brain ischemia, following the discovery that water diffusion drops immediately after the onset of an ischemic event, when brain cells undergo swelling through cytotoxic edema. On the other hand, water diffusion is anisotropic in white matter, because axon membranes limit molecular movement perpendicularly to the fibers. This feature can be exploited to map out the orientation in space of the white matter tracks and image brain connections. More recently, it has been shown that diffusion MRI could accurately detect cortical activation. As the diffusion response precedes by several seconds the hemodynamic response captured by BOLD fMRI, it has been suggested that water diffusion could reflect early neuronal events, such as the transient swelling of activated cortical cells. If confirmed, this discovery will represent a significant breakthrough, allowing non invasive access to a direct physiological marker of brain activation. This approach will bridge the gap between invasive optical imaging techniques in neuronal cell cultures, and current functional neuroimaging approaches in humans, which are based on indirect and remote blood flow changes.
Boegel, Kevin H; Tyan, Andrew E; Iyer, Veena R; Rykken, Jeffrey B; McKinney, Alexander M
2017-01-01
Evaluating chronic sequelae of optic neuritis, such as optic neuropathy with or without optic nerve atrophy, can be challenging on whole brain MRI. This study evaluated the utility of dedicated coronal contrast-enhanced fat-suppressed FLAIR (CE-FS-FLAIR) MR imaging to detect optic neuropathy and optic nerve atrophy. Over 4.5 years, a 3 mm coronal CE-FS-FLAIR sequence at 1.5T was added to the routine brain MRIs of 124 consecutive patients, 102 of whom had suspected or known demyelinating disease. Retrospective record reviews confirmed that 28 of these 102 had documented onset of optic neuritis >4 weeks prior to the brain MRI. These 28 were compared to the other 22 ("controls") of the 124 patients who lacked a history of demyelinating disease or visual symptoms. Using coronal CE-FS-FLAIR, two neuroradiologists separately graded each optic nerve (n = 50 patients, 100 total nerves) as either negative, equivocal, or positive for optic neuropathy or atrophy. The scoring was later repeated. The mean time from acute optic neuritis onset to MRI was 4.1 ± 4.6 years (range 34 days-17.4 years). Per individual nerve grading, the range of sensitivity, specificity, and accuracy of coronal CE-FS-FLAIR in detecting optic neuropathy was 71.4-77.1%, 93.8-95.4%, and 85.5-89.0%, respectively, with strong interobserver (k = 0.667 - 0.678, p < 0.0001), and intraobserver (k = 0.706 - 0.763, p < 0.0001) agreement. For optic atrophy, interobserver agreement was moderate (k = 0.437 - 0.484, p < 0.0001), while intraobserver agreement was moderate-strong (k = 0.491 - 0.596, p < 0.0001). Coronal CE-FS-FLAIR is quite specific in detecting optic neuropathy years after the onset of acute optic neuritis, but is less useful in detecting optic nerve atrophy.
Chemical addressability of potato virus X for its applications in bio/nanotechnology.
Le, Duc H T; Hu, He; Commandeur, Ulrich; Steinmetz, Nicole F
2017-12-01
Potato virus X (PVX), a type member of the plant virus potexvirus group, offers a unique nanotechnology platform based on its high aspect ratio and flexible filamentous shape. The PVX platform has already been engineered and studied for its uses in imaging, drug delivery, and immunotherapies. While genetic engineering procedures are well established for PVX, there is limited information about chemical conjugation strategies for functionalizing PVX, partly due to the lack of structural information of PVX at high resolution. To overcome these challenges, we built a structural model of the PVX particle based on the available structures from pepino mosaic virus (PepMV), a close cousin of PVX. Using the model and a series of chemical conjugation experiments, we identified and probed the addressability of cysteine side chains. Chemical reactivity of cysteines was confirmed using Michael-addition and thiol-selective probes, including fluorescent dyes and biotin tags. LC/MS/MS was used to map Cys 121 as having the highest selectivity for modification. Finally, building on the availability of two reactive groups, the newly identified Cys and previously established Lys side chains, we prepared multifunctional PVX nanoparticles by conjugating Gd-DOTA for magnetic resonance imaging (MRI) to lysines and fluorescent dyes for optical imaging to cysteines. The resulting functionalized nanofilament could have applications in dual-modal optical-MRI imaging applications. These results further extend the understanding of the chemical properties of PVX and enable development of novel multifunctional platforms in bio/nanotechnology. Copyright © 2017 Elsevier Inc. All rights reserved.
Ferradal, Silvina L; Eggebrecht, Adam T; Hassanpour, Mahlega; Snyder, Abraham Z; Culver, Joseph P
2014-01-15
Diffuse optical imaging (DOI) is increasingly becoming a valuable neuroimaging tool when fMRI is precluded. Recent developments in high-density diffuse optical tomography (HD-DOT) overcome previous limitations of sparse DOI systems, providing improved image quality and brain specificity. These improvements in instrumentation prompt the need for advancements in both i) realistic forward light modeling for accurate HD-DOT image reconstruction, and ii) spatial normalization for voxel-wise comparisons across subjects. Individualized forward light models derived from subject-specific anatomical images provide the optimal inverse solutions, but such modeling may not be feasible in all situations. In the absence of subject-specific anatomical images, atlas-based head models registered to the subject's head using cranial fiducials provide an alternative solution. In addition, a standard atlas is attractive because it defines a common coordinate space in which to compare results across subjects. The question therefore arises as to whether atlas-based forward light modeling ensures adequate HD-DOT image quality at the individual and group level. Herein, we demonstrate the feasibility of using atlas-based forward light modeling and spatial normalization methods. Both techniques are validated using subject-matched HD-DOT and fMRI data sets for visual evoked responses measured in five healthy adult subjects. HD-DOT reconstructions obtained with the registered atlas anatomy (i.e. atlas DOT) had an average localization error of 2.7mm relative to reconstructions obtained with the subject-specific anatomical images (i.e. subject-MRI DOT), and 6.6mm relative to fMRI data. At the group level, the localization error of atlas DOT reconstruction was 4.2mm relative to subject-MRI DOT reconstruction, and 6.1mm relative to fMRI. These results show that atlas-based image reconstruction provides a viable approach to individual head modeling for HD-DOT when anatomical imaging is not available. Copyright © 2013. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Hu, He; Arena, Francesca; Gianolio, Eliana; Boffa, Cinzia; di Gregorio, Enza; Stefania, Rachele; Orio, Laura; Baroni, Simona; Aime, Silvio
2016-03-01
A novel fluorescein/Gd-DOTAGA containing nanoprobe for the visualization of tumors by optical and Magnetic Resonance Imaging (MRI) is reported herein. It is based on the functionalization of the surface of small mesoporous silica nanoparticles (MSNs) (~30 nm) with the arginine-glycine-aspartic (RGD) moieties, which are known to target αvβ3 integrin receptors overexpressed in several tumor cells. The obtained nanoprobe (Gd-MSNs-RGD) displays good stability, tolerability and high relaxivity (37.6 mM-1 s-1 at 21.5 MHz). After a preliminary evaluation of their cytotoxicity and targeting capability toward U87MG cells by in vitro fluorescence and MR imaging, the nanoprobes were tested in vivo by T1-weighted MR imaging of xenografted murine tumor models. The obtained results demonstrated that the Gd-MSNs-RGD nanoprobes are good reporters both in vitro and in vivo for the MR-visualization of tumor cells overexpressing αvβ3 integrin receptors.A novel fluorescein/Gd-DOTAGA containing nanoprobe for the visualization of tumors by optical and Magnetic Resonance Imaging (MRI) is reported herein. It is based on the functionalization of the surface of small mesoporous silica nanoparticles (MSNs) (~30 nm) with the arginine-glycine-aspartic (RGD) moieties, which are known to target αvβ3 integrin receptors overexpressed in several tumor cells. The obtained nanoprobe (Gd-MSNs-RGD) displays good stability, tolerability and high relaxivity (37.6 mM-1 s-1 at 21.5 MHz). After a preliminary evaluation of their cytotoxicity and targeting capability toward U87MG cells by in vitro fluorescence and MR imaging, the nanoprobes were tested in vivo by T1-weighted MR imaging of xenografted murine tumor models. The obtained results demonstrated that the Gd-MSNs-RGD nanoprobes are good reporters both in vitro and in vivo for the MR-visualization of tumor cells overexpressing αvβ3 integrin receptors. Electronic supplementary information (ESI) available: Absorption and emission spectra, energy dispersive X-ray analysis (EDXA) and XPS spectra, TGA, zeta-potential and the molecular structures of the Gd-complexes. See DOI: 10.1039/c5nr08878j
Axonal transport rate decreased at the onset of optic neuritis in EAE mice
Lin, Tsen-Hsuan; Kim, Joong Hee; Perez-Torres, Carlos; Chiang, Chia-Wen; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei
2014-01-01
Optic neuritis is frequently the first symptom of multiple sclerosis (MS), an inflammatory demyelinating neurodegenerative disease. Impaired axonal transport has been considered as an early event of neurodegenerative diseases. However, few studies have assessed the integrity of axonal transport in MS or its animal models. We hypothesize that axonal transport impairment occurs at the onset of optic neuritis in experimental autoimmune encephalomyelitis (EAE) mice. In this study, we employed manganese-enhanced MRI (MEMRI) to assess axonal transport in optic nerves in EAE mice at the onset of optic neuritis. Axonal transport was assessed as (a) optic nerve Mn2+ accumulation rate (in % signal change/hour) by measuring the rate of increased total optic nerve signal enhancement, and (b) Mn2+ transport rate (in mm/hour) by measuring the rate of change in optic nerve length enhanced by Mn2+. Compared to sham-treated healthy mice, Mn2+ accumulation rate was significantly decreased by 19% and 38% for EAE mice with moderate and severe optic neuritis, respectively. The axonal transport rate of Mn2+ was significantly decreased by 43% and 65% for EAE mice with moderate and severe optic neuritis, respectively. The degree of axonal transport deficit correlated with the extent of impaired visual function and diminished microtubule-associated tubulins, as well as the severity of inflammation, demyelination, and axonal injury at the onset of optic neuritis. PMID:24936685
Changes in diffusion path length with old age in diffuse optical tomography
NASA Astrophysics Data System (ADS)
Bonnéry, Clément; Leclerc, Paul-Olivier; Desjardins, Michèle; Hoge, Rick; Bherer, Louis; Pouliot, Philippe; Lesage, Frédéric
2012-05-01
Diffuse, optical near infrared imaging is increasingly being used in various neurocognitive contexts where changes in optical signals are interpreted through activation maps. Statistical population comparison of different age or clinical groups rely on the relative homogeneous distribution of measurements across subjects in order to infer changes in brain function. In the context of an increasing use of diffuse optical imaging with older adult populations, changes in tissue properties and anatomy with age adds additional confounds. Few studies investigated these changes with age. Duncan et al. measured the so-called diffusion path length factor (DPF) in a large population but did not explore beyond the age of 51 after which physiological and anatomical changes are expected to occur [Pediatr. Res. 39(5), 889-894 (1996)]. With increasing interest in studying the geriatric population with optical imaging, we studied changes in tissue properties in young and old subjects using both magnetic resonance imaging (MRI)-guided Monte-Carlo simulations and time-domain diffuse optical imaging. Our results, measured in the frontal cortex, show changes in DPF that are smaller than previously measured by Duncan et al. in a younger population. The origin of these changes are studied using simulations and experimental measures.
A Set of Functional Brain Networks for the Comprehensive Evaluation of Human Characteristics.
Sung, Yul-Wan; Kawachi, Yousuke; Choi, Uk-Su; Kang, Daehun; Abe, Chihiro; Otomo, Yuki; Ogawa, Seiji
2018-01-01
Many human characteristics must be evaluated to comprehensively understand an individual, and measurements of the corresponding cognition/behavior are required. Brain imaging by functional MRI (fMRI) has been widely used to examine brain function related to human cognition/behavior. However, few aspects of cognition/behavior of individuals or experimental groups can be examined through task-based fMRI. Recently, resting state fMRI (rs-fMRI) signals have been shown to represent functional infrastructure in the brain that is highly involved in processing information related to cognition/behavior. Using rs-fMRI may allow diverse information about the brain through a single MRI scan to be obtained, as rs-fMRI does not require stimulus tasks. In this study, we attempted to identify a set of functional networks representing cognition/behavior that are related to a wide variety of human characteristics and to evaluate these characteristics using rs-fMRI data. If possible, these findings would support the potential of rs-fMRI to provide diverse information about the brain. We used resting-state fMRI and a set of 130 psychometric parameters that cover most human characteristics, including those related to intelligence and emotional quotients and social ability/skill. We identified 163 brain regions by VBM analysis using regression analysis with 130 psychometric parameters. Next, using a 163 × 163 correlation matrix, we identified functional networks related to 111 of the 130 psychometric parameters. Finally, we made an 8-class support vector machine classifiers corresponding to these 111 functional networks. Our results demonstrate that rs-fMRI signals contain intrinsic information about brain function related to cognition/behaviors and that this set of 111 networks/classifiers can be used to comprehensively evaluate human characteristics.
Zanchi, Marta G; Venook, Ross; Pauly, John M; Scott, Greig C
2010-01-01
The currents induced in long conductors such as guidewires by the radio-frequency (RF) field in magnetic resonance imaging (MRI) are responsible for potentially dangerous heating of surrounding media, such as tissue. This paper presents an optically coupled system with the potential to quantitatively measure the RF currents induced on these conductors. The system uses a self shielded toroid transducer and active circuitry to modulate a high speed light-emitting-diode transmitter. Plastic fiber guides the light to a photodiode receiver and transimpedance amplifier. System validation included a series of experiments with bare wires that compared wire tip heating by fluoroptic thermometers with the RF current sensor response. Validations were performed on a custom whole body 64 MHz birdcage test platform and on a 1.5 T MRI scanner. With this system, a variety of phenomena were demonstrated including cable trap current attenuation, lossy dielectric Q-spoiling and even transverse electromagnetic wave node patterns. This system should find applications in studies of MRI RF safety for interventional devices such as pacemaker leads, and guidewires. In particular, variations of this device could potentially act as a realtime safety monitor during MRI guided interventions.
Application of Medical Magnetic Resonance Imaging for Particle Concentration Measurement
NASA Astrophysics Data System (ADS)
Borup, Daniel; Elkins, Christopher; Eaton, John
2014-11-01
Particle transport and deposition in internal flows is important in a range of applications such as dust aggregation in turbine engines and aerosolized medicine deposition in human airways. Unlike optical techniques, Magnetic Resonance Imaging (MRI) is well suited for complex applications in which optical access is not possible. Here we present efforts to measure 3D particle concentration distribution using MRI. Glass particles dispersed in water flow reduce MRI signal from a spin-echo or gradient-echo scanning sequence by decreasing spin density and dephasing the spins present in the fluid. A preliminary experiment was conducted with a particle streak injected at the centerline of a turbulent round pipe flow with a U bend. Measurements confirmed that signal strength was related to particle concentration and showed the effects of gravitational settling and turbulent dispersion. Next, measurements of samples in a mixing chamber were taken. Particle volume fraction was varied and sensitivity to particle/fluid velocity was investigated. These results give a relationship between MRI signal, particle volume fraction, MRI sequence echo time, and spin relaxation parameters that can be used to measure local particle volume fraction in other turbulent flows of interest.
Glioblastoma of the optic pathways: An Atypical case
Brar, Rahat; Prasad, Abhishek; Brar, Manpreet
2009-01-01
We present a case of glioblastoma multiforme of the optic pathways in a 68 year old lady. Glioblastomas of the optic pathways are rare tumors; the predominant non enhancing component and the vast extent of involvement makes this a unique case. This case report further increases the database of knowledge available on the MRI characteristics of malignant optic glioma of adulthood. PMID:22470685
Glioblastoma of the optic pathways: An Atypical case.
Brar, Rahat; Prasad, Abhishek; Brar, Manpreet
2009-01-01
We present a case of glioblastoma multiforme of the optic pathways in a 68 year old lady. Glioblastomas of the optic pathways are rare tumors; the predominant non enhancing component and the vast extent of involvement makes this a unique case. This case report further increases the database of knowledge available on the MRI characteristics of malignant optic glioma of adulthood.
Berkowitz, Bruce A; Schmidt, Tiffany; Podolsky, Robert H; Roberts, Robin
2016-10-01
In humans, rodents, and pigeons, the dark → light transition signals nonretinal brain tissue to increase choroidal thickness, a major control element of choroidal blood flow, and thus of photoreceptor and retinal pigment epithelium function. However, it is unclear which photopigments in the retina relay the light signal to the brain. Here, we test the hypothesis that melanopsin (Opn4)-regulated phototransduction modulates light-evoked choroidal thickness expansion in mice. Two-month-old C57Bl/6 wild-type (B6), 4- to 5-month-old C57Bl/6/129S6 wild-type (B6 + S6), and 2-month-old melanopsin knockout (Opn4-/-) on a B6 + S6 background were studied. Retinal anatomy was evaluated in vivo by optical coherence tomography and MRI. Choroidal thickness in dark and light were measured by diffusion-weighted MRI. Rod cell L-type calcium channel (LTCC) function in dark and light (manganese-enhanced MRI [MEMRI]) was also measured. Opn4-/- mice did not show the light-evoked expansion of choroidal thickness observed in B6 and B6 + S6 controls. Additionally, Opn4-/- mice had lower than normal rod cell and inner retinal LTCC function in the dark but not in the light. These deficits were not due to structural abnormalities because retinal laminar architecture and thickness, and choroidal thickness in the Opn4-/- mice were similar to controls. First time evidence is provided that melanopsin phototransduction contributes to dark → light control of murine choroidal thickness. The data also highlight a contribution in vivo of melanopsin phototransduction to rod cell and inner retinal depolarization in the dark.
MRI dynamic range and its compatibility with signal transmission media
Gabr, Refaat E.; Schär, Michael; Edelstein, Arthur D.; Kraitchman, Dara L.; Bottomley, Paul A.; Edelstein, William A.
2010-01-01
As the number of MRI phased array coil elements grows, interactions among cables connecting them to the system receiver become increasingly problematic. Fiber optic or wireless links would reduce electromagnetic interference, but their dynamic range (DR) is generally less than that of coaxial cables. Raw MRI signals, however, have a large DR because of the high signal amplitude near the center of k-space. Here, we study DR in MRI in order to determine the compatibility of MRI multicoil imaging with non-coaxial cable signal transmission. Since raw signal data are routinely discarded, we have developed an improved method for estimating the DR of MRI signals from conventional magnitude images. Our results indicate that the DR of typical surface coil signals at 3 T for human subjects is less than 88 dB, even for three-dimensional acquisition protocols. Cardiac and spine coil arrays had a maximum DR of less than 75 dB and head coil arrays less than 88 dB. The DR derived from magnitude images is in good agreement with that measured from raw data. The results suggest that current analog fiber optic links, with a spurious-free DR of 60–70 dB at 500 kHz bandwidth, are not by themselves adequate for transmitting MRI data from volume or array coils with DR ~90 dB. However, combining analog links with signal compression might make non-coaxial cable signal transmission viable. PMID:19251444
MRI dynamic range and its compatibility with signal transmission media.
Gabr, Refaat E; Schär, Michael; Edelstein, Arthur D; Kraitchman, Dara L; Bottomley, Paul A; Edelstein, William A
2009-06-01
As the number of MRI phased array coil elements grows, interactions among cables connecting them to the system receiver become increasingly problematic. Fiber optic or wireless links would reduce electromagnetic interference, but their dynamic range (DR) is generally less than that of coaxial cables. Raw MRI signals, however, have a large DR because of the high signal amplitude near the center of k-space. Here, we study DR in MRI in order to determine the compatibility of MRI multicoil imaging with non-coaxial cable signal transmission. Since raw signal data are routinely discarded, we have developed an improved method for estimating the DR of MRI signals from conventional magnitude images. Our results indicate that the DR of typical surface coil signals at 3T for human subjects is less than 88 dB, even for three-dimensional acquisition protocols. Cardiac and spine coil arrays had a maximum DR of less than 75 dB and head coil arrays less than 88 dB. The DR derived from magnitude images is in good agreement with that measured from raw data. The results suggest that current analog fiber optic links, with a spurious-free DR of 60-70 dB at 500 kHz bandwidth, are not by themselves adequate for transmitting MRI data from volume or array coils with DR approximately 90 dB. However, combining analog links with signal compression might make non-coaxial cable signal transmission viable.
Diffuse Optical Tomography for Brain Imaging: Theory
NASA Astrophysics Data System (ADS)
Yuan, Zhen; Jiang, Huabei
Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.
Gudino, Natalia; Duan, Qi; de Zwart, Jacco A; Murphy-Boesch, Joe; Dodd, Stephen J; Merkle, Hellmut; van Gelderen, Peter; Duyn, Jeff H
2015-01-01
Purpose We tested the feasibility of implementing parallel transmission (pTX) for high field MRI using a radiofrequency (RF) amplifier design to be located on or in the immediate vicinity of a RF transmit coil. Method We designed a current-source switch-mode amplifier based on miniaturized, non-magnetic electronics. Optical RF carrier and envelope signals to control the amplifier were derived, through a custom-built interface, from the RF source accessible in the scanner control. Amplifier performance was tested by benchtop measurements as well as with imaging at 7 T (300 MHz) and 11.7 T (500 MHz). The ability to perform pTX was evaluated by measuring inter-channel coupling and phase adjustment in a 2-channel setup. Results The amplifier delivered in excess of 44 W RF power and caused minimal interference with MRI. The interface derived accurate optical control signals with carrier frequencies ranging from 64 to 750 MHz. Decoupling better than 14 dB was obtained between 2 coil loops separated by only 1 cm. Application to MRI was demonstrated by acquiring artifact-free images at 7 T and 11.7 T. Conclusion An optically controlled miniaturized RF amplifier for on-coil implementation at high field is demonstrated that should facilitate implementation of high-density pTX arrays. PMID:26256671
NASA Astrophysics Data System (ADS)
Masciotti, James M.; Rahim, Shaheed; Grover, Jarrett; Hielscher, Andreas H.
2007-02-01
We present a design for frequency domain instrument that allows for simultaneous gathering of magnetic resonance and diffuse optical tomographic imaging data. This small animal imaging system combines the high anatomical resolution of magnetic resonance imaging (MRI) with the high temporal resolution and physiological information provided by diffuse optical tomography (DOT). The DOT hardware comprises laser diodes and an intensified CCD camera, which are modulated up to 1 GHz by radio frequency (RF) signal generators. An optical imaging head is designed to fit inside the 4 cm inner diameter of a 9.4 T MRI system. Graded index fibers are used to transfer light between the optical hardware and the imaging head within the RF coil. Fiducial markers are integrated into the imaging head to allow the determination of the positions of the source and detector fibers on the MR images and to permit co-registration of MR and optical tomographic images. Detector fibers are arranged compactly and focused through a camera lens onto the photocathode of the intensified CCD camera.
Optical head tracking for functional magnetic resonance imaging using structured light.
Zaremba, Andrei A; MacFarlane, Duncan L; Tseng, Wei-Che; Stark, Andrew J; Briggs, Richard W; Gopinath, Kaundinya S; Cheshkov, Sergey; White, Keith D
2008-07-01
An accurate motion-tracking technique is needed to compensate for subject motion during functional magnetic resonance imaging (fMRI) procedures. Here, a novel approach to motion metrology is discussed. A structured light pattern specifically coded for digital signal processing is positioned onto a fiduciary of the patient. As the patient undergoes spatial transformations in 6 DoF (degrees of freedom), a high-resolution CCD camera captures successive images for analysis on a computing platform. A high-speed image processing algorithm is used to calculate spatial transformations in a time frame commensurate with patient movements (10-100 ms) and with a precision of at least 0.5 microm for translations and 0.1 deg for rotations.
Real-time MRI-guided needle intervention for cryoablation: a phantom study
NASA Astrophysics Data System (ADS)
Gao, Wenpeng; Jiang, Baichuan; Kacher, Dan F.; Fetics, Barry; Nevo, Erez; Lee, Thomas C.; Jayender, Jagadeesan
2017-03-01
MRI-guided needle intervention for cryoablation is a promising way to relieve the pain and treat the cancer. However, the limited size of MRI bore makes it impossible for clinicians to perform the operation in the bore. The patients had to be moved into the bore for scanning to verify the position of the needle's tip and out for adjusting the needle's trajectory. Real-time needle tracking and shown in MR images is of importance for clinicians to perform the operation more efficiently. In this paper, we have instrumented the cryotherapy needle with a MRI-safe electromagnetic (EM) sensor and optical sensor to measure the needle's position and orientation. To overcome the limitation of line-of-sight for optical sensor and the poor dynamic performance of the EM sensor, Kalman filter based data fusion is developed. Further, we developed a navigation system in open-source software, 3D Slicer, to provide accurate visualization of the needle and the surrounding anatomy. Experiment of simulation the needle intervention at the entrance was performed with a realistic spine phantom to quantify the accuracy of the navigation using the retrospective analysis method. Eleven trials of needle insertion were performed independently. The target accuracy with the navigation using only EM sensor, only optical sensor and data fusion are 2.27 +/-1.60 mm, 4.11 +/- 1.77 mm and 1.91 - 1.10 mm, respectively.
Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Seki, Shinichiro; Obara, Makoto; van Cauteren, Marc; Takahashi, Masaya; Sugimura, Kazuro
2014-04-01
To assess the influence of ultrashort TE (UTE) intervals on pulmonary magnetic resonance imaging (MRI) with UTEs (UTE-MRI) for pulmonary functional loss assessment and clinical stage classification of smokers. A total 60 consecutive smokers (43 men and 17 women; mean age 70 years) with and without COPD underwent thin-section multidetector row computed tomography (MDCT), UTE-MRI, and pulmonary functional measurements. For each smoker, UTE-MRI was performed with three different UTE intervals (UTE-MRI A: 0.5 msec, UTE-MRI B: 1.0 msec, UTE-MRI C: 1.5 msec). By using the GOLD guidelines, the subjects were classified as: "smokers without COPD," "mild COPD," "moderate COPD," and "severe or very severe COPD." Then the mean T2* value from each UTE-MRI and CT-based functional lung volume (FLV) were correlated with pulmonary function test. Finally, Fisher's PLSD test was used to evaluate differences in each index among the four clinical stages. Each index correlated significantly with pulmonary function test results (P < 0.05). CT-based FLV and mean T2* values obtained from UTE-MRI A and B showed significant differences among all groups except between "smokers without COPD" and "mild COPD" groups (P < 0.05). UTE-MRI has a potential for management of smokers and the UTE interval is suggested as an important parameter in this setting. Copyright © 2013 Wiley Periodicals, Inc.
Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
DSouza, Adora M; Abidin, Anas Z; Leistritz, Lutz; Wismüller, Axel
2017-08-01
Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction. We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data. Subsequently, functional subnetworks are extracted from lsGC connectivity measures for both datasets and validated quantitatively. We also provide guidelines to select lsGC free parameters. Results indicate that lsGC reliably recovers underlying network structure with area under receiver operator characteristic curve (AUC) of 0.93 at TR=1.5s for a 10-min session of fMRI simulations. Furthermore, subnetworks of closely interacting modules are recovered from the aforementioned lsGC networks. Results on empirical resting-state fMRI data demonstrate recovery of visual and motor cortex in close agreement with spatial maps obtained from (i) visuo-motor fMRI stimulation task-sequence (Accuracy=0.76) and (ii) independent component analysis (ICA) of resting-state fMRI (Accuracy=0.86). Compared with conventional Granger causality approach (AUC=0.75), lsGC produces better network recovery on fMRI simulations. Furthermore, it cannot recover functional subnetworks from empirical fMRI data, since quantifying voxel-resolution connectivity is not possible as consequence of encountering an underdetermined problem. Functional network recovery from fMRI data suggests that lsGC gives useful insight into connectivity patterns from resting-state fMRI at a multivariate voxel-resolution. Copyright © 2017 Elsevier B.V. All rights reserved.
MRI of articular cartilage at microscopic resolution
Xia, Y.
2013-01-01
This review briefly summarises some of the definitive studies of articular cartilage by microscopic MRI (µMRI) that were conducted with the highest spatial resolutions. The article has four major sections. The first section introduces the cartilage tissue, MRI and µMRI, and the concept of image contrast in MRI. The second section describes the characteristic profiles of three relaxation times (T1, T2 and T1ρ) and self-diffusion in healthy articular cartilage. The third section discusses several factors that can influence the visualisation of articular cartilage and the detection of cartilage lesion by MRI and µMRI. These factors include image resolution, image analysis strategies, visualisation of the total tissue, topographical variations of the tissue properties, surface fibril ambiguity, deformation of the articular cartilage, and cartilage lesion. The final section justifies the values of multidisciplinary imaging that correlates MRI with other technical modalities, such as optical imaging. Rather than an exhaustive review to capture all activities in the literature, the studies cited in this review are merely illustrative. PMID:23610697
Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van der Lugt, Aad; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M
2014-12-01
In current clinical practice, head and neck (H&N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors' study is to investigate the relevance of using MRI in addition to CT for patient modeling in H&N HTP. CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H&N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRIdb). To quantify the relevance of MRI based segmentation for H&N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (Tmax) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRIdb. In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient models based on CT (Tmax: 38.0 °C) and CT and MRI (Tmax: 38.1 °C) result in similar simulated temperatures, while CT and MRIdb (Tmax: 38.5 °C) resulted in significantly higher temperatures. The SAR corresponding to these temperatures did not differ significantly. Although MR imaging reduces the interobserver variation in most tissues, it does not affect simulated local tissue temperatures. However, the improved soft-tissue contrast provided by MRI allows generating a detailed brain segmentation, which has a strong impact on the predicted local temperatures and hence may improve simulation guided hyperthermia.
Transcortical Sensory Aphasia after Left Frontal Lobe Infarction: Loss of Functional Connectivity.
Kwon, Miseon; Shim, Woo Hyun; Kim, Sang-Joon; Kim, Jong S
2017-01-01
The underlying mechanism of transcortical sensory aphasia (TSA) caused by lesions occurring in the left frontal lobe remains unclear. We attempted to investigate the mechanism with the use of functional MRI (fMRI). We studied 2 patients with TSA after a left frontal infarction identified by diffusion-weighted MRI. As control subjects, a patient with transcortical motor aphasia and a healthy normal adult were chosen. The Korean version of Western Aphasia Battery was performed initially and at 3 months post stroke. We performed fMRI using verb generation and sentence completion tasks. Resting-state fMRI (rs-fMRI) was also obtained for network-level analysis initially and at 3 months post stroke. The results of diffusion- and perfusion-weighted MRI revealed no diffusion-perfusion mismatch. Initial fMRI in patients with TSA showed no reversed inter-/intrahemispheric activation patterns. rs-fMRI showed significantly decreased resting-state functional connectivity in the language network in patients with TSA compared with the control subjects. Follow-up rs-fMRI studies showed improvement in functional connectivity along with the recovery of patients' language function. Our data showed that the auditory comprehension deficits in patients with frontal lobe infarcts is attributed to difficulty accessing the posterior language area due to functional disconnection between language centers in the acute stage of stroke. © 2017 S. Karger AG, Basel.
Uğurbil, Kamil; Xu, Junqian; Auerbach, Edward J.; Moeller, Steen; Vu, An; Duarte-Carvajalino, Julio M.; Lenglet, Christophe; Wu, Xiaoping; Schmitter, Sebastian; Van de Moortele, Pierre Francois; Strupp, John; Sapiro, Guillermo; De Martino, Federico; Wang, Dingxin; Harel, Noam; Garwood, Michael; Chen, Liyong; Feinberg, David A.; Smith, Stephen M.; Miller, Karla L.; Sotiropoulos, Stamatios N; Jbabdi, Saad; Andersson, Jesper L; Behrens, Timothy EJ; Glasser, Matthew F.; Van Essen, David; Yacoub, Essa
2013-01-01
The human connectome project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce ‘functional connectivity’; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3 Tesla, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 second for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 Tesla magnetic field are also presented, targeting higher resolution, specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields and power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure. PMID:23702417
Lu, Jun-Feng; Zhang, Han; Wu, Jin-Song; Yao, Cheng-Jun; Zhuang, Dong-Xiao; Qiu, Tian-Ming; Jia, Wen-Bin; Mao, Ying; Zhou, Liang-Fu
2012-01-01
As a promising noninvasive imaging technique, functional MRI (fMRI) has been extensively adopted as a functional localization procedure for surgical planning. However, the information provided by preoperative fMRI (pre-fMRI) is hampered by the brain deformation that is secondary to surgical procedures. Therefore, intraoperative fMRI (i-fMRI) becomes a potential alternative that can compensate for brain shifts by updating the functional localization information during craniotomy. However, previous i-fMRI studies required that patients be under general anesthesia, preventing the wider application of such a technique as the patients cannot perform tasks unless they are awake. In this study, we propose a new technique that combines awake surgery and i-fMRI, named “awake” i-fMRI (ai-fMRI). We introduced ai-fMRI to the real-time localization of sensorimotor areas during awake craniotomy in seven patients. The results showed that ai-fMRI could successfully detect activations in the bilateral primary sensorimotor areas and supplementary motor areas for all patients, indicating the feasibility of this technique in eloquent area localization. The reliability of ai-fMRI was further validated using intraoperative stimulation mapping (ISM) in two of the seven patients. Comparisons between the pre-fMRI-derived localization result and the ai-fMRI derived result showed that the former was subject to a heavy brain shift and led to incorrect localization, while the latter solved that problem. Additionally, the approaches for the acquisition and processing of the ai-fMRI data were fully illustrated and described. Some practical issues on employing ai-fMRI in awake craniotomy were systemically discussed, and guidelines were provided. PMID:24179766
Investigation of Lung Structure-Function Relationships Using Hyperpolarized Noble Gases
NASA Astrophysics Data System (ADS)
Thomen, Robert P.
Magnetic Resonance Imaging (MRI) is an application of the nuclear magnetic resonance (NMR) phenomenon to non-invasively generate 3D tomographic images. MRI is an emerging modality for the lung, but it suffers from low sensitivity due to inherent low tissue density and short T(*/2) . Hyperpolarization is a process by which the nuclear contribution to NMR signal is greatly enhanced to more than 100,000 times that of samples in thermal equilibrium. The noble gases 3He and 129Xe are most often hyperpolarized by transfer of light angular momentum through the electron of a vaporized alkali metal to the noble gas nucleus (called Spin Exchange Optical Pumping). The enhancement in NMR signal is so great that the gas itself can be imaged via MRI, and because noble gases are chemically inert, they can be safely inhaled by a subject, and the gas distribution within the interior of the lung can be imaged. The mechanics of respiration is an elegant physical process by which air is is brought into the distal airspaces of the lungs for oxygen/carbon dioxide gas exchange with blood. Therefore proper description of lung function is intricately related to its physical structure , and the basic mechanical operation of healthy lungs -- from pressure driven airflow, to alveolar airspace gas kinetics, to gas exchange by blood/gas concentration gradients, to elastic contraction of parenchymal tissue -- is a process decidedly governed by the laws of physics. This dissertation will describe experiments investigating the relationship of lung structure and function using hyperpolarized (HP) noble gas MRI. In particular HP gases will be applied to the study of several pulmonary diseases each of which demonstrates unique structure-function abnormalities: asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Successful implementation of an HP gas acquisition protocol for pulmonary studies is an involved and stratified undertaking which requires a solid theoretical foundation in NMR and hyperpolarization theory, construction of dedicated hardware, development of dedicated software, and appropriate image analysis techniques for all acquired data. The author has been actively involved in each of these and has dedicated specific chapters of this dissertation to their description. First, a brief description of lung structure-function investigations and pulmonary imaging will be given (chapter 1). Brief discussions of basic NMR, MRI, and hyperpolarization theory will be given (chapters 2 and 3) followed by their particular methods of implementation in this work (chapters 4 and 5). Analysis of acquired HP gas images will be discussed (chapter 6), and the investigational procedures and results for each lung disease examined will be detailed (chapter 7). Finally, a quick digression on the strengths and limitations of HP gas MRI will be provided (chapter 8).
Complementary aspects of diffusion imaging and fMRI; I: structure and function.
Mulkern, Robert V; Davis, Peter E; Haker, Steven J; Estepar, Raul San Jose; Panych, Lawrence P; Maier, Stephan E; Rivkin, Michael J
2006-05-01
Studying the intersection of brain structure and function is an important aspect of modern neuroscience. The development of magnetic resonance imaging (MRI) over the last 25 years has provided new and powerful tools for the study of brain structure and function. Two tools in particular, diffusion imaging and functional MRI (fMRI), are playing increasingly important roles in elucidating the complementary aspects of brain structure and function. In this work, we review basic technical features of diffusion imaging and fMRI for studying the integrity of white matter structural components and for determining the location and extent of cortical activation in gray matter, respectively. We then review a growing body of literature in which the complementary aspects of diffusion imaging and fMRI, applied as separate examinations but analyzed in tandem, have been exploited to enhance our knowledge of brain structure and function.
Hyperpolarized xenon magnetic resonance of the lung and the brain
NASA Astrophysics Data System (ADS)
Venkatesh, Arvind Krishnamachari
2001-04-01
Hyperpolarized noble gas Magnetic Resonance Imaging (MRI) is a new diagnostic modality that has been used successfully for lung imaging. Xenon is soluble in blood and inhaled xenon is transported to the brain via circulating blood. Xenon also accumulates in the lipid rich white matter of the brain. Hyperpolarized xenon can hence be used as a tissue- sensitive probe of brain function. The goals of this study were to identify the NMR resonances of xenon in the rat brain and evaluate the role of hyperpolarized xenon for brain MRI. We have developed systems to produce sufficient volumes of hyperpolarized xenon for in vivo brain experiments. The specialized instrumentation developed include an apparatus for optical pump-cell manufacture and high purity gas manifolds for filling cells. A hyperpolarized gas delivery system was designed to ventilate small animals with hyperpolarized xenon for transport to the brain. The T1 of xenon dissolved in blood indicates that the lifetime of xenon in the blood is sufficient for significant magnetization to be transferred to distal tissues. A variety of carrier agents for intravenous delivery of hyperpolarized xenon were tested for transport to distal tissues. Using our new gas delivery system, high SNR 129Xe images of rat lungs were obtained. Spectroscopy with hyperpolarized xenon indicated that xenon was transported from the lungs to the blood and tissues with intact magnetization. After preliminary studies that indicated the feasibility for in vivo rat brain studies, experiments were performed with adult rats and young rats with different stages of white matter development. Both in vivo and in vitro experiments showed the prominence of one peak from xenon in the rat brain, which was assigned to brain lipids. Cerebral brain perfusion was calculated from the wash-out of the hyperpolarized xenon signal in the brain. An increase in brain perfusion during maturation was observed. These experiments showed that hyperpolarized xenon MRI can be used to develop unique approaches to studying white matter and gray matter in the brain. Some of the possible applications of hyperpolarized xenon MRI in the brain are clinical diagnosis of white matter diseases, functional MRI (fMRI) and measurement of cerebral blood perfusion.
Al-Wakeel, Nadya; O h-Ici, Darach; Schmitt, Katharina R; Messroghli, Daniel R; Riesenkampff, Eugénie; Berger, Felix; Kuehne, Titus; Peters, Bjoern
2016-02-01
In patients with CHD, cardiac MRI is often indicated for functional and anatomical assessment. With the recent introduction of MRI-conditional pacemaker systems, cardiac MRI has become accessible for patients with pacemakers. The present clinical study aims to evaluate safety, susceptibility artefacts, and image reading of cardiac MRI in patients with CHD and MRI-conditional pacemaker systems. Material and methods CHD patients with MRI-conditional pacemaker systems and a clinical need for cardiac MRI were examined with a 1.5-T MRI system. Lead function was tested before and after MRI. Artefacts and image readings were evaluated using a four-point grading scale. A total of nine patients with CHD (mean age 34.0 years, range 19.5-53.6 years) received a total of 11 cardiac MRI examinations. Owing to clinical indications, seven patients had previously been converted from conventional to MRI-conditional pacemaker systems. All MRI examinations were completed without adverse effects. Device testing immediately after MRI and at follow-up showed no alteration of pacemaker device and lead function. Clinical questions could be addressed and answered in all patients. Cardiac MRI can be performed safely with high certainty of diagnosis in CHD patients with MRI-conditional pacemaker systems. In case of clinically indicated lead and box changing, CHD patients with non-MRI-conditional pacemaker systems should be considered for complete conversion to MRI-conditional systems.
NASA Astrophysics Data System (ADS)
Choi, Jinhyeok; Kim, Hyeonjin
2016-12-01
To improve the efficacy of undersampled MRI, a method of designing adaptive sampling functions is proposed that is simple to implement on an MR scanner and yet effectively improves the performance of the sampling functions. An approximation of the energy distribution of an image (E-map) is estimated from highly undersampled k-space data acquired in a prescan and efficiently recycled in the main scan. An adaptive probability density function (PDF) is generated by combining the E-map with a modeled PDF. A set of candidate sampling functions are then prepared from the adaptive PDF, among which the one with maximum energy is selected as the final sampling function. To validate its computational efficiency, the proposed method was implemented on an MR scanner, and its robust performance in Fourier-transform (FT) MRI and compressed sensing (CS) MRI was tested by simulations and in a cherry tomato. The proposed method consistently outperforms the conventional modeled PDF approach for undersampling ratios of 0.2 or higher in both FT-MRI and CS-MRI. To fully benefit from undersampled MRI, it is preferable that the design of adaptive sampling functions be performed online immediately before the main scan. In this way, the proposed method may further improve the efficacy of the undersampled MRI.
Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan
2014-01-01
Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery.
Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan
2014-01-01
Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery. PMID:25250092
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verhaart, René F., E-mail: r.f.verhaart@erasmusmc.nl; Paulides, Margarethus M.; Fortunati, Valerio
Purpose: In current clinical practice, head and neck (H and N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors’ study is to investigate the relevance of using MRI in addition to CT for patient modeling in H and N HTP. Methods: CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreousmore » humor, and the optical nerve. For these tissues that are used for patient modeling in H and N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRI{sub db}). To quantify the relevance of MRI based segmentation for H and N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (T{sub max}) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRI{sub db}. Results: In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient models based on CT (T{sub max}: 38.0 °C) and CT and MRI (T{sub max}: 38.1 °C) result in similar simulated temperatures, while CT and MRI{sub db} (T{sub max}: 38.5 °C) resulted in significantly higher temperatures. The SAR corresponding to these temperatures did not differ significantly. Conclusions: Although MR imaging reduces the interobserver variation in most tissues, it does not affect simulated local tissue temperatures. However, the improved soft-tissue contrast provided by MRI allows generating a detailed brain segmentation, which has a strong impact on the predicted local temperatures and hence may improve simulation guided hyperthermia.« less
Shim, Woo H; Suh, Ji-Yeon; Kim, Jeong K; Jeong, Jaeseung; Kim, Young R
2016-01-01
Neurological recovery after stroke has been extensively investigated to provide better understanding of neurobiological mechanism, therapy, and patient management. Recent advances in neuroimaging techniques, particularly functional MRI (fMRI), have widely contributed to unravel the relationship between the altered neural function and stroke-affected brain areas. As results of previous investigations, the plastic reorganization and/or gradual restoration of the hemodynamic fMRI responses to neural stimuli have been suggested as relevant mechanisms underlying the stroke recovery process. However, divergent study results and modality-dependent outcomes have clouded the proper interpretation of variable fMRI signals. Here, we performed both evoked and resting state fMRI (rs-fMRI) to clarify the link between the fMRI phenotypes and post-stroke functional recovery. The experiments were designed to examine the altered neural activity within the contra-lesional hemisphere and other undamaged brain regions using rat models with large unilateral stroke, which despite the severe injury, exhibited nearly full recovery at ∼6 months after stroke. Surprisingly, both blood oxygenation level-dependent and blood volume-weighted (CBVw) fMRI activities elicited by electrical stimulation of the stroke-affected forelimb were completely absent, failing to reveal the neural origin of the behavioral recovery. In contrast, the functional connectivity maps showed highly robust rs-fMRI activity concentrated in the contra-lesional ventromedial nucleus of thalamus (VM). The negative finding in the stimuli-induced fMRI study using the popular rat middle cerebral artery model denotes weak association between the fMRI hemodynamic responses and neurological improvement. The results strongly caution the indiscreet interpretation of stroke-affected fMRI signals and demonstrate rs-fMRI as a complementary tool for efficiently characterizing stroke recovery.
Real time 3D visualization of intraoperative organ deformations using structured dictionary.
Wang, Dan; Tewfik, Ahmed H
2012-04-01
Restricted visualization of the surgical field is one of the most critical challenges for minimally invasive surgery (MIS). Current intraoperative visualization systems are promising. However, they can hardly meet the requirements of high resolution and real time 3D visualization of the surgical scene to support the recognition of anatomic structures for safe MIS procedures. In this paper, we present a new approach for real time 3D visualization of organ deformations based on optical imaging patches with limited field-of-view and a single preoperative scan of magnetic resonance imaging (MRI) or computed tomography (CT). The idea for reconstruction is motivated by our empirical observation that the spherical harmonic coefficients corresponding to distorted surfaces of a given organ lie in lower dimensional subspaces in a structured dictionary that can be learned from a set of representative training surfaces. We provide both theoretical and practical designs for achieving these goals. Specifically, we discuss details about the selection of limited optical views and the registration of partial optical images with a single preoperative MRI/CT scan. The design proposed in this paper is evaluated with both finite element modeling data and ex vivo experiments. The ex vivo test is conducted on fresh porcine kidneys using 3D MRI scans with 1.2 mm resolution and a portable laser scanner with an accuracy of 0.13 mm. Results show that the proposed method achieves a sub-3 mm spatial resolution in terms of Hausdorff distance when using only one preoperative MRI scan and the optical patch from the single-sided view of the kidney. The reconstruction frame rate is between 10 frames/s and 39 frames/s depending on the complexity of the test model.
Quantitative OCT and MRI biomarkers for the differentiation of cartilage degeneration.
Nebelung, Sven; Brill, Nicolai; Tingart, Markus; Pufe, Thomas; Kuhl, Christiane; Jahr, Holger; Truhn, Daniel
2016-04-01
To evaluate the usefulness of quantitative parameters obtained by optical coherence tomography (OCT) and magnetic resonance imaging (MRI) in the comprehensive assessment of human articular cartilage degeneration. Human osteochondral samples of variable degeneration (n = 45) were obtained from total knee replacements and assessed by MRI sequences measuring T1, T1ρ, T2 and T2* relaxivity and by OCT-based quantification of irregularity (OII, optical irregularity index), homogeneity (OHI, optical homogeneity index]) and attenuation (OAI, optical attenuation index]). Samples were also assessed macroscopically (Outerbridge classification) and histologically (Mankin classification) as grade-0 (Mankin scores 0-4)/grade-I (scores 5-8)/grade-II (scores 9-10)/grade-III (score 11-14). After data normalisation, differences between Mankin grades and correlations between imaging parameters were assessed using ANOVA and Tukey's post-hoc test and Spearman's correlation coefficients, respectively. Sensitivities and specificities in the detection of Mankin grade-0 were calculated. Significant degeneration-related increases were found for T2 and OII and decreases for OAI, while T1, T1ρ, T2* or OHI did not reveal significant changes in relation to degeneration. A number of significant correlations between imaging parameters and histological (sub)scores were found, in particular for T2 and OII. Sensitivities and specificities in the detection of Mankin grade-0 were highest for OHI/T1 and OII/T1ρ, respectively. Quantitative OCT and MRI techniques seem to complement each other in the comprehensive assessment of cartilage degeneration. Sufficiently large structural and compositional changes in the extracellular matrix may thus be parameterized and quantified, while the detection of early degeneration remains challenging.
Fiori, Simona; Guzzetta, Andrea; Pannek, Kerstin; Ware, Robert S; Rossi, Giuseppe; Klingels, Katrijn; Feys, Hilde; Coulthard, Alan; Cioni, Giovanni; Rose, Stephen; Boyd, Roslyn N
2015-01-01
To provide first evidence of construct validity of a semi-quantitative scale for brain structural MRI (sqMRI scale) in children with unilateral cerebral palsy (UCP) secondary to periventricular white matter (PWM) lesions, by examining the relationship with hand sensorimotor function and whole brain structural connectivity. Cross-sectional study of 50 children with UCP due to PWM lesions using 3 T (MRI), diffusion MRI and assessment of hand sensorimotor function. We explored the relationship of lobar, hemispheric and global scores on the sqMRI scale, with fractional anisotropy (FA), as a measure of brain white matter microstructure, and with hand sensorimotor measures (Assisting Hand Assessment, AHA; Jebsen-Taylor Test for Hand Function, JTTHF; Melbourne Assessment of Unilateral Upper Limb Function, MUUL; stereognosis; 2-point discrimination). Lobar and hemispheric scores on the sqMRI scale contralateral to the clinical side of hemiplegia correlated with sensorimotor paretic hand function measures and FA of a number of brain structural connections, including connections of brain areas involved in motor control (postcentral, precentral and paracentral gyri in the parietal lobe). More severe lesions correlated with lower sensorimotor performance, with the posterior limb of internal capsule score being the strongest contributor to impaired hand function. The sqMRI scale demonstrates first evidence of construct validity against impaired motor and sensory function measures and brain structural connectivity in a cohort of children with UCP due to PWM lesions. More severe lesions correlated with poorer paretic hand sensorimotor function and impaired structural connectivity in the hemisphere contralateral to the clinical side of hemiplegia. The quantitative structural MRI scoring may be a useful clinical tool for studying brain structure-function relationships but requires further validation in other populations of CP.
A novel method for fast imaging of brain function, non-invasively, with light
NASA Astrophysics Data System (ADS)
Chance, Britton; Anday, Endla; Nioka, Shoko; Zhou, Shuoming; Hong, Long; Worden, Katherine; Li, C.; Murray, T.; Ovetsky, Y.; Pidikiti, D.; Thomas, R.
1998-05-01
Imaging of the human body by any non-invasive technique has been an appropriate goal of physics and medicine, and great success has been obtained with both Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) in brain imaging. Non-imaging responses to functional activation using near infrared spectroscopy of brain (fNIR) obtained in 1993 (Chance, et al. [1]) and in 1994 (Tamura, et al. [2]) are now complemented with images of pre-frontal and parietal stimulation in adults and pre-term neonates in this communication (see also [3]). Prior studies used continuous [4], pulsed [3] or modulated [5] light. The amplitude and phase cancellation of optical patterns as demonstrated for single source detector pairs affords remarkable sensitivity of small object detection in model systems [6]. The methods have now been elaborated with multiple source detector combinations (nine sources, four detectors). Using simple back projection algorithms it is now possible to image sensorimotor and cognitive activation of adult and pre- and full-term neonate human brain function in times < 30 sec and with two dimensional resolutions of < 1 cm in two dimensional displays. The method can be used in evaluation of adult and neonatal cerebral dysfunction in a simple, portable and affordable method that does not require immobilization, as contrasted to MRI and PET.
Realistic simulated MRI and SPECT databases. Application to SPECT/MRI registration evaluation.
Aubert-Broche, Berengere; Grova, Christophe; Reilhac, Anthonin; Evans, Alan C; Collins, D Louis
2006-01-01
This paper describes the construction of simulated SPECT and MRI databases that account for realistic anatomical and functional variability. The data is used as a gold-standard to evaluate four SPECT/MRI similarity-based registration methods. Simulation realism was accounted for using accurate physical models of data generation and acquisition. MRI and SPECT simulations were generated from three subjects to take into account inter-subject anatomical variability. Functional SPECT data were computed from six functional models of brain perfusion. Previous models of normal perfusion and ictal perfusion observed in Mesial Temporal Lobe Epilepsy (MTLE) were considered to generate functional variability. We studied the impact noise and intensity non-uniformity in MRI simulations and SPECT scatter correction may have on registration accuracy. We quantified the amount of registration error caused by anatomical and functional variability. Registration involving ictal data was less accurate than registration involving normal data. MR intensity nonuniformity was the main factor decreasing registration accuracy. The proposed simulated database is promising to evaluate many functional neuroimaging methods, involving MRI and SPECT data.
