Science.gov

Sample records for functional nanostructured materials

  1. Nanostructured materials

    NASA Astrophysics Data System (ADS)

    Moriarty, Philip

    2001-03-01

    Nanostructured materials may be defined as those materials whose structural elements - clusters, crystallites or molecules - have dimensions in the 1 to 100 nm range. The explosion in both academic and industrial interest in these materials over the past decade arises from the remarkable variations in fundamental electrical, optical and magnetic properties that occur as one progresses from an `infinitely extended' solid to a particle of material consisting of a countable number of atoms. This review details recent advances in the synthesis and investigation of functional nanostructured materials, focusing on the novel size-dependent physics and chemistry that results when electrons are confined within nanoscale semiconductor and metal clusters and colloids. Carbon-based nanomaterials and nanostructures including fullerenes and nanotubes play an increasingly pervasive role in nanoscale science and technology and are thus described in some depth. Current nanodevice fabrication methods and the future prospects for nanostructured materials and nanodevices are discussed.

  2. Self-assembled peptide nanostructures for functional materials

    NASA Astrophysics Data System (ADS)

    Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.

    2016-10-01

    Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.

  3. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    NASA Astrophysics Data System (ADS)

    Rauda, Iris Ester

    Solution-phase processing presents an attractive avenue for building unique architectures from a wide variety of materials that exhibit functional properties, making them ideal candidates for various energy applications. The most basic building block or precursor in solution-based syntheses is a soluble species that can either self-assemble, or coassemble with a structure directing agent or template, to create a unique architecture. Soluble inorganic-based building blocks ranging from atomic-scale charged molecular complexes to nanometer-scale preformed nanocrystals are utilized to construct functional inorganic materials. These nanostructured materials are excellent candidates for integrating into electronic and energy-storage devices, including photovoltaics and pseudocapacitors. The goal of this work is to create inorganic nanostructured materials from solution-based methods. This work is divided into two parts: the first involves the synthesis of inorganic semiconductor-based nanostructured materials; the second focuses on developing porous metal oxide-based pseudocapacitors. The first part describes three distinct synthetic approaches to nanostructured semiconductors: the synthesis of complex metal chalcogenide semiconductors produced from highly soluble hydrazinium-based precursors using a porous template; low-temperature melt processing of an organic-inorganic hybrid semiconductor into porous templates to produce vertically-aligned arrays with a concentric multilayered structure; and solution-phase assembly of semiconductor nanocrystals of CdSe into nanoporous architectures via polymer templating. These nanostructured semiconductors are electrically interconnected through intimate contact between the molecular or nanoscale precursors achieved during solution-phase synthesis, making them suitable for a range of applications. In the second part, porous metal-oxide based materials are constructed by the assembly of nanosized building blocks into 3D porous

  4. Ionic self-assembly for functional hierarchical nanostructured materials.

    PubMed

    Faul, Charl F J

    2014-12-16

    CONSPECTUS: The challenge of constructing soft functional materials over multiple length scales can be addressed by a number of different routes based on the principles of self-assembly, with the judicious use of various noncovalent interactions providing the tools to control such self-assembly processes. It is within the context of this challenge that we have extensively explored the use of an important approach for materials construction over the past decade: exploiting electrostatic interactions in our ionic self-assembly (ISA) method. In this approach, cooperative assembly of carefully chosen charged surfactants and oppositely charged building blocks (or tectons) provides a facile noncovalent route for the rational design and production of functional nanostructured materials. Generally, our research efforts have developed with an initial focus on establishing rules for the construction of novel noncovalent liquid-crystalline (LC) materials. We found that the use of double-tailed surfactant species (especially branched double-tailed surfactants) led to the facile formation of thermotropic (and, in certain cases, lyotropic) phases, as demonstrated by extensive temperature-dependent X-ray and light microscopy investigations. From this core area of activity, research expanded to cover issues beyond simple construction of anisotropic materials, turning to the challenge of inclusion and exploitation of switchable functionality. The use of photoactive azobenzene-containing ISA materials afforded opportunities to exploit both photo-orientation and surface relief grating formation. The preparation of these anisotropic LC materials was of interest, as the aim was the facile production of disposable and low-cost optical components for display applications and data storage. However, the prohibitive cost of the photo-orientation processes hampered further exploitation of these materials. We also expanded our activities to explore ISA of biologically relevant tectons

  5. Micro-/nanostructured multicomponent molecular materials: design, assembly, and functionality.

    PubMed

    Yan, Dongpeng

    2015-03-23

    Molecule-based micro-/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro-sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro-/nanomaterials. Unlike single-component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro-/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional multicomponent micro-/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro-/nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Soft nanostructured films for directing the assembly of functional materials

    NASA Astrophysics Data System (ADS)

    Steer, D.; Kang, M.; Leal, C.

    2017-04-01

    Lipids are a class of biological small molecules with hydrophilic and hydrophobic constituents forming the structural membranes in cells. Over the past century an extensive understanding of lipid biology and biophysics has been developed illuminating lipids as an intricate, highly tunable, and hierarchical soft-matter system. In addition to serving as cell membrane models, lipids have been investigated as microphase separated structures in aqueous solutions. In terms of applications lipids have been realized as powerful structural motifs for the encapsulation and cellular delivery of genetic material. More recently, lipids have also revealed promise as thin film materials, exhibiting long-range periodic nano-scale order and tunable orientation. In this review we summarize the pertinent understanding of lipid nanostructure development in bulk aqueous systems followed by the current and potential perturbations to these results induced by introduction of a substrate. These effects are punctuated by a summary of our published results in the field of lipid thin films with added nucleic acids and key results introducing hard materials into lipid nanostructured substrates.

  7. Soft nanostructured films for directing the assembly of functional materials.

    PubMed

    Steer, D; Kang, M; Leal, C

    2017-04-07

    Lipids are a class of biological small molecules with hydrophilic and hydrophobic constituents forming the structural membranes in cells. Over the past century an extensive understanding of lipid biology and biophysics has been developed illuminating lipids as an intricate, highly tunable, and hierarchical soft-matter system. In addition to serving as cell membrane models, lipids have been investigated as microphase separated structures in aqueous solutions. In terms of applications lipids have been realized as powerful structural motifs for the encapsulation and cellular delivery of genetic material. More recently, lipids have also revealed promise as thin film materials, exhibiting long-range periodic nano-scale order and tunable orientation. In this review we summarize the pertinent understanding of lipid nanostructure development in bulk aqueous systems followed by the current and potential perturbations to these results induced by introduction of a substrate. These effects are punctuated by a summary of our published results in the field of lipid thin films with added nucleic acids and key results introducing hard materials into lipid nanostructured substrates.

  8. Materials for Hydrogen Storage: From Complex Hydrides to Functionalized Nanostructures

    NASA Astrophysics Data System (ADS)

    Das, G. P.

    2011-07-01

    The world wide effort for a transition to renewable and clean (i.e. carbon-free) form of energy has resulted in an upsurge of interest in harnessing and utilizing Hydrogen. Apart from being the most abundant element in the universe, hydrogen offers many advantages over other fuels: it is non-toxic, clean to use, and packs more energy per mass than any other fuel. Hydrogen energy production, storage and distribution constitute a multi-disciplinary area of research. Coming to the material issues for solid state storage of hydrogen, the most desirable criteria are high storage capacity, satisfactory kinetics, and optimal thermodynamics. Complex hydrides involving light metals, such as Alanates, Imides, Borates, Amidoboranes etc. show impressive gravimetric efficiencies, although the hydrogen desorption temperatures turn out to be rather high. Apart from complex hydrides, there are other kinds of novel materials that have been investigated, e.g. carbon based materials activated with nano-catalysts, clathrate hydrates, metal-organic complexes, and more recently nanostructured cages viz. fullerenes and nanotubes decorated with simple or transition metals that serve to attract hydrogen in molecular form. In this talk, after giving a broad overview on hydrogen economy, I shall focus on first-principles design of materials for hydrogen storage, from complex hydrides to various kinds of functinalized nanostructures, and discuss the recent results obtained in our laboratory [1-6]. Some outstanding issues and challenges, like how to circumvent the problem of metal clustering on surface, or how to bring down the hydrogen desorption temperature etc. will be discussed.

  9. Supramolecular chirality in self-assembled soft materials: regulation of chiral nanostructures and chiral functions.

    PubMed

    Zhang, Li; Qin, Long; Wang, Xiufeng; Cao, Hai; Liu, Minghua

    2014-10-29

    Supramolecular chirality, which arises from the nonsymmetric spatial arrangement of components in the self-assembly systems, has gained great attention owing to its relation to the natural biological structures and the possible new functions in advanced materials. During the self-assembling process, both chiral and achiral components are possible to form chiral nanostructures. Therefore, it becomes an important issue how to fabricate these molecular components into chiral nanostructures. Furthermore, once the chiral nanostructure is obtained, will it show new functions that simple component molecule could not? In this research news, we report our recent development in the regulation of chiral nanostructures in soft gels or vesicle materials. We have further developed several new functions pertaining to the soft gel materials, which single chiral molecules could not perform, such as the chiroptical switch, chiral recognition and the asymmetry catalysis.

  10. Bulk Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.

    2017-09-01

    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  11. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  12. Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials.

    PubMed

    Giridharagopal, Rajiv; Cox, Phillip A; Ginger, David S

    2016-09-20

    From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to study materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of

  13. Using biological inspiration to engineer functional nanostructured materials.

    PubMed

    Wendell, David W; Patti, Jordan; Montemagno, Carlo D

    2006-11-01

    Humans have always looked to nature for design inspiration, and material design on the molecular level is no different. Here we explore how this idea applies to nanoscale biomimicry, specifically examining both recent advances and our own work on engineering lipid and polymer membrane systems with cellular processes.

  14. Immobilization of lipase and keratinase on functionalized SBA-15 nanostructured materials

    NASA Astrophysics Data System (ADS)

    Le, Hy G.; Vu, Tuan A.; Tran, Hoa T. K.; Dang, Phuong T.

    2013-12-01

    SBA-15 nanostructured materials were synthesized via hydrothermal treatment and were functionalized with 3- aminopropyltriethoxysilane (APTES). The obtained samples were characterized by different techniques such as XRD, BET, TEM, IR and DTA. After functionalization, it showed that these nanostrucrured materials still maintained the hexagonal pore structure of the parent SBA-15. The model enzyms chosen in this study were lipase and keratinase. Lipase was a biocatalyst for hydrolyzation of long chain triglycerides or methyl esters of long chain alcohols and fatty acids; keratinase is a proteolytic enzyme that catalyzes the cleavage of keratin. The functionalized SBA-15 materials were used to immobilize lipase and keratinase, exhibiting higher activity than that of the unfunctionalized pure silica SBA-15 ones. This might be due to the enhancing of surface hydrophobicity upon functionalization. The surface functionalization of the nanostructured silicas with organic groups can favor the interaction between enzyme and the supports and consequently increasing the operational stability of the immobilized enzymes. The loading of lipase on functionalized SBA-15 materials was higher than that of keratinase. This might be rationalized by the difference in size of enzyms.

  15. Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications

    NASA Astrophysics Data System (ADS)

    Escudero, Alberto; Becerro, Ana I.; Carrillo-Carrión, Carolina; Núñez, Nuria O.; Zyuzin, Mikhail V.; Laguna, Mariano; González-Mancebo, Daniel; Ocaña, Manuel; Parak, Wolfgang J.

    2017-06-01

    Rare earth based nanostructures constitute a type of functional materials widely used and studied in the recent literature. The purpose of this review is to provide a general and comprehensive overview of the current state of the art, with special focus on the commonly employed synthesis methods and functionalization strategies of rare earth based nanoparticles and on their different bioimaging and biosensing applications. The luminescent (including downconversion, upconversion and permanent luminescence) and magnetic properties of rare earth based nanoparticles, as well as their ability to absorb X-rays, will also be explained and connected with their luminescent, magnetic resonance and X-ray computed tomography bioimaging applications, respectively. This review is not only restricted to nanoparticles, and recent advances reported for in other nanostructures containing rare earths, such as metal organic frameworks and lanthanide complexes conjugated with biological structures, will also be commented on.

  16. Recent developments in the nanostructured materials functionalized with ruthenium complexes for targeted drug delivery to tumors.

    PubMed

    Thangavel, Prakash; Viswanath, Buddolla; Kim, Sanghyo

    2017-01-01

    In recent years, the field of metal-based drugs has been dominated by other existing precious metal drugs, and many researchers have focused their attention on the synthesis of various ruthenium (Ru) complexes due to their potential medical and pharmaceutical applications. The beneficial properties of Ru, which make it a highly promising therapeutic agent, include its variable oxidation states, low toxicity, high selectivity for diseased cells, ligand exchange properties, and the ability to mimic iron binding to biomolecules. In addition, Ru complexes have favorable adsorption properties, along with excellent photochemical and photophysical properties, which make them promising tools for photodynamic therapy. At present, nanostructured materials functionalized with Ru complexes have become an efficient way to administer Ru-based anticancer drugs for cancer treatment. In this review, the recent developments in the nanostructured materials functionalized with Ru complexes for targeted drug delivery to tumors are discussed. In addition, information on "traditional" (ie, non-nanostructured) Ru-based cancer therapies is included in a precise manner.

  17. Quantifying protein adsorption and function at nanostructured materials: enzymatic activity of glucose oxidase at GLAD structured electrodes.

    PubMed

    Jensen, Uffe B; Ferapontova, Elena E; Sutherland, Duncan S

    2012-07-31

    Nanostructured materials strongly modulate the behavior of adsorbed proteins; however, the characterization of such interactions is challenging. Here we present a novel method combining protein adsorption studies at nanostructured quartz crystal microbalance sensor surfaces (QCM-D) with optical (surface plasmon resonance SPR) and electrochemical methods (cyclic voltammetry CV) allowing quantification of both bound protein amount and activity. The redox enzyme glucose oxidase is studied as a model system to explore alterations in protein functional behavior caused by adsorption onto flat and nanostructured surfaces. This enzyme and such materials interactions are relevant for biosensor applications. Novel nanostructured gold electrode surfaces with controlled curvature were fabricated using colloidal lithography and glancing angle deposition (GLAD). The adsorption of enzyme to nanostructured interfaces was found to be significantly larger compared to flat interfaces even after normalization for the increased surface area, and no substantial desorption was observed within 24 h. A decreased enzymatic activity was observed over the same period of time, which indicates a slow conformational change of the adsorbed enzyme induced by the materials interface. Additionally, we make use of inherent localized surface plasmon resonances in these nanostructured materials to directly quantify the protein binding. We hereby demonstrate a QCM-D-based methodology to quantify protein binding at complex nanostructured materials. Our approach allows label free quantification of protein binding at nanostructured interfaces.

  18. Nanostructured materials in potentiometry.

    PubMed

    Düzgün, Ali; Zelada-Guillén, Gustavo A; Crespo, Gastón A; Macho, Santiago; Riu, Jordi; Rius, F Xavier

    2011-01-01

    Potentiometry is a very simple electrochemical technique with extraordinary analytical capabilities. It is also well known that nanostructured materials display properties which they do not show in the bulk phase. The combination of the two fields of potentiometry and nanomaterials is therefore a promising area of research and development. In this report, we explain the fundamentals of potentiometric devices that incorporate nanostructured materials and we highlight the advantages and drawbacks of combining nanomaterials and potentiometry. The paper provides an overview of the role of nanostructured materials in the two commonest potentiometric sensors: field-effect transistors and ion-selective electrodes. Additionally, we provide a few recent examples of new potentiometric sensors that are based on receptors immobilized directly onto the nanostructured material surface. Moreover, we summarize the use of potentiometry to analyze processes involving nanostructured materials and the prospects that the use of nanopores offer to potentiometry. Finally, we discuss several difficulties that currently hinder developments in the field and some future trends that will extend potentiometry into new analytical areas such as biology and medicine.

  19. Localized Programmable Gas Phase Electrodeposition Yielding Functional Nanostructured Materials and Molecular Arrays

    NASA Astrophysics Data System (ADS)

    Lin, En-Chiang

    This thesis focuses on nanomanufacturing processes for the heterogeneous integration of nanomaterials and molecules. We demonstrate and discovered a novel gas phase method to control material flux at specific points on a surface which is based on the interplay of high mobility gas ions and lower mobility nanoparticles and molecules in the presence of a patterned substrate. The thesis is divided into two parts describing applications of the discovered process for the localized deposition of (A) metallic and semiconducting particles producing functional nanostructured deposits including multimaterial sensor arrays and nanostructured electrodes for photovoltaic applications and, (B) molecules for gas sensor application demonstrating improved collection efficiencies and sensitivity over previously methods. Section (A) begins with the description of an arc discharge based method to produce a flux of charged nanoparticles (<5nm particles Au, Ag, Pt, W, TiO2, ZnO and Ge) which are characterized using various methods. It then describes a process to locally deposit the charged particles into extended two and three dimensional metallic and semiconducting nanostructured deposits. The thesis describes the use externally-biased electrodes to achieve an electronic shutter to turn ON/OFF the deposition in selected domains. Subsequently it explores and describes the use of patterned dielectrics whereby the patterned dielectrics are charged to define arrays of electrodynamic lenses. Incorporation of these lensing structures was found to enable nanostructured deposits with sub 100nm lateral resolution. The utility of the discovered processes are demonstrated in two areas. For the first application, semiconducting nanomaterial are sequentially deposited on the same substrate to fabricate a multi-material/multi-functional sensor array on a single substrate in a single deposition process. The process eliminates critical alignment and masking steps and has a higher material efficiency

  20. Macromolecular Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Ueyama, Norikazu; Harada, Akira

    This book presents a detailed account of the synthesis, characterization and application of organic and inorganic macromolecular nanostructured materials. These materials consist of simple organic compounds, inorganic complexes and polymers, and display unique properties such as electrical conductivity ranging from semiconducting to superconducting. Also described in the book are the roles of these materials in electrodeposition and gas deposition, as photosensitizers, magnets, macromolecular metal catalysts, sol-gel hybrids, and in biomineralization.

  1. Nanostructured materials for hydrogen storage

    DOEpatents

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  2. Self-assembly strategies for the synthesis of functional nanostructured materials

    NASA Astrophysics Data System (ADS)

    Perego, M.; Seguini, G.

    2016-06-01

    Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer self-assembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process

  3. Method of making nanopatterns and nanostructures and nanopatterned functional oxide materials

    DOEpatents

    Dravid, Vinayak P; Donthu, Suresh K; Pan, Zixiao

    2014-02-11

    Method for nanopatterning of inorganic materials, such as ceramic (e.g. metal oxide) materials, and organic materials, such as polymer materials, on a variety of substrates to form nanopatterns and/or nanostructures with control of dimensions and location, all without the need for etching the materials and without the need for re-alignment between multiple patterning steps in forming nanostructures, such as heterostructures comprising multiple materials. The method involves patterning a resist-coated substrate using electron beam lithography, removing a portion of the resist to provide a patterned resist-coated substrate, and spin coating the patterned resist-coated substrate with a liquid precursor, such as a sol precursor, of the inorganic or organic material. The remaining resist is removed and the spin coated substrate is heated at an elevated temperature to crystallize the deposited precursor material.

  4. Surface Modification for Improved Design and Functionality of Nanostructured Materials and Devices

    NASA Astrophysics Data System (ADS)

    Keiper, Timothy Keiper

    Progress in nanotechnology is trending towards applications which require the integration of soft (organic or biological) and hard (semiconductor or metallic) materials. Many applications for functional nanomaterials are currently being explored, including chemical and biological sensors, flexible electronics, molecular electronics, etc., with researchers aiming to develop new paradigms of nanoelectronics through manipulation of the physical properties by surface treatments. This dissertation focuses on two surface modification techniques important for integration of hard and soft materials: thermal annealing and molecular modification of semiconductors. First, the effects of thermal annealing are investigated directly for their implication in the fundamental understanding of transparent conducting oxides with respect to low resistivity contacts for electronic and optoelectronic applications and the response to environmental stimuli for sensing applications. The second focus of this dissertation covers two aspects of the importance of molecular modification on semiconductor systems. The first of these is the formation of self-assembled monolayers in patterned arrays which leads explicitly to the directed self-assembly of nanostructures. The second aspect concerns the modification of the underlying magnetic properties of the preeminent dilute magnetic semiconductor, manganese-doped gallium arsenide. Tin oxide belongs to a class of materials known as transparent conducting oxides which have received extensive interest due to their sensitivity to environmental stimuli and their potential application in transparent and flexible electronics. Nanostructures composed of SnO2 have been demonstrated as an advantageous material for high performance, point-of-care nanoelectronic sensors, capable of detecting and distinguishing gaseous or biomolecular interactions on unprecedented fast timescales. Through bottom-up fabrication techniques, binary oxide nanobelts synthesized

  5. Periodic nanostructural materials for nanoplasmonics

    NASA Astrophysics Data System (ADS)

    Choi, Dukhyun

    2017-02-01

    Nanoscale periodic material design and fabrication are essentially fundamental requirement for basic scientific researches and industrial applications of nanoscience and engineering. Innovative, effective, reproducible, large-area uniform, tunable and robust nanostructure/material syntheses are still challenging. Here, I would like to introduce the novel periodic nanostructural materials particularly with uniformly ordered nanoporous or nanoflower structures, which are fabricated by simple, cost-effective, and high-throughput wet chemical methods. I also report large-area periodic plasmonic nanostructures based on template-based nanolithography. The surface morphology and optical properties are characterized by SEM and UV-vis. spectroscopy. Furthermore, their enhancement factor is evaluated by using SERS signals.

  6. Hierarchically nanostructured materials for sustainable environmental applications

    PubMed Central

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-01-01

    This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing, and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology. PMID:24790946

  7. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    NASA Astrophysics Data System (ADS)

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-11-01

    This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  8. Comparative study on functionalized SBA-15 and SBA-16 nanostructured materials used for immobilization of D-amino acid oxidase

    NASA Astrophysics Data System (ADS)

    Hy, Le Gia; Phuong, Dang Tuyet; Yen, Hoang; Hoan, Nguyen Thi Vuong; Linh, Bui Thi Hai; Thang, Hoang vinh; Hoa, Tran Thi Kim; Thang, Dinh Cao; Nguyen, Vu Thi Hanh; Thao, Phan Thi Hong; Giap, Chu Van; Tuan, Vu Anh

    2008-12-01

    SBA-15 and SBA-16 nanostucrured materials were synthesized via hydrothermal treatment and were functionalized with 3-aminopropyltriethoxysilane (APTES), and vinyltriethoxysilane (VTES). The obtained samples were characterized by different techniques such as XRD, BET, IR and TEM. After functionalization, it showed that these nanostrucrured materials were still maintained the hexagonal pore structure of the parent SBA-15 and cubic cage structure of the parent SBA-16. The non-functionalized pure silica SBA-15 and SBA-16 as well as functionalized SBA-15 and SBA-16 materials were used to immobilize DAAO, which is industrially important enzyme for the production of glutaryl 7-amino cephalosporanic acid (GL-7-ACA) from cephalosporin C (CPC). The obtained results revealed that functionalized SBA- 15 and SBA-16 materials exhibited higher enzymatic activity and stability than those of non-functionalized ones. This might be due to the enhancing of surface hydrophobicity upon functionalization. The surface functionalization of the nanostructured silicas with organic groups can enhance the interaction between enzyme and the supports and consequently increasing the operational stability of the immobilized enzyme. The loading of enzyme on SBA-15 materials was higher than that on SBA-16 samples (both functionalized and non-functionalized types). This might be explained by the difference in pore size and type (cylindrical for SBA-15 and bottle-neck for SBA-16) as well as structure shape (hexagonal for SBA-15 and cubic cage for SBA-16) of both mesoporous materials. Additionally, nature of functionalized groups significantly affected the enzymatic activity. Effects on surface binding force, nature of functional groups, pore size of supports were investigated and discussed.

  9. Structure-function Investigation of Operando Nanostructured Materials Using Coherent X-ray Diffractive Imaging

    NASA Astrophysics Data System (ADS)

    Ulvestad, Andrew

    Nanostructured devices promise to help solve grand challenges of our time, including renewable energy generation, storage, and mitigating climate change. Their power lies in the particular influence of the surface on the total free energy when dimensions approach the nanoscale and it is well known that different sizes, shapes, and defects can drastically alter material properties. However, this strength represents a considerable challenge for imaging techniques that can be limited in terms of sample environments, average over large ensembles of particles, and/or lack adequate spatiotemporal resolution for studying the relevant physical processes. The focus of this thesis is the development of in situ coherent X-ray diffractive imaging (CXDI) and its application in imaging strain evolution in battery cathode nanoparticles. Using in situ CXDI, the compressive/tensile strain field in the pristine state is revealed, and found to be linked to a particular concentration of strain inducing Jahn-Teller ions. The evolution of strain during the first charge/discharge cycle shows that the cathode nanoparticle exhibits phase separation. Using the 3D strain field, the strain field energy is calculated and shows interesting hysteresis between charge and discharge. Strain evolution during a disconnection event, in which the cathode nanoparticle is no longer able to exchange electrons and ions with its environment, reveals the formation of a poorly conducting interphase layer. Finally, strain fields were used to study dislocation dynamics in battery nanoparticles. Using the full 3D information, the dislocation line structure is mapped and shown to move in response to charge transfer. The dislocation is used as a way to probe the local material properties and it is discovered that the material enters an ``auxetic", or negative Poisson's ratio, regime.

  10. Electron emission from nanostructured materials

    NASA Astrophysics Data System (ADS)

    Safir, Abdelilah

    In this dissertation, standardized methods for measuring electron emission (EE) from nanostructured materials are established. Design of an emitter array platform, synthesis and nanomanipulation of different types of are successfully conducted. Preexisting as well as novel nanostructures are examined for possible use as electron point sources. Three main categories of emitters are under evaluation: oxide nanowires, metallic nanowires and carbon based nanomaterials (CBNs). Tungsten oxides nanowires have low work function, then metallic nanowires have high electrical conductivity and abundant number of free electrons at and below their Fermi level and lastly, CBNs have superior electrical, mechanical, chemical and thermal properties. This evaluation is designed to compare and choose among the nanoemitters that are suitable for EE. Simulation through theoretical modeling is provided to optimize the parameters directly or indirectly affecting EE properties. The models are to enhance the emitter's performance through increase the packing density, reduce the field screening effect, lower the turn-on and the threshold electric fields and increase the emission current densities. The current estimations and the modeling of the validity regions where EE types theoretically exist, help to select and fabricate optimum emitters. An assembly consisting of sample substrate, electrical feedthroughs, electrodes, nano/micro-manipulator and insulators are mounted within a vacuum chamber. An ion vacuum pump and a turbo pump are used to reach a vacuum pressure of 10-7 Torr. Two systems are used for EE characterization of nanostructures: bulk and In-situ configurations. The bulk investigation is realized by designing a vacuum chamber and different sample holders that can resist harsh environment as well as high temperature for both FE and TE experiments. In-situ experiments are conducted in the chamber of the scanning electron microscope (SEM), it consists of designing special sample

  11. Functional Materials from Nanostructured Block Polymers Prepared via Ring-opening Metathesis Polymerization

    NASA Astrophysics Data System (ADS)

    Pitet, Louis Marcel

    The structural and molecular versatility afforded to polymeric materials by ruthenium catalysts during ring-opening metathesis polymerization (ROMP) cannot be exaggerated. This dissertation describes the synthesis of functionalized polyolefins via ROMP with particular emphasis on designing straightforward approaches to materials in which the molecular structure is meticulously controlled. Moreover, large portions of the body are dedicated to describing functionalized polyolefins as precursors to more complex multicomponent block copolymers. Block copolymers having various components derived from mechanistically incompatible feedstocks were designed with translational targets in mind, including toughening agents for brittle plastics, and free-standing nanoporous membranes. Several fundamental structure-property relationships were also explored for the newly synthesized materials.