Placati, Silvio; Guermandi, Marco; Samore, Andrea; Scarselli, Eleonora Franchi; Guerrieri, Roberto
2016-09-01
Diffuse optical tomography is an imaging technique, based on evaluation of how light propagates within the human head to obtain the functional information about the brain. Precision in reconstructing such an optical properties map is highly affected by the accuracy of the light propagation model implemented, which needs to take into account the presence of clear and scattering tissues. We present a numerical solver based on the radiosity-diffusion model, integrating the anatomical information provided by a structural MRI. The solver is designed to run on parallel heterogeneous platforms based on multiple GPUs and CPUs. We demonstrate how the solver provides a 7 times speed-up over an isotropic-scattered parallel Monte Carlo engine based on a radiative transport equation for a domain composed of 2 million voxels, along with a significant improvement in accuracy. The speed-up greatly increases for larger domains, allowing us to compute the light distribution of a full human head ( ≈ 3 million voxels) in 116 s for the platform used.
Kim, Dong-Youl; Yoo, Seung-Schik; Tegethoff, Marion; Meinlschmidt, Gunther; Lee, Jong-Hwan
2015-08-01
Real-time fMRI (rtfMRI) neurofeedback (NF) facilitates volitional control over brain activity and the modulation of associated mental functions. The NF signals of traditional rtfMRI-NF studies predominantly reflect neuronal activity within ROIs. In this study, we describe a novel rtfMRI-NF approach that includes a functional connectivity (FC) component in the NF signal (FC-added rtfMRI-NF). We estimated the efficacy of the FC-added rtfMRI-NF method by applying it to nicotine-dependent heavy smokers in an effort to reduce cigarette craving. ACC and medial pFC as well as the posterior cingulate cortex and precuneus are associated with cigarette craving and were chosen as ROIs. Fourteen heavy smokers were randomly assigned to receive one of two types of NF: traditional activity-based rtfMRI-NF or FC-added rtfMRI-NF. Participants received rtfMRI-NF training during two separate visits after overnight smoking cessation, and cigarette craving score was assessed. The FC-added rtfMRI-NF resulted in greater neuronal activity and increased FC between the targeted ROIs than the traditional activity-based rtfMRI-NF and resulted in lower craving score. In the FC-added rtfMRI-NF condition, the average of neuronal activity and FC was tightly associated with craving score (Bonferroni-corrected p = .028). However, in the activity-based rtfMRI-NF condition, no association was detected (uncorrected p > .081). Non-rtfMRI data analysis also showed enhanced neuronal activity and FC with FC-added NF than with activity-based NF. These results demonstrate that FC-added rtfMRI-NF facilitates greater volitional control over brain activity and connectivity and greater modulation of mental function than activity-based rtfMRI-NF.
Laminar fMRI and computational theories of brain function.
Stephan, K E; Petzschner, F H; Kasper, L; Bayer, J; Wellstein, K V; Stefanics, G; Pruessmann, K P; Heinzle, J
2017-11-02
Recently developed methods for functional MRI at the resolution of cortical layers (laminar fMRI) offer a novel window into neurophysiological mechanisms of cortical activity. Beyond physiology, laminar fMRI also offers an unprecedented opportunity to test influential theories of brain function. Specifically, hierarchical Bayesian theories of brain function, such as predictive coding, assign specific computational roles to different cortical layers. Combined with computational models, laminar fMRI offers a unique opportunity to test these proposals noninvasively in humans. This review provides a brief overview of predictive coding and related hierarchical Bayesian theories, summarises their predictions with regard to layered cortical computations, examines how these predictions could be tested by laminar fMRI, and considers methodological challenges. We conclude by discussing the potential of laminar fMRI for clinically useful computational assays of layer-specific information processing. Copyright © 2017 Elsevier Inc. All rights reserved.
[Rupture of lateral ligaments of the ankle joint: MR imaging before and after functional therapy].
Grebe, P; Kreitner, K F; Roeder, W; Kersjes, W; Hennes, R; Runkel, M
1995-09-01
Documentation via MRI of the healing of ruptured lateral collateral ankle ligaments after functional therapy. 35 patients with ankle sprain were examined by MRI and stress radiographs, 13 were operated afterwards, 22 patients underwent a functional conservative therapy and were examined by MRI and stress radiographs and second time after three months. MRI reports were correct in 12 of 13 operated cases. After conservative therapy we did not find any disrupted ankle ligament. MRI showed intact ligaments thickened by scar. MRI is able to show injuries of the lateral collateral ankle ligaments and demonstrates the healing by scar after conservative therapy.
Zhang, Fang; Duan, Xiaohui; Lu, Liejing; Zhang, Xiang; Chen, Meiwei; Mao, Jiaji; Cao, Minghui; Shen, Jun
2017-10-01
Transplantation of neural stem cells (NSCs) is emerging as a new therapeutic approach for stroke. Real-time imaging of transplanted NSCs is essential for successful cell delivery, safety monitoring, tracking cell fate and function, and understanding the interactions of transplanted cells with the host environment. Magnetic resonance imaging (MRI) of magnetic nanoparticle-labeled cells has been the most widely used means to track stem cells in vivo. Nevertheless, it does not allow for the reliable discrimination between live and dead cells. Reporter gene-based MRI was considered as an alternative strategy to overcome this shortcoming. In this work, a class of lentiviral vector-encoding ferritin heavy chain (FTH) and enhanced green fluorescent protein (EGFP) was constructed to deliver reporter genes into NSCs. After these transgenic NSCs were transplanted into the contralateral hemisphere of rats with acute ischemic stroke, MRI and fluorescence imaging (FLI) were performed in vivo for tracking the fate of transplanted cells over a long period of 6 wk. The results demonstrated that the FTH and EGFP can be effectively and safely delivered to NSCs via the designed lentiviral vector. The distribution and migration of grafted stem cells could be monitored by bimodal MRI and FLI. FTH can be used as a robust MRI reporter for reliable reporting of the short-term viability of cell grafts, whereas its capacity for tracking the long-term viability of stem cells remains dependent on several confounding factors such as cell death and the concomitant reactive inflammation.
Imani, Roghayeh; Dillert, Ralf; Bahnemann, Detlef W; Pazoki, Meysam; Apih, Tomaž; Kononenko, Veno; Repar, Neža; Kralj-Iglič, Veronika; Boschloo, Gerrit; Drobne, Damjana; Edvinsson, Tomas; Iglič, Aleš
2017-05-01
Materials with controllable multifunctional abilities for optical imaging (OI) and magnetic resonant imaging (MRI) that also can be used in photodynamic therapy are very interesting for future applications. Mesoporous TiO 2 sub-micrometer particles are doped with gadolinium to improve photoluminescence functionality and spin relaxation for MRI, with the added benefit of enhanced generation of reactive oxygen species (ROS). The Gd-doped TiO 2 exhibits red emission at 637 nm that is beneficial for OI and significantly improves MRI relaxation times, with a beneficial decrease in spin-lattice and spin-spin relaxation times. Density functional theory calculations show that Gd 3+ ions introduce impurity energy levels inside the bandgap of anatase TiO 2 , and also create dipoles that are beneficial for charge separation and decreased electron-hole recombination in the doped lattice. The Gd-doped TiO 2 nanobeads (NBs) show enhanced ability for ROS monitored via • OH radical photogeneration, in comparison with undoped TiO 2 nanobeads and TiO 2 P25, for Gd-doping up to 10%. Cellular internalization and biocompatibility of TiO 2 @xGd NBs are tested in vitro on MG-63 human osteosarcoma cells, showing full biocompatibility. After photoactivation of the particles, anticancer trace by means of ROS photogeneration is observed just after 3 min irradiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[MRI methods for pulmonary ventilation and perfusion imaging].
Sommer, G; Bauman, G
2016-02-01
Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O2-enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies.
Kozák, Lajos R; van Graan, Louis André; Chaudhary, Umair J; Szabó, Ádám György; Lemieux, Louis
2017-12-01
Generally, the interpretation of functional MRI (fMRI) activation maps continues to rely on assessing their relationship to anatomical structures, mostly in a qualitative and often subjective way. Recently, the existence of persistent and stable brain networks of functional nature has been revealed; in particular these so-called intrinsic connectivity networks (ICNs) appear to link patterns of resting state and task-related state connectivity. These networks provide an opportunity of functionally-derived description and interpretation of fMRI maps, that may be especially important in cases where the maps are predominantly task-unrelated, such as studies of spontaneous brain activity e.g. in the case of seizure-related fMRI maps in epilepsy patients or sleep states. Here we present a new toolbox (ICN_Atlas) aimed at facilitating the interpretation of fMRI data in the context of ICN. More specifically, the new methodology was designed to describe fMRI maps in function-oriented, objective and quantitative way using a set of 15 metrics conceived to quantify the degree of 'engagement' of ICNs for any given fMRI-derived statistical map of interest. We demonstrate that the proposed framework provides a highly reliable quantification of fMRI activation maps using a publicly available longitudinal (test-retest) resting-state fMRI dataset. The utility of the ICN_Atlas is also illustrated on a parametric task-modulation fMRI dataset, and on a dataset of a patient who had repeated seizures during resting-state fMRI, confirmed on simultaneously recorded EEG. The proposed ICN_Atlas toolbox is freely available for download at http://icnatlas.com and at http://www.nitrc.org for researchers to use in their fMRI investigations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Microcontroller based fibre-optic visual presentation system for multisensory neuroimaging.
Kurniawan, Veldri; Klemen, Jane; Chambers, Christopher D
2011-10-30
Presenting visual stimuli in physical 3D space during fMRI experiments carries significant technical challenges. Certain types of multisensory visuotactile experiments and visuomotor tasks require presentation of visual stimuli in peripersonal space, which cannot be accommodated by ordinary projection screens or binocular goggles. However, light points produced by a group of LEDs can be transmitted through fibre-optic cables and positioned anywhere inside the MRI scanner. Here we describe the design and implementation of a microcontroller-based programmable digital device for controlling fibre-optically transmitted LED lights from a PC. The main feature of this device is the ability to independently control the colour, brightness, and timing of each LED. Moreover, the device was designed in a modular and extensible way, which enables easy adaptation for various experimental paradigms. The device was tested and validated in three fMRI experiments involving basic visual perception, a simple colour discrimination task, and a blocked multisensory visuo-tactile task. The results revealed significant lateralized activation in occipital cortex of all participants, a reliable response in ventral occipital areas to colour stimuli elicited by the device, and strong activations in multisensory brain regions in the multisensory task. Overall, these findings confirm the suitability of this device for presenting complex fibre-optic visual and cross-modal stimuli inside the scanner. Copyright © 2011 Elsevier B.V. All rights reserved.
Merkle, Conrad W.; Srinivasan, Vivek J.
2015-01-01
The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs. PMID:26477654
Merkle, Conrad W; Srinivasan, Vivek J
2016-01-15
The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs. Copyright © 2015 Elsevier Inc. All rights reserved.
Hjouj, Mohammad; Rubinsky, Boris
2010-07-01
We introduce and characterize the use of MRI for studying nonthermal irreversible electroporation (NTIRE) in a vegetative tissue model. NTIRE is a new minimally invasive surgical technique for tissue ablation in which microsecond, high electric-field pulses form nanoscale defects in the cell membrane that lead to cell death. Clinical NTIRE sequences were applied to a potato tuber tissue model. The potato is used for NTIRE studies because cell damage is readily visible with optical means through a natural oxidation process of released intracellular enzymes (polyphenol oxidase) and the formation of brown-black melanins. MRI sequences of the treated area were taken at various times before and after NTIRE and compared with photographic images. A comparison was made between T1W, T2W, FLAIR and STIR MRIs of NTIRE and photographic images. Some MRI sequences show changes in areas treated by irreversible electroporation. T1W and FLAIR produce brighter images of the treated areas. In contrast, the signal was lost from the treated area when a suppression technique, STIR, was used. There was similarity between optical photographic images of the treated tissue and MRIs of the same areas. This is the first study to characterize MRI of NTIRE in vegetative tissue. We find that NTIRE produces changes in vegetative tissue that can be imaged by certain MRI sequences. This could make MRI an effective tool to study the fundamentals of NTIRE in nonanimal tissue.
Chung, Tae Nyoung; Kim, Sun Wook; Park, Yoo Seok; Park, Incheol
2010-05-01
Methanol is generally known to cause visual impairment and various systemic manifestations. There are a few reported specific findings for methanol intoxication on magnetic resonance imaging (MRI) of the brain. A case is reported of unilateral blindness with third cranial nerve palsy oculus sinister (OS) after the ingestion of methanol. Unilateral damage of the retina and optic nerve were confirmed by fundoscopy, flourescein angiography, visual evoked potential and electroretinogram. The optic nerve and extraocular muscles (superior rectus, medial rectus, inferior rectus and inferior oblique muscle) were enhanced by gadolinium-DTPA on MRI of the orbit. This is the first case report of permanent monocular blindness with confirmed unilateral damage of the retina and optic nerve, combined with third cranial nerve palsy after methanol ingestion.
MRI helps depict clinically undetectable risk factors in advanced stage retinoblastomas.
Galluzzi, Paolo; Hadjistilianou, Theodora; Cerase, Alfonso; Toti, Paolo; Leonini, Sara; Bracco, Sandra; de Francesco, Sonia; Galimberti, Daniela; Balducci, Donatella; Piu, Pietro; Monti, Lucia; Bellini, Matteo; Caini, Mauro; Rossi, Alessandro
2015-02-01
This study compared high-resolution MRI with histology in advanced stage retinoblastomas in which ophthalmoscopy and ultrasonography did not give an exhaustive depiction of the tumour and/or its extension. MRI of orbits and head in 28 retinoblastoma patients (28 eyes) treated with primary enucleation were evaluated. Iris neoangiogenesis, infiltrations of optic nerve, choroid, anterior segment and sclera suspected at MR and histology were compared. Abnormal anterior segment enhancement (AASE) was also correlated with histologically proven infiltrations. Brain images were also evaluated. Significant values were obtained for: prelaminar optic nerve (ON) sensitivity (0.88), positive predictive value (PPV) (0.75) and negative predictive value (NPV) (0.71); post-laminar ON sensitivity (0.50), specificity (0.83), PPV (0.50) and NPV (0.83); overall choroid sensitivity (0.82), and massive choroid NPV (0.69); scleral specificity (1), and NPV (1). AASE correlated with iris neoangiogenesis in 14 out of 19 eyes, and showed significant values for: overall ON PPV (0.65), prelaminar ON sensitivity (0.65), and PPV (0.61), post-laminar ON NPV (0.64); overall choroid sensitivity (0.77), PPV (0.59) and NPV (0.73); scleral NPV (0.83); anterior segment sensitivity (1), and NPV (1). Odds ratios (OR) and accuracy were significant in scleral and prelaminar optic nerve infiltration. Brain examination was unremarkable in all cases. High-resolution MRI may add important findings to clinical evaluation of advanced stage retinoblastomas. © The Author(s) 2015 Reprints and permissions:]br]sagepub.co.uk/journalsPermissions.nav.
Reconstruction of the optical system of personalized eye models by using magnetic resonance imaging.
Sun, Han-Yin; Lee, Chi-Hung; Chuang, Chun-Chao
2016-11-10
This study presents a practical method for reconstructing the optical system of personalized eye models by using magnetic resonance imaging (MRI). Monocular images were obtained from a young (20-year-old) healthy subject viewing at a near point (10 cm). Each magnetic resonance image was first analyzed using several commercial software to capture the profile of each optical element of the human eye except for the anterior lens surface, which could not be determined because it overlapped the ciliary muscle. The missing profile was substituted with a modified profile from a generic eye model. After the data-including the refractive indices from a generic model-were input in ZEMAX, we obtained a reasonable initial layout. By further considering the resolution of the MRI, the model was optimized to match the optical performance of a healthy eye. The main benefit of having a personalized eye model is the ability to quantitatively identify wide-angle ocular aberrations, which were corrected by the designed free-form spectacle lens.
Functional Near-Infrared Spectroscopy Signals Measure Neuronal Activity in the Cortex
NASA Technical Reports Server (NTRS)
Harrivel, Angela; Hearn, Tristan
2013-01-01
Functional near infrared spectroscopy (fNIRS) is an emerging optical neuroimaging technology that indirectly measures neuronal activity in the cortex via neurovascular coupling. It quantifies hemoglobin concentration ([Hb]) and thus measures the same hemodynamic response as functional magnetic resonance imaging (fMRI), but is portable, non-confining, relatively inexpensive, and is appropriate for long-duration monitoring and use at the bedside. Like fMRI, it is noninvasive and safe for repeated measurements. Patterns of [Hb] changes are used to classify cognitive state. Thus, fNIRS technology offers much potential for application in operational contexts. For instance, the use of fNIRS to detect the mental state of commercial aircraft operators in near real time could allow intelligent flight decks of the future to optimally support human performance in the interest of safety by responding to hazardous mental states of the operator. However, many opportunities remain for improving robustness and reliability. It is desirable to reduce the impact of motion and poor optical coupling of probes to the skin. Such artifacts degrade signal quality and thus cognitive state classification accuracy. Field application calls for further development of algorithms and filters for the automation of bad channel detection and dynamic artifact removal. This work introduces a novel adaptive filter method for automated real-time fNIRS signal quality detection and improvement. The output signal (after filtering) will have had contributions from motion and poor coupling reduced or removed, thus leaving a signal more indicative of changes due to hemodynamic brain activations of interest. Cognitive state classifications based on these signals reflect brain activity more reliably. The filter has been tested successfully with both synthetic and real human subject data, and requires no auxiliary measurement. This method could be implemented as a real-time filtering option or bad channel rejection feature of software used with frequency domain fNIRS instruments for signal acquisition and processing. Use of this method could improve the reliability of any operational or real-world application of fNIRS in which motion is an inherent part of the functional task of interest. Other optical diagnostic techniques (e.g., for NIR medical diagnosis) also may benefit from the reduction of probe motion artifact during any use in which motion avoidance would be impractical or limit usability.
Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications
NASA Astrophysics Data System (ADS)
Erogbogbo, Folarin; Chang, Ching-Wen; May, Jasmine L.; Liu, Liwei; Kumar, Rajiv; Law, Wing-Cheung; Ding, Hong; Yong, Ken Tye; Roy, Indrajit; Sheshadri, Mukund; Swihart, Mark T.; Prasad, Paras N.
2012-08-01
Luminescent imaging agents and MRI contrast agents are desirable components in the rational design of multifunctional nanoconstructs for biological imaging applications. Luminescent biocompatible silicon quantum dots (SiQDs) and gadolinium chelates can be applied for fluorescence microscopy and MRI, respectively. Here, we report the first synthesis of a nanocomplex incorporating SiQDs and gadolinium ions (Gd3+) for biological applications. The nanoconstruct is composed of a PEGylated micelle, with hydrophobic SiQDs in its core, covalently bound to DOTA-chelated Gd3+. Dynamic light scattering reveals a radius of 85 nm for these nanoconstructs, which is consistent with the electron microscopy results depicting radii ranging from 25 to 60 nm. Cellular uptake of the probes verified that they maintain their optical properties within the intracellular environment. The magnetic resonance relaxivity of the nanoconstruct was 2.4 mM-1 s-1 (in terms of Gd3+ concentration), calculated to be around 6000 mM-1 s-1 per nanoconstruct. These desirable optical and relaxivity properties of the newly developed probe open the door for use of SiQDs in future multimodal applications such as tumour imaging.Luminescent imaging agents and MRI contrast agents are desirable components in the rational design of multifunctional nanoconstructs for biological imaging applications. Luminescent biocompatible silicon quantum dots (SiQDs) and gadolinium chelates can be applied for fluorescence microscopy and MRI, respectively. Here, we report the first synthesis of a nanocomplex incorporating SiQDs and gadolinium ions (Gd3+) for biological applications. The nanoconstruct is composed of a PEGylated micelle, with hydrophobic SiQDs in its core, covalently bound to DOTA-chelated Gd3+. Dynamic light scattering reveals a radius of 85 nm for these nanoconstructs, which is consistent with the electron microscopy results depicting radii ranging from 25 to 60 nm. Cellular uptake of the probes verified that they maintain their optical properties within the intracellular environment. The magnetic resonance relaxivity of the nanoconstruct was 2.4 mM-1 s-1 (in terms of Gd3+ concentration), calculated to be around 6000 mM-1 s-1 per nanoconstruct. These desirable optical and relaxivity properties of the newly developed probe open the door for use of SiQDs in future multimodal applications such as tumour imaging. Electronic supplementary information (ESI) available: SEM images of MSiQD-Gd3+, DLS plot of MSiQD-NH2, images of Gd3+-functionalized Si QDs micelles in water, plot of percentages of Gd3+ leaked from original sample, and determination of free Gd3+ in solutions of Gd chelates. See DOI: 10.1039/c2nr31002c
Functional connectomics from resting-state fMRI
Smith, Stephen M; Vidaurre, Diego; Beckmann, Christian F; Glasser, Matthew F; Jenkinson, Mark; Miller, Karla L; Nichols, Thomas E; Robinson, Emma; Salimi-Khorshidi, Gholamreza; Woolrich, Mark W; Barch, Deanna M; Uğurbil, Kamil; Van Essen, David C
2014-01-01
Spontaneous fluctuations in activity in different parts of the brain can be used to study functional brain networks. We review the use of resting-state functional MRI for the purpose of mapping the macroscopic functional connectome. After describing MRI acquisition and image processing methods commonly used to generate data in a form amenable to connectomics network analysis, we discuss different approaches for estimating network structure from that data. Finally, we describe new possibilities resulting from the high-quality rfMRI data being generated by the Human Connectome Project, and highlight some upcoming challenges in functional connectomics. PMID:24238796
Patel, Saharsh; Fargen, Kyle M; Peters, Keith; Krall, Peter; Samy, Hazem; Hoh, Brian L
2015-01-01
Large and giant paraclinoid aneurysms are challenging to treat by either surgical or endovascular means. Visual dysfunction secondary to optic nerve compression and its relationship with aneurysm size, pulsation and thrombosis is poorly understood. We present a patient with a giant paraclinoid aneurysm resulting in bilateral visual loss that worsened following placement of a Pipeline Embolization Device and adjunctive coiling. Visual worsening occurred in conjunction with aneurysm thrombosis, increase in maximal aneurysm diameter and new adjacent edema. Her visual function spontaneously improved in a delayed fashion to better than pre-procedure, in conjunction with reduced aneurysmal mass effect, size and pulsation artifact on MRI. This report documents detailed ophthalmologic and MRI evidence for the role of thrombosis, aneurysm mass effect and aneurysm pulsation as causative etiologies for both cranial nerve dysfunction and delayed resolution following flow diversion treatment of large cerebral aneurysms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Dynamic mechanical oscillations during metamorphosis of the monarch butterfly
Pelling, Andrew E; Wilkinson, Paul R; Stringer, Richard; Gimzewski, James K
2008-01-01
The mechanical oscillation of the heart is fundamental during insect metamorphosis, but it is unclear how morphological changes affect its mechanical dynamics. Here, the micromechanical heartbeat with the monarch chrysalis (Danaus plexippus) during metamorphosis is compared with the structural changes observed through in vivo magnetic resonance imaging (MRI). We employ a novel ultra-sensitive detection approach, optical beam deflection, in order to measure the microscale motions of the pupae during the course of metamorphosis. We observed very distinct mechanical contractions occurring at regular intervals, which we ascribe to the mechanical function of the heart organ. Motion was observed to occur in approximately 15 min bursts of activity with frequencies in the 0.4–1.0 Hz range separated by periods of quiescence during the first 83 per cent of development. In the final stages, the beating was found to be uninterrupted until the adult monarch butterfly emerged. Distinct stages of development were characterized by changes in frequency, amplitude, mechanical quality factor and de/repolarization times of the mechanical pulsing. The MRI revealed that the heart organ remains functionally intact throughout metamorphosis but undergoes morphological changes that are reflected in the mechanical oscillation. PMID:18682363
Hoffmann, M B; Kaule, F; Grzeschik, R; Behrens-Baumann, W; Wolynski, B
2011-07-01
Since its initial introduction in the mid-1990 s, retinotopic mapping of the human visual cortex, based on functional magnetic resonance imaging (fMRI), has contributed greatly to our understanding of the human visual system. Multiple cortical visual field representations have been demonstrated and thus numerous visual areas identified. The organisation of specific areas has been detailed and the impact of pathophysiologies of the visual system on the cortical organisation uncovered. These results are based on investigations at a magnetic field strength of 3 Tesla or less. In a field-strength comparison between 3 and 7 Tesla, it was demonstrated that retinotopic mapping benefits from a magnetic field strength of 7 Tesla. Specifically, the visual areas can be mapped with high spatial resolution for a detailed analysis of the visual field maps. Applications of fMRI-based retinotopic mapping in ophthalmological research hold promise to further our understanding of plasticity in the human visual cortex. This is highlighted by pioneering studies in patients with macular dysfunction or misrouted optic nerves. © Georg Thieme Verlag KG Stuttgart · New York.
Zhang, Long Jiang; Wu, Shengyong; Ren, Jiaqian; Lu, Guang Ming
2014-09-01
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome which develops in patients with severe liver diseases and/or portal-systemic shunting. Minimal HE, the earliest manifestation of HE, has drawn increasing attention in the last decade. Minimal HE is associated with a series of brain functional changes, such as attention, working memory, and so on. Blood oxygen level dependent (BOLD) functional MRI (fMRI), especially resting-state fMRI has been used to explore the brain functional changes of HE, yielding important insights for understanding pathophysiological mechanisms and functional reorganization of HE. This paper briefly reviews the principles of BOLD fMRI, potential applications of resting-state fMRI with advanced post-processing algorithms such as regional homogeneity, amplitude of low frequency fluctuation, functional connectivity and future research perspective in this field.
HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).
Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming
Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.
HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).
Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming
2015-12-01
Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.
Detection of Brain Reorganization in Pediatric Multiple Sclerosis Using Functional MRI
2015-10-01
accomplish this, we apply comparative assessments of fMRI mappings of language, memory , and motor function, and performance on clinical neurocognitive...community at a target rate of 13 volunteers per quarter period; acquire fMRI data for language, memory , and visual-motor functions (months 3-12). c...consensus fMRI activation maps for language, memory , and visual-motor tasks (months 8-12). f) Subtask 1f. Prepare publication to disseminate our
Sotos syndrome: An interesting disorder with gigantism.
Nalini, A; Biswas, Arundhati
2008-07-01
We report the case of a 16-year-old boy diagnosed to have Sotos syndrome, with rare association of bilateral primary optic atrophy and epilepsy. He presented with accelerated linear growth, facial gestalt, distinctive facial features, seizures and progressive diminution of vision in both eyes. He had features of gigantism from early childhood. An MRI showed that brain and endocrine functions were normal. This case is of interest, as we have to be aware of this not so rare disorder. In addition to the classic features, there were two unusual associations with Sotos syndrome in the patient.
Sotos syndrome: An interesting disorder with gigantism
Nalini, A.; Biswas, Arundhati
2008-01-01
We report the case of a 16-year-old boy diagnosed to have Sotos syndrome, with rare association of bilateral primary optic atrophy and epilepsy. He presented with accelerated linear growth, facial gestalt, distinctive facial features, seizures and progressive diminution of vision in both eyes. He had features of gigantism from early childhood. An MRI showed that brain and endocrine functions were normal. This case is of interest, as we have to be aware of this not so rare disorder. In addition to the classic features, there were two unusual associations with Sotos syndrome in the patient. PMID:19893668
Cetin, Mustafa S.; Houck, Jon M.; Rashid, Barnaly; Agacoglu, Oktay; Stephen, Julia M.; Sui, Jing; Canive, Jose; Mayer, Andy; Aine, Cheryl; Bustillo, Juan R.; Calhoun, Vince D.
2016-01-01
Mental disorders like schizophrenia are currently diagnosed by physicians/psychiatrists through clinical assessment and their evaluation of patient's self-reported experiences as the illness emerges. There is great interest in identifying biological markers of prognosis at the onset of illness, rather than relying on the evolution of symptoms across time. Functional network connectivity, which indicates a subject's overall level of “synchronicity” of activity between brain regions, demonstrates promise in providing individual subject predictive power. Many previous studies reported functional connectivity changes during resting-state using only functional magnetic resonance imaging (fMRI). Nevertheless, exclusive reliance on fMRI to generate such networks may limit the inference of the underlying dysfunctional connectivity, which is hypothesized to be a factor in patient symptoms, as fMRI measures connectivity via hemodynamics. Therefore, combination of connectivity assessments using fMRI and magnetoencephalography (MEG), which more directly measures neuronal activity, may provide improved classification of schizophrenia than either modality alone. Moreover, recent evidence indicates that metrics of dynamic connectivity may also be critical for understanding pathology in schizophrenia. In this work, we propose a new framework for extraction of important disease related features and classification of patients with schizophrenia based on using both fMRI and MEG to investigate functional network components in the resting state. Results of this study show that the integration of fMRI and MEG provides important information that captures fundamental characteristics of functional network connectivity in schizophrenia and is helpful for prediction of schizophrenia patient group membership. Combined fMRI/MEG methods, using static functional network connectivity analyses, improved classification accuracy relative to use of fMRI or MEG methods alone (by 15 and 12.45%, respectively), while combined fMRI/MEG methods using dynamic functional network connectivity analyses improved classification up to 5.12% relative to use of fMRI alone and up to 17.21% relative to use of MEG alone. PMID:27807403
Winfield, Jessica M.; Payne, Geoffrey S.; Weller, Alex; deSouza, Nandita M.
2016-01-01
Abstract Multi-parametric magnetic resonance imaging (mpMRI) offers a unique insight into tumor biology by combining functional MRI techniques that inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy) and has scope to provide valuable information for prognostication and response assessment. Challenges in the application of mpMRI in the clinic include the technical considerations in acquiring good quality functional MRI data, development of robust techniques for analysis, and clinical interpretation of the results. This article summarizes the technical challenges in acquisition and analysis of multi-parametric MRI data before reviewing the key applications of multi-parametric MRI in clinical research and practice. PMID:27748710
Chen, Xiao-lei; Xu, Bai-nan; Wang, Fei; Meng, Xiang-hui; Zhang, Jun; Jiang, Jin-li; Yu, Xin-guang; Zhou, Ding-biao
2011-08-01
To explore the clinical value of functional neuro-navigation and high-field-strength intraoperative magnetic resonance imaging (iMRI) for the resection of intracerebral gliomas involving eloquent language structures. From April 2009 to April 2010, 48 patients with intracerebral gliomas involving eloquent language structures, were operated with functional neuro-navigation and iMRI. Blood oxygen level dependent functional MRI (BOLD-fMRI) was used to depict both Broca and Wernicke cortex, while diffusion tensor imaging (DTI) based fiber tracking was used to delineate arcuate fasciculus. The reconstructed language structures were integrated into a navigation system, so that intra-operative microscopic-based functional neuro-navigation could be achieved. iMRI was used to update the images for both language structures and residual tumors. All patients were evaluated for language function pre-operatively and post-operatively upon short-term and long-term follow-up. In all patients, functional neuro-navigation and iMRI were successfully achieved. In 38 cases (79.2%), gross total resection was accomplished, while in the rest 10 cases (20.8%), subtotal resection was achieved. Only 1 case (2.1%) developed long-term (more than 3 months) new language function deficits at post-operative follow-up. No peri-operative mortality was recorded. With functional neuro-navigation and iMRI, the eloquent structures for language can be precisely located, while the resection size can be accurately evaluated intra-operatively. This technique is safe and helpful for preservation of language function.
Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping
Robinson, Jennifer; Calhoun, Vince
2018-01-01
Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339
Fiori, Simona; Guzzetta, Andrea; Pannek, Kerstin; Ware, Robert S.; Rossi, Giuseppe; Klingels, Katrijn; Feys, Hilde; Coulthard, Alan; Cioni, Giovanni; Rose, Stephen; Boyd, Roslyn N.
2015-01-01
Aim To provide first evidence of construct validity of a semi-quantitative scale for brain structural MRI (sqMRI scale) in children with unilateral cerebral palsy (UCP) secondary to periventricular white matter (PWM) lesions, by examining the relationship with hand sensorimotor function and whole brain structural connectivity. Methods Cross-sectional study of 50 children with UCP due to PWM lesions using 3 T (MRI), diffusion MRI and assessment of hand sensorimotor function. We explored the relationship of lobar, hemispheric and global scores on the sqMRI scale, with fractional anisotropy (FA), as a measure of brain white matter microstructure, and with hand sensorimotor measures (Assisting Hand Assessment, AHA; Jebsen–Taylor Test for Hand Function, JTTHF; Melbourne Assessment of Unilateral Upper Limb Function, MUUL; stereognosis; 2-point discrimination). Results Lobar and hemispheric scores on the sqMRI scale contralateral to the clinical side of hemiplegia correlated with sensorimotor paretic hand function measures and FA of a number of brain structural connections, including connections of brain areas involved in motor control (postcentral, precentral and paracentral gyri in the parietal lobe). More severe lesions correlated with lower sensorimotor performance, with the posterior limb of internal capsule score being the strongest contributor to impaired hand function. Conclusion The sqMRI scale demonstrates first evidence of construct validity against impaired motor and sensory function measures and brain structural connectivity in a cohort of children with UCP due to PWM lesions. More severe lesions correlated with poorer paretic hand sensorimotor function and impaired structural connectivity in the hemisphere contralateral to the clinical side of hemiplegia. The quantitative structural MRI scoring may be a useful clinical tool for studying brain structure–function relationships but requires further validation in other populations of CP. PMID:26106533
On the feasibility of concurrent human TMS-EEG-fMRI measurements
Reithler, Joel; Schuhmann, Teresa; de Graaf, Tom; Uludağ, Kâmil; Goebel, Rainer; Sack, Alexander T.
2013-01-01
Simultaneously combining the complementary assets of EEG, functional MRI (fMRI), and transcranial magnetic stimulation (TMS) within one experimental session provides synergetic results, offering insights into brain function that go beyond the scope of each method when used in isolation. The steady increase of concurrent EEG-fMRI, TMS-EEG, and TMS-fMRI studies further underlines the added value of such multimodal imaging approaches. Whereas concurrent EEG-fMRI enables monitoring of brain-wide network dynamics with high temporal and spatial resolution, the combination with TMS provides insights in causal interactions within these networks. Thus the simultaneous use of all three methods would allow studying fast, spatially accurate, and distributed causal interactions in the perturbed system and its functional relevance for intact behavior. Concurrent EEG-fMRI, TMS-EEG, and TMS-fMRI experiments are already technically challenging, and the three-way combination of TMS-EEG-fMRI might yield additional difficulties in terms of hardware strain or signal quality. The present study explored the feasibility of concurrent TMS-EEG-fMRI studies by performing safety and quality assurance tests based on phantom and human data combining existing commercially available hardware. Results revealed that combined TMS-EEG-fMRI measurements were technically feasible, safe in terms of induced temperature changes, allowed functional MRI acquisition with comparable image quality as during concurrent EEG-fMRI or TMS-fMRI, and provided artifact-free EEG before and from 300 ms after TMS pulse application. Based on these empirical findings, we discuss the conceptual benefits of this novel complementary approach to investigate the working human brain and list a number of precautions and caveats to be heeded when setting up such multimodal imaging facilities with current hardware. PMID:23221407
Vaphiades, Michael S.; Visscher, Kristina; Rucker, Janet C.; Vattoth, Surjith; Roberson, Glenn H.
2015-01-01
ABSTRACT An 18-year-old woman underwent an uneventful ascending aortic aneurysm repair then developed progressive supranuclear palsy-like syndrome. Extensive neuroimaging including contrasted fat-suppressed cranial and orbital magnetic resonance imaging (MRI), MRI tractography, and functional MRI (fMRI) revealed no clear radiographic involvement except for a single tiny hypoechoic midbrain dot on the T2*-weighted gradient-echo imaging, which is not considered sufficient to account for the patient’s deficits. This case attests to the occult nature of this rare and devastating syndrome. PMID:27928334
Functional Brain Activation Differences in Stuttering Identified with a Rapid fMRI Sequence
ERIC Educational Resources Information Center
Loucks, Torrey; Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.
2011-01-01
The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech…
Intracellular bimodal nanoparticles based on quantum dots for high-field MRI at 21.1 T.
Rosenberg, Jens T; Kogot, Joshua M; Lovingood, Derek D; Strouse, Geoffrey F; Grant, Samuel C
2010-09-01
Multimodal, biocompatible contrast agents for high magnetic field applications represent a new class of nanomaterials with significant potential for tracking of fluorescence and MR in vitro and vivo. Optimized for high-field MR applications-including biomedical imaging at 21.1 T, the highest magnetic field available for MRI-these nanoparticles capitalize on the improved performance of chelated Dy(3+) with increasing magnetic field coupled to a noncytotoxic Indium Phosphide/Zinc Sulfide (InP/ZnS) quantum dot that provides fluorescence detection, MR responsiveness, and payload delivery. By surface modifying the quantum dot with a cell-penetrating peptide sequence coupled to an MR contrast agent, the bimodal nanomaterial functions as a self-transfecting high-field MR/optical contrast agent for nonspecific intracellular labeling. Fluorescent images confirm sequestration in perinuclear vesicles of labeled cells, with no apparent cytotoxicity. These techniques can be extended to impart cell selectivity or act as a delivery vehicle for genetic or pharmaceutical interventions. 2010 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, B; Keall, P; Ingham Institute, Liverpool, Aus
Purpose: To test the functionality of medical electron guns within the fringe field of a purpose built superconducting MRI magnet, and to test different recovery techniques for a variety of imaging field strengths and SIDs. Methods: Three different electron guns were simulated using Finite Element Modelling; a standard diode gun, a standard triode gun, and a novel diode gun designed to operate within parallel magnetic fields. The approximate working regime of each gun was established by assessing exit current in constant magnetic fields of varying strength and defining ‘working’ as less than 10% change in injection current. Next, the 1.0Tmore » MRI magnet was simulated within Comsol Multiphysics. The coil currents in this model were also scaled to produce field strengths of .5, 1, 1.5 and 3T. Various magnetic shield configurations were simulated, varying the SID from 800 to 1300mm. The average magnetic field within the gun region was assessed together with the distortion in the imaging volume - greater than 150uT distortion was considered unacceptable. Results: The conventional guns functioned in fields of less than 7.5mT. Conversely, the redesigned diode required fields greater than .1T to function correctly. Magnetic shielding was feasible for SIDS of greater than 1000mm for field strengths of .5T and 1T, and 1100mm for 1.5 and 3.0T. Beyond these limits shielding resulted in unacceptable MRI distortion. In contrast, the redesigned diode could perform acceptably for SIDs of less than 812, 896, 931, and 974mm for imaging strengths of 0.5, 1.0, 1.5, 3.0T. Conclusions: For in-line MRIlinac configurations where the electron gun is operating in low field regions, shielding is a straight forward option. However, as magnetic field strength increases and the SID is reduced, shielding results in too great a distortion in the MRI and redesigning the electron optics is the preferable solution. The authors would like to acknowledge funding from the National Health and Research Council (AUS), National Institute of Health (NIH), and Cancer Institute NSW.« less
RAX and anophthalmia in humans: Evidence of brain anomalies
Youssef, Mohamed A.; Bayoumi, Nader; ElShakankiri, Nihal; Marzouk, Iman; Hauser, Philippe; Schorderet, Daniel F.
2012-01-01
Purpose To report the clinical and genetic study of two families of Egyptian origin with clinical anophthalmia. To further determine the role of the retina and anterior neural fold homeobox gene (RAX) in anophthalmia and associated cerebral malformations. Methods Three patients with clinical anophthalmia and first-degree relatives from two consanguineous families of Egyptian origin underwent full ophthalmologic, general and neurologic examination, and blood tests. Cerebral magnetic resonance imaging (MRI) was performed in the index cases of both families. Genomic DNA was prepared from venous leukocytes, and direct sequencing of all the exons and intron-exon junctions of RAX was performed after PCR amplification. Results Clinical bilateral anophthalmia was observed in all three patients. General and neurologic examinations were normal; obesity and delay in psychomotor development were observed in the isolated case. Orbital MRI showed a hypoplastic orbit with present but rudimentary extraocular muscles and normal lacrimal glands. Cerebral MRI showed agenesis of the optic nerves, optic tracts, and optic chiasma. In the index case of family A, the absence of the frontal and sphenoidal sinuses was also noted. In the index case of family B, only the sphenoidal sinus was absent, and there was significant cortical atrophy. The three patients carried a novel homozygous c.543+3A>G mutation (IVS2+3A>G) in RAX. Parents were healthy heterozygous carriers. No mutations were detected in orthodenticle homeobox 2 (OTX2), ventral anterior homeobox 1 (VAX1), or sex determining region Y-box 2 (SOX2). Conclusions This is the first report of a homozygous splicing RAX mutation associated with autosomal recessive bilateral anophthalmia. To our knowledge, only two isolated cases of anophthalmia, three null and one missense case affecting nuclear localization or the DNA-binding homeodomain, have been found to be caused by compound heterozygote RAX mutations. A novel missense RAX mutation was identified in three patients with bilateral anophthalmia and a distinct systemic and neurologic phenotype. The mutation potentially affects splicing of the last exon and is thought to result in a protein that has an aberrant homeodomain and no paired-tail domain. Functional consequences of this change still need to be characterized. PMID:22736936
RAX and anophthalmia in humans: evidence of brain anomalies.
Abouzeid, Hana; Youssef, Mohamed A; Bayoumi, Nader; ElShakankiri, Nihal; Marzouk, Iman; Hauser, Philippe; Schorderet, Daniel F
2012-01-01
To report the clinical and genetic study of two families of Egyptian origin with clinical anophthalmia. To further determine the role of the retina and anterior neural fold homeobox gene (RAX) in anophthalmia and associated cerebral malformations. Three patients with clinical anophthalmia and first-degree relatives from two consanguineous families of Egyptian origin underwent full ophthalmologic, general and neurologic examination, and blood tests. Cerebral magnetic resonance imaging (MRI) was performed in the index cases of both families. Genomic DNA was prepared from venous leukocytes, and direct sequencing of all the exons and intron-exon junctions of RAX was performed after PCR amplification. Clinical bilateral anophthalmia was observed in all three patients. General and neurologic examinations were normal; obesity and delay in psychomotor development were observed in the isolated case. Orbital MRI showed a hypoplastic orbit with present but rudimentary extraocular muscles and normal lacrimal glands. Cerebral MRI showed agenesis of the optic nerves, optic tracts, and optic chiasma. In the index case of family A, the absence of the frontal and sphenoidal sinuses was also noted. In the index case of family B, only the sphenoidal sinus was absent, and there was significant cortical atrophy. The three patients carried a novel homozygous c.543+3A>G mutation (IVS2+3A>G) in RAX. Parents were healthy heterozygous carriers. No mutations were detected in orthodenticle homeobox 2 (OTX2), ventral anterior homeobox 1 (VAX1), or sex determining region Y-box 2 (SOX2). This is the first report of a homozygous splicing RAX mutation associated with autosomal recessive bilateral anophthalmia. To our knowledge, only two isolated cases of anophthalmia, three null and one missense case affecting nuclear localization or the DNA-binding homeodomain, have been found to be caused by compound heterozygote RAX mutations. A novel missense RAX mutation was identified in three patients with bilateral anophthalmia and a distinct systemic and neurologic phenotype. The mutation potentially affects splicing of the last exon and is thought to result in a protein that has an aberrant homeodomain and no paired-tail domain. Functional consequences of this change still need to be characterized.
Combined optical tomographic and magnetic resonance imaging of tumor bearing mice
NASA Astrophysics Data System (ADS)
Masciotti, J.; Abdoulaev, G.; Hur, J.; Papa, J.; Bae, J.; Huang, J.; Yamashiro, D.; Kandel, J.; Hielscher, A. H.
2005-04-01
With the advent of small animal imaging systems, it has become possible to non-invasively monitor the progression of diseases in living small animals and study the efficacy of drugs and treatment protocols. Magnetic resonance imaging (MRI) is an established imaging modality capable of obtaining high resolution anatomical images as well as studying cerebral blood volume (CBV), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen (CMRO2). Optical tomography, on the other hand, is an emerging imaging modality, which, while much lower in spatial resolution and insensitive to CBF, can separate the effects of oxyhemoglobin, deoxyhemoglobin, and CBV with high temporal resolution. In this study we present our first results concerning coregistration of MRI and optical data. By applying both modalities to imaging of kidney tumors in mice that undergo VEGF treatment, we illustrate how these imaging modalities can supplement each other and cross validation can be performed.
Utility of functional MRI in pediatric neurology.
Freilich, Emily R; Gaillard, William D
2010-01-01
Functional MRI (fMRI), a tool increasingly used to study cognitive function, is also an important tool for understanding not only normal development in healthy children, but also abnormal development, as seen in children with epilepsy, attention-deficit/hyperactivity disorder, and autism. Since its inception almost 15 years ago, fMRI has seen an explosion in its use and applications in the adult literature. However, only recently has it found a home in pediatric neurology. New adaptations in study design and technologic advances, especially the study of resting state functional connectivity as well as the use of passive task design in sedated children, have increased the utility of functional imaging in pediatrics to help us gain understanding into the developing brain at work. This article reviews the background of fMRI in pediatrics and highlights the most recent literature and clinical applications.
NASA Astrophysics Data System (ADS)
Durduran, Turgut; Zhou, Chao; Buckley, Erin M.; Kim, Meeri N.; Yu, Guoqiang; Choe, Regine; Gaynor, J. William; Spray, Thomas L.; Durning, Suzanne M.; Mason, Stefanie E.; Montenegro, Lisa M.; Nicolson, Susan C.; Zimmerman, Robert A.; Putt, Mary E.; Wang, Jiongjiong; Greenberg, Joel H.; Detre, John A.; Yodh, Arjun G.; Licht, Daniel J.
2010-05-01
We employ a hybrid diffuse correlation spectroscopy (DCS) and near-infrared spectroscopy (NIRS) monitor for neonates with congenital heart disease (n=33). The NIRS-DCS device measured changes during hypercapnia of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentrations; cerebral blood flow (rCBFDCS); and oxygen metabolism (rCMRO2). Concurrent measurements with arterial spin-labeled magnetic resonance imaging (rCBFASL-MRI, n=12) cross-validate rCBFDCS against rCBFASL-MRI, showing good agreement (R=0.7, p=0.01). The study demonstrates use of NIRS-DCS on a critically ill neonatal population, and the results indicate that the optical technology is a promising clinical method for monitoring this population.
Guimaraes, Julio Brandao; Zanoteli, Edmar; Link, Thomas M; de Camargo, Leonardo V; Facchetti, Luca; Nardo, Lorenzo; Fernandes, Artur da Rocha Correa
2017-12-01
The purpose of this prospective study is to assess MRI findings in patients with sporadic inclusion body myositis (IBM) and correlate them with clinical and functional parameters. This study included 12 patients with biopsy-proven sporadic IBM. All patients underwent MRI of the bilateral upper and lower extremities. The images were scored for muscle atrophy, fatty infiltration, and edema pattern. Clinical data included onset and duration of disease. Muscle strength was measured using the Medical Research Council (MRC) scale, and functional status was assessed using the Modified Rankin Scale. Correlation between MRI and different clinical and functional parameters was calculated using the Spearman rank test and Pearson correlation. All patients showed MRI abnormalities, which were more severe within the lower limbs and the distal segments. The most prevalent MRI finding was fat infiltration. There was a statistically significant correlation between disease duration and number of muscles infiltrated by fat (r = 0.65; p = 0.04). The number of muscles with fat infiltration correlated with the sum of the scores of MRC (r = -0.60; p = 0.04) and with the Modified Rankin Scale (r = 0.48; p = 0.03). Our findings suggest that most patients with biopsy-proven sporadic IBM present with a typical pattern of muscle involvement at MRI, more extensively in the lower extremities. Moreover, MRI findings strongly correlated with clinical and functional parameters, because both the extent and severity of muscle involvement assessed by MRI and clinical and functional parameters are associated with the early onset of the disease and its duration.
Sivakumar, Balasubramanian; Aswathy, Ravindran Girija; Romero-Aburto, Rebeca; Mitcham, Trevor; Mitchel, Keith A; Nagaoka, Yutaka; Bouchard, Richard R; Ajayan, Pulickel M; Maekawa, Toru; Sakthikumar, Dasappan Nair
2017-02-28
We have designed versatile polymeric nanoparticles with cancer cell specific targeting capabilities via aptamer conjugation after the successful encapsulation of curcumin and superparamagnetic iron oxide nanoparticles (SPIONs) inside a PLGA nanocapsule. These targeted nanocomposites were selectively taken up by tumor cells, under in vitro conditions, demonstrating the effectiveness of the aptamer targeting mechanism. Moreover, the nanocomposite potentially functioned as efficient multiprobes for optical, magnetic resonance imaging (MRI) and photoacoustic imaging contrast agents in the field of cancer diagnostics. The hyperthermic ability of these nanocomposites was mediated by SPIONs upon NIR-laser irradiation. In vitro cytotoxicity was shown by curcumin-loaded nanoparticles as well as the photothermal ablation of cancer cells mediated by the drug-encapsulated nanocomposite demonstrated the potential therapeutic effect of the nanocomposite. In short, we portray the aptamer-conjugated nanocomposite as a multimodal material capable of serving as a contrast agent for MR, photoacoustic and optical imaging. Furthermore, the nanocomposite functions as a targetable drug nanocarrier and a NIR-laser inducible hyperthermic material that is capable of ablating PANC-1 and MIA PaCa-2 cancer cell lines.
Multichannel optical mapping: investigation of depth information
NASA Astrophysics Data System (ADS)
Sase, Ichiro; Eda, Hideo; Seiyama, Akitoshi; Tanabe, Hiroki C.; Takatsuki, Akira; Yanagida, Toshio
2001-06-01
Near infrared (NIR) light has become a powerful tool for non-invasive imaging of human brain activity. Many systems have been developed to capture the changes in regional brain blood flow and hemoglobin oxygenation, which occur in the human cortex in response to neural activity. We have developed a multi-channel reflectance imaging system, which can be used as a `mapping device' and also as a `multi-channel spectrophotometer'. In the present study, we visualized changes in the hemodynamics of the human occipital region in multiple ways. (1) Stimulating left and right primary visual cortex independently by showing sector shaped checkerboards sequentially over the contralateral visual field, resulted in corresponding changes in the hemodynamics observed by `mapping' measurement. (2) Simultaneous measurement of functional-MRI and NIR (changes in total hemoglobin) during visual stimulation showed good spatial and temporal correlation with each other. (3) Placing multiple channels densely over the occipital region demonstrated spatial patterns more precisely, and depth information was also acquired by placing each pair of illumination and detection fibers at various distances. These results indicate that optical method can provide data for 3D analysis of human brain functions.
Paasonen, Jaakko; Salo, Raimo A; Huttunen, Joanna K; Gröhn, Olli
2017-09-01
Anesthesia is a major confounding factor in functional MRI (fMRI) experiments attributed to its effects on brain function. Recent evidence suggests that parameters obtained with resting-state fMRI (rs-fMRI) are coupled with anesthetic depth. Therefore, we investigated whether parameters obtained with rs-fMRI, such as functional connectivity (FC), are also directly related to blood-oxygen-level-dependent (BOLD) responses. A simple rs-fMRI protocol was implemented in a pharmacological fMRI study to evaluate the coupling between hemodynamic responses and FC under five anesthetics (α-chloralose, isoflurane, medetomidine, thiobutabarbital, and urethane). Temporal change in the FC was evaluated at 1-hour interval. Supplementary forepaw stimulation experiments were also conducted. Under thiobutabarbital anesthesia, FC was clearly coupled with nicotine-induced BOLD responses. Good correlation values were also obtained under isoflurane and medetomidine anesthesia. The observations in the thiobutabarbital group were supported by forepaw stimulation experiments. Additionally, the rs-fMRI protocol revealed significant temporal changes in the FC in the α-chloralose, thiobutabarbital, and urethane groups. Our results suggest that FC can be used to estimate brain hemodynamic responsiveness to stimuli and evaluate the level and temporal changes of anesthesia. Therefore, analysis of the fMRI baseline signal may be highly valuable tool for controlling the outcome of preclinical fMRI experiments. Magn Reson Med 78:1136-1146, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Role of fMRI in the decision-making process: epilepsy surgery for children.