  12. Architecture and engineering of a supramolecular functional material by manipulating the nanostructure of fiber network

    NASA Astrophysics Data System (ADS)

    Li, Jing-Liang; Liu, Xiang-Yang

    2005-09-01

    Three-dimensional fiber networks were created from an organogel system consisting mainly of elongated fibrils by using a nonionic surfactant as an additive. The presence of the surfactant molecules manipulates the network structure by enhancing the mismatch nucleation on the growing fiber tips. Both the fiber network structure and the rheological properties of the material can be finely tuned by changing the surfactant concentration, which provides a robust approach to the engineering of supramolecular soft functional materials.

  13. Nanostructured materials in the food industry.

    PubMed

    Augustin, Mary Ann; Sanguansri, Peerasak

    2009-01-01

    Nanotechnology involves the application, production, and processing of materials at the nanometer scale. Biological- and physical-inspired approaches, using both conventional and innovative food processing technologies to manipulate matter at this scale, provide the food industry with materials with new functionalities. Understanding the assembly behavior of native and modified food components is essential in developing nanostructured materials. Functionalized nanostructured materials are finding applications in many sectors of the food industry, including novel nanosensors, new packaging materials with improved mechanical and barrier properties, and efficient and targeted nutrient delivery systems. An improved understanding of the benefits and the risks of the technology based on sound scientific data will help gain the acceptance of nanotechnology by the food industry. New horizons for nanotechnology in food science may be achieved by further research on nanoscale structures and methods to control interactions between single molecules.

  14. Nanostructured materials for thermoelectric applications.

    PubMed

    Bux, Sabah K; Fleurial, Jean-Pierre; Kaner, Richard B

    2010-11-28

    Recent studies indicate that nanostructuring can be an effective method for increasing the dimensionless thermoelectric figure of merit (ZT) in materials. Most of the enhancement in ZT can be attributed to large reductions in the lattice thermal conductivity due to increased phonon scattering at interfaces. Although significant gains have been reported, much higher ZTs in practical, cost-effective and environmentally benign materials are needed in order for thermoelectrics to become effective for large-scale, wide-spread power and thermal management applications. This review discusses the various synthetic techniques that can be used in the production of bulk scale nanostructured materials. The advantages and disadvantages of each synthetic method are evaluated along with guidelines and goals presented for an ideal thermoelectric material. With proper optimization, some of these techniques hold promise for producing high efficiency devices.

  15. Nanostructured materials for water desalination.

    PubMed

    Humplik, T; Lee, J; O'Hern, S C; Fellman, B A; Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T; Karnik, R; Wang, E N

    2011-07-22

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  16. Nanostructured materials for water desalination

    NASA Astrophysics Data System (ADS)

    Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N.

    2011-07-01

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  17. Superhydrophobicity on nanostructured porous hydrophilic material

    NASA Astrophysics Data System (ADS)

    Jiang, Hong-Ren; Chan, Deng-Chi

    2016-04-01

    By applying laser oxidation, ablation, and plasma treatment to modify a surface of polydimethylsiloxane, we show that creating hydrophobic sites on an originally superhydrophilic nanostructured porous surface greatly changes the wetting properties of the surface. The modified surface may even become superhydrophobic while the ratio of added hydrophobic site to the surface is relatively low. The relation between the contact angles and the effect of hydrophobic sites is further tested in blade scraping method and a similar result is also obtained. This method to achieve superhydrophobicity on the hydrophilic nanostructured porous material may open possibilities for achieving superhydrophobicity and enable functional superhydrophobic surfaces with heterogeneous components.

  18. Composite materials formed with anchored nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  19. Method of fabrication of anchored nanostructure materials

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  20. Superconducting nanostructured materials.

    SciTech Connect

    Metlushko, V.

    1998-07-13

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines.

  1. Nanostructured Energetic Materials

    DTIC Science & Technology

    2006-11-01

    for the nanoenergetic composites prepared using mesoporous Fe2O3 gel, nanoparticles of WO3, MoO3, Bi2O3 , and CuO mixed with Al-nanoparticles and...used in the energetic composite. For example, in the energetic reactions of the composites containing Fe2O3, WO3, MoO3, Bi2O3 , and CuO, combined...MA), WO3 (Aldrich, WI), MoO3 and Bi2O3 (Accumet Materials, NY) and nanoparticles of Al (avg. size 80 nm with 2 nm passivation layer from

  2. Atomistic simulation of nanostructured materials

    NASA Astrophysics Data System (ADS)

    Zhu, Ronghua

    Atomistic based computer modeling and simulation of nanostructured materials has become an important subfield of materials research. Based on the multiresolution method, which combines the continuum mechanics, kinetic Monte Carlo method and molecular dynamics method, we study the nanostructured materials grown by quantum-dot self-assembly, mechanical properties of strained semiconductors, and mechanical properties of carbon nanotube reinforced composites. This thesis covers the following three main contributions. 1. Self-organization of semiconductors InAs/GaAs in Stranski-Krastanov growth mode is studied using kinetic Monte Carlo simulations method coupled with the Green's function solution for the elastic strain energy distribution. The relevant growth parameters such as growth temperature, surface coverage, flux rate, and growth interruption time are investigated. It is shown clearly that when the long-range strain energy is included in the simulation, ordered uniform size distribution can be achieved. To address the effect of material anisotropy, the anisotropic substrates of GaAs with different growth orientations (001), (111), and (113) and an isotropic substrate Iso (001), reduced from cubic GaAs, are also investigated. Simulation results show that at selected growth parameters for temperature, coverage, and growth interruption time, strain energy field in the substrate is the key factor that controls the pattern of island distribution. Furthermore, layer-by-layer growth of quantum dots is also simulated briefly, and vertical alignment is observed that could lead to progressively uniform island sizes and spatial ordering. 2. Since the misfit strain will be induced during the quantum dots epitaxial growth, the mechanical property of the grown semiconductors will be influenced. In this thesis, utilizing the basic continuum mechanics, we present a molecular dynamic prediction for the elastic stiffness C11, C12 and C 44 in strained silicon and InAs as functions

  3. Nanostructured Diclofenac Sodium Releasing Material

    NASA Astrophysics Data System (ADS)

    Nikkola, L.; Vapalahti, K.; Harlin, A.; Seppälä, J.; Ashammakhi, N.

    2008-02-01

    Various techniques have been developed to produce second generation biomaterials for tissue repair. These include extrusion, molding, salt leaching, spinning etc, but success in regenerating tissues has been limited. It is important to develop porous material, yet with a fibrous structure for it to be biomimetic. To mimic biological tissues, the extra-cellular matrix usually contains fibers in nano scale. To produce nanostructures, self-assembly or electrospinning can be used. Adding a drug release function to such a material may advance applications further for use in controlled tissue repair. This turns the resulting device into a multifunctional porous, fibrous structure to support cells and drug releasing properties in order to control tissue reactions. A bioabsorbable poly(ɛ-caprolactone-co-D,L lactide) 95/5 (PCL) was made into diluted solution using a solvent, to which was added 2w-% of diclofenac sodium (DS). Nano-fibers were made by electrospinning onto substrate. Microstructure of the resulting nanomat was studied using SEM and drug release profiles with UV/VIS spectroscopy. Thickness of the electrospun nanomat was about 2 mm. SEM analysis showed that polymeric nano-fibers containing drug particles form a highly interconnected porous nano structure. Average diameter of the nano-fibers was 130 nm. There was a high burst peak in drug release, which decreased to low levels after one day. The used polymer has slow a degradation rate and though the nanomat was highly porous with a large surface area, drug release rate is slow. It is feasible to develop a nano-fibrous porous structure of bioabsorbable polymer, which is loaded with test drug. Drug release is targeted at improving the properties of biomaterial for use in controlled tissue repair and regeneration.

  4. Nanostructured conductive polymeric materials

    NASA Astrophysics Data System (ADS)

    Al-Saleh, Mohammed H.

    Conductive polymer composites (CPCs) are a suitable alternative to metals in many applications due to their light-weight, corrosion resistance, low cost, ease of processing and design flexibility. CPCs have been formulated using different types of conductive fillers. In this PhD thesis, the focus is on CPCs for electrostatic discharge (ESD) protection and electromagnetic interference (EMI) attenuation. Despite the versatility of conductive fillers, carbon black (CB) has been the dominant filler to make CPCs for ESD protection applications because CB/polymer composites have a cost advantage over all other CPCs. For EMI shielding, stainless steel fibres and metal coated fibers are the preferred fillers, however CPCs made of those fibers are not the dominant EMI shielding materials. Metal coated and polymer plated polymers are the most widely used EMI shielding options. The limited use of CPCs in the EMI shielding market is because the high filler loading required to formulate a composite with an adequate level of shielding remarkably increases the composite price. In order to increase the competitiveness of CPCs, percolation threshold should be minimized as much as possible and composites with high EMI shielding capabilities at low filler loading should be formulated because all conductive fillers are expensive compared to polymers. In this thesis, two different methodologies to reduce percolation threshold in CPCs have been successfully developed and a CPC with exceptional EMI shielding capability has been formulated using copper nanowires as conductive filler. The first percolation threshold reduction technique is based on the selective localization of CB at the interface of immiscible polymer blend. The technique requires adding a copolymer that prefers the blend's interface and for which CB nanoparticles has the highest affinity. The second method is based on producing a CPC powder and then using this powder as a conductive filler to produce composite by dry

  5. Anchored nanostructure materials and method of fabrication

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  6. Energy transfer in nanostructured materials

    NASA Astrophysics Data System (ADS)

    Haughn, Chelsea

    Energy transport and loss are critical to the performance of optoelectronic devices such as photovoltaics and terahertz imaging devices. Nanostructured materials provide many opportunities to tailor transport and loss parameters for specific device applications. However, it has been very difficult to correlate specific nanoscale structural parameters with changes in these performance metrics. I report the development of new ways of using time-resolved photoluminescence (TRPL) to probe charge and energy transport and loss dynamics. These techniques are applied to several types of nanostructured materials, including bulk semiconductors with defects, self-assembled quantum dots and colloidal quantum dots. First, GaAs/InP double heterostructures grown via metal organic chemical vapor deposition (MOCVD) were characterized with TRPL. TRPL is typically used to extract minority carrier lifetimes, but we discovered that the measured lifetime depended critically on the intensity of the exciting laser. We developed a Shockley-Read-Hall model to extract trap state densities from intensity-dependent TRPL measurements. Second, we characterized energy and charge transfer between InAs quantum dots and ErAs nanoinclusions within III-V heterostructures. Using intensity- and temperature-dependent TRPL, we confirmed tunneling as the dominant mechanism of charge transport and characterized the electronic structure of the ErAs nanoparticles. Finally, we characterized energy transport in colloidal quantum dot cascade structures. These cascade structures utilize Forster Resonance Energy Transfer and trap state recycling to funnel excitons from donor layers to acceptor layers and suggest a promising method for avoiding losses associated with surface trap states. Collectively, the analysis of these disparate material types advances our understanding of energy dynamics in nanostructured materials and improves our ability to design the next generation of photovoltaic and optoelectronic

  7. Quantitative Characterization of Nanostructured Materials

    SciTech Connect

    Dr. Frank Bridges, University of California-Santa Cruz

    2010-08-05

    The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to real-world materials problems and to familiarize the materials research community with the state-of-the-art local structure measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.

  8. Charge transport in nanostructured materials: Implementation and verification of constrained density functional theory

    DOE PAGES

    Goldey, Matthew B.; Brawand, Nicholas P.; Voros, Marton; ...

    2017-04-20

    The in silico design of novel complex materials for energy conversion requires accurate, ab initio simulation of charge transport. In this work, we present an implementation of constrained density functional theory (CDFT) for the calculation of parameters for charge transport in the hopping regime. We verify our implementation against literature results for molecular systems, and we discuss the dependence of results on numerical parameters and the choice of localization potentials. In addition, we compare CDFT results with those of other commonly used methods for simulating charge transport between nanoscale building blocks. As a result, we show that some of thesemore » methods give unphysical results for thermally disordered configurations, while CDFT proves to be a viable and robust approach.« less

  9. Nanostructured materials in electroanalysis of pharmaceuticals.

    PubMed

    Rahi, A; Karimian, K; Heli, H

    2016-03-15

    Basic strategies and recent developments for the enhancement of the sensory performance of nanostructures in the electroanalysis of pharmaceuticals are reviewed. A discussion of the properties of nanostructures and their application as modified electrodes for drug assays is presented. The electrocatalytic effect of nanostructured materials and their application in determining low levels of drugs in pharmaceutical forms and biofluids are discussed.

  10. Polymer nanostructure materials for space defense applications

    NASA Astrophysics Data System (ADS)

    Giakos, G. C.; Farrahi, T.; Narayan, C.; Shrestha, S.; Quang, T.; Bandopadhayay, D.; Karim, A.; Li, Y.; Deshpande, A.; Pingili, D.

    2013-05-01

    The unique functional characteristics of nanostructured material are stemming mainly from a large surface-to-volume-ratio and on quantum effects; can yield numerous potential space defense applications. The objective of this study is to explore the polarimetric characterization of polymer nanomaterials, using Mueller matrix and Stokes parameters analysis. Specifically, gold nanoparticles were dispersed within a matrix of two-different polymer domains and their polarimetric response to infrared light was studied.

  11. XPS Analysis of Nanostructured Materials and Biological Surfaces

    SciTech Connect

    Baer, Donald R.; Engelhard, Mark H.

    2010-05-01

    This paper examines the types of information that XPS can provide about a variety of nano-structured materials. Although it is sometimes not considered a “nano-scale analysis method” XPS can provide a great deal of information about elemental distributions, layer or coating structure and thicknesses, surface functionality, and even particles sizes on the 1-20 nm scale for samples types that may not be readily analyzed by other methods. This information is important for both synthetic nanostructured or nanosized materials and a variety of natural materials with nanostructure. Although the links between nanostructure materials and biological systems may not at first be obvious, many biological molecules and some organisms are the sizes of nanoparticles. The nanostructure of cells and microbes plays a significant role in how they interact with their environment. The interaction of biomolecules with nanoparticles is important for medical and toxicity studies. The interaction of biomolecules is important for sensor function and many nanomaterials are now the active elements in sensors. This paper first discusses how nanostructures influences XPS data as part of understanding how simple models of sample structure and data analysis can be used to extract information about the physical and chemical structure of the materials being analyzed. Equally important, aspects of sample and analysis limitations and challenges associated with understanding nanostructured materials are indicated. Examples of the application of XPS to nanostructured and biological systems and materials are provided.

  12. Nanostructured Materials for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Raffaelle, Ryne; Castro, Stephanie; Fahey, S.; Gennett, T.; Tin, P.

    2003-01-01

    The use of both inorganic and organic nanostructured materials in producing high efficiency photovoltaics is discussed in this paper. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of semiconductor quantum dots in an ordinary p-i-n solar cell. In addition, it has also recently been demonstrated that quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. A similar improvement in these types of cells has also been observed by employing single wall carbon nanotubes. This relatively new carbon allotrope may assist both in the disassociation of excitons as well as carrier transport through the composite material. This paper reviews the efforts that are currently underway to produce and characterize these nanoscale materials and to exploit their unique properties.

  13. Transformation of Metal-Organic Frameworks/Coordination Polymers into Functional Nanostructured Materials: Experimental Approaches Based on Mechanistic Insights.

    PubMed

    Lee, Kyung Joo; Lee, Jae Hwa; Jeoung, Sungeun; Moon, Hoi Ri

    2017-10-09

    Nanostructured materials such as porous metal oxides, metal nanoparticles, porous carbons, and their composites have been intensively studied due to their applications, including energy conversion and storage devices, catalysis, and gas storage. Appropriate precursors and synthetic methods are chosen for synthesizing the target materials. About a decade ago, metal-organic frameworks (MOFs) and coordination polymers (CPs) emerged as new precursors for these nanomaterials because they contain both organic and inorganic species that can play parallel roles as both a template and a precursor under given circumstances. Thermal conversions of MOFs offer a promising toolbox for synthesizing functional nanomaterials that are difficult to obtain using conventional methods. Although understanding the conversion mechanism is important for designing MOF precursors for the synthesis of nanomaterials with desired physicochemical properties, comprehensive discussions revealing the transformation mechanism remain insufficient. This Account reviews the utilization of MOFs/CPs as precursors and their transformation into functional nanomaterials with a special emphasis on understanding the relationship between the intrinsic nature of the parent MOFs and the daughter nanomaterials while discussing various experimental approaches based on mechanistic insights. We discuss nanomaterials categorized by materials such as metal-based nanomaterials and porous carbons. For metal-based nanomaterials transformed from MOFs, the nature of metal ions in the MOF scaffolds affects the physicochemical properties of the resultant materials including the phase, composite, and morphology of nanomaterials. Organic ligands are also involved in the in situ chemical reactions with metal species during thermal conversion. We describe these conversion mechanisms by classifying the phase of metal components in the resultant materials. Along with the metal species, carbon is a major element in MOFs, and thus

  14. Surface doping of composite plasmonic material by functional graphene nanostructures for organic solar cell applications

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Chu; Yang, Cheng-Du; Kao, Yi-Lun; Chiu, Nan-Fu

    2015-05-01

    In this paper, we're binding gold nanoparticles (GNPs) and reduced graphene oxide (rGO) by cystamine (Cys). The PEDOT:PSS mix GNPs/Cys/rGO as a hole transport layer of the solar cell. From the experimental result shows the PEDOT:PSS/GNPs/Cys/rGO/ITO film than ITO film have the best transmittance. It's transmittance was decreased for 1.01% at 545 nm wavelength. The sheet resistance of PEDOT:PSS/GNPs/Cys/rGO/ITO was reduce than PEDOT:PSS/ITO, when it was doped with Gold nanoparticles (GNPs) and rGO on ITO glass. The former is than the latter decreased for 1%. For these reasons due to impact by surface doping of composite plasmonic material.

  15. Thermionic Converters Based on Nanostructured Carbon Materials

    NASA Astrophysics Data System (ADS)

    Koeck, Franz A. M.; Wang, Yunyu; Nemanich, Robert J.

    2006-01-01

    Thermionic energy converters are based on electron emission through thermal excitation and collection where the thermal energy is directly converted into electrical power. Conventional thermionic energy converters based on emission from planar metal emitters have been limited due to space charge. This paper presents a novel approach to thermionic energy conversion by focusing on nanostructured carbon materials, sulfur doped nanocrystalline diamond and carbon nanotube films as emitters. These materials exhibit intrinsic field enhancement which can be exploited in lowering the emission barrier, i.e. the effective work function. Moreover, emission from these materials is described in terms of emission sites as a result of a non-uniform spatial distribution of the field enhancement factor. This phenomenon can prove advantageous in a converter configuration to mitigate space charge effects by reducing the transit time of electrons in the gap due to an accelerated charge carrier transport.

  16. Towards new functional nanostructures for medical imaging

    SciTech Connect

    Matsuura, Naomi; Rowlands, J. A.

    2008-10-15

    Nanostructures represent a promising new type of contrast agent for clinical medical imaging modalities, including magnetic resonance imaging, x-ray computed tomography, ultrasound, and nuclear imaging. Currently, most nanostructures are simple, single-purpose imaging agents based on spherical constructs (e.g., liposomes, micelles, nanoemulsions, macromolecules, dendrimers, and solid nanoparticle structures). In the next decade, new clinical imaging nanostructures will be designed as multi-functional constructs, to both amplify imaging signals at disease sites and deliver localized therapy. Proposals for nanostructures to fulfill these new functions will be outlined. New functional nanostructures are expected to develop in five main directions: Modular nanostructures with additive functionality; cooperative nanostructures with synergistic functionality; nanostructures activated by their in vivo environment; nanostructures activated by sources outside the patient; and novel, nonspherical nanostructures and components. The development and clinical translation of next-generation nanostructures will be facilitated by a combination of improved clarity of the in vivo imaging and biological challenges and the requirements to successfully overcome them; development of standardized characterization and validation systems tailored for the preclinical assessment of nanostructure agents; and development of streamlined commercialization strategies and pipelines tailored for nanostructure-based agents for their efficient translation to the clinic.

  17. Nanostructured Materials for Renewable Energy

    SciTech Connect

    2009-11-01

    This factsheet describes a research project whose overall objective is to advance the fundamental understanding of novel photoelectronic organic device structures integrated with inorganic nanostructures, while also expanding the general field of nanomaterials for renewable energy devices and systems.

  18. Nanoprobes, nanostructured materials and solid state materials

    NASA Astrophysics Data System (ADS)

    Yin, Houping

    2005-07-01

    Novel templates have been developed to prepare nanostructured porous materials through nonsurfactant templated pathway. And new applications of these materials, such as drug delivery and molecular imprinting, have been explored. The relationship between template content and pore structure has been investigated. The composition and pore structures were studied in detail using IR, TGA, SEM, TEM, BET and XRD. The obtained mesoporous materials have tunable diameters in the range of 2--12 nm. Due to the many advantages of this nonsurfactant templated pathway, such as environment friendly and biocompatibility, controlled release of antibiotics in the nanoporous materials were studied. The in vitro release properties were found to depend on the silica structures which were well tuned by varying the template content. A controlled long-term release pattern of vancomycin was achieved when the template content was 30 wt% or lower. Nanoscale electrochemical probes with dimensions as small as 50 nm in diameter and 1--2 mum in length were fabricated using electron beam deposition on the apex of conventional micron size electrodes. The electroactive region was limited to the extreme tip of the nanoprobe by coating with an insulating polymer and re-opening of the coating at the extreme tip. The novel nanoelectrodes thus prepared were employed to probe neurons in mouse brain slice and the results suggest that the nanoprobes were capable of recording neuronal excitatory postsynaptic potential signals. Interesting solid state chemistry was found in oxygenated iron phthalocyanine. Their Mossbauer spectra show the formation of four oxygenated species apart from the unoxygenated parent compound. The oxygen-bridged compounds formed in the solid matrix bear no resemblance to the one formed by solution chemistry. Tentative assignment of species has been made with the help of Mossbauer and IR spectroscopy. An effort to modify aniline trimer for potential nanoelectronics applications and to

  19. Synthesis and processing of nanostructured materials

    SciTech Connect

    Siegel, R.W.

    1992-12-01

    Significant and growing interest is being exhibited in the novel and enhanced properties of nanostructured materials. These materials, with their constituent phase or grain structures modulated on a length scale less than 100 nm, are artificially synthesized by a wide variety of physical, chemical, and mechanical methods. In this NATO Advanced Study Institute, where mechanical behavior is emphasized, nanostructured materials with modulation dimensionalities from one (multilayers) to three (nanophase materials) are mainly considered. No attempt is made in this review to cover in detail all of the diverse methods available for the synthesis of nanostructured materials. Rather, the basic principles involved in their synthesis are discussed in terms of the special properties sought using examples of particular synthesis and processing methodologies. Some examples of the property changes that can result from one of these methods, cluster assembly of nanophase materials, are presented.

  20. Shockwave Consolidation of Nanostructured Thermoelectric Materials

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Patrick; Nemir, David

    2014-01-01

    Nanotechnology based thermoelectric materials are considered attractive for developing highly efficient thermoelectric devices. Nano-structured thermoelectric materials are predicted to offer higher ZT over bulk materials by reducing thermal conductivity and increasing electrical conductivity. Consolidation of nano-structured powders into dense materials without losing nanostructure is essential towards practical device development. Using the gas atomization process, amorphous nano-structured powders were produced. Shockwave consolidation is accomplished by surrounding the nanopowder-containing tube with explosives and then detonating. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth. We have been successful in generating consolidated nano-structured bismuth telluride alloy powders by using the shockwave technique. Using these consolidated materials, several types of thermoelectric power generating devices have been developed. Shockwave consolidation is anticipated to generate large quantities of nanostructred materials expeditiously and cost effectively. In this paper, the technique of shockwave consolidation will be presented followed by Seebeck Coefficient and thermal conductivity measurements of consolidated materials. Preliminary results indicate a substantial increase in electrical conductivity due to shockwave consolidation technique.

  1. Silk fibroin nanostructured materials for biomedical applications

    NASA Astrophysics Data System (ADS)

    Mitropoulos, Alexander N.

    Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.

  2. Nanostructured photovoltaic materials using block polymer assemblies

    NASA Astrophysics Data System (ADS)

    Mastroianni, Sarah Elizabeth

    (MMA-co-HEMA)] blocks onto which fullerenes were grafted using post-polymerization coupling reactions. P3AT BP synthetic techniques also were explored but largely were limited by P3AT purity and end-functionalization. Nevertheless, reversible addition-fragmentation chain-transfer (RAFT) polymerization offered a viable method to incorporate all three of the examined electroactive materials into BPs. The approaches presented in this dissertation provide the tools to design, synthesize, and characterize new BPs for OPVs that can reproducibly self-assemble into well-defined nanostructures.

  3. Scaling laws for van der Waals interactions in nanostructured materials.

    PubMed

    Gobre, Vivekanand V; Tkatchenko, Alexandre

    2013-01-01

    Van der Waals interactions have a fundamental role in biology, physics and chemistry, in particular in the self-assembly and the ensuing function of nanostructured materials. Here we utilize an efficient microscopic method to demonstrate that van der Waals interactions in nanomaterials act at distances greater than typically assumed, and can be characterized by different scaling laws depending on the dimensionality and size of the system. Specifically, we study the behaviour of van der Waals interactions in single-layer and multilayer graphene, fullerenes of varying size, single-wall carbon nanotubes and graphene nanoribbons. As a function of nanostructure size, the van der Waals coefficients follow unusual trends for all of the considered systems, and deviate significantly from the conventionally employed pairwise-additive picture. We propose that the peculiar van der Waals interactions in nanostructured materials could be exploited to control their self-assembly.