Liégeois, Frédérique; Cross, J Helen; Gadian, David G; Connelly, Alan
2006-06-01
Functional MRI (fMRI) is increasingly being used to evaluate children and adolescents who are candidates for surgical treatment of intractable epilepsy. It has the advantage of being noninvasive and well tolerated by young people. By identifying important functional regions within the brain, including unpredictable patterns of functional reorganization, it can aid in surgical decision-making. Here we illustrate this using a number of case studies from the pediatric epilepsy surgery program at our institution. We describe how fMRI, used in conjunction with conventional investigative methods such as neuropsychological assessment, MRI, and electrophysiology, can 1) help to improve functional outcome by enabling resective surgery that spares functional cortex, 2) guide surgical intervention by revealing when reorganization of function has occurred, and 3) show when abnormal cortex is also functionally active, and hence that surgery may not be the best option. Altogether, these roles have reduced the need for invasive procedures that can be both risky and distressing for young people with epilepsy. In our experience, fMRI has significantly contributed to the decision-making process, and improved the counseling and management of young people with intractable epilepsy. Copyright 2006 Wiley-Liss, Inc.
Pizarro, Ricardo; Nair, Veena; Meier, Timothy; Holdsworth, Ryan; Tunnell, Evelyn; Rutecki, Paul; Sillay, Karl; Meyerand, Mary E; Prabhakaran, Vivek
2016-08-01
Seizure localization includes neuroimaging like electroencephalogram, and magnetic resonance imaging (MRI) with limited ability to characterize the epileptogenic network. Temporal clustering analysis (TCA) characterizes epileptogenic network congruent with interictal epileptiform discharges by clustering together voxels with transient signals. We generated epileptogenic areas for 12 of 13 epilepsy patients with TCA, congruent with different areas of seizure onset. Resting functional MRI (fMRI) scans are noninvasive, and can be acquired quickly, in patients with different levels of severity and function. Analyzing resting fMRI data using TCA is quick and can complement clinical methods to characterize the epileptogenic network.
NASA Astrophysics Data System (ADS)
Ban, Sungbea; Cho, Nam Hyun; Ryu, Yongjae; Jung, Sunwoo; Vavilin, Andrey; Min, Eunjung; Jung, Woonggyu
2016-04-01
Optical projection tomography is a new optical imaging method for visualizing small biological specimens in three dimension. The most important advantage of OPT is to fill the gap between MRI and confocal microscope for the specimen having the range of 1-10 mm. Thus, it has been mainly used for whole-mount small animals and developmental study since this imaging modality was developed. The ability of OPT delivering anatomical and functional information of relatively large tissue in 3D has made it a promising platform in biomedical research. Recently, the potential of OPT spans its coverage to cellular scale. Even though there are increasing demand to obtain better understanding of cellular dynamics, only few studies to visualize cellular structure, shape, size and functional morphology over tissue has been investigated in existing OPT system due to its limited field of view. In this study, we develop a novel optical imaging system for 3D cellular imaging with OPT integrated with dynamic focusing technique. Our tomographic setup has great potential to be used for identifying cell characteristic in tissue because it can provide selective contrast on dynamic focal plane allowing for fluorescence as well as absorption. While the dominant contrast of optical imaging technique is to use the fluorescence for detecting certain target only, the newly developed OPT system will offer considerable advantages over currently available method when imaging cellar molecular dynamics by permitting contrast variation. By achieving multi-contrast, it is expected for this new imaging system to play an important role in delivering better cytological information to pathologist.
Coincidental Optic Nerve Meningioma and Thyroid Eye Disease.
Garg, Aakriti; Patel, Payal; Lignelli, Angela; Baron, Edward; Kazim, Michael
2015-01-01
A 57-year-old woman with diabetes mellitus, hypertension, obesity, and Graves disease presented with clinical evidence of thyroid eye disease (TED) and optic neuropathy. She was referred when a tapered dose of steroids prompted worsening of her TED. CT and MRI were consistent with TED and bilateral optic nerve meningioma. To the authors' knowledge, this is the first reported case of concurrent TED and unsuspected bilateral optic nerve meningioma. When investigating the etiology of TED-associated optic neuropathy, careful attention to orbital imaging is required because coexisting pathology may exist.
Cunnington, Ross; Boyd, Roslyn N.; Rose, Stephen E.
2016-01-01
Diffusion MRI (dMRI) tractography analyses are difficult to perform in the presence of brain pathology. Automated methods that rely on cortical parcellation for structural connectivity studies often fail, while manually defining regions is extremely time consuming and can introduce human error. Both methods also make assumptions about structure-function relationships that may not hold after cortical reorganisation. Seeding tractography with functional-MRI (fMRI) activation is an emerging method that reduces these confounds, but inherent smoothing of fMRI signal may result in the inclusion of irrelevant pathways. This paper describes a novel fMRI-seeded dMRI-analysis pipeline based on surface-meshes that reduces these issues and utilises machine-learning to generate task specific white matter pathways, minimising the requirement for manually-drawn ROIs. We directly compared this new strategy to a standard voxelwise fMRI-dMRI approach, by investigating correlations between clinical scores and dMRI metrics of thalamocortical and corticomotor tracts in 31 children with unilateral cerebral palsy. The surface-based approach successfully processed more participants (87%) than the voxel-based approach (65%), and provided significantly more-coherent tractography. Significant correlations between dMRI metrics and five clinical scores of function were found for the more superior regions of these tracts. These significant correlations were stronger and more frequently found with the surface-based method (15/20 investigated were significant; R2 = 0.43–0.73) than the voxelwise analysis (2 sig. correlations; 0.38 & 0.49). More restricted fMRI signal, better-constrained tractography, and the novel track-classification method all appeared to contribute toward these differences. PMID:27487011
Synchronized delta oscillations correlate with the resting-state functional MRI signal
Lu, Hanbing; Zuo, Yantao; Gu, Hong; Waltz, James A.; Zhan, Wang; Scholl, Clara A.; Rea, William; Yang, Yihong; Stein, Elliot A.
2007-01-01
Synchronized low-frequency spontaneous fluctuations of the functional MRI (fMRI) signal have recently been applied to investigate large-scale neuronal networks of the brain in the absence of specific task instructions. However, the underlying neural mechanisms of these fluctuations remain largely unknown. To this end, electrophysiological recordings and resting-state fMRI measurements were conducted in α-chloralose-anesthetized rats. Using a seed-voxel analysis strategy, region-specific, anesthetic dose-dependent fMRI resting-state functional connectivity was detected in bilateral primary somatosensory cortex (S1FL) of the resting brain. Cortical electroencephalographic signals were also recorded from bilateral S1FL; a visual cortex locus served as a control site. Results demonstrate that, unlike the evoked fMRI response that correlates with power changes in the γ bands, the resting-state fMRI signal correlates with the power coherence in low-frequency bands, particularly the δ band. These data indicate that hemodynamic fMRI signal differentially registers specific electrical oscillatory frequency band activity, suggesting that fMRI may be able to distinguish the ongoing from the evoked activity of the brain. PMID:17991778
Diffusion tensor optical coherence tomography
NASA Astrophysics Data System (ADS)
Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.
2018-01-01
In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.
Filippi, Massimo; Agosta, Federica
2011-01-01
Patients with Alzheimer’s disease (AD) experience a brain network breakdown, reflecting disconnection at both the structural and functional system level. Resting-state (RS) functional MRI (fMRI) studies demonstrated that the regional coherence of the fMRI signal is significantly altered in patients with AD and amnestic mild cognitive impairment. Diffusion tensor (DT) MRI has made it possible to track fiber bundle projections across the brain, revealing a substantially abnormal interplay of “critical” white matter tracts in these conditions. The observed agreement between the results of RS fMRI and DT MRI tractography studies in healthy individuals is encouraging and offers interesting hypotheses to be tested in patients with AD, a MCI, and other dementias in order to improve our understanding of their pathobiology in vivo. In this review,we describe the major findings obtained in AD using RS fMRI and DT MRI tractography, and discuss how the relationship between structure and function of the brain networks in AD may be better understood through the application of MR-based technology. This research endeavor holds a great promise in clarifying the mechanisms of cognitive decline in complex chronic neurodegenerative disorders.
Williams, Rebecca J; Reutens, David C; Hocking, Julia
2015-11-01
Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.
Hermans, Kees; Ossenblok, Pauly; van Houdt, Petra; Geerts, Liesbeth; Verdaasdonk, Rudolf; Boon, Paul; Colon, Albert; de Munck, Jan C.
2015-01-01
Anti-epileptic drugs (AEDs) have a global effect on the neurophysiology of the brain which is most likely reflected in functional brain activity recorded with EEG and fMRI. These effects may cause substantial inter-subject variability in studies where EEG correlated functional MRI (EEG–fMRI) is used to determine the epileptogenic zone in patients who are candidate for epilepsy surgery. In the present study the effects on resting state fMRI are quantified in conditions with AED administration and after withdrawal of AEDs. EEG–fMRI data were obtained from 10 patients in the condition that the patient was on the steady-state maintenance doses of AEDs as prescribed (condition A) and after withdrawal of AEDs (condition B), at the end of a clinically standard pre-surgical long term video-EEG monitoring session. Resting state networks (RSN) were extracted from fMRI. The epileptic component (ICE) was identified by selecting the RSN component with the largest overlap with the EEG–fMRI correlation pattern. Changes in RSN functional connectivity between conditions A and B were quantified. EEG–fMRI correlation analysis was successful in 30% and 100% of the cases in conditions A and B, respectively. Spatial patterns of ICEs are comparable in conditions A and B, except for one patient for whom it was not possible to identify the ICE in condition A. However, the resting state functional connectivity is significantly increased in the condition after withdrawal of AEDs (condition B), which makes resting state fMRI potentially a new tool to study AED effects. The difference in sensitivity of EEG–fMRI in conditions A and B, which is not related to the number of epileptic EEG events occurring during scanning, could be related to the increased functional connectivity in condition B. PMID:26137444
Shoulder-Mounted Robot for MRI-guided arthrography: Accuracy and mounting study.
Monfaredi, R; Wilson, E; Sze, R; Sharma, K; Azizi, B; Iordachita, I; Cleary, K
2015-08-01
A new version of our compact and lightweight patient-mounted MRI-compatible 4 degree-of-freedom (DOF) robot for MRI-guided arthrography procedures is introduced. This robot could convert the traditional two-stage arthrography procedure (fluoroscopy-guided needle insertion followed by a diagnostic MRI scan) to a one-stage procedure, all in the MRI suite. The results of a recent accuracy study are reported. A new mounting technique is proposed and the mounting stability is investigated using optical and electromagnetic tracking on an anthropomorphic phantom. Five volunteer subjects including 2 radiologists were asked to conduct needle insertion in 4 different random positions and orientations within the robot's workspace and the displacement of the base of the robot was investigated during robot motion and needle insertion. Experimental results show that the proposed mounting method is stable and promising for clinical application.
Saccade Modulation by Optical and Electrical Stimulation in the Macaque Frontal Eye Field
Grimaldi, Piercesare; Schweers, Nicole
2013-01-01
Recent studies have demonstrated that strong neural modulations can be evoked with optogenetic stimulation in macaque motor cortex without observing any evoked movements (Han et al., 2009, 2011; Diester et al., 2011). It remains unclear why such perturbations do not generate movements and if conditions exist under which they may evoke movements. In this study, we examine the effects of five optogenetic constructs in the macaque frontal eye field and use electrical microstimulation to assess whether optical perturbation of the local network leads to observable motor changes during optical, electrical, and combined stimulation. We report a significant increase in the probability of evoking saccadic eye movements when low current electrical stimulation is coupled to optical stimulation compared with when electrical stimulation is used alone. Experiments combining channelrhodopsin 2 (ChR2) and electrical stimulation with simultaneous fMRI revealed no discernible fMRI activity at the electrode tip with optical stimulation but strong activity with electrical stimulation. Our findings suggest that stimulation with current ChR2 optogenetic constructs generates subthreshold activity that contributes to the initiation of movements but, in most cases, is not sufficient to evoke a motor response. PMID:24133271
[MRI in congenital nystagmus].
Denis, D; Girard, N; Toesca, E; Zanin, E; Gambarelli, N; Lebranchu, P; Mancini, J
2010-03-01
Congenital nystagmus (CN) that is present by the age of 3 months is the most common form of nystagmus in childhood. We present a prospective study (2001-2008) in which we report imaging findings in 48 children with CN. Twenty-six boys and 22 girls with CN underwent a complete ophthalmologic assessment and a cerebral MRI (mean age of examination under general anesthesia: 11 months). Three CN groups were formed: neurologic (n=27), sensory visual disturbance (n=14), and isolated (n=7). Cerebral MRI was interpreted by the same pediatric neuroradiologist (NG). Of the children studied, 98 % were born at term. The MRI abnormalities were classified as morphologic abnormalities (malformative or nonmalformative) and as signal abnormalities. The location of brain abnormalities was within the posterior fossa, (brain stem, cerebellum, dental nuclei, cisterna magna) and the cerebral hemisphere (white matter, perivascular spaces, midline commissures, basal ganglia). Pendular nystagmus was prevalent in sensory and neurologic nystagmus. On fundus examination, optic disc abnormalities were present in 70 % (19) of neurologic CN and associated with white matter abnormalities of the optic radiations in 40 % of cases. On MRI, malformative morphologic abnormalities were present in 27 cases, nonmalformative abnormalities were found in 67, and signal abnormalities in 68. Within the brain stem, signal abnormalities were found as a cockade appearance of the posterior pons in the reticular regions (neurologic n=14, sensory n=6, isolated n=3). Other bright (most frequent) signal abnormalities were found within the dentate nuclei of the posterior fossa (neurologic n=10, sensory n=3, isolated n=3) and the cerebral white matter (neurologic n=17, sensory n=7, isolated n=5) of which 24 (neurologic n=15, sensory n=5, isolated n=4) involved the optic radiations. Most of these abnormalities were related and were seen most frequently in neurologic nystagmus. The most frequent association was signal abnormalities of the white matter, ventricular dilatation, and dilatation of the perivascular spaces (60.4 %) (neurologic n=13, sensory n=6). This study showed the fundamental contribution of the cerebral MRI in CN. Cerebral abnormalities were found at the pathways for ocular motility, particularly at the saccadic pathways.
Kantorová, Ema; Ziak, Peter; Kurča, Egon; Koyšová, Mária; Hladká, Mária; Zeleňák, Kamil; Michalik, Jozef
2014-01-01
The aim of our study was to assess the role of laser polarimetry and visual evoked potentials (VEP) as potential biomarkers of disease progression in multiple sclerosis (MS). A total of 41 patients with MS (82 eyes) and 22 age-related healthy volunteers (44 eyes) completed the study. MS patients were divided into two groups, one (ON) with a history of optic neuritis (17 patients, 34 eyes) and another group (NON) without it (24 patients, 48 eyes). The MS patients and controls underwent laser polarimetry (GDx) examination of the retinal nerve fiber layer (RNFL). In the MS group, we also examined: Kurtzke "expanded disability status scale" (EDSS), the duration of the disorder, VEP - latency and amplitude, and conventional brain magnetic resonance imaging (MRI). Our results were statistically analyzed using ANOVA, Mann-Whitney, and Spearman correlation analyses. In the MS group, brain atrophy and new T2 brain lesions in MRI correlated with both VEP latencies and amplitudes. Separate comparisons revealed VEP latency testing to be less sensitive in ON than in NON-patients. In ON patients, VEP amplitudes correlated mildly with brain atrophy (r = -0.15) and strongly with brain new MRI lesions (r = -0.8). In NON-patients, highly significant correlation of new MRI brain lesions with VEP latencies (r = 0.63, r = 0.6) and amplitudes (r = -0.3, r = -4.2) was found. EDSS also correlated with brain atrophy in this group (r = 0.5). Our study did not find a correlation of GDx measures with MRI tests. The GDx method was not able to detect whole brain demyelinization and the degeneration process, but was only able to reveal the involvement of optic nerves in ON and NON-patients. In our study, we found that both methods (VEP and GDx) can be used for the detection of optic nerve damage, but VEP was found to be superior in evaluating whole brain demyelinization and axonal degeneration. Both VEP and MRI, but not GDx, have an important role in monitoring disease progression in MS patients, independent of the ON history.
Kalman filter-based EM-optical sensor fusion for needle deflection estimation.
Jiang, Baichuan; Gao, Wenpeng; Kacher, Daniel; Nevo, Erez; Fetics, Barry; Lee, Thomas C; Jayender, Jagadeesan
2018-04-01
In many clinical procedures such as cryoablation that involves needle insertion, accurate placement of the needle's tip at the desired target is the major issue for optimizing the treatment and minimizing damage to the neighboring anatomy. However, due to the interaction force between the needle and tissue, considerable error in intraoperative tracking of the needle tip can be observed as needle deflects. In this paper, measurements data from an optical sensor at the needle base and a magnetic resonance (MR) gradient field-driven electromagnetic (EM) sensor placed 10 cm from the needle tip are used within a model-integrated Kalman filter-based sensor fusion scheme. Bending model-based estimations and EM-based direct estimation are used as the measurement vectors in the Kalman filter, thus establishing an online estimation approach. Static tip bending experiments show that the fusion method can reduce the mean error of the tip position estimation from 29.23 mm of the optical sensor-based approach to 3.15 mm of the fusion-based approach and from 39.96 to 6.90 mm, at the MRI isocenter and the MRI entrance, respectively. This work established a novel sensor fusion scheme that incorporates model information, which enables real-time tracking of needle deflection with MRI compatibility, in a free-hand operating setup.
Intra-opeartive OCT imaging and sensing devices for clinical translation (Conference Presentation)
NASA Astrophysics Data System (ADS)
Chen, Yu
2017-02-01
Stereotactic procedures that require insertion of needle-based instruments into the brain serve important roles in a variety of neurosurgical interventions, such as biopsy, catheterization, and electrode placement. A fundamental limitation of these stereotactic procedures is that they are blind procedures in that the operator does not have real-time feedback as to what lies immediately ahead of the advancing needle. Therefore, there is a great clinical need to navigate the instrument safely and accurately to the targets. Towards that end, we developed a forwarding-imaging needle-type optical coherence tomography (OCT) probe for avoiding the hemorrhage and guiding neurosurgical interventions. The needle probe has a thin diameter of 0.7 mm. The feasibility of vessel detection and neurosurgical guidance were demonstrated on sheep brain in vivo and human brain ex vivo. In addition, we further reduced the probe size to 0.3 mm using an optical Doppler sensing (ODS) fiber probe that can integrate with microelectrode recording (MER) to detect the blood vessels lying ahead to improve the safety of this procedure. Furthermore, to overcome the field-of-view limitation of OCT probe, we developed an MRI-compatible OCT imaging probe for neurosurgery. MRI/OCT multi-scale imaging integrates micro-resolution optical imaging with wide-field MRI imaging, and has potential to further improve the targeting accuracy.
fMRI during natural sleep as a method to study brain function during early childhood.
Redcay, Elizabeth; Kennedy, Daniel P; Courchesne, Eric
2007-12-01
Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.
WE-FG-BRA-08: Potential Role of the Glycolytic Oscillator in Acute Hypoxia in Tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Che Fru, L; Adamson, E; Campos, D
2016-06-15
Purpose: Oscillatory dynamics in acute hypoxia have been observed, but poorly understood. They have mostly been attributed to vascular perturbations, but no link has yet been made to metabolic causes. We set out to determine the fundamental frequencies and test for coherence in tumor oxygen dynamics and spatial properties. Methods: Severe combined immunodeficient (SCID) mice were inoculated onto bilateral flanks with human derived head and neck carcinoma (UW-SCC22) cell line xenografts. Oxygen dynamics were monitored in the tumor every minute for an hour using three modalities: blood oxygen level dependent - magnetic resonance imaging (BOLD-MRI), hemoglobin oxygen saturation photoacoustic, andmore » locally manufactured optical probes for spectral fitting. A statistical test was used to separate fluctuating from non-fluctuating voxels and pixels in BOLD-MRI and photoacoustic data respectively. The power spectrum density (PSD) and the autocorrelation functions were calculated for the time series of each voxel, pixel and region, of the BOLD-MRI, photoacoustic or fiber optic data respectively. Results: Using all three techniques, intermittent oxygen dynamics with both coherent and incoherent signatures was observed in the tumors. Upon averaging the PSDs of fluctuating voxels and pixels, it was found that these oscillations occurred with periods of minutes to tens of minutes from all three approaches. Observations from the BOLD-MRI and photoacoustic data showed that clusters of voxels oscillated in a synchronized manner. Conclusion: We were able to use three different modalities to show that fluctuation in tumor oxygen is both coherent and incoherent, with periods of minutes to tens of minutes. These periods are very similar to those from the well-established metabolic, non-linear biomechanical phenomenon called the glycolytic oscillator. This may provide an additional explanation to the cause of cyclic hypoxia. Such dynamics could have profound implications in hypofractionated radiotherapy regiments and could help guide treatment and make it more patient specific. The authors would like to thank the University of Wisconsin Carbone Cancer Center (UWCCC) for the funds to complete this project. This work is also supported in part by NIH/NCI P30 CA014520- UW Comprehensive Cancer Center Support”.« less
Rosa, Andreia M; Miranda, Ângela C; Patrício, Miguel; McAlinden, Colm; Silva, Fátima L; Murta, Joaquim N; Castelo-Branco, Miguel
2017-09-01
To investigate the association between dysphotopsia and neural responses in visual and higher-level cortical regions in patients who recently received multifocal intraocular lens (IOL) implants. Cross-sectional study. Thirty patients 3 to 4 weeks after bilateral cataract surgery with diffractive IOL implantation and 15 age- and gender-matched control subjects. Functional magnetic resonance imaging (fMRI) was performed when participants viewed low-contrast grating stimuli. A light source surrounded the stimuli in half of the runs to induce disability glare. Visual acuity, wavefront analysis, Quality of Vision (QoV) questionnaire, and psychophysical assessment were performed. Cortical activity (blood oxygen level dependent [BOLD] signal) in the primary visual cortex and in higher-level brain areas, including the attention network. When viewing low-contrast stimuli under glare, patients showed significant activation of the effort-related attention network in the early postoperative period, involving the frontal, middle frontal, parietal frontal, and postcentral gyrus (multisubject random-effects general linear model (GLM), P < 0.03). In contrast, controls showed only relative deactivation (due to lower visibility) of visual areas (occipital lobe and middle occipital gyrus, P < 0.03). Patients also had relatively stronger recruitment of cortical areas involved in learning (anterior cingulate gyrus), task planning, and solving (caudate body). Patients reporting greater symptoms induced by dysphotic symptoms showed significantly increased activity in several regions in frontoparietal circuits, as well as cingulate gyrus and caudate nucleus (q < 0.05). We found no correlation between QoV questionnaire scores and optical properties (total and higher order aberration, modulation transfer function, and Strehl ratio). This study shows the association between patient-reported subjective difficulties and fMRI outcomes, independent of optical parameters and psychophysical performance. The increased activity of cortical areas dedicated to attention (frontoparietal circuits), to learning and cognitive control (cingulate), and to task goals (caudate) likely represents the beginning of the neuroadaptation process to multifocal IOLs. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis
Li, Xiang; Lim, Chulwoo; Li, Kaiming; Guo, Lei; Liu, Tianming
2013-01-01
Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics. PMID:22941508
Bernstein, Lynne E.; Lu, Zhong-Lin; Jiang, Jintao
2008-01-01
A fundamental question about human perception is how the speech perceiving brain combines auditory and visual phonetic stimulus information. We assumed that perceivers learn the normal relationship between acoustic and optical signals. We hypothesized that when the normal relationship is perturbed by mismatching the acoustic and optical signals, cortical areas responsible for audiovisual stimulus integration respond as a function of the magnitude of the mismatch. To test this hypothesis, in a previous study, we developed quantitative measures of acoustic-optical speech stimulus incongruity that correlate with perceptual measures. In the current study, we presented low incongruity (LI, matched), medium incongruity (MI, moderately mismatched), and high incongruity (HI, highly mismatched) audiovisual nonsense syllable stimuli during fMRI scanning. Perceptual responses differed as a function of the incongruity level, and BOLD measures were found to vary regionally and quantitatively with perceptual and quantitative incongruity levels. Each increase in level of incongruity resulted in an increase in overall levels of cortical activity and in additional activations. However, the only cortical region that demonstrated differential sensitivity to the three stimulus incongruity levels (HI > MI > LI) was a subarea of the left supramarginal gyrus (SMG). The left SMG might support a fine-grained analysis of the relationship between audiovisual phonetic input in comparison with stored knowledge, as hypothesized here. The methods here show that quantitative manipulation of stimulus incongruity is a new and powerful tool for disclosing the system that processes audiovisual speech stimuli. PMID:18495091
Miyazaki, Keiko; Jerome, Neil P; Collins, David J; Orton, Matthew R; d'Arcy, James A; Wallace, Toni; Moreno, Lucas; Pearson, Andrew D J; Marshall, Lynley V; Carceller, Fernando; Leach, Martin O; Zacharoulis, Stergios; Koh, Dow-Mu
2015-09-01
The objectives are to examine the reproducibility of functional MR imaging in children with solid tumours using quantitative parameters derived from diffusion-weighted (DW-) and dynamic contrast enhanced (DCE-) MRI. Patients under 16-years-of age with confirmed diagnosis of solid tumours (n = 17) underwent free-breathing DW-MRI and DCE-MRI on a 1.5 T system, repeated 24 hours later. DW-MRI (6 b-values, 0-1000 sec/mm(2)) enabled monoexponential apparent diffusion coefficient estimation using all (ADC0-1000) and only ≥100 sec/mm(2) (ADC100-1000) b-values. DCE-MRI was used to derive the transfer constant (K(trans)), the efflux constant (kep), the extracellular extravascular volume (ve), and the plasma fraction (vp), using a study cohort arterial input function (AIF) and the extended Tofts model. Initial area under the gadolinium enhancement curve and pre-contrast T1 were also calculated. Percentage coefficients of variation (CV) of all parameters were calculated. The most reproducible cohort parameters were ADC100-1000 (CV = 3.26%), pre-contrast T1 (CV = 6.21%), and K(trans) (CV = 15.23%). The ADC100-1000 was more reproducible than ADC0-1000, especially extracranially (CV = 2.40% vs. 2.78%). The AIF (n = 9) derived from this paediatric population exhibited sharper and earlier first-pass and recirculation peaks compared with the literature's adult population average. Free-breathing functional imaging protocols including DW-MRI and DCE-MRI are well-tolerated in children aged 6 - 15 with good to moderate measurement reproducibility. • Diffusion MRI protocol is feasible and well-tolerated in a paediatric oncology population. • DCE-MRI for pharmacokinetic evaluation is feasible and well tolerated in a paediatric oncology population. • Paediatric arterial input function (AIF) shows systematic differences from the adult population-average AIF. • Variation of quantitative parameters from paired functional MRI measurements were within 20%.
A simple device for respiratory gating for the MRI of laboratory animals.
Burdett, N G; Carpenter, T A; Hall, L D
1993-01-01
Respiratory motion must be overcome if MRI of the abdomen, even at the lowest resolution, is to be performed satisfactorily. A simple and reliable respiratory gating device, based on the interruption of an infrared (IR) optical beam is described. This device has the advantage that gating is based on the position of the chest as opposed to its velocity, and that it can be used without degrading the radiofrequency isolation of a Faraday cage. Its use in animal MRI is illustrated by high resolution (200 microns) images of in vivo rat liver and kidney.
Design and preliminary accuracy studies of an MRI-guided transrectal prostate intervention system.
Krieger, Axel; Csoma, Csaba; Iordachital, Iulian I; Guion, Peter; Singh, Anurag K; Fichtinger, Gabor; Whitcomb, Louis L
2007-01-01
This paper reports a novel system for magnetic resonance imaging (MRI) guided transrectal prostate interventions, such as needle biopsy, fiducial marker placement, and therapy delivery. The system utilizes a hybrid tracking method, comprised of passive fiducial tracking for initial registration and subsequent incremental motion measurement along the degrees of freedom using fiber-optical encoders and mechanical scales. Targeting accuracy of the system is evaluated in prostate phantom experiments. Achieved targeting accuracy and procedure times were found to compare favorably with existing systems using passive and active tracking methods. Moreover, the portable design of the system using only standard MRI image sequences and minimal custom scanner interfacing allows the system to be easily used on different MRI scanners.
NASA Astrophysics Data System (ADS)
Ntziachristos, Vasilis; Yodh, Arjun G.; Schnall, Mitchell D.; Ma, XuHui; Chance, Britton
1998-12-01
A single photon counting NIR imager designed to work simultaneously with an MRI scanner for concurrent NIR-MR mammography has recently been developed. The combination of imaging modalities aims in effectively investigating the competence of optical imaging as a stand along modality and as an MRI add-on in order to increase the sensitivity and specificity of the mammoraphic examination. In this work we focus on the second aim. We present the methodology developed to employ the MR anatomical information in order to simplify the forward problem and accurately calculate local tissue optical properties, by fitting the NIR data to this model. Derivation of local optical properties due to intrinsic or extrinsic may identify the existence of malignant and benign breast tissue NIR signatures. We have evaluated the performance of the solver with experimental measurements, also presented here, from models with known absorption perturbations. The average quantification error of absolute absorption of local lesions has been found to be less than 10% in simple models and algorithm convergence is always ensured.
Using fMRI to study reward processing in humans: past, present, and future
Wang, Kainan S.; Smith, David V.
2016-01-01
Functional magnetic resonance imaging (fMRI) is a noninvasive tool used to probe cognitive and affective processes. Although fMRI provides indirect measures of neural activity, the advent of fMRI has allowed for 1) the corroboration of significant animal findings in the human brain, and 2) the expansion of models to include more common human attributes that inform behavior. In this review, we briefly consider the neural basis of the blood oxygenation level dependent signal to set up a discussion of how fMRI studies have applied it in examining cognitive models in humans and the promise of using fMRI to advance such models. Specifically, we illustrate the contribution that fMRI has made to the study of reward processing, focusing on the role of the striatum in encoding reward-related learning signals that drive anticipatory and consummatory behaviors. For instance, we discuss how fMRI can be used to link neural signals (e.g., striatal responses to rewards) to individual differences in behavior and traits. While this functional segregation approach has been constructive to our understanding of reward-related functions, many fMRI studies have also benefitted from a functional integration approach that takes into account how interconnected regions (e.g., corticostriatal circuits) contribute to reward processing. We contend that future work using fMRI will profit from using a multimodal approach, such as combining fMRI with noninvasive brain stimulation tools (e.g., transcranial electrical stimulation), that can identify causal mechanisms underlying reward processing. Consequently, advancements in implementing fMRI will promise new translational opportunities to inform our understanding of psychopathologies. PMID:26740530
Tak, Sungho; Polimeni, Jonathan R; Wang, Danny J J; Yan, Lirong; Chen, J Jean
2015-04-01
There has been tremendous interest in applying functional magnetic resonance imaging-based resting-state functional connectivity (rs-fcMRI) measurements to the study of brain function. However, a lack of understanding of the physiological mechanisms of rs-fcMRI limits their ability to interpret rs-fcMRI findings. In this work, the authors examine the regional associations between rs-fcMRI estimates and dynamic coupling between the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF), as well as resting macrovascular volume. Resting-state BOLD and CBF data were simultaneously acquired using a dual-echo pseudocontinuous arterial spin labeling (pCASL) technique, whereas macrovascular volume fraction was estimated using time-of-flight MR angiography. Functional connectivity within well-known functional networks—including the default mode, frontoparietal, and primary sensory-motor networks—was calculated using a conventional seed-based correlation approach. They found the functional connectivity strength to be significantly correlated with the regional increase in CBF-BOLD coupling strength and inversely proportional to macrovascular volume fraction. These relationships were consistently observed within all functional networks considered. Their findings suggest that highly connected networks observed using rs-fcMRI are not likely to be mediated by common vascular drainage linking distal cortical areas. Instead, high BOLD functional connectivity is more likely to reflect tighter neurovascular connections, attributable to neuronal pathways.
Zhang, Jia-Shu; Qu, Ling; Wang, Qun; Jin, Wei; Hou, Yuan-Zheng; Sun, Guo-Chen; Li, Fang-Ye; Yu, Xin-Guang; Xu, Ban-Nan; Chen, Xiao-Lei
2017-12-20
For stereotactic brain biopsy involving motor eloquent regions, the surgical objective is to enhance diagnostic yield and preserve neurological function. To achieve this aim, we implemented functional neuro-navigation and intraoperative magnetic resonance imaging (iMRI) into the biopsy procedure. The impact of this integrated technique on the surgical outcome and postoperative neurological function was investigated and evaluated. Thirty nine patients with lesions involving motor eloquent structures underwent frameless stereotactic biopsy assisted by functional neuro-navigation and iMRI. Intraoperative visualisation was realised by integrating anatomical and functional information into a navigation framework to improve biopsy trajectories and preserve eloquent structures. iMRI was conducted to guarantee the biopsy accuracy and detect intraoperative complications. The perioperative change of motor function and biopsy error before and after iMRI were recorded, and the role of functional information in trajectory selection and the relationship between the distance from sampling site to nearby eloquent structures and the neurological deterioration were further analyzed. Functional neuro-navigation helped modify the original trajectories and sampling sites in 35.90% (16/39) of cases to avoid the damage of eloquent structures. Even though all the lesions were high-risk of causing neurological deficits, no significant difference was found between preoperative and postoperative muscle strength. After data analysis, 3mm was supposed to be the safe distance for avoiding transient neurological deterioration. During surgery, the use of iMRI significantly reduced the biopsy errors (p = 0.042) and potentially increased the diagnostic yield from 84.62% (33/39) to 94.87% (37/39). Moreover, iMRI detected intraoperative haemorrhage in 5.13% (2/39) of patients, all of them benefited from the intraoperative strategies based on iMRI findings. Intraoperative visualisation of functional structures could be a feasible, safe and effective technique. Combined with intraoperative high-field MRI, it contributed to enhance the biopsy accuracy and lower neurological complications in stereotactic brain biopsy involving motor eloquent areas.
Neural Markers and Rehabilitation of Executive Functioning in Veterans with TBI and PTSD
2015-10-01
functioning. Functional magnetic resonance imaging ( fMRI ) will be used to evaluate changes in cortical function in frontostriate and frontoparietal circuits...EEG and fMRI will be conducted and then transport Veterans back to our laboratory. We will assure transportation is running efficiently and without...delays before study commencement. Transportation to the EEG and fMRI was arranged through the UNC-Chapel Hill School of Medicine at month 9
Yamada, Takashi; Hashimoto, Ryu-Ichiro; Yahata, Noriaki; Ichikawa, Naho; Yoshihara, Yujiro; Okamoto, Yasumasa; Kato, Nobumasa; Takahashi, Hidehiko; Kawato, Mitsuo
2017-10-01
Psychiatric research has been hampered by an explanatory gap between psychiatric symptoms and their neural underpinnings, which has resulted in poor treatment outcomes. This situation has prompted us to shift from symptom-based diagnosis to data-driven diagnosis, aiming to redefine psychiatric disorders as disorders of neural circuitry. Promising candidates for data-driven diagnosis include resting-state functional connectivity MRI (rs-fcMRI)-based biomarkers. Although biomarkers have been developed with the aim of diagnosing patients and predicting the efficacy of therapy, the focus has shifted to the identification of biomarkers that represent therapeutic targets, which would allow for more personalized treatment approaches. This type of biomarker (i.e., "theranostic biomarker") is expected to elucidate the disease mechanism of psychiatric conditions and to offer an individualized neural circuit-based therapeutic target based on the neural cause of a condition. To this end, researchers have developed rs-fcMRI-based biomarkers and investigated a causal relationship between potential biomarkers and disease-specific behavior using functional MRI (fMRI)-based neurofeedback on functional connectivity. In this review, we introduce a recent approach for creating a theranostic biomarker, which consists mainly of 2 parts: (1) developing an rs-fcMRI-based biomarker that can predict diagnosis and/or symptoms with high accuracy, and (2) the introduction of a proof-of-concept study investigating the relationship between normalizing the biomarker and symptom changes using fMRI-based neurofeedback. In parallel with the introduction of recent studies, we review rs-fcMRI-based biomarker and fMRI-based neurofeedback, focusing on the technological improvements and limitations associated with clinical use. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Yamada, Takashi; Hashimoto, Ryu-ichiro; Yahata, Noriaki; Ichikawa, Naho; Yoshihara, Yujiro; Okamoto, Yasumasa; Kato, Nobumasa; Takahashi, Hidehiko
2017-01-01
Abstract Psychiatric research has been hampered by an explanatory gap between psychiatric symptoms and their neural underpinnings, which has resulted in poor treatment outcomes. This situation has prompted us to shift from symptom-based diagnosis to data-driven diagnosis, aiming to redefine psychiatric disorders as disorders of neural circuitry. Promising candidates for data-driven diagnosis include resting-state functional connectivity MRI (rs-fcMRI)-based biomarkers. Although biomarkers have been developed with the aim of diagnosing patients and predicting the efficacy of therapy, the focus has shifted to the identification of biomarkers that represent therapeutic targets, which would allow for more personalized treatment approaches. This type of biomarker (i.e., “theranostic biomarker”) is expected to elucidate the disease mechanism of psychiatric conditions and to offer an individualized neural circuit-based therapeutic target based on the neural cause of a condition. To this end, researchers have developed rs-fcMRI-based biomarkers and investigated a causal relationship between potential biomarkers and disease-specific behavior using functional MRI (fMRI)-based neurofeedback on functional connectivity. In this review, we introduce a recent approach for creating a theranostic biomarker, which consists mainly of 2 parts: (1) developing an rs-fcMRI-based biomarker that can predict diagnosis and/or symptoms with high accuracy, and (2) the introduction of a proof-of-concept study investigating the relationship between normalizing the biomarker and symptom changes using fMRI-based neurofeedback. In parallel with the introduction of recent studies, we review rs-fcMRI-based biomarker and fMRI-based neurofeedback, focusing on the technological improvements and limitations associated with clinical use. PMID:28977523
Smitha, K A; Arun, K M; Rajesh, P G; Thomas, B; Kesavadas, C
2017-06-01
Language is a cardinal function that makes human unique. Preservation of language function poses a great challenge for surgeons during resection. The aim of the study was to assess the efficacy of resting-state fMRI in the lateralization of language function in healthy subjects to permit its further testing in patients who are unable to perform task-based fMRI. Eighteen healthy right-handed volunteers were prospectively evaluated with resting-state fMRI and task-based fMRI to assess language networks. The laterality indices of Broca and Wernicke areas were calculated by using task-based fMRI via a voxel-value approach. We adopted seed-based resting-state fMRI connectivity analysis together with parameters such as amplitude of low-frequency fluctuation and fractional amplitude of low-frequency fluctuation (fALFF). Resting-state fMRI connectivity maps for language networks were obtained from Broca and Wernicke areas in both hemispheres. We performed correlation analysis between the laterality index and the z scores of functional connectivity, amplitude of low-frequency fluctuation, and fALFF. Pearson correlation analysis between signals obtained from the z score of fALFF and the laterality index yielded a correlation coefficient of 0.849 ( P < .05). Regression analysis of the fALFF with the laterality index yielded an R 2 value of 0.721, indicating that 72.1% of the variance in the laterality index of task-based fMRI could be predicted from the fALFF of resting-state fMRI. The present study demonstrates that fALFF can be used as an alternative to task-based fMRI for assessing language laterality. There was a strong positive correlation between the fALFF of the Broca area of resting-state fMRI with the laterality index of task-based fMRI. Furthermore, we demonstrated the efficacy of fALFF for predicting the laterality of task-based fMRI. © 2017 by American Journal of Neuroradiology.
Large, I.; Bridge, H.; Ahmed, B.; Clare, S.; Kolasinski, J.; Lam, W. W.; Miller, K. L.; Dyrby, T. B.; Parker, A. J.; Smith, J. E. T.; Daubney, G.; Sallet, J.; Bell, A. H.; Krug, K.
2016-01-01
Extrastriate visual area V5/MT in primates is defined both structurally by myeloarchitecture and functionally by distinct responses to visual motion. Myelination is directly identifiable from postmortem histology but also indirectly by image contrast with structural magnetic resonance imaging (sMRI). First, we compared the identification of V5/MT using both sMRI and histology in Rhesus macaques. A section-by-section comparison of histological slices with in vivo and postmortem sMRI for the same block of cortical tissue showed precise correspondence in localizing heavy myelination for V5/MT and neighboring MST. Thus, sMRI in macaques accurately locates histologically defined myelin within areas known to be motion selective. Second, we investigated the functionally homologous human motion complex (hMT+) using high-resolution in vivo imaging. Humans showed considerable intersubject variability in hMT+ location, when defined with myelin-weighted sMRI signals to reveal structure. When comparing sMRI markers to functional MRI in response to moving stimuli, a region of high myelin signal was generally located within the hMT+ complex. However, there were considerable differences in the alignment of structural and functional markers between individuals. Our results suggest that variation in area identification for hMT+ based on structural and functional markers reflects individual differences in human regional brain architecture. PMID:27371764
A feature-based approach to combine functional MRI, structural MRI and EEG brain imaging data.
Calhoun, V; Adali, T; Liu, J
2006-01-01
The acquisition of multiple brain imaging types for a given study is a very common practice. However these data are typically examined in separate analyses, rather than in a combined model. We propose a novel methodology to perform joint independent component analysis across image modalities, including structural MRI data, functional MRI activation data and EEG data, and to visualize the results via a joint histogram visualization technique. Evaluation of which combination of fused data is most useful is determined by using the Kullback-Leibler divergence. We demonstrate our method on a data set composed of functional MRI data from two tasks, structural MRI data, and EEG data collected on patients with schizophrenia and healthy controls. We show that combining data types can improve our ability to distinguish differences between groups.
Prediction of individual brain maturity using fMRI.
Dosenbach, Nico U F; Nardos, Binyam; Cohen, Alexander L; Fair, Damien A; Power, Jonathan D; Church, Jessica A; Nelson, Steven M; Wig, Gagan S; Vogel, Alecia C; Lessov-Schlaggar, Christina N; Barnes, Kelly Anne; Dubis, Joseph W; Feczko, Eric; Coalson, Rebecca S; Pruett, John R; Barch, Deanna M; Petersen, Steven E; Schlaggar, Bradley L
2010-09-10
Group functional connectivity magnetic resonance imaging (fcMRI) studies have documented reliable changes in human functional brain maturity over development. Here we show that support vector machine-based multivariate pattern analysis extracts sufficient information from fcMRI data to make accurate predictions about individuals' brain maturity across development. The use of only 5 minutes of resting-state fcMRI data from 238 scans of typically developing volunteers (ages 7 to 30 years) allowed prediction of individual brain maturity as a functional connectivity maturation index. The resultant functional maturation curve accounted for 55% of the sample variance and followed a nonlinear asymptotic growth curve shape. The greatest relative contribution to predicting individual brain maturity was made by the weakening of short-range functional connections between the adult brain's major functional networks.
Glover, Gary H.; Mueller, Bryon A.; Turner, Jessica A.; van Erp, Theo G.M.; Liu, Thomas T.; Greve, Douglas N.; Voyvodic, James T.; Rasmussen, Jerod; Brown, Gregory G.; Keator, David B.; Calhoun, Vince D.; Lee, Hyo Jong; Ford, Judith M.; Mathalon, Daniel H.; Diaz, Michele; O’Leary, Daniel S.; Gadde, Syam; Preda, Adrian; Lim, Kelvin O.; Wible, Cynthia G.; Stern, Hal S.; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G.
2011-01-01
This report provides practical recommendations for the design and execution of Multi-Center functional Magnetic Resonance Imaging (MC-fMRI) studies based on the collective experience of the Function Biomedical Informatics Research Network (FBIRN). The paper was inspired by many requests from the fMRI community to FBIRN group members for advice on how to conduct MC-fMRI studies. The introduction briefly discusses the advantages and complexities of MC-fMRI studies. Prerequisites for MC-fMRI studies are addressed before delving into the practical aspects of carefully and efficiently setting up a MC-fMRI study. Practical multi-site aspects include: (1) establishing and verifying scan parameters including scanner types and magnetic fields, (2) establishing and monitoring of a scanner quality program, (3) developing task paradigms and scan session documentation, (4) establishing clinical and scanner training to ensure consistency over time, (5) developing means for uploading, storing, and monitoring of imaging and other data, (6) the use of a traveling fMRI expert and (7) collectively analyzing imaging data and disseminating results. We conclude that when MC-fMRI studies are organized well with careful attention to unification of hardware, software and procedural aspects, the process can be a highly effective means for accessing a desired participant demographics while accelerating scientific discovery. PMID:22314879
Functional magnetic resonance imaging.
Buchbinder, Bradley R
2016-01-01
Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks. © 2016 Elsevier B.V. All rights reserved.
O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C
2016-11-09
Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.
(HEL MRI) 3D Meta Optics for High Energy Lasers
2016-09-13
based metal-oxide nano- hair structures for optical vortex generation," Opt. Express 23, 19056-19065 (2015) 15. Li, Yuan, Zeyu Zhang, Wenzhe Li, Jerome...Indumathi Raghu Srimathi, Aaron J. Pung, Yuan Li, Raymond C. Rumpf, and Eric G. Johnson, "Fabrication of metal-oxide nano- hairs for effective index...Grating Based Optical Nano- Hairs Using ALD Nano- Patterning Subwavelength gratings (SWGs) based artificial dielectric elements are used to obtain the
Comparison of block and event-related experimental designs in diffusion-weighted functional MRI.
Williams, Rebecca J; McMahon, Katie L; Hocking, Julia; Reutens, David C
2014-08-01
To compare diffusion-weighted functional magnetic resonance imaging (DfMRI), a novel alternative to the blood oxygenation level-dependent (BOLD) contrast, in a functional MRI experiment. Nine participants viewed contrast reversing (7.5 Hz) black-and-white checkerboard stimuli using block and event-related paradigms. DfMRI (b = 1800 mm/s(2)) and BOLD sequences were acquired. Four parameters describing the observed signal were assessed: percent signal change, spatial extent of the activation, the Euclidean distance between peak voxel locations, and the time-to-peak of the best fitting impulse response for different paradigms and sequences. The BOLD conditions showed a higher percent signal change relative to DfMRI; however, event-related DfMRI showed the strongest group activation (t = 21.23, P < 0.0005). Activation was more diffuse and spatially closer to the BOLD response for DfMRI when the block design was used. DfMRIevent showed the shortest TTP (4.4 ± 0.88 sec). The hemodynamic contribution to DfMRI may increase with the use of block designs. © 2013 Wiley Periodicals, Inc.
Zuo, Xi-Nian; Xu, Ting; Jiang, Lili; Yang, Zhi; Cao, Xiao-Yan; He, Yong; Zang, Yu-Feng; Castellanos, F. Xavier; Milham, Michael P.
2013-01-01
While researchers have extensively characterized functional connectivity between brain regions, the characterization of functional homogeneity within a region of the brain connectome is in early stages of development. Several functional homogeneity measures were proposed previously, among which regional homogeneity (ReHo) was most widely used as a measure to characterize functional homogeneity of resting state fMRI (R-fMRI) signals within a small region (Zang et al., 2004). Despite a burgeoning literature on ReHo in the field of neuroimaging brain disorders, its test–retest (TRT) reliability remains unestablished. Using two sets of public R-fMRI TRT data, we systematically evaluated the ReHo’s TRT reliability and further investigated the various factors influencing its reliability and found: 1) nuisance (head motion, white matter, and cerebrospinal fluid) correction of R-fMRI time series can significantly improve the TRT reliability of ReHo while additional removal of global brain signal reduces its reliability, 2) spatial smoothing of R-fMRI time series artificially enhances ReHo intensity and influences its reliability, 3) surface-based R-fMRI computation largely improves the TRT reliability of ReHo, 4) a scan duration of 5 min can achieve reliable estimates of ReHo, and 5) fast sampling rates of R-fMRI dramatically increase the reliability of ReHo. Inspired by these findings and seeking a highly reliable approach to exploratory analysis of the human functional connectome, we established an R-fMRI pipeline to conduct ReHo computations in both 3-dimensions (volume) and 2-dimensions (surface). PMID:23085497
Functional Magnetic Resonance Imaging (fMRI) Neurofeedback: Implementations and Applications
DEWIPUTRI, Wan Ilma; AUER, Tibor
2013-01-01
Neurofeedback (NFB) allows subjects to learn how to volitionally influence the neuronal activation in the brain by employing real-time neural activity as feedback. NFB has already been performed with electroencephalography (EEG) since the 1970s. Functional MRI (fMRI), offering a higher spatial resolution, has further increased the spatial specificity. In this paper, we briefly outline the general principles behind NFB, the implementation of fMRI-NFB studies, the feasibility of fMRI-NFB, and the application of NFB as a supplementary therapy tool. PMID:24643368
Non-invasive imaging using reporter genes altering cellular water permeability
NASA Astrophysics Data System (ADS)
Mukherjee, Arnab; Wu, Di; Davis, Hunter C.; Shapiro, Mikhail G.
2016-12-01
Non-invasive imaging of gene expression in live, optically opaque animals is important for multiple applications, including monitoring of genetic circuits and tracking of cell-based therapeutics. Magnetic resonance imaging (MRI) could enable such monitoring with high spatiotemporal resolution. However, existing MRI reporter genes based on metalloproteins or chemical exchange probes are limited by their reliance on metals or relatively low sensitivity. Here we introduce a new class of MRI reporters based on the human water channel aquaporin 1. We show that aquaporin overexpression produces contrast in diffusion-weighted MRI by increasing tissue water diffusivity without affecting viability. Low aquaporin levels or mixed populations comprising as few as 10% aquaporin-expressing cells are sufficient to produce MRI contrast. We characterize this new contrast mechanism through experiments and simulations, and demonstrate its utility in vivo by imaging gene expression in tumours. Our results establish an alternative class of sensitive, metal-free reporter genes for non-invasive imaging.
Krohn, Michaela; Ohrndorf, Sarah; Werner, Stephanie G; Schicke, Bernd; Burmester, Gerd-Rüdiger; Hamm, Bernd; Backhaus, Marina; Hermann, Kay-Geert A
2015-07-01
Near-infrared fluorescence optical imaging (FOI) is a novel imaging technology in the detection and evaluation of different arthritides. FOI was validated in comparison to magnetic resonance imaging (MRI), greyscale ultrasonography (GSUS), and power Doppler ultrasonography (PDUS) in patients with early rheumatoid arthritis (RA). Hands of 31 patients with early RA were examined by FOI, MRI, and US. In each modality, synovitis of the wrist, metacarpophalangeal joints (MCP) 2-5, and proximal interphalangeal joints (PIP) 2-5 were scored on a 4-point scale (0-3). Sensitivity and specificity of FOI were analyzed in comparison to MRI and US as reference methods, differentiating between 3 phases of FOI enhancement (P1-3). Intraclass correlation coefficients (ICC) were calculated to evaluate the agreement of FOI with MRI and US. A total of 279 joints (31 wrists, 124 MCP and 124 PIP joints) were evaluated. With MRI as the reference method, overall sensitivity/specificity of FOI was 0.81/0.00, 0.49/0.84, and 0.86/0.38 for wrist, MCP, and PIP joints, respectively. Under application of PDUS as reference, sensitivity was even higher, while specificity turned out to be low, except for MCP joints (0.88/0.15, 0.81/0.76, and 1.00/0.27, respectively). P2 appears to be the most sensitive FOI phase, while P1 showed the highest specificity. The best agreement of FOI was shown for PDUS, especially with regard to MCP and PIP joints (ICC of 0.57 and 0.53, respectively), while correlation with MRI was slightly lower. FOI remains an interesting diagnostic tool for patients with early RA, although this study revealed limitations concerning the detection of synovitis. Further research is needed to evaluate its full diagnostic potential in rheumatic diseases.