  4. Supercritical carbon dioxide approach to nanostructured materials

    NASA Astrophysics Data System (ADS)

    Ye, Xiang-Rong

    Supercritical fluid technology is a novel and emerging strategy to generate nanomaterials in small areas, within high-aspect-ratio structures, on complicated surfaces and poor wettable substrates with high uniformity, high homogeneity and minimum environmental problems. In this dissertation, several strategies were developed for thin film deposition and nanocomposite fabrication. In developing supercritical fluid immersion deposition (SFID), supercritical or near supercritical CO2 was used as a new solvent for immersion deposition, a galvanic displacement process traditionally carried out in aqueous HF solutions containing metal ions, to selectively develop Pd, Cu, Ag and other metal films on featured and non-featured Si substrates. Annealing of thin palladium films deposited by SFID can lead to the formation of palladium silicide in small features on Si substrates. Deposition of metal films on germanium substrates was also achieved through SFID. Through hydrogen reduction of metal-beta-diketone complexes in supercritical CO2, a rapid, convenient and environmentally benign approach has been developed to synthesize a variety of nanostructured materials: (1) Metal (Pd, Ni and Cu) nanowires and nanorods sheathed within multi-walled carbon nanotube (MWCNT) templates; (2) nanoparticles of palladium, rhodium and ruthenium decorated onto functionalized MWCNTs. These highly dispersed nanoparticles are expected to exhibit promising catalytic properties for a variety of chemical or electrochemical reactions; (3) Cu, Pd or Cu-Pd alloy nanocrystals deposited onto SiO2 nanowires (NWs), SiO2 microfibers, or SiC NWs. Different types of nanostructures were achieved, including nanocrystal-NW, spherical aggregation-NW, shell-NW composites and "mesoporous" metals supported by the framework of NWs.

  5. Bioinspired Functional Materials

    SciTech Connect

    Zheng, Yongmei; Wang, Jingxia; Hou, Yongping; Bai, Hao; Hu, Michael Z.

    2014-11-25

    This special issue is focused on the nanoscale or micro-/nanoscale structures similar to the biological features in multilevels or hierarchy and so on. Research by mimicking biological systems has shown more impact on many applications due to the well-designed micro-/nanostructures inspired from the biological surfaces or interfaces; therefore, the materials may achieve the fascinating functionality. In conclusion, the bioinspired functional materials may be fabricated by developing novel technology or methods such as synthesis, self-assembly, and soft lithography at micro- or nanolevel or multilevels and, in addition, the multidisciplinary procedures of physical or chemical methods and nanotechnology to mimic the biological multiscale micro-/nanostructures onto one-/two-dimensional surface materials.

  6. Bioinspired Functional Materials

    DOE PAGES

    Zheng, Yongmei; Wang, Jingxia; Hou, Yongping; ...

    2014-11-25

    This special issue is focused on the nanoscale or micro-/nanoscale structures similar to the biological features in multilevels or hierarchy and so on. Research by mimicking biological systems has shown more impact on many applications due to the well-designed micro-/nanostructures inspired from the biological surfaces or interfaces; therefore, the materials may achieve the fascinating functionality. In conclusion, the bioinspired functional materials may be fabricated by developing novel technology or methods such as synthesis, self-assembly, and soft lithography at micro- or nanolevel or multilevels and, in addition, the multidisciplinary procedures of physical or chemical methods and nanotechnology to mimic the biologicalmore » multiscale micro-/nanostructures onto one-/two-dimensional surface materials.« less

  7. Nanostructure studies of strongly correlated materials.

    PubMed

    Wei, Jiang; Natelson, Douglas

    2011-09-01

    Strongly correlated materials exhibit an amazing variety of phenomena, including metal-insulator transitions, colossal magnetoresistance, and high temperature superconductivity, as strong electron-electron and electron-phonon couplings lead to competing correlated ground states. Recently, researchers have begun to apply nanostructure-based techniques to this class of materials, examining electronic transport properties on previously inaccessible length scales, and applying perturbations to drive systems out of equilibrium. We review progress in this area, particularly emphasizing work in transition metal oxides (Fe(3)O(4), VO(2)), manganites, and high temperature cuprate superconductors. We conclude that such nanostructure-based studies have strong potential to reveal new information about the rich physics at work in these materials.

  8. Gas sensors based on nanostructured materials.

    PubMed

    Jiménez-Cadena, Giselle; Riu, Jordi; Rius, F Xavier

    2007-11-01

    Gas detection is important for controlling industrial and vehicle emissions, household security and environmental monitoring. In recent decades many devices have been developed for detecting CO(2), CO, SO(2), O(2), O(3), H(2), Ar, N(2), NH(3), H(2)O and several organic vapours. However, the low selectivity or the high operation temperatures required when most gas sensors are used have prompted the study of new materials and the new properties that come about from using traditional materials in a nanostructured mode. In this paper, we have reviewed the main research studies that have been made of gas sensors that use nanomaterials. The main quality characteristics of these new sensing devices have enabled us to make a critical review of the possible advantages and drawbacks of these nanostructured material-based sensors.

  9. Boron Nitride Nanostructures: Fabrication, Functionalization and Applications.

    PubMed

    Yin, Jun; Li, Jidong; Hang, Yang; Yu, Jin; Tai, Guoan; Li, Xuemei; Zhang, Zhuhua; Guo, Wanlin

    2016-06-01

    Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostructures. A comprehensive overview of the current status of the synthesis of two-dimensional hexagonal BN sheets, three dimensional porous hexagonal BN materials and BN-involved heterostructures is provided, highlighting the advantages of different synthetic methods. In addition, structural characterization, functionalizations and prospective applications of hexagonal BN sheets are intensively discussed. One-dimensional BN nanoribbons and nanotubes are then discussed in terms of structure, fabrication and functionality. In particular, the existing routes in pursuit of tunable electronic and magnetic properties in various BN structures are surveyed, calling upon synergetic experimental and theoretical efforts to address the challenges for pioneering the applications of BN into functional devices. Finally, the progress in BN superstructures and novel B/N nanostructures is also briefly introduced.

  10. Nanostructured cathode materials for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Myung, Seung-Taek; Amine, Khalil; Sun, Yang-Kook

    2015-06-01

    The prospect of drastic climate change and the ceaseless fluctuation of fossil fuel prices provide motivation to reduce the use of fossil fuels and to find new energy conversion and storage systems that are able to limit carbon dioxide generation. Among known systems, lithium-ion batteries are recognized as the most appropriate energy storage system because of their high energy density and thus space saving in applications. Introduction of nanotechnology to electrode material is beneficial to improve the resulting electrode performances such as capacity, its retention, and rate capability. The nanostructure is highly available not only when used alone but also is more highlighted when harmonized in forms of core-shell structure and composites with carbon nanotubes, graphene or reduced graphene oxides. This review covers syntheses and electrochemical properties of nanoscale, nanosized, and nanostructured cathode materials for rechargeable lithium batteries.

  11. Ignition of Propellants Through Nanostructured Materials

    DTIC Science & Technology

    2016-03-31

    weight) as carbon nanotube (CNT) samples in order to deemphasize the single wall content of the sample. Based on our experience samples with high...AFRL-RQ-ED-TR-2016-0010 Ignition of Propellants Through Nanostructured Materials Stephen Danczyk Malissa Lightfoot Alireza Badakhshan...SYSTEMS DIRECTORATE ■ Air Force Materiel Command ■ United States Air Force ■ Edwards Air Force Base , CA 93524 STINFO COPY - STINFO COPY

  12. Aerogel Derived Nanostructured Thermoelectric Materials

    SciTech Connect

    Wendell E Rhine, PI; Dong, Wenting; Greg Caggiano, PM

    2010-10-08

    America’s dependence on foreign sources for fuel represents a economic and security threat for the country. These non renewable resources are depleting, and the effects of pollutants from fuels such as oil are reaching a problematic that affects the global community. Solar concentration power (SCP) production systems offer the opportunity to harness one of the United States’ most under utilized natural resources; sunlight. While commercialization of this technology is increasing, in order to become a significant source of electricity production in the United States the costs of deploying and operating SCP plants must be further reduced. Parabolic Trough SCP technologies are close to meeting energy production cost levels that would raise interest in the technology and help accelerate its adoption as a method to produce a significant portion of the Country’s electric power needs. During this program, Aspen Aerogels will develop a transparent aerogel insulation that can replace the costly vacuum insulation systems that are currently used in parabolic trough designs. During the Phase I program, Aspen Aerogels will optimize the optical and thermal properties of aerogel to meet the needs of this application. These properties will be tested, and the results will be used to model the performance of a parabolic trough HCE system which uses this novel material in place of vacuum. During the Phase II program, Aspen Aerogels will scale up this technology. Together with industry partners, Aspen Aerogels will build and test a prototype Heat Collection Element that is insulated with the novel transparent aerogel material. This new device will find use in parabolic trough SCP applications.

  13. Surface analysis of nanostructured carbonaceous materials

    NASA Astrophysics Data System (ADS)

    Wepasnick, Kevin Andrew

    The characterization of surfaces is central to understanding its interaction with other materials. Current ground-breaking research in interfacial science is focusing on surfaces which have a nanoscopic-size to their structuring. In particular, carbon nanotubes (CNTs) have been explored extensively. However, to utilize these materials in commercial and scientific applications, the surfaces are often modified to tailor specific properties, such as dispersion, sorption, and reactivity. The focus of this thesis is to apply surface analytical techniques to explore the chemical and structural characteristics of modified nanostructured surfaces. Specifically studied are the covalent surface modifications of CNTs by strategies that involve the direct incorporation of specific elements into the graphene sidewalls by commonly used wet chemical oxidants. These resulting CNTs are then evaluated in terms of their change in surface chemistry and structure. X-ray photoelectron spectroscopy (XPS) was used to characterize the surface oxidation, while chemical derivatization techniques in conjunction with XPS afforded the concentration of carboxyl, carbonyl, and hydroxyl groups on the CNT surface. Transmission electron microscopy (TEM) was able to provide detailed structural information on the modified CNT, including the extent of sidewall damage. Results indicate that the distribution of oxygen-containing functional groups was insensitive to the reaction conditions, but was dependent upon the identity of the oxidant. These trends in functional group concentration were then applied to determining environmental properties, specifically divalent metal cation sorption. Consistently, the increases in COOH functional groups result in an increase in sorption capacity of divalent metal cations, such as Zn2+ and Cd2+. Furthermore, the interactions of size-selected metal and metal-oxide nanoclusters with graphite surfaces were studied by atomic force microscopy (AFM), scanning tunneling

  14. Thermoelectric Properties of Solution Synthesized Nanostructured Materials.

    PubMed

    Finefrock, Scott W; Yang, Haoran; Fang, Haiyu; Wu, Yue

    2015-01-01

    Thermoelectric nanocomposites made by solution synthesis and compression of nanostructured chalcogenides could potentially be low-cost, scalable alternatives to traditional solid-state synthesized materials. We review the progress in this field by comparing the power factor and/or the thermoelectric figure of merit, ZT, of four classes of materials: (Bi,Sb)2(Te,Se)3, PbTe, ternary and quaternary copper chalcogenides, and silver chalcogenides. We also discuss the thermal conductivity reduction associated with multiphased nanocomposites. The ZT of the best solution synthesized materials are, in several cases, shown to be equal to or greater than the corresponding bulk materials despite the generally reduced mobility associated with solution synthesized nanocomposites. For the solution synthesized materials with the highest performance, the synthesis and processing conditions are summarized to provide guidance for future work.

  15. Designing electron wave functions in assembled nanostructures

    NASA Astrophysics Data System (ADS)

    Moon, Christopher Ryan

    We use the scanning tunneling microscope to not only to map electron wave functions but also to engineer them. By assembling nanostructures from individual atoms and molecules, we confine two-dimensional electronic states into closed electron resonators, or "quantum corrals". Precise control over the geometry of these structures allows electronic states to be tailored to suit particular experiments. Specifically, we design wave functions that enable studies of normally inaccessible quantum phases. First, we create pairs of quantum corrals with shapes drawn from contemporary mathematics. Exploiting special topological relationships between these structures, we retrieve internal quantum phase of electron wave functions without using interferometry. Second, we demonstrate that adding a single atom to a quantum corral can cause its electronic states to recombine into coherent superpositions. The real-space position of the additional atom controls abstract superposition phase angles, enabling arbitrary time-independent superpositions to be created. Third, we study geometric phase by creating a series of quantum corrals that traverse a closed path through a parameter space. Tracking the corral wave functions reveals a phase shift depending solely on the path taken, directly visualizing Berry's phase evolution in a quantum system. Finally, we extend beyond closed electron resonators and engineer wave functions in open nanostructures. We show that arbitrary patterns can be encoded into electronic states, creating a new form of holography on the nanoscale. We exhibit letters written in electron density rather than with atomic matter, and show that multiple letters may be simultaneously embedded at different energies in the same region of space. Because the wavelength of the electrons diminishes as energy is increased, this technique allows local information densities that exceed the conventionally assumed limit of 1 bit per atom. Taken together, the results in this thesis

  16. Dissociation of formaldehyde in nanostructured carbon materials

    NASA Astrophysics Data System (ADS)

    George, Aaron; Santiso, Erik; Buongiorno Nardelli, Marco; Gubbins, K. E.

    2004-11-01

    Chemical reactions are frequently carried out in nano-structured media, such as micellar or colloidal solutions, nano-porous media, hydrogels or organogels, or in systems involving nano-particles. Nanostructured environments have been shown to enhance reaction rates through a variety of catalytic effects, such as high surface area, interactions with the nano-structure or confinement. However, at present there is little understanding of the role of the nano-structured material in such reactions and the mechanisms involved are subject of ongoing scientific debate. In this work, we have used state-of-the-art electronic structure techniques to study the prototypical example of the reaction of formaldehyde dissociation (H_2CO arrow H2 + CO) within various configurations of a graphitic pore. Using the Nudged Elastic Band (NEB) method for transition states analysis, we have found that the activation en ergy of the dissociation can be influenced by the presence of a graphitic pore. In particular, while a graphene surface reduces the activation barrier for the reaction, this catalytic effect is enhanced by the presence of two planar sheets, which mimic the geometry of a nano-pore. This can likewise induce a decrease of the activation energy, thus making the reaction more energetically favor able. The reaction activation energy has a dependence on the width of the pore (distance between sheets). A decrease is seen to a point of decreasing width, then a change in the favorable reaction path occurs. It is also found the presence of a vacancy can drastically change the reaction path. These conclusions will be discussed in terms of the charge transfer mechanism seen in the catalytic process.

  17. Nanostructured Materials Development for Space Power

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Landi, B. J.; Elich, J. B.; Gennett, T.; Castro, S. L.; Bailey, Sheila G.; Hepp, Aloysius F.

    2003-01-01

    There have been many recent advances in the use of nanostructured materials for space power applications. In particular, the use of high purity single wall nanotubes holds promise for a variety of generation and storage devices including: thin film lithium ion batteries, microelectronic proton exchange membrane (PEM) fuel cells, polymeric thin film solar cells, and thermionic power supplies is presented. Semiconducting quantum dots alone and in conjunction with carbon nanotubes are also being investigated for possible use in high efficiency photovoltaic solar cells. This paper will review some of the work being done at RIT in conjunction with the NASA Glenn Research Center to utilize nanomaterials in space power devices.

  18. Mechanical properties of nanostructure of biological materials

    NASA Astrophysics Data System (ADS)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  19. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  20. Engineering DNA self-assemblies as templates for functional nanostructures.

    PubMed

    Wang, Zhen-Gang; Ding, Baoquan

    2014-06-17

    CONSPECTUS: DNA is a well-known natural molecule that carries genetic information. In recent decades, DNA has been used beyond its genetic role as a building block for the construction of engineering materials. Many strategies, such as tile assembly, scaffolded origami and DNA bricks, have been developed to design and produce 1D, 2D, and 3D architectures with sophisticated morphologies. Moreover, the spatial addressability of DNA nanostructures and sequence-dependent recognition enable functional elements to be precisely positioned and allow for the control of chemical and biochemical processes. The spatial arrangement of heterogeneous components using DNA nanostructures as the templates will aid in the fabrication of functional materials that are difficult to produce using other methods and can address scientific and technical challenges in interdisciplinary research. For example, plasmonic nanoparticles can be assembled into well-defined configurations with high resolution limit while exhibiting desirable collective behaviors, such as near-field enhancement. Conducting metallic or polymer patterns can be synthesized site-specifically on DNA nanostructures to form various controllable geometries, which could be used for electronic nanodevices. Biomolecules can be arranged into organized networks to perform programmable biological functionalities, such as distance-dependent enzyme-cascade activities. DNA nanostructures can carry multiple cytoactive molecules and cell-targeting groups simultaneously to address medical issues such as targeted therapy and combined administration. In this Account, we describe recent advances in the functionalization of DNA nanostructures in different fashions based on our research efforts in nanophotonics, nanoelectronics, and nanomedicine. We show that DNA origami nanostructures can guide the assembly of achiral, spherical, metallic nanoparticles into nature-mimicking chiral geometries through hybridization between complementary DNA

  1. Multifunctional nanostructured materials for multimodal cancer imaging and therapy.

    PubMed

    Liao, Jinfeng; Qi, Tingting; Chu, Bingyang; Peng, Jinrong; Luo, Feng; Qian, Zhiyong

    2014-01-01

    This paper reviews the recent research and development of multifunctional nanostructured materials for multimodal imaging and therapy. The biomedical applications for multifunctional imaging, diagnosis and therapy are discussed for several nanostructured materials such as polymeric nanoparticles, magnetic nanoparticles, gold nanomaterials, carbon materials, quantum dots and silica nanoparticles. Due to the unique features of nanostructured materials including the large surface area, structural diversity, multifunctionality, and long circulation time in blood, these materials have emerged as attractive preferences for optimized therapy. Multimodal imaging can be introduced to nanostructured materials for precise and fast diagnosis of cancer, which overcomes the shortcoming of single-imaging modality. Meanwhile, nanostructured materials can be also used to deliver therapeutic agents to the disease site in order to accomplish multimodal imaging and simultaneous diagnosis and therapy.

  2. Supramolecular materials: Self-organized nanostructures

    SciTech Connect

    Stupp, S.I.; LeBonheur, V.; Walker, K.

    1997-04-18

    Miniaturized triblock copolymers have been found to self-assemble into nanostructures that are highly regular in size and shape. Mushroom-shaped supramolecular structures of about 200 kilodaltons form by crystallization of the chemically identical blocks and self-organize into films containing 100 or more layers stacked in a polar arrangement. The polar supramolecular material exhibits spontaneous second-harmonic generation from infrared to green photons and has an adhesive tape-like character with nonadhesive-hydrophobic and hydrophilic-sticky opposite surfaces. The films also have reasonable shear strength and adhere tenaciously to glass surfaces on one side only. The regular and finite size of the supramolecular units is believed to be mediated by repulsive forces among some of the segments in the triblock molecules. A large diversity of multifunctional materials could be formed from regular supramolecular units weighing hundreds of kilodaltons. 21 refs., 10 figs.

  3. Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS

    SciTech Connect

    Charles M. Falco

    2012-09-13

    This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

  4. Templated Electrodeposition of Highly Porous Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Yang, Han-Chang; Lim, Stephanie; Liu, Jiabin; Wu, Qian; Cheng, X. M.

    2011-03-01

    The fabrication of nanoporous materials has been of great interest for applications such as biosensors, photonic materials and energy storage. Compared to many other methods, the templated electrodeposition method is low cost, fast, and compatible with large-scale production. In this work, we developed a templated electrochemical deposition technique for fabricating highly ordered and highly porous nanostructured materials. The fabrication involves the following steps: self-assembly of monodispersed polystyrene spheres, electrochemical deposition of the desired materials, and sphere removal by a dissolution process. Deposition of Au and Ni layered metallic nanoporous structures were studied using different electrolytes at appropriate potentials. The pore size of the materials was tuned by using different sizes of template polystyrene spheres ranging from 50nm to 1000nm. Scanning electron microscopy images confirmed the highly ordered 3-dimensional hexagonal closed pack (hcp) structures in the samples. The templated electrochemical deposition technique provides a promising alternative approach to preparing highly porous anode materials for battery applications. Work supported by Bryn Mawr K/G fund for faculty research.

  5. Combination of lightweight elements and nanostructured materials for batteries.

    PubMed

    Chen, Jun; Cheng, Fangyi

    2009-06-16

    ), Co(3)O(4), TiS(2), and Ni(OH)(2) in battery applications. Electrochemical investigations reveal that we generally attain larger capacities and improved kinetics for electrode materials as their average particle size decreases. Novel nanostructures such as nanowires, nanotubes, nanourchins, and porous nanospheres show lower activation energy, enhanced reactivity, improved high-rate charge/discharge capability, and more controlled structural flexibility than their bulk counterparts. In particular, anode materials such as Si nanospheres and Fe(2)O(3) nanotubes can deliver reversible capacity exceeding 500 mA.h/g. (Graphite used commercially has a theoretical capacity of 372 mA x h/g.) Nanocomposite cathode materials such as NiP-doped LiFePO(4) and metal hydroxide-coated Ni(OH)(2) nanotubes allow us to integrate functional components, which enhance electrical conductivity and suppress volume expansion. Therefore, shifting from bulk to nanostructured electrode materials could offer a revolutionary opportunity to develop advanced green batteries with large capacity, high energy and power density, and long cycle life.

  6. Nanostructured materials for applications in heterogeneous catalysis.

    PubMed

    Zaera, Francisco

    2013-04-07

    In this review, a brief survey is offered on the main nanotechnology synthetic approaches available to heterogeneous catalysis, and a few examples are provided of their usefulness for such applications. We start by discussing the use of colloidal, reverse micelle, and dendrimer chemistry in the production of active metal and metal oxide nanoparticles with well-defined sizes, shapes, and compositions, as a way to control the surface atomic ensembles available for selective catalysis. Next we introduce the use of sol-gel and atomic layer deposition chemistry for the production and modification of high-surface-area supports and active phases. Reference is then made to the more complex active sites that can be created or carved on such supports by using organic structure-directing agents. We follow with an examination of the ability to achieve multiple functionality in catalysis via the design of dumbbells, core@shell, and other complex nanostructures. Finally, we consider the mixed molecular-nanostructure approach that can be used to develop more demanding catalytic sites, by derivatizing the surface of solids or tethering or immobilizing homogeneous catalysts or other chemical functionalities. We conclude with a personal and critical perspective on the importance of fully exploiting the synergies between nanotechnology and surface science to optimize the search for new catalysts and catalytic processes.

  7. Gold nanostructure materials in diabetes management

    NASA Astrophysics Data System (ADS)

    Si, Satyabrata; Pal, Arttatrana; Mohanta, Jagdeep; Sagar Satapathy, Smith

    2017-04-01

    Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia, and is now one of the most non-communicable diseases globally and can be lethal if not properly controlled. Prolonged exposure to chronic hyperglycemia, without proper management, can lead to various vascular complications and represents the main cause of morbidity and mortality in diabetes patients. Studies have indicated that major long-term complications of diabetes arise from persistent oxidative-nitrosative stress and dysregulation in multiple metabolic pathways. Presently, the main focus for diabetes management is to optimize the available techniques to ensure adequate blood sugar level, blood pressure and lipid profile, thereby minimizing the diabetes complications. In this regard, nanomedicine utilizing gold nanostructures has great potential and seems to be a promising option. The present review highlights the basic concepts and up-to-date literature survey of gold nanostructure materials in management of diabetes in several ways, which include sensing, imaging, drug delivery and therapy. The work can be of interest to various researchers working on basic and applied sciences including nanosciences.

  8. Nanostructured Materials for Li-Ion Batteries and Beyond.

    PubMed

    Li, Xifei; Sun, Xueliang

    2016-04-07

    This Special Issue "Nanostructured Materials for Li-Ion Batteries and Beyond" of Nanomaterials is focused on advancements in the synthesis, optimization, and characterization of nanostructured materials, with an emphasis on the application of nanomaterials for building high performance Li-ion batteries (LIBs) and future systems.[...].

  9. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    NASA Astrophysics Data System (ADS)

    Pruna, R.; Palacio, F.; López, M.; Pérez, J.; Mir, M.; Blázquez, O.; Hernández, S.; Garrido, B.

    2016-08-01

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  10. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    SciTech Connect

    Pruna, R. Palacio, F.; López, M.; Mir, M.; Blázquez, O.; Hernández, S.; Garrido, B.

    2016-08-08

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  11. Fabrication and characterization of nanostructured III-V thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Novotny, Clint; Sharifi, Fred

    2013-09-01

    Approximately two thirds of all fossil fuel used is lost as heat. Thermoelectric materials, which convert heat into electrical energy, may provide a solution to partially recover some of this lost energy. To date, most commercial thermoelectric materials are too inefficient to be a viable option for most waste heat applications. This research proposes to investigate the fabrication and characterization of nanostructured III-V semiconductor thermoelectric materials with the goal of increasing the performance of existing technology. In order to improve thermoelectric material efficiency, either the lattice thermal conductivity must be lowered or the thermoelectric power factor must be increased. This research will focus on the latter by modifying the density of states of the semiconductor material and studying the effect of quantum confinement on the material's thermoelectric properties. Using focused ion beam milling, nanostructured cantilevers are fabricated from single crystal wafers. An all around gate dielectric and electrode are deposited to create a depletion region along the outer core of the cantilever, thus creating an inner conductive core. The Seebeck coefficient can then be measured as a function of confinement by varying the gate voltage. This technique can be applied to various material systems to investigate the effects of confinement on their thermoelectric properties.

  12. Precise control of two-dimensional composition of proteins and nanoparticle conjugate for functional nanostructured material fabrication.

    PubMed

    Uto, Koichiro; Yamamoto, Kazuya; Kishimoto, Naoko; Muraoka, Masahiro; Aoyagi, Takao; Yamashita, Ichiro

    2012-07-15

    In this study, we quantitatively analyzed the electrostatic blend adsorption of ferritin and apoferritin onto the surface of the precursor films by using a quartz crystal microbalance (QCM), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The precursor films were successively prepared by the alternate adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-styrenesulfonate) (PSS) in the presence of 150 mM NaCl concentration onto the QCM substrate. We observed a monolayer adsorption of both ferritin and apoferritin by means of electrostatic interaction onto the outermost PDDA surface at pH 10.0. Under this condition, the composition of ferritin and apoferritin within the monolayer is linearly dependent on their ratios in the blended solution, thus showed an ideal blend adsorption behavior. The perfectly identical structure of ferritin and apoferritin should be contributed to this ideal blend adsorption behavior. We also studied the effects of total concentrations of their solution on ferritin and apoferritin blend adsorption. This study on the blend adsorption of ferritin and apoferritin by electrostatic interaction will be applied to the fabrication of multi-components homogeneous NP array because apoferritin can accommodate a variety of nanometer size inorganic materials within their interior spaces.

  13. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    PubMed Central

    Choi, Hojin; Yoon, Hyeonseok

    2015-01-01

    The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013). Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead. PMID:28347044

  14. Modeling plasticity of materials with nanostructure

    NASA Astrophysics Data System (ADS)

    Kudinova, N. R.

    2017-02-01

    A new approach to modeling of the plasticity of materials with the particle size in the range from 3 to 20 nm (nanostructure) has been proposed. It is based on classical thermodynamic approach employing the surface tension of nanoparticles. Its main advantage is the minimum number of physical parameters in use. In the context of the proposed model, we calculated the dependence of the melting temperature on the nanoparticle size which is consistent with experimental data. The volume density of the surface energy of nanoparticles was also determined. This energy is assumed to be a significant part of the internal energy during deformation Yield point was interpreted as the result of changes of grains surface energy during the deformation. The obtained yield point dependence on the grain size was related to the Hall–Petch law, and this resulted in confirmation of the hypothesis on the crucial role of surface tension forces in the initial stage of plastic deformation of nanomaterials.

  15. Computational Materials: Modeling and Simulation of Nanostructured Materials and Systems

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Hinkley, Jeffrey A.