Thuermel, Klaus; Neumann, Jan; Jungmann, Pia M; Schäffeler, Christoph; Waldt, Simone; Heinze, Alexander; Beckmann, Alexander; Hauser, Christine; Hasenau, Anna-Lena; Wildgruber, Moritz; Clotten, Sigrun; Sievert, Matti; Haller, Bernhard; Woertler, Klaus; Harasser, Norbert; Rummeny, Ernst J; Meier, Reinhard
2017-05-01
To address whether Indocyanine Green (ICG) enhanced fluorescence optical imaging (FOI) is more sensitive than magnetic resonance imaging (MRI) in the detection of synovitis of the wrist and finger joints in rheumatoid arthritis and to analyze the performance of FOI depending on the grade of synovitis. Twenty patients with highly active rheumatoid arthritis (mean DAS28-ESR 5.25±1.0) and thirteen healthy volunteers underwent clinical examination, FOI and contrast-enhanced 3T-MRI. Joints were rated by three independent readers semiquantitatively (grade 0-3: no, low, moderate and high grade synovitis) and compared to a semiquantitative composite standard of reference (cSOR, grade 0-3) that incorporated clinical parameters, FOI and MRI results. 2.868 evaluations in 956 joints were performed. FOI had an overall sensitivity of 57.3% and a specificity of 92.1%, whereas MRI had a sensitivity of 89.2% and a specificity of 92.6%. The sensitivity of FOI increased with the degree of synovitis to 65.0% for moderate and severe synovitis (specificity 88.1%) and 76,3% for severe synovitis (specificity 80.5%). The performance of FOI decreased with the degree of synovitis with false negative results predominantly for mild (156/343, 45.5%) and moderate (160/343, 46.6%) synovitis and false positive FOI evaluations predominantly based on weak (grade 1) signals (133/163, 81,6%). FOI has a lower sensitivity than 3T-MRI in the detection of synovitis of the hand and finger joints. The diagnostic performance of FOI decreases with the degree of synovitis and with the strength of FOI signals. Copyright © 2017 Elsevier B.V. All rights reserved.
Decoding Lifespan Changes of the Human Brain Using Resting-State Functional Connectivity MRI
Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen
2012-01-01
The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8–79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' “brain ages” from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI. PMID:22952990
Decoding lifespan changes of the human brain using resting-state functional connectivity MRI.
Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen
2012-01-01
The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8-79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' "brain ages" from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI.
High-field fMRI unveils orientation columns in humans.
Yacoub, Essa; Harel, Noam; Ugurbil, Kâmil
2008-07-29
Functional (f)MRI has revolutionized the field of human brain research. fMRI can noninvasively map the spatial architecture of brain function via localized increases in blood flow after sensory or cognitive stimulation. Recent advances in fMRI have led to enhanced sensitivity and spatial accuracy of the measured signals, indicating the possibility of detecting small neuronal ensembles that constitute fundamental computational units in the brain, such as cortical columns. Orientation columns in visual cortex are perhaps the best known example of such a functional organization in the brain. They cannot be discerned via anatomical characteristics, as with ocular dominance columns. Instead, the elucidation of their organization requires functional imaging methods. However, because of insufficient sensitivity, spatial accuracy, and image resolution of the available mapping techniques, thus far, they have not been detected in humans. Here, we demonstrate, by using high-field (7-T) fMRI, the existence and spatial features of orientation- selective columns in humans. Striking similarities were found with the known spatial features of these columns in monkeys. In addition, we found that a larger number of orientation columns are devoted to processing orientations around 90 degrees (vertical stimuli with horizontal motion), whereas relatively similar fMRI signal changes were observed across any given active column. With the current proliferation of high-field MRI systems and constant evolution of fMRI techniques, this study heralds the exciting prospect of exploring unmapped and/or unknown columnar level functional organizations in the human brain.
Comparison of post-surgical MRI presentation of the pituitary gland and its hormonal function.
Bladowska, Joanna; Sokolska, Violetta; Sozański, Tomasz; Bednarek-Tupikowska, Grażyna; Sąsiadek, Marek
2010-01-01
Post-surgical evaluation of the pituitary gland in MRI is difficult because of a change of anatomical conditions. It depends also on numerous other factors, including: size and expansion of a tumour before surgery, type of surgical access, quality and volume of filling material used and time of its resorption.The aim of the study was to compare MR image of the pituitary gland after surgery with clinical findings and to establish a correlation between MRI presentation of spared pituitary and its hormonal function. 124 patients after resection of pituitary adenomas - 409 MRI results in total - were studied. With a 1.5-T unit, T1-weighted sagittal and coronal, enhanced and unenhanced images were obtained. The pituitary gland seemed to be normal in MRI in 11 patients, 8 of them had completely regular pituitary function but in 3 of them we noticed a partial hypopituitarism. In 99 patients only a part of the pituitary gland was recognised, 53 of them had hypopituitarism but 46 of them were endocrinologically healthy. 14 patients seemed to have no persistent pituitary gland in MRI, in comparison to hormonal studies: there was panhypopituitarism in 6 and hypopituitarism in 8 cases. MRI presentation of post - surgical pituitary gland doesn't necessarily correlate with its hormonal function - there was a significant statistical difference. Some patients with partial pituitary seems normal hormonal function. In some cases the pituitary seem normal in MRI but these patients have hormonal disorders and need substitution therapy.
Fuzzy cluster analysis of high-field functional MRI data.
Windischberger, Christian; Barth, Markus; Lamm, Claus; Schroeder, Lee; Bauer, Herbert; Gur, Ruben C; Moser, Ewald
2003-11-01
Functional magnetic resonance imaging (fMRI) based on blood-oxygen level dependent (BOLD) contrast today is an established brain research method and quickly gains acceptance for complementary clinical diagnosis. However, neither the basic mechanisms like coupling between neuronal activation and haemodynamic response are known exactly, nor can the various artifacts be predicted or controlled. Thus, modeling functional signal changes is non-trivial and exploratory data analysis (EDA) may be rather useful. In particular, identification and separation of artifacts as well as quantification of expected, i.e. stimulus correlated, and novel information on brain activity is important for both, new insights in neuroscience and future developments in functional MRI of the human brain. After an introduction on fuzzy clustering and very high-field fMRI we present several examples where fuzzy cluster analysis (FCA) of fMRI time series helps to identify and locally separate various artifacts. We also present and discuss applications and limitations of fuzzy cluster analysis in very high-field functional MRI: differentiate temporal patterns in MRI using (a) a test object with static and dynamic parts, (b) artifacts due to gross head motion artifacts. Using a synthetic fMRI data set we quantitatively examine the influences of relevant FCA parameters on clustering results in terms of receiver-operator characteristics (ROC) and compare them with a commonly used model-based correlation analysis (CA) approach. The application of FCA in analyzing in vivo fMRI data is shown for (a) a motor paradigm, (b) data from multi-echo imaging, and (c) a fMRI study using mental rotation of three-dimensional cubes. We found that differentiation of true "neural" from false "vascular" activation is possible based on echo time dependence and specific activation levels, as well as based on their signal time-course. Exploratory data analysis methods in general and fuzzy cluster analysis in particular may help to identify artifacts and add novel and unexpected information valuable for interpretation, classification and characterization of functional MRI data which can be used to design new data acquisition schemes, stimulus presentations, neuro(physio)logical paradigms, as well as to improve quantitative biophysical models.
Development of the brain's functional network architecture.
Vogel, Alecia C; Power, Jonathan D; Petersen, Steven E; Schlaggar, Bradley L
2010-12-01
A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.
Development of the Brain's Functional Network Architecture
Power, Jonathan D.; Petersen, Steven E.; Schlaggar, Bradley L.
2013-01-01
A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks. PMID:20976563
Stevens, Michael C
2016-11-01
This review summarizes functional magnetic resonance imaging (fMRI) research done over the past decade that examined changes in the function and organization of brain networks across human adolescence. Its over-arching goal is to highlight how both resting state functional connectivity (rs-fcMRI) and task-based functional connectivity (t-fcMRI) have jointly contributed - albeit in different ways - to our understanding of the scope and types of network organization changes that occur from puberty until young adulthood. These two approaches generally have tested different types of hypotheses using different analysis techniques. This has hampered the convergence of findings. Although much has been learned about system-wide changes to adolescents' neural network organization, if both rs-fcMRI and t-fcMRI approaches draw upon each other's methodology and ask broader questions, it will produce a more detailed connectome-informed theory of adolescent neurodevelopment to guide physiological, clinical, and other lines of research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Orbital and Intracranial Effects of Microgravity: 3T MRI Findings
NASA Technical Reports Server (NTRS)
Kramer, L. A.; Sargsyan, A.; Hasan, K. M.; Polk, J. D.; Hamilton, D. R.
2012-01-01
Goals and Objectives of this presentation are: 1. To briefly describe a newly discovered clinical entity related to space flight. 2. To describe normal anatomy and pathologic changes of the optic nerve, posterior globe, optic nerve sheath and pituitary gland related to exposure to microgravity. 3. To correlate imaging findings with known signs of intracranial hypertension.
Pak, Rebecca W; Hadjiabadi, Darian H; Senarathna, Janaka; Agarwal, Shruti; Thakor, Nitish V; Pillai, Jay J; Pathak, Arvind P
2017-11-01
Functional magnetic resonance imaging (fMRI) serves as a critical tool for presurgical mapping of eloquent cortex and changes in neurological function in patients diagnosed with brain tumors. However, the blood-oxygen-level-dependent (BOLD) contrast mechanism underlying fMRI assumes that neurovascular coupling remains intact during brain tumor progression, and that measured changes in cerebral blood flow (CBF) are correlated with neuronal function. Recent preclinical and clinical studies have demonstrated that even low-grade brain tumors can exhibit neurovascular uncoupling (NVU), which can confound interpretation of fMRI data. Therefore, to avoid neurosurgical complications, it is crucial to understand the biophysical basis of NVU and its impact on fMRI. Here we review the physiology of the neurovascular unit, how it is remodeled, and functionally altered by brain cancer cells. We first discuss the latest findings about the components of the neurovascular unit. Next, we synthesize results from preclinical and clinical studies to illustrate how brain tumor induced NVU affects fMRI data interpretation. We examine advances in functional imaging methods that permit the clinical evaluation of brain tumors with NVU. Finally, we discuss how the suppression of anomalous tumor blood vessel formation with antiangiogenic therapies can "normalize" the brain tumor vasculature, and potentially restore neurovascular coupling.
Functional magnetic resonance imaging in clinical practice: State of the art and science.
Barras, Christen D; Asadi, Hamed; Baldeweg, Torsten; Mancini, Laura; Yousry, Tarek A; Bisdas, Sotirios
2016-11-01
Functional magnetic resonance imaging (fMRI) has become a mainstream neuroimaging modality in the assessment of patients being evaluated for brain tumour and epilepsy surgeries. Thus, it is important for doctors in primary care settings to be well acquainted with the present and potential future applications, as well as limitations, of this modality. The objective of this article is to introduce the theoretical principles and state-of-the-art clinical applications of fMRI in brain tumour and epilepsy surgery, with a focus on the implications for clinical primary care. fMRI enables non-invasive functional mapping of specific cortical tasks (eg motor, language, memory-based, visual), revealing information about functional localisation, anatomical variation in cortical function, and disease effects and adaptations, including the fascinating phenomenon of brain plasticity. fMRI is currently ordered by specialist neurologists and neurosurgeons for the purposes of pre-surgical assessment, and within the context of an experienced multidisciplinary team to prepare, conduct and interpret the scan. With an increasing number of patients undergoing fMRI, general practitioners can expect questions about the current and emerging role of fMRI in clinical care from these patients and their families.
Chu, Alan; Noll, Douglas C
2016-10-01
Simultaneous multislice (SMS) imaging is a useful way to accelerate functional magnetic resonance imaging (fMRI). As acceleration becomes more aggressive, an increasingly larger number of receive coils are required to separate the slices, which significantly increases the computational burden. We propose a coil compression method that works with concentric ring non-Cartesian SMS imaging and should work with Cartesian SMS as well. We evaluate the method on fMRI scans of several subjects and compare it to standard coil compression methods. The proposed method uses a slice-separation k-space kernel to simultaneously compress coil data into a set of virtual coils. Five subjects were scanned using both non-SMS fMRI and SMS fMRI with three simultaneous slices. The SMS fMRI scans were processed using the proposed method, along with other conventional methods. Code is available at https://github.com/alcu/sms. The proposed method maintained functional activation with a fewer number of virtual coils than standard SMS coil compression methods. Compression of non-SMS fMRI maintained activation with a slightly lower number of virtual coils than the proposed method, but does not have the acceleration advantages of SMS fMRI. The proposed method is a practical way to compress and reconstruct concentric ring SMS data and improves the preservation of functional activation over standard coil compression methods in fMRI. Magn Reson Med 76:1196-1209, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Wu, Nan; Xie, Bing; Wu, Guo-Cai; Lan, Chuan; Wang, Jian; Feng, Hua
2010-01-01
Language area-related lesion is a serious issue in neurosurgery. Removing the lesion in the language area and at the same time preserving language functions is a great challenge. In this study, we aimed to screen functional magnetic resonance imaging (fMRI) based task types suitable for activation of Broca and Wernicke areas in Chinese population, characterize lesion properties of functional area of Chinese language in brain, and assess the potential of fMRI-guided neuronavigation in clinical applications. Blood oxygen level-dependent fMRI has been used to localize language area prior to operation. We carried out extensive fMRI analyses and conducted operation on patients with lesions in speech area. fMRI tests revealed that the reciting task in Chinese can steadily activate the Broca area, and paragraph comprehension task in Chinese can effectively activate the Wernicke area. Cortical stimulation of patients when being awake during operation validated the sensitivity and accuracy of fMRI. The safe distance between language activation area and removal of the lesion in language area was determined to be about 10 mm. Further investigation suggested that navigation of fMRI combined with diffuse tensor imaging can decrease the incidence of postoperative dysfunction and increase the success rate for complete removal of lesion. Taken together, these findings may be helpful to clinical therapy for language area-related lesions.
NASA Astrophysics Data System (ADS)
Gao, Bin; Liu, Wanyu; Wang, Liang; Liu, Zhengjun; Croisille, Pierre; Delachartre, Philippe; Clarysse, Patrick
2016-12-01
Cine-MRI is widely used for the analysis of cardiac function in clinical routine, because of its high soft tissue contrast and relatively short acquisition time in comparison with other cardiac MRI techniques. The gray level distribution in cardiac cine-MRI is relatively homogenous within the myocardium, and can therefore make motion quantification difficult. To ensure that the motion estimation problem is well posed, more image features have to be considered. This work is inspired by a method previously developed for color image processing. The monogenic signal provides a framework to estimate the local phase, orientation, and amplitude, of an image, three features which locally characterize the 2D intensity profile. The independent monogenic features are combined into a 3D matrix for motion estimation. To improve motion estimation accuracy, we chose the zero-mean normalized cross-correlation as a matching measure, and implemented a bilateral filter for denoising and edge-preservation. The monogenic features distance is used in lieu of the color space distance in the bilateral filter. Results obtained from four realistic simulated sequences outperformed two other state of the art methods even in the presence of noise. The motion estimation errors (end point error) using our proposed method were reduced by about 20% in comparison with those obtained by the other tested methods. The new methodology was evaluated on four clinical sequences from patients presenting with cardiac motion dysfunctions and one healthy volunteer. The derived strain fields were analyzed favorably in their ability to identify myocardial regions with impaired motion.
Scarapicchia, Vanessa; Brown, Cassandra; Mayo, Chantel; Gawryluk, Jodie R.
2017-01-01
Although blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a widely available, non-invasive technique that offers excellent spatial resolution, it remains limited by practical constraints imposed by the scanner environment. More recently, functional near infrared spectroscopy (fNIRS) has emerged as an alternative hemodynamic-based approach that possesses a number of strengths where fMRI is limited, most notably in portability and higher tolerance for motion. To date, fNIRS has shown promise in its ability to shed light on the functioning of the human brain in populations and contexts previously inaccessible to fMRI. Notable contributions include infant neuroimaging studies and studies examining full-body behaviors, such as exercise. However, much like fMRI, fNIRS has technical constraints that have limited its application to clinical settings, including a lower spatial resolution and limited depth of recording. Thus, by combining fMRI and fNIRS in such a way that the two methods complement each other, a multimodal imaging approach may allow for more complex research paradigms than is feasible with either technique alone. In light of these issues, the purpose of the current review is to: (1) provide an overview of fMRI and fNIRS and their associated strengths and limitations; (2) review existing combined fMRI-fNIRS recording studies; and (3) discuss how their combined use in future research practices may aid in advancing modern investigations of human brain function. PMID:28867998
Bayesian Inference for Functional Dynamics Exploring in fMRI Data.
Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao; Pan, Yi; Zhang, Jing
2016-01-01
This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.
Resting-state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness
Snyder, Abraham Z.; Tagliazucchi, Enzo; Laufs, Helmut; Elison, Jed; Emerson, Robert W.; Shen, Mark D.; Wolff, Jason J.; Botteron, Kelly N.; Dager, Stephen; Estes, Annette M.; Evans, Alan; Gerig, Guido; Hazlett, Heather C.; Paterson, Sarah J.; Schultz, Robert T.; Styner, Martin A.; Zwaigenbaum, Lonnie; Schlaggar, Bradley L.
2017-01-01
Resting state functional magnetic resonance imaging (rs-fMRI) in infants enables important studies of functional brain organization early in human development. However, rs-fMRI in infants has universally been obtained during sleep to reduce participant motion artifact, raising the question of whether differences in functional organization between awake adults and sleeping infants that are commonly attributed to development may instead derive, at least in part, from sleep. This question is especially important as rs-fMRI differences in adult wake vs. sleep are well documented. To investigate this question, we compared functional connectivity and BOLD signal propagation patterns in 6, 12, and 24 month old sleeping infants with patterns in adult wakefulness and non-REM sleep. We find that important functional connectivity features seen during infant sleep closely resemble those seen during adult sleep, including reduced default mode network functional connectivity. However, we also find differences between infant and adult sleep, especially in thalamic BOLD signal propagation patterns. These findings highlight the importance of considering sleep state when drawing developmental inferences in infant rs-fMRI. PMID:29149191
Resting-state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness.
Mitra, Anish; Snyder, Abraham Z; Tagliazucchi, Enzo; Laufs, Helmut; Elison, Jed; Emerson, Robert W; Shen, Mark D; Wolff, Jason J; Botteron, Kelly N; Dager, Stephen; Estes, Annette M; Evans, Alan; Gerig, Guido; Hazlett, Heather C; Paterson, Sarah J; Schultz, Robert T; Styner, Martin A; Zwaigenbaum, Lonnie; Schlaggar, Bradley L; Piven, Joseph; Pruett, John R; Raichle, Marcus
2017-01-01
Resting state functional magnetic resonance imaging (rs-fMRI) in infants enables important studies of functional brain organization early in human development. However, rs-fMRI in infants has universally been obtained during sleep to reduce participant motion artifact, raising the question of whether differences in functional organization between awake adults and sleeping infants that are commonly attributed to development may instead derive, at least in part, from sleep. This question is especially important as rs-fMRI differences in adult wake vs. sleep are well documented. To investigate this question, we compared functional connectivity and BOLD signal propagation patterns in 6, 12, and 24 month old sleeping infants with patterns in adult wakefulness and non-REM sleep. We find that important functional connectivity features seen during infant sleep closely resemble those seen during adult sleep, including reduced default mode network functional connectivity. However, we also find differences between infant and adult sleep, especially in thalamic BOLD signal propagation patterns. These findings highlight the importance of considering sleep state when drawing developmental inferences in infant rs-fMRI.
Nitkunan, Arani; Barrick, Tom R; Charlton, Rebecca A; Clark, Chris A; Markus, Hugh S
2008-07-01
Cerebral small vessel disease is the most common cause of vascular dementia. Interest in using MRI parameters as surrogate markers of disease to assess therapies is increasing. In patients with symptomatic sporadic small vessel disease, we determined which MRI parameters best correlated with cognitive function on cross-sectional analysis and which changed over a period of 1 year. Thirty-five patients with lacunar stroke and leukoaraiosis were recruited. They underwent multimodal MRI (brain volume, fluid-attenuated inversion recovery lesion load, lacunar infarct number, fractional anisotropy, and mean diffusivity from diffusion tensor imaging) and neuropsychological testing. Twenty-seven agreed to reattend for repeat MRI and neuropsychology at 1 year. An executive function score correlated most strongly with diffusion tensor imaging (fractional anisotropy histogram, r=-0.640, P=0.004) and brain volume (r=0.501, P=0.034). Associations with diffusion tensor imaging were stronger than with all other MRI parameters. On multiple regression of all imaging parameters, a model that contained brain volume and fractional anisotropy, together with age, gender, and premorbid IQ, explained 74% of the variance of the executive function score (P=0.0001). Changes in mean diffusivity and fractional anisotropy were detectable over the 1-year follow-up; in contrast, no change in other MRI parameters was detectable over this time period. A multimodal MRI model explains a large proportion of the variation in executive function in cerebral small vessel disease. In particular, diffusion tensor imaging correlates best with executive function and is the most sensitive to change. This supports the use of MRI, in particular diffusion tensor imaging, as a surrogate marker in treatment trials.
Roux, F; Boulanouar, K; Ibarrola, D; Tremoulet, M; Chollet, F; Berry, I
2000-01-01
OBJECTIVE—To support the hypothesis about the potential compensatory role of ipsilateral corticofugal pathways when the contralateral pathways are impaired by brain tumours. METHODS—Retrospective analysis was carried out on the results of functional MRI (fMRI) of a selected group of five paretic patients with Rolandic brain tumours who exhibited an abnormally high ipsilateral/contralateral ratio of activation—that is, movements of the paretic hand activated predominately the ipsilateral cortex. Brain activation was achieved with a flexion extension of the fingers. Statistical parametric activation was obtained using a t test and a threshold of p<0.001. These patients, candidates for tumour resection, also underwent cortical intraoperative stimulation that was correlated to the fMRI spatial data using three dimensional reconstructions of the brain. Three patients also had postoperative control fMRI. RESULTS—The absence of fMRI activation of the primary sensorimotor cortex normally innervating the paretic hand for the threshold chosen, was correlated with completely negative cortical responses of the cortical hand area during the operation. The preoperative fMRI activation of these patients predominantly found in the ipsilateral frontal and primary sensorimotor cortices could be related to the residual ipsilateral hand function. Postoperatively, the fMRI activation returned to more classic patterns of activation, reflecting the consequences of therapy. CONCLUSION—In paretic patients with brain tumours, ipsilateral control could be implicated in the residual hand function, when the normal primary pathways are impaired. The possibility that functional tissue still remains in the peritumorous sensorimotor cortex even when the preoperative fMRI and the cortical intraoperative stimulations are negative, should be taken into account when planning the tumour resection and during the operation. PMID:10990503
Early classification of Alzheimer's disease using hippocampal texture from structural MRI
NASA Astrophysics Data System (ADS)
Zhao, Kun; Ding, Yanhui; Wang, Pan; Dou, Xuejiao; Zhou, Bo; Yao, Hongxiang; An, Ningyu; Zhang, Yongxin; Zhang, Xi; Liu, Yong
2017-03-01
Convergent evidence has been collected to support that Alzheimer's disease (AD) is associated with reduction in hippocampal volume based on anatomical magnetic resonance imaging (MRI) and impaired functional connectivity based on functional MRI. Radiomics texture analysis has been previously successfully used to identify MRI biomarkers of several diseases, including AD, mild cognitive impairment and multiple sclerosis. In this study, our goal was to determine if MRI hippocampal textures, including the intensity, shape, texture and wavelet features, could be served as an MRI biomarker of AD. For this purpose, the texture marker was trained and evaluated from MRI data of 48 AD and 39 normal samples. The result highlights the presence of hippocampal texture abnormalities in AD, and the possibility that texture may serve as a neuroimaging biomarker for AD.
TH-CD-202-09: Free-Breathing Proton MRI Functional Lung Avoidance Maps to Guide Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capaldi, D; Sheikh, K; Parraga, G
Purpose: Pulmonary functional MRI using inhaled gas contrast agents was previously investigated as a way to identify well-functioning lung in patients with NSCLC who are clinical candidates for radiotherapy. Hyperpolarized noble-gas ({sup 3}He and {sup 129}Xe) MRI has also been optimized to measure functional lung information, but for a number of reasons, the clinical translation of this approach to guide radiotherapy planning has been limited. As an alternative, free-breathing pulmonary 1H MRI using clinically available MRI systems and pulse sequences provides a non-contrast-enhanced method to generate both ventilation and perfusion maps. Free-breathing {sup 1}H MRI exploits non-rigid registration and Fouriermore » decomposition of MRI signal intensity differences (Bauman et al., MRM, 2009) that may be generated during normal tidal breathing. Here, our objective was to generate free-breathing {sup 1}H MRI ventilation and lung function avoidance maps in patients with NSCLC as a way to guide radiation therapy planning. Methods: Stage IIIA/IIIB NSCLC patients (n=8, 68±9yr) provided written informed consent to a randomized controlled clinical trial ( https://clinicaltrials.gov/ct2/show/NCT02002052 ) that aimed to compare outcomes related to image-guided versus conventional radiation therapy planning. Hyperpolarized {sup 3}He/{sup 129}Xe and dynamic free tidal-breathing {sup 1}H MRI were acquired as previously described (Capaldi et al., Acad Radiol, 2015). Non-rigid registration was performed using the modality-independent-neighbourhood-descriptor (MIND) deformable approach (Heinrich et al., Med Image Anal, 2012). Ventilation-defect-percent ({sup 3}He:VDP{sub He}, {sup 129}Xe:VDP{sub Xe}, Free-breathing-{sup 1}H:VDP{sub FB}) and the corresponding ventilation maps were compared using Pearson correlation coefficients (r) and the Dice similarity coefficient (DSC). Results: VDP{sub FB} was significantly related to VDP{sub He} (r=.71; p=.04) and VDP{sub Xe} (r=.80; p=.01) and there were also strong spatial relationships (DSC{sub He}/DSC{sub Xe}=89±3%/77±11%). Conclusion: In this proof of concept study in NSCLC patients, free-breathing {sup 1}H MRI ventilation defects were quantitatively and spatially related to inhaled-noble-gas MRI ventilation defects. Free-breathing {sup 1}H MRI measures lung function/ventilation that can be used to optimize radiotherapy planning in NSCLC patients.« less
Sparse representation of whole-brain fMRI signals for identification of functional networks.
Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Chen, Hanbo; Zhang, Tuo; Zhang, Shu; Hu, Xintao; Han, Junwei; Huang, Heng; Zhang, Jing; Guo, Lei; Liu, Tianming
2015-02-01
There have been several recent studies that used sparse representation for fMRI signal analysis and activation detection based on the assumption that each voxel's fMRI signal is linearly composed of sparse components. Previous studies have employed sparse coding to model functional networks in various modalities and scales. These prior contributions inspired the exploration of whether/how sparse representation can be used to identify functional networks in a voxel-wise way and on the whole brain scale. This paper presents a novel, alternative methodology of identifying multiple functional networks via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning algorithm. Our extensive experimental results have shown that this novel methodology can uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal and frequency domains based on current brain science knowledge. Importantly, these well-characterized functional network components are quite reproducible in different brains. In general, our methods offer a novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, de-activation detection, and functional network identification. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Masciotti, J.; Provenzano, F.; Papa, J.; Klose, A.; Hur, J.; Gu, X.; Yamashiro, D.; Kandel, J.; Hielscher, A. H.
2006-02-01
Small animal models are employed to simulate disease in humans and to study its progression, what factors are important to the disease process, and to study the disease treatment. Biomedical imaging modalities such as magnetic resonance imaging (MRI) and Optical Tomography make it possible to non-invasively monitor the progression of diseases in living small animals and study the efficacy of drugs and treatment protocols. MRI is an established imaging modality capable of obtaining high resolution anatomical images and along with contrast agents allow the studying of blood volume. Optical tomography, on the other hand, is an emerging imaging modality, which, while much lower in spatial resolution, can separate the effects of oxyhemoglobin, deoxyhemoglobin, and blood volume with high temporal resolution. In this study we apply these modalities to imaging the growth of kidney tumors and then there treatment by an anti-VEGF agent. We illustrate how these imaging modalities have their individual uses, but can still supplement each other and cross validation can be performed.
Longitudinal Changes of Resting-State Functional Connectivity during Motor Recovery after Stroke
Park, Chang-hyun; Chang, Won Hyuk; Ohn, Suk Hoon; Kim, Sung Tae; Bang, Oh Young; Pascual-Leone, Alvaro; Kim, Yun-Hee
2013-01-01
Background and Purpose Functional magnetic resonance imaging (fMRI) studies could provide crucial information on the neural mechanisms of motor recovery in stroke patients. Resting-state fMRI is applicable to stroke patients who are not capable of proper performance of the motor task. In this study, we explored neural correlates of motor recovery in stroke patients by investigating longitudinal changes in resting-state functional connectivity of the ipsilesional primary motor cortex (M1). Methods A longitudinal observational study using repeated fMRI experiments was conducted in 12 patients with stroke. Resting-state fMRI data were acquired four times over a period of 6 months. Patients participated in the first session of fMRI shortly after onset, and thereafter in subsequent sessions at 1, 3, and 6 months after onset. Resting-state functional connectivity of the ipsilesional M1 was assessed and compared with that of healthy subjects. Results Compared with healthy subjects, patients demonstrated higher functional connectivity with the ipsilesional frontal and parietal cortices, bilateral thalamus, and cerebellum. Instead, functional connectivity with the contralesional M1 and occipital cortex were decreased in stroke patients. Functional connectivity between the ipsilesional and contralesional M1 showed the most asymmetry at 1 month after onset to the ipsilesional side. Functional connectivity of the ipsilesional M1 with the contralesional thalamus, supplementary motor area, and middle frontal gyrus at onset was positively correlated with motor recovery at 6 months after stroke. Conclusions Resting-state fMRI elicited distinctive but comparable results with previous task-based fMRI, presenting complementary and practical values for use in the study of stroke patients. PMID:21441147
Orlov, Natasza D; Giampietro, Vincent; O'Daly, Owen; Lam, Sheut-Ling; Barker, Gareth J; Rubia, Katya; McGuire, Philip; Shergill, Sukhwinder S; Allen, Paul
2018-02-12
Neurocognitive models and previous neuroimaging work posit that auditory verbal hallucinations (AVH) arise due to increased activity in speech-sensitive regions of the left posterior superior temporal gyrus (STG). Here, we examined if patients with schizophrenia (SCZ) and AVH could be trained to down-regulate STG activity using real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF). We also examined the effects of rtfMRI-NF training on functional connectivity between the STG and other speech and language regions. Twelve patients with SCZ and treatment-refractory AVH were recruited to participate in the study and were trained to down-regulate STG activity using rtfMRI-NF, over four MRI scanner visits during a 2-week training period. STG activity and functional connectivity were compared pre- and post-training. Patients successfully learnt to down-regulate activity in their left STG over the rtfMRI-NF training. Post- training, patients showed increased functional connectivity between the left STG, the left inferior prefrontal gyrus (IFG) and the inferior parietal gyrus. The post-training increase in functional connectivity between the left STG and IFG was associated with a reduction in AVH symptoms over the training period. The speech-sensitive region of the left STG is a suitable target region for rtfMRI-NF in patients with SCZ and treatment-refractory AVH. Successful down-regulation of left STG activity can increase functional connectivity between speech motor and perception regions. These findings suggest that patients with AVH have the ability to alter activity and connectivity in speech and language regions, and raise the possibility that rtfMRI-NF training could present a novel therapeutic intervention in SCZ.
Saito, Kazuhiro; Ledsam, Joseph; Sourbron, Steven; Hashimoto, Tsuyoshi; Araki, Yoichi; Akata, Soichi; Tokuuye, Koichi
2014-01-01
To investigate if tracer kinetic modelling of low temporal resolution dynamic contrast-enhanced (DCE) MRI with Gd-EOB-DTPA could replace technetium-99 m galactosyl human serum albumin (GSA) single positron emission computed tomography (SPECT) and indocyanine green (ICG) retention for the measurement of liver functional reserve. Twenty eight patients awaiting liver resection for various cancers were included in this retrospective study that was approved by the institutional review board. The Gd-EOB-DTPA MRI sequence acquired five images: unenhanced, double arterial phase, portal phase, and 4 min after injection. Intracellular contrast uptake rate (UR) and extracellular volume (Ve) were calculated from DCE-MRI, along with the ratio of GSA radioactivity of liver to heart-plus-liver and per cent of cumulative uptake from 15-16 min (LHL15 and LU15, respectively) from GSA-scintigraphy. ICG retention at 15 min, Child-Pugh cirrhosis score (CPS) and postoperative Inuyama fibrosis criteria were also recorded. Statistical analysis was with Spearman rank correlation analysis. Comparing MRI parameters with the reference methods, significant correlations were obtained for UR and LHL15, LU15, ICG15 (all 0.4-0.6, P < 0.05); UR and CPS (-0.64, P < 0.001); Ve and Inuyama (0.44, P < 0.05). Measures of liver function obtained by routine Gd-EOB-DTPA DCE-MRI with tracer kinetic modelling may provide a suitable method for the evaluation of liver functional reserve. • Magnetic resonance imaging (MRI) provides new methods of measuring hepatic functional reserve. • DCE-MRI with Gd-EOB-DTPA offers the possibility of replacing scintigraphy. • The analysis method can be used for preoperative liver function evaluation.
Zuo, Xi-Nian; Xu, Ting; Jiang, Lili; Yang, Zhi; Cao, Xiao-Yan; He, Yong; Zang, Yu-Feng; Castellanos, F Xavier; Milham, Michael P
2013-01-15
While researchers have extensively characterized functional connectivity between brain regions, the characterization of functional homogeneity within a region of the brain connectome is in early stages of development. Several functional homogeneity measures were proposed previously, among which regional homogeneity (ReHo) was most widely used as a measure to characterize functional homogeneity of resting state fMRI (R-fMRI) signals within a small region (Zang et al., 2004). Despite a burgeoning literature on ReHo in the field of neuroimaging brain disorders, its test-retest (TRT) reliability remains unestablished. Using two sets of public R-fMRI TRT data, we systematically evaluated the ReHo's TRT reliability and further investigated the various factors influencing its reliability and found: 1) nuisance (head motion, white matter, and cerebrospinal fluid) correction of R-fMRI time series can significantly improve the TRT reliability of ReHo while additional removal of global brain signal reduces its reliability, 2) spatial smoothing of R-fMRI time series artificially enhances ReHo intensity and influences its reliability, 3) surface-based R-fMRI computation largely improves the TRT reliability of ReHo, 4) a scan duration of 5 min can achieve reliable estimates of ReHo, and 5) fast sampling rates of R-fMRI dramatically increase the reliability of ReHo. Inspired by these findings and seeking a highly reliable approach to exploratory analysis of the human functional connectome, we established an R-fMRI pipeline to conduct ReHo computations in both 3-dimensions (volume) and 2-dimensions (surface). Copyright © 2012 Elsevier Inc. All rights reserved.
A phenome-wide examination of neural and cognitive function.
Poldrack, R A; Congdon, E; Triplett, W; Gorgolewski, K J; Karlsgodt, K H; Mumford, J A; Sabb, F W; Freimer, N B; London, E D; Cannon, T D; Bilder, R M
2016-12-06
This data descriptor outlines a shared neuroimaging dataset from the UCLA Consortium for Neuropsychiatric Phenomics, which focused on understanding the dimensional structure of memory and cognitive control (response inhibition) functions in both healthy individuals (130 subjects) and individuals with neuropsychiatric disorders including schizophrenia (50 subjects), bipolar disorder (49 subjects), and attention deficit/hyperactivity disorder (43 subjects). The dataset includes an extensive set of task-based fMRI assessments, resting fMRI, structural MRI, and high angular resolution diffusion MRI. The dataset is shared through the OpenfMRI project, and is formatted according to the Brain Imaging Data Structure (BIDS) standard.
Chan, Kevin C.; Fan, Shu-Juan; Chan, Russell W.; Cheng, Joe S.; Zhou, Iris Y.; Wu, Ed X.
2014-01-01
The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn2+ administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn2+ injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport after Mn2+ injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies. PMID:24394694
NEUROSARCOIDOSIS MASQUERADING AS A CENTRAL NERVOUS SYSTEM TUMOR.
Elia, Maxwell; Kombo, Ninani; Huang, John
2017-01-01
To report a case of neurosarcoidosis with an isolated brain lesion mimicking a low-grade glioma. A 38-year-old woman presented with 2 weeks of blurry vision in the left eye. Ophthalmic examination, visual field testing, fluorescein angiography, laboratory testing, and MRI of the brain were performed. Ophthalmic examination revealed left-sided optic nerve infiltration, and MRI of the brain demonstrated a solitary lesion in the brain. The visual symptoms and ophthalmic examination improved significantly with initiation of high-dose oral prednisone. Because the MRI appearance was concerning for malignancy, a brain biopsy was performed. Pathology demonstrated gliosis consistent with a low-grade central nervous system (CNS) glioma. One year later, after initial loss to ophthalmic follow-up, the right optic nerve became involved, and the patient was again treated successfully for presumed ocular sarcoidosis. At this time, serial neuroimaging demonstrated enlargement of the CNS lesion, prompting rebiopsy. Rebiopsy demonstrated a noncaseating granuloma, confirming the diagnosis of neurosarcoidosis. The patient was treated with 20 mg of methotrexate weekly and a prednisone taper with improvement in visual and neurologic symptoms. The authors present an unusual case of neurosarcoidosis masquerading as a CNS glioma. In cases of solitary CNS granulomas, radiographically differentiating neurosarcoidosis from a glioma can be challenging. In this case, serial ophthalmic examination identifying sequential involvement of both optic nerves helped to identify the underlying cause of the CNS disease as sarcoidosis.
Birkebaek, Niels Holtum; Patel, Leena; Wright, Neville Bryce; Grigg, John Russell; Sinha, Smeeta; Hall, Catherine Margaret; Price, David Anthony; Lloyd, Ian Christopher; Clayton, Peter Ellis
2004-10-01
To objectively define criteria for intracranial optic nerve (ON) size in ON hypoplasia (ONH) on magnetic resonance imaging (MRI) scans. Intracranial ON sizes from MRI were compared between 46 children with ONH diagnosed by ophthalmoscopy (group 1, isolated ONH, 8 children; and group 2, ONH associated with abnormalities of the hypothalamic-pituitary axis and septum pellucidum, 38 children) and children with multiple pituitary hormone deficiency (group 3, multiple pituitary hormone deficiency, 14 children), isolated growth hormone deficiency (group 4, isolated growth hormone deficiency, 15 children), and idiopathic short stature (group 5, idiopathic short stature, 10 children). Intracranial ON size was determined by the cross-sectional area, calculated as [pi x (1/2) height x (1/2) width]. Groups 1 and 2 had lower intracranial ON size than did groups 3, 4, and 5 (P < .001). No patients in groups 3 through 5 who had MRI after 12 months of age (when 95% adult size of ONs is attained) had ONs <2.9 mm 2 . Visual acuity correlated significantly with ON size (P < .01). Magnetic resonance imaging of the ONs with cross-sectional area <2.9 mm 2 in a short child more than 12 months of age, with or without hypothalamic-pituitary axis abnormalities, confirms the clinical diagnosis of ONH.
Clinical applications of the functional connectome
Castellanos, F. Xavier; Di Martino, Adriana; Craddock, R. Cameron; Mehta, Ashesh D.; Milham, Michael P.
2013-01-01
Central to the development of clinical applications of functional connectomics for neurology and psychiatry is the discovery and validation of biomarkers. Resting state fMRI (R-fMRI) is emerging as a mainstream approach for imaging-based biomarker identification, detecting variations in the functional connectome that can be attributed to clinical variables (e.g., diagnostic status). Despite growing enthusiasm, many challenges remain. Here, we assess evidence of the readiness of R-fMRI based functional connectomics to lead to clinically meaningful biomarker identification through the lens of the criteria used to evaluate clinical tests (i.e., validity, reliability, sensitivity, specificity, and applicability). We focus on current R-fMRI-based prediction efforts, and survey R-fMRI used for neurosurgical planning. We identify gaps and needs for R-fMRI-based biomarker identification, highlighting the potential of emerging conceptual, analytical and cultural innovations (e.g., the Research Domain Criteria Project (RDoC), open science initiatives, and Big Data) to address them. Additionally, we note the need to expand future efforts beyond identification of biomarkers for disease status alone to include clinical variables related to risk, expected treatment response and prognosis. PMID:23631991
DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI.
Chao-Gan, Yan; Yu-Feng, Zang
2010-01-01
Resting-state functional magnetic resonance imaging (fMRI) has attracted more and more attention because of its effectiveness, simplicity and non-invasiveness in exploration of the intrinsic functional architecture of the human brain. However, user-friendly toolbox for "pipeline" data analysis of resting-state fMRI is still lacking. Based on some functions in Statistical Parametric Mapping (SPM) and Resting-State fMRI Data Analysis Toolkit (REST), we have developed a MATLAB toolbox called Data Processing Assistant for Resting-State fMRI (DPARSF) for "pipeline" data analysis of resting-state fMRI. After the user arranges the Digital Imaging and Communications in Medicine (DICOM) files and click a few buttons to set parameters, DPARSF will then give all the preprocessed (slice timing, realign, normalize, smooth) data and results for functional connectivity, regional homogeneity, amplitude of low-frequency fluctuation (ALFF), and fractional ALFF. DPARSF can also create a report for excluding subjects with excessive head motion and generate a set of pictures for easily checking the effect of normalization. In addition, users can also use DPARSF to extract time courses from regions of interest.
Gulsen, Salih
2015-03-15
The first goal in neurosurgery is to protect neural function as long as it is possible. Moreover, while protecting the neural function, a neurosurgeon should extract the maximum amount of tumoral tissue from the tumour region of the brain. So neurosurgery and technological advancement go hand in hand to realize this goal. Using of CT compatible stereotaxy for removing a cranial tumour is to be commended as a cornerstone of these technological advancements. Following CT compatible stereotaxic system applications in neurosurgery, different techniques have taken place in neurosurgical practice. These techniques are magnetic resonance imaging (MRI), MRI compatible stereotaxis, frameless stereotaxy, volumetric stereotaxy, functional MRI, diffusion tensor (DT) imaging techniques (tractography of the white matter), intraoperative MRI and neuronavigation systems. However, to use all of this equipment having these technologies would be impossible because of economic reasons. However, when we correlated this technique with MRI scans of the patients with CT compatible stereotaxy scans, it is possible to provide gross total resection and protect and improve patients' neural functions.
A new vibrator to stimulate muscle proprioceptors in fMRI.
Montant, Marie; Romaiguère, Patricia; Roll, Jean-Pierre
2009-03-01
Studying cognitive brain functions by functional magnetic resonance imaging (fMRI) requires appropriate stimulation devices that do not interfere with the magnetic fields. Since the emergence of fMRI in the 90s, a number of stimulation devices have been developed for the visual and auditory modalities. Only few devices, however, have been developed for the somesthesic modality. Here, we present a vibration device for studying somesthesia that is compatible with high magnetic field environments and that can be used in fMRI machines. This device consists of a poly vinyl chloride (PVC) vibrator containing a wind turbine and of a pneumatic apparatus that controls 1-6 vibrators simultaneously. Just like classical electromagnetic vibrators, our device stimulates muscle mechanoreceptors (muscle spindles) and generates reliable illusions of movement. We provide the fMRI compatibility data (phantom test), the calibration curve (vibration frequency as a function of air flow), as well as the results of a kinesthetic test (perceived speed of the illusory movement as a function of vibration frequency). This device was used successfully in several brain imaging studies using both fMRI and magnetoencephalography.
Analyzing and Assessing Brain Structure with Graph Connectivity Measures
2014-05-09
structural brain networks, i.e. determining which regions of the brain are physically connected. Meanwhile, functional MRI ( fMRI ) yields an image of...produced by fMRI is a map of which parts are of the brain are active and which are not at a given time. In creating functional networks, regions of...the brain which often activitate together, i.e., often show up on fMRI as deoxygenated regions together, are considered connected. DTI allows the
Defining Functional Areas in Individual Human Brains using Resting Functional Connectivity MRI
Cohen, Alexander L.; Fair, Damien A.; Dosenbach, Nico U.F.; Miezin, Francis M.; Dierker, Donna; Van Essen, David C.; Schlaggar, Bradley L.; Petersen, Steven E.
2009-01-01
The cerebral cortex is anatomically organized at many physical scales starting at the level of single neurons and extending up to functional systems. Current functional magnetic resonance imaging (fMRI) studies often focus at the level of areas, networks, and systems. Except in restricted domains, (e.g. topographically-organized sensory regions), it is difficult to determine area boundaries in the human brain using fMRI. The ability to delineate functional areas non-invasively would enhance the quality of many experimental analyses allowing more accurate across-subject comparisons of independently identified functional areas. Correlations in spontaneous BOLD activity, often referred to as resting state functional connectivity (rs-fcMRI), are especially promising as a way to accurately localize differences in patterns of correlated activity across large expanses of cortex. In the current report, we applied a novel set of image analysis tools to explore the utility of rs-fcMRI for defining wide-ranging functional area boundaries. We find that rs-fcMRI patterns show sharp transitions in correlation patterns and that these putative areal boundaries can be reliably detected in individual subjects as well as in group data. Additionally, combining surface-based analysis techniques with image processing algorithms allows automated mapping of putative areal boundaries across large expanses of cortex without the need for prior information about a region’s function or topography. Our approach reliably produces maps of bounded regions appropriate in size and number for putative functional areas. These findings will hopefully stimulate further methodological refinements and validations. PMID:18367410
Oligoclonal bands predict multiple sclerosis in children with optic neuritis.
Heussinger, Nicole; Kontopantelis, Evangelos; Gburek-Augustat, Janina; Jenke, Andreas; Vollrath, Gesa; Korinthenberg, Rudolf; Hofstetter, Peter; Meyer, Sascha; Brecht, Isabel; Kornek, Barbara; Herkenrath, Peter; Schimmel, Mareike; Wenner, Kirsten; Häusler, Martin; Lutz, Soeren; Karenfort, Michael; Blaschek, Astrid; Smitka, Martin; Karch, Stephanie; Piepkorn, Martin; Rostasy, Kevin; Lücke, Thomas; Weber, Peter; Trollmann, Regina; Klepper, Jörg; Häussler, Martin; Hofmann, Regina; Weissert, Robert; Merkenschlager, Andreas; Buttmann, Mathias
2015-06-01
We retrospectively evaluated predictors of conversion to multiple sclerosis (MS) in 357 children with isolated optic neuritis (ON) as a first demyelinating event who had a median follow-up of 4.0 years. Multiple Cox proportional-hazards regressions revealed abnormal cranial magnet resonance imaging (cMRI; hazard ratio [HR] = 5.94, 95% confidence interval [CI] = 3.39-10.39, p < 0.001), presence of cerebrospinal fluid immunoglobulin G oligoclonal bands (OCB; HR = 3.69, 95% CI = 2.32-5.86, p < 0.001), and age (HR = 1.08 per year of age, 95% CI = 1.02-1.13, p = 0.003) as independent predictors of conversion, whereas sex and laterality (unilateral vs bilateral) had no influence. Combined cMRI and OCB positivity indicated a 26.84-fold higher HR for developing MS compared to double negativity (95% CI = 12.26-58.74, p < 0.001). Accordingly, cerebrospinal fluid analysis may supplement cMRI to determine the risk of MS in children with isolated ON. © 2015 American Neurological Association.
Tractography optimization using quantitative T1 mapping in the human optic radiation.
Schurr, Roey; Duan, Yiran; Norcia, Anthony M; Ogawa, Shumpei; Yeatman, Jason D; Mezer, Aviv A
2018-06-21
Diffusion MRI tractography is essential for reconstructing white-matter projections in the living human brain. Yet tractography results miss some projections and falsely identify others. A challenging example is the optic radiation (OR) that connects the thalamus and the primary visual cortex. Here, we tested whether OR tractography can be optimized using quantitative T1 mapping. Based on histology, we proposed that myelin-sensitive T1 values along the OR should remain consistently low compared with adjacent white matter. We found that complementary information from the T1 map allows for increasing the specificity of the reconstructed OR tract by eliminating falsely identified projections. This T1-filtering outperforms other, diffusion-based tractography filters. These results provide evidence that the smooth microstructural signature along the tract can be used as constructive input for tractography. Finally, we demonstrate that this approach can be generalized to the HCP-available MRI measurements. We conclude that multimodal MRI microstructural information can be used to eliminate spurious tractography results in the case of the OR. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Castonguay, Alexandre; Lefebvre, Joël; Pouliot, Philippe; Lesage, Frédéric
2018-01-01
An automated serial histology setup combining optical coherence tomography (OCT) imaging with vibratome sectioning was used to image eight wild type mouse brains. The datasets resulted in thousands of volumetric tiles resolved at a voxel size of (4.9×4.9×6.5) μm3 stitched back together to give a three-dimensional map of the brain from which a template OCT brain was obtained. To assess deformation caused by tissue sectioning, reconstruction algorithms, and fixation, OCT datasets were compared to both in vivo and ex vivo magnetic resonance imaging (MRI) imaging. The OCT brain template yielded a highly detailed map of the brain structure, with a high contrast in white matter fiber bundles and was highly resemblant to the in vivo MRI template. Brain labeling using the Allen brain framework showed little variation in regional brain volume among imaging modalities with no statistical differences. The high correspondence between the OCT template brain and its in vivo counterpart demonstrates the potential of whole brain histology to validate in vivo imaging.
Evaluation of MRI issues for an access port with a radiofrequency identification (RFID) tag.
Titterington, Blake; Shellock, Frank G
2013-10-01
A medical implant that contains metal, such as an RFID tag, must undergo proper MRI testing to ensure patient safety and to determine that the function of the RFID tag is not compromised by exposure to MRI conditions. Therefore, the objective of this investigation was to assess MRI issues for a new access port that incorporates an RFID tag. Samples of the access port with an RFID tag (Medcomp Power Injectable Port with CertainID; Medcomp, Harleysville, PA) were evaluated using standard protocols to assess magnetic field interactions (translational attraction and torque; 3-T), MRI-related heating (3-T), artifacts (3-T), and functional changes associated with different MRI conditions (nine samples, exposed to different MRI conditions at 1.5-T and 3-T). Magnetic field interactions were not substantial and will pose no hazards to patients. MRI-related heating was minimal (highest temperature change, 1.7°C; background temperature rise, 1.6°C). Artifacts were moderate in size in relation to the device. Exposures to MRI conditions at 1.5-T and 3-T did not alter or damage the functional aspects of the RFID tag. Based on the findings of the test, this new access port with an RFID tag is acceptable (or, MR conditional, using current MRI labeling terminology) for patients undergoing MRI examinations at 1.5-T/64-MHz and 3-T/128-MHz. Copyright © 2013 Elsevier Inc. All rights reserved.
State-space model with deep learning for functional dynamics estimation in resting-state fMRI.
Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang
2016-04-01
Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. Copyright © 2016 Elsevier Inc. All rights reserved.
State-space model with deep learning for functional dynamics estimation in resting-state fMRI
Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang
2017-01-01
Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. PMID:26774612
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudino, N., E-mail: natalia.gudino@nih.gov; Sonmez, M.; Nielles-Vallespin, S.
2015-01-15
Purpose: To provide a rapid method to reduce the radiofrequency (RF) E-field coupling and consequent heating in long conductors in an interventional MRI (iMRI) setup. Methods: A driving function for device heating (W) was defined as the integration of the E-field along the direction of the wire and calculated through a quasistatic approximation. Based on this function, the phases of four independently controlled transmit channels were dynamically changed in a 1.5 T MRI scanner. During the different excitation configurations, the RF induced heating in a nitinol wire immersed in a saline phantom was measured by fiber-optic temperature sensing. Additionally, amore » minimization of W as a function of phase and amplitude values of the different channels and constrained by the homogeneity of the RF excitation field (B{sub 1}) over a region of interest was proposed and its results tested on the benchtop. To analyze the validity of the proposed method, using a model of the array and phantom setup tested in the scanner, RF fields and SAR maps were calculated through finite-difference time-domain (FDTD) simulations. In addition to phantom experiments, RF induced heating of an active guidewire inserted in a swine was also evaluated. Results: In the phantom experiment, heating at the tip of the device was reduced by 92% when replacing the body coil by an optimized parallel transmit excitation with same nominal flip angle. In the benchtop, up to 90% heating reduction was measured when implementing the constrained minimization algorithm with the additional degree of freedom given by independent amplitude control. The computation of the optimum phase and amplitude values was executed in just 12 s using a standard CPU. The results of the FDTD simulations showed similar trend of the local SAR at the tip of the wire and measured temperature as well as to a quadratic function of W, confirming the validity of the quasistatic approach for the presented problem at 64 MHz. Imaging and heating reduction of the guidewire were successfully performed in vivo with the proposed hardware and phase control. Conclusions: Phantom and in vivo data demonstrated that additional degrees of freedom in a parallel transmission system can be used to control RF induced heating in long conductors. A novel constrained optimization approach to reduce device heating was also presented that can be run in just few seconds and therefore could be added to an iMRI protocol to improve RF safety.« less
Functional MRI detects perfusion impairment in renal allografts with delayed graft function.