    2003-01-01

    The paper provides details on the structure and implementation of the Computational Materials program at the NASA Langley Research Center. Examples are given that illustrate the suggested approaches to predicting the behavior and influencing the design of nanostructured materials such as high-performance polymers, composites, and nanotube-reinforced polymers. Primary simulation and measurement methods applicable to multi-scale modeling are outlined. Key challenges including verification and validation of models are highlighted and discussed within the context of NASA's broad mission objectives.

  16. Fabrication and characterization of carbon and boron carbide nanostructured materials

    NASA Astrophysics Data System (ADS)

    Reynaud, Sara

    Carbon is present in nature in a variety of allotropes and chemical compounds. Due to reduced dimensionality, nanostructured carbon materials, i.e. single walled carbon nanotubes (SWNTs), are characterized by unique physical and chemical properties. There is a potential for SWNTs use as biological probes and assists for tunable tissue growth in biomedical applications. However, the presumed cytotoxicity of SWNTs requires investigation of the risks of their incorporation into living systems. Boron is not found in nature in elementary form. Boron based materials are chemically complex and exist in various polymorphic forms, i.e. boron carbide (BC). Because BC is a lightweight material with exceptional mechanical and elastic properties, it is the ideal candidate for armor and ballistic applications. However, practical use of BC as armor material is limited because of its anomalous glass-like behaviour at high velocity impacts, which has been linked to stress-induced structural instability in one of BC polymorphs, B12(CCC). Theoretical calculations suggest that formation of B12(CCC) in BC could be suppressed by silicon doping. In the first part of this thesis, biocompatibility of SWNTs is investigated. It is shown that under normal cell implantation conditions, the electrical conductivity of the SWNTs decreases due to an increase in structural disorder. This research suggests that SWNTs can be functionalized by protein and biological cells reducing the risk of cytotoxicity. In the second part of this thesis, boron carbide nanostructured materials are synthesized and investigated. Radio frequency sputtering deposition technique is employed for fabrication of BC (Si free) and BC:Si thin films. Variation of plasma conditions and temperature are found to affect chemical composition, adhesion to the substrate and morphology of the films. It is shown that BC films are predominantly amorphous and a small addition of Si largely improves their mechanical properties. In addition

  17. Scaling Laws for van der Waals Interactions in Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Gobre, Vivekanand; Tkatchenko, Alexandre

    2014-03-01

    Van der Waals (vdW) forces originate from interactions between fluctuating multipoles in matter and play a significant role in the structure and stability of nanostructured materials. Many models used to describe vdW interactions in nanomaterials are based on a simple pairwise-additive approximation, neglecting the strong electrodynamic response effects caused by long-range fluctuations in matter. We develop and utilize an efficient microscopic method to demonstrate that vdW interactions in nanomaterials act at distances greater than typically assumed, and can be characterized by different scaling laws depending on the dimensionality and size of the system. Specifically, we study the behaviour of vdW interactions in single-layer and multilayer graphene, fullerenes of varying size, single-wall carbon nanotubes and graphene nanoribbons. As a function of nanostructure size, the van der Waals coefficients follow unusual trends for all of the considered systems, and deviate significantly from the conventionally employed pairwise-additive picture. We propose that the peculiar van der Waals interactions in nanostructured materials could be exploited to control their self-assembly.

  18. Organosilane-functionalization of nanostructured indium tin oxide films.

    PubMed

    Pruna, R; Palacio, F; Martínez, M; Blázquez, O; Hernández, S; Garrido, B; López, M

    2016-12-06

    Fabrication and organosilane-functionalization and characterization of nanostructured ITO electrodes are reported. Nanostructured ITO electrodes were obtained by electron beam evaporation, and a subsequent annealing treatment was selectively performed to modify their crystalline state. An increase in geometrical surface area in comparison with thin-film electrodes area was observed by atomic force microscopy, implying higher electroactive surface area for nanostructured ITO electrodes and thus higher detection levels. To investigate the increase in detectability, chemical organosilane-functionalization of nanostructured ITO electrodes was performed. The formation of 3-glycidoxypropyltrimethoxysilane (GOPTS) layers was detected by X-ray photoelectron spectroscopy. As an indirect method to confirm the presence of organosilane molecules on the ITO substrates, cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were also carried out. Cyclic voltammograms of functionalized ITO electrodes presented lower reduction-oxidation peak currents compared with non-functionalized ITO electrodes. These results demonstrate the presence of the epoxysilane coating on the ITO surface. EIS showed that organosilane-functionalized electrodes present higher polarization resistance, acting as an electronic barrier for the electron transfer between the conductive solution and the ITO electrode. The results of these electrochemical measurements, together with the significant difference in the X-ray spectra between bare ITO and organosilane-functionalized ITO substrates, may point to a new exploitable oxide-based nanostructured material for biosensing applications. As a first step towards sensing, rapid functionalization of such substrates and their application to electrochemical analysis is tested in this work. Interestingly, oxide-based materials are highly integrable with the silicon chip technology, which would permit the easy adaptation of such sensors into lab

  19. Composite Nanostructured Material Fabrication By Electrochemical Scanning Probe Microscopy

    DTIC Science & Technology

    1992-10-31

    achieve selective electrodeposition onto a nanostructured surface and in techniques and procedures needed to create a nanoheterostructure , a class of... nanoheterostructures . As an example of such a structure we would start with a nanostructure consisting of a metal film of material A which has nanometer-scale...selective electrodeposition onto a nanostructured surface and in techniques and procedures needed to create a nanoheterostructure . The first attempts to

  20. Functional Nanostructures for Magnetic and Energy Application

    NASA Astrophysics Data System (ADS)

    Zhou, Minjie

    Functional nanostructures serve as the basic building blocks for nanodevices and significant efforts have been devoted to their morphology control and properties optimization. In present study, four functional nanostructures, i.e., FePt/B4C multilayer composite film, particle (FePt)/matrix (B4C) monolayer composite film, Ga-doped ZnO nanowire arrays, and CdSe nanotube arrays are designed, synthesized and characterized in detail, in which the first two are expected to be prominent candidates for ultrahigh-density magnetic storage media while the later two have potential applications in solar energy conversion. FePt/B4C multilayer thin films are deposited on silicon substrates using magnetron sputtering with different B4C layer thickness. Experimental results suggest that the B4C layers effectively serve as spacers to separate the FePt layers, making the multilayer configuration stable even after film annealing at elevated temperatures. On the other hand, B and C are found to be incorporated into the FePt layer, which is responsible for the FePt grain growth confinement and grain separation, and eventually affects the properties of the composite film. Based on the experimental results of multilayer composite film, particle (FePt)/matrix (B4C) monolayer composite thin films on Si substrate are synthesized, in which a record coercivity of 2200 Oe is achieved compared to similar system. The size uniformity of the FePt nanoparticles, the well-defined particle-particle separation, together with the good magnetic property and high temperature thermal stability of the overall composite film, make it a very promising candidate for the ultrahigh density magnetic storage media. Semiconductor based one-dimensional nanostructures are investigated as promising building blocks for solar energy conversion devices. Two aspects are explored, aiming at increasing the energy conversion efficiency, i.e., facilitating electron transport and enhancing photon absorbing. In the first case

  1. Synthesis and Functions of Ag2S Nanostructures

    NASA Astrophysics Data System (ADS)

    Cui, Chunyan; Li, Xiaoru; Liu, Jixian; Hou, Yongchao; Zhao, Yuqing; Zhong, Guocheng

    2015-11-01

    The paper presents a review about synthesis and applications of Ag2S nanostructures. As the modern photoelectric and biological materials, Ag2S nanomaterials are potentially useful for both structure and function purposes. Ag2S is a direction narrow band gap semiconductor with special properties. Ag2S nanostructures have been widely researched in chemistry and biochemistry fields because of their unusual optical, electrical, and mechanical properties. It can also be used in many fields, such as photovoltaic cells and infrared detector. In the past few years, Ag2S nanostructures have been synthesized by various methods. The article mainly discusses the four types of preparation methods. Moreover, this article shows a detailed review on the new properties, fabrication, and applications of Ag2S nanocrystals.

  2. Controlling Nanostructure for Catalytic and Electrochemical Energy Storage Materials

    NASA Astrophysics Data System (ADS)

    Mushove, Tapiwa

    Materials with precisely controlled nanostructures are needed to significantly enhance the efficiencies of next-generation chemical conversion and energy storage systems. This dissertation employs light and electrochemical techniques to control nanostructure of catalytic and electrochemical energy storage materials. We also define nanostructure-function relationships for three material systems. This information could help the design and synthesis of materials with superior performance. Single layer (SL), multilayer (ML), and wave-like (WL) hematite nanotube arrays (NA) were fabricated via the electrochemical anodization of iron foils. The films' current responses during fabrication were tracked, allowing for the characterization of NA growth. Four distinct stages were identified: an ohmic response stage, an oxide film formation stage, a chemical dissolution stage, and a steady-state growth stage. Morphological and photoelectrochemical properties of the hematite electrodes were characterized and correlated with their photocatalytic performances. The IPCE of the WLNA at 350 nm was ~3 times that of the SLNA, and ~12 times that of the MLNA. Charge carrier transport and the active electrochemical surface area of the different morphologies were significant determinants of photocatalytic performance. Niobium pentoxide (Nb2O5) NA and planar electrodes were fabricated via a similar anodization technique. The Li+ intercalation behavior of the electrodes was characterized. NA electrodes exhibited a four-fold improvement in charge storage capacity and higher rate capabilities relative to planar electrodes due to larger surface areas and shorter ion diffusion lengths in the NA. Light of different wavelengths was used to control the photodeposition of noble metals on semiconducting tungsten trioxide. The metal nanoparticle sizes and weight loadings were functions of the illumination time, while geometries were controlled by the wavelength. Intrinsic variations in the plasmonic

  3. Functional DNA nanostructures for theranostic applications.

    PubMed

    Pei, Hao; Zuo, Xiaolei; Zhu, Dan; Huang, Qing; Fan, Chunhai

    2014-02-18

    There has been tremendous interest in constructing nanostructures by exploiting the unparalleled ability of DNA molecules in self-assembly. We have seen the appearance of many fantastic, "art-like" DNA nanostructures in one, two, or three dimensions during the last two decades. More recently, much attention has been directed to the use of these elegant nanoobjects for applications in a wide range of areas. Among them, diagnosis and therapy (i.e., theranostics) are of particular interest given the biological nature of DNA. One of the major barricades for the biosensor design lies in the restricted target accessibility at the solid-water interface. DNA nanotechnology provides a convenient approach to well control the biomolecule-confined surface to increase the ability of molecular recognition at the biosensing interface. For example, tetrahedral DNA nanostructures with thiol modifications can be self-assembled at the gold surface with high reproducibility. Since DNA tetrahedra are highly rigid and well-defined structures with atomic precision and versatile functionality, they provide scaffolds for anchoring of a variety of biomolecular probes (DNA, aptamers, peptides, and proteins) for biosensing. Significantly, this DNA nanostructure-based biosensing platform greatly increases target accessibility and improves the sensitivity for various types of molecular targets (DNA, RNA, proteins, and small molecules) by several orders of magnitude. In an alternative approach, DNA nanostructures provide a framework for the development of dynamic nanosensors that can function inside the cell. DNA tetrahedra are found to be facilely cell permeable and can sense and image specific molecules in cells. More importantly, these DNA nanostructures can be efficient drug delivery nanocarriers. Since they are DNA molecules by themselves, they have shown excellent cellular biocompatibility with minimal cytotoxicity. As an example, DNA tetrahedra tailored with CpG oligonucleotide drugs have

  4. Control of Heat and Charge Transport in Nanostructured Hybrid Materials

    DTIC Science & Technology

    2015-07-21

    Lee, Joo-Hyoung, Galli, Giulia A., and Grossman, Jeffrey C., Nanoporous Si as an Efficient Thermoelectric Material . Nano Letters 8 (11), 3750 (2008...AFRL-OSR-VA-TR-2015-0204 CONTROL OF HEAT AND CHARGE TRANSPORT IN NANOSTRUCTURED HYBRID MATERIALS Akram Boukai UNIVERSITY OF MICHIGAN Final Report 07...SUBTITLE Control of Heat and Charge Transport in Nanostructured Hybrid Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0058 5c. PROGRAM

  5. Cavitational synthesis of nanostructured inorganic materials for enhanced heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Krausz, Ivo Michael

    The synthesis of nanostructured inorganic materials by hydrodynamic cavitation processing was investigated. The goal of this work was to develop a general synthesis technique for nanostructured materials with a control over crystallite size in the 1--20 nm range. Materials with crystallite sizes in this range have shown enhanced catalytic activity compared to materials with larger crystallite sizes. Several supported and unsupported inorganic materials were studied to understand the effects of cavitation on crystallite size. Cavitation processing of calcium fluoride resulted in more spherical particles, attached to one another by melted necks. This work produced the first evidence of shock wave heating of nanostructured materials by hydrodynamic cavitation processing. Hydrodynamic cavitation synthesis of various catalytic support materials indicated that their phase composition and purity could be controlled by adjustment of the processing parameters. Zirconia/alumina supports synthesized using hydro-dynamic cavitation and calcined to 1368 K retained a high purity cubic zirconia phase, whereas classically prepared samples showed a phase transformation to monoclinic zirconia. Similarly, the synthesis of alumina resulted in materials with varying Bohmite and Bayerite contents as a function of the process parameters. High temperature calcination resulted in stable alumina supports with varying amounts of delta-, and theta-alumina. Synthesis studies of palladium and silver showed modest variations in crystallite size as a function of cavitation process parameters. Calcination resulted in larger grain materials, indicating a disappearance of intergrain boundaries. Based on these results, a new synthesis method was studied involving controlled agglomeration of small silver crystallites by hydrodynamic cavitation processing, followed by deposition on alumina. The optimal pH, concentration, and processing time for controlling the silver crystallite size in the cavitation

  6. Exploring Deformation Mechanisms in Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Greer, Julia R.; Jang, Dongchan; Gu, X. Wendy

    2012-10-01

    effects of multiple grain boundaries spanning the sample volume (nanocrystalline and polycrystalline metals). This overview sheds light on the relative importance of intrinsic versus extrinsic length scale limitations on deformation mechanisms in nanostructured metals, which has significant implications for the development of new materials with tunable mechanical properties.

  7. Thin film thermocouples for thermoelectric characterization of nanostructured materials

    NASA Astrophysics Data System (ADS)

    Grayson, Matthew; Zhou, Chuanle; Varrenti, Andrew; Chyung, Seung Hye; Long, Jieyi; Memik, Seda

    2011-03-01

    The increased use of nanostructured materials as thermoelectrics requires reliable and accurate characterization of the anisotropic thermal coefficients of small structures, such as superlattices and quantum wire networks. Thin evaporated metal films can be used to create thermocouples with a very small thermal mass and low thermal conductivity, in order to measure thermal gradients on nanostructures and thereby measure the thermal conductivity and the Seebeck coefficient of the nanostructure. In this work we confirm the known result that thin metal films have lower Seebeck coefficients than bulk metals, and we also calibrate the Seebeck coefficient of a thin-film Ni/Cr thermocouple with 50 nm thickness, showing it to have about 1/4 the bulk value. We demonstrate reproducibility of this thin-filmSeebeck coefficient on multiple substrates, and we show that this coefficient does, in fact, change as a function of film thickness. We will discuss prototype measurement designs and preliminary work as to how these thin films can be used to study both Seebeck coefficients and thermal conductivities of superlattices in various geometries. The same technology can in principle be used on integrated circuits for thermal mapping, under the name ``Integrated On-Chip Thermocouple Array'' (IOTA).

  8. Computational design of surfaces, nanostructures and optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Choudhary, Kamal

    Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of

  9. The influence of nanostructured materials on biointerfacial interactions.

    PubMed

    Koegler, Peter; Clayton, Andrew; Thissen, Helmut; Santos, Gil Nonato C; Kingshott, Peter

    2012-12-01

    Control over biointerfacial interactions in vitro and in vivo is the key to many biomedical applications: from cell culture and diagnostic tools to drug delivery, biomaterials and regenerative medicine. The increasing use of nanostructured materials is placing a greater demand on improving our understanding of how these new materials influence biointerfacial interactions, including protein adsorption and subsequent cellular responses. A range of nanoscale material properties influence these interactions, and material toxicity. The ability to manipulate both material nanochemistry and nanotopography remains challenging in its own right, however, a more in-depth knowledge of the subsequent biological responses to these new materials must occur simultaneously if they are ever to be affective in the clinic. We highlight some of the key technologies used for fabrication of nanostructured materials, examine how nanostructured materials influence the behavior of proteins and cells at surfaces and provide details of important analytical techniques used in this context.

  10. Lyotropic liquid crystal directed synthesis of nanostructured materials

    PubMed Central

    Wang, Cuiqing; Chen, Dairong; Jiao, Xiuling

    2009-01-01

    This review introduces and summarizes lyotropic liquid crystal (LLC) directed syntheses of nanostructured materials consisting of porous nanostructures and zero-dimensional (0-D), one-dimensional (1-D) and two-dimensional (2-D) nanostructures. After a brief introduction to the liquid crystals, the LLCs used to prepare mesoporous materials are discussed; in particular, recent advances in controlling mesostructures are summarized. The LLC templates directing the syntheses of nanoparticles, nanorods, nanowires and nanoplates are also presented. Finally, future development in this field is discussed. PMID:27877273

  11. Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress

    PubMed Central

    Wang, Jinmin; Sun, Xiao Wei; Jiao, Zhihui

    2010-01-01

    The recent progress in application of nanostructures in electrochromic materials and devices is reviewed. ZnO nanowire array modified by viologen and WO3, crystalline WO3 nanoparticles and nanorods, mesoporous WO3 and TiO2, poly(3,4-ethylenedioxythiophene) nanotubes, Prussian blue nanoinks and nanostructures in switchable mirrors are reviewed. The electrochromic properties were significantly enhanced by applying nanostructures, resulting in faster switching responses, higher stability and higher optical contrast. A perspective on the development trends in electrochromic materials and devices is also proposed. PMID:28883368

  12. Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress.

    PubMed

    Wang, Jin Min; Sun, Xiao Wei; Jiao, Zhihui

    2010-11-26

    The recent progress in application of nanostructures in electrochromic materials and devices is reviewed. ZnO nanowire array modified by viologen and WO₃, crystalline WO₃ nanoparticles and nanorods, mesoporous WO₃ and TiO₂, poly(3,4-ethylenedioxythiophene) nanotubes, Prussian blue nanoinks and nanostructures in switchable mirrors are reviewed. The electrochromic properties were significantly enhanced by applying nanostructures, resulting in faster switching responses, higher stability and higher optical contrast. A perspective on the development trends in electrochromic materials and devices is also proposed.

  13. Templated Electrochemical Deposition of Nanostructured Materials and their Applications

    DTIC Science & Technology

    2003-06-01

    Templated Electrochemical Deposition of Nanostructured Materials and their Applications. P. N. Bartlett University of Southampton Report...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Templated Electrochemical Deposition of Nanostructured Materials and their Applications...ZnO, PbO2, WO3,.... • Polymers – conducting polymers ( pyrrole , aniline,…) – insulating polymers (phenol, diaminobenzene,...) The Driving Force for

  14. Polyaniline nanostructures expedient as working electrode materials in supercapacitors

    NASA Astrophysics Data System (ADS)

    Gedela, Venkata Ramana; Srikanth, Vadali Venkata Satya Siva

    2014-04-01

    Granular type polyaniline (PANi), PANi nanofibers (NFs), and PANi nanotubes (NTs) expedient as working electrode materials for supercapacitors are synthesized. The synthesis procedure used in this work facilitates not only the synthesis of solid powders of the PANi nanostructures, but also thin films constituted by the same PANi nanostructures in the same experiment. PANi NFs are found to exhibit faster electrode kinetics and better capacitance when compared to PANi NTs and granular PANi. Specific capacitance and energy storage per unit mass of PANi NFs are 239.47 Fg-1 (at 0.5 Ag-1) and 43.2 Wh kg-1, respectively. Electrical conductivity of PANi NFs is also better when compared to the other two nanostructures. Properties of the three PANi nanostructures are explicated in correlation with crystallinity, intrinsic oxidation state, doping degree, BET surface area, and ordered mesoporosity pertaining to the nanostructures.

  15. Hollow Nanostructured Anode Materials for Li-Ion Batteries

    PubMed Central

    2010-01-01

    Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at the electrode surface. In this article, we review recent research activities on hollow nanostructured anode materials for Li-ion batteries, including carbon materials, metals, metal oxides, and their hybrid materials. The major goal of this review is to highlight some recent progresses in using these hollow nanomaterials as anode materials to develop Li-ion batteries with high capacity, high rate capability, and excellent cycling stability. PMID:21076674

  16. Preferentially grown nanostructured MgB2C2: A new material for lightening applications

    NASA Astrophysics Data System (ADS)

    Singh, Paviter; Singh, Kulwinder; Kaur, Manpreet; Kaur, Harpreet; Singh, Bikmramjeet; Kaur, Gurpreet; Kaur, Manjot; Kumar, Manjeet; Kaur, Kamalpreet; Bala, Rajni; Kumar, Akshay

    2017-03-01

    Nanostructured MgB2C2 is a promising candidate as functional material. High Temperature synthesis conditions were the limitations for its exploitation in materials research. Present study deals with the synthesis of specifically oriented nanostructured MgB2C2 at relatively low temperature by solvothermal route. The synthesis conditions are modified to grow these nanostructures in least dense plane (002). Optical properties are explored for the first time. XRD analysis confirms the formation of MgB2C2 phase. Morphological analysis (Transmission/Scanning Electron Microscopy) indicated that the synthesized material is in nano range. Photoluminescence study shows that the synthesized material emits light in visible spectrum when excited at 380 nm. The quantum efficiency of synthesized material calculated by De Mello's method is approximately 23% which makes the material efficient enough for lightening applications.

  17. Giant magnetoresistive nanostructured materials by electrodeposition

    NASA Astrophysics Data System (ADS)

    Myung, No Sang

    NiFe/Cu and CoFe/Cu multilayers and NiFe compositional modulated alloys (CMA) electrodeposited by newly developed flow-through electrochemical reactor. Sub-micron (Ni)Cu and nano-size (CoFe)Cu granular alloys have been electrodeposited by magneto-electrodeposition method. These two methods eliminate the problems confronted by conventional methods and provide a new direction in fabrication of nanostructured materials by electrodeposition. Prior to fabrication of GMR materials, electrodeposition kinetics of individual metals (Co, NiFe, Cu) were studied. In Co electrodeposition and dissolution from sulfate bath, substrates have a great impact on the initial growth mode of film. On polycrystalline platinum metal, cobalt film grew in hemispherical shape (nodule) where it grew in right conical shape on amorphous glass carbon. In NiFe alloys electrodeposition, the effects of applied current density, solution composition, substrate and solution hydrodynamics on current efficiency, film composition, crystal structure, corrosion resistant, and magnetic properties of NiFe alloys from all-chloride and citrate-sulfate-chloride bath have been studied. Citrate ions enhance the anomalous codeposition phenomena in NiFe electrodeposition. In crystal structure studies on electrodeposited. NiFe, the narrow mixed phase solid region was noted around 50% Fe. In addition, the smallest grain size were also observed in that region. In corrosion studies, the maximum corrosion resistance was observed at 50% Fe in naturally aerated 0.5 M NaCl. In Ni/Cu and Co/Cu multilayers by single bath technique, the optimum deposition potential ranges of pure copper and nickel (cobalt) were determined to minimize copper codeposition during nickel (cobalt) deposition and to minimize cobalt dissolution during copper deposition. Well defined laminated NiFe/Cu and CoFe/Cu multilayers and NiFe compositional modulated alloys (CMA) were successfully electrodeposited by utilizing flow-through electrochemical

  18. Multifunctional Upconversion-Magnetic Hybrid Nanostructured Materials: Synthesis and Bioapplications

    PubMed Central

    Li, Xiaomin; Zhao, Dongyuan; Zhang, Fan

    2013-01-01

    The combination of nanotechnology and biology has developed into an emerging research area: nano-biotechnology. Upconversion nanoparticles (UCNPs) have attracted a great deal of attention in bioapplications due to their high chemical stability, low toxicity, and high signal-to-noise ratio. Magnetic nanoparticles (MNPs) are also well-established nanomaterials that offer controlled size, ability to be manipulated externally, and enhancement of contrast in magnetic resonance imaging (MRI). As a result, these nanoparticles could have many applications in biology and medicine, including protein purification, drug delivery, and medical imaging. Because of the potential benefits of multimodal functionality in biomedical applications, researchers would like to design and fabricate multifunctional upconversion-magnetic hybrid nanostructured materials. The hybrid nanostructures, which combine UCNPs with MNPs, exhibit upconversion fluorescence alongside superparamagnetism property. Such structures could provide a platform for enhanced bioimaging and controlled drug delivery. We expect that the combination of unique structural characteristics and integrated functions of multifunctional upconversion-magnetic nanoparticles will attract increasing research interest and could lead to new opportunities in nano-bioapplications. PMID:23650477

  19. Nanostructured Energetic Materials with Sol-Gel Methods

    SciTech Connect

    Gash, A; Satcher, J; Simpson, R; Clapsaddle, B

    2003-11-25

    The utilization of sol-gel chemical methodology to prepare nanostructured energetic materials as well as the concepts of nanoenergetics is described. The preparation and characterization of two totally different compositions is detailed. In one example, nanostructured aerogel and xerogel composites of sol-gel iron (III) oxide and ultra fine grained aluminum (UFG Al) are prepared, characterized, and compared to a conventional micron-sized Fe{sub 2}O{sub 3}/Al thermite. The exquisite degree of mixing and intimate nanostructuring of this material is illustrated using transmission and scanning electron microscopies (TEM and SEM). The nanocomposite material has markedly different energy release (burn rate) and thermal properties compared to the conventional composite, results of which will be discussed. Small-scale safety characterization was performed aerogels and xerogels of the nanostructured thermite. The second nanostructured energetic material consists of a nanostructured hydrocarbon resin fuel network with fine ammonium perchlorate (NH{sub 4}ClO{sub 4}) oxidizer present.

  20. Phthalocyanine-Carbon Nanostructure Materials Assembled through Supramolecular Interactions.

    PubMed

    Bottari, Giovanni; Suanzes, Juan A; Trukhina, Olga; Torres, Tomas

    2011-04-21

    The use of self-assembly for the construction of materials based on phthalocyanines and carbon nanostructures-fullerenes, single-walled carbon nanotubes, and graphene-has demonstrated to be a versatile strategy for the preparation of novel, multifunctional systems. Photophysical studies carried out on these photo- and electroactive supramolecular ensembles have revealed the occurrence of an efficient photoinduced electron-transfer process, thus paving the way for the utilization of these materials as active components in optoelectronic devices. This Perspective highlights the recent progress in the preparation of such materials and the potential use of these systems for the construction of nanostructured materials with singular physicochemical properties.

  1. Review on the application of nanostructure materials in solar cells

    NASA Astrophysics Data System (ADS)

    Afshar, Elham N.; Xosrovashvili, Georgi; Rouhi, Rasoul; Gorji, Nima E.