Hueper, Katja; Gueler, Faikah; Bräsen, Jan Hinrich; Gutberlet, Marcel; Jang, Mi-Sun; Lehner, Frank; Richter, Nicolas; Hanke, Nils; Peperhove, Matti; Martirosian, Petros; Tewes, Susanne; Vo Chieu, Van Dai; Großhennig, Anika; Haller, Hermann; Wacker, Frank; Gwinner, Wilfried; Hartung, Dagmar
2015-06-15
Delayed graft function (DGF) after kidney transplantation is not uncommon, and it is associated with long-term allograft impairment. Our aim was to compare renal perfusion changes measured with noninvasive functional MRI in patients early after kidney transplantation to renal function and allograft histology in biopsy samples. Forty-six patients underwent MRI 4-11 days after transplantation. Contrast-free MRI renal perfusion images were acquired using an arterial spin labeling technique. Renal function was assessed by estimated glomerular filtration rate (eGFR), and renal biopsies were performed when indicated within 5 days of MRI. Twenty-six of 46 patients had DGF. Of these, nine patients had acute rejection (including borderline), and eight had other changes (e.g., tubular injury or glomerulosclerosis). Renal perfusion was significantly lower in the DGF group compared with the group with good allograft function (231 ± 15 vs. 331 ± 15 ml·min(-1)·100 g(-1), P < 0.001). Living donor allografts exhibited significantly higher perfusion values compared with deceased donor allografts (P < 0.001). Renal perfusion significantly correlated with eGFR (r = 0.64, P < 0.001), resistance index (r = -0.57, P < 0.001), and cold ischemia time (r = -0.48, P < 0.01). Furthermore, renal perfusion impairment early after transplantation predicted inferior renal outcome and graft loss. In conclusion, noninvasive functional MRI detects renal perfusion impairment early after kidney transplantation in patients with DGF. Copyright © 2015 the American Physiological Society.
Connectivity changes after laser ablation: Resting-state fMRI.
Boerwinkle, Varina L; Vedantam, Aditya; Lam, Sandi; Wilfong, Angus A; Curry, Daniel J
2018-05-01
Resting-state functional magnetic resonance imaging (rsfMRI) is emerging as a useful tool in the multimodal assessment of patients with epilepsy. In pediatric patients who cannot perform task-based fMRI, rsfMRI may present an adjunct and alternative. Although changes in brain activation during task-based fMRI have been described after surgery for epilepsy, there is limited data on the role of postoperative rsfMRI. In this short review, we discuss the role of postoperative rsfMRI after laser ablation of seizure foci. By establishing standardized anesthesia protocols and imaging parameters, we have been able to perform serial rsfMRI at postoperative follow-up. The development of in-house software that can merge rsfMRI images to surgical navigation systems has allowed us to enhance the clinical applications of this technique. Resting-state fMRI after laser ablation has the potential to identify changes in connectivity, localize new seizure foci, and guide antiepileptic therapy. In our experience, rsfMRI complements conventional MR imaging and task-based fMRI for the evaluation of patients with seizure recurrence after laser ablation, and represents a potential noninvasive biomarker for functional connectivity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Mathew, Lindsay; Wheatley, Andrew; Castillo, Richard; Castillo, Edward; Rodrigues, George; Guerrero, Thomas; Parraga, Grace
2012-12-01
Pulmonary functional imaging using four-dimensional x-ray computed tomographic (4DCT) imaging and hyperpolarized (3)He magnetic resonance imaging (MRI) provides regional lung function estimates in patients with lung cancer in whom pulmonary function measurements are typically dominated by tumor burden. The aim of this study was to evaluate the quantitative spatial relationship between 4DCT and hyperpolarized (3)He MRI ventilation maps. Eleven patients with lung cancer provided written informed consent to 4DCT imaging and MRI performed within 11 ± 14 days. Hyperpolarized (3)He MRI was acquired in breath-hold after inhalation from functional residual capacity of 1 L hyperpolarized (3)He, whereas 4DCT imaging was acquired over a single tidal breath of room air. For hyperpolarized (3)He MRI, the percentage ventilated volume was generated using semiautomated segmentation; for 4DCT imaging, pulmonary function maps were generated using the correspondence between identical tissue elements at inspiratory and expiratory phases to generate percentage ventilated volume. After accounting for differences in image acquisition lung volumes ((3)He MRI: 1.9 ± 0.5 L ipsilateral, 2.3 ± 0.7 L contralateral; 4DCT imaging: 1.2 ± 0.3 L ipsilateral, 1.3 ± 0.4 L contralateral), there was no significant difference in percentage ventilated volume between hyperpolarized (3)He MRI (72 ± 11% ipsilateral, 79 ± 12% contralateral) and 4DCT imaging (74 ± 3% ipsilateral, 75 ± 4% contralateral). Spatial correspondence between 4DCT and (3)He MRI ventilation was evaluated using the Dice similarity coefficient index (ipsilateral, 86 ± 12%; contralateral, 88 ± 12%). Despite rather large differences in image acquisition breathing maneuvers, good spatial and significant quantitative agreement was observed for ventilation maps on hyperpolarized (3)He MRI and 4DCT imaging, suggesting that pulmonary regions with good lung function are similar between modalities in this small group of patients with lung cancer. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.
Tracking brain arousal fluctuations with fMRI
Chang, Catie; Leopold, David A.; Schölvinck, Marieke Louise; Mandelkow, Hendrik; Picchioni, Dante; Liu, Xiao; Ye, Frank Q.; Turchi, Janita N.; Duyn, Jeff H.
2016-01-01
Changes in brain activity accompanying shifts in vigilance and arousal can interfere with the study of other intrinsic and task-evoked characteristics of brain function. However, the difficulty of tracking and modeling the arousal state during functional MRI (fMRI) typically precludes the assessment of arousal-dependent influences on fMRI signals. Here we combine fMRI, electrophysiology, and the monitoring of eyelid behavior to demonstrate an approach for tracking continuous variations in arousal level from fMRI data. We first characterize the spatial distribution of fMRI signal fluctuations that track a measure of behavioral arousal; taking this pattern as a template, and using the local field potential as a simultaneous and independent measure of cortical activity, we observe that the time-varying expression level of this template in fMRI data provides a close approximation of electrophysiological arousal. We discuss the potential benefit of these findings for increasing the sensitivity of fMRI as a cognitive and clinical biomarker. PMID:27051064
Joint brain connectivity estimation from diffusion and functional MRI data
NASA Astrophysics Data System (ADS)
Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.
2015-03-01
Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information flow is introduced and used to model the propagation of information between GM areas through WM fiber bundles. The link capacity, i.e., ability to transfer information, is characterized by the relative strength of fiber bundles, e.g., fiber count gathered from the tractography of dMRI data. The node information demand is considered to be proportional to the correlation between neural activity at various cortical areas involved in a particular functional mode (e.g. visual, motor, etc.). These two properties lead to the link capacity and node demand constraints in the proposed model. Moreover, the information flow of a link cannot exceed the demand from either end node. This is captured by the feasibility constraints. Two different cost functions are considered in the optimization formulation in this paper. The first cost function, the reciprocal of fiber strength represents the unit cost for information passing through the link. In the second cost function, a min-max (minimizing the maximal link load) approach is used to balance the usage of each link. Optimizing the first cost function selects the pathway with strongest fiber strength for information propagation. In the second case, the optimization procedure finds all the possible propagation pathways and allocates the flow proportionally to their strength. Additionally, a penalty term is incorporated with both the cost functions to capture the possible missing and weak anatomical connections. With this set of constraints and the proposed cost functions, solving the network optimization problem recovers missing and weak anatomical connections supported by the functional information and provides the functional-associated anatomical subnetworks. Feasibility is demonstrated using realistic diffusion and functional MRI phantom data. It is shown that the proposed model recovers the maximum number of true connections, with fewest number of false connections when compared with the connectivity derived from a joint probabilistic model using the expectation-maximization (EM) algorithm presented in a prior work. We also apply the proposed method to data provided by the Human Connectome Project (HCP).
There may be more to reaching than meets the eye: re-thinking optic ataxia.
Jackson, Stephen R; Newport, Roger; Husain, Masud; Fowlie, Jane E; O'Donoghue, Michael; Bajaj, Nin
2009-05-01
Optic ataxia (OA) is generally thought of as a disorder of visually guided reaching movements that cannot be explained by any simple deficit in visual or motor processing. In this paper we offer a new perspective on optic ataxia; we argue that the popular characterisation of this disorder is misleading and is unrepresentative of the pattern of reaching errors typically observed in OA patients. We begin our paper by reviewing recent neurophysiological, neuropsychological, and functional brain imaging studies that have led to the proposal that the medial parietal cortex in the vicinity of the parietal-occipital junction (POJ) - the key anatomical site associated with OA - represents reaching movements in eye-centred coordinates, and that this ability is impaired in optic ataxia. Our perspective stresses the importance of the POJ and superior parietal regions of the human PPC for representing reaching movements in both extrinsic (eye-centred) and intrinsic (postural) coordinates, and proposes that it is the ability to simultaneously represent multiple spatial locations that must be directly compared with one another that is impaired in non-foveal OA patients. In support of this idea we review recent fMRI and behavioural studies conducted by our group that have investigated the anatomical correlates of posturally guided movements, and the movements guided by postural cues in patients presenting with optic ataxia.
NASA Astrophysics Data System (ADS)
Cook, Jason R.; Dumani, Diego S.; Kubelick, Kelsey P.; Luci, Jeffrey; Emelianov, Stanislav Y.
2017-03-01
Imaging modalities utilize contrast agents to improve morphological visualization and to assess functional and molecular/cellular information. Here we present a new type of nanometer scale multi-functional particle that can be used for multi-modal imaging and therapeutic applications. Specifically, we synthesized monodisperse 20 nm Prussian Blue Nanocubes (PBNCs) with desired optical absorption in the near-infrared region and superparamagnetic properties. PBNCs showed excellent contrast in photoacoustic (700 nm wavelength) and MR (3T) imaging. Furthermore, photostability was assessed by exposing the PBNCs to nearly 1,000 laser pulses (5 ns pulse width) with up to 30 mJ/cm2 laser fluences. The PBNCs exhibited insignificant changes in photoacoustic signal, demonstrating enhanced robustness compared to the commonly used gold nanorods (substantial photodegradation with fluences greater than 5 mJ/cm2). Furthermore, the PBNCs exhibited superparamagnetism with a magnetic saturation of 105 emu/g, a 5x improvement over superparamagnetic iron-oxide (SPIO) nanoparticles. PBNCs exhibited enhanced T2 contrast measured using 3T clinical MRI. Because of the excellent optical absorption and magnetism, PBNCs have potential uses in other imaging modalities including optical tomography, microscopy, magneto-motive OCT/ultrasound, etc. In addition to multi-modal imaging, the PBNCs are multi-functional and, for example, can be used to enhance magnetic delivery and as therapeutic agents. Our initial studies show that stem cells can be labeled with PBNCs to perform image-guided magnetic delivery. Overall, PBNCs can act as imaging/therapeutic agents in diverse applications including cancer, cardiovascular disease, ophthalmology, and tissue engineering. Furthermore, PBNCs are based on FDA approved Prussian Blue thus potentially easing clinical translation of PBNCs.
Optimizing real time fMRI neurofeedback for therapeutic discovery and development
Stoeckel, L.E.; Garrison, K.A.; Ghosh, S.; Wighton, P.; Hanlon, C.A.; Gilman, J.M.; Greer, S.; Turk-Browne, N.B.; deBettencourt, M.T.; Scheinost, D.; Craddock, C.; Thompson, T.; Calderon, V.; Bauer, C.C.; George, M.; Breiter, H.C.; Whitfield-Gabrieli, S.; Gabrieli, J.D.; LaConte, S.M.; Hirshberg, L.; Brewer, J.A.; Hampson, M.; Van Der Kouwe, A.; Mackey, S.; Evins, A.E.
2014-01-01
While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain–behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders. PMID:25161891
Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.
Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G
1999-01-01
The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.
Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands.
Deligianni, Fani; Centeno, Maria; Carmichael, David W; Clayden, Jonathan D
2014-01-01
Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity.
Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands
Deligianni, Fani; Centeno, Maria; Carmichael, David W.; Clayden, Jonathan D.
2014-01-01
Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity. PMID:25221467
Bulgarelli, Chiara; Blasi, Anna; Arridge, Simon; Powell, Samuel; de Klerk, Carina C J M; Southgate, Victoria; Brigadoi, Sabrina; Penny, William; Tak, Sungho; Hamilton, Antonia
2018-04-12
Tracking the connectivity of the developing brain from infancy through childhood is an area of increasing research interest, and fNIRS provides an ideal method for studying the infant brain as it is compact, safe and robust to motion. However, data analysis methods for fNIRS are still underdeveloped compared to those available for fMRI. Dynamic causal modelling (DCM) is an advanced connectivity technique developed for fMRI data, that aims to estimate the coupling between brain regions and how this might be modulated by changes in experimental conditions. DCM has recently been applied to adult fNIRS, but not to infants. The present paper provides a proof-of-principle for the application of this method to infant fNIRS data and a demonstration of the robustness of this method using a simultaneously recorded fMRI-fNIRS single case study, thereby allowing the use of this technique in future infant studies. fMRI and fNIRS were simultaneously recorded from a 6-month-old sleeping infant, who was presented with auditory stimuli in a block design. Both fMRI and fNIRS data were preprocessed using SPM, and analysed using a general linear model approach. The main challenges that adapting DCM for fNIRS infant data posed included: (i) the import of the structural image of the participant for spatial pre-processing, (ii) the spatial registration of the optodes on the structural image of the infant, (iii) calculation of an accurate 3-layer segmentation of the structural image, (iv) creation of a high-density mesh as well as (v) the estimation of the NIRS optical sensitivity functions. To assess our results, we compared the values obtained for variational Free Energy (F), Bayesian Model Selection (BMS) and Bayesian Model Average (BMA) with the same set of possible models applied to both the fMRI and fNIRS datasets. We found high correspondence in F, BMS, and BMA between fMRI and fNIRS data, therefore showing for the first time high reliability of DCM applied to infant fNIRS data. This work opens new avenues for future research on effective connectivity in infancy by contributing a data analysis pipeline and guidance for applying DCM to infant fNIRS data. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Magnetic resonance imaging with an optical atomic magnetometer
Xu, Shoujun; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Rochester, Simon M.; Budker, Dmitry; Pines, Alexander
2006-01-01
We report an approach for the detection of magnetic resonance imaging without superconducting magnets and cryogenics: optical atomic magnetometry. This technique possesses a high sensitivity independent of the strength of the static magnetic field, extending the applicability of magnetic resonance imaging to low magnetic fields and eliminating imaging artifacts associated with high fields. By coupling with a remote-detection scheme, thereby improving the filling factor of the sample, we obtained time-resolved flow images of water with a temporal resolution of 0.1 s and spatial resolutions of 1.6 mm perpendicular to the flow and 4.5 mm along the flow. Potentially inexpensive, compact, and mobile, our technique provides a viable alternative for MRI detection with substantially enhanced sensitivity and time resolution for various situations where traditional MRI is not optimal. PMID:16885210
Coupling reconstruction and motion estimation for dynamic MRI through optical flow constraint
NASA Astrophysics Data System (ADS)
Zhao, Ningning; O'Connor, Daniel; Gu, Wenbo; Ruan, Dan; Basarab, Adrian; Sheng, Ke
2018-03-01
This paper addresses the problem of dynamic magnetic resonance image (DMRI) reconstruction and motion estimation jointly. Because of the inherent anatomical movements in DMRI acquisition, reconstruction of DMRI using motion estimation/compensation (ME/MC) has been explored under the compressed sensing (CS) scheme. In this paper, by embedding the intensity based optical flow (OF) constraint into the traditional CS scheme, we are able to couple the DMRI reconstruction and motion vector estimation. Moreover, the OF constraint is employed in a specific coarse resolution scale in order to reduce the computational complexity. The resulting optimization problem is then solved using a primal-dual algorithm due to its efficiency when dealing with nondifferentiable problems. Experiments on highly accelerated dynamic cardiac MRI with multiple receiver coils validate the performance of the proposed algorithm.
MRI tools for assessment of microstructure and nephron function of the kidney.
Xie, Luke; Bennett, Kevin M; Liu, Chunlei; Johnson, G Allan; Zhang, Jeff Lei; Lee, Vivian S
2016-12-01
MRI can provide excellent detail of renal structure and function. Recently, novel MR contrast mechanisms and imaging tools have been developed to evaluate microscopic kidney structures including the tubules and glomeruli. Quantitative MRI can assess local tubular function and is able to determine the concentrating mechanism of the kidney noninvasively in real time. Measuring single nephron function is now a near possibility. In parallel to advancing imaging techniques for kidney microstructure is a need to carefully understand the relationship between the local source of MRI contrast and the underlying physiological change. The development of these imaging markers can impact the accurate diagnosis and treatment of kidney disease. This study reviews the novel tools to examine kidney microstructure and local function and demonstrates the application of these methods in renal pathophysiology. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Li, Tianmeng; Hui, Hui; Ma, He; Yang, Xin; Tian, Jie
2018-02-01
Non-invasive imaging technologies, such as magnetic resonance imaging (MRI) and optical multimodality imaging methods, are commonly used for diagnosing and supervising the development of inflammatory bowel disease (IBD). These in vivo imaging methods can provide morphology changes information of IBD in macro-scale. However, it is difficult to investigate the intestinal wall in molecular and cellular level. State-of-art light-sheet and two-photon microscopy have the ability to acquire the changes for IBD in micro-scale. The aim of this work is to evaluate the size of the enterocoel and the thickness of colon wall using both MRI for in vivo imaging, and light-sheet and two-photon microscope for in vitro imaging. C57BL/6 mice were received 3.5% Dextran sodium sulfate (DSS) in the drinking water for 5 days to build IBD model. Mice were imaged with MRI on days 0, 6 to observe colitis progression. After MRI imaging, the mice were sacrificed to take colons for tissue clearing. Then, light-sheet and two-photon microscopies are used for in vitro imaging of the cleared samples. The experimental group showed symptoms of bloody stools, sluggishness and weight loss. It showed that the colon wall was thicker while the enterocoel was narrower compare to control group. The more details are observed using light-sheet and two-photon microscope. It is demonstrated that hybrid of MRI in macro-scale and light-sheet and two-photon microscopy in micro-scale imaging is feasible for colon inflammation diagnosing and supervising.
Advanced magnetic resonance imaging of neurodegenerative diseases.
Agosta, Federica; Galantucci, Sebastiano; Filippi, Massimo
2017-01-01
Magnetic resonance imaging (MRI) is playing an increasingly important role in the study of neurodegenerative diseases, delineating the structural and functional alterations determined by these conditions. Advanced MRI techniques are of special interest for their potential to characterize the signature of each neurodegenerative condition and aid both the diagnostic process and the monitoring of disease progression. This aspect will become crucial when disease-modifying (personalized) therapies will be established. MRI techniques are very diverse and go from the visual inspection of MRI scans to more complex approaches, such as manual and automatic volume measurements, diffusion tensor MRI, and functional MRI. All these techniques allow us to investigate the different features of neurodegeneration. In this review, we summarize the most recent advances concerning the use of MRI in some of the most important neurodegenerative conditions, putting an emphasis on the advanced techniques.
Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications
NASA Astrophysics Data System (ADS)
Hughes-Riley, Theodore; Six, Joseph S.; Lilburn, David M. L.; Stupic, Karl F.; Dorkes, Alan C.; Shaw, Dominick E.; Pavlovskaya, Galina E.; Meersmann, Thomas
2013-12-01
As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp 129Xe or hp 83Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp 129Xe handling, while 83Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The 83Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of 129Xe in corresponding mixtures. The experimental setup also facilitated 129Xe T1 relaxation measurements as a function of O2 concentration within excised lungs.
Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications☆
Hughes-Riley, Theodore; Six, Joseph S.; Lilburn, David M.L.; Stupic, Karl F.; Dorkes, Alan C.; Shaw, Dominick E.; Pavlovskaya, Galina E.; Meersmann, Thomas
2013-01-01
As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp 129Xe or hp 83Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp 129Xe handling, while 83Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The 83Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of 129Xe in corresponding mixtures. The experimental setup also facilitated 129Xe T1 relaxation measurements as a function of O2 concentration within excised lungs. PMID:24135800
Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications.
Hughes-Riley, Theodore; Six, Joseph S; Lilburn, David M L; Stupic, Karl F; Dorkes, Alan C; Shaw, Dominick E; Pavlovskaya, Galina E; Meersmann, Thomas
2013-12-01
As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp (129)Xe or hp (83)Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp (129)Xe handling, while (83)Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The (83)Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of (129)Xe in corresponding mixtures. The experimental setup also facilitated (129)Xe T1 relaxation measurements as a function of O2 concentration within excised lungs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Haeussinger, F B; Dresler, T; Heinzel, S; Schecklmann, M; Fallgatter, A J; Ehlis, A-C
2014-07-15
Functional near-infrared spectroscopy (fNIRS) is an optical neuroimaging method that detects temporal concentration changes of oxygenated and deoxygenated hemoglobin within the cortex, so that neural activation can be inferred. However, even though fNIRS is a very practical and well-tolerated method with several advantages particularly in methodically challenging measurement situations (e.g., during tasks involving movement or open speech), it has been shown to be confounded by systemic compounds of non-cerebral, extra-cranial origin (e.g. changes in blood pressure, heart rate). Especially event-related signal patterns induced by dilation or constriction of superficial forehead and temple veins impair the detection of frontal brain activation elicited by cognitive tasks. To further investigate this phenomenon, we conducted a simultaneous fNIRS-fMRI study applying a working memory paradigm (n-back). Extra-cranial signals were obtained by extracting the BOLD signal from fMRI voxels within the skin. To develop a filter method that corrects for extra-cranial skin blood flow, particularly intended for fNIRS data sets recorded by widely used continuous wave systems with fixed optode distances, we identified channels over the forehead with probable major extra-cranial signal contributions. The averaged signal from these channels was then subtracted from all fNIRS channels of the probe set. Additionally, the data were corrected for motion and non-evoked systemic artifacts. Applying these filters, we can show that measuring brain activation in frontal brain areas with fNIRS was substantially improved. The resulting signal resembled the fMRI parameters more closely than before the correction. Future fNIRS studies measuring functional brain activation in the forehead region need to consider the use of different filter options to correct for interfering extra-cranial signals. Copyright © 2014 Elsevier Inc. All rights reserved.
Hypercapnic evaluation of vascular reactivity in healthy aging and acute stroke via functional MRI.
Raut, Ryan V; Nair, Veena A; Sattin, Justin A; Prabhakaran, Vivek
2016-01-01
Functional MRI (fMRI) is well-established for the study of brain function in healthy populations, although its clinical application has proven more challenging. Specifically, cerebrovascular reactivity (CVR), which allows the assessment of the vascular response that serves as the basis for fMRI, has been shown to be reduced in healthy aging as well as in a range of diseases, including chronic stroke. However, the timing of when this occurs relative to the stroke event is unclear. We used a breath-hold fMRI task to evaluate CVR across gray matter in a group of acute stroke patients (< 10 days from stroke; N = 22) to address this question. These estimates were compared with those from both age-matched (N = 22) and younger (N = 22) healthy controls. As expected, young controls had the greatest mean CVR, as indicated by magnitude and extent of fMRI activation; however, stroke patients did not differ from age-matched controls. Moreover, the ipsilesional and contralesional hemispheres of stroke patients did not differ with respect to any of these measures. These findings suggest that fMRI remains a valid tool within the first few days of a stroke, particularly for group fMRI studies in which findings are compared with healthy subjects of similar age. However, given the relatively high variability in CVR observed in our stroke sample, caution is warranted when interpreting fMRI data from individual patients or a small cohort. We conclude that a breath-hold task can be a useful addition to functional imaging protocols for stroke patients.
Biology and therapy of fibromyalgia. Functional magnetic resonance imaging findings in fibromyalgia
Williams, David A; Gracely, Richard H
2006-01-01
Techniques in neuroimaging such as functional magnetic resonance imaging (fMRI) have helped to provide insights into the role of supraspinal mechanisms in pain perception. This review focuses on studies that have applied fMRI in an attempt to gain a better understanding of the mechanisms involved in the processing of pain associated with fibromyalgia. This article provides an overview of the nociceptive system as it functions normally, reviews functional brain imaging methods, and integrates the existing literature utilizing fMRI to study central pain mechanisms in fibromyalgia. PMID:17254318
Evidence for Functional Networks within the Human Brain's White Matter.
Peer, Michael; Nitzan, Mor; Bick, Atira S; Levin, Netta; Arzy, Shahar
2017-07-05
Investigation of the functional macro-scale organization of the human cortex is fundamental in modern neuroscience. Although numerous studies have identified networks of interacting functional modules in the gray-matter, limited research was directed to the functional organization of the white-matter. Recent studies have demonstrated that the white-matter exhibits blood oxygen level-dependent signal fluctuations similar to those of the gray-matter. Here we used these signal fluctuations to investigate whether the white-matter is organized as functional networks by applying a clustering analysis on resting-state functional MRI (RSfMRI) data from white-matter voxels, in 176 subjects (of both sexes). This analysis indicated the existence of 12 symmetrical white-matter functional networks, corresponding to combinations of white-matter tracts identified by diffusion tensor imaging. Six of the networks included interhemispheric commissural bridges traversing the corpus callosum. Signals in white-matter networks correlated with signals from functional gray-matter networks, providing missing knowledge on how these distributed networks communicate across large distances. These findings were replicated in an independent subject group and were corroborated by seed-based analysis in small groups and individual subjects. The identified white-matter functional atlases and analysis codes are available at http://mind.huji.ac.il/white-matter.aspx Our results demonstrate that the white-matter manifests an intrinsic functional organization as interacting networks of functional modules, similarly to the gray-matter, which can be investigated using RSfMRI. The discovery of functional networks within the white-matter may open new avenues of research in cognitive neuroscience and clinical neuropsychiatry. SIGNIFICANCE STATEMENT In recent years, functional MRI (fMRI) has revolutionized all fields of neuroscience, enabling identifications of functional modules and networks in the human brain. However, most fMRI studies ignored a major part of the brain, the white-matter, discarding signals from it as arising from noise. Here we use resting-state fMRI data from 176 subjects to show that signals from the human white-matter contain meaningful information. We identify 12 functional networks composed of interacting long-distance white-matter tracts. Moreover, we show that these networks are highly correlated to resting-state gray-matter networks, highlighting their functional role. Our findings enable reinterpretation of many existing fMRI datasets, and suggest a new way to explore the white-matter role in cognition and its disturbances in neuropsychiatric disorders. Copyright © 2017 the authors 0270-6474/17/376394-14$15.00/0.
NASA Astrophysics Data System (ADS)
Kinkingnehun, Serge R. J.; du Boisgueheneuc, Foucaud; Golmard, Jean-Louis; Zhang, Sandy X.; Levy, Richard; Dubois, Bruno
2004-04-01
We have developed a new technique to analyze correlations between brain anatomy and its neurological functions. The technique is based on the anatomic MRI of patients with brain lesions who are administered neuropsychological tests. Brain lesions of the MRI scans are first manually segmented. The MRI volumes are then normalized to a reference map, using the segmented area as a mask. After normalization, the brain lesions of the MRI are segmented again in order to redefine the border of the lesions in the context of the normalized brain. Once the MRI is segmented, the patient's score on the neuropsychological test is assigned to each voxel in the lesioned area, while the rest of the voxels of the image are set to 0. Subsequently, the individual patient's MRI images are superimposed, and each voxel is reassigned the average score of the patients who have a lesion at that voxel. A threshold is applied to remove regions having less than three overlaps. This process leads to an anatomo-functional map that links brain areas to functional loss. Other maps can be created to aid in analyzing the functional maps, such as one that indicates the 95% confidence interval of the averaged scores for each area. This anatomo-clinical overlapping map (AnaCOM) method was used to obtain functional maps from patients with lesions in the superior frontal gyrus. By finding particular subregions more responsible for a particular deficit, this method can generate new hypotheses to be tested by conventional group methods.
Planar implantable sensor for in vivo measurement of cellular oxygen metabolism in brain tissue.
Tsytsarev, Vassiliy; Akkentli, Fatih; Pumbo, Elena; Tang, Qinggong; Chen, Yu; Erzurumlu, Reha S; Papkovsky, Dmitri B
2017-04-01
Brain imaging methods are continually improving. Imaging of the cerebral cortex is widely used in both animal experiments and charting human brain function in health and disease. Among the animal models, the rodent cerebral cortex has been widely used because of patterned neural representation of the whiskers on the snout and relative ease of activating cortical tissue with whisker stimulation. We tested a new planar solid-state oxygen sensor comprising a polymeric film with a phosphorescent oxygen-sensitive coating on the working side, to monitor dynamics of oxygen metabolism in the cerebral cortex following sensory stimulation. Sensory stimulation led to changes in oxygenation and deoxygenation processes of activated areas in the barrel cortex. We demonstrate the possibility of dynamic mapping of relative changes in oxygenation in live mouse brain tissue with such a sensor. Oxygenation-based functional magnetic resonance imaging (fMRI) is very effective method for functional brain mapping but have high costs and limited spatial resolution. Optical imaging of intrinsic signal (IOS) does not provide the required sensitivity, and voltage-sensitive dye optical imaging (VSDi) has limited applicability due to significant toxicity of the voltage-sensitive dye. Our planar solid-state oxygen sensor imaging approach circumvents these limitations, providing a simple optical contrast agent with low toxicity and rapid application. The planar solid-state oxygen sensor described here can be used as a tool in visualization and real-time analysis of sensory-evoked neural activity in vivo. Further, this approach allows visualization of local neural activity with high temporal and spatial resolution. Copyright © 2017 Elsevier B.V. All rights reserved.
Neural Markers and Rehabilitation of Executive Functioning in Veterans with TBI and PTSD
2015-10-01
with reduced irritability/impulsivity and improved social/occupational functioning. Functional magnetic resonance imaging ( fMRI ) will be used to...transport Veterans five minutes away to the Dr. Belger’s lab at UNC Hospital where EEG and fMRI will be conducted and then transport Veterans back to... fMRI was arranged through the UNC-Chapel Hill School of Medicine at month 9. Participants may either take a shuttle from the research laboratory to
Schmidt, Simone; Hafner, Patricia; Klein, Andrea; Rubino-Nacht, Daniela; Gocheva, Vanya; Schroeder, Jonas; Naduvilekoot Devasia, Arjith; Zuesli, Stephanie; Bernert, Guenther; Laugel, Vincent; Bloetzer, Clemens; Steinlin, Maja; Capone, Andrea; Gloor, Monika; Tobler, Patrick; Haas, Tanja; Bieri, Oliver; Zumbrunn, Thomas; Fischer, Dirk; Bonati, Ulrike
2018-01-01
The development of new therapeutic agents for the treatment of Duchenne muscular dystrophy has put a focus on defining outcome measures most sensitive to capture treatment effects. This cross-sectional analysis investigates the relation between validated clinical assessments such as the 6-minute walk test, motor function measure and quantitative muscle MRI of thigh muscles in ambulant Duchenne muscular dystrophy patients, aged 6.5 to 10.8 years (mean 8.2, SD 1.1). Quantitative muscle MRI included the mean fat fraction using a 2-point Dixon technique, and transverse relaxation time (T2) measurements. All clinical assessments were highly significantly inter-correlated with p < 0.001. The strongest correlation with the motor function measure and its D1-subscore was shown by the 6-minute walk test. Clinical assessments showed no correlation with age. Importantly, quantitative muscle MRI values significantly correlated with all clinical assessments with the extensors showing the strongest correlation. In contrast to the clinical assessments, quantitative muscle MRI values were highly significantly correlated with age. In conclusion, the motor function measure and timed function tests measure disease severity in a highly comparable fashion and all tests correlated with quantitative muscle MRI values quantifying fatty muscle degeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
Shang, Weijian; Su, Hao; Li, Gang; Furlong, Cosme; Fischer, Gregory S.
2014-01-01
Robot-assisted surgical procedures, taking advantage of the high soft tissue contrast and real-time imaging of magnetic resonance imaging (MRI), are developing rapidly. However, it is crucial to maintain tactile force feedback in MRI-guided needle-based procedures. This paper presents a Fabry-Perot interference (FPI) based system of an MRI-compatible fiber optic sensor which has been integrated into a piezoelectrically actuated robot for prostate cancer biopsy and brachytherapy in 3T MRI scanner. The opto-electronic sensing system design was minimized to fit inside an MRI-compatible robot controller enclosure. A flexure mechanism was designed that integrates the FPI sensor fiber for measuring needle insertion force, and finite element analysis was performed for optimizing the correct force-deformation relationship. The compact, low-cost FPI sensing system was integrated into the robot and calibration was conducted. The root mean square (RMS) error of the calibration among the range of 0–10 Newton was 0.318 Newton comparing to the theoretical model which has been proven sufficient for robot control and teleoperation. PMID:25126153
Morphological and functional evaluation of chronic pancreatitis with magnetic resonance imaging
Hansen, Tine Maria; Nilsson, Matias; Gram, Mikkel; Frøkjær, Jens Brøndum
2013-01-01
Magnetic resonance imaging (MRI) techniques for assessment of morphology and function of the pancreas have been improved dramatically the recent years and MRI is very often used in diagnosing and follow-up of chronic pancreatitis (CP) patients. Standard MRI including fat-suppressed T1-weighted and T2-weighted imaging techniques reveal decreased signal and glandular atrophy of the pancreas in CP. In contrast-enhanced MRI of the pancreas in CP the pancreatic signal is usually reduced and delayed due to decreased perfusion as a result of chronic inflammation and fibrosis. Thus, morphological changes of the ductal system can be assessed by magnetic resonance cholangiopancreatography (MRCP). Furthermore, secretin-stimulated MRCP is a valuable technique to evaluate side branch pathology and the exocrine function of the pancreas and diffusion weighted imaging can be used to quantify both parenchymal fibrotic changes and the exocrine function of the pancreas. These standard and advanced MRI techniques are supplementary techniques to reveal morphological and functional changes of the pancreas in CP. Recently, spectroscopy has been used for assessment of metabolite concentrations in-vivo in different tissues and may have the potential to offer better tissue characterization of the pancreas. Hence, the purpose of the present review is to provide an update on standard and advanced MRI techniques of the pancreas in CP. PMID:24259954
Functional Imaging of the Lungs with Gas Agents
Kruger, Stanley J.; Nagle, Scott K.; Couch, Marcus J.; Ohno, Yoshiharu; Albert, Mitchell; Fain, Sean B.
2015-01-01
This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI) – hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas – and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multi-detector computed tomography (CT). However, MRI also offers capabilities for fast multi-spectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultra-short echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. Relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (CF) in both adults and children. PMID:26218920
NASA Astrophysics Data System (ADS)
Sitharaman, Balaji; Jacobson, Barry D.; Wadghiri, Youssef Z.; Bryant, Henry; Frank, Joseph
2013-04-01
We report the magnetic behavior, relaxometry, phantom magnetic resonance imaging (MRI), and near-infrared (NIR) photoluminescence spectroscopy of gadolinium (Gd) catalyzed single-walled carbon nanotubes (Gd-SWCNTs). Gd-SWCNTs are paramagnetic with an effective magnetic moment of 7.29 μB. Gd-SWCNT solutions show high r1 and r2 relaxivities at very low (0.01 MHz) to clinically relevant (61 MHz) magnetic fields (r1 ≥ 130 mM-1 s-1, r2 ≥ 160 mM-1 s-1). Analysis of nuclear magnetic resonance dispersion profiles using Solomon, Bloembergen, and Morgan equations suggests that multiple structural and dynamic parameters such as rotational correlation time τR, rate of water exchange τM, and the number of fast-exchanging water molecules within the inner sphere q may be responsible for the increase in r1 and r2 relaxivity. The T1 weighted MRI signal intensity (gradient echo sequence; repetition time (TR) = 66 ms, echo time (TE) = 3 ms, flop angle = 108°) of Gd-SWCNT phantom solution is 14 times greater than the Gd-based clinical MRI contrast agent Magnevist. Additionally, these nanotubes exhibit near infrared fluorescence with distinct E11 transitions of several semiconducting SWCNTs. Taken together, these results demonstrate that Gd-SWCNTs have potential as a novel, highly efficacious, multimodal MRI-NIR optical imaging contrast agent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Changlian; Department of Pediatrics, The Third Affiliated Hospital, Zhengzhou University; Gao, Jianfeng
2011-01-07
Research highlights: {yields} The effect of MRI on the developing brain is a matter of debate. {yields} Repeated exposure to MRI did not affect neurogenesis. {yields} Memory function was not affected by repeated MRI during development. {yields} Neither late gestation nor young postnatal brains were affected by MRI. {yields} Repeated MRI did not cause cell death in the neurogenic region of the hippocampus. -- Abstract: The effect of magnetic fields on the brain is a matter of debate. The objective of this study was to investigate whether repeated exposure to strong magnetic fields, such as during magnetic resonance imaging (MRI),more » could elicit changes in the developing rat brain. Embryonic day 15 (E15) and postnatal day 14 (P14) rats were exposed to MRI using a 7.05 T MR system. The animals were anesthetized and exposed for 35 min per day for 4 successive days. Control animals were anesthetized but no MRI was performed. Body temperature was maintained at 37 {sup o}C. BrdU was injected after each session (50 mg/kg). One month later, cell proliferation, neurogenesis and astrogenesis in the dentate gyrus were evaluated, revealing no effects of MRI, neither in the E15, nor in the P14 group. DNA damage in the dentate gyrus in the P14 group was evaluated on P18, 1 day after the last session, using TUNEL staining. There was no difference in the number of TUNEL-positive cells after MRI compared with controls, neither in mature neurons, nor in newborn progenitors (BrdU/TUNEL double-labeled cells). Novel object recognition was performed to assess memory function 1 month after MRI. There was no difference in the recognition index observed after MRI compared with the control rats, neither for the E15, nor for the P14 group. In conclusion, repeated exposure to MRI did not appear to affect neurogenesis, cell death or memory function in rats, neither in late gestation (E15-E18) nor in young postnatal (P14-P17) rats.« less
Kwiatek, Monika A; Menne, Dieter; Steingoetter, Andreas; Goetze, Oliver; Forras-Kaufman, Zsofia; Kaufman, Elad; Fruehauf, Heiko; Boesiger, Peter; Fried, Michael; Schwizer, Werner; Fox, Mark R
2009-11-01
This study assessed the effects of meal volume (MV) and calorie load (CL) on gastric function. MRI and a minimally invasive fiber-optic recording system (FORS) provided simultaneous measurement of gastric volume and pressure changes during gastric filling and emptying of a liquid nutrient meal in physiological conditions. The gastric response to 12 iso-osmolar MV-CL combinations of a multinutrient drink (MV: 200, 400, 600, 800 ml; CL: 200, 300, 400 kcal) was tested in 16 healthy subjects according to a factorial design. Total gastric volume (TGV) and gastric content volume (GCV = MV + secretion) were measured by MRI during nasogastric meal infusion and gastric emptying over 60 min. Intragastric pressure was assessed at 1 Hz by FORS. The dynamic change in postprandial gastric volumes was described by a validated three-component linear exponential model. The stomach expanded with MV, but the ratio of GCV:MV at t(0) diminished with increasing MV (P < 0.01). Postprandial changes in TGV followed those of GCV. Intragastric pressure increased with MV, and this effect was augmented further by CL (P = 0.02); however, the absolute pressure rise was <4 mmHg. A further postprandial increase of gastric volumes was observed early on before any subsequent volume decrease. This "early" increase in GCV was greater for smaller than larger MV (P < 0.01), indicating faster initial gastric emptying of larger MV. In contrast, volume change during filling and in the early postprandial period were unaffected by CL. In the later postprandial period, gastric emptying rate continued to be more rapid with high MVs (P < 0.001); however, at any given volume, gastric emptying was slowed by higher CL (P < 0.001). GCV half-emptying time decreased with CL at 18 +/- 6 min for each additional 100-kcal load (P < 0.001). These findings indicate that gastric wall stress (passive strain and active tone) provides the driving force for gastric emptying, but distal resistance to gastric outflow regulates further passage of nutrients. The distinct early phase of gastric emptying with relatively rapid, uncontrolled passage of nutrients into the small bowel, modulated by meal volume but not nutrient composition, ensures that the delivery of nutrients in the later postprandial period is related to the overall calorie load of the meal.
Avery, Ryan; Day, Kevin; Jokerst, Clinton; Kazui, Toshinobu; Krupinski, Elizabeth; Khalpey, Zain
2017-10-10
Advanced heart failure treated with a left ventricular assist device is associated with a higher risk of right heart failure. Many advanced heart failures patients are treated with an ICD, a relative contraindication to MRI, prior to assist device placement. Given this limitation, left and right ventricular function for patients with an ICD is calculated using radionuclide angiography utilizing planar multigated acquisition (MUGA) and first pass radionuclide angiography (FPRNA), respectively. Given the availability of MRI protocols that can accommodate patients with ICDs, we have correlated the findings of ventricular functional analysis using radionuclide angiography to cardiac MRI, the reference standard for ventricle function calculation, to directly correlate calculated ejection fractions between these modalities, and to also assess agreement between available echocardiographic and hemodynamic parameters of right ventricular function. A retrospective review from January 2012 through May 2014 was performed to identify advanced heart failure patients who underwent both cardiac MRI and radionuclide angiography for ventricular functional analysis. Nine heart failure patients (8 men, 1 woman; mean age of 57.0 years) were identified. The average time between the cardiac MRI and radionuclide angiography exams was 38.9 days (range: 1 - 119 days). All patients undergoing cardiac MRI were scanned using an institutionally approved protocol for ICD with no device-related complications identified. A retrospective chart review of each patient for cardiomyopathy diagnosis, clinical follow-up, and echocardiogram and right heart catheterization performed during evaluation was also performed. The 9 patients demonstrated a mean left ventricular ejection fraction (LVEF) using cardiac MRI of 20.7% (12 - 40%). Mean LVEF using MUGA was 22.6% (12 - 49%). The mean right ventricular ejection fraction (RVEF) utilizing cardiac MRI was 28.3% (16 - 43%), and the mean RVEF calculated by FPRNA was 32.6% (9 - 56%). The mean discrepancy for LVEF between cardiac MRI and MUGA was 4.1% (0 - 9%), and correlation of calculated LVEF using cardiac MRI and MUGA demonstrated an R of 0.9. The mean discrepancy for RVEF between cardiac MRI and FPRNA was 12.0% (range: 2 - 24%) with a moderate correlation (R = 0.5). The increased discrepancies for RV analysis were statistically significant using an unpaired t-test (t = 3.19, p = 0.0061). Echocardiogram parameters of RV function, including TAPSE and FAC, were for available for all 9 patients and agreement with cardiac MRI demonstrated a kappa statistic for TAPSE of 0.39 (95% CI of 0.06 - 0.72) and for FAC of 0.64 (95% of 0.21 - 1.00). Heart failure patients are increasingly requiring left ventricular assist device placement; however, definitive evaluation of biventricular function is required due to the increased mortality rate associated with right heart failure after assist device placement. Our results suggest that FPRNA only has a moderate correlation with reference standard RVEFs calculated using cardiac MRI, which was similar to calculated agreements between cardiac MRI and echocardiographic parameters of right ventricular function. Given the need for identification of patients at risk for right heart failure, further studies are warranted to determine a more accurate estimate of RVEF for heart failure patients during pre-operative ventricular assist device planning.
Functional MRI in the Investigation of Blast-Related Traumatic Brain Injury
Graner, John; Oakes, Terrence R.; French, Louis M.; Riedy, Gerard
2012-01-01
This review focuses on the application of functional magnetic resonance imaging (fMRI) to the investigation of blast-related traumatic brain injury (bTBI). Relatively little is known about the exact mechanisms of neurophysiological injury and pathological and functional sequelae of bTBI. Furthermore, in mild bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to show focal lesions and most of the symptoms present as subjective clinical functional deficits. Therefore, an objective test of brain functionality has great potential to aid in patient diagnosis and provide a sensitive measurement to monitor disease progression and treatment. The goal of this review is to highlight the relevant body of blast-related TBI literature and present suggestions and considerations in the development of fMRI studies for the investigation of bTBI. The review begins with a summary of recent bTBI publications followed by discussions of various elements of blast-related injury. Brief reviews of some fMRI techniques that focus on mental processes commonly disrupted by bTBI, including working memory, selective attention, and emotional processing, are presented in addition to a short review of resting state fMRI. Potential strengths and weaknesses of these approaches as regards bTBI are discussed. Finally, this review presents considerations that must be made when designing fMRI studies for bTBI populations, given the heterogeneous nature of bTBI and its high rate of comorbidity with other physical and psychological injuries. PMID:23460082
Schouten, Tijn M; Koini, Marisa; de Vos, Frank; Seiler, Stephan; van der Grond, Jeroen; Lechner, Anita; Hafkemeijer, Anne; Möller, Christiane; Schmidt, Reinhold; de Rooij, Mark; Rombouts, Serge A R B
2016-01-01
Magnetic resonance imaging (MRI) is sensitive to structural and functional changes in the brain caused by Alzheimer's disease (AD), and can therefore be used to help in diagnosing the disease. Improving classification of AD patients based on MRI scans might help to identify AD earlier in the disease's progress, which may be key in developing treatments for AD. In this study we used an elastic net classifier based on several measures derived from the MRI scans of mild to moderate AD patients (N = 77) from the prospective registry on dementia study and controls (N = 173) from the Austrian Stroke Prevention Family Study. We based our classification on measures from anatomical MRI, diffusion weighted MRI and resting state functional MRI. Our unimodal classification performance ranged from an area under the curve (AUC) of 0.760 (full correlations between functional networks) to 0.909 (grey matter density). When combining measures from multiple modalities in a stepwise manner, the classification performance improved to an AUC of 0.952. This optimal combination consisted of grey matter density, white matter density, fractional anisotropy, mean diffusivity, and sparse partial correlations between functional networks. Classification performance for mild AD as well as moderate AD also improved when using this multimodal combination. We conclude that different MRI modalities provide complementary information for classifying AD. Moreover, combining multiple modalities can substantially improve classification performance over unimodal classification.
BOLDSync: a MATLAB-based toolbox for synchronized stimulus presentation in functional MRI.
Joshi, Jitesh; Saharan, Sumiti; Mandal, Pravat K
2014-02-15
Precise and synchronized presentation of paradigm stimuli in functional magnetic resonance imaging (fMRI) is central to obtaining accurate information about brain regions involved in a specific task. In this manuscript, we present a new MATLAB-based toolbox, BOLDSync, for synchronized stimulus presentation in fMRI. BOLDSync provides a user friendly platform for design and presentation of visual, audio, as well as multimodal audio-visual (AV) stimuli in functional imaging experiments. We present simulation experiments that demonstrate the millisecond synchronization accuracy of BOLDSync, and also illustrate the functionalities of BOLDSync through application to an AV fMRI study. BOLDSync gains an advantage over other available proprietary and open-source toolboxes by offering a user friendly and accessible interface that affords both precision in stimulus presentation and versatility across various types of stimulus designs and system setups. BOLDSync is a reliable, efficient, and versatile solution for synchronized stimulus presentation in fMRI study. Copyright © 2013 Elsevier B.V. All rights reserved.
Papma, Janne M; Smits, Marion; de Groot, Marius; Mattace Raso, Francesco U; van der Lugt, Aad; Vrooman, Henri A; Niessen, Wiro J; Koudstaal, Peter J; van Swieten, John C; van der Veen, Frederik M; Prins, Niels D
2017-09-01
Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. • PCC functioning during episodic memory relates to hippocampal functioning in MCI. • PCC functioning during episodic memory does not relate to hippocampal structure in MCI. • Functional network changes are an important predictor of PCC functioning in MCI.
Erberich, Stephan G; Bhandekar, Manasee; Chervenak, Ann; Kesselman, Carl; Nelson, Marvin D
2007-01-01
Functional MRI is successfully being used in clinical and research applications including preoperative planning, language mapping, and outcome monitoring. However, clinical use of fMRI is less widespread due to its complexity of imaging, image workflow, post-processing, and lack of algorithmic standards hindering result comparability. As a consequence, wide-spread adoption of fMRI as clinical tool is low contributing to the uncertainty of community physicians how to integrate fMRI into practice. In addition, training of physicians with fMRI is in its infancy and requires clinical and technical understanding. Therefore, many institutions which perform fMRI have a team of basic researchers and physicians to perform fMRI as a routine imaging tool. In order to provide fMRI as an advanced diagnostic tool to the benefit of a larger patient population, image acquisition and image post-processing must be streamlined, standardized, and available at any institution which does not have these resources available. Here we describe a software architecture, the functional imaging laboratory (funcLAB/G), which addresses (i) standardized image processing using Statistical Parametric Mapping and (ii) its extension to secure sharing and availability for the community using standards-based Grid technology (Globus Toolkit). funcLAB/G carries the potential to overcome the limitations of fMRI in clinical use and thus makes standardized fMRI available to the broader healthcare enterprise utilizing the Internet and HealthGrid Web Services technology.
Pharmacological MRI in animal models: a useful tool for 5-HT research?
Martin, Chris; Sibson, Nicola R
2008-11-01
Pharmacological magnetic resonance imaging (phMRI) offers the potential to provide novel insights into the functioning of neurotransmitter systems and drug action in the central nervous system. To date, much of the neuropharmacological research that has applied phMRI techniques has focused on the dopaminergic system with relatively few studies into serotonergic function. In this article, we discuss the current capabilities of, and future potential for phMRI to address fundamental questions in serotonergic research using animal models. Firstly we review existing literature on the application of phMRI to the serotonergic system by exploring 3 broad research themes: (i) the functional anatomy of the serotonergic system; (ii) drug-receptor targeting and distribution; and (iii) disease models and drug development. Subsequently, we discuss the interpretation of phMRI data in terms of neuropharmacological action with a focus on issues specific to neuroimaging studies of the serotonergic system. Unlike other neuroimaging approaches such as positron emission tomography, phMRI methods do not currently offer sensitivity to markers of specific pharmacological action. However, they can provide in vivo markers of the neuropharmacological modulation of neuronal activity across the whole brain with unparalleled spatial and temporal resolution. Furthermore, due to the non-invasive nature of MRI, these markers are readily translatable to human studies. Whilst there are a number of constraints and limitations to phMRI methods that necessitate careful data interpretation, we argue that phMRI could become a valuable research tool in neuropharmacological studies of the serotonergic system.
Functional MR imaging assessment of a non-responsive brain injured patient.
Moritz, C H; Rowley, H A; Haughton, V M; Swartz, K R; Jones, J; Badie, B
2001-10-01
Functional magnetic resonance imaging (fMRI) was requested to assist in the evaluation of a comatose 38-year-old woman who had sustained multiple cerebral contusions from a motor vehicle accident. Previous electrophysiologic studies suggested absence of thalamocortical processing in response to median nerve stimulation. Whole-brain fMRI was performed utilizing visual, somatosensory, and auditory stimulation paradigms. Results demonstrated intact task-correlated sensory and cognitive blood oxygen level dependent (BOLD) hemodynamic response to stimuli. Electrodiagnostic studies were repeated and evoked potentials indicated supratentorial recovery in the cerebrum. At 3-months post trauma the patient had recovered many cognitive & sensorimotor functions, accurately reflecting the prognostic fMRI evaluation. These results indicate that fMRI examinations may provide a useful evaluation for brain function in non-responsive brain trauma patients.
Clinical Applications of Resting State Functional Connectivity
Fox, Michael D.; Greicius, Michael
2010-01-01
During resting conditions the brain remains functionally and metabolically active. One manifestation of this activity that has become an important research tool is spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI). The identification of correlation patterns in these spontaneous fluctuations has been termed resting state functional connectivity (fcMRI) and has the potential to greatly increase the translation of fMRI into clinical care. In this article we review the advantages of the resting state signal for clinical applications including detailed discussion of signal to noise considerations. We include guidelines for performing resting state research on clinical populations, outline the different areas for clinical application, and identify important barriers to be addressed to facilitate the translation of resting state fcMRI into the clinical realm. PMID:20592951
MRI to assess renal structure and function.
Artunc, Ferruh; Rossi, Cristina; Boss, Andreas
2011-11-01
In addition to excellent anatomical depiction, MRI techniques have expanded to study functional aspects of renal physiology, such as renal perfusion, glomerular filtration rate (GFR) or tissue oxygenation. This review will focus on current developments with an emphasis on clinical applicability. The method of GFR determination is largely heterogeneous and still has weaknesses. However, the technique of employing liver disappearance curves has been shown to be accurate in healthy persons and patients with chronic kidney disease. In potential kidney donors, complete evaluation of kidney anatomy and function can be accomplished in a single-stop investigation. Techniques without contrast media can be utilized to measure renal tissue oxygenation (blood oxygen level-dependent MRI) or perfusion (arterial spin labeling) and could aid in the diagnosis and treatment of ischemic renal diseases, such as renal artery stenosis. Diffusion imaging techniques may provide information on spatially restricted water diffusion and tumor cellularity. Functional MRI opens new horizons in studying renal physiology and pathophysiology in vivo. Although extensively utilized in research, labor-intensive postprocessing and lack of standardization currently limit the clinical applicability of functional MRI. Further studies are necessary to evaluate the clinical value of functional magnetic resonance techniques for early discovery and characterization of kidney disease.
Update on the MRI Core of the Alzheimer's Disease Neuroimaging Initiative
Jack, Clifford R; Bernstein, Matt A; Borowski, Bret J; Gunter, Jeffrey L; Fox, Nick C; Thompson, Paul M; Schuff, Norbert; Krueger, Gunnar; Killiany, Ronald J; DeCarli, Charles S; Dale, Anders M; Weiner, Michael W
2010-01-01
Functions of the ADNI MRI core fall into three categories: (1) those of the central MRI core lab at Mayo Clinic, Rochester, Minnesota, needed to generate high quality MRI data in all subjects at each time point; (2) those of the funded ADNI MRI core imaging analysis groups responsible for analyzing the MRI data, and (3) the joint function of the entire MRI core in designing and problem solving MR image acquisition, pre-processing and analyses methods. The primary objective of ADNI was and continues to be improving methods for clinical trials in Alzheimer's disease. Our approach to the present (“ADNI-GO”) and future (“ADNI-2”, if funded) MRI protocol will be to maintain MRI methodological consistency in previously enrolled “ADNI-1” subjects who are followed longitudinally in ADNI-GO and ADNI-2. We will modernize and expand the MRI protocol for all newly enrolled ADNI-GO and ADNI-2 subjects. All newly enrolled subjects will be scanned at 3T with a core set of three sequence types: 3D T1-weighted volume, FLAIR, and a long TE gradient echo volumetric acquisition for micro hemorrhage detection. In addition to this core ADNI-GO and ADNI-2 protocol, we will perform vendor specific pilot sub-studies of arterial spin labeling perfusion, resting state functional connectivity and diffusion tensor imaging. One each of these sequences will be added to the core protocol on systems from each MRI vendor. These experimental sub-studies are designed to demonstrate the feasibility of acquiring useful data in a multi-center (but single vendor) setting for these three emerging MRI applications. PMID:20451869
Electrophysiological correlates of the BOLD signal for EEG-informed fMRI
Murta, Teresa; Leite, Marco; Carmichael, David W; Figueiredo, Patrícia; Lemieux, Louis
2015-01-01
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG–fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological–haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG–fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG–fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG–fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. PMID:25277370
Fornito, Alex; Bullmore, Edward T
2010-05-01
Resting-state functional MRI (rs-fMRI) is an increasingly popular technique for studying brain dysfunction in psychiatric patients, and is widely assumed to measure intrinsic properties of functional brain organization. Here, we review rs-fMRI studies of psychiatric populations and consider how recent evidence concerning the neuronal basis, behavioural relevance, and the stability of rs-fMRI measures can inform and constrain interpretation of findings obtained using case-control designs. A range of rs-fMRI measures have been applied to different patient groups, although the findings have not always been consistent. The large-scale organization of rs-fMRI networks is robust and reproducible, and rs-fMRI measures show correlations with behavioural phenotypes relevant to psychiatry. However, evidence that such measures are also influenced by preceding psychological states and contexts, as well as individual variations in physiological arousal, may help to explain inconsistent findings in case-control comparisons. rs-fMRI measures show both stable and dynamic properties, the nature of which are only beginning to be uncovered. As such, interpreting significant differences between patients and controls on rs-fMRI measures as evidence for alterations in intrinsic functional brain organization should be done cautiously. Better understanding of the relationship between stable and transient aspects of spontaneous brain dynamics will be necessary to constrain interpretation of case-control studies and inform pathophysiological models.
A Millimeter-Wave Digital Link for Wireless MRI
Aggarwal, Kamal; Joshi, Kiran R.; Rajavi, Yashar; Taghivand, Mazhareddin; Pauly, John M.; Poon, Ada S. Y.; Scott, Greig
2017-01-01
A millimeter (mm) wave radio is presented in this work to support wireless MRI data transmission. High path loss and availability of wide bandwidth make mm-waves an ideal candidate for short range, high data rata communication required for wireless MRI. The proposed system uses a custom designed integrated chip (IC) mm-wave radio with 60 GHz as radio frequency carrier. In this work, we assess performance in a 1.5 T MRI field, with the addition of optical links between the console room and magnet. The system uses ON-OFF keying (OOK) modulation for data transmission and supports data rates from 200 Mb/s to 2.5 Gb/s for distances up-to 65 cm. The presence of highly directional, linearly polarized, on-chip dipole antennas on the mm-wave radio along with the time division multiplexing (TDM) circuitry allows multiple wireless links to be created simultaneously with minimal inter-channel interference. This leads to a highly scalable solution for wireless MRI. PMID:27810803
A Millimeter-Wave Digital Link for Wireless MRI.
Aggarwal, Kamal; Joshi, Kiran R; Rajavi, Yashar; Taghivand, Mazhareddin; Pauly, John M; Poon, Ada S Y; Scott, Greig
2017-02-01
A millimeter (mm) wave radio is presented in this work to support wireless MRI data transmission. High path loss and availability of wide bandwidth make mm-waves an ideal candidate for short range, high data rata communication required for wireless MRI. The proposed system uses a custom designed integrated chip (IC) mm-wave radio with 60 GHz as radio frequency carrier. In this work, we assess performance in a 1.5 T MRI field, with the addition of optical links between the console room and magnet. The system uses ON-OFF keying (OOK) modulation for data transmission and supports data rates from 200 Mb/s to 2.5 Gb/s for distances up-to 65 cm. The presence of highly directional, linearly polarized, on-chip dipole antennas on the mm-wave radio along with the time division multiplexing (TDM) circuitry allows multiple wireless links to be created simultaneously with minimal inter-channel interference. This leads to a highly scalable solution for wireless MRI.
Data-driven analysis of functional brain interactions during free listening to music and speech.
Fang, Jun; Hu, Xintao; Han, Junwei; Jiang, Xi; Zhu, Dajiang; Guo, Lei; Liu, Tianming
2015-06-01
Natural stimulus functional magnetic resonance imaging (N-fMRI) such as fMRI acquired when participants were watching video streams or listening to audio streams has been increasingly used to investigate functional mechanisms of the human brain in recent years. One of the fundamental challenges in functional brain mapping based on N-fMRI is to model the brain's functional responses to continuous, naturalistic and dynamic natural stimuli. To address this challenge, in this paper we present a data-driven approach to exploring functional interactions in the human brain during free listening to music and speech streams. Specifically, we model the brain responses using N-fMRI by measuring the functional interactions on large-scale brain networks with intrinsically established structural correspondence, and perform music and speech classification tasks to guide the systematic identification of consistent and discriminative functional interactions when multiple subjects were listening music and speech in multiple categories. The underlying premise is that the functional interactions derived from N-fMRI data of multiple subjects should exhibit both consistency and discriminability. Our experimental results show that a variety of brain systems including attention, memory, auditory/language, emotion, and action networks are among the most relevant brain systems involved in classic music, pop music and speech differentiation. Our study provides an alternative approach to investigating the human brain's mechanism in comprehension of complex natural music and speech.
Nilsson, Henrik; Blomqvist, Lennart; Douglas, Lena; Nordell, Anders; Jacobsson, Hans; Hagen, Karin; Bergquist, Annika; Jonas, Eduard
2014-04-01
To evaluate dynamic hepatocyte-specific contrast-enhanced MRI (DHCE-MRI) for the assessment of global and segmental liver volume and function in patients with primary sclerosing cholangitis (PSC), and to explore the heterogeneous distribution of liver function in this patient group. Twelve patients with primary sclerosing cholangitis (PSC) and 20 healthy volunteers were examined using DHCE-MRI with Gd-EOB-DTPA. Segmental and total liver volume were calculated, and functional parameters (hepatic extraction fraction [HEF], input relative blood-flow [irBF], and mean transit time [MTT]) were calculated in each liver voxel using deconvolutional analysis. In each study subject, and incongruence score (IS) was constructed to describe the mismatch between segmental function and volume. Among patients, the liver function parameters were correlated to bile duct obstruction and to established scoring models for liver disease. Liver function was significantly more heterogeneously distributed in the patient group (IS 1.0 versus 0.4). There were significant correlations between biliary obstruction and segmental functional parameters (HEF rho -0.24; irBF rho -0.45), and the Mayo risk score correlated significantly with the total liver extraction capacity of Gd-EOB-DTPA (rho -0.85). The study demonstrates a new method to quantify total and segmental liver function using DHCE-MRI in patients with PSC. Copyright © 2013 Wiley Periodicals, Inc.
Visual imagery and functional connectivity in blindness: a single-case study
Boucard, Christine C.; Rauschecker, Josef P.; Neufang, Susanne; Berthele, Achim; Doll, Anselm; Manoliu, Andrej; Riedl, Valentin; Sorg, Christian; Wohlschläger, Afra; Mühlau, Mark
2016-01-01
We present a case report on visual brain plasticity after total blindness acquired in adulthood. SH lost her sight when she was 27. Despite having been totally blind for 43 years, she reported to strongly rely on her vivid visual imagery. Three-Tesla magnetic resonance imaging (MRI) of SH and age-matched controls was performed. The MRI sequence included anatomical MRI, resting-state functional MRI, and task-related functional MRI where SH was instructed to imagine colours, faces, and motion. Compared to controls, voxel-based analysis revealed white matter loss along SH's visual pathway as well as grey matter atrophy in the calcarine sulci. Yet we demonstrated activation in visual areas, including V1, using functional MRI. Of the four identified visual resting-state networks, none showed alterations in spatial extent; hence, SH's preserved visual imagery seems to be mediated by intrinsic brain networks of normal extent. Time courses of two of these networks showed increased correlation with that of the inferior posterior default mode network, which may reflect adaptive changes supporting SH's strong internal visual representations. Overall, our findings demonstrate that conscious visual experience is possible even after years of absence of extrinsic input. PMID:25690326
Visual imagery and functional connectivity in blindness: a single-case study.
Boucard, Christine C; Rauschecker, Josef P; Neufang, Susanne; Berthele, Achim; Doll, Anselm; Manoliu, Andrej; Riedl, Valentin; Sorg, Christian; Wohlschläger, Afra; Mühlau, Mark
2016-05-01
We present a case report on visual brain plasticity after total blindness acquired in adulthood. SH lost her sight when she was 27. Despite having been totally blind for 43 years, she reported to strongly rely on her vivid visual imagery. Three-Tesla magnetic resonance imaging (MRI) of SH and age-matched controls was performed. The MRI sequence included anatomical MRI, resting-state functional MRI, and task-related functional MRI where SH was instructed to imagine colours, faces, and motion. Compared to controls, voxel-based analysis revealed white matter loss along SH's visual pathway as well as grey matter atrophy in the calcarine sulci. Yet we demonstrated activation in visual areas, including V1, using functional MRI. Of the four identified visual resting-state networks, none showed alterations in spatial extent; hence, SH's preserved visual imagery seems to be mediated by intrinsic brain networks of normal extent. Time courses of two of these networks showed increased correlation with that of the inferior posterior default mode network, which may reflect adaptive changes supporting SH's strong internal visual representations. Overall, our findings demonstrate that conscious visual experience is possible even after years of absence of extrinsic input.
Monodisperse Multidimensional Nanostructures via Centrifugal Separation
NASA Astrophysics Data System (ADS)
Shin, Yu Jin
Anisotropic nanomaterials, including zero-dimensional metallic nanoparticles (MNPs), one-dimensional single-walled carbon nanotubes (SWCNTs), and two-dimensional few-layer black phosphorous (FL-P) exhibit interesting structure-dependent properties that could be exploited in biomedicine, plasmonics, and optoelectronics. In this thesis, centrifugation sorting of these nanomaterials is utilized for structure refinement, investigation of structure-dependent optical response, and applications in biomedical imaging and plasmonics. Nobel NMPs show unique shape- and size-dependent optical properties. Controlled synthetic methods are developed to manipulate the structure of these NMPs, but intrinsically produce dispersions of polydisperse NPs with various shape and size, and synthetic byproducts. Here, we describe a facile strategy for separating small (edge length <100 nm) faceted gold NPs: rhombic dodecahedra (RD) and obtuse triangular bipyramids (BPs), which form simultaneously during synthesis but are hard to separate via commercial filters. By utilizing centrifugation of the as-synthesized mixture in a shallow density gradient centrifugation (DGC), we are able to isolate a high purity of BPs (>80%) and subsequently achieve a 2.5 fold enhancement in refractive index sensitivity, comparable to the unsorted mixture. This shallow DGC approach is robust and reliable, and therefore can be applied to other metal nanostructures for concomitant improvements in plasmonic properties and applications. Using the identical separation strategy in the previous study, we are able to enrich gold nanostars as a function of branch number. In particular, we explore different variants of density gradient media to ensure compatibility with the star shape and colloid stability. We determine that sucrose is compatible with nanostars stability and surface functionalizaton. The refined population of gold stars are functionalized with Gd(III)-DNA to act as MRI contrast agents, and thus enables us to investigate how populations of nanostars with different branch numbers contribute to the relaxivity of surface bound Gd(III)-DNA. It is shown that the increased relaxivity of DNA-Gd star is correlated with increased number of star branches, not with increased size of the stars. Therefore, shape is a new parameter which can be tuned in the design of NP-based MRI contrast agent. These findings can also improve the performance of functionalized anisotropic nanoconjugates which have potential for applications such as lowering detection limits for sensors and diagnostics, or enabling new modes of self-assembly. Finally, we have broadened the scope of DGC to other dimensional nanomaterials: 1D-SWCNTs and 2D-FL-P. Despite their tunable and structure-dependent optical properties, intrinsic structural heterogeneity and poor quantum efficiency limit their potential applications. Therefore, DGC is employed to separate the SWCNTs and FL-P by length and the number of layers, respectively, thereby incorporating them into optical cavity structures for enhancing their luminescence properties. These fundamental studies of low-dimensional nanomaterials assist in the design process for optoelectronic device fabrication.
Alvarez Moreno, Elena; Jimenez de la Peña, Mar; Cano Alonso, Raquel
2012-01-01
Recent developments in diagnostic imaging techniques have magnified the role and potential of both MRI and PET-CT in female pelvic imaging. This article reviews the techniques and clinical applications of new functional MRI (fMRI) including diffusion-weighted MRI (DWI), dynamic contrast-enhanced (DCE)-MRI, comparing with PET-CT. These new emerging provide not only anatomic but also functional imaging, allowing detection of small volumes of active tumor at diagnosis and early disease relapse, which may not result in detectable morphological changes at conventional imaging. This information is useful in distinguishing between recurrent/residual tumor and post-treatment changes and assessing treatment response, with a clear impact on patient management. Both PET-CT and now fMRI have proved to be very valuable tools for evaluation of gynecologic tumors. Most papers try to compare these techniques, but in our experience both are complementary in management of these patients. Meanwhile PET-CT is superior in diagnosis of ganglionar disease; fMRI presents higher accuracy in local preoperative staging. Both techniques can be used as biomarkers of tumor response and present high accuracy in diagnosis of local recurrence and peritoneal dissemination, with complementary roles depending on histological type, anatomic location and tumoral volume. PMID:22315683
Salama, Gayle R; Heier, Linda A; Patel, Praneil; Ramakrishna, Rohan; Magge, Rajiv; Tsiouris, Apostolos John
2017-01-01
In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes.
Salama, Gayle R.; Heier, Linda A.; Patel, Praneil; Ramakrishna, Rohan; Magge, Rajiv; Tsiouris, Apostolos John
2018-01-01
In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes. PMID:29403420
Real-time fMRI: a tool for local brain regulation.
Caria, Andrea; Sitaram, Ranganatha; Birbaumer, Niels
2012-10-01
Real-time fMRI permits simultaneous measurement and observation of brain activity during an ongoing task. One of the most challenging applications of real-time fMRI in neuroscientific and clinical research is the possibility of acquiring volitional control of localized brain activity using real-time fMRI-based neurofeedback protocols. Real-time fMRI allows the experimenter to noninvasively manipulate brain activity as an independent variable to observe the effects on behavior. Real-time fMRI neurofeedback studies demonstrated that learned control of the local brain activity leads to specific changes in behavior. Here, the authors describe the implementation and application of real-time fMRI with particular emphasis on the self-regulation of local brain activity and the investigation of brain-function relationships. Real-time fMRI represents a promising new approach to cognitive neuroscience that could complement traditional neuroimaging techniques by providing more causal insights into the functional role of circumscribed brain regions in behavior.
Minati, Ludovico; Visani, Elisa; Dowell, Nick G; Medford, Nick; Critchley, Hugo D
2011-01-01
Brain near-infrared spectroscopy (NIRS) is emerging as a potential alternative to functional MRI (fMRI). To date, no study has explicitly compared the two techniques in terms of measurement variability, a key parameter dictating attainable statistical power. Here, NIRS and fMRI were simultaneously recorded during event-related visual stimulation. Inter-subject coefficients of variation (CVs) for peak response amplitude were considerably larger for NIRS than fMRI, but inter-subject CVs for response latency and intra-subject CVs for response amplitude were overall comparable. Our results may represent an optimistic estimate of the CVs of NIRS measurements, as optode positioning was guided by structural MRI, which is normally unavailable. We conclude that fMRI may be preferable to NIRS for group comparisons, but NIRS is equally powerful when comparing conditions within participants. The discrepancy between inter- and intra-subject CVs is likely related to variability in head anatomy and tissue properties which may be better accounted for by emerging NIRS technology. PMID:21780948
Breaking down the barriers: fMRI applications in pain, analgesia and analgesics
Borsook, David; Becerra, Lino R
2006-01-01
This review summarizes functional magnetic resonance imaging (fMRI) findings that have informed our current understanding of pain, analgesia and related phenomena, and discusses the potential role of fMRI in improved therapeutic approaches to pain. It is divided into 3 main sections: (1) fMRI studies of acute and chronic pain. Physiological studies of pain have found numerous regions of the brain to be involved in the interpretation of the 'pain experience'; studies in chronic pain conditions have identified a significant CNS component; and fMRI studies of surrogate models of chronic pain are also being used to further this understanding. (2) fMRI studies of endogenous pain processing including placebo, empathy, attention or cognitive modulation of pain. (3) The use of fMRI to evaluate the effects of analgesics on brain function in acute and chronic pain. fMRI has already provided novel insights into the neurobiology of pain. These insights should significantly advance therapeutic approaches to chronic pain. PMID:16982005
Agarwal, Shruti; Lu, Hanzhang; Pillai, Jay J
2017-08-01
The aim of this study was to explore whether the phenomenon of brain tumor-related neurovascular uncoupling (NVU) in resting-state blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) (rsfMRI) may also affect the resting-state fMRI (rsfMRI) frequency domain metrics the amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF). Twelve de novo brain tumor patients, who underwent clinical fMRI examinations, including task-based fMRI (tbfMRI) and rsfMRI, were included in this Institutional Review Board-approved study. Each patient displayed decreased/absent tbfMRI activation in the primary ipsilesional (IL) sensorimotor cortex in the absence of a corresponding motor deficit or suboptimal task performance, consistent with NVU. Z-score maps for the motor tasks were obtained from general linear model analysis (reflecting motor activation vs. rest). Seed-based correlation analysis (SCA) maps of sensorimotor network, ALFF, and fALFF were calculated from rsfMRI data. Precentral and postcentral gyri in contralesional (CL) and IL hemispheres were parcellated using an automated anatomical labeling template for each patient. Region of interest (ROI) analysis was performed on four maps: tbfMRI, SCA, ALFF, and fALFF. Voxel values in the CL and IL ROIs of each map were divided by the corresponding global mean of ALFF and fALFF in the cortical brain tissue. Group analysis revealed significantly decreased IL ALFF (p = 0.02) and fALFF (p = 0.03) metrics compared with CL ROIs, consistent with similar findings of significantly decreased IL BOLD signal for tbfMRI (p = 0.0005) and SCA maps (p = 0.0004). The frequency domain metrics ALFF and fALFF may be markers of lesion-induced NVU in rsfMRI similar to previously reported alterations in tbfMRI activation and SCA-derived resting-state functional connectivity maps.
Integrated microchip incorporating atomic magnetometer and microfluidic channel for NMR and MRI
Ledbetter, Micah P [Oakland, CA; Savukov, Igor M [Los Alamos, NM; Budker, Dmitry [El Cerrito, CA; Shah, Vishal K [Plainsboro, NJ; Knappe, Svenja [Boulder, CO; Kitching, John [Boulder, CO; Michalak, David J [Berkeley, CA; Xu, Shoujun [Houston, TX; Pines, Alexander [Berkeley, CA
2011-08-09
An integral microfluidic device includes an alkali vapor cell and microfluidic channel, which can be used to detect magnetism for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Small magnetic fields in the vicinity of the vapor cell can be measured by optically polarizing and probing the spin precession in the small magnetic field. This can then be used to detect the magnetic field of in encoded analyte in the adjacent microfluidic channel. The magnetism in the microfluidic channel can be modulated by applying an appropriate series of radio or audio frequency pulses upstream from the microfluidic chip (the remote detection modality) to yield a sensitive means of detecting NMR and MRI.
Rojas, Gonzalo M; Fuentes, Jorge A; Gálvez, Marcelo
2016-01-01
Multiple functional MRI (fMRI)-based functional connectivity networks were obtained by Yeo et al. (2011), and the visualization of these complex networks is a difficult task. Also, the combination of functional connectivity networks determined by fMRI with electroencephalography (EEG) data could be a very useful tool. Mobile devices are becoming increasingly common among users, and for this reason, we describe here two applications for Android and iOS mobile devices: one that shows in an interactive way the seven Yeo functional connectivity networks, and another application that shows the relative position of 10-20 EEG electrodes with Yeo's seven functional connectivity networks.
Sparse dictionary learning of resting state fMRI networks.
Eavani, Harini; Filipovych, Roman; Davatzikos, Christos; Satterthwaite, Theodore D; Gur, Raquel E; Gur, Ruben C
2012-07-02
Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks. We propose two ways of formulating the sparse functional network learning problem that characterize the underlying functional connectivity from different perspectives. Our results show that the whole-brain functional connectivity can be concisely represented with highly modular, overlapping task-positive/negative pairs of sub-networks.
A novel optical detector concept for dedicated and multi-modality in vivo small animal imaging
NASA Astrophysics Data System (ADS)
Peter, Jörg; Schulz, Ralf B.; Unholtz, Daniel; Semmler, Wolfhard
2007-07-01
An optical detector suitable for inclusion in tomographic arrangements for non-contact in vivo bioluminescence and fluorescence imaging applications is proposed. It consists of a microlens array (MLA) intended for field-of-view definition, a large-field complementary metal-oxide-semiconductor (CMOS) chip for light detection, a septum mask for cross-talk suppression, and an exchangeable filter to block excitation light. Prototype detector units with sensitive areas of 2.5 cm x 5 cm each were assembled. The CMOS sensor constitutes a 512 x 1024 photodiode matrix at 48 μm pixel pitch. Refractive MLAs with plano-convex lenses of 480 μm in diameter and pitch were selected resulting in a 55 x 105 lens matrix. The CMOS sensor is aligned on the focal plane of the MLA at 2.15mm distance. To separate individual microlens images an opaque multi-bore septum mask of 2.1mm in thickness and bore diameters of 400 μm at 480 μm pitch, aligned with the lens pattern, is placed between MLA and CMOS. Intrinsic spatial detector resolution and sensitivity was evaluated experimentally as a function of detector-object distance. Due to its small overall dimensions such detectors can be favorably packed for tomographic imaging (optical diffusion tomography, ODT) yielding complete 2 π field-of-view coverage. We also present a design study of a device intended to simultaneously image positron labeled substrates (positron emission tomography, PET) and optical molecular probes in small animals such as mice and rats. It consists of a cylindrical allocation of optical detector units which form an inner detector ring while PET detector blocks are mounted in radial extension, those gaining complementary information in a single, intrinsically coregistered experimental data acquisition study. Finally, in a second design study we propose a method for integrated optical and magnetic resonance imaging (MRI) which yields in vivo functional/molecular information that is intrinsically registered with the anatomy of the image object.
Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue
NASA Astrophysics Data System (ADS)
Davis, Scott C.; Pogue, Brian W.; Springett, Roger; Leussler, Christoph; Mazurkewitz, Peter; Tuttle, Stephen B.; Gibbs-Strauss, Summer L.; Jiang, Shudong S.; Dehghani, Hamid; Paulsen, Keith D.
2008-06-01
A multichannel spectrally resolved optical tomography system to image molecular targets in small animals from within a clinical MRI is described. Long source/detector fibers operate in contact mode and couple light from the tissue surface in the magnet bore to 16 spectrometers, each containing two optical gratings optimized for the near infrared wavelength range. High sensitivity, cooled charge coupled devices connected to each spectrograph provide detection of the spectrally resolved signal, with exposure times that are automated for acquisition at each fiber. The design allows spectral fitting of the remission light, thereby separating the fluorescence signal from the nonspecific background, which improves the accuracy and sensitivity when imaging low fluorophore concentrations. Images of fluorescence yield are recovered using a nonlinear reconstruction approach based on the diffusion approximation of photon propagation in tissue. The tissue morphology derived from the MR images serves as an imaging template to guide the optical reconstruction algorithm. Sensitivity studies show that recovered values of indocyanine green fluorescence yield are linear to concentrations of 1nM in a 70mm diameter homogeneous phantom, and detection is feasible to near 10pM. Phantom data also demonstrate imaging capabilities of imperfect fluorophore uptake in tissue volumes of clinically relevant sizes. A unique rodent MR coil provides optical fiber access for simultaneous optical and MR data acquisition of small animals. A pilot murine study using an orthotopic glioma tumor model demonstrates optical-MRI imaging of an epidermal growth factor receptor targeted fluorescent probe in vivo.
Kirino, Eiji; Tanaka, Shoji; Fukuta, Mayuko; Inami, Rie; Arai, Heii; Inoue, Reiichi; Aoki, Shigeki
2017-04-01
It remains unclear how functional connectivity (FC) may be related to specific cognitive domains in neuropsychiatric disorders. Here we used simultaneous resting-state functional magnetic resonance imaging (rsfMRI) and electroencephalography (EEG) recording in patients with schizophrenia, to evaluate FC within and outside the default mode network (DMN). Our study population included 14 patients with schizophrenia and 15 healthy control participants. From all participants, we acquired rsfMRI data, and simultaneously recorded EEG data using an MR-compatible amplifier. We analyzed the rsfMRI-EEG data, and used the CONN toolbox to calculate the FC between regions of interest. We also performed between-group comparisons of standardized low-resolution electromagnetic tomography-based intracortical lagged coherence for each EEG frequency band. FC within the DMN, as measured by rsfMRI and EEG, did not significantly differ between groups. Analysis of rsfMRI data showed that FC between the right posterior inferior temporal gyrus and medial prefrontal cortex was stronger among patients with schizophrenia compared to control participants. Analysis of FC within the DMN using rsfMRI and EEG data revealed no significant differences between patients with schizophrenia and control participants. However, rsfMRI data revealed over-modulated FC between the medial prefrontal cortex and right posterior inferior temporal gyrus in patients with schizophrenia compared to control participants, suggesting that the patients had altered FC, with higher correlations across nodes within and outside of the DMN. Further studies using simultaneous rsfMRI and EEG are required to determine whether altered FC within the DMN is associated with schizophrenia. © 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.
Karimpoor, Mahta; Tam, Fred; Strother, Stephen C.; Fischer, Corinne E.; Schweizer, Tom A.; Graham, Simon J.
2015-01-01
Neuropsychological tests behavioral tasks that very commonly involve handwriting and drawing are widely used in the clinic to detect abnormal brain function. Functional magnetic resonance imaging (fMRI) may be useful in increasing the specificity of such tests. However, performing complex pen-and-paper tests during fMRI involves engineering challenges. Previously, we developed an fMRI-compatible, computerized tablet system to address this issue. However, the tablet did not include visual feedback of hand position (VFHP), a human factors component that may be important for fMRI of certain patient populations. A real-time system was thus developed to provide VFHP and integrated with the tablet in an augmented reality display. The effectiveness of the system was initially tested in young healthy adults who performed various handwriting tasks in front of a computer display with and without VFHP. Pilot fMRI of writing tasks were performed by two representative individuals with and without VFHP. Quantitative analysis of the behavioral results indicated improved writing performance with VFHP. The pilot fMRI results suggest that writing with VFHP requires less neural resources compared to the without VFHP condition, to maintain similar behavior. Thus, the tablet system with VFHP is recommended for future fMRI studies involving patients with impaired brain function and where ecologically valid behavior is important. PMID:25859201
O’Connell, Caitlin; Ho, Leon C.; Murphy, Matthew C.; Conner, Ian P.; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C.
2016-01-01
Human visual performance has been observed to exhibit superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine if the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI (DKI), respectively in 15 healthy individuals at 3 Tesla. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In DKI, the brain regions mapping to the lower visual field exhibited higher mean kurtosis but not fractional anisotropy or mean diffusivity when compared to the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing. PMID:27631541
Guinchard, A-C; Ghazaleh, Naghmeh; Saenz, M; Fornari, E; Prior, J O; Maeder, P; Adib, S; Maire, R
2016-11-01
We studied possible brain changes with functional MRI (fMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) in a patient with a rare, high-intensity "objective tinnitus" (high-level SOAEs) in the left ear of 10 years duration, with no associated hearing loss. This is the first case of objective cochlear tinnitus to be investigated with functional neuroimaging. The objective cochlear tinnitus was measured by Spontaneous Otoacoustic Emissions (SOAE) equipment (frequency 9689 Hz, intensity 57 dB SPL) and is clearly audible to anyone standing near the patient. Functional modifications in primary auditory areas and other brain regions were evaluated using 3T and 7T fMRI and FDG-PET. In the fMRI evaluations, a saturation of the auditory cortex at the tinnitus frequency was observed, but the global cortical tonotopic organization remained intact when compared to the results of fMRI of healthy subjects. The FDG-PET showed no evidence of an increase or decrease of activity in the auditory cortices or in the limbic system as compared to normal subjects. In this patient with high-intensity objective cochlear tinnitus, fMRI and FDG-PET showed no significant brain reorganization in auditory areas and/or in the limbic system, as reported in the literature in patients with chronic subjective tinnitus. Copyright © 2016 Elsevier B.V. All rights reserved.
Functional neuroimaging for addiction medicine: From mechanisms to practical considerations.
Ekhtiari, Hamed; Faghiri, Ashkan; Oghabian, Mohammad-Ali; Paulus, Martin P
2016-01-01
During last 20 years, neuroimaging with functional magnetic resonance imaging (fMRI) in people with drug addictions has introduced a wide range of quantitative biomarkers from brain's regional or network level activities during different cognitive functions. These quantitative biomarkers could be potentially used for assessment, planning, prediction, and monitoring for "addiction medicine" during screening, acute intoxication, admission to a program, completion of an acute program, admission to a long-term program, and postgraduation follow-up. In this chapter, we have briefly reviewed main neurocognitive targets for fMRI studies associated with addictive behaviors, main study types using fMRI among drug dependents, and potential applications for fMRI in addiction medicine. Main challenges and limitations for extending fMRI studies and evidences aiming at clinical applications in addiction medicine are also discussed. There is still a significant gap between available evidences from group-based fMRI studies and personalized decisions during daily practices in addiction medicine. It will be important to fill this gap with large-scale clinical trials and longitudinal studies using fMRI measures with a well-defined strategic plan for the future. © 2016 Elsevier B.V. All rights reserved.
Estimation of the EEG power spectrum using MRI T(2) relaxation time in traumatic brain injury.
Thatcher, R W; Biver, C; Gomez, J F; North, D; Curtin, R; Walker, R A; Salazar, A
2001-09-01
To study the relationship between magnetic resonance imaging (MRI) T(2) relaxation time and the power spectrum of the electroencephalogram (EEG) in long-term follow up of traumatic brain injury. Nineteen channel quantitative electroencephalograms or qEEG, tests of cognitive function and quantitative MRI T(2) relaxation times (qMRI) were measured in 18 mild to severe closed head injured outpatients 2 months to 4.6 years after injury and 11 normal controls. MRI T(2) and the Laplacian of T(2) were then correlated with the power spectrum of the scalp electrical potentials and current source densities of the qEEG. qEEG and qMRI T(2) were related by a frequency tuning with maxima in the alpha (8-12Hz) and the lower EEG frequencies (0.5-5Hz), which varied as a function of spatial location. The Laplacian of T(2) acted like a spatial-temporal "lens" by increasing the spatial-temporal resolution of correlation between 3-dimensional T(2) and the ear referenced alert but resting spontaneous qEEG. The severity of traumatic brain injury can be modeled by a linear transfer function that relates the molecular qMRI to qEEG resonant frequencies.
Takamura, T; Hanakawa, T
2017-07-01
Although functional magnetic resonance imaging (fMRI) has long been used to assess task-related brain activity in neuropsychiatric disorders, it has not yet become a widely available clinical tool. Resting-state fMRI (rs-fMRI) has been the subject of recent attention in the fields of basic and clinical neuroimaging research. This method enables investigation of the functional organization of the brain and alterations of resting-state networks (RSNs) in patients with neuropsychiatric disorders. Rs-fMRI does not require participants to perform a demanding task, in contrast to task fMRI, which often requires participants to follow complex instructions. Rs-fMRI has a number of advantages over task fMRI for application with neuropsychiatric patients, for example, although applications of task fMR to participants for healthy are easy. However, it is difficult to apply these applications to patients with psychiatric and neurological disorders, because they may have difficulty in performing demanding cognitive task. Here, we review the basic methodology and analysis techniques relevant to clinical studies, and the clinical applications of the technique for examining neuropsychiatric disorders, focusing on mood disorders (major depressive disorder and bipolar disorder) and dementia (Alzheimer's disease and mild cognitive impairment).
Functional Evaluation of Hidden Figures Object Analysis in Children with Autistic Disorder
ERIC Educational Resources Information Center
Malisza, Krisztina L.; Clancy, Christine; Shiloff, Deborah; Foreman, Derek; Holden, Jeanette; Jones, Cheryl; Paulson, K.; Summers, Randy; Yu, C. T.; Chudley, Albert E.
2011-01-01
Functional magnetic resonance imaging (fMRI) during performance of a hidden figures task (HFT) was used to compare differences in brain function in children diagnosed with autism disorder (AD) compared to children with attention-deficit/hyperactivity disorder (ADHD) and typical controls (TC). Overall greater functional MRI activity was observed in…
Yu, Yang; Zhao, Weina; Li, Siou; Yin, Changhao
2017-03-08
Amnestic mild cognitive impairment (aMCI) and vascular mild cognitive impairment (VaMCI) comprise the 2 main types of mild cognitive impairment (MCI). The first condition generally progresses to Alzheimer's disease, whereas the second is likely to develop into vascular dementia (VD). The brain structure and function of patients with MCI differ from those of normal elderly individuals. However, whether brain structures or functions differ between these 2 MCI subtypes has not been studied. This study is designed to analyse neuroimages of brain in patients with VaMCI and aMCI using multimodality MRI (structural MRI (sMRI), functional MRI and diffusion tensor imaging (DTI)). In this study, 80 participants diagnosed with aMCI, 80 participants diagnosed with VaMCI, and 80 age-matched, gender-matched and education-matched normal controls (NCs) will be recruited to the Hongqi Hospital of Mudanjiang Medical University, Heilongjiang, China. All participants will undergo neuroimaging and neuropsychological evaluations. The primary outcome measures will be (1) microstructural alterations revealed by multimodal MRIs, including sMRI, resting-state functional MRI and DTI; and (2) a neuropsychological evaluation, including the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Auditory Verbal Learning Test (AVLT), Memory and Executive Screening (MES), trail making test, Stroop colour naming condition and Clinical Dementia Rating (CDR) scale, to evaluate global cognition, memory function, attention, visuospatial skills, processing speed, executive function and emotion, respectively. NCT02706210; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Farrar, Danielle; Budson, Andrew E
2017-04-01
While the relationship between diffusion tensor imaging (DTI) measurements and training effects is explored by Voelker et al. (this issue), a cursory discussion of functional magnetic resonance imaging (fMRI) measurements categorizes increased activation with findings of greater white matter integrity. Evidence of the relationship between fMRI activation and white matter integrity is conflicting, as is the relationship between fMRI activation and training effects. An examination of the changes in fMRI activation in response to training is helpful, but the relationship between DTI and fMRI activation, particularly in the context of white matter changes, must be examined further before general conclusions can be drawn.
Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping.
Pinho, Ana Luísa; Amadon, Alexis; Ruest, Torsten; Fabre, Murielle; Dohmatob, Elvis; Denghien, Isabelle; Ginisty, Chantal; Becuwe-Desmidt, Séverine; Roger, Séverine; Laurier, Laurence; Joly-Testault, Véronique; Médiouni-Cloarec, Gaëlle; Doublé, Christine; Martins, Bernadette; Pinel, Philippe; Eger, Evelyn; Varoquaux, Gaël; Pallier, Christophe; Dehaene, Stanislas; Hertz-Pannier, Lucie; Thirion, Bertrand
2018-06-12
Functional Magnetic Resonance Imaging (fMRI) has furthered brain mapping on perceptual, motor, as well as higher-level cognitive functions. However, to date, no data collection has systematically addressed the functional mapping of cognitive mechanisms at a fine spatial scale. The Individual Brain Charting (IBC) project stands for a high-resolution multi-task fMRI dataset that intends to provide the objective basis toward a comprehensive functional atlas of the human brain. The data refer to a cohort of 12 participants performing many different tasks. The large amount of task-fMRI data on the same subjects yields a precise mapping of the underlying functions, free from both inter-subject and inter-site variability. The present article gives a detailed description of the first release of the IBC dataset. It comprises a dozen of tasks, addressing both low- and high- level cognitive functions. This openly available dataset is thus intended to become a reference for cognitive brain mapping.
Li, Zhengjun; Vidorreta, Marta; Katchmar, Natalie; Alsop, David C; Wolf, Daniel H; Detre, John A
2018-06-01
Resting state fMRI (rs-fMRI) provides imaging biomarkers of task-independent brain function that can be associated with clinical variables or modulated by interventions such as behavioral training or pharmacological manipulations. These biomarkers include time-averaged regional brain function as manifested by regional cerebral blood flow (CBF) measured using arterial spin labeled (ASL) perfusion MRI and correlated temporal fluctuations of function across brain networks with either ASL or blood oxygenation level dependent (BOLD) fMRI. Resting-state studies are typically carried out using just one of several prescribed state conditions such as eyes closed (EC), eyes open (EO), or visual fixation on a cross-hair (FIX), which may affect the reliability and specificity of rs-fMRI. In this study, we collected test-retest ASL MRI data during 4 resting-state task conditions: EC, EO, FIX and PVT (low-frequency psychomotor vigilance task), and examined the effects of these task conditions on reliability and reproducibility as well as trait specificity of regional brain function. We also acquired resting-state BOLD fMRI under FIX and compared the network connectivity reliabilities between the four ASL conditions and the BOLD FIX condition. For resting-state ASL data, EC provided the highest CBF reliability, reproducibility, trait specificity, and network connectivity reliability, followed by EO, while FIX was lowest on all of these measures. PVT demonstrated lower CBF reliability, reproducibility and trait specificity than EO and EC. Overall network connectivity reliability was comparable between ASL and BOLD. Our findings confirm ASL CBF as a reliable, stable, and consistent measure of resting-state regional brain function and support the use of EC or EO over FIX and PVT as the resting-state condition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Zhang, Li; Liang, Shuang; Liu, Ruiqing; Yuan, Tianmeng; Zhang, Shulai; Xu, Zushun; Xu, Haibo
2016-08-01
Molecular imaging is of significant importance for early detection and diagnosis of cancer. Herein, a novel core-shell magnetic microsphere for dual modal magnetic resonance imaging (MRI) and optical imaging was produced by one-pot emulsifier-free emulsion polymerization, which could provide high resolution rate of histologic structure information and realize high sensitive detection at the same time. The synthesized magnetic microspheres composed of cores containing oleic acid (OA) and sodium undecylenate (NaUA) modified Fe3O4 nanoparticles and styrene (St), Glycidyl methacrylate (GMA), and polymerizable lanthanide complexes (Gd(AA)3Phen and Eu(AA)3Phen) polymerized on the surface for outer shells. Fluorescence spectra show characteristic emission peaks from Eu(3+) at 590nm and 615nm and vivid red fluorescence luminescence can be observed by 2-photon confocal scanning laser microscopy (CLSM). In vitro cytotoxicity tests based on the MTT assay demonstrate good cytocompatibility, the composites have longitudinal relaxivity value (r1) of 8.39mM(-1)s(-1) and also have transverse relaxivity value (r2) of 71.18mM(-1)s(-1) at clinical 3.0 T MR scanner. In vitro and in vivo MRI studies exhibit high signal enhancement on both T1- and T2-weighted MR images. These fascinating multifunctional properties suggest that the polymer microspheres have large clinical potential as multi-modal MRI/optical probes. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Hyperpolarized xenon-129 production and applications
NASA Astrophysics Data System (ADS)
Ruset, Iulian C.
Hyperpolarized 3He and 129Xe were initially developed and used in the nuclear physics community. Lately they are primarily used in Medical Resonance Imaging (MRI). Although first MRI polarized gas images were acquired using 129Xe, the research community has focused mostly on 3He, due to the well-known polarizing methods and higher polarization numbers achieved. The main purpose of this thesis is to present a novel design of a large-scale SEOP polarizer for producing large quantities of highly polarized 129Xe. High Rb-Xe spin-exchange rates through long-lived van de Waals molecules at low total pressure, implemented in a novel counterflow polarizer design, resulted in xenon polarization as high as 50% for 1.2 liters/hour, with a maximum of 64% for 0.3 l/h. We characterized and improved the polarization process by finding the optimum operating parameters of the polarizer. Two new methods to efficiently use high-power diode lasers are described: a new optical arrangement for a better beam shaping of fiber coupled lasers and the first external-cavity spectrum narrowing of a stack of laser diode arrays. A new accumulation technique for the hyperpolarized xenon was developed and full recovery of polarization after a freeze-thaw cycle was demonstrated for the first time. Two approaches for xenon delivery, frozen and gas states, were developed. Hyperpolarized xenon transportation to Brigham and Women's Hospital was successfully accomplished for collaborative research. First MRI images using hyperpolarized xenon acquired at BWH are presented. Final chapter is focused on describing a low field human MRI scanner using hyperpolarized 3He. We built a human scale imager with open access for orientational studies of the lung functionality. Horizontal and vertical human lung images were acquired as a first stage of this project.
2017-03-01
Use of non-ionizing radiation (NIR) for diagnostic purposes allows non-invasive assessment of the structure and function of the human body and is widely employed in medical care. ICNIRP has published previous statements about the protection of patients during medical magnetic resonance imaging (MRI), but diagnostic methods using other forms of NIR have not been considered. This statement reviews the range of diagnostic NIR devices currently used in clinical settings; documents the relevant regulations and policies covering patients and health care workers; reviews the evidence around potential health risks to patients and health care workers exposed to diagnostic NIR; and identifies situations of high NIR exposure from diagnostic devices in which patients or health care workers might not be adequately protected by current regulations. Diagnostic technologies were classified by the types of NIR that they employ. The aim was to describe the techniques in terms of general device categories which may encompass more specific devices or techniques with similar scientific principles. Relevant legally-binding regulations for protection of patients and workers and organizations responsible for those regulations were summarized. Review of the epidemiological evidence concerning health risks associated with exposure to diagnostic NIR highlighted a lack of data on potential risks to the fetus exposed to MRI during the first trimester, and on long-term health risks in workers exposed to MRI. Most of the relevant epidemiological evidence that is currently available relates to MRI or ultrasound. Exposure limits are needed for exposures from diagnostic technologies using optical radiation within the body. There is a lack of data regarding risk of congenital malformations following exposure to ultrasound in utero in the first trimester and also about the possible health effects of interactions between ultrasound and contrast media.
Hou, Lin; Yang, Xiaomin; Ren, Junxiao; Wang, Yongchao; Zhang, Huijuan; Feng, Qianhua; Shi, Yuyang; Shan, Xiaoning; Yuan, Yujie; Zhang, Zhenzhong
2016-01-01
Recently, nanomaterials with multiple functions, such as drug carrier, magnetic resonance imaging (MRI) and optical imaging, and photothermal therapy, have become more and more popular in cancer research. In this work, a novel redox-sensitive system constructed from hyaluronic acid (HA), single-walled carbon nanotubes (SWCNTs), doxorubicin (DOX), and gadolinium (Gd) was successfully developed. Herein, HA-modified SWCNTs (SWCNTs-HA) was first synthesized, and then DOX was conjugated with HA by disulfide bond (SWCNTs-HA-ss-DOX). Finally, MRI contrast agents, Gd(3+)-ion loading occurred through the sidewall defects of SWCNTs, whose cytotoxicity could be sequestered within the SWCNTs. In vitro release of DOX showed that this system accomplished much faster drug release under reducing condition. Confocal microscopy analysis confirmed that Gd/SWCNTs-HA-ss-DOX were capable of simultaneously delivering DOX and SWCNTs into Michigan Cancer Foundation-7 cells via HA receptor-mediated endocytosis followed by rapid transport of cargoes into the cytosol. Enhanced cytotoxicity of Gd/SWCNTs-HA-ss-DOX further proved that the sensitive system was more potent for intracellular drug delivery as compared with the insensitive control. Meanwhile, tumor cell killing potency was improved when Gd/SWCNTs-HA-ss-DOX were combined with near-infrared irradiation, with IC50 of 0.61 µg/mL at 48 hours. In vivo investigation demonstrated that Gd/SWCNTs-HA-ss-DOX could effectively accumulate in tumor sites and possessed the greatest synergistic antitumor efficacy, especially under the 808 nm laser irradiation. More importantly, this system could be used as a contrast agent for MRI to identify the location and extent of tumor tissues. These results suggested that Gd/SWCNTs-HA-ss-DOX might be a promising system for targeting chemo-photothermal therapy and MRI diagnosis in future clinical anticancer applications.
2017-01-01
Abstract Use of non-ionizing radiation (NIR) for diagnostic purposes allows non-invasive assessment of the structure and function of the human body and is widely employed in medical care. ICNIRP has published previous statements about the protection of patients during medical magnetic resonance imaging (MRI), but diagnostic methods using other forms of NIR have not been considered. This statement reviews the range of diagnostic NIR devices currently used in clinical settings; documents the relevant regulations and policies covering patients and health care workers; reviews the evidence around potential health risks to patients and health care workers exposed to diagnostic NIR; and identifies situations of high NIR exposure from diagnostic devices in which patients or health care workers might not be adequately protected by current regulations. Diagnostic technologies were classified by the types of NIR that they employ. The aim was to describe the techniques in terms of general device categories which may encompass more specific devices or techniques with similar scientific principles. Relevant legally-binding regulations for protection of patients and workers and organizations responsible for those regulations were summarized. Review of the epidemiological evidence concerning health risks associated with exposure to diagnostic NIR highlighted a lack of data on potential risks to the fetus exposed to MRI during the first trimester, and on long-term health risks in workers exposed to MRI. Most of the relevant epidemiological evidence that is currently available relates to MRI or ultrasound. Exposure limits are needed for exposures from diagnostic technologies using optical radiation within the body. There is a lack of data regarding risk of congenital malformations following exposure to ultrasound in utero in the first trimester and also about the possible health effects of interactions between ultrasound and contrast media. PMID:28121732
Gawryluk, Jodie R.; Mazerolle, Erin L.; D'Arcy, Ryan C. N.
2014-01-01
Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows for visualization of activated brain regions. Until recently, fMRI studies have focused on gray matter. There are two main reasons white matter fMRI remains controversial: (1) the blood oxygen level dependent (BOLD) fMRI signal depends on cerebral blood flow and volume, which are lower in white matter than gray matter and (2) fMRI signal has been associated with post-synaptic potentials (mainly localized in gray matter) as opposed to action potentials (the primary type of neural activity in white matter). Despite these observations, there is no direct evidence against measuring fMRI activation in white matter and reports of fMRI activation in white matter continue to increase. The questions underlying white matter fMRI activation are important. White matter fMRI activation has the potential to greatly expand the breadth of brain connectivity research, as well as improve the assessment and diagnosis of white matter and connectivity disorders. The current review provides an overview of the motivation to investigate white matter fMRI activation, as well as the published evidence of this phenomenon. We speculate on possible neurophysiologic bases of white matter fMRI signals, and discuss potential explanations for why reports of white matter fMRI activation are relatively scarce. We end with a discussion of future basic and clinical research directions in the study of white matter fMRI. PMID:25152709
Kim, Hyun Gi; Shin, Na-Young; Bak, Yunjin; Kim, Kyung Ran; Jung, Young-Chul; Han, Kyunghwa; Lee, Seung-Koo; Lim, Soo Mee
2017-07-01
To characterize the pattern of altered intrinsic brain activity in gastric cancer patients after chemotherapy (CTx). Patients before and after CTx (n = 14) and control subjects (n = 11) underwent resting-state functional MRI (rsfMRI) at baseline and 3 months after CTx. Regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF), and fractional ALFF (fALFF) were calculated and compared between the groups using the two-sample t test. Correlation analysis was also performed between rsfMRI values (i.e., ReHo, ALFF, and fALFF) and neuropsychological test results. Patients showed poor performance in verbal memory and executive function and decreased rsfMRI values in the frontal areas even before CTx and showed decreased attention/working memory and executive function after CTx compared to the control subjects. In direct comparison of values before and after CTx, there were no significant differences in neuropsychological test scores, but decreased rsfMRI values were observed at the frontal lobes and right cerebellar region. Among rsfMRI values, lower ALFF in the left inferior frontal gyrus was significantly associated with poor performance of the executive function test. We observed decreased attention/working memory and executive function that corresponded to the decline of frontal region activation in gastric cancer patients who underwent CTx. • Intrinsic brain activity of gastric cancer patients after chemotherapy was described. • Brain activity and neuropsychological test results were correlated. • Working memory and executive function decreased after chemotherapy. • Decreased cognitive function corresponded to decreased activation of the frontal region.