    2015-07-01

    In recent years, nanostructure materials have opened a promising route to future of the renewable sources, especially in the solar cells. This paper considers the advantages of nanostructure materials in improving the performance and stability of the solar cell structures. These structures have been employed for various performance/energy conversion enhancement strategies. Here, we have investigated four types of nanostructures applied in solar cells, where all of them are named as quantum solar cells. We have also discussed recent development of quantum dot nanoparticles and carbon nanotubes enabling quantum solar cells to be competitive with the conventional solar cells. Furthermore, the advantages, disadvantages and industrializing challenges of nanostructured solar cells have been investigated.

  2. ZnS nanostructure arrays: a developing material star.

    PubMed

    Fang, Xiaosheng; Wu, Limin; Hu, Linfeng

    2011-02-01

    Semiconductor nanostructure arrays are of great scientific and technical interest because of the strong non-linear and electro-optic effects that occur due to carrier confinement in three dimensions. The use of such nanostructure arrays with tailored geometry, array density, and length-diameter-ratio as building blocks are expected to play a crucial role in future nanoscale devices. With the unique properties of a direct wide-bandgap semiconductor, such as the presence of polar surfaces, excellent transport properties, good thermal stability, and high electronic mobility, ZnS nanostructure arrays has been a developing material star. The research on ZnS nanostructure arrays has seen remarkable progress over the last five years due to the unique properties and important potential applications of nanostructure arrays, which are summarized here. Firstly, a survey of various methods to the synthesis of ZnS nanostructure arrays will be introduced. Next recent efforts on exploiting the unique properties and applications of ZnS nanostructure arrays are discussed. Potential future directions of this research field are also highlighted.

  3. Structure tailored properties and functionalities of zero-dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Tang, Yun

    The field of nanoscience and nanotechnology has achieved significant progress over last thirty years. Complex nanostructures with tunable properties for novel applications have been successfully fabricated and characterized. In this thesis, I will focus on our recent efforts on precise controlled synthesis of zero-dimensional nanostructures as well as fundamental understanding of the physical behavior of assynthesized nanostructures. Particularly, three topics are presented: (1) Nanoscale crystallinity engineering: we have achieved nanoscale crystallinity control of noble metal nanoparticles with 100% yield by molecular engineering. We have used silver nanoparticles as example to demonstrate synthetic strategy and importance of such control in nanoscale chemical transformation, fundamental electron and phonon couplings and surface plasmon resonance based biological sensors. Such nanoscale crystallinity engineering provides a new pathway for design of complex nanostructures, tailoring nanoscale electronic and mechanical properties as well as controlling classical and quantum coupling interactions; (2) Precise control of core shell nanostructures: we have developed a new universal strategy denoted as intermediated phase assisted phase exchange and reaction (iPAPER) to achieve layer-by-layer control of shell components in core shell structures. Tunable plasmonic, optical and magnetic properties of core shell structures enabled by our iPAPER strategy are further demonstrated. These characterizations are promising for understanding and manipulating nanoscale phenomena as well as assembling nanoscale devices with desirable functionality; and (3) Fundamental spin and structure manipulation of semiconductor quantum dots by hydrostatic pressure. Pressure provides a unique means of modifying materials properties. By measuring dependence of spin dynamics on pressure, we revealed that the spin states of semiconductor quantum dots are very robust. We further provided the first

  4. Multifunctional, flexible electronic systems based on engineered nanostructured materials

    NASA Astrophysics Data System (ADS)

    Ko, Hyunhyub; Kapadia, Rehan; Takei, Kuniharu; Takahashi, Toshitake; Zhang, Xiaobo; Javey, Ali

    2012-08-01

    The development of flexible electronic systems has been extensively researched in recent years, with the goal of expanding the potential scope and market of modern electronic devices in the areas of computation, communications, displays, sensing and energy. Uniquely, the use of soft polymeric substrates enables the incorporation of advanced features beyond mechanical bendability and stretchability. In this paper, we describe several functionalities which can be achieved using engineered nanostructured materials. In particular, reversible binding, self-cleaning, antireflective and shape-reconfigurable properties are introduced for the realization of multifunctional, flexible electronic devices. Examples of flexible systems capable of spatial mapping and/or responding to external stimuli are also presented as a new class of user-interactive devices.

  5. Preparation of nanostructured materials having improved ductility

    DOEpatents

    Zhao, Yonghao; Zhu, Yuntian T.

    2010-04-20

    A method for preparing a nanostructured aluminum alloy involves heating an aluminum alloy workpiece at temperature sufficient to produce a single phase coarse grained aluminum alloy, then refining the grain size of the workpiece at a temperature at or below room temperature, and then aging the workpiece to precipitate second phase particles in the nanosized grains of the workpiece that increase the ductility without decreasing the strength of the workpiece.

  6. Modeling of space environment impact on nanostructured materials. General principles

    NASA Astrophysics Data System (ADS)

    Voronina, Ekaterina; Novikov, Lev

    2016-07-01

    In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible

  7. Nanostructured bacterial materials for innovative medicines.

    PubMed

    Rodríguez-Carmona, Escarlata; Villaverde, Antonio

    2010-09-01

    The development of innovative medicines and personalized biomedical approaches require the identification and implementation of new biocompatible materials produced by methodologically simple and cheap fabrication methods. The biological fabrication of materials, mostly carried out by microorganisms, has historically provided organic compounds with wide-spectrum biomedical applications, including hyaluronic acid, poly(gamma-glutamic acid) and polyhydroxyalkanoates. Additionally, the implementation of new methodological platforms such as metabolic engineering and systems biology have facilitated the controlled production of natural nanoparticles produced by bacteria, including metallic deposits of Au, Ag, Cd, Zn or Fe, virus-like particles or other nanoscale protein-only entities. The unexpected potential of such self-organized and functional materials in nanomedical scenarios (especially in drug delivery, imaging and tissue engineering) prompts serious consideration of further exploitation of bacterial cell factories as convenient alternatives to chemical synthesis and as sources of novel bioproducts that could dramatically expand the existing catalog of biomedical materials. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Molecularly Designed Ultrafine/Nanostructured Materials

    DTIC Science & Technology

    1994-04-08

    MIateria ls. NIT.3 Weber . P). 1.ecoq - R.C. R mnehti C. N\\uods. W.\\I. Yen. R,-Y. /.Iiu. 1994. ISB.N: 1-55S99-2󈧴-0 Volume 349- Nowel FI iins in au hon...precursor pOder to the desired nanostructured composite powder through controlled gas-solid reactions. The thermodynamic and kinetic features .q the gas-solid...279 4. H.D. Fuchs. M.S. Brandt. M. Stutzmann, J. Weber , Mat. Res. Soc. Symp. Proc. 256, 159 (1992). 5. MIJ Sallor. K.L. Kavanagh, Adv. Mater. 4, 432

  9. Development of Methods for Surface Modification of Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Marsh, David A.

    The surfaces of a material become increasingly more influential when the dimensions are reduced, because a larger percentage of the atoms are exposed on the surface. The surface environment of nanostructured materials dictates both physical properties and function, but is synthetically challenging to control. Although the desired functionality is commonly introduced via post-synthetic modification, it would be advantageous to minimize the number of synthetic steps by having specific function installed in the precursor. This work describes efforts to investigate new precursor complexes for the synthesis of nanoparticles, in addition to electrochemical studies on single monolayer films for electrocatalysis. Chapter 2 focuses on the preparation of magnetic nanoaparticles, and the synthesis of a polymerizable surfactant, stacac, to be used to generate composite materials. Although an iron complex of stacac could be used as a precursor for magnetic nanoparticles, favorable composite materials could only be produced by introduction of stacac after isolation of magnetic nanoparticles. Chapter 3 describes the synthesis of Au(I) complexes with various thiourea-based ligands, to be used as precursors for gold nanoparticles. The experimental conditions were varied and parameters were found where addition of a reducing agent generated solution-stable gold nanoparticles in a reproducible manner. It was determined that only aggregated gold nanoparticles were produced when Au(I) complexes were generated in situ and the use of crystalline precursors resulted in soluble gold nanoparticles. Chapter 4 discusses the preparation of electrocatalysts for the oxidation of water with a focus on accurately determining the active surface area. A monolayer of cobalt was prepared on a gold electrode by underpotential deposition and used as an electrocatalyst for water oxidation. Because the surface area of gold can be measured directly, deposition of a single monolayer produced negligible

  10. Nanostructure materials for biosensing and bioimaging applications

    NASA Astrophysics Data System (ADS)

    Law, Wing Cheung

    not fully understand, three possible factors are concluded after systematic researches: (i) an increase of the absolute mass in each binding event, (ii) an increase in the bulk refractive index of the analyte, and (iii) coupling between the localized surface plasmon resonance (LSPR) of metallic nanoparticles and surface plasmon resonance (SPR) of the sensing film. Indeed, the role of plasmonic coupling in sensitivity enhancement is still an open question. In order to obtain a better understanding of this phenomenon, at the end of part I, extended studies were performed to investigate how the LSPR properties of metallic nanoparticle labels correlate with the enhancement factor. For this purpose, gold nanorods (Au-NRs) were chosen as the amplification labels because of the easy tunability of LSPR peak of Au-NR. After reading the "Result and Discussion" section, the readers will have better understanding of "plasmonic coupling" between the sensing film and the metallic labels with suitable operating laser source. In the second part of the thesis, the bioimaging part, the application of nanostructure materials in live cancer cell imaging and small animal imaging were demonstrated. There are different types of imaging technique available in laboratories and clinics: optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), thermography and ultrasound imaging. Although such imaging techniques have been well developed and used over a decade, improving the sensitivity, enhancing the contrast, decreasing the acquisition time and reducing the toxicity of the contrast agent are highly desirable. For optical imaging, the scientists discovered that the use of near infrared fluorescence materials can assist the surgeon to locate the tumor, the nerve and the lymph node more accurately. For CT scan, the use of Au-NR as the contrast agent can improve the sensitivity. Iron oxide nanoparticle or gadolinium ion containing

  11. Rapid Microwave Synthesis of Perovskite Oxide Nanostructures with Enhanced Functionality

    NASA Astrophysics Data System (ADS)

    Salazar, Gregory; Datta, Anuja; Mukherjee, Pritish

    2015-03-01

    Perovskite oxides are an important class of materials having high dielectric and piezoelectric coefficients, switchable ferroelectric (FE) polarization and interesting optical and electrical properties. Realization of functional devices based on classic perovskite oxides such as Pb(Zr0.52Ti0.48) O3 (PZT), and emerging Pb-free noncentrosymmetric (NCS) oxides, such as, ZnSnO3, ZnTiO3 and CaTiO3 have reinforced the investigation of these materials in multiple dimensions and length scales. However, large-scale synthesis and integration of ordered low-dimensional structures is a challenge, due to their complicated methodologies, high-cost and difficulties with phase stability. We discuss a generalized, cost-effective, rapid microwave synthesis route for size and shape selective nanostructure growth of these functional perovskite oxides on industrially viable flexible and hard substrates, stabilized by an enhanced ionic covalence. The rational synthesis approach allowed improved tunability of the size, shape, and orientation of the structures with improved electrical and FE properties. The facile fabrication route of these nanostructures may expand the outreach of probes for understanding the structure-property relationships in these hitherto unexplored and technologically important materials.

  12. Potential applications of nanostructured materials in nuclear waste management.

    SciTech Connect

    Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi; Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

    2003-09-01

    This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

  13. Magnetic Nanostructures Patterned by Self-Organized Materials

    DTIC Science & Technology

    2016-01-05

    nanoporous membranes Journal of Magnetism and Magnetic Materials 350,88-93 (2014) 10. R. A. Escobar, N. M. Vargas, S. Castillo-Sepúlveda, S...AFRL-AFOSR-CL-TR-2016-0004 Magnetic nanostructures Patterned by Self-Organized Materials Dora Altbir-Drullinky UNIV OF SANTIAGO Final Report 01/05...PATTERNED BY SELF-ORGANIZED MATERIALS AFOSR – AFOSR FA9550-11-1-0347 Prof. Dora Altbir Drullinsky, P.I. Universidad de Santiago de Chile

  14. Synthesis, characterization, and properties of low-dimensional nanostructured materials

    NASA Astrophysics Data System (ADS)

    Hu, Xianluo

    2007-05-01

    Nanometer scale structures represent an exciting and rapidly expanding area of research. Studies on new physical/chemical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology, crystal and microstructure, and composition. Thus, controlled synthesis of nanomaterials is the essential aspect of nanotechnology. This thesis describes the development of simple and versatile solution-based approaches to synthesize low-dimensional nanostructures. The first major goal of this research is to design and fabricate morphology-controlled alpha-Fe 2O3 nanoarchitectures in aqueous solution through a programmed microwave-assisted hydrothermal route, taking advantage of microwave irradiation and hydrothermal effects. Free-standing alpha-Fe2O3 nanorings are prepared by hydrolysis of FeCl3 in the presence of phosphate ions. The as-formed architecture of alpha-Fe2O 3 nanorings is an exciting new member in the family of iron oxide nanostructures. Our preliminary results demonstrate that sensors made of the alpha-Fe 2O3 nanorings exhibit high sensitivity not only for bio-sensing of hydrogen peroxide in a physiological solution but also for gas-sensing of alcohol vapor at room temperature. Moreover, monodisperse alpha-Fe 2O3 nanocrystals with continuous aspect-ratio tuning and fine shape control are achieved by controlling the experimental conditions. The as-formed alpha-Fe2O3 exhibits shape-dependent infrared optical properties. The growth process of colloidal alpha-Fe 2O3 crystals in the presence of phosphate ions is discussed. In addition, through an efficient microwave-assisted hydrothermal process, self-assembled hierarchical alpha-Fe2O3 nanoarchitectures are synthesized on a large scale. The second major goal of this research is to develop convenient microwave-hydrothermal approaches for the fabrication of carbon-based nanocomposites: (1) A one-pot solution-phase route, namely

  15. Synthesis, characterization, and controlled assembly of functional nanostructures

    NASA Astrophysics Data System (ADS)

    Patete, Jonathan M.

    Nanomaterials represent a particularly interesting class of materials for research, as they bridge the gap between bulk materials and atomic or molecular structures, and often exhibit both novel chemical and physical properties. These properties may be altered not only by the chemical composition of the material but also by the size and shape of the nanoparticle. More specifically, the inherent anisotropy of one-dimensional nanostructures renders them as particularly efficient for electron transport applications. These materials are also highly sought after, because their distinctive shape allows for facile incorporation into functional device configurations. My graduate research has spanned several stages of nanotechnology from the synthesis and characterization of one-dimensional metal oxide nanostructures to the assembly of metal nanoparticles for practical device engineering. In particular, I have investigated the effect of the nanoscale size regime on the electronic, magnetic, and optical properties of as-prepared nanowires composed of hexagonal yttrium manganese oxide and olivine lithium iron phosphate. As a multiferroic material, h-YMnO3 is predominately sought after for applications in data storage devices. Alternatively, nanoscale LiFePO4 has shown a lot of promise as a cathode material in advanced lithium ion battery systems. The synthesis of both materials was achieved through template-directed methods, thereby allowing for precise control over the size and morphology of the as-obtained product. Finally, purposeful, directed methods for controlling the deposition pattern of metallic nanoparticles on a two-dimensional surface will be presented, and their viability as functional optical sensors will be explored.

  16. Nanostructured Materials Developed for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Fahey, Stephen D.; Gennett, Thomas; Tin, Padetha

    2004-01-01

    There has been considerable investigation recently regarding the potential for the use of nanomaterials and nanostructures to increase the efficiency of photovoltaic devices. Efforts at the NASA Glenn Research Center have involved the development and use of quantum dots and carbon nanotubes to enhance inorganic and organic cell efficiencies. Theoretical results have shown that a photovoltaic device with a single intermediate band of states resulting from the introduction of quantum dots offers a potential efficiency of 63.2 percent. A recent publication extended the intermediate band theory to two intermediate bands and calculated a limiting efficiency of 71.7 percent. The enhanced efficiency results from converting photons of energy less than the band gap of the cell by an intermediate band. The intermediate band provides a mechanism for low-energy photons to excite carriers across the energy gap by a two-step process.

  17. Briquettes with nanostructured materials used to modify of cast iron

    NASA Astrophysics Data System (ADS)

    Znamenskii, L. G.; Ivochkina, O. V.; Varlamov, A. S.; Petrova, N. I.

    2016-05-01

    A method is developed to fabricate briquettes with nanostructured materials aimed at modification of cast iron resulting in the improvement of the physicochemical properties of cast iron and its castings. This improvement is achieved by grain refinement, stable modification, the elimination of pyroelectric effect upon modification, and a decrease in the sensitivity to chilling upon melt solidification.

  18. [The application of the nanostructured bioplastic material for the plastic reconstruction of perforations in the nasal septum].

    PubMed

    Grigor'eva, M V; Akimov, A V; Bagautdinov, A A

    2014-01-01

    The objective of the present work was to estimate the effectiveness of the application of the nanostructured bioplastic material for the plastic reconstruction of perforations in the nasal septum. A total of 80 patients were recruited for the study. Half of them underwent plastic reconstruction of perforations in the nasal septum with the application of the nanostructured bioplastic material. Forty patients were treated using no biotransplants. The functional state of nasal cavity mucosa was evaluated before and after surgery. It is concluded that the nanostructured bioplastic material used in the present study ensures efficacious reconstruction of nasal septum integrity after plastic correction of septal perforations.

  19. Solution Based Functionalization of Nanostructured Oxides with Organic Molecules

    NASA Astrophysics Data System (ADS)

    Pearce, Brady Lawrence

    The surface modification of wide bandgap semiconductors with organic molecules provides novel functionalities to the composite material. These functionalities can include tuning of the optical properties, providing solution stability of the inorganic material, as well as many others. The use of an in-situ functionalization method for surface attachment of phosphonic group containing molecules to the surface of gallium nitride (GaN) has shown promise. This technique is particularly advantageous due to the etching and functionalization steps occurring at the same time, in the same beaker, as well as not being reliant on organic solvents or high temperatures. In this functionalization process, surface hydroxide groups are preferentially grown on the surface of GaN, which serve as attachment sites for phosphonic groups on organic moieties. Molecules with these hydroxyl groups available natively on their surface, such as AlOOH and GaOOH, provide a unique advantage. The requirement for an etching step is removed, and the functionalization process could be performed in a simple one-step modification. The work in this dissertation seeks to address the possibility of using these materials as the inorganic component in organic/inorganic composite material in devices. Of particular importance in solar cell and bioelectronic devices is the ability to withstand varying pH environments, and to avoid the leaching of toxic ionic species. Lysine has shown to reduce the leaching of ionic species, when particles of inorganic molecules are cross-linking agents for the amino acid. In this work, the aqueous stability of both AlOOH and GaOOH in a lysine environment will be explored. The optical and size characteristics observed in nanostructured forms of the mixed composition AlxGa1-xOOH material system is of interest, due optical tunability providing a distinct advantage in optoelectronic devices containing these organic/inorganic hybrids. Immobilizing phosphonic group containing

  20. Spark Plasma Sintering for Nanostructured Smart Materials

    DTIC Science & Technology

    2009-03-02

    formulation originally proposed and now widely accepted Eshelby’s model. For paramagnetic materials (such as TiNi SMA material), the magnetic...consideration as depicted in Fig.2.5 (a). Essentially, Eq(2) conveys that due to the weak magnetization of paramagnetic materials constituting the...Equation (2.2) is valid for most paramagnetic materials such as TiNi for which the magnetization vector M » 0 . Equation (2.1) can thus be written as

  1. Cross Directorate Proposal: Nanostructured Materials for Munitions and Propellants-Production, Modeling, and Characterization

    DTIC Science & Technology

    2016-07-15

    AFRL-RW-EG-TR-2016-036 Cross Directorate Proposal: Nanostructured Materials for Munitions and Propellants – Production , Modeling, and...Directorate Proposal: Nanostructured Materials for Munitions and Propellants – Production , Modeling, and Characterization 5a. CONTRACT NUMBER 5b...LABORATORY TASK REPORT LRIR #: 14RW05COR Title: Cross Directorate Proposal: Nanostructured Materials for Munitions and Propellants – Production

  2. Plasma-Based Synthesis of Nanostructured Materials and their Characterization

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.

    The aim of this thesis is to explore the novel cost-effective synthesis technique to develop nanostructured materials and investigate their structural and magnetic properties. Nanomaterials were synthesized by a plasma discharge between desired metal electrodes in the cavitation field of an organic solvent. Multifunctional core-shell magnetic nanoparticles of 3d transition elements (Fe, Ni) and bimetallic (FeNi) were synthesized by varying experimental conditions. The phase, crystallinity and the magnetic properties of the materials synthesized were found to be dependent on experimental reaction parameters such as different solvents, electrodes, the spacing between electrodes, applied voltage, experiment time and high-temperature annealing. Fe and Gd-based nanoparticles were developed for high-performance magnetic resonance imaging (MRI) contrast enhancement. Biocompatible hybrid composite of Fe core - C shell nanoparticles evaluated as negative MRI contrast agents display remarkably high transverse relaxivity (r2) of 70 mM-1S-1 at 7T. In addition to 3d transition magnetic materials, magnetism of multilayer graphene nanosheets with only s and p electrons was investigated to understand and explain the intrinsic origin of ferromagnetism in carbon-based material. Apart from magnetic materials, noble metal Pd nanoparticles were developed using one-step process for hydrogen storage. The role of hydrogen on the dilation of Pd lattice was investigated using the experiment and density functional theory (DFT) studies. This method demonstrates that plasma discharge method using appropriate electrodes and solvents can be used to synthesize desired nanoparticles. This potential emphasizes the importance of adopting this methodology, which offers advantages that include a rapid reaction rate and ability to form very small nanoparticles with narrow size distribution.

  3. Nanostructured polymeric materials for hydrogen storage

    SciTech Connect

    Liu, Di-Jia

    2013-03-01

    The objective of this project is to develop a new class of hydrogen storage adsorbent, nanostructured porous organic polymers (POPs), through collaboration between Argonne National Laboratory and The University of Chicago. POPs have excellent thermal stability and tolerance to gas contaminants such as moisture. They also have low skeleton density and high intrinsic porosity via covalent bonds, capable of maintaining specific surface area (SSA) during high pressure pelletizing for better volumetric density. Furthermore, they can be produced at a commercial scale with the existing industrial infrastructure. The team’s approach focused on improving hydrogen uptake capacity and the heat of adsorption by enhancing SSA, porosity control, and framework-adsorbate interactions through rational design and synthesis at the molecular level. The design principles aim at improving the following attributes of the polymers: (a) high SSA to provide sufficient interface with H2; (b) narrow pore diameter to enhance van der Waals interactions in the confined space; and (c) “metallic” features, either through π- conjugation or metal doping, to promote electronic orbital interactions with hydrogen.

  4. Nanostructured materials with biomimetic recognition abilities for chemical sensing

    NASA Astrophysics Data System (ADS)

    Bajwa, Sadia Zafar; Mustafa, Ghulam; Samardzic, Renata; Wangchareansak, Thipvaree; Lieberzeit, Peter A.

    2012-06-01

    Binding features found in biological systems can be implemented into man-made materials to design nanostructured artificial receptor matrices which are suitable, e.g., for chemical sensing applications. A range of different non-covalent interactions can be utilized based on the chemical properties of the respective analyte. One example is the formation of coordinative bonds between a polymerizable ligand (e.g., N-vinyl-2-pyrrolidone) and a metal ion (e.g., Cu(II)). Optimized molecularly imprinted sensor layers lead to selectivity factors of at least 2 compared to other bivalent ions. In the same way, H-bonds can be utilized for such sensing purposes, as shown in the case of Escherichia coli. The respective molecularly imprinted polymer leads to the selectivity factor of more than 5 between the W and B strains, respectively. Furthermore, nanoparticles with optimized Pearson hardness allow for designing sensors to detect organic thiols in air. The `harder' MoS2 yields only about 40% of the signals towards octane thiol as compared to the `softer' Cu2S. However, both materials strongly prefer molecules with -SH functionality over others, such as hydrocarbon chains. Finally, selectivity studies with wheat germ agglutinin (WGA) reveal that artificial receptors yield selectivities between WGA and bovine serum albumin that are only about a factor of 2 which is smaller than natural ligands.

  5. Engineering hybrid nanostructures of active materials: Applications as electrode materials in lithium ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Huang, Huan

    Aiming to significantly improve the electrochemical properties of electroactive materials for lithium ion batteries, three novel hybrid nanostructures were developed in this thesis. These include nanostructure A: V2O 5 coated on polymer electrolyte-grafted carbon black, nanostructure B: electrode materials incorporated into an electronically conductive carbon web, and nanostructure C: electrode materials dispersed in a conductive porous carbon matrix. Nanocomposites possessing nanostructure A are fast electronic and ionic transport materials. The improved kinetic properties are due to the incorporated carbon core and the grafted polymer electrolyte in the unique structure. The V2O5 xerogel coated polymer electrolyte-grafted carbon blacks, or V2O5/C-PEG, can reach a capacity as high as 320 mAh/g, and exhibit outstanding rate sustainability (e.g. 190 mAh/g at 14C). This class of nanostructured composites is promising for high power/current applications. Nanostructure B was extremely successful when applied to very poorly conductive active materials, such as LiFePO4 and Li3V 2(PO4)3. In this nanostructure, the web-like carbon framework not only supplies a facile electron transport path, but also provides excellent electronic contact between carbon and the insulating active materials. At room temperature, the LiFePO4/C nanocomposite successfully reaches almost full capacity, along with greatly improved rate sustainability and excellent cycling stability. At elevated temperatures (e.g. 40°C and 60°C), the full capacity is readily accessible over a wide rate range, even at a very fast rate of 2C or 5C. The Li3V2(PO4) 3/C nanocomposite can extract all three lithium in the formula at a rate of 1C, resulting in a high capacity of 200 mAh/g. Therefore, through designing hybrid nanostructures with nanostructure B, we can make insulating active materials into good cathode materials. Nanostructure C was employed for Sn-based anode materials, in order to improve their cycling

  6. Covalently functionalized carbon nanostructures and methods for their separation

    DOEpatents

    Wang, YuHuang; Brozena, Alexandra H; Deng, Shunliu; Zhang, Yin

    2015-03-17

    The present invention is directed to carbon nanostructures, e.g., carbon nanotubes, methods of covalently functionalizing carbon nanostructures, and methods of separating and isolating covalently functionalized carbon. In some embodiments, carbon nanotubes are reacted with alkylating agents to provide water soluble covalently functionalized carbon nanotubes. In other embodiments, carbon nanotubes are reacted with a thermally-responsive agent and exposed to light in order to separate carbon nanotubes of a specific chirality from a mixture of carbon nanotubes.

  7. Nanostructured mesoporous materials for lithium-ion battery applications

    NASA Astrophysics Data System (ADS)

    Balaya, P.; Saravanan, K.; Hariharan, S.; Ramar, V.; Lee, H. S.; Kuezma, M.; Devaraj, S.; Nagaraju, D. H.; Ananthanarayanan, K.; Mason, C. W.