Structural and Functional Bases for Individual Differences in Motor Learning
Tomassini, Valentina; Jbabdi, Saad; Kincses, Zsigmond T.; Bosnell, Rose; Douaud, Gwenaelle; Pozzilli, Carlo; Matthews, Paul M.; Johansen-Berg, Heidi
2013-01-01
People vary in their ability to learn new motor skills. We hypothesize that between-subject variability in brain structure and function can explain differences in learning. We use brain functional and structural MRI methods to characterize such neural correlates of individual variations in motor learning. Healthy subjects applied isometric grip force of varying magnitudes with their right hands cued visually to generate smoothly-varying pressures following a regular pattern. We tested whether individual variations in motor learning were associated with anatomically colocalized variations in magnitude of functional MRI (fMRI) signal or in MRI differences related to white and grey matter microstructure. We found that individual motor learning was correlated with greater functional activation in the prefrontal, premotor, and parietal cortices, as well as in the basal ganglia and cerebellum. Structural MRI correlates were found in the premotor cortex [for fractional anisotropy (FA)] and in the cerebellum [for both grey matter density and FA]. The cerebellar microstructural differences were anatomically colocalized with fMRI correlates of learning. This study thus suggests that variations across the population in the function and structure of specific brain regions for motor control explain some of the individual differences in skill learning. This strengthens the notion that brain structure determines some limits to cognitive function even in a healthy population. Along with evidence from pathology suggesting a role for these regions in spontaneous motor recovery, our results also highlight potential targets for therapeutic interventions designed to maximize plasticity for recovery of similar visuomotor skills after brain injury. PMID:20533562
Update on the magnetic resonance imaging core of the Alzheimer's disease neuroimaging initiative.
Jack, Clifford R; Bernstein, Matt A; Borowski, Bret J; Gunter, Jeffrey L; Fox, Nick C; Thompson, Paul M; Schuff, Norbert; Krueger, Gunnar; Killiany, Ronald J; Decarli, Charles S; Dale, Anders M; Carmichael, Owen W; Tosun, Duygu; Weiner, Michael W
2010-05-01
Functions of the Alzheimer's Disease Neuroimaging Initiative (ADNI) magnetic resonance imaging (MRI) core fall into three categories: (1) those of the central MRI core laboratory at Mayo Clinic, Rochester, Minnesota, needed to generate high quality MRI data in all subjects at each time point; (2) those of the funded ADNI MRI core imaging analysis groups responsible for analyzing the MRI data; and (3) the joint function of the entire MRI core in designing and problem solving MR image acquisition, pre-processing, and analyses methods. The primary objective of ADNI was and continues to be improving methods for clinical trials in Alzheimer's disease. Our approach to the present ("ADNI-GO") and future ("ADNI-2," if funded) MRI protocol will be to maintain MRI methodological consistency in the previously enrolled "ADNI-1" subjects who are followed up longitudinally in ADNI-GO and ADNI-2. We will modernize and expand the MRI protocol for all newly enrolled ADNI-GO and ADNI-2 subjects. All newly enrolled subjects will be scanned at 3T with a core set of three sequence types: 3D T1-weighted volume, FLAIR, and a long TE gradient echo volumetric acquisition for micro hemorrhage detection. In addition to this core ADNI-GO and ADNI-2 protocol, we will perform vendor-specific pilot sub-studies of arterial spin-labeling perfusion, resting state functional connectivity, and diffusion tensor imaging. One of these sequences will be added to the core protocol on systems from each MRI vendor. These experimental sub-studies are designed to demonstrate the feasibility of acquiring useful data in a multicenter (but single vendor) setting for these three emerging MRI applications. Copyright 2010 The Alzheimer
Functional anatomy of the prostate: implications for treatment planning.
McLaughlin, Patrick W; Troyer, Sara; Berri, Sally; Narayana, Vrinda; Meirowitz, Amichay; Roberson, Peter L; Montie, James
2005-10-01
To summarize the functional anatomy relevant to prostate cancer treatment planning. Coronal, axial, and sagittal T2 magnetic resonance imaging (MRI) and MRI angiography were fused by mutual information and registered with computed tomography (CT) scan data sets to improve definition of zonal anatomy of the prostate and critical adjacent structures. The three major prostate zones (inner, outer, and anterior fibromuscular) are visible by T2 MRI imaging. The bladder, bladder neck, and internal (preprostatic) sphincter are a continuous muscular structure and clear definition of the preprostatic sphincter is difficult by MRI. Transition zone hypertrophy may efface the bladder neck and internal sphincter. The external "lower" sphincter is clearly visible by T2 MRI with wide variations in length. The critical erectile structures are the internal pudendal artery (defined by MRI angiogram or T2 MRI), corpus cavernosum, and neurovascular bundle. The neurovascular bundle is visible along the posterior lateral surface of the prostate on CT and MRI, but its terminal branches (cavernosal nerves) are not visible and must be defined by their relationship to the urethra within the genitourinary diaphragm. Visualization of the ejaculatory ducts within the prostate is possible on sagittal MRI. The anatomy of the prostate-rectum interface is clarified by MRI, as is the potentially important distinction of rectal muscle and rectal mucosa. Improved understanding of functional anatomy and imaging of the prostate and critical adjacent structures will improve prostate radiation therapy by improvement of dose and toxicity correlation, limitation of dose to critical structures, and potential improvement in post therapy quality of life.
Practice guideline summary: Use of fMRI in the presurgical evaluation of patients with epilepsy
Szaflarski, Jerzy P.; Gloss, David; Binder, Jeffrey R.; Gaillard, William D.; Golby, Alexandra J.; Holland, Scott K.; Ojemann, Jeffrey; Spencer, David C.; Swanson, Sara J.; French, Jacqueline A.; Theodore, William H.
2017-01-01
Objective: To assess the diagnostic accuracy and prognostic value of functional MRI (fMRI) in determining lateralization and predicting postsurgical language and memory outcomes. Methods: An 11-member panel evaluated and rated available evidence according to the 2004 American Academy of Neurology process. At least 2 panelists reviewed the full text of 172 articles and selected 37 for data extraction. Case reports, reports with <15 cases, meta-analyses, and editorials were excluded. Results and recommendations: The use of fMRI may be considered an option for lateralizing language functions in place of intracarotid amobarbital procedure (IAP) in patients with medial temporal lobe epilepsy (MTLE; Level C), temporal epilepsy in general (Level C), or extratemporal epilepsy (Level C). For patients with temporal neocortical epilepsy or temporal tumors, the evidence is insufficient (Level U). fMRI may be considered to predict postsurgical language deficits after anterior temporal lobe resection (Level C). The use of fMRI may be considered for lateralizing memory functions in place of IAP in patients with MTLE (Level C) but is of unclear utility in other epilepsy types (Level U). fMRI of verbal memory or language encoding should be considered for predicting verbal memory outcome (Level B). fMRI using nonverbal memory encoding may be considered for predicting visuospatial memory outcomes (Level C). Presurgical fMRI could be an adequate alternative to IAP memory testing for predicting verbal memory outcome (Level C). Clinicians should carefully advise patients of the risks and benefits of fMRI vs IAP during discussions concerning choice of specific modality in each case. PMID:28077494
Neural basis of exertional fatigue in the heat: A review of magnetic resonance imaging methods.
Tan, X R; Low, I C C; Stephenson, M C; Soong, T W; Lee, J K W
2018-03-01
The central nervous system, specifically the brain, is implicated in the development of exertional fatigue under a hot environment. Diverse neuroimaging techniques have been used to visualize the brain activity during or after exercise. Notably, the use of magnetic resonance imaging (MRI) has become prevalent due to its excellent spatial resolution and versatility. This review evaluates the significance and limitations of various brain MRI techniques in exercise studies-brain volumetric analysis, functional MRI, functional connectivity MRI, and arterial spin labeling. The review aims to provide a summary on the neural basis of exertional fatigue and proposes future directions for brain MRI studies. A systematic literature search was performed where a total of thirty-seven brain MRI studies associated with exercise, fatigue, or related physiological factors were reviewed. The findings suggest that with moderate dehydration, there is a decrease in total brain volume accompanied with expansion of ventricular volume. With exercise fatigue, there is increased activation of sensorimotor and cognitive brain areas, increased thalamo-insular activation and decreased interhemispheric connectivity in motor cortex. Under passive hyperthermia, there are regional changes in cerebral perfusion, a reduction in local connectivity in functional brain networks and an impairment to executive function. Current literature suggests that the brain structure and function are influenced by exercise, fatigue, and related physiological perturbations. However, there is still a dearth of knowledge and it is hoped that through understanding of MRI advantages and limitations, future studies will shed light on the central origin of exertional fatigue in the heat. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A Protocol for the Administration of Real-Time fMRI Neurofeedback Training
Sherwood, Matthew S.; Diller, Emily E.; Ey, Elizabeth; Ganapathy, Subhashini; Nelson, Jeremy T.; Parker, Jason G.
2017-01-01
Neurologic disorders are characterized by abnormal cellular-, molecular-, and circuit-level functions in the brain. New methods to induce and control neuroplastic processes and correct abnormal function, or even shift functions from damaged tissue to physiologically healthy brain regions, hold the potential to dramatically improve overall health. Of the current neuroplastic interventions in development, neurofeedback training (NFT) from functional Magnetic Resonance Imaging (fMRI) has the advantages of being completely non-invasive, non-pharmacologic, and spatially localized to target brain regions, as well as having no known side effects. Furthermore, NFT techniques, initially developed using fMRI, can often be translated to exercises that can be performed outside of the scanner without the aid of medical professionals or sophisticated medical equipment. In fMRI NFT, the fMRI signal is measured from specific regions of the brain, processed, and presented to the participant in real-time. Through training, self-directed mental processing techniques, that regulate this signal and its underlying neurophysiologic correlates, are developed. FMRI NFT has been used to train volitional control over a wide range of brain regions with implications for several different cognitive, behavioral, and motor systems. Additionally, fMRI NFT has shown promise in a broad range of applications such as the treatment of neurologic disorders and the augmentation of baseline human performance. In this article, we present an fMRI NFT protocol developed at our institution for modulation of both healthy and abnormal brain function, as well as examples of using the method to target both cognitive and auditory regions of the brain. PMID:28872110
A Protocol for the Administration of Real-Time fMRI Neurofeedback Training.
Sherwood, Matthew S; Diller, Emily E; Ey, Elizabeth; Ganapathy, Subhashini; Nelson, Jeremy T; Parker, Jason G
2017-08-24
Neurologic disorders are characterized by abnormal cellular-, molecular-, and circuit-level functions in the brain. New methods to induce and control neuroplastic processes and correct abnormal function, or even shift functions from damaged tissue to physiologically healthy brain regions, hold the potential to dramatically improve overall health. Of the current neuroplastic interventions in development, neurofeedback training (NFT) from functional Magnetic Resonance Imaging (fMRI) has the advantages of being completely non-invasive, non-pharmacologic, and spatially localized to target brain regions, as well as having no known side effects. Furthermore, NFT techniques, initially developed using fMRI, can often be translated to exercises that can be performed outside of the scanner without the aid of medical professionals or sophisticated medical equipment. In fMRI NFT, the fMRI signal is measured from specific regions of the brain, processed, and presented to the participant in real-time. Through training, self-directed mental processing techniques, that regulate this signal and its underlying neurophysiologic correlates, are developed. FMRI NFT has been used to train volitional control over a wide range of brain regions with implications for several different cognitive, behavioral, and motor systems. Additionally, fMRI NFT has shown promise in a broad range of applications such as the treatment of neurologic disorders and the augmentation of baseline human performance. In this article, we present an fMRI NFT protocol developed at our institution for modulation of both healthy and abnormal brain function, as well as examples of using the method to target both cognitive and auditory regions of the brain.
Neural mechanisms underlying spatial realignment during adaptation to optical wedge prisms.
Chapman, Heidi L; Eramudugolla, Ranmalee; Gavrilescu, Maria; Strudwick, Mark W; Loftus, Andrea; Cunnington, Ross; Mattingley, Jason B
2010-07-01
Visuomotor adaptation to a shift in visual input produced by prismatic lenses is an example of dynamic sensory-motor plasticity within the brain. Prism adaptation is readily induced in healthy individuals, and is thought to reflect the brain's ability to compensate for drifts in spatial calibration between different sensory systems. The neural correlate of this form of functional plasticity is largely unknown, although current models predict the involvement of parieto-cerebellar circuits. Recent studies that have employed event-related functional magnetic resonance imaging (fMRI) to identify brain regions associated with prism adaptation have discovered patterns of parietal and cerebellar modulation as participants corrected their visuomotor errors during the early part of adaptation. However, the role of these regions in the later stage of adaptation, when 'spatial realignment' or true adaptation is predicted to occur, remains unclear. Here, we used fMRI to quantify the distinctive patterns of parieto-cerebellar activity as visuomotor adaptation develops. We directly contrasted activation patterns during the initial error correction phase of visuomotor adaptation with that during the later spatial realignment phase, and found significant recruitment of the parieto-cerebellar network--with activations in the right inferior parietal lobe and the right posterior cerebellum. These findings provide the first evidence of both cerebellar and parietal involvement during the spatial realignment phase of prism adaptation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Assessing the feasibility of time-resolved fNIRS to detect brain activity during motor imagery
NASA Astrophysics Data System (ADS)
Abdalmalak, Androu; Milej, Daniel; Diop, Mamadou; Naci, Lorina; Owen, Adrian M.; St. Lawrence, Keith
2016-03-01
Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical technique for detecting brain activity, which has been previously used during motor and motor executive tasks. There is an increasing interest in using fNIRS as a brain computer interface (BCI) for patients who lack the physical, but not the mental, ability to respond to commands. The goal of this study is to assess the feasibility of time-resolved fNIRS to detect brain activity during motor imagery. Stability tests were conducted to ensure the temporal stability of the signal, and motor imagery data were acquired on healthy subjects. The NIRS probes were placed on the scalp over the premotor cortex (PMC) and supplementary motor area (SMA), as these areas are responsible for motion planning. To confirm the fNIRS results, subjects underwent functional magnetic resonance imaging (fMRI) while performing the same task. Seven subjects have participated to date, and significant activation in the SMA and/or the PMC during motor imagery was detected by both fMRI and fNIRS in 4 of the 7 subjects. No activation was detected by either technique in the remaining three participants, which was not unexpected due to the nature of the task. The agreement between the two imaging modalities highlights the potential of fNIRS as a BCI, which could be adapted for bedside studies of patients with disorders of consciousness.
Comparison of multihardware parallel implementations for a phase unwrapping algorithm
NASA Astrophysics Data System (ADS)
Hernandez-Lopez, Francisco Javier; Rivera, Mariano; Salazar-Garibay, Adan; Legarda-Sáenz, Ricardo
2018-04-01
Phase unwrapping is an important problem in the areas of optical metrology, synthetic aperture radar (SAR) image analysis, and magnetic resonance imaging (MRI) analysis. These images are becoming larger in size and, particularly, the availability and need for processing of SAR and MRI data have increased significantly with the acquisition of remote sensing data and the popularization of magnetic resonators in clinical diagnosis. Therefore, it is important to develop faster and accurate phase unwrapping algorithms. We propose a parallel multigrid algorithm of a phase unwrapping method named accumulation of residual maps, which builds on a serial algorithm that consists of the minimization of a cost function; minimization achieved by means of a serial Gauss-Seidel kind algorithm. Our algorithm also optimizes the original cost function, but unlike the original work, our algorithm is a parallel Jacobi class with alternated minimizations. This strategy is known as the chessboard type, where red pixels can be updated in parallel at same iteration since they are independent. Similarly, black pixels can be updated in parallel in an alternating iteration. We present parallel implementations of our algorithm for different parallel multicore architecture such as CPU-multicore, Xeon Phi coprocessor, and Nvidia graphics processing unit. In all the cases, we obtain a superior performance of our parallel algorithm when compared with the original serial version. In addition, we present a detailed comparative performance of the developed parallel versions.
Busse, Harald; Riedel, Tim; Garnov, Nikita; Thörmer, Gregor; Kahn, Thomas; Moche, Michael
2015-01-01
MRI is of great clinical utility for the guidance of special diagnostic and therapeutic interventions. The majority of such procedures are performed iteratively ("in-and-out") in standard, closed-bore MRI systems with control imaging inside the bore and needle adjustments outside the bore. The fundamental limitations of such an approach have led to the development of various assistance techniques, from simple guidance tools to advanced navigation systems. The purpose of this work was to thoroughly assess the targeting accuracy, workflow and usability of a clinical add-on navigation solution on 240 simulated biopsies by different medical operators. Navigation relied on a virtual 3D MRI scene with real-time overlay of the optically tracked biopsy needle. Smart reference markers on a freely adjustable arm ensured proper registration. Twenty-four operators - attending (AR) and resident radiologists (RR) as well as medical students (MS) - performed well-controlled biopsies of 10 embedded model targets (mean diameter: 8.5 mm, insertion depths: 17-76 mm). Targeting accuracy, procedure times and 13 Likert scores on system performance were determined (strong agreement: 5.0). Differences in diagnostic success rates (AR: 93%, RR: 88%, MS: 81%) were not significant. In contrast, between-group differences in biopsy times (AR: 4:15, RR: 4:40, MS: 5:06 min:sec) differed significantly (p<0.01). Mean overall rating was 4.2. The average operator would use the system again (4.8) and stated that the outcome justifies the extra effort (4.4). Lowest agreement was reported for the robustness against external perturbations (2.8). The described combination of optical tracking technology with an automatic MRI registration appears to be sufficiently accurate for instrument guidance in a standard (closed-bore) MRI environment. High targeting accuracy and usability was demonstrated on a relatively large number of procedures and operators. Between groups with different expertise there were significant differences in experimental procedure times but not in the number of successful biopsies.
Simultaneous PET/MR imaging with a radio frequency-penetrable PET insert
Grant, Alexander M.; Lee, Brian J.; Chang, Chen-Ming; Levin, Craig S.
2017-01-01
Purpose A brain sized radio-frequency (RF)-penetrable PET insert has been designed for simultaneous operation with MRI systems. This system takes advantage of electro-optical coupling and battery power to electrically float the PET insert relative to the MRI ground, permitting RF signals to be transmitted through small gaps between the modules that form the PET ring. This design facilitates the use of the built-in body coil for RF transmission, and thus could be inserted into any existing MR site wishing to achieve simultaneous PET/MR imaging. The PET detectors employ non-magnetic silicon photomultipliers in conjunction with a compressed sensing signal multiplexing scheme, and optical fibers to transmit analog PET detector signals out of the MRI room for decoding, processing, and image reconstruction. Methods The PET insert was first constructed and tested in a laboratory benchtop setting, where tomographic images of a custom resolution phantom were successfully acquired. The PET insert was then placed within a 3T body MRI system, and tomographic resolution/contrast phantom images were acquired both with only the B0 field present, and under continuous pulsing from different MR imaging sequences. Results The resulting PET images have comparable contrast-to-noise ratios (CNR) under all MR pulsing conditions: the maximum percent CNR relative difference for each rod type among all four PET images acquired in the MRI system has a mean of 14.0±7.7%. MR images were successfully acquired through the RF-penetrable PET shielding using only the built-in MR body coil, suggesting that simultaneous imaging is possible without significant mutual interference. Conclusions These results show promise for this technology as an alternative to costly integrated PET/MR scanners; a PET insert that is compatible with any existing clinical MRI system could greatly increase the availability, accessibility, and dissemination of PET/MR. PMID:28102949
Lamanna, Giuseppe; Garofalo, Antonio; Popa, Gabriela; Wilhelm, Claire; Bégin-Colin, Sylvie; Felder-Flesch, Delphine; Bianco, Alberto; Gazeau, Florence; Ménard-Moyon, Cécilia
2013-05-21
Coating of carbon nanotubes (CNTs) with magnetic nanoparticles (NPs) imparts novel magnetic, optical, and thermal properties with potential applications in the biomedical domain. Multi-walled CNTs have been decorated with iron oxide superparamagnetic NPs. Two different approaches have been investigated based on ligand exchange or "click chemistry". The presence of the NPs on the nanotube surface allows conferring magnetic properties to CNTs. We have evaluated the potential of the NP/CNT hybrids as a contrast agent for magnetic resonance imaging (MRI) and their interactions with cells. The capacity of the hybrids to magnetically monitor and manipulate cells has also been investigated. The NP/CNTs can be manipulated by a remote magnetic field with enhanced contrast in MRI. They are internalized into tumor cells without showing cytotoxicity. The labeled cells can be magnetically manipulated as they display magnetic mobility and are detected at a single cell level through high resolution MRI.
Clinical, CSF, and MRI findings in Devic's neuromyelitis optica.
O'Riordan, J I; Gallagher, H L; Thompson, A J; Howard, R S; Kingsley, D P; Thompson, E J; McDonald, W I; Miller, D H
1996-01-01
OBJECTIVES: Since Devic's original description of neuromyelitis optica in 1894 there has been much debate regarding its aetiology. A specific cause has been identified in a minority of cases but in most the question has arisen whether or not Devic's neuromyelitis optica is a variant of multiple sclerosis. This study was undertaken to help clarify this issue. METHODS: Neuromyelitis optica was defined as (1) a severe transverse myelitis; (2) an acute unilateral or bilateral optic neuropathy; (3) no clinical involvement beyond the spinal cord or optic nerves, and (4) a monophasic or multiphasic illness. The clinical and autoantibody status was documented. Patients underwent CSF examination and MRI of brain and spinal cord. RESULTS: Twelve patients, with a mean age of presentation of 35.1 years, were seen. Eleven were women; vision was reduced to counting fingers or worse in 10 patients and seven became confined to a wheelchair. Examination of CSF showed local synthesis of oligoclonal bands in only two patients and a neutrophil pleocytosis in two. A possible aetiology was identified in five: a specific connective tissue disorder (two), pulmonary tuberculosis (one), and possible acute disseminated encephalomyelitis (two). Six had non-specific increases in various autoantibodies. Eleven patients underwent MRI of the brain and spinal cord. In 10 there were diffuse abnormalities involving cervical and thoracic cords with extensive swelling in the acute phase. Brain MRI was normal in five; in five there were multiple deep white matter lesions, and one patient had minor age related changes. CONCLUSION: It is proposed that Devic's neuromyelitis optica is a distinctive disorder with some clinical, CSF, and MRI features different from those found in classic multiple sclerosis. In most cases a specific aetiology is not identified, but an immunological mechanism of tissue damage seems likely. Images PMID:8774400
Lambron, Julien; Rakotonjanahary, Josué; Loisel, Didier; Frampas, Eric; De Carli, Emilie; Delion, Matthieu; Rialland, Xavier; Toulgoat, Frédérique
2016-02-01
Magnetic resonance (MR) images from children with optic pathway glioma (OPG) are complex. We initiated this study to evaluate the accuracy of MR imaging (MRI) interpretation and to propose a simple and reproducible imaging classification for MRI. We randomly selected 140 MRIs from among 510 MRIs performed on 104 children diagnosed with OPG in France from 1990 to 2004. These images were reviewed independently by three radiologists (F.T., 15 years of experience in neuroradiology; D.L., 25 years of experience in pediatric radiology; and J.L., 3 years of experience in radiology) using a classification derived from the Dodge and modified Dodge classifications. Intra- and interobserver reliabilities were assessed using the Bland-Altman method and the kappa coefficient. These reviews allowed the definition of reliable criteria for MRI interpretation. The reviews showed intraobserver variability and large discrepancies among the three radiologists (kappa coefficient varying from 0.11 to 1). These variabilities were too large for the interpretation to be considered reproducible over time or among observers. A consensual analysis, taking into account all observed variabilities, allowed the development of a definitive interpretation protocol. Using this revised protocol, we observed consistent intra- and interobserver results (kappa coefficient varying from 0.56 to 1). The mean interobserver difference for the solid portion of the tumor with contrast enhancement was 0.8 cm(3) (limits of agreement = -16 to 17). We propose simple and precise rules for improving the accuracy and reliability of MRI interpretation for children with OPG. Further studies will be necessary to investigate the possible prognostic value of this approach.
Extraction of temporal information in functional MRI
NASA Astrophysics Data System (ADS)
Singh, M.; Sungkarat, W.; Jeong, Jeong-Won; Zhou, Yongxia
2002-10-01
The temporal resolution of functional MRI (fMRI) is limited by the shape of the haemodynamic response function (hrf) and the vascular architecture underlying the activated regions. Typically, the temporal resolution of fMRI is on the order of 1 s. We have developed a new data processing approach to extract temporal information on a pixel-by-pixel basis at the level of 100 ms from fMRI data. Instead of correlating or fitting the time-course of each pixel to a single reference function, which is the common practice in fMRI, we correlate each pixel's time-course to a series of reference functions that are shifted with respect to each other by 100 ms. The reference function yielding the highest correlation coefficient for a pixel is then used as a time marker for that pixel. A Monte Carlo simulation and experimental study of this approach were performed to estimate the temporal resolution as a function of signal-to-noise ratio (SNR) in the time-course of a pixel. Assuming a known and stationary hrf, the simulation and experimental studies suggest a lower limit in the temporal resolution of approximately 100 ms at an SNR of 3. The multireference function approach was also applied to extract timing information from an event-related motor movement study where the subjects flexed a finger on cue. The event was repeated 19 times with the event's presentation staggered to yield an approximately 100-ms temporal sampling of the haemodynamic response over the entire presentation cycle. The timing differences among different regions of the brain activated by the motor task were clearly visualized and quantified by this method. The results suggest that it is possible to achieve a temporal resolution of /spl sim/200 ms in practice with this approach.
Iraji, Armin; Benson, Randall R.; Welch, Robert D.; O'Neil, Brian J.; Woodard, John L.; Imran Ayaz, Syed; Kulek, Andrew; Mika, Valerie; Medado, Patrick; Soltanian-Zadeh, Hamid; Liu, Tianming; Haacke, E. Mark
2015-01-01
Abstract Mild traumatic brain injury (mTBI) accounts for more than 1 million emergency visits each year. Most of the injured stay in the emergency department for a few hours and are discharged home without a specific follow-up plan because of their negative clinical structural imaging. Advanced magnetic resonance imaging (MRI), particularly functional MRI (fMRI), has been reported as being sensitive to functional disturbances after brain injury. In this study, a cohort of 12 patients with mTBI were prospectively recruited from the emergency department of our local Level-1 trauma center for an advanced MRI scan at the acute stage. Sixteen age- and sex-matched controls were also recruited for comparison. Both group-based and individual-based independent component analysis of resting-state fMRI (rsfMRI) demonstrated reduced functional connectivity in both posterior cingulate cortex (PCC) and precuneus regions in comparison with controls, which is part of the default mode network (DMN). Further seed-based analysis confirmed reduced functional connectivity in these two regions and also demonstrated increased connectivity between these regions and other regions of the brain in mTBI. Seed-based analysis using the thalamus, hippocampus, and amygdala regions further demonstrated increased functional connectivity between these regions and other regions of the brain, particularly in the frontal lobe, in mTBI. Our data demonstrate alterations of multiple brain networks at the resting state, particularly increased functional connectivity in the frontal lobe, in response to brain concussion at the acute stage. Resting-state functional connectivity of the DMN could serve as a potential biomarker for improved detection of mTBI in the acute setting. PMID:25285363
Asaad, Mazen; Lee, Jin Hyung
2018-05-18
Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models. © 2018. Published by The Company of Biologists Ltd.
A guide to using functional magnetic resonance imaging to study Alzheimer's disease in animal models
Asaad, Mazen
2018-01-01
ABSTRACT Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models. PMID:29784664
Numata, Yurika; Onuma, Akira; Kobayashi, Yasuko; Sato-Shirai, Ikuko; Tanaka, Soichiro; Kobayashi, Satoru; Wakusawa, Keisuke; Inui, Takehiko; Kure, Shigeo; Haginoya, Kazuhiro
2013-02-01
To investigate the association between magnetic resonance imaging (MRI) patterns and motor function, epileptic episodes, and IQ or developmental quotient in patients born at term with spastic diplegia. Eighty-six patients born at term with cerebral palsy (CP) and spastic diplegia (54 males, 32 females; median age 20 y, range 7-42 y) among 829 patients with CP underwent brain MRI between 1990 and 2008. The MRI and clinical findings were analysed retrospectively. Intellectual disability was classified according to the Enjoji developmental test or the Wechsler Intelligence Scale for Children (3rd edition). The median ages at diagnosis of CP, assignment of Gross Motor Function Classification System (GMFCS) level, cognitive assessment, and MRI were 2 years (range 5 mo-8 y), 6 years (2 y 8 mo-19 y), 6 years (1 y 4 mo-19 y), and 7 years (10 mo-30 y) respectively. MRI included normal findings (41.9%), periventricular leukomalacia, hypomyelination, and porencephaly/periventricular venous infarction. The frequency of patients in GMFCS levels III to V and intellectual disability did not differ between those with normal and abnormal MRI findings. Patients with normal MRI findings had significantly fewer epileptic episodes than those with abnormal ones (p=0.001). Varied MRI findings, as well as the presence of severe motor dysfunction and intellectual disability (despite normal MRI), suggest that patients born at term with spastic diplegia had heterogeneous and unidentified pathophysiology. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.
Advances in fMRI Real-Time Neurofeedback.
Watanabe, Takeo; Sasaki, Yuka; Shibata, Kazuhisa; Kawato, Mitsuo
2017-12-01
Functional magnetic resonance imaging (fMRI) neurofeedback is a type of biofeedback in which real-time online fMRI signals are used to self-regulate brain function. Since its advent in 2003 significant progress has been made in fMRI neurofeedback techniques. Specifically, the use of implicit protocols, external rewards, multivariate analysis, and connectivity analysis has allowed neuroscientists to explore a possible causal involvement of modified brain activity in modified behavior. These techniques have also been integrated into groundbreaking new neurofeedback technologies, specifically decoded neurofeedback (DecNef) and functional connectivity-based neurofeedback (FCNef). By modulating neural activity and behavior, DecNef and FCNef have substantially advanced both basic and clinical research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sabbaghizadeh, Rahim; Shamsudin, Roslinda; Deyhimihaghighi, Najmeh; Sedghi, Arman
2017-01-01
In the present study, the normoxic polyacrylamide gelatin and tetrakis hydroxy methyl phosphoniun chloride (PAGAT) polymer gel dosimeters were synthesized with and without the presence of silver (Ag) nanoparticles. The amount of Ag nanoparticles varied from 1 to 3 ml with concentration 3.14 g/l, thus forming two types of PAGAT polymer gel dosimeters before irradiating them with 6 to 25 Gy produced by 1.25-MeV 60Co gamma rays. In this range, the predominant gamma ray interaction with matter is by Compton scattering effect, as the photoelectric absorption effect diminishes. MRI was employed when evaluating the polymerization of the dosimeters and the gray scale of the MRI film was determined via an optical densitometer. Subsequent analyses of optical densities revealed that the extent of polymerization increased with the increase in the absorbed dose, while the increase of penetration depth within the dosimeters has a reverse effect. Moreover, a significant increase in the optical density-dose response (11.82%) was noted for dosimeters containing 2 ml Ag nanoparticles. PMID:28060829
Balachandar, R; John, J P; Saini, J; Kumar, K J; Joshi, H; Sadanand, S; Aiyappan, S; Sivakumar, P T; Loganathan, S; Varghese, M; Bharath, S
2015-05-01
Alzheimer's disease (AD) is a progressive neurodegenerative condition where in early diagnosis and interventions are key policy priorities in dementia services and research. We studied the functional and structural connectivity in mild AD to determine the nature of connectivity changes that coexist with neurocognitive deficits in the early stages of AD. Fifteen mild AD subjects and 15 cognitively healthy controls (CHc) matched for age and gender, underwent detailed neurocognitive assessment and magnetic resonance imaging (MRI) of resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI). Rest fMRI was analyzed using dual regression approach and DTI by voxel wise statistics. Patients with mild AD had significantly lower functional connectivity (FC) within the default mode network and increased FC within the executive network. The mild AD group scored significantly lower in all domains of cognition compared with CHc. But fractional anisotropy did not significantly (p < 0.05) differ between the groups. Resting state functional connectivity alterations are noted during initial stages of cognitive decline in AD, even when there are no significant white matter microstructural changes. Copyright © 2014 John Wiley & Sons, Ltd.
Muscle MRI and functional outcome measures in Becker muscular dystrophy.
Barp, Andrea; Bello, Luca; Caumo, Luca; Campadello, Paola; Semplicini, Claudio; Lazzarotto, Annalisa; Sorarù, Gianni; Calore, Chiara; Rampado, Alessandro; Motta, Raffaella; Stramare, Roberto; Pegoraro, Elena
2017-11-22
Becker muscular dystrophy (BMD) is a neuromuscular disorder allelic to Duchenne muscular dystrophy (DMD), caused by in-frame mutations in the dystrophin gene, and characterized by a clinical progression that is both milder and more heterogeneous than DMD. Muscle magnetic resonance imaging (MRI) has been proposed as biomarker of disease progression in dystrophinopathies. Correlation with clinically meaningful outcome measures such as North Star Ambulatory Assessment (NSAA) and 6 minute walk test (6MWT) is paramount for biomarker qualification. In this study, 51 molecularly confirmed BMD patients (aged 7-69 years) underwent muscle MRI and were evaluated with functional measures (NSAA and 6MWT) at the time of the MRI, and subsequently after one year. We confirmed a pattern of fatty substitution involving mainly the hip extensors and most thigh muscles. Severity of muscle fatty substitution was significantly correlated with specific DMD mutations: in particular, patients with an isolated deletion of exon 48, or deletions bordering exon 51, showed milder involvement. Fat infiltration scores correlated with baseline functional measures, and predicted changes after 1 year. We conclude that in BMD, skeletal muscle MRI not only strongly correlates with motor function, but also helps in predicting functional deterioration within a 12-month time frame.
NIR-labeled perfluoropolyether nanoemulsions for drug delivery and imaging
O’Hanlon, Claire E.; Amede, Konjit G.; O’Hear, Meredith R.; Janjic, Jelena M.
2012-01-01
Theranostic nanoparticle development recently took center stage in the field of drug delivery nanoreagent design. Theranostic nanoparticles combine therapeutic delivery systems (liposomes, micelles, nanoemulsions, etc.) with imaging reagents (MRI, optical, PET, CT). This combination allows for non-invasive in vivo monitoring of therapeutic nanoparticles in diseased organs and tissues. Here, we report a novel perfluoropolyether (PFPE) nanoemulsion with a water-insoluble lipophilic drug. The formulation enables non-invasive monitoring of nanoemulsion biodistribution using two imaging modalities, 19F MRI and near-infrared (NIR) optical imaging. The nanoemulsion is composed of PFPE-tyramide as a 19F MRI tracer, hydrocarbon oil, surfactants, and a NIR dye. Preparation utilizes a combination of self-assembly and high energy emulsification methods, resulting in droplets with average diameter 180 nm and low polydispersity index (PDI less than 0.2). A model nonsteroidal anti-inflammatory drug (NSAID), celecoxib, was incorporated into the formulation at 0.2 mg/mL. The reported nanoemulsion’s properties, including small particle size, visibility under 19F NMR and NIR fluorescence spectroscopy, and the ability to carry drugs make it an attractive potential theranostic agent for cancer imaging and treatment. PMID:22675234
Development of a fiber based Raman probe compatible with interventional magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Ashok, Praveen C.; Praveen, Bavishna B.; Rube, Martin; Cox, Benjamin; Melzer, Andreas; Dholakia, Kishan
2014-02-01
Raman spectroscopy has proven to be a powerful tool for discriminating between normal and abnormal tissue types. Fiber based Raman probes have demonstrated its potential for in vivo disease diagnostics. Combining Raman spectroscopy with Magnetic Resonance Imaging (MRI) opens up new avenues for MR guided minimally invasive optical biopsy. Although Raman probes are commercially available, they are not compatible with a MRI environment due to the metallic components which are used to align the micro-optic components such as filters and lenses at the probe head. Additionally they are not mechanically compatible with a typical surgical environment as factors such as sterility and length of the probe are not addressed in those designs. We have developed an MRI compatible fiber Raman probe with a disposable probe head hence maintaining sterility. The probe head was specially designed to avoid any material that would cause MR imaging artefacts. The probe head that goes into patient's body had a diameter <1.5 mm so that it is compatible with biopsy needles and catheters. The probe has been tested in MR environment and has been proven to be capable of obtaining Raman signal while the probe is under real-time MR guidance.
Power, Jonathan D; Barnes, Kelly A; Snyder, Abraham Z; Schlaggar, Bradley L; Petersen, Steven E
2011-01-01
Here, we demonstrate that subject motion produces substantial changes in the timecourses of resting state functional connectivity MRI (rs-fcMRI) data despite compensatory spatial registration and regression of motion estimates from the data. These changes cause systematic but spurious correlation structures throughout the brain. Specifically, many long-distance correlations are decreased by subject motion, whereas many short-distance correlations are increased. These changes in rs-fcMRI correlations do not arise from, nor are they adequately countered by, some common functional connectivity processing steps. Two indices of data quality are proposed, and a simple method to reduce motion-related effects in rs-fcMRI analyses is demonstrated that should be flexibly implementable across a variety of software platforms. We demonstrate how application of this technique impacts our own data, modifying previous conclusions about brain development. These results suggest the need for greater care in dealing with subject motion, and the need to critically revisit previous rs-fcMRI work that may not have adequately controlled for effects of transient subject movements. PMID:22019881
Sawada, Kazuhiko; Horiuchi-Hirose, Miwa; Saito, Shigeyoshi; Aoki, Ichio
2013-12-01
The present study aimed to characterize cerebral morphology in young adult ferrets and its sexual dimorphism using high-field MRI and MRI-based morphometry. Ex vivo short TR/TE (typical T1-weighted parameter setting for conventional MRI) and T2W (long TR/TE) MRI with high spatial resolution at 7-tesla could visualize major subcortical and archicortical structures, i.e., the caudate nucleus, lentiform nucleus, amygdala and hippocampus. In particular, laminar organization of the olfactory bulb was identifiable by short TR/TE-MRI. The primary and secondary sulci observable in the adult ferret were distinguishable on either short TR/TE- or T2W-MRI, and the cortical surface morphology was reproduced well by 3D-rendered images obtained by short TR/TE-MRI. The cerebrum had a significantly lower volume in females than in males, which was attributed to region-specific volume reduction in the cerebral cortex and subcortical white matter in females. A sexual difference was also detected, manifested by an overall reduction in normalized signal ratios of short TR/TE-MRI in all cerebral structures examined in females than in males. On the other hand, an alternating array of higher and lower short TR/TE-MRI intensity transverse zones throughout the cortex, which was reminiscent of the functional cortical areas, was revealed by maximum intensity projection (MIP) in 3D. The normalized signal ratio of short TR/TE-MRI, but not T2W-MRI in the cortex, was negatively correlated with the density of myelin-basic protein immunoreactive fibers (males, r=-0.440; females, r=-0.481). The present results suggest that sexual differences in the adult ferret cerebrum are characterized by reduced volumes of the cerebral cortex and subcortical white matter in females, and by overall reductions in physiochemical characteristics, as obtained by short TR/TE-MRI, in females. It should be noted that short TR/TE-MRI-based MIP delineated functional cortical areas related to myeloarchitecture in 3D. Such an approach makes possible conventional investigation of the functional organization of the cerebral cortex and its abnormalities using high-field MRI. Copyright © 2013 Elsevier Inc. All rights reserved.
Makary, Meena M; Seulgi, Eun; Kyungmo Park
2017-07-01
Recent developments in data acquisition of functional magnetic resonance imaging (fMRI) have led to rapid preprocessing and analysis of brain activity in a quasireal-time basis, what so called real-time fMRI neurofeedback (rtfMRI-NFB). This information is fed back to subjects allowing them to gain a voluntary control over their own region-specific brain activity. Forty-one healthy participants were randomized into an experimental (NFB) group, who received a feedback directly proportional to their brain activity from the primary motor cortex (M1), and a control (CTRL) group who received a sham feedback. The M1 ROI was functionally localized during motor execution and imagery tasks. A resting-state functional run was performed before and after the neurofeedback training to investigate the default mode network (DMN) modulation after training. The NFB group revealed increased DMN functional connectivity after training to the cortical and subcortical sensory/motor areas (M1/S1 and caudate nucleus, respectively), which may be associated with sensorimotor processing of learning in the resting state. These results show that motor imagery training through rtfMRI-NFB could modulate the DMN functional connectivity to motor-related areas, suggesting that this modulation potentially subserved the establishment of motor learning in the NFB group.
NASA Astrophysics Data System (ADS)
Yaseen, Mohammad A.; Srinivasan, Vivek J.; Sakadžić, Sava; Vinogradov, Sergei A.; Boas, David A.
2010-02-01
Measuring oxygen delivery in brain tissue is important for identifying the pathophysiological changes associated with brain injury and various diseases such as cancer, stroke, and Alzheimer's disease. We have developed a multi-modal imaging system for minimally invasive measurement of cerebral oxygenation and blood flow in small animals with high spatial resolution. The system allows for simultaneous measurement of blood flow using Fourier-domain optical coherence tomography, and oxygen partial pressure (pO2) using either confocal or multiphoton phosphorescence lifetime imaging with exogenous porphyrin-based dyes sensitive to dissolved oxygen. Here we present the changes in pO2 and blood flow in superficial cortical vessels of Sprague Dawley rats in response to conditions such as hypoxia, hyperoxia, and functional stimulation. pO2 measurements display considerable heterogeneity over distances that cannot be resolved with more widely used oxygen-monitoring techniques such as BOLD-fMRI. Large increases in blood flow are observed in response to functional stimulation and hypoxia. Our system allows for quantification of cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution, providing a better understanding of metabolic dynamics during functional stimulation and under various neuropathologies. Ultimately, better insight into the underlying mechanisms of neuropathologies will facilitate the development of improved therapeutic strategies to minimize damage to brain tissue.
Rojas, Gonzalo M.; Fuentes, Jorge A.; Gálvez, Marcelo
2016-01-01
Multiple functional MRI (fMRI)-based functional connectivity networks were obtained by Yeo et al. (2011), and the visualization of these complex networks is a difficult task. Also, the combination of functional connectivity networks determined by fMRI with electroencephalography (EEG) data could be a very useful tool. Mobile devices are becoming increasingly common among users, and for this reason, we describe here two applications for Android and iOS mobile devices: one that shows in an interactive way the seven Yeo functional connectivity networks, and another application that shows the relative position of 10–20 EEG electrodes with Yeo’s seven functional connectivity networks. PMID:27807416
Tost, H; Meyer-Lindenberg, A; Ruf, M; Demirakça, T; Grimm, O; Henn, F A; Ende, G
2005-02-01
Modern neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have contributed tremendously to our current understanding of psychiatric disorders in the context of functional, biochemical and microstructural alterations of the brain. Since the mid-nineties, functional MRI has provided major insights into the neurobiological correlates of signs and symptoms in schizophrenia. The current paper reviews important fMRI studies of the past decade in the domains of motor, visual, auditory, attentional and working memory function. Special emphasis is given to new methodological approaches, such as the visualisation of medication effects and the functional characterisation of risk genes.
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G.; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery. PMID:29922216
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery.
Fusing DTI and FMRI Data: A Survey of Methods and Applications
Zhu, Dajiang; Zhang, Tuo; Jiang, Xi; Hu, Xintao; Chen, Hanbo; Yang, Ning; Lv, Jinglei; Han, Junwei; Guo, Lei; Liu, Tianming
2014-01-01
The relationship between brain structure and function has been one of the centers of research in neuroimaging for decades. In recent years, diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) techniques have been widely available and popular in cognitive and clinical neurosciences for examining the brain’s white matter (WM) micro-structures and gray matter (GM) functions, respectively. Given the intrinsic integration of WM/GM and the complementary information embedded in DTI/fMRI data, it is natural and well-justified to combine these two neuroimaging modalities together to investigate brain structure and function and their relationships simultaneously. In the past decade, there have been remarkable achievements of DTI/fMRI fusion methods and applications in neuroimaging and human brain mapping community. This survey paper aims to review recent advancements on methodologies and applications in incorporating multimodal DTI and fMRI data, and offer our perspectives on future research directions. We envision that effective fusion of DTI/fMRI techniques will play increasingly important roles in neuroimaging and brain sciences in the years to come. PMID:24103849
Maintenance and Representation of Mind Wandering during Resting-State fMRI.
Chou, Ying-Hui; Sundman, Mark; Whitson, Heather E; Gaur, Pooja; Chu, Mei-Lan; Weingarten, Carol P; Madden, David J; Wang, Lihong; Kirste, Imke; Joliot, Marc; Diaz, Michele T; Li, Yi-Ju; Song, Allen W; Chen, Nan-Kuei
2017-01-12
Major advances in resting-state functional magnetic resonance imaging (fMRI) techniques in the last two decades have provided a tool to better understand the functional organization of the brain both in health and illness. Despite such developments, characterizing regulation and cerebral representation of mind wandering, which occurs unavoidably during resting-state fMRI scans and may induce variability of the acquired data, remains a work in progress. Here, we demonstrate that a decrease or decoupling in functional connectivity involving the caudate nucleus, insula, medial prefrontal cortex and other domain-specific regions was associated with more sustained mind wandering in particular thought domains during resting-state fMRI. Importantly, our findings suggest that temporal and between-subject variations in functional connectivity of above-mentioned regions might be linked with the continuity of mind wandering. Our study not only provides a preliminary framework for characterizing the maintenance and cerebral representation of different types of mind wandering, but also highlights the importance of taking mind wandering into consideration when studying brain organization with resting-state fMRI in the future.
Functional magnetic resonance imaging: basic principles and application in the neurosciences.
Labbé Atenas, T; Ciampi Díaz, E; Cruz Quiroga, J P; Uribe Arancibia, S; Cárcamo Rodríguez, C
2018-03-12
Functional magnetic resonance imaging (fMRI) is an advanced tool for the study of brain functions in healthy subjects and in neuropsychiatric patients. This tool makes it possible to identify and locate specific phenomena related to neuronal metabolism and activity. Starting with the detection of changes in the blood supply to a region that participates in a function, more complex approaches have been developed to study the dynamics of neuronal networks. Studies examining the brain at rest or involved in different tasks have provided evidence related to the onset, development, and/or response to treatment in various diseases. The diversity of the possible artifacts associated with image registration as well as the complexity of the analytical experimental designs has generated abundant debate about the technique behind fMRI. This article aims to introduce readers to the fundamentals underlying fMRI, to explain how fMRI studies are interpreted, and to discuss fMRI's contributions to the study of the mechanisms underlying diverse diseases of the nervous system. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Hybrid MRI-Ultrasound acquisitions, and scannerless real-time imaging.
Preiswerk, Frank; Toews, Matthew; Cheng, Cheng-Chieh; Chiou, Jr-Yuan George; Mei, Chang-Sheng; Schaefer, Lena F; Hoge, W Scott; Schwartz, Benjamin M; Panych, Lawrence P; Madore, Bruno
2017-09-01
To combine MRI, ultrasound, and computer science methodologies toward generating MRI contrast at the high frame rates of ultrasound, inside and even outside the MRI bore. A small transducer, held onto the abdomen with an adhesive bandage, collected ultrasound signals during MRI. Based on these ultrasound signals and their correlations with MRI, a machine-learning algorithm created synthetic MR images at frame rates up to 100 per second. In one particular implementation, volunteers were taken out of the MRI bore with the ultrasound sensor still in place, and MR images were generated on the basis of ultrasound signal and learned correlations alone in a "scannerless" manner. Hybrid ultrasound-MRI data were acquired in eight separate imaging sessions. Locations of liver features, in synthetic images, were compared with those from acquired images: The mean error was 1.0 pixel (2.1 mm), with best case 0.4 and worst case 4.1 pixels (in the presence of heavy coughing). For results from outside the bore, qualitative validation involved optically tracked ultrasound imaging with/without coughing. The proposed setup can generate an accurate stream of high-speed MR images, up to 100 frames per second, inside or even outside the MR bore. Magn Reson Med 78:897-908, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Buklina, S B; Batalov, A I; Smirnov, A S; Poddubskaya, A A; Pitskhelauri, D I; Kobyakov, G L; Zhukov, V Yu; Goryaynov, S A; Kulikov, A S; Ogurtsova, A A; Golanov, A V; Varyukhina, M D; Pronin, I N
There are no studies on application of functional MRI (fMRI) for long-term monitoring of the condition of patients after resection of frontal and temporal lobe tumors. The study purpose was to correlate, using fMRI, reorganization of the speech system and dynamics of speech disorders in patients with left hemisphere gliomas before surgery and in the early and late postoperative periods. A total of 20 patients with left hemisphere gliomas were dynamically monitored using fMRI and comprehensive neuropsychological testing. The tumor was located in the frontal lobe in 12 patients and in the temporal lobe in 8 patients. Fifteen patients underwent primary surgery; 5 patients had repeated surgery. Sixteen patients had WHO Grade II and Grade III gliomas; the others had WHO Grade IV gliomas. Nineteen patients were examined preoperatively; 20 patients were examined at different times after surgery. Speech functions were assessed by a Luria's test; the dominant hand was determined using the Annette questionnaire; a family history of left-handedness was investigated. Functional MRI was performed on an HDtx 3.0 T scanner using BrainWavePA 2.0, Z software for fMRI data processing program for all calculations >7, p<0.001. In patients with extensive tumors and recurrent tumors, activation of right-sided homologues of the speech areas cold be detected even before surgery; but in most patients, the activation was detected 3 months or more after surgery. Therefore, reorganization of the speech system took time. Activation of right-sided homologues of the speech areas remained in all patients for up to a year. Simultaneous activation of right-sided homologues of both speech areas, the Broca's and Wernicke's areas, was detected more often in patients with frontal lobe tumors than in those with temporal lobe tumors. No additional activation foci in the left hemisphere were found at the thresholds used to process fMRI data. Recovery of the speech function, to a certain degree, occurred in all patients, but no clear correlation with fMRI data was found. Complex fMRI and neuropsychological studies in 20 patients after resection of frontal and temporal lobe tumors revealed individual features of speech system reorganization within one year follow-up. Probably, activation of right-sided homologues of the speech areas in the presence of left hemisphere tumors depends not only on the severity of speech disorder but also reflects individual involvement of the right hemisphere in enabling speech function. This is confirmed by right-sided activation, according to the fMRI data, in right-sided patients without aphasia and, conversely, the lack of activation of right-sided homologues of the speech areas in several patients with severe postoperative speech disorders during the entire follow-up period.
Chen, Gang; den Braber, Anouk; van ‘t Ent, Dennis; Boomsma, Dorret I.; Mansvelder, Huibert D.; de Geus, Eco; Van Someren, Eus J. W.; Linkenkaer-Hansen, Klaus
2015-01-01
Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to investigate the functional architecture of the healthy human brain and how it is affected by learning, lifelong development, brain disorders or pharmacological intervention. Non-sensory experiences are prevalent during rest and must arise from ongoing brain activity, yet little is known about this relationship. Here, we used two runs of rs-fMRI both immediately followed by the Amsterdam Resting-State Questionnaire (ARSQ) to investigate the relationship between functional connectivity within ten large-scale functional brain networks and ten dimensions of thoughts and feelings experienced during the scan in 106 healthy participants. We identified 11 positive associations between brain-network functional connectivity and ARSQ dimensions. ‘Sleepiness’ exhibited significant associations with functional connectivity within Visual, Sensorimotor and Default Mode networks. Similar associations were observed for ‘Visual Thought’ and ‘Discontinuity of Mind’, which may relate to variation in imagery and thought control mediated by arousal fluctuations. Our findings show that self-reports of thoughts and feelings experienced during a rs-fMRI scan help understand the functional significance of variations in functional connectivity, which should be of special relevance to clinical studies. PMID:26540239
Cerebellar Functional Parcellation Using Sparse Dictionary Learning Clustering.
Wang, Changqing; Kipping, Judy; Bao, Chenglong; Ji, Hui; Qiu, Anqi
2016-01-01
The human cerebellum has recently been discovered to contribute to cognition and emotion beyond the planning and execution of movement, suggesting its functional heterogeneity. We aimed to identify the functional parcellation of the cerebellum using information from resting-state functional magnetic resonance imaging (rs-fMRI). For this, we introduced a new data-driven decomposition-based functional parcellation algorithm, called Sparse Dictionary Learning Clustering (SDLC). SDLC integrates dictionary learning, sparse representation of rs-fMRI, and k-means clustering into one optimization problem. The dictionary is comprised of an over-complete set of time course signals, with which a sparse representation of rs-fMRI signals can be constructed. Cerebellar functional regions were then identified using k-means clustering based on the sparse representation of rs-fMRI signals. We solved SDLC using a multi-block hybrid proximal alternating method that guarantees strong convergence. We evaluated the reliability of SDLC and benchmarked its classification accuracy against other clustering techniques using simulated data. We then demonstrated that SDLC can identify biologically reasonable functional regions of the cerebellum as estimated by their cerebello-cortical functional connectivity. We further provided new insights into the cerebello-cortical functional organization in children.
McGraw, P; Mathews, V P; Wang, Y; Phillips, M D
2001-05-01
Functional MR imaging (fMRI) has been a useful tool in the evaluation of language both in normal individuals and patient populations. The purpose of this article is to use various models of language as a framework to review fMRI studies. Specifically, fMRI language studies are subdivided into the following categories: word generation or fluency, passive listening, orthography, phonology, semantics, and syntax.
Hatta, Tomoko; Fujinaga, Yasunari; Kadoya, Masumi; Ueda, Hitoshi; Murayama, Hiroaki; Kurozumi, Masahiro; Ueda, Kazuhiko; Komatsu, Michiharu; Nagaya, Tadanobu; Joshita, Satoru; Kodama, Ryo; Tanaka, Eiji; Uehara, Tsuyoshi; Sano, Kenji; Tanaka, Naoki
2010-12-01
To assess the degree of hepatic fat content, simple and noninvasive methods with high objectivity and reproducibility are required. Magnetic resonance imaging (MRI) is one such candidate, although its accuracy remains unclear. We aimed to validate an MRI method for quantifying hepatic fat content by calibrating MRI reading with a phantom and comparing MRI measurements in human subjects with estimates of liver fat content in liver biopsy specimens. The MRI method was performed by a combination of MRI calibration using a phantom and double-echo chemical shift gradient-echo sequence (double-echo fast low-angle shot sequence) that has been widely used on a 1.5-T scanner. Liver fat content in patients with nonalcoholic fatty liver disease (NAFLD, n = 26) was derived from a calibration curve generated by scanning the phantom. Liver fat was also estimated by optical image analysis. The correlation between the MRI measurements and liver histology findings was examined prospectively. Magnetic resonance imaging measurements showed a strong correlation with liver fat content estimated from the results of light microscopic examination (correlation coefficient 0.91, P < 0.001) regardless of the degree of hepatic steatosis. Moreover, the severity of lobular inflammation or fibrosis did not influence the MRI measurements. This MRI method is simple and noninvasive, has excellent ability to quantify hepatic fat content even in NAFLD patients with mild steatosis or advanced fibrosis, and can be performed easily without special devices.
Biju, Silvanose; Gallo, Juan; Bañobre-López, M; Manshian, Bella B; Soenen, Stefaan J; Himmelreich, Uwe; Vander Elst, Luce; Parac-Vogt, Tatjana N
2018-05-23
A novel type of multimodal, magnetic resonance imaging/optical imaging (MRI/OI) contrast agent was developed, based on core-shell lanthanide fluoride nanoparticles composed of a β-NaHoF4 core plus a β-NaGdF4:Yb 3+ , Tm 3+ shell with an average size of ∼24 nm. The biocompatibility of the particles was ensured by a surface modification with poly acrylic acid (PAA) and further functionalization with an affinity ligand, folic acid (FA). When excited using 980 nm near infrared (NIR) radiation, the contrast agent (CA) shows intense emission at 802 nm with lifetime of 791±3 μs, due to the transition 3 H 4 → 3 H 6 of Tm 3+ . Proton nuclear magnetic relaxation dispersion ( 1 H-NMRD) studies and magnetic resonance (MR) phantom imaging showed that the newly synthesized nanoparticles, decorated with poly(acrylic acid) and folic acid on the surface (NP-PAA-FA), can act mainly as a T 1 -weighted contrast agent below 1.5 T, a T 1 /T 2 dual-weighted contrast agent at 3 T, and as highly efficient T 2 -weighted contrast agent at ultrahigh fields. In addition, NP-PAA-FA showed very low cytotoxicity and no detectable cellular damage up to a dose of 500 μg mL -1 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mitchell, Timothy J.; Hacker, Carl D.; Breshears, Jonathan D.; Szrama, Nick P.; Sharma, Mohit; Bundy, David T.; Pahwa, Mrinal; Corbetta, Maurizio; Snyder, Abraham Z.; Shimony, Joshua S.
2013-01-01
BACKGROUND: Recent findings associated with resting-state cortical networks have provided insight into the brain's organizational structure. In addition to their neuroscientific implications, the networks identified by resting-state functional magnetic resonance imaging (rs-fMRI) may prove useful for clinical brain mapping. OBJECTIVE: To demonstrate that a data-driven approach to analyze resting-state networks (RSNs) is useful in identifying regions classically understood to be eloquent cortex as well as other functional networks. METHODS: This study included 6 patients undergoing surgical treatment for intractable epilepsy and 7 patients undergoing tumor resection. rs-fMRI data were obtained before surgery and 7 canonical RSNs were identified by an artificial neural network algorithm. Of these 7, the motor and language networks were then compared with electrocortical stimulation (ECS) as the gold standard in the epilepsy patients. The sensitivity and specificity for identifying these eloquent sites were calculated at varying thresholds, which yielded receiver-operating characteristic (ROC) curves and their associated area under the curve (AUC). RSNs were plotted in the tumor patients to observe RSN distortions in altered anatomy. RESULTS: The algorithm robustly identified all networks in all patients, including those with distorted anatomy. When all ECS-positive sites were considered for motor and language, rs-fMRI had AUCs of 0.80 and 0.64, respectively. When the ECS-positive sites were analyzed pairwise, rs-fMRI had AUCs of 0.89 and 0.76 for motor and language, respectively. CONCLUSION: A data-driven approach to rs-fMRI may be a new and efficient method for preoperative localization of numerous functional brain regions. ABBREVIATIONS: AUC, area under the curve BA, Brodmann area BOLD, blood oxygen level dependent ECS, electrocortical stimulation fMRI, functional magnetic resonance imaging ICA, independent component analysis MLP, multilayer perceptron MP-RAGE, magnetization-prepared rapid gradient echo ROC, receiver-operating characteristic rs-fMRI, resting-state functional magnetic resonance imaging RSN, resting-state network PMID:24264234
[Estimation of the quality of life 8-year-old child with bilateral anophthalmia].
Sredzińska-Kita, Dorota; Mrugacz, Małgorzata; Bakunowicz-Łazarczyk, Alina
2009-01-01
The main aim of our work was to estimate the physical and psychomotor development and the arrangement to the daily life for a 8-year-old girl with inborn bilateral anophthalmia. The basic ophthalmic, pediatric and neurological examinations were performed with additional genetic and radiological examinations. The ophthalmic and MRI examination find out the absence of the eyeballs, optic nerves, optic chiasm, optic tracts and optic radiation. Anophthalmia limits in a big grade an independent life of the child. However, currently the girl's development indicates for good intellectual abilities what is promising for future independent life and professional work.
Cheung, Charlton; McAlonan, Grainne M; Fung, Yee Y; Fung, Germaine; Yu, Kevin K; Tai, Kin-Shing; Sham, Pak C; Chua, Siew E
2011-01-01
MPAs (minor physical anomalies) frequently occur in neurodevelopmental disorders because both face and brain are derived from neuroectoderm in the first trimester. Conventionally, MPAs are measured by evaluation of external appearance. Using MRI can help overcome inherent observer bias, facilitate multi-centre data acquisition, and explore how MPAs relate to brain dysmorphology in the same individual. Optical MPAs exhibit a tightly synchronized trajectory through fetal, postnatal and adult life. As head size enlarges with age, inter-orbital distance increases, and is mostly completed before age 3 years. We hypothesized that optical MPAs might afford a retrospective 'window' to early neurodevelopment; specifically, inter-orbital distance increase may represent a biomarker for early brain dysmaturation in autism. We recruited 91 children aged 7-16; 36 with an autism spectrum disorder and 55 age- and gender-matched typically developing controls. All children had normal IQ. Inter-orbital distance was measured on T1-weighted MRI scans. This value was entered into a voxel-by-voxel linear regression analysis with grey matter segmented from a bimodal MRI data-set. Age and total brain tissue volume were entered as covariates. Intra-class coefficient for measurement of the inter-orbital distance was 0.95. Inter-orbital distance was significantly increased in the autism group (p = 0.03, 2-tailed). The autism group showed a significant relationship between inter-orbital distance grey matter volume of bilateral amygdalae extending to the unci and inferior temporal poles. Greater inter-orbital distance in the autism group compared with healthy controls is consistent with infant head size expansion in autism. Inter-orbital distance positively correlated with volume of medial temporal lobe structures, suggesting a link to "social brain" dysmorphology in the autism group. We suggest these data support the role of optical MPAs as a "fossil record" of early aberrant neurodevelopment, and potential biomarker for brain dysmaturation in autism.
Monkey cortex through fMRI glasses
Vanduffel, Wim; Zhu, Qi; Orban, Guy A.
2015-01-01
In 1998 several groups reported the feasibility of functional magnetic resonance imaging (fMRI) experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category and feature selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. PMID:25102559
Liu, Zhongming; de Zwart, Jacco A.; Chang, Catie; Duan, Qi; van Gelderen, Peter; Duyn, Jeff H.
2014-01-01
Spontaneous activity in the human brain occurs in complex spatiotemporal patterns that may reflect functionally specialized neural networks. Here, we propose a subspace analysis method to elucidate large-scale networks by the joint analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data. The new approach is based on the notion that the neuroelectrical activity underlying the fMRI signal may have EEG spectral features that report on regional neuronal dynamics and interregional interactions. Applying this approach to resting healthy adults, we indeed found characteristic spectral signatures in the EEG correlates of spontaneous fMRI signals at individual brain regions as well as the temporal synchronization among widely distributed regions. These spectral signatures not only allowed us to parcel the brain into clusters that resembled the brain's established functional subdivision, but also offered important clues for disentangling the involvement of individual regions in fMRI network activity. PMID:23796947
Individual differences in intrinsic brain connectivity predict decision strategy.
Barnes, Kelly Anne; Anderson, Kevin M; Plitt, Mark; Martin, Alex
2014-10-15
When humans are provided with ample time to make a decision, individual differences in strategy emerge. Using an adaptation of a well-studied decision making paradigm, motion direction discrimination, we probed the neural basis of individual differences in strategy. We tested whether strategies emerged from moment-to-moment reconfiguration of functional brain networks involved in decision making with task-evoked functional MRI (fMRI) and whether intrinsic properties of functional brain networks, measured at rest with functional connectivity MRI (fcMRI), were associated with strategy use. We found that human participants reliably selected one of two strategies across 2 days of task performance, either continuously accumulating evidence or waiting for task difficulty to decrease. Individual differences in decision strategy were predicted both by the degree of task-evoked activation of decision-related brain regions and by the strength of pretask correlated spontaneous brain activity. These results suggest that spontaneous brain activity constrains strategy selection on perceptual decisions.
[Functional magnetic resonance imaging. What are the benefits expected in hand surgery?].
Moutet, F; Delon-Martin, C; Martin, O; Sirigu, A; Delaquaize, F; Benali, H; Masquelet, A-C
2013-06-01
Functional MRI (fMRI) allowed considerable advances upon understanding of cerebral functioning. Cortical plasticity, which allows the voluntary command of a restored function by a transferred muscle remains to be investigated in its intimacy. The authors present here the round table held at the 48th annual meeting of the French Society for Surgery of the Hand on December 22nd, 2012. It tries to review the analysis of the phenomenon observed during multiple tendinous transfers for restoration of proximal radial nerve palsy. Were successively approached: 1) Methods of acquisition and analysis of the signals (C. D-M.); 2) Movement reorganization (O.M.); 3) Motor plasticity after hand allograft (A. S.); 4) The potential interest of the fMRI in hand rehabilitation (F. D.); 5) The analysis of cerebral plasticity in general (H. B.). A rather philosophical conclusion opens other fields to f MRI (A.M.). Copyright © 2013 Elsevier Masson SAS. All rights reserved.
A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data
Ge, Bao; Li, Xiang; Jiang, Xi; Sun, Yifei; Liu, Tianming
2018-01-01
The exponential growth of fMRI big data offers researchers an unprecedented opportunity to explore functional brain networks. However, this opportunity has not been fully explored yet due to the lack of effective and efficient tools for handling such fMRI big data. One major challenge is that computing capabilities still lag behind the growth of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning and sparse coding of whole-brain fMRI data for an fMRI database of average size. Therefore, how to reduce the data size but without losing important information becomes a more and more pressing issue. To address this problem, we propose a signal sampling approach for significant fMRI data reduction before performing structurally-guided dictionary learning and sparse coding of whole brain's fMRI data. We compared the proposed structurally guided sampling method with no sampling, random sampling and uniform sampling schemes, and experiments on the Human Connectome Project (HCP) task fMRI data demonstrated that the proposed method can achieve more than 15 times speed-up without sacrificing the accuracy in identifying task-evoked functional brain networks. PMID:29706880
A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data.
Ge, Bao; Li, Xiang; Jiang, Xi; Sun, Yifei; Liu, Tianming
2018-01-01
The exponential growth of fMRI big data offers researchers an unprecedented opportunity to explore functional brain networks. However, this opportunity has not been fully explored yet due to the lack of effective and efficient tools for handling such fMRI big data. One major challenge is that computing capabilities still lag behind the growth of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning and sparse coding of whole-brain fMRI data for an fMRI database of average size. Therefore, how to reduce the data size but without losing important information becomes a more and more pressing issue. To address this problem, we propose a signal sampling approach for significant fMRI data reduction before performing structurally-guided dictionary learning and sparse coding of whole brain's fMRI data. We compared the proposed structurally guided sampling method with no sampling, random sampling and uniform sampling schemes, and experiments on the Human Connectome Project (HCP) task fMRI data demonstrated that the proposed method can achieve more than 15 times speed-up without sacrificing the accuracy in identifying task-evoked functional brain networks.
Gossett, Ethan W; Wheelock, Muriah D; Goodman, Adam M; Orem, Tyler R; Harnett, Nathaniel G; Wood, Kimberly H; Mrug, Sylvie; Granger, Douglas A; Knight, David C
2018-03-01
Stress tasks performed during functional magnetic resonance imaging (fMRI) elicit a relatively small cortisol response compared to stress tasks completed in a traditional behavioral laboratory, which may be due to apprehension of fMRI that elicits an anticipatory stress response. The present study investigated whether anticipatory stress is greater prior to research completed in an MRI environment than in a traditional behavioral laboratory. Anticipatory stress (indexed by cortisol) was greater prior to testing in the MRI environment than traditional behavioral laboratory. Furthermore, anticipation of fMRI elicited a cortisol response commensurate with the response to the stress task in the behavioral laboratory. However, in the MRI environment, post-stress cortisol was significantly lower than baseline cortisol. Taken together, these findings suggest the stress elicited by anticipation of fMRI may lead to acute elevations in cortisol prior to scanning, which may in turn disrupt the cortisol response to stress tasks performed during scanning. Copyright © 2018 Elsevier B.V. All rights reserved.
Absolute calibration for complex-geometry biomedical diffuse optical spectroscopy
NASA Astrophysics Data System (ADS)
Mastanduno, Michael A.; Jiang, Shudong; El-Ghussein, Fadi; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.
2013-03-01
We have presented methodology to calibrate data in NIRS/MRI imaging versus an absolute reference phantom and results in both phantoms and healthy volunteers. This method directly calibrates data to a diffusion-based model, takes advantage of patient specific geometry from MRI prior information, and generates an initial guess without the need for a large data set. This method of calibration allows for more accurate quantification of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration as compared with other, slope-based methods. We found the main source of error in the method to be derived from incorrect assignment of reference phantom optical properties rather than initial guess in reconstruction. We also present examples of phantom and breast images from a combined frequency domain and continuous wave MRI-coupled NIRS system. We were able to recover phantom data within 10% of expected contrast and within 10% of the actual value using this method and compare these results with slope-based calibration methods. Finally, we were able to use this technique to calibrate and reconstruct images from healthy volunteers. Representative images are shown and discussion is provided for comparison with existing literature. These methods work towards fully combining the synergistic attributes of MRI and NIRS for in-vivo imaging of breast cancer. Complete software and hardware integration in dual modality instruments is especially important due to the complexity of the technology and success will contribute to complex anatomical and molecular prognostic information that can be readily obtained in clinical use.
Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging.
Zhang, Liang; Habib, Amyn A; Zhao, Dawen
2016-06-21
Phosphatidylserine (PS), which is normally intracellular, becomes exposed on the outer surface of viable endothelial cells (ECs) of tumor vasculature. Utilizing a PS-targeting antibody, we have recently established a PS-targeted liposomal (PS-L) nanoplatform that has demonstrated to be highly tumor-selective. Because of the vascular lumen-exposed PS that is immediately accessible without a need to penetrate the intact blood brain barrier (BBB), we hypothesize that the systemically administered PS-L binds specifically to tumor vascular ECs, becomes subsequently internalized into the cells and then enables its cargos to be efficiently delivered to glioma parenchyma. To test this, we exploited the dual MRI/optical imaging contrast agents-loaded PS-L and injected it intravenously into mice bearing intracranial U87 glioma. At 24 h, both in vivo optical imaging and MRI depicted enhanced tumor contrast, distinct from the surrounding normal brain. Intriguingly, longitudinal MRI revealed temporal and spatial intratumoral distribution of the PS-L by following MRI contrast changes, which appeared punctate in tumor periphery at an earlier time point (4 h), but became clustering and disseminated throughout the tumor at 24 h post injection. Importantly, glioma-targeting specificity of the PS-L was antigen specific, since a control probe of irrelevant specificity showed minimal accumulation in the glioma. Together, these results indicate that the PS-L nanoplatform enables the enhanced, glioma-targeted delivery of imaging contrast agents by crossing the tumor BBB efficiently, which may also serve as a useful nanoplatform for anti-glioma drugs.
A composite measure to explore visual disability in primary progressive multiple sclerosis.
Poretto, Valentina; Petracca, Maria; Saiote, Catarina; Mormina, Enricomaria; Howard, Jonathan; Miller, Aaron; Lublin, Fred D; Inglese, Matilde
2017-01-01
Optical coherence tomography (OCT) and magnetic resonance imaging (MRI) can provide complementary information on visual system damage in multiple sclerosis (MS). The objective of this paper is to determine whether a composite OCT/MRI score, reflecting cumulative damage along the entire visual pathway, can predict visual deficits in primary progressive multiple sclerosis (PPMS). Twenty-five PPMS patients and 20 age-matched controls underwent neuro-ophthalmologic evaluation, spectral-domain OCT, and 3T brain MRI. Differences between groups were assessed by univariate general linear model and principal component analysis (PCA) grouped instrumental variables into main components. Linear regression analysis was used to assess the relationship between low-contrast visual acuity (LCVA), OCT/MRI-derived metrics and PCA-derived composite scores. PCA identified four main components explaining 80.69% of data variance. Considering each variable independently, LCVA 1.25% was significantly predicted by ganglion cell-inner plexiform layer (GCIPL) thickness, thalamic volume and optic radiation (OR) lesion volume (adjusted R 2 0.328, p = 0.00004; adjusted R 2 0.187, p = 0.002 and adjusted R 2 0.180, p = 0.002). The PCA composite score of global visual pathway damage independently predicted both LCVA 1.25% (adjusted R 2 value 0.361, p = 0.00001) and LCVA 2.50% (adjusted R 2 value 0.323, p = 0.00003). A multiparametric score represents a more comprehensive and effective tool to explain visual disability than a single instrumental metric in PPMS.
Vigouroux, M; Bertrand, B; Farget, V; Plailly, J; Royet, J P
2005-03-15
A design for a semi-automatic olfactometric system is described for PET and fMRI experiments. The olfactometer presents several advantages because it enables the use of an 'infinite' number of odorants and the synchronization of stimuli with breathing. These advantages mean that the subject is recorded while breathing normally during olfactory judgment tasks. In addition, the design includes a system for recording the behavioral (rating scale) and physiological (breathing, electrodermal reaction (ED), plethysmography (PL)) signals given by the subject. Both systems present the advantage of being compatible with fMRI magnetic fields since no ferrous material is used in the Faraday cage and signals are transmitted via an optical transmission interface to an acquisition system.
Female sexual function and the clitoral complex using pelvic MRI assessment.
Vaccaro, Christine M; Fellner, Angela N; Pauls, Rachel N
2014-09-01
To report basic measurements of clitoral anatomy, and explore potential relationships between the clitoral complex and female sexual function using MRI assessment. In this retrospective descriptive study, 20 sexually active women (≥18 years) who had a recent pelvic MRI for various gynecologic concerns were invited to participate. Outcome measures included demographic data, medical and sexual history, quality of life questionnaires: Female Sexual Function Index (FSFI), Body Exposure during Sexual Activities Questionnaire (BESAQ), and Short Form Quality of Life Questionnaire (SF-12). These data were then compared to detailed clitoral MRI measurements and analyzed using the Pearson correlation and Chi square test. FSFI domains of desire, arousal, lubrication, and orgasm were inversely correlated with clitoral size (p=0.01-0.04), as were SF-12 physical composite scores (p=0.003), suggesting improved sexual function and physical health in women with smaller clitoral structures (specifically the clitoral body and crus). Sexual function was improved in women with a smaller-sized clitoris, specifically the clitoral body and crus. Published by Elsevier Ireland Ltd.
Macis, Giuseppe; Di Giovanni, Silvia; Di Franco, Davide; Bonomo, Lorenzo
2013-01-01
The future approach of diagnostic imaging in urology follows the technological progress, which made the visualization of in vivo molecular processes possible. From anatomo-morphological diagnostic imaging and through functional imaging molecular radiology is reached. Based on molecular probes, imaging is aimed at assessing the in vivo molecular processes, their physiology and function at cellular level. The future imaging will investigate the complex tumor functioning as metabolism, aerobic glycolysis in particular, angiogenesis, cell proliferation, metastatic potential, hypoxia, apoptosis and receptors expressed by neoplastic cells. Methods for performing molecular radiology are CT, MRI, PET-CT, PET-MRI, SPECT and optical imaging. Molecular ultrasound combines technological advancement with targeted contrast media based on microbubbles, this allowing the selective registration of microbubble signal while that of stationary tissues is suppressed. An experimental study was carried out where the ultrasound molecular probe BR55 strictly bound to prostate tumor results in strong enhancement in the early phase after contrast, this contrast being maintained in the late phase. This late enhancement is markedly significant for the detection of prostatic cancer foci and to guide the biopsy sampling. The 124I-cG250 molecular antibody which is strictly linked to cellular carbonic anhydrase IX of clear cell renal carcinoma, allows the acquisition of diagnostic PET images of clear cell renal carcinoma without biopsy. This WG-250 (RENCAREX) antibody was used as a therapy in metastatic clear cell renal carcinoma. Future advancements and applications will result in early cancer diagnosis, personalized therapy that will be specific according to the molecular features of cancer and leading to the development of catheter-based multichannel molecular imaging devices for cystoscopy-based molecular imaging diagnosis and intervention.
Technical aspects of cardiac PET/MRI.
Masuda, Atsuro; Nemoto, Ayaka; Takeishi, Yasuchika
2018-06-01
PET/MRI is a novel modality that enables to combine PET and MR images, and has significant potential to evaluate various cardiac diseases through the combination of PET molecular imaging and MRI functional imaging. Precise management of technical issues, however, is necessary for cardiac PET/MRI. This article describes several technical points, including patient preparation, MR attenuation correction, parallel acquisition of PET with MRI, clinical aspects, and image quality control.
Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation.
Linden, David E J; Turner, Duncan L
2016-08-01
Recent developments in functional magnetic resonance imaging (fMRI) have catalyzed a new field of translational neuroscience. Using fMRI to monitor the aspects of task-related changes in neural activation or brain connectivity, investigators can offer feedback of simple or complex neural signals/patterns back to the participant on a quasireal-time basis [real-time-fMRI-based neurofeedback (rt-fMRI-NF)]. Here, we introduce some background methodology of the new developments in this field and give a perspective on how they may be used in neurorehabilitation in the future. The development of rt-fMRI-NF has been used to promote self-regulation of activity in several brain regions and networks. In addition, and unlike other noninvasive techniques, rt-fMRI-NF can access specific subcortical regions and in principle any region that can be monitored using fMRI including the cerebellum, brainstem and spinal cord. In Parkinson's disease and stroke, rt-fMRI-NF has been demonstrated to alter neural activity after the self-regulation training was completed and to modify specific behaviours. Future exploitation of rt-fMRI-NF could be used to induce neuroplasticity in brain networks that are involved in certain neurological conditions. However, currently, the use of rt-fMRI-NF in randomized, controlled clinical trials is in its infancy.
What the success of brain imaging implies about the neural code.
Guest, Olivia; Love, Bradley C
2017-01-19
The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite fMRI's limitations, implies that certain neural coding schemes are more likely than others. For fMRI to succeed given its low temporal and spatial resolution, the neural code must be smooth at the voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we determine which coding schemes are plausible given both fMRI's successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of the neural code and ventral stream, as well as what can be successfully investigated with fMRI.
Functional feature embedded space mapping of fMRI data.
Hu, Jin; Tian, Jie; Yang, Lei
2006-01-01
We have proposed a new method for fMRI data analysis which is called Functional Feature Embedded Space Mapping (FFESM). Our work mainly focuses on the experimental design with periodic stimuli which can be described by a number of Fourier coefficients in the frequency domain. A nonlinear dimension reduction technique Isomap is applied to the high dimensional features obtained from frequency domain of the fMRI data for the first time. Finally, the presence of activated time series is identified by the clustering method in which the information theoretic criterion of minimum description length (MDL) is used to estimate the number of clusters. The feasibility of our algorithm is demonstrated by real human experiments. Although we focus on analyzing periodic fMRI data, the approach can be extended to analyze non-periodic fMRI data (event-related fMRI) by replacing the Fourier analysis with a wavelet analysis.
Reproducibility of EEG-fMRI results in a patient with fixation-off sensitivity.
Formaggio, Emanuela; Storti, Silvia Francesca; Galazzo, Ilaria Boscolo; Bongiovanni, Luigi Giuseppe; Cerini, Roberto; Fiaschi, Antonio; Manganotti, Paolo
2014-07-01
Blood oxygenation level-dependent (BOLD) activation associated with interictal epileptiform discharges in a patient with fixation-off sensitivity (FOS) was studied using a combined electroencephalography-functional magnetic resonance imaging (EEG-fMRI) technique. An automatic approach for combined EEG-fMRI analysis and a subject-specific hemodynamic response function was used to improve general linear model analysis of the fMRI data. The EEG showed the typical features of FOS, with continuous epileptiform discharges during elimination of central vision by eye opening and closing and fixation; modification of this pattern was clearly visible and recognizable. During all 3 recording sessions EEG-fMRI activations indicated a BOLD signal decrease related to epileptiform activity in the parietal areas. This study can further our understanding of this EEG phenomenon and can provide some insight into the reliability of the EEG-fMRI technique in localizing the irritative zone.
Fair, Damien A.; Schlaggar, Bradley L.; Cohen B.A., Alexander L.; Miezin, Francis M.; Dosenbach, Nico U.F.; Wenger, Kristin K.; Fox, Michael D.; Snyder, Abraham Z.; Raichle, Marcus E.; Petersen, Steven E.
2007-01-01
Resting state functional connectivity MRI (fcMRI) has become a particularly useful tool for studying regional relationships in typical and atypical populations. Because many investigators have already obtained large datasets of task related fMRI, the ability to use this existing task data for resting state fcMRI is of considerable interest. Two classes of datasets could potentially be modified to emulate resting state data. These datasets include: 1) “interleaved” resting blocks from blocked or mixed blocked/event-related sets, and 2) residual timecourses from event-related sets that lack rest blocks. Using correlation analysis, we compared the functional connectivity of resting epochs taken from a mixed blocked/event-related design fMRI data set and the residuals derived from event-related data with standard continuous resting state data to determine which class of data can best emulate resting state data. We show that despite some differences, the functional connectivity for the interleaved resting periods taken from blocked designs is both qualitatively and quantitatively very similar to that of “continuous” resting state data. In contrast, despite being qualitatively similar to “continuous” resting state data, residuals derived from event-related design data had several distinct quantitative differences. These results suggest that the interleaved resting state data such as those taken from blocked or mixed blocked/event-related fMRI designs are well-suited for resting state functional connectivity analyses. Although using event-related data residuals for resting state functional connectivity may still be useful, results should be interpreted with care. PMID:17239622
Zhang, Shengyu; Hu, Qiang; Tang, Tao; Liu, Chao; Li, Chengchong; Zang, Yin-Yin; Cai, Wei-Xiong
2018-06-13
BACKGROUND Using regional homogeneity (ReHo) blood oxygen level-dependent functional MR (BOLD-fMRI), we investigated the structural and functional alterations of brain regions among patients with methamphetamine-associated psychosis (MAP). MATERIAL AND METHODS This retrospective study included 17 MAP patients, 16 schizophrenia (SCZ) patients, and 18 healthy controls. Informed consent was obtained from all patients before the clinical assessment, the severity of clinical symptoms was evaluated prior to the fMRI scanning, and then images were acquired and preprocessed after each participant received 6-min fRMI scanning. The participants all underwent BOLD-fMRI scanning. Voxel-based morphometry was used to measure gray matter density (GMD). Resting-state fMRI (rs-fMRI) was conducted to analyze functional MR, ReHo, and functional connectivity (FC). RESULTS GMD analysis results suggest that MAP patients, SCZ patients, and healthy volunteers show different GMDs within different brain regions. Similarly, the ReHo analysis results suggest that MAP patients, SCZ patients, and healthy volunteers have different GMDs within different brain regions. Negative correlations were found between ReHo- and the PANSS-positive scores within the left orbital interior frontal gyrus (L-orb-IFG) of MAP patients. ReHo- and PANSS-negative scores of R-SFG were negatively correlated among SCZ patients. The abnormal FC of R-MFG showed a negative correlation with the PANSS score among MAP patients. CONCLUSIONS The abnormalities in brain structure and FC were associated with the development of MAP.
Korgaonkar, Mayuresh S; Ram, Kaushik; Williams, Leanne M; Gatt, Justine M; Grieve, Stuart M
2014-08-01
The resting state default mode network (DMN) has been shown to characterize a number of neurological and psychiatric disorders. Evidence suggests an underlying genetic basis for this network and hence could serve as potential endophenotype for these disorders. Heritability is a defining criterion for endophenotypes. The DMN is measured either using a resting-state functional magnetic resonance imaging (fMRI) scan or by extracting resting state activity from task-based fMRI. The current study is the first to evaluate heritability of this task-derived resting activity. 250 healthy adult twins (79 monozygotic and 46 dizygotic same sex twin pairs) completed five cognitive and emotion processing fMRI tasks. Resting state DMN functional connectivity was derived from these five fMRI tasks. We validated this approach by comparing connectivity estimates from task-derived resting activity for all five fMRI tasks, with those obtained using a dedicated task-free resting state scan in an independent cohort of 27 healthy individuals. Structural equation modeling using the classic twin design was used to estimate the genetic and environmental contributions to variance for the resting-state DMN functional connectivity. About 9-41% of the variance in functional connectivity between the DMN nodes was attributed to genetic contribution with the greatest heritability found for functional connectivity between the posterior cingulate and right inferior parietal nodes (P<0.001). Our data provide new evidence that functional connectivity measures from the intrinsic DMN derived from task-based fMRI datasets are under genetic control and have the potential to serve as endophenotypes for genetically predisposed psychiatric and neurological disorders. Copyright © 2014 Wiley Periodicals, Inc.
Huang, Huiyuan; Ding, Zhongxiang; Mao, Dewang; Yuan, Jianhua; Zhu, Fangmei; Chen, Shuda; Xu, Yan; Lou, Lin; Feng, Xiaoyan; Qi, Le; Qiu, Wusi; Zhang, Han; Zang, Yu-Feng
2016-10-01
The main goal of brain tumor surgery is to maximize tumor resection while minimizing the risk of irreversible postoperative functional sequelae. Eloquent functional areas should be delineated preoperatively, particularly for patients with tumors near eloquent areas. Functional magnetic resonance imaging (fMRI) is a noninvasive technique that demonstrates great promise for presurgical planning. However, specialized data processing toolkits for presurgical planning remain lacking. Based on several functions in open-source software such as Statistical Parametric Mapping (SPM), Resting-State fMRI Data Analysis Toolkit (REST), Data Processing Assistant for Resting-State fMRI (DPARSF) and Multiple Independent Component Analysis (MICA), here, we introduce an open-source MATLAB toolbox named PreSurgMapp. This toolbox can reveal eloquent areas using comprehensive methods and various complementary fMRI modalities. For example, PreSurgMapp supports both model-based (general linear model, GLM, and seed correlation) and data-driven (independent component analysis, ICA) methods and processes both task-based and resting-state fMRI data. PreSurgMapp is designed for highly automatic and individualized functional mapping with a user-friendly graphical user interface (GUI) for time-saving pipeline processing. For example, sensorimotor and language-related components can be automatically identified without human input interference using an effective, accurate component identification algorithm using discriminability index. All the results generated can be further evaluated and compared by neuro-radiologists or neurosurgeons. This software has substantial value for clinical neuro-radiology and neuro-oncology, including application to patients with low- and high-grade brain tumors and those with epilepsy foci in the dominant language hemisphere who are planning to undergo a temporal lobectomy.
Functional integrity in children with anoxic brain injury from drowning.
Ishaque, Mariam; Manning, Janessa H; Woolsey, Mary D; Franklin, Crystal G; Tullis, Elizabeth W; Beckmann, Christian F; Fox, Peter T
2017-10-01
Drowning is a leading cause of accidental injury and death in young children. Anoxic brain injury (ABI) is a common consequence of drowning and can cause severe neurological morbidity in survivors. Assessment of functional status and prognostication in drowning victims can be extremely challenging, both acutely and chronically. Structural neuroimaging modalities (CT and MRI) have been of limited clinical value. Here, we tested the utility of resting-state functional MRI (rs-fMRI) for assessing brain functional integrity in this population. Eleven children with chronic, spastic quadriplegia due to drowning-induced ABI were investigated. All were comatose immediately after the injury and gradually regained consciousness, but with varying ability to communicate their cognitive state. Eleven neurotypical children matched for age and gender formed the control group. Resting-state fMRI and co-registered T1-weighted anatomical MRI were acquired at night during drug-aided sleep. Network integrity was quantified by independent components analysis (ICA), at both group- and per-subject levels. Functional-status assessments based on in-home observations were provided by families and caregivers. Motor ICNs were grossly compromised in ABI patients both group-wise and individually, concordant with their prominent motor deficits. Striking preservations of perceptual and cognitive ICNs were observed, and the degree of network preservation correlated (ρ = 0.74) with the per-subject functional status assessments. Collectively, our findings indicate that rs-fMRI has promise for assessing brain functional integrity in ABI and, potentially, in other disorders. Furthermore, our observations suggest that the severe motor deficits observed in this population can mask relatively intact perceptual and cognitive capabilities. Hum Brain Mapp 38:4813-4831, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Wu, Lei; Eichele, Tom; Calhoun, Vince D
2010-10-01
Concurrent EEG-fMRI studies have provided increasing details of the dynamics of intrinsic brain activity during the resting state. Here, we investigate a prominent effect in EEG during relaxed resting, i.e. the increase of the alpha power when the eyes are closed compared to when the eyes are open. This phenomenon is related to changes in thalamo-cortical and cortico-cortical synchronization. In order to investigate possible changes to EEG-fMRI coupling and fMRI functional connectivity during the two states we adopted a data-driven approach that fuses the multimodal data on the basis of parallel ICA decompositions of the fMRI data in the spatial domain and of the EEG data in the spectral domain. The power variation of a posterior alpha component was used as a reference function to deconvolve the hemodynamic responses from occipital, frontal, temporal, and subcortical fMRI components. Additionally, we computed the functional connectivity between these components. The results showed widespread alpha hemodynamic responses and high functional connectivity during eyes-closed (EC) rest, while eyes open (EO) resting abolished many of the hemodynamic responses and markedly decreased functional connectivity. These data suggest that generation of local hemodynamic responses is highly sensitive to state changes that do not involve changes of mental effort or awareness. They also indicate the localized power differences in posterior alpha between EO and EC in resting state data are accompanied by spatially widespread amplitude changes in hemodynamic responses and inter-regional functional connectivity, i.e. low frequency hemodynamic signals display an equivalent of alpha reactivity. Copyright 2010 Elsevier Inc. All rights reserved.
Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function.
Guo, Qian; Zhou, Tiantong; Li, Wenjie; Dong, Li; Wang, Suhong; Zou, Ling
2017-07-01
Executive function refers to conscious control in psychological process which relates to thinking and action. Emotional decision is a part of hot executive function and contains emotion and logic elements. As a kind of important social adaptation ability, more and more attention has been paid in recent years. Gambling task can be well performed in the study of emotional decision. As fMRI researches focused on gambling task show not completely consistent brain activation regions, this study adopted EEG-fMRI fusion technology to reveal brain neural activity related with feedback stimuli. In this study, an EEG-informed fMRI analysis was applied to process simultaneous EEG-fMRI data. First, relative power-spectrum analysis and K-means clustering method were performed separately to extract EEG-fMRI features. Then, Generalized linear models were structured using fMRI data and using different EEG features as regressors. The results showed that in the win versus loss stimuli, the activated regions almost covered the caudate, the ventral striatum (VS), the orbital frontal cortex (OFC), and the cingulate. Wide activation areas associated with reward and punishment were revealed by the EEG-fMRI integration analysis than the conventional fMRI results, such as the posterior cingulate and the OFC. The VS and the medial prefrontal cortex (mPFC) were found when EEG power features were performed as regressors of GLM compared with results entering the amplitudes of feedback-related negativity (FRN) as regressors. Furthermore, the brain region activation intensity was the strongest when theta-band power was used as a regressor compared with the other two fusion results. The EEG-based fMRI analysis can more accurately depict the whole-brain activation map and analyze emotional decision problems.
NASA Astrophysics Data System (ADS)
Wang, Shiyang; Lu, Zhengfeng; Fan, Xiaobing; Medved, Milica; Jiang, Xia; Sammet, Steffen; Yousuf, Ambereen; Pineda, Federico; Oto, Aytekin; Karczmar, Gregory S.
2018-02-01
The purpose of this study was to evaluate the accuracy of arterial input functions (AIFs) measured from dynamic contrast enhanced (DCE) MRI following a low dose of contrast media injection. The AIFs measured from DCE computed tomography (CT) were used as ‘gold standard’. A total of twenty patients received CT and MRI scans on the same day. Patients received 120 ml Iohexol in DCE-CT and a low dose of (0.015 mM kg-1) of gadobenate dimeglumine in DCE-MRI. The AIFs were measured in the iliac artery and normalized to the CT and MRI contrast agent doses. To correct for different temporal resolution and sampling periods of CT and MRI, an empirical mathematical model (EMM) was used to fit the AIFs first. Then numerical AIFs (AIFCT and AIFMRI) were calculated based on fitting parameters. The AIFMRI was convolved with a ‘contrast agent injection’ function (AIFMRICON ) to correct for the difference between MRI and CT contrast agent injection times (~1.5 s versus 30 s). The results show that the EMMs accurately fitted AIFs measured from CT and MRI. There was no significant difference (p > 0.05) between the maximum peak amplitude of AIFs from CT (22.1 ± 4.1 mM/dose) and MRI after convolution (22.3 ± 5.2 mM/dose). The shapes of the AIFCT and AIFMRICON were very similar. Our results demonstrated that AIFs can be accurately measured by MRI following low dose contrast agent injection.
Szaflarski, Jerzy P; Gloss, David; Binder, Jeffrey R; Gaillard, William D; Golby, Alexandra J; Holland, Scott K; Ojemann, Jeffrey; Spencer, David C; Swanson, Sara J; French, Jacqueline A; Theodore, William H
2017-01-24
To assess the diagnostic accuracy and prognostic value of functional MRI (fMRI) in determining lateralization and predicting postsurgical language and memory outcomes. An 11-member panel evaluated and rated available evidence according to the 2004 American Academy of Neurology process. At least 2 panelists reviewed the full text of 172 articles and selected 37 for data extraction. Case reports, reports with <15 cases, meta-analyses, and editorials were excluded. The use of fMRI may be considered an option for lateralizing language functions in place of intracarotid amobarbital procedure (IAP) in patients with medial temporal lobe epilepsy (MTLE; Level C), temporal epilepsy in general (Level C), or extratemporal epilepsy (Level C). For patients with temporal neocortical epilepsy or temporal tumors, the evidence is insufficient (Level U). fMRI may be considered to predict postsurgical language deficits after anterior temporal lobe resection (Level C). The use of fMRI may be considered for lateralizing memory functions in place of IAP in patients with MTLE (Level C) but is of unclear utility in other epilepsy types (Level U). fMRI of verbal memory or language encoding should be considered for predicting verbal memory outcome (Level B). fMRI using nonverbal memory encoding may be considered for predicting visuospatial memory outcomes (Level C). Presurgical fMRI could be an adequate alternative to IAP memory testing for predicting verbal memory outcome (Level C). Clinicians should carefully advise patients of the risks and benefits of fMRI vs IAP during discussions concerning choice of specific modality in each case. © 2017 American Academy of Neurology.
Functional magnetic resonance imaging in a low-field intraoperative scanner.
Schulder, Michael; Azmi, Hooman; Biswal, Bharat
2003-01-01
Functional magnetic resonance imaging (fMRI) has been used for preoperative planning and intraoperative surgical navigation. However, most experience to date has been with preoperative images acquired on high-field echoplanar MRI units. We explored the feasibility of acquiring fMRI of the motor cortex with a dedicated low-field intraoperative MRI (iMRI). Five healthy volunteers were scanned with the 0.12-tesla PoleStar N-10 iMRI (Odin Medical Technologies, Israel). A finger-tapping motor paradigm was performed with sequential scans, acquired alternately at rest and during activity. In addition, scans were obtained during breath holding alternating with normal breathing. The same paradigms were repeated using a 3-tesla MRI (Siemens Corp., Allandale, N.J., USA). Statistical analysis was performed offline using cross-correlation and cluster techniques. Data were resampled using the 'jackknife' process. The location, number of activated voxels and degrees of statistical significance between the two scanners were compared. With both the 0.12- and 3-tesla imagers, motor cortex activation was seen in all subjects to a significance of p < 0.02 or greater. No clustered pixels were seen outside the sensorimotor cortex. The resampled correlation coefficients were normally distributed, with a mean of 0.56 for both the 0.12- and 3-tesla scanners (standard deviations 0.11 and 0.08, respectively). The breath holding paradigm confirmed that the expected diffuse activation was seen on 0.12- and 3-tesla scans. Accurate fMRI with a low-field iMRI is feasible. Such data could be acquired immediately before or even during surgery. This would increase the utility of iMRI and allow for updated intraoperative functional imaging, free of the limitations of brain shift. Copyright 2003 S. Karger AG, Basel
Surveillance of Ocular Parameters and Visual Function in Bed Rest Subjects
NASA Technical Reports Server (NTRS)
Cromwell, Ronita L.
2011-01-01
Recent visual changes in astronauts have raised concern about ocular health during long duration spaceflight. Seven cases have been documented in astronauts who spent 6 months aboard the International Space Station. These astronauts were male ranging in age from 45 to 55 years old. All astronauts exhibited pre- to post flight refractive changes. Decreased intraocular pressure (IOP) post flight was observed in 3 cases. Fundoscopic exams revealed post flight findings of choroidal folds in 4 cases, optic disc edema in 5 cases and the presence of cotton wool spots in 3 cases. Optical coherence tomography (OCT) confirmed findings of choroidal folds and disc edema, and also documented retinal nerve fiber layer thickening (5 cases). Findings from MRI examinations showed posterior globe flattening (5 cases), optic nerve sheath distention (6 cases) and torturous optic nerves (2 cases). Of the 7 cases, intracranial pressure was measured on 4 astronauts. These 4 showed elevated ICP post-flight that remained elevated for as long as 19 months in one case. While the etiology remains unknown, hypotheses speculate that venous insufficiency or hypertension in the brain caused by cephalad fluid shifts during spaceflight are possible mechanisms for ocular changes seen in astronauts. Head-down tilt bed rest is a spaceflight analog that induces cephalad fluid shifts. This study is designed to provide ocular monitoring of bed rest subjects and determine whether clinically relevant changes are found. Ocular Changes
Wu, Ruiqi; Yang, Pai-Feng; Chen, Li Min
2017-11-15
This study aims to understand how functional connectivity (FC) between areas 3b and S2 alters following input deprivation and the neuronal basis of disrupted FC of resting-state fMRI signals. We combined submillimeter fMRI with microelectrode recordings to localize the deafferented digit regions in areas 3b and S2 by mapping tactile stimulus-evoked fMRI activations before and after cervical dorsal column lesion in each male monkey. An average afferent disruption of 97% significantly reduced fMRI, local field potential (LFP), and spike responses to stimuli in both areas. Analysis of resting-state fMRI signal correlation, LFP coherence, and spike cross-correlation revealed significantly reduced functional connectivity between deafferented areas 3b and S2. The degrees of reductions in stimulus responsiveness and FC after deafferentation differed across fMRI, LFP, and spiking signals. The reduction of FC was much weaker than that of stimulus-evoked responses. Whereas the largest stimulus-evoked signal drop (∼80%) was observed in LFP signals, the greatest FC reduction was detected in the spiking activity (∼30%). fMRI signals showed mild reductions in stimulus responsiveness (∼25%) and FC (∼20%). The overall deafferentation-induced changes were quite similar in areas 3b and S2 across signals. Here we demonstrated that FC strength between areas 3b and S2 was much weakened by dorsal column lesion, and stimulus response reduction and FC disruption in fMRI covary with those of LFP and spiking signals in deafferented areas 3b and S2. These findings have important implications for fMRI studies aiming to probe FC alterations in pathological conditions involving deafferentation in humans. SIGNIFICANCE STATEMENT By directly comparing fMRI, local field potential, and spike signals in both tactile stimulation and resting states before and after severe disruption of dorsal column afferent, we demonstrated that reduction in fMRI responses to stimuli is accompanied by weakened resting-state fMRI functional connectivity (FC) in input-deprived and reorganized digit regions in area 3b of the S1 and S2. Concurrent reductions in local field potential and spike FC validated the use of resting-state fMRI signals for probing neural intrinsic FC alterations in pathological deafferented cortex, and indicated that disrupted FC between mesoscale functionally highly related regions may contribute to the behavioral impairments. Copyright © 2017 the authors 0270-6474/17/3711192-12$15.00/0.
2017-01-01
This study aims to understand how functional connectivity (FC) between areas 3b and S2 alters following input deprivation and the neuronal basis of disrupted FC of resting-state fMRI signals. We combined submillimeter fMRI with microelectrode recordings to localize the deafferented digit regions in areas 3b and S2 by mapping tactile stimulus-evoked fMRI activations before and after cervical dorsal column lesion in each male monkey. An average afferent disruption of 97% significantly reduced fMRI, local field potential (LFP), and spike responses to stimuli in both areas. Analysis of resting-state fMRI signal correlation, LFP coherence, and spike cross-correlation revealed significantly reduced functional connectivity between deafferented areas 3b and S2. The degrees of reductions in stimulus responsiveness and FC after deafferentation differed across fMRI, LFP, and spiking signals. The reduction of FC was much weaker than that of stimulus-evoked responses. Whereas the largest stimulus-evoked signal drop (∼80%) was observed in LFP signals, the greatest FC reduction was detected in the spiking activity (∼30%). fMRI signals showed mild reductions in stimulus responsiveness (∼25%) and FC (∼20%). The overall deafferentation-induced changes were quite similar in areas 3b and S2 across signals. Here we demonstrated that FC strength between areas 3b and S2 was much weakened by dorsal column lesion, and stimulus response reduction and FC disruption in fMRI covary with those of LFP and spiking signals in deafferented areas 3b and S2. These findings have important implications for fMRI studies aiming to probe FC alterations in pathological conditions involving deafferentation in humans. SIGNIFICANCE STATEMENT By directly comparing fMRI, local field potential, and spike signals in both tactile stimulation and resting states before and after severe disruption of dorsal column afferent, we demonstrated that reduction in fMRI responses to stimuli is accompanied by weakened resting-state fMRI functional connectivity (FC) in input-deprived and reorganized digit regions in area 3b of the S1 and S2. Concurrent reductions in local field potential and spike FC validated the use of resting-state fMRI signals for probing neural intrinsic FC alterations in pathological deafferented cortex, and indicated that disrupted FC between mesoscale functionally highly related regions may contribute to the behavioral impairments. PMID:29038239
Angelovski, Goran; Gottschalk, Sven; Milošević, Milena; Engelmann, Jörn; Hagberg, Gisela E; Kadjane, Pascal; Andjus, Pavle; Logothetis, Nikos K
2014-05-21
Responsive or smart contrast agents (SCAs) represent a promising direction for development of novel functional MRI (fMRI) methods for the eventual noninvasive assessment of brain function. In particular, SCAs that respond to Ca(2+) may allow tracking neuronal activity independent of brain vasculature, thus avoiding the characteristic limitations of current fMRI techniques. Here we report an in vitro proof-of-principle study with a Ca(2+)-sensitive, Gd(3+)-based SCA in an attempt to validate its potential use as a functional in vivo marker. First, we quantified its relaxometric response in a complex 3D cell culture model. Subsequently, we examined potential changes in the functionality of primary glial cells following administration of this SCA. Monitoring intracellular Ca(2+) showed that, despite a reduction in the Ca(2+) level, transport of Ca(2+) through the plasma membrane remained unaffected, while stimulation with ATP induced Ca(2+)-transients suggested normal cellular signaling in the presence of low millimolar SCA concentrations. SCAs merely lowered the intracellular Ca(2+) level. Finally, we estimated the longitudinal relaxation times (T1) for an idealized in vivo fMRI experiment with SCA, for extracellular Ca(2+) concentration level changes expected during intense neuronal activity which takes place upon repetitive stimulation. The values we obtained indicate changes in T1 of around 1-6%, sufficient to be robustly detectable using modern MRI methods in high field scanners. Our results encourage further attempts to develop even more potent SCAs and appropriate fMRI protocols. This would result in novel methods that allow monitoring of essential physiological processes at the cellular and molecular level.
Douw, Linda; Stam, Cornelis J.; Tewarie, Prejaas; Hillebrand, Arjan
2017-01-01
Abstract Introduction Studies using functional connectivity and network analyses based on magnetoencephalography (MEG) with source localization are rapidly emerging in neuroscientific literature. However, these analyses currently depend on the availability of costly and sometimes burdensome individual MR scans for co‐registration. We evaluated the consistency of these measures when using a template MRI, instead of native MRI, for the analysis of functional connectivity and network topology. Methods Seventeen healthy participants underwent resting‐state eyes‐closed MEG and anatomical MRI. These data were projected into source space using an atlas‐based peak voxel and a centroid beamforming approach either using (1) participants’ native MRIs or (2) the Montreal Neurological Institute's template. For both methods, time series were reconstructed from 78 cortical atlas regions. Relative power was determined in six classical frequency bands per region and globally averaged. Functional connectivity (phase lag index) between each pair of regions was calculated. The adjacency matrices were then used to reconstruct functional networks, of which regional and global metrics were determined. Intraclass correlation coefficients were calculated and Bland–Altman plots were made to quantify the consistency and potential bias of the use of template versus native MRI. Results Co‐registration with the template yielded largely consistent relative power, connectivity, and network estimates compared to native MRI. Discussion These findings indicate that there is no (systematic) bias or inconsistency between template and native MRI co‐registration of MEG. They open up possibilities for retrospective and prospective analyses to MEG datasets in the general population that have no native MRIs available. Hum Brain Mapp, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. Hum Brain Mapp 39:104–119, 2018. © 2017 Wiley Periodicals, Inc. PMID:28990264