    2011-06-01

    The Energy crisis happens to be one of the greatest challenges we are facing today. In this view, much effort has been made in developing new, cost effective, environmentally friendly energy conversion and storage devices. The performance of such devices is fundamentally related to material properties. Hence, innovative materials engineering is important in solving the energy crisis problem. One such innovation in materials engineering is porous materials for energy storage. Porous electrode materials for lithium-ion batteries (LIBs) offer a high degree of electrolyte-electrode wettability, thus enhancing the electrochemical activity within the material. Among the porous materials, mesoporous materials draw special attention, owing to shorter diffusion lengths for Li+ and electronic movement. Nanostructured mesoporous materials also offer better packing density compared to their nanostructured counterparts such as nanopowders, nanowires, nanotubes etc., thus opening a window for developing electrode materials with high volumetric energy densities. This would directly translate into a scenario of building batteries which are much lighter than today's commercial LIBs. In this article, the authors present a simple, soft template approach for preparing both cathode and anode materials with high packing density for LIBs. The impact of porosity on the electrochemical storage performance is highlighted.

  8. Novel thermal properties of nanostructured materials.

    SciTech Connect

    Eastman, J. A.

    1999-01-13

    A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. For example, an approximately 20% improvement in effective thermal conductivity is observed when 5 vol.% CuO nanoparticles are added to water. Even more importantly, the heat transfer coefficient of water under dynamic flow conditions is increased more than 15% with the addition of less than 1 vol.% CuO particles. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers. Yttria-stabilized zirconia (YSZ) thin films are being produced by metal-organic chemical vapor deposition techniques. Preliminary results have indicated that the thermal conductivity is reduced by approximately a factor-of-two at room temperature in 10 nm grain-sized YSZ compared to coarse-grained or single crystal YSZ.

  9. Composite, nanostructured, super-hydrophobic material

    DOEpatents

    D'Urso, Brian R.; Simpson, John T.

    2007-08-21

    A hydrophobic disordered composite material having a protrusive surface feature includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a protrusive surface feature, the protrusive feature being hydrophobic.

  10. Nanostructured Hybrid Materials for Controlled Energy Release

    DTIC Science & Technology

    2014-06-10

    a carbon nanofiber matrix in order to control the reactivity of the aluminum nanoparticles. We achieved nanohybrid materials of aluminum...nanoparticles wrapped with Carbon nanofibers (CNFs) by electrospinning method. The morphology of aluminum decorated carbonized CNFs were studied by...to a carbon nanofiber matrix in order to control the reactivity of the aluminum nanoparticles. We achieved nanohybrid materials of aluminum

  11. Functionalized nanostructures for enhanced photocatalytic performance under solar light.

    PubMed

    Guo, Liejin; Jing, Dengwei; Liu, Maochang; Chen, Yubin; Shen, Shaohua; Shi, Jinwen; Zhang, Kai

    2014-01-01

    Photocatalytic hydrogen production from water has been considered to be one of the most promising solar-to-hydrogen conversion technologies. In the last decade, various functionalized nanostructures were designed to address the primary requirements for an efficient photocatalytic generation of hydrogen by using solar energy: visible-light activity, chemical stability, appropriate band-edge characteristics, and potential for low-cost fabrication. Our aim is to present a short review of our recent attempts that center on the above requirements. We begin with a brief introduction of photocatalysts coupling two or more semiconductors, followed by a further discussion of the heterostructures with improved matching of both band structures and crystal lattices. We then elaborate on the heterostructure design of the targeted materials from macroscopic regulation of compositions and phases, to the more precise control at the nanoscale, i.e., materials with the same compositions but different phases with certain band alignment. We conclude this review with perspectives on nanostructure design that might direct future research of this technology.

  12. Functionalized nanostructures for enhanced photocatalytic performance under solar light

    PubMed Central

    Liu, Maochang; Chen, Yubin; Shen, Shaohua; Shi, Jinwen; Zhang, Kai

    2014-01-01

    Summary Photocatalytic hydrogen production from water has been considered to be one of the most promising solar-to-hydrogen conversion technologies. In the last decade, various functionalized nanostructures were designed to address the primary requirements for an efficient photocatalytic generation of hydrogen by using solar energy: visible-light activity, chemical stability, appropriate band-edge characteristics, and potential for low-cost fabrication. Our aim is to present a short review of our recent attempts that center on the above requirements. We begin with a brief introduction of photocatalysts coupling two or more semiconductors, followed by a further discussion of the heterostructures with improved matching of both band structures and crystal lattices. We then elaborate on the heterostructure design of the targeted materials from macroscopic regulation of compositions and phases, to the more precise control at the nanoscale, i.e., materials with the same compositions but different phases with certain band alignment. We conclude this review with perspectives on nanostructure design that might direct future research of this technology. PMID:25161835

  13. Nanostructured liquid crystals combining ionic and electronic functions.

    PubMed

    Yazaki, Sanami; Funahashi, Masahiro; Kagimoto, Junko; Ohno, Hiroyuki; Kato, Takashi

    2010-06-09

    New molecular materials combining ionic and electronic functions have been prepared by using liquid crystals consisting of terthiophene-based mesogens and terminal imidazolium groups. These liquid crystals show thermotropic smectic A phases. Nanosegregation of the pi-conjugated mesogens and the ionic imidazolium moieties leads to the formation of layered liquid-crystalline (LC) structures consisting of 2D alternating pathways for electronic charges and ionic species. These nanostructured materials act as efficient electrochromic redox systems that exhibit coupled electrochemical reduction and oxidation in the ordered bulk states. For example, compound 1 having the terthienylphenylcyanoethylene mesogen and the imidazolium triflate moiety forms the smectic LC nanostructure. Distinct reversible electrochromic responses are observed for compound 1 without additional electrolyte solution on the application of double-potential steps between 0 and 2.5 V in the smectic A phase at 160 degrees C. In contrast, compound 2 having a tetrafluorophenylterthiophene moiety and compound 3 having a phenylterthiophene moiety exhibit irreversible cathodic reduction and reversible anodic oxidation in the smectic A phases. The use of poly(3,4-ethylenedioxythiophene)-poly(4-styrene sulfonate) (PEDOT-PSS) as an electron-accepting layer on the cathode leads to the distinct electrochromic responses for 2 and 3. These results show that new self-organized molecular redox systems can be built by nanosegregated pi-conjugated liquid crystals containing imidazolium moieties with and without electroactive thin layers on the electrodes.

  14. Nanostructured Materials Integrated in Microfabricated Optical Devices

    SciTech Connect

    SASAKI, DARRYL Y.; LAST, JULIE A.; BONDURANT, BRUCE; WAGGONER, TINA A.; BRINKER, C. JEFFREY; KEMME, SHANALYN A.; WENDT, JOEL R.; CARTER, TONY; SAMORA, SALLY; WARREN, MIAL E.; SINCLAIR, MICHAEL B.; YANG, YI

    2002-12-01

    This project combined nanocomposite materials with microfabricated optical device structures for the development of microsensor arrays. For the nanocomposite materials we have designed, developed, and characterized self-assembling, organic/inorganic hybrid optical sensor materials that offer highly selective, sensitive, and reversible sensing capability with unique hierarchical nanoarchitecture. Lipid bilayers and micellar polydiacetylene provided selective optical response towards metal ions (Pb(II), Hg(II)), a lectin protein (Concanavalin A), temperature, and organic solvent vapor. These materials formed as composites in silica sol-gels to impart physical protection of the self-assembled structures, provide a means for thin film surface coatings, and allow facile transport of analytes. The microoptical devices were designed and prepared with two- and four-level diffraction gratings coupled with conformal gold coatings on fused silica. The structure created a number of light reflections that illuminated multiple spots along the silica surface. These points of illumination would act as the excitation light for the fluorescence response of the sensor materials. Finally, we demonstrate an integrated device using the two-level diffraction grating coupled with the polydiacetylene/silica material.

  15. A non-aqueous procedure to synthesize amino group bearing nanostructured organic-inorganic hybrid materials.

    PubMed

    Göring, M; Seifert, A; Schreiter, K; Müller, P; Spange, S

    2014-09-04

    Amino-functionalized organic-inorganic hybrid materials with a narrow distributed nanostructure of 2-4 nm in size were obtained by means of a template-free and non-aqueous procedure. Simultaneous twin polymerization of novel amino group containing twin monomers with 2,2'-spirobi[4H-1,3,2-benzodioxasiline] has been applied for this purpose. The amino groups of the organic-inorganic hybrid material are useful for post derivatization.

  16. Electronic and structural properties of functional nanostructures

    NASA Astrophysics Data System (ADS)

    Yang, Teng

    In this Thesis, I present a study of electronic and structural properties of functional nanostructures such as MoSxIy nanowires, self-assembled monolayer on top of metallic surfaces and structural changes induced in graphite by photo excitations. MoSxI y nanowires, which can be easily synthesized in one step, show many advantages over conventional carbon nanotubes in molecular electronics and many other applications. But how to self-assemble them into desired pattern for practical electronic network? Self-assembled monolayers of polymers on metallic surfaces may help to guide pattern formation of some nanomaterials such as MoSxIy nanowires. I have investigated the physical properties of these nanoscale wires and microscopic self-assembly mechanisms of patterns by total energy calculations combined with molecular dynamics simulations and structure optimization. First, I studied the stability of novel Molybdenum chaicohalide nanowires, a candidate for molecular electronics applications. Next, I investigated the self-assembly of nanoparticles into ordered arrays with the aid of a template. Such templates, I showed, can be formed by polymer adsorption on surfaces such as highly ordered pyrolytic graphite and Ag(111). Finally, I studied the physical origin of of structural changes induced in graphite by light in form of a femtosecond laser pulse.

  17. Applications of ultrasound to the synthesis of nanostructured materials.

    PubMed

    Bang, Jin Ho; Suslick, Kenneth S

    2010-03-12

    Recent advances in nanostructured materials have been led by the development of new synthetic methods that provide control over size, morphology, and nano/microstructure. The utilization of high intensity ultrasound offers a facile, versatile synthetic tool for nanostructured materials that are often unavailable by conventional methods. The primary physical phenomena associated with ultrasound that are relevant to materials synthesis are cavitation and nebulization. Acoustic cavitation (the formation, growth, and implosive collapse of bubbles in a liquid) creates extreme conditions inside the collapsing bubble and serves as the origin of most sonochemical phenomena in liquids or liquid-solid slurries. Nebulization (the creation of mist from ultrasound passing through a liquid and impinging on a liquid-gas interface) is the basis for ultrasonic spray pyrolysis (USP) with subsequent reactions occurring in the heated droplets of the mist. In both cases, we have examples of phase-separated attoliter microreactors: for sonochemistry, it is a hot gas inside bubbles isolated from one another in a liquid, while for USP it is hot droplets isolated from one another in a gas. Cavitation-induced sonochemistry provides a unique interaction between energy and matter, with hot spots inside the bubbles of approximately 5000 K, pressures of approximately 1000 bar, heating and cooling rates of >10(10) K s(-1); these extraordinary conditions permit access to a range of chemical reaction space normally not accessible, which allows for the synthesis of a wide variety of unusual nanostructured materials. Complementary to cavitational chemistry, the microdroplet reactors created by USP facilitate the formation of a wide range of nanocomposites. In this review, we summarize the fundamental principles of both synthetic methods and recent development in the applications of ultrasound in nanostructured materials synthesis.

  18. Electrical and thermal transport measurements on nano-structured materials

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Wei

    This thesis discusses electrical and thermal transport measurements on C60, carbon nanotubes, and boron-nitride nanotubes. Chapter 1 describes the anomalous resistivity behavior of Ag films on C60 crystals. The correlation of the resistivity anomaly and the structural phase transition is established. Chapter 2 gives an introduction to the physical properties and the synthesis methods of carbon and boron nitride nanotubes. Chapter 3 shows two different approaches on chemical functionalization of boron-nitride nanotubes. Chapter 4 gives the theoretical background of thermal conductivity, especially for nano-structured materials. A summary of theoretical and experimental works on the thermal conductivity of nanotubes is given. Chapter 5 discusses the experimental results of thermal conductivity of nanotube mats. An absolute value of the thermal conductivity of boron nitride nanotubes is bracketed and can be compared to the results of the following chapters on individual nanotubes. Chapter 6 describes the experimental methods of measuring thermal conductivity of individual nanotubes. Chapter 7 shows the 2 temperature dependent thermal conductivity and thermopower of individual nanotubes. Chapter 8 discusses the isotope effect and the diameter dependence of the thermal conductivity of nanotubes. In chapter 9, it is shown that the thermal conductivity of nanotubes is robust against electron irradiation and structural deformation. Importantly, the observation challenges current understandings on the thermal transport of nano-structured materials. In chapter 10, it is shown that it is possible to reversibly tune the thermal conductivity of a multiwalled nanotube by controllably sliding the outer-shells against inner cores. Chapter 11 describes a thermal rectifier by engineering the mass distribution along a nanotube. The observed non-zero thermal rectification effect provides strong evidence for solitons in nanotubes. The soliton model also coherently explains many

  19. Biocompatibility and nanostructured materials: applications in nanomedicine.

    PubMed

    Adabi, Mahdi; Naghibzadeh, Majid; Adabi, Mohsen; Zarrinfard, Mohammad Ali; Esnaashari, Seyedeh Sara; Seifalian, Alexander M; Faridi-Majidi, Reza; Tanimowo Aiyelabegan, Hammed; Ghanbari, Hossein

    2017-06-01

    There has been huge interest in applications of nanomaterials in biomedical science, including diagnosis, drug delivery, and development of human organs. Number of these nanomaterials has been already studied in human or at pre-clinical trial. There is a growing concern on potential toxicity and adverse effects of nanomaterials on human health, including lack of standard method of assessment of toxicology of these materials. Our investigation indicated that the bare and small nanoparticle have higher toxicity than modified and bulk materials, respectively. In addition, spherical nanoparticles have less toxicity than rod nanoparticles due to immune response of body.

  20. Laser Propagation in Nanostructured Ultra-Low-Density Materials

    SciTech Connect

    Fournier, K. B.; Colvin, J.; Yogo, A; Kemp, G. E.; Matsukuma, H.; Tanaka, N.; Zhang, Z.; Koga, K.; Tosaki, S.; Nishimura, H.

    2016-03-15

    The nanostructure of very-low-density aerogels (< 10 mg/cm3) affects the laser heating and propagation of the subsequent heat front. Simulations treat these materials as an atomistic medium without any structure differentiating between near-solid-density material and voids. Thus, simulations fail to predict the effects of the aerogel’s physical micro or nanostructure on the laser-matter interaction. We have designed an experiment using the GEKKO XII laser and ILE diagnostics to characterize the ionization-wave propagation and x-ray yield from aerogel and mass-matched gaseous targets as the laser passes through each. By design, the gas and aerogel targets will have identical densities and identical effective ionization states.

  1. Equivalent-Continuum Modeling of Nano-Structured Materials

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2001-01-01

    A method has been developed for modeling structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with an equivalent-continuum model. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As an important example with direct application to the development and characterization of single-walled carbon nanotubes, the model has been applied to determine the effective continuum geometry of a graphene sheet. A representative volume element of the equivalent-continuum model has been developed with an effective thickness. This effective thickness has been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.

  2. Nanostructured core-shell electrode materials for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  3. Magnetic Cluster States in Nanostructured Materials

    SciTech Connect

    Diandra Leslie-Pelecky

    2008-06-13

    The goal of this work is to fabricate model nanomaterials with different types of disorder and use atomic-scale characterization and macroscopic magnetization measurements to understand better how specific types of disorder affects macroscopic magnetic behavior. This information can be used to produce magnetic nanomaterials with specific properties for applications such as permanent magnets, soft magnetic material for motors and biomedical applications.

  4. 2D Hybrid Nanostructured Dirac Materials for Broadband Transparent Electrodes.

    PubMed

    Guo, Yunfan; Lin, Li; Zhao, Shuli; Deng, Bing; Chen, Hongliang; Ma, Bangjun; Wu, Jinxiong; Yin, Jianbo; Liu, Zhongfan; Peng, Hailin

    2015-08-05

    Broadband transparent electrodes based on 2D hybrid nanostructured Dirac materials between Bi2 Se3 and graphene are synthesized using a chemical vapor deposition (CVD) method. Bi2 Se3 nanoplates are preferentially grown along graphene grain boundaries as "smart" conductive patches to bridge the graphene boundary. These hybrid films increase by one- to threefold in conductivity while remaining highly transparent over broadband wavelength. They also display outstanding chemical stability and mechanical flexibility.

  5. Organizing protein-DNA hybrids as nanostructures with programmed functionalities.

    PubMed

    Teller, Carsten; Willner, Itamar

    2010-12-01

    The structural and functional information encoded in the base sequence of nucleic acids provides a means to organize hybrid protein-DNA nanostructures with pre-designed, programmed functionality. This review discusses the activation of enzyme cascades in supramolecular DNA-protein hybrid structures, the bioelectrocatalytic activation of redox enzymes on DNA scaffolds, and the programmed positioning of enzymes on 1D, 2D and 3D DNA nanostructures. These systems provide starting points towards the design of interconnected enzyme networks. Substantial progress in the tailoring of functional protein-DNA nanostructures has been accomplished in recent years, and advances in this field warrant a comprehensive discussion. The application of these systems for the control of biocatalytic transformations, for amplified biosensing, and for the synthesis of metallic nanostructures are addressed, and future prospects for these systems are highlighted.

  6. Supersonic Nanocrystal Deposition for Nanostructured Materials

    DTIC Science & Technology

    2001-11-01

    element. Previous work has characterized the nanoerystals produced by ablation of silver microparticles. In addition to silver and cadmium selenide , several...silver and cadmium selenide in argon the kinetic energy per atom is limited to 0.03 eV/atom while for helium it is up to 0.3 cV/atom. Therefore materials...2. Cadmium Selenide nanocrystals deposited at low kinetic energy in argon carrier gas. The main TEM micrograph shows the overall size distribution and

  7. Optical properties of nanostructured materials: a review

    NASA Astrophysics Data System (ADS)

    Flory, François; Escoubas, Ludovic; Berginc, Gérard

    2011-01-01

    Depending on the size of the smallest feature, the interaction of light with structured materials can be very different. This fundamental problem is treated by different theories. If first order theories are sufficient to describe the scattering from low roughness surfaces, second order or even higher order theories must be used for high roughness surfaces. Random surface structures can then be designed to distribute the light in different propagation directions. For complex structures such as black silicon, which reflects very little light, the theory needs further development. When the material is periodically structured, we speak about photonic crystals or metamaterials. Different theoretical approaches have been developed and experimental techniques are rapidly progressing. However, some work still remains to understand the full potential of this field. When the material is structured in dimension much smaller than the wavelength, the notion of complex refractive index must be revisited. Plasmon resonance can be excited by a progressing wave on metallic nanoparticles inducing a shaping of the absorption band and of the dispersion of the extinction coefficient. This addresses the problem of the permittivity of such metallic nanoparticles. The coupling between several metallic nanoparticles induces a field enhancement in the surrounding media, which can increase phenomena like scattering, absorption, luminescence, or Raman scattering. For semiconductor nanoparticles, electron confinement also induces a modulated absorption spectra. The refractive index is then modified. The bandgap of the material is changed because of the discretization of the electron energy, which can be controlled by the nanometers size particles. Such quantum dots behave like atoms and become luminescent. The lifetime of the electron in the excited states are much larger than in continuous energy bands. Electrons in coupled quantum dots behave as they do in molecules. Many applications

  8. Nanostructured material surfaces--preparation, effect on cellular behavior, and potential biomedical applications: a review.

    PubMed

    Guduru, Deepak; Niepel, Marcus; Vogel, Jürgen; Groth, Thomas

    2011-10-01

    Nanostructures play important roles in vivo, where nanoscaled features of extracellular matrix (ECM) components influence cell behavior and resultant tissue formation. This review summarizes some of the recent developments in fostering new concepts and approaches to nanofabrication, such as top-down and bottom-up and combinations of the two. As in vitro investigations demonstrate that man-made nanotopography can be used to control cell reactions to a material surface, its potential application in implant design and tissue engineering becomes increasingly evident. Therefore, we present recent progress in directing cell fate in the field of cell mechanics, which has grown rapidly over the last few years, and in various tissue-engineering applications. The main focus is on the initial responses of cells to nanostructured surfaces and subsequent influences on cellular functions. Specific examples are also given to illustrate the potential nanostructures may have for biomedical applications and regenerative medicine.

  9. Heat transport by phonons in crystalline materials and nanostructures

    NASA Astrophysics Data System (ADS)

    Koh, Yee Kan

    This dissertation presents experimental studies of heat transport by phonons in crystalline materials and nanostructures, and across solid-solid interfaces. Particularly, this dissertation emphasizes advancing understanding of the mean-free-paths (i.e., the distance phonons propagate without being scattered) of acoustic phonons, which are the dominant heat carriers in most crystalline semiconductor nanostructures. Two primary tools for the studies presented in this dissertation are time-domain thermoreflectance (TDTR) for measurements of thermal conductivity of nanostructures and thermal conductance of interfaces; and frequency-domain thermoreflectance (FDTR), which I developed as a direct probe of the mean-free-paths of dominant heat-carrying phonons in crystalline solids. The foundation of FDTR is the dependence of the apparent thermal conductivity on the frequency of periodic heat sources. I find that the thermal conductivity of semiconductor alloys (InGaP, InGaAs, and SiGe) measured by TDTR depends on the modulation frequency, 0.1 ≤ f ≤ 10 MHz, used in TDTR measurements. Reduction in the thermal conductivity of the semiconductor alloys at high f compares well to the reduction in the thermal conductivity of epitaxial thin films, indicating that frequency dependence and thickness dependence of thermal conductivity are fundamentally equivalent. I developed the frequency dependence of thermal conductivity into a convenient probe of phonon mean-free-paths, a technique which I call frequency-domain thermoreflectance (FDTR). In FDTR, I monitor the changes in the intensity of the reflected probe beam as a function of the modulation frequency. To facilitate the analysis of FDTR measurements, I developed a nonlocal theory for heat conduction by phonons at high heating frequencies. Calculations of the nonlocal theory confirm my experimental findings that phonons with mean-free-paths longer than two times the penetration depth do not contribute to the apparent thermal

  10. High volume production of nanostructured materials

    DOEpatents

    Ripley, Edward B [Knoxville, TN; Morrell, Jonathan S [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Ludtka, Gerard M [Oak Ridge, TN

    2009-10-13

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  11. Functionalization of DNA Nanostructures for Cell Signaling Applications

    NASA Astrophysics Data System (ADS)

    Pedersen, Ronnie O.

    Transforming growth factor beta (TGF-beta) is an important cytokine responsible for a wide range of different cellular functions including extracellular matrix formation, angiogenesis and epithelial-mesenchymal transition. We have sought to use self-assembling DNA nanostructures to influence TGF-beta signaling. The predictable Watson Crick base pairing allows for designing self-assembling nanoscale structures using oligonucleotides. We have used the method of DNA origami to assemble structures functionalized with multiple peptides that bind TGF-beta receptors outside the ligand binding domain. This allows the nanostructures to cluster TGF-beta receptors and lower the energy barrier of ligand binding thus sensitizing the cells to TGF-beta stimulation. To prove efficacy of our nanostructures we have utilized immunofluorescent staining of Smad2/4 in order to monitor TGF-beta mediated translocation of Smad2/4 to the cell nucleus. We have also utilized Smad2/4 responsive luminescence constructs that allows us to quantify TGF-beta stimulation with and without nanostructures. To functionalize our nanostructures we relied on biotin-streptavidin linkages. This introduces a multivalency that is not necessarily desirable in all designs. Therefore we have investigated alternative means of functionalization. The first approach is based on targeting DNA nanostructure by using zinc finger binding proteins. Efficacy of zinc finger binding proteins was assayed by the use of enzyme-linked immunosorbent (ELISA) assay and atomic force microscopy (AFM). While ELISA indicated a relative specificity of zinc finger proteins for target DNA sequences AFM showed a high degree of non-specific binding and insufficient affinity. The second approach is based on using peptide nucleic acid (PNA) incorporated in the nanostructure through base pairing. PNA is a synthetic DNA analog consisting of a backbone of repeating N-(2-aminoethyl)-glycine units to which purine and pyrimidine bases are linked by

  12. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    PubMed

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 < y < 1), MMo(x)O(y) (M = Fe, Co, Ni, Ca, Mn, Zn, Mg, or Cd; x = 1, y = 4; x = 3, y = 8), MoS2, MoSe2, (MoO2)2P2O7, LiMoO2, Li2MoO3, etc. possess multiple valence states and exhibit rich chemistry. They are very attractive candidates for efficient electrochemical energy storage systems because of their unique physicochemical properties, such as conductivity, mechanical and thermal stability, and cyclability. In this review, we aim to provide a systematic summary of the synthesis, modification, and electrochemical performance of nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  13. Ceramic materials and nanostructures for chemical sensing

    NASA Astrophysics Data System (ADS)

    Azad, Abdul-Majeed; Akbar, Sheikh A.

    2005-11-01

    High selectivity, enhanced sensitivity, short response time and long shelf-life are some of the key features sought in the solid-state ceramic-based chemical sensors. Since the sensing mechanism and catalytic activity are predominantly surface-dominated, benign surface features in terms of higher aspect ratio, large surface area and, open and connected porosity, are required to realize a successful material. In order to incorporate these morphological features, a technique based on rigorous thermodynamic consideration of the metal/metal oxide coexistence, is described. By modulating the oxygen partial pressure across the equilibrium M/MO proximity line, formation and growth of new oxide surface on an atomic/ submolecular level under conditions of "oxygen deprivation", with exotic morphological features has been achieved in a number of metal oxides that are potential sensor materials. This paper describes the methodology and discusses the results obtained in the case of two model systems, viz., tungsten oxide (WO3) and titanium oxide (TiO2).

  14. Nanostructured magnesium has fewer detrimental effects on osteoblast function

    PubMed Central

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. PMID:23674891

  15. Biopattern transfer using diatom frustules for fabrication of functional micro/nanostructures

    NASA Astrophysics Data System (ADS)

    Jiang, Yonggang; Fu, Jianchao; Pan, Junfeng; An, Zhonglie; Cai, Jun; Zhang, Deyuan

    2015-01-01

    Diatom frustules exhibit various sophisticated shapes with highly ordered hierarchical porous nanostructures, which are promising for applications in the biomimetic fabrication of nanostructured materials. We propose a universal biopattern transfer process for the fabrication of functional micro/nanostructures using diatom frustules as the biotemplates. Porous silicon microcylinders with a thickness of 20 μm are fabricated by deep reactive ion etching of a silicon substrate, which is covered by a layer of diatom frustules. With a similar process, a fast atom beam technique is used to etch the silicon substrate and silicon nanolattices are obtained. By depositing a thin layer of gold film on the diatom bonded silicon substrate, followed by releasing the diatom frustules by diluted HF, gold nanodisks with a thickness of 30 nm are successfully fabricated. The nanodisk array arranges in diamond or radial patterns, replicating the nanostructure of diatom frustules. In addition, a parylene nanodot array is also demonstrated using this diatom-based biopattern transfer process.

  16. Nanostructured energetic materials derived from sol-gel chemistry

    SciTech Connect

    Simpson, R L; Tillotson, T M; Hrubesh, L W; Gash, A E

    2000-03-15

    Initiation and detonation properties are dramatically affected by an energetic material's microstructural properties. Sol-gel chemistry allows intimacy of mixing to be controlled and dramatically improved over existing methodologies. One material goal is to create very high power energetic materials which also have high energy densities. Using sol-gel chemistry we have made a nanostructured composite energetic material. Here a solid skeleton of fuel, based on resorcinol-formaldehyde, has nanocrystalline ammonium perchlorate, the oxidizer, trapped within its pores. At optimum stoichiometry it has approximately the energy density of HMX. Transmission electron microscopy indicated no ammonium perchlorate crystallites larger than 20 nm while near-edge soft x-ray absorption microscopy showed that nitrogen was uniformly distributed, at least on the scale of less than 80 nm. Small-angle neutron scattering studies were conducted on the material. Those results were consistent with historical ones for this class of nanostructured materials. The average skeletal primary particle size was on the order of 2.7 nm, while the nanocomposite showed the growth of small 1 nm size crystals of ammonium perchlorate with some clustering to form particles greater than 10 nm.

  17. Nanostructured Materials for Room-Temperature Gas Sensors.

    PubMed

    Zhang, Jun; Liu, Xianghong; Neri, Giovanni; Pinna, Nicola

    2016-02-03

    Sensor technology has an important effect on many aspects in our society, and has gained much progress, propelled by the development of nanoscience and nanotechnology. Current research efforts are directed toward developing high-performance gas sensors with low operating temperature at low fabrication costs. A gas sensor working at room temperature is very appealing as it provides very low power consumption and does not require a heater for high-temperature operation, and hence simplifies the fabrication of sensor devices and reduces the operating cost. Nanostructured materials are at the core of the development of any room-temperature sensing platform. The most important advances with regard to fundamental research, sensing mechanisms, and application of nanostructured materials for room-temperature conductometric sensor devices are reviewed here. Particular emphasis is given to the relation between the nanostructure and sensor properties in an attempt to address structure-property correlations. Finally, some future research perspectives and new challenges that the field of room-temperature sensors will have to address are also discussed.

  18. Patterning and structural engineering of dimensionally constrained functional oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Pan, Zixiao

    The current trend of ceramic nanotechnology has motivated an ever-increasing need to achieve exquisite control over size, shape, and spatial confinement for functional oxide architectures, in an equivalent manner demonstrated for semiconductors. However, the unique nature of ceramics has posed major challenges for most traditional nanofabrication technologies, putting the development of innovative oxide nanopatterning schemes under the spotlight. Dimensional and spatial confinement of functional oxides has also raised extensive intellectual interests since it carries a profound bearing upon their microstructure variation and leads to often superior performances. This further underlines the need for exploring the "materials science and engineering" of nano-constrained oxides, i.e., to fabricate nanopatterns with precise geometrical control at various dimensionalities, and to tailor their microstructural and functional characteristics. This dissertation presents one strategy to achieve such objectives. We have developed a versatile nanofabrication approach, termed variable pressure-soft-electron beam lithography (VP-soft-eBL) that successfully resolves the generic challenges in patterning oxides and enables high resolution fabrication of diverse materials on a multitude of substrates. A strategy based on VP-soft-eBL was derived for microstructural and morphological control on the nanostructures, particularly that of ferroelectrics and ferrimagnets. The effect of pattern aspect ratio on the microstructure evolution has been investigated for CoFe 2O4 and BaTiO3 nanodiscs on single crystal substrates with appropriate lattice matching. Following this strategy, high quality epitaxial patterns can be readily achieved from amorphous form during annealing. VP-soft-eBL portfolio was then expanded significantly towards multi-dimensional patterning capability to facilitate systematic study on the confinement phenomena. We investigated the beam skirt effect on electron energy

  19. Self-assembly of nanostructured materials through irreversible covalent bond formation.

    PubMed

    Baek, Kangkyun; Hwang, Ilha; Roy, Indranil; Shetty, Dinesh; Kim, Kimoon

    2015-08-18

    Over the past decades, numerous efforts have been devoted to synthesizing nanostructured materials with specific morphology because their size and shape play an important role in determining their functions. Self-assembly using weak and reversible interactions or bonds has provided synthetic routes toward various nanostructures because it allows a "self-checking" and "self-error-correcting" process under thermodynamic control. By contrast, the use of irreversible covalent bonds, despite the potential to generate more robust structures, has been disfavored in the synthesis of well-defined nanomaterials largely due to the lack of such self-error-correcting mechanisms. To date, the use of irreversible bonds is largely limited to covalent fixation of preorganized building blocks on a template, which, though capable of producing shape-persistent and robust nanostructured materials, often requires a laborious and time-consuming multistep processes. Constructing well-defined nanostructures by self-assembly using irreversible covalent bonds without help of templates or preorganization of components remains a challenge. This Account describes our recent discoveries and progress in self-assembly of nanostructured materials through strong, practically irreversible covalent bond formation and their applications in various areas including drug delivery, anticancer therapy, and heterogeneous catalysis. The key to the success of this approach is the use of rationally designed building blocks possessing multiple in-plane reactive groups at the periphery. These blocks can then successfully grow into flat oligomeric patches through irreversible covalent bond formation without the aid of preorganization or templates. Further growth of the patches with or without curvature generation drives the system to the formation of polymer nanocapsules, two-dimensional (2D) polymer films, and toroidal nanotubular microrings. Remarkably, the final morphology can be specified by a few simple

  20. Rapid prototyping of patterned functional nanostructures

    SciTech Connect

    FAN,HONGYOU; LU,YUNFENG; STUMP,AARON; REED,SCOTT T.; BAER,THOMAS A.; SCHUNK,P. RANDALL; PEREZ-LUNA,VICTOR; LOPEZ,GABRIEL P.; BRINKER,C. JEFFREY

    2000-02-09

    Living systems exhibit form and function on multiple length scales, and the prospect of imparting life-like qualities to man-made materials has inspired many recent efforts to devise hierarchical materials assembly strategies. For example, Yang et al. grew surfactant-templated mesoporous silica on hydrophobic patterns prepared by micro-contact printing {micro}CP{sup 3}. Trau et al. formed oriented mesoporous silica patterns, using a micro-molding in capillaries MIMIC technique, and Yang et al. combined MIMIC, polystyrene sphere templating, and surfactant-templating to create oxides with three levels of structural order. Overall, great progress has been made to date in controlling structure on scales ranging from several nanometers to several micrometers. However, materials prepared have been limited to oxides with no specific functionality, whereas for many of the envisioned applications of hierarchical materials in micro-systems, sensors, waveguides, photonics, and electronics, it is necessary to define both form and function on several length scales. In addition, the patterning strategies employed thus far require hours or even days for completion. Such slow processes are inherently difficult to implement in commercial environments. The authors have combined evaporation-induced (silica/surfactant) self-assembly EISA with rapid prototyping techniques like pen lithography, ink-jet printing, and dip-coating on micro-contact printed substrates to form hierarchically organized structures in seconds. In addition, by co-condensation of tetrafunctional silanes (Si(OR){sub 4}) with tri-functional organosilanes ((RO){sub 3}SiR{prime}){sup 12--14} or by inclusion of organic additives, the authors have selectively derivatized the silica framework with functional R{prime} ligands or molecules. The resulting materials exhibit form and function on multiple length scales: on the molecular scale, functional organic moieties are positioned on pore surfaces, on the mesoscale

  1. Advanced Nanostructured Anode Materials for Sodium-Ion Batteries.

    PubMed

    Wang, Qidi; Zhao, Chenglong; Lu, Yaxiang; Li, Yunming; Zheng, Yuheng; Qi, Yuruo; Rong, Xiaohui; Jiang, Liwei; Qi, Xinguo; Shao, Yuanjun; Pan, Du; Li, Baohua; Hu, Yong-Sheng; Chen, Liquan

    2017-09-19

    Sodium-ion batteries (NIBs), due to the advantages of low cost and relatively high safety, have attracted widespread attention all over the world, making them a promising candidate for large-scale energy storage systems. However, the inherent lower energy density to lithium-ion batteries is the issue that should be further investigated and optimized. Toward the grid-level energy storage applications, designing and discovering appropriate anode materials for NIBs are of great concern. Although many efforts on the improvements and innovations are achieved, several challenges still limit the current requirements of the large-scale application, including low energy/power densities, moderate cycle performance, and the low initial Coulombic efficiency. Advanced nanostructured strategies for anode materials can significantly improve ion or electron transport kinetic performance enhancing the electrochemical properties of battery systems. Herein, this Review intends to provide a comprehensive summary on the progress of nanostructured anode materials for NIBs, where representative examples and corresponding storage mechanisms are discussed. Meanwhile, the potential directions to obtain high-performance anode materials of NIBs are also proposed, which provide references for the further development of advanced anode materials for NIBs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Magnetism of nanostructured permanent-magnet materials

    NASA Astrophysics Data System (ADS)

    Zhou, Jian

    Sm2Co17-type high-temperature permanent magnets with composition Sm(Co, Fe, Cu, Ti)z are investigated. The effects of Ti (or Zr), Cu, Fe and z value, as well as the effect of heat treatment on the magnetic properties are reported. Ti is found a necessity to form the cellular microstructure with grain size less than 100 nm. The Cu-rich Sm(Co, Cu)5 phase forms the grain-boundary which pins the magnetic domain-wall motion. Low Cu content makes the high-temperature coercivity vary in an abnormal way. A record-high high-temperature coercivity of 12.3 kOe at 500°C has been obtained. Granular SmCoz (z = 3--7.5) and Sm-Co-Cu-Ti thin films were produced by thermal processing of sputtered Sm-Co single layers and SmCo 5/(CuTi) multilayers. Inplane anisotropy was found in SmCoz for the composition range of z < 5.5, whereas for z > 5.5 the films exhibits three-dimensional random anisotropy. Sm-Co-Cu-Ti films were sputtered onto Si substrates with a Cr underlayer and coverlayer. X-ray diffraction patterns show that the hexagonal 1:5 phase forms after annealing. Electron micrographs of the processed films show that grains with diameters of 5 to 10 nm are embedded in a matrix. Both the grains and the matrix phase exhibit the CaCu5 Structure. The hysteresis loops show that these films have large coercivities of up to 50.4 kOe. FePt single layer and FePt/Fe multilayer thin films are prepared by magnetron sputtering. The single-phase behavior of the hysteresis loops of FePt/Fe multilayers indicates the existence of exchange coupling in these materials. An energy product of 19 MGOe has been obtained. Nanocrystalline Sm12(Co, Cu, Ti)88 powders are produced by mechanical alloying and are investigated using X-ray diffraction analysis and magnetization measurements. Different heat treatments are performed to investigate the influence on the magnetic properties and crystal structures. The intrinsic coercivity of the powders increases with an increasing amount of Cu. Short annealing time

  3. Atomic layer deposition of nanostructured materials for energy and environmental applications.

    PubMed

    Marichy, Catherine; Bechelany, Mikhael; Pinna, Nicola

    2012-02-21

    Atomic layer deposition (ALD) is a thin film technology that in the past two decades rapidly developed from a niche technology to an established method. It proved to be a key technology for the surface modification and the fabrication of complex nanostructured materials. In this Progress Report, after a short introduction to ALD and its chemistry, the versatility of the technique for the fabrication of novel functional materials will be discussed. Selected examples, focused on its use for the engineering of nanostructures targeting applications in energy conversion and storage, and on environmental issues, will be discussed. Finally, the challenges that ALD is now facing in terms of materials fabrication and processing will be also tackled.

  4. Molecular Motions in Functional Self-Assembled Nanostructures

    PubMed Central

    Dhotel, Alexandre; Chen, Ziguang; Delbreilh, Laurent; Youssef, Boulos; Saiter, Jean-Marc; Tan, Li

    2013-01-01

    The construction of “smart” materials able to perform specific functions at the molecular scale through the application of various stimuli is highly attractive but still challenging. The most recent applications indicate that the outstanding flexibility of self-assembled architectures can be employed as a powerful tool for the development of innovative molecular devices, functional surfaces and smart nanomaterials. Structural flexibility of these materials is known to be conferred by weak intermolecular forces involved in self-assembly strategies. However, some fundamental mechanisms responsible for conformational lability remain unexplored. Furthermore, the role played by stronger bonds, such as coordination, ionic and covalent bonding, is sometimes neglected while they can be employed readily to produce mechanically robust but also chemically reversible structures. In this review, recent applications of structural flexibility and molecular motions in self-assembled nanostructures are discussed. Special focus is given to advanced materials exhibiting significant performance changes after an external stimulus is applied, such as light exposure, pH variation, heat treatment or electromagnetic field. The crucial role played by strong intra- and weak intermolecular interactions on structural lability and responsiveness is highlighted. PMID:23348927

  5. Thermal and Thermoelectric Properties of Nanostructured Materials and Interfaces

    NASA Astrophysics Data System (ADS)

    Liao, Hao-Hsiang

    Many modern technologies are enabled by the use of thin films and/or nanostructured composite materials. For example, many thermoelectric devices, solar cells, power electronics, thermal barrier coatings, and hard disk drives contain nanostructured materials where the thermal conductivity of the material is a critical parameter for the device performance. At the nanoscale, the mean free path and wavelength of heat carriers may become comparable to or smaller than the size of a nanostructured material and/or device. For nanostructured materials made from semiconductors and insulators, the additional phonon scattering mechanisms associated with the high density of interfaces and boundaries introduces additional resistances that can significantly change the thermal conductivity of the material as compared to a macroscale counterpart. Thus, better understanding and control of nanoscale heat conduction in solids is important scientifically and for the engineering applications mentioned above. In this dissertation, I discuss my work in two areas dealing with nanoscale thermal transport: (1) I describe my development and advancement of important thermal characterization tools for measurements of thermal and thermoelectric properties of a variety of materials from thin films to nanostructured bulk systems, and (2) I discuss my measurements on several materials systems done with these characterization tools. First, I describe the development, assembly, and modification of a time-domain thermoreflectance (TDTR) system that we use to measure the thermal conductivity and the interface thermal conductance of a variety of samples including nanocrystalline alloys of Ni-Fe and Co-P, bulk metallic glasses, and other thin films. Next, a unique thermoelectric measurement system was designed and assembled for measurements of electrical resistivity and thermopower of thermoelectric materials in the temperature range of 20 to 350 °C. Finally, a commercial Anter Flashline 3000 thermal

  6. In situ transmission electron microscopy experimentation of nanostructured materials

    NASA Astrophysics Data System (ADS)

    Alducin, Diego

    Due to the remarkable mechanical and electrical properties some nanostructured materials possess, it is important to be able to quantitatively characterize how these materials react under different types of stimulus. In situ transmission electron microscopy is a unique technique that allows the user to fully observe and record the crystallographic behavior of such materials undergoing a variety of tests. The crystallographic orientations silver nanowires were mapped in order to understand the structure and facets due to its geometry. Measuring the toughness and yield of the material led us to understand the anisotropic behavior of AgNWs. Depending on whether a load is applied to either a boundary between facets or on a facet will change the mechanical strength of the nanowire. By measuring the resistivity of the this material during deformation has also led us to understand that the intrinsic defects in the crystal structure of nanowires will change the way the material reacts to an electric potential. We have been also able to completely map the crystallographic orientations of very complex geometries of gold nanoparticles and characterize the weak forces involved in the manipulation if these nanoparticles. Finally, the elasticity of MoS2 was tested and found to be exponentially dependent upon the thickness of the nanosheets. However, the resistivity of this material does not seem to be affected by any type of deformation it is subjected to. The complete categorization of how materials interact with external stimulus while comparing the changes observed in its crystal structure is essential to understanding the underlying properties of nanostructured materials, which would not be possible without in situ transmisison electron microscopy experimentation.

  7. Vanadium-based nanostructure materials for secondary lithium battery applications

    NASA Astrophysics Data System (ADS)

    Tan, Hui Teng; Rui, Xianhong; Sun, Wenping; Yan, Qingyu; Lim, Tuti Mariana

    2015-08-01

    Vanadium-based materials, such as V2O5, LiV3O8, VO2(B) and Li3V2(PO4)3 are compounds that share the characteristic of intercalation chemistry. Their layered or open frameworks allow facile ion movement through the interspaces, making them promising cathodes for LIB applications. To bypass bottlenecks occurring in the electrochemical performances of vanadium-based cathodes that derive from their intrinsic low electrical conductivity and ion diffusion coefficients, nano-engineering strategies have been implemented to ``create'' newly emerging properties that are unattainable at the bulk solid level. Integrating this concept into vanadium-based cathodes represents a promising way to circumvent the aforementioned problems as nanostructuring offers potential improvements in electrochemical performances by providing shorter mass transport distances, higher electrode/electrolyte contact interfaces, and better accommodation of strain upon lithium uptake/release. The significance of nanoscopic architectures has been exemplified in the literature, showing that the idea of developing vanadium-based nanostructures is an exciting prospect to be explored. In this review, we will be casting light on the recent advances in the synthesis of nanostructured vanadium-based cathodes. Furthermore, efficient strategies such as hybridization with foreign matrices and elemental doping are introduced as a possible way to boost their electrochemical performances (e.g., rate capability, cycling stability) to a higher level. Finally, some suggestions relating to the perspectives for the future developments of vanadium-based cathodes are made to provide insight into their commercialization.

  8. Self-assembly of functional molecules into 1D crystalline nanostructures.

    PubMed

    Guo, Yanbing; Xu, Liang; Liu, Huibiao; Li, Yongjun; Che, Chi-Ming; Li, Yuliang

    2015-02-01

    Self-assembled functional nanoarchitectures are employed as important nanoscale building blocks for advanced materials and smart miniature devices to fulfill the increasing needs of high materials usage efficiency, low energy consumption, and high-performance devices. One-dimensional (1D) crystalline nanostructures, especially molecule-composed crystalline nanostructures, attract significant attention due to their fascinating infusion structure and functionality which enables the easy tailoring of organic molecules with excellent carrier mobility and crystal stability. In this review, we discuss the recent progress of 1D crystalline self-assembled nanostructures of functional molecules, which include both a small molecule-derived and a polymer-based crystalline nanostructure. The basic principles of the molecular structure design and the process engineering of 1D crystalline nanostructures are also discussed. The molecular building blocks, self-assembly structures, and their applications in optical, electrical, and photoelectrical devices are overviewed and we give a brief outlook on crucial issues that need to be addressed in future research endeavors.

  9. Nanostructured materials: A novel approach to enhanced performance. Final report

    SciTech Connect

    Korth, G.E.; Froes, F.H.; Suryanarayana, C.

    1996-05-01

    Nanostuctured materials are an emerging class of materials that can exhibit physical and mechanical characteristics often exceeding those exhibited by conventional course grained materials. A number of different techniques can be employed to produce these materials. In this program, the synthesis methods were (a) mechanical alloying , (b) physical vapor deposition, and (c) plasma processing. The physical vapor deposition and plasma processing were discontinued after initial testing with subsequent efforts focused on mechanical alloying. The major emphasis of the program was on the synthesis, consolidation, and characterization of nanostructured Al-Fe, Ti-Al, Ti-Al-Nb, and Fe-Al by alloying intermetallics with a view to increase their ductilities. The major findings of this project are reported.

  10. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    SciTech Connect

    Nan, Alexandrina Bunge, Alexander; Turcu, Rodica

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  11. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    NASA Astrophysics Data System (ADS)

    Nan, Alexandrina; Bunge, Alexander; Turcu, Rodica

    2015-12-01

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  12. Nanostructured materials for applications in drug delivery and tissue engineering*

    PubMed Central

    GOLDBERG, MICHAEL; LANGER, ROBERT; JIA, XINQIAO

    2010-01-01

    point of view, both the drug-delivery vehicles and tissue-engineering scaffolds need to be biocompatible and biodegradable. The biological functions of encapsulated drugs and cells can be dramatically enhanced by designing biomaterials with controlled organizations at the nanometer scale. This review summarizes the most recent development in utilizing nanostructured materials for applications in drug delivery and tissue engineering. PMID:17471764

  13. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications.

    PubMed

    Li, Hui; Lee, Taek; Dziubla, Thomas; Pi, Fengmei; Guo, Sijin; Xu, Jing; Li, Chan; Haque, Farzin; Liang, Xing-Jie; Guo, Peixuan

    2015-10-01

    The value of polymers is manifested in their vital use as building blocks in material and life sciences. Ribonucleic acid (RNA) is a polynucleic acid, but its polymeric nature in materials and technological applications is often overlooked due to an impression that RNA is seemingly unstable. Recent findings that certain modifications can make RNA resistant to RNase degradation while retaining its authentic folding property and biological function, and the discovery of ultra-thermostable RNA motifs have adequately addressed the concerns of RNA unstability. RNA can serve as a unique polymeric material to build varieties of nanostructures including nanoparticles, polygons, arrays, bundles, membrane, and microsponges that have potential applications in biomedical and material sciences. Since 2005, more than a thousand publications on RNA nanostructures have been published in diverse fields, indicating a remarkable increase of interest in the emerging field of RNA nanotechnology. In this review, we aim to: delineate the physical and chemical properties of polymers that can be applied to RNA; introduce the unique properties of RNA as a polymer; review the current methods for the construction of RNA nanostructures; describe its applications in material, biomedical and computer sciences; and, discuss the challenges and future prospects in this field.

  14. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications

    PubMed Central

    Li, Hui; Lee, Taek; Dziubla, Thomas; Pi, Fengmei; Guo, Sijin; Xu, Jing; Li, Chan; Haque, Farzin; Liang, Xing-Jie; Guo, Peixuan

    2015-01-01

    Summary The value of polymers is manifested in their vital use as building blocks in material and life sciences. Ribonucleic acid (RNA) is a polynucleic acid, but its polymeric nature in materials and technological applications is often overlooked due to an impression that RNA is seemingly unstable. Recent findings that certain modifications can make RNA resistant to RNase degradation while retaining its authentic folding property and biological function, and the discovery of ultra-thermostable RNA motifs have adequately addressed the concerns of RNA unstability. RNA can serve as a unique polymeric material to build varieties of nanostructures including nanoparticles, polygons, arrays, bundles, membrane, and microsponges that have potential applications in biomedical and material sciences. Since 2005, more than a thousand publications on RNA nanostructures have been published in diverse fields, indicating a remarkable increase of interest in the emerging field of RNA nanotechnology. In this review, we aim to: delineate the physical and chemical properties of polymers that can be applied to RNA; introduce the unique properties of RNA as a polymer; review the current methods for the construction of RNA nanostructures; describe its applications in material, biomedical and computer sciences; and, discuss the challenges and future prospects in this field. PMID:26770259

  15. Nanostructure multilayer materials for capacitor energy storage for EH vehicles

    SciTech Connect

    Barbee, T.W. Jr.; Johnson, C.W.

    1995-02-01

    Acceleration and regenerative breaking for electric and hybrid vehicles require high power capacitors to complement energy sources. Large, flat nanostructure multilayer capacitors (NMCS) can provide load balancing capacitance in EHVs of the future. Additional uses include snubber capacitors for power electronics such as motor drives, energy discharge capacitors for lasers, and numerous industrial and military electronics applications [1]. In the present work, we demonstrate the effectiveness of LLNL`s multilayer materials technology by fabricating NMC test films with high energy and power density.

  16. Purification of functionalized DNA origami nanostructures.

    PubMed

    Shaw, Alan; Benson, Erik; Högberg, Björn

    2015-05-26

    The high programmability of DNA origami has provided tools for precise manipulation of matter at the nanoscale. This manipulation of matter opens up the possibility to arrange functional elements for a diverse range of applications that utilize the nanometer precision provided by these structures. However, the realization of functionalized DNA origami still suffers from imperfect production methods, in particular in the purification step, where excess material is separated from the desired functionalized DNA origami. In this article we demonstrate and optimize two purification methods that have not previously been applied to DNA origami. In addition, we provide a systematic study comparing the purification efficacy of these and five other commonly used purification methods. Three types of functionalized DNA origami were used as model systems in this study. DNA origami was patterned with either small molecules, antibodies, or larger proteins. With the results of our work we aim to provide a guideline in quality fabrication of various types of functionalized DNA origami and to provide a route for scalable production of these promising tools.

  17. Electrospinning of functional materials for biomedicine and tissue engineering

    NASA Astrophysics Data System (ADS)

    Inozemtseva, O. A.; Salkovskiy, Y. E.; Severyukhina, A. N.; Vidyasheva, I. V.; Petrova, N. V.; Metwally, H. A.; Stetciura, I. Y.; Gorin, D. A.

    2015-03-01

    Published data on nanostructured materials prepared by electrospinning are analyzed and generalized. Particular attention is devoted to the design and properties of nanocomposite fibrous materials and methods for modification and functionalization of fibre surface. The prospects for the application of non-woven materials for biotissue engineering and for the development of smart materials are considered. The bibliography includes 330 references.

  18. Preparation and Reactivity of Gasless Nanostructured Energetic Materials

    PubMed Central

    Manukyan, Khachatur V.; Shuck, Christopher E.; Rogachev, Alexander S.; Mukasyan, Alexander S.

    2015-01-01

    High-Energy Ball Milling (HEBM) is a ball milling process where a powder mixture placed in the ball mill is subjected to high-energy collisions from the balls. Among other applications, it is a versatile technique that allows for effective preparation of gasless reactive nanostructured materials with high energy density per volume (Ni+Al, Ta+C, Ti+C). The structural transformations of reactive media, which take place during HEBM, define the reaction mechanism in the produced energetic composites. Varying the processing conditions permits fine tuning of the milling-induced microstructures of the fabricated composite particles. In turn, the reactivity, i.e., self-ignition temperature, ignition delay time, as well as reaction kinetics, of high energy density materials depends on its microstructure. Analysis of the milling-induced microstructures suggests that the formation of fresh oxygen-free intimate high surface area contacts between the reagents is responsible for the enhancement of their reactivity. This manifests itself in a reduction of ignition temperature and delay time, an increased rate of chemical reaction, and an overall decrease of the effective activation energy of the reaction. The protocol provides a detailed description for the preparation of reactive nanocomposites with tailored microstructure using short-term HEBM method. It also describes a high-speed thermal imaging technique to determine the ignition/combustion characteristics of the energetic materials. The protocol can be adapted to preparation and characterization of a variety of nanostructured energetic composites. PMID:25868065

  19. Preparation and reactivity of gasless nanostructured energetic materials.

    PubMed

    Manukyan, Khachatur V; Shuck, Christopher E; Rogachev, Alexander S; Mukasyan, Alexander S

    2015-04-02

    High-Energy Ball Milling (HEBM) is a ball milling process where a powder mixture placed in the ball mill is subjected to high-energy collisions from the balls. Among other applications, it is a versatile technique that allows for effective preparation of gasless reactive nanostructured materials with high energy density per volume (Ni+Al, Ta+C, Ti+C). The structural transformations of reactive media, which take place during HEBM, define the reaction mechanism in the produced energetic composites. Varying the processing conditions permits fine tuning of the milling-induced microstructures of the fabricated composite particles. In turn, the reactivity, i.e., self-ignition temperature, ignition delay time, as well as reaction kinetics, of high energy density materials depends on its microstructure. Analysis of the milling-induced microstructures suggests that the formation of fresh oxygen-free intimate high surface area contacts between the reagents is responsible for the enhancement of their reactivity. This manifests itself in a reduction of ignition temperature and delay time, an increased rate of chemical reaction, and an overall decrease of the effective activation energy of the reaction. The protocol provides a detailed description for the preparation of reactive nanocomposites with tailored microstructure using short-term HEBM method. It also describes a high-speed thermal imaging technique to determine the ignition/combustion characteristics of the energetic materials. The protocol can be adapted to preparation and characterization of a variety of nanostructured energetic composites.

  20. Functional zinc oxide nanostructures for electronic and energy applications

    NASA Astrophysics Data System (ADS)

    Prasad, Abhishek

    ZnO has proven to be a multifunctional material with important nanotechnological applications. ZnO nanostructures can be grown in various forms such as nanowires, nanorods, nanobelts, nanocombs etc. In this work, ZnO nanostructures are grown in a double quartz tube configuration thermal Chemical Vapor Deposition (CVD) system. We focus on functionalized ZnO Nanostructures by controlling their structures and tuning their properties for various applications. The following topics have been investigated: (1) We have fabricated various ZnO nanostructures using a thermal CVD technique. The growth parameters were optimized and studied for different nanostructures. (2) We have studied the application of ZnO nanowires (ZnONWs) for field effect transistors (FETs). Unintentional n-type conductivity was observed in our FETs based on as-grown ZnO NWs. We have then shown for the first time that controlled incorporation of hydrogen into ZnO NWs can introduce p-type characters to the nanowires. We further found that the n-type behaviors remained, leading to the ambipolar behaviors of hydrogen incorporated ZnO NWs. Importantly, the detected p- and n- type behaviors are stable for longer than two years when devices were kept in ambient conditions. All these can be explained by an ab initio model of Zn vacancy-Hydrogen complexes, which can serve as the donor, acceptors, or green photoluminescence quencher, depend on the number of hydrogen atoms involved. (3) Next ZnONWs were tested for electron field emission. We focus on reducing the threshold field (Eth) of field emission from non-aligned ZnO NWs. As encouraged by our results on enhancing the conductivity of ZnO NWs by hydrogen annealing described in Chapter 3, we have studied the effect of hydrogen annealing for improving field emission behavior of our ZnO NWs. We found that optimally annealed ZnO NWs offered much lower threshold electric field and improved emission stability. We also studied field emission from ZnO NWs at moderate

  1. Direct synthesis and integration of functional nanostructures in microfluidic devices.

    PubMed

    Kim, Jung; Li, Zhiyong; Park, Inkyu

    2011-06-07

    Integration of functional nanostructures within a microfluidic device can synergize the advantages of both unique properties of nanomaterials and diverse functionalities of microfluidics. In this paper, we report a novel and simple method for the in situ synthesis and integration of ZnO nanowires by controlled hydrothermal reaction within microfluidic devices. By modulating synthesis parameters such as the seed preparation, synthesis time, and heating locations, the morphology and location of synthesized nanowires can be easily controlled. The applications of such nanostructure-integrated microfluidics for particle trapping and chemiresistive pH sensing were demonstrated.

  2. Photoswitching and Thermoresponsive Properties of Conjugated Multi-chromophore Nanostructured Materials.

    PubMed

    Bhattacharyya, Santanu; Jana, Bikash; Sain, Sumanta; Barman, Monoj Kumar; Pradhan, Swapan Kumar; Patra, Amitava

    2015-12-16

    Conjugated multi-chromophore organic nanostructured materials have recently emerged as a new class of functional materials for developing efficient light-harvesting, photosensitization, photocatalysis, and sensor devices because of their unique photophysical and photochemical properties. Here, we demonstrate the formation of various nanostructures (fibers and flakes) related to the molecular arrangement (H-aggregation) of quaterthiophene (QTH) molecules and their influence on the photophysical properties. XRD studies confirm that the fiber structure consists of >95% crystalline material, whereas the flake structure is almost completely amorphous and the microstrain in flake-shaped QTH is significantly higher than that of QTH in solution. The influence of the aggregation of the QTH molecules on their photoswitching and thermoresponsive photoluminescence properties is revealed. Time-resolved anisotropic studies further unveil the relaxation dynamics and restricted chromophore properties of the self-assembled nano/microstructured morphologies. Further investigations should pave the way for the future development of organic electronics, photovoltaics, and light-harvesting systems based on π-conjugated multi-chromophore organic nanostructured materials.

  3. Framed carbon nanostructures: synthesis and applications in functional SPM tips.

    PubMed

    Mukhin, I S; Fadeev, I V; Zhukov, M V; Dubrovskii, V G; Golubok, A O

    2015-01-01

    We present a synthesis method to fabricate framed carbon-based nanostructures having highly anisotropic shapes, in particular, the nanofork and nanoscalpel structures which are obtained systematically under optimized growth conditions. A theoretical model is developed to explain the formation of such nanostructures on Si cantilevers and W etched wires exposed to a focused electron beam. We then demonstrate the potentials of these nanostructures as functional tips for scanning probe microscopy. Owing to their anisotropic shapes, such tips can be very useful for nanolithography, nanosurgery of biological objects, and precise manipulation with surface particles. Overall, our method provides a simple and robust way to produce functional scanning probe microscopy tips with variable shapes and enhanced capabilities for different applications compared to standard cantilevers.

  4. Growth of Carbon Nanostructure Materials Using Laser Vaporization

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehozeky, S.

    2000-01-01

    Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.

  5. Nanomanufacturing : nano-structured materials made layer-by-layer.

    SciTech Connect

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto; Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  6. Nanostructuring graphene for controlled and reproducible functionalization

    NASA Astrophysics Data System (ADS)

    Mali, Kunal S.; Greenwood, John; Adisoejoso, Jinne; Phillipson, Roald; de Feyter, Steven

    2015-01-01

    The `graphene rush' that started almost a decade ago is far from over. The dazzling properties of graphene have long warranted a number of applications in various domains of science and technology. Harnessing the exceptional properties of graphene for practical applications however has proved to be a massive task. Apart from the challenges associated with the large-scale production of the material, the intrinsic zero band gap, the inherently low reactivity and solubility of pristine graphene preclude its use in several high- as well as low-end applications. One of the potential solutions to these problems is the surface functionalization of graphene using organic building blocks. The `surface-only' nature of graphene allows the manipulation of its properties not only by covalent chemical modification but also via non-covalent interactions with organic molecules. Significant amount of research efforts have been directed towards the development of functionalization protocols for modifying the structural, electronic, and chemical properties of graphene. This feature article provides a glimpse of recent progress in the molecular functionalization of surface supported graphene using non-covalent as well as covalent chemistry.

  7. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    NASA Astrophysics Data System (ADS)

    Goyal, Vivek Kumar

    Continuous downscaling of Si complementary metal-oxide semiconductor (CMOS) technology and progress in high-power electronics demand more efficient heat removal techniques to handle the increasing power density and rising temperature of hot spots. For this reason, it is important to investigate thermal properties of materials at nanometer scale and identify materials with the extremely large or extremely low thermal conductivity for applications as heat spreaders or heat insulators in the next generation of integrated circuits. The thin films used in microelectronic and photonic devices need to have high thermal conductivity in order to transfer the dissipated power to heat sinks more effectively. On the other hand, thermoelectric devices call for materials or structures with low thermal conductivity because the performance of thermoelectric devices is determined by the figure of merit Z=S2sigma/K, where S is the Seebeck coefficient, K and sigma are the thermal and electrical conductivity, respectively. Nanostructured superlattices can have drastically reduced thermal conductivity as compared to their bulk counterparts making them promising candidates for high-efficiency thermoelectric materials. Other applications calling for thin films with low thermal conductivity value are high-temperature coatings for engines. Thus, materials with both high thermal conductivity and low thermal conductivity are technologically important. The increasing temperature of the hot spots in state-of-the-art chips stimulates the search for innovative methods for heat removal. One promising approach is to incorporate materials, which have high thermal conductivity into the chip design. Two suitable candidates for such applications are diamond and graphene. Another approach is to integrate the high-efficiency thermoelectric elements for on-spot cooling. In addition, there is strong motivation for improved thermal interface materials (TIMs) for heat transfer from the heat-generating chip

  8. Assembling and properties of the polymer-particle nanostructured materials

    NASA Astrophysics Data System (ADS)

    Sheparovych, Roman

    Complementary properties of the soft and hard matter explain its common encounter in many natural and manmade applications. A combination of flexible organic macromolecules and hard mineral clusters results in new materials far advantageous than its constituents alone. In this work we study assembling of colloidal nanocrystals and polymers into complex nanostructures. Magnetism, surface wettability and adhesion comprise properties of interest for the obtained nanocomposites. Applying a magnetic field induces a reversible 1D ordering of the magnetically susceptible particles. This property was employed in the fabrication of the permanent chains of magnetite nanocrystals (d=15nm). In the assembling process the aligned particles were bound together using polyelectrolyte macromolecules. The basics of the binding process involved an electrostatic interaction between the positively charged polyelectrolyte and the negative surface of the particles (aqueous environment). Adsorption of the polymer molecules onto several adjacent particles in the aligned 1D aggregate results in the formation of the permanent particulate chains. Positive charges of the adsorbed polyelectrolyte molecules stabilize the dispersion of the obtained nanostructures in water. Magnetization measurements revealed that superparamagnetic nanoparticles, being assembled into 1D ordered structures, attain magnetic coercivity. This effect originates from the magnetostatic interaction between the neighboring magnetite nanocrystals. The preferable dipole alignment of the assembled nanoparticles is directed along the chain axis. Another system studied in this project includes polymer-particle responsive surface coatings. Tethered polymer chains and particles bearing different functionalities change surface properties upon restructuring of the composite layer. When the environment favors polymer swelling (good solvent), the polymer chains segregate to the surface and cover the particles. In the opposite case

  9. Nanostructured photovoltaic materials using conjugated block copolymer assemblies

    NASA Astrophysics Data System (ADS)

    Mastroianni, Sarah E.; Epps, Thomas H., III

    2011-03-01

    Block copolymers containing a conjugated block offer attractive possibilities for creating nanostructured organic photovoltaic (OPV) devices. Current OPV materials suffer from efficiency losses primarily due to a size-scale discrepancy between exciton diffusion length and domain sizes; excitons that do not reach the interface between electron and hole-conducting materials recombine, preventing charge carrier separation. The inherent nature of block-copolymers to self-assemble into well-defined nanoscale structures with domain spacings on the order of exciton diffusion length offers a potential solution for reducing exciton recombination. In this work, allyl-terminated poly(3-hexyl thiophene) or poly(3-decyl thiophene) acting as electron donors are incorporated into the block copolymer chain via a coupling reaction with poly(styrene) or poly(isoprene- b -styrene) derivatives synthesized by anionic polymerization. The resulting block copolymer morphologies are characterized by small angle X-ray scattering and transmission electron microscopy.

  10. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  11. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  12. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  13. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  14. Nanostructured functional films from engineered repeat proteins

    PubMed Central

    Grove, Tijana Z.; Regan, Lynne; Cortajarena, Aitziber L.

    2013-01-01

    Fundamental advances in biotechnology, medicine, environment, electronics and energy require methods for precise control of spatial organization at the nanoscale. Assemblies that rely on highly specific biomolecular interactions are an attractive approach to form materials that display novel and useful properties. Here, we report on assembly of films from the designed, rod-shaped, superhelical, consensus tetratricopeptide repeat protein (CTPR). We have designed three peptide-binding sites into the 18 repeat CTPR to allow for further specific and non-covalent functionalization of films through binding of fluorescein labelled peptides. The fluorescence signal from the peptide ligand bound to the protein in the solid film is anisotropic, demonstrating that CTPR films can impose order on otherwise isotropic moieties. Circular dichroism measurements show that the individual protein molecules retain their secondary structure in the film, and X-ray scattering, birefringence and atomic force microscopy experiments confirm macroscopic alignment of CTPR molecules within the film. This work opens the door to the generation of innovative biomaterials with tailored structure and function. PMID:23594813

  15. Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review

    PubMed Central

    Liu, Wenbo; Ji, Yanzhou; Tan, Pengkang; Zang, Hang; He, Chaohui; Yun, Di; Zhang, Chi; Yang, Zhigang

    2016-01-01

    Nanostructured (NS) materials may have different irradiation resistance from their coarse-grained (CG) counterparts. In this review, we focus on the effect of grain boundaries (GBs)/interfaces on irradiation induced microstructure evolution and the irradiation tolerance of NS materials under irradiation. The features of void denuded zones (VDZs) and the unusual behavior of void formation near GBs/interfaces in metals due to the interactions between GBs/interfaces and irradiation-produced point defects are systematically reviewed. Some experimental results and calculation results show that NS materials have enhanced irradiation resistance, due to their extremely small grain sizes and large volume fractions of GBs/interfaces, which could absorb and annihilate the mobile defects produced during irradiation. However, there is also literature reporting reduced irradiation resistance or even amorphization of NS materials at a lower irradiation dose compared with their bulk counterparts, since the GBs are also characterized by excess energy (compared to that of single crystal materials) which could provide a shift in the total free energy that will lead to the amorphization process. The competition of these two effects leads to the different irradiation tolerance of NS materials. The irradiation-induced grain growth is dominated by irradiation temperature, dose, ion flux, character of GBs/interface and nanoprecipitates, although the decrease of grain sizes under irradiation is also observed in some experiments. PMID:28787902

  16. Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review.

    PubMed

    Liu, Wenbo; Ji, Yanzhou; Tan, Pengkang; Zang, Hang; He, Chaohui; Yun, Di; Zhang, Chi; Yang, Zhigang

    2016-02-06

    Nanostructured (NS) materials may have different irradiation resistance from their coarse-grained (CG) counterparts. In this review, we focus on the effect of grain boundaries (GBs)/interfaces on irradiation induced microstructure evolution and the irradiation tolerance of NS materials under irradiation. The features of void denuded zones (VDZs) and the unusual behavior of void formation near GBs/interfaces in metals due to the interactions between GBs/interfaces and irradiation-produced point defects are systematically reviewed. Some experimental results and calculation results show that NS materials have enhanced irradiation resistance, due to their extremely small grain sizes and large volume fractions of GBs/interfaces, which could absorb and annihilate the mobile defects produced during irradiation. However, there is also literature reporting reduced irradiation resistance or even amorphization of NS materials at a lower irradiation dose compared with their bulk counterparts, since the GBs are also characterized by excess energy (compared to that of single crystal materials) which could provide a shift in the total free energy that will lead to the amorphization process. The competition of these two effects leads to the different irradiation tolerance of NS materials. The irradiation-induced grain growth is dominated by irradiation temperature, dose, ion flux, character of GBs/interface and nanoprecipitates, although the decrease of grain sizes under irradiation is also observed in some experiments.

  17. Structure and functionality of nanostructured triacylglycerol crystal networks.

    PubMed

    Ramel, Pere R; Co, Edmund D; Acevedo, Nuria C; Marangoni, Alejandro G

    2016-10-01

    In this review, recent advances in the characterization of the nanoscale structure of fat crystal networks are outlined. The effect of different factors on the properties of crystalline nanoplatelets (CNPs) is comprehensively described. These are discussed together with the observed changes in polymorphism and micro- or mesostructural properties so as to have a complete understanding of the influence of different internal and external factors on the material properties of fats. The relationship between the nanostructure and the material properties of fats (i.e., oil binding capacity and rheology) is also described. Characterization of the nanostructure of fats has provided a new dimension to the analysis of fat crystal networks and opportunities for nanoengineering that could result in innovations in the food industry with regards to processing and structuring fatty materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Water-evaporation-induced electricity with nanostructured carbon materials.

    PubMed

    Xue, Guobin; Xu, Ying; Ding, Tianpeng; Li, Jia; Yin, Jun; Fei, Wenwen; Cao, Yuanzhi; Yu, Jin; Yuan, Longyan; Gong, Li; Chen, Jian; Deng, Shaozhi; Zhou, Jun; Guo, Wanlin

    2017-05-01

    Water evaporation is a ubiquitous natural process that harvests thermal energy from the ambient environment. It has previously been utilized in a number of applications including the synthesis of nanostructures and the creation of energy-harvesting devices. Here, we show that water evaporation from the surface of a variety of nanostructured carbon materials can be used to generate electricity. We find that evaporation from centimetre-sized carbon black sheets can reliably generate sustained voltages of up to 1 V under ambient conditions. The interaction between the water molecules and the carbon layers and moreover evaporation-induced water flow within the porous carbon sheets are thought to be key to the voltage generation. This approach to electricity generation is related to the traditional streaming potential, which relies on driving ionic solutions through narrow gaps, and the recently reported method of moving ionic solutions across graphene surfaces, but as it exploits the natural process of evaporation and uses cheap carbon black it could offer advantages in the development of practical devices.

  19. Water-evaporation-induced electricity with nanostructured carbon materials

    NASA Astrophysics Data System (ADS)

    Xue, Guobin; Xu, Ying; Ding, Tianpeng; Li, Jia; Yin, Jun; Fei, Wenwen; Cao, Yuanzhi; Yu, Jin; Yuan, Longyan; Gong, Li; Chen, Jian; Deng, Shaozhi; Zhou, Jun; Guo, Wanlin

    2017-05-01

    Water evaporation is a ubiquitous natural process that harvests thermal energy from the ambient environment. It has previously been utilized in a number of applications including the synthesis of nanostructures and the creation of energy-harvesting devices. Here, we show that water evaporation from the surface of a variety of nanostructured carbon materials can be used to generate electricity. We find that evaporation from centimetre-sized carbon black sheets can reliably generate sustained voltages of up to 1 V under ambient conditions. The interaction between the water molecules and the carbon layers and moreover evaporation-induced water flow within the porous carbon sheets are thought to be key to the voltage generation. This approach to electricity generation is related to the traditional streaming potential, which relies on driving ionic solutions through narrow gaps, and the recently reported method of moving ionic solutions across graphene surfaces, but as it exploits the natural process of evaporation and uses cheap carbon black it could offer advantages in the development of practical devices.

  20. EPR and magnetism of the nanostructured natural carbonaceous material shungite

    NASA Astrophysics Data System (ADS)

    Augustyniak-Jabłokow, Maria Aldona; Yablokov, Yurii V.; Andrzejewski, Bartłomiej; Kempiński, Wojciech; Łoś, Szymon; Tadyszak, Krzysztof; Yablokov, Mikhail Y.; Zhikharev, Valentin A.

    2010-04-01

    The X-band EPR and magnetic susceptibility in the temperature range 4.2-300 K study of the shungite-I, natural nanostructured material from the deposit of Shunga are reported. Obtained results allow us to assign the EPR signal to conduction electrons, estimate their number, N P, and evaluate the Pauli paramagnetism contribution to shungite susceptibility. A small occupation (~5%) of the localized nonbonding π states in the zigzag edges of the open-ended graphene-like layers and/or on σ ( sp 2+ x ) orbitals in the curved parts of the shungite globules has been also revealed. The observed temperature dependence of the EPR linewidth can be explained by the earlier considered interaction of conduction π electrons with local phonon modes associated with the vibration of peripheral carbon atoms of the open zigzag-type edges and with peripheral carbon atoms cross-linking different nanostructures. The relaxation time T 2 and diffusion time T D are found to have comparable values (2.84 × 10-8 and 1.73 × 10-8 s at 5.2 K, respectively), and similar dependence on temperature. The magnetic measurements have revealed the suppression of orbital diamagnetism due to small amount of large enough fragments of the graphene layers.

  1. Engineering living functional materials.

    PubMed

    Chen, Allen Y; Zhong, Chao; Lu, Timothy K

    2015-01-16

    Natural materials, such as bone, integrate living cells composed of organic molecules together with inorganic components. This enables combinations of functionalities, such as mechanical strength and the ability to regenerate and remodel, which are not present in existing synthetic materials. Taking a cue from nature, we propose that engineered 'living functional materials' and 'living materials synthesis platforms' that incorporate both living systems and inorganic components could transform the performance and the manufacturing of materials. As a proof-of-concept, we recently demonstrated that synthetic gene circuits in Escherichia coli enabled biofilms to be both a functional material in its own right and a materials-synthesis platform. To demonstrate the former, we engineered E. coli biofilms into a chemical-inducer-responsive electrical switch. To demonstrate the latter, we engineered E. coli biofilms to dynamically organize biotic-abiotic materials across multiple length scales, template gold nanorods, gold nanowires, and metal/semiconductor heterostructures, and synthesize semiconductor nanoparticles (Chen, A. Y. et al. (2014) Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13, 515-523.). Thus, tools from synthetic biology, such as those for artificial gene regulation, can be used to engineer the spatiotemporal characteristics of living systems and to interface living systems with inorganic materials. Such hybrids can possess novel properties enabled by living cells while retaining desirable functionalities of inorganic systems. These systems, as living functional materials and as living materials foundries, would provide a radically different paradigm of materials performance and synthesis-materials possessing multifunctional, self-healing, adaptable, and evolvable properties that are created and organized in a distributed, bottom-up, autonomously assembled, and environmentally sustainable manner.

  2. Synthesis and phase characterization of a double-tailed pyrrole-containing surfactant: a novel tecton for the production of functional nanostructured materials.

    PubMed

    Franke, Danielle; Egger, Chrystelle C; Smarsly, Bernd; Faul, Charl F J; Tiddy, Gordon J T

    2005-03-29

    A double-tailed polymerizable (pyrrolylalkyl) ammonium amphiphile has been synthesized, and its interfacial properties and aqueous phase behavior have been studied by polarized optical microscopy and X-ray diffraction. The Krafft temperature is about 27 degrees C, and the critical micelle concentration at 40 degrees C is about 1 mM, as obtained from surface tension measurements, potentiometry, and isothermal titration calorimetry. The lyotropic behavior of the surfactant is found to be of a complex nature. At concentrations higher than the micellar (L1) region, two mesophases have been identified: a second isotropic (L2) phase, which is probably micellar but not fully miscible with water, and a lamellar (L(alpha)) phase, showing interesting alignment properties. Small-angle X-ray scattering analysis of the mesophases has been evaluated in terms of a model of spherical micelles, which describes a mutual arrangement by a structure factor derived from a hard-sphere potential (Percus-Yevick, "PY", approach). Interest in the comprehensive phase behavior of the polymerizable surfactant is based on the desire to integrate the system into a composite material to obtain potentially conducting self-assembled hybrid mesostructures.

  3. Surface Functionalized Nanostructured Ceramic Sorbents for the Effective Collection and Recovery of Uranium from Seawater

    SciTech Connect

    Chouyyok, Wilaiwan; Pittman, Jonathan W.; Warner, Marvin G.; Nell, Kara M.; Clubb, Donald C.; Gill, Gary A.; Addleman, Raymond S.

    2016-05-02

    The ability to collect uranium from seawater offers the potential for a nearly limitless fuel supply for nuclear energy. We evaluated the use of functionalized nanostructured sorbents for the collection and recovery of uranium from seawater. Extraction of trace minerals from seawater and brines is challenging due to the high ionic strength of seawater, low mineral concentrations, and fouling of surfaces over time. We demonstrate that rationally assembled sorbent materials that integrate high affinity surface chemistry and high surface area nanostructures into an application relevant micro/macro structure enables collection performance that far exceeds typical sorbent materials. High surface area nanostructured silica with surface chemistries composed of phosphonic acid, phosphonates, 3,4 hydroxypyridinone, and EDTA showed superior performance for uranium collection. A few phosphorous-based commercial resins, specifically Diphonix and Ln Resin, also performed well. We demonstrate an effective and environmentally benign method of stripping the uranium from the high affinity sorbents using inexpensive nontoxic carbonate solutions. The cyclic use of preferred sorbents and acidic reconditioning of materials was shown to improve performance. Composite thin films composed of the nanostructured sorbents and a porous polymer binder are shown to have excellent kinetics and good capacity while providing an effective processing configuration for trace mineral recovery from solutions. Initial work using the composite thin films shows significant improvements in processing capacity over the previously reported sorbent materials.

  4. Advanced nanostructured materials for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Hutchings, Gregory S.

    Due to a global effort to reduce greenhouse gas emissions and to utilize renewable sources of energy, much effort has been directed towards creating new alternatives to fossil fuels. Identifying novel materials for energy storage and conversion can enable radical changes to the current fuel production infrastructure and energy utilization. The use of engineered nanostructured materials in these systems unlocks unique catalytic activity in practical configurations. In this work, research efforts have been focused on the development of nanostructured materials to address the need for both better energy conversion and storage, with applications toward Li-O2 battery electrocatalysts, electrocatalytic generation of H2, conversion of furfural to useful chemicals and fuels, and Li battery anode materials. Highly-active alpha-MnO2 materials were synthesized for use as bifunctional oxygen reduction (ORR) and evolution (OER) catalysts in Li-O2 batteries, and were evaluated under operating conditions with a novel in situ X-ray absorption spectroscopy configuration. Through detailed analysis of local coordination and oxidation states of Mn atoms at key points in the electrochemical cycle, a self-switching behavior affecting the bifunctional activity was identified and found to be critical. In an additional study of materials for lithium batteries, nanostructured TiO2 anode materials doped with first-row transition metals were synthesized and evaluated for improving battery discharge capacity and rate performance, with Ni and Co doping at low levels found to cause the greatest enhancement. In addition to battery technology research, I have also sought to find inexpensive and earth-abundant electrocatalysts to replace state-of-the-art Pt/C in the hydrogen evolution reaction (HER), a systematic computational study of Cu-based bimetallic electrocatalysts was performed. During the screening of dilute surface alloys of Cu mixed with other first-row transition metals, materials with

  5. Engineering Living Functional Materials

    PubMed Central

    2016-01-01

    Natural materials, such as bone, integrate living cells composed of organic molecules together with inorganic components. This enables combinations of functionalities, such as mechanical strength and the ability to regenerate and remodel, which are not present in existing synthetic materials. Taking a cue from nature, we propose that engineered ‘living functional materials’ and ‘living materials synthesis platforms’ that incorporate both living systems and inorganic components could transform the performance and the manufacturing of materials. As a proof-of-concept, we recently demonstrated that synthetic gene circuits in Escherichia coli enabled biofilms to be both a functional material in its own right and a materials-synthesis platform. To demonstrate the former, we engineered E. coli biofilms into a chemical-inducer-responsive electrical switch. To demonstrate the latter, we engineered E. coli biofilms to dynamically organize biotic-abiotic materials across multiple length scales, template gold nanorods, gold nanowires, and metal/semiconductor heterostructures, and synthesize semiconductor nanoparticles (Chen, A. Y. et al. (2014) Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater.13, 515–523.). Thus, tools from synthetic biology, such as those for artificial gene regulation, can be used to engineer the spatiotemporal characteristics of living systems and to interface living systems with inorganic materials. Such hybrids can possess novel properties enabled by living cells while retaining desirable functionalities of inorganic systems. These systems, as living functional materials and as living materials foundries, would provide a radically different paradigm of materials performance and synthesis–materials possessing multifunctional, self-healing, adaptable, and evolvable properties that are created and organized in a distributed, bottom-up, autonomously assembled, and environmentally sustainable manner. PMID

  6. The Process of Nanostructuring of Metal (Iron) Matrix in Composite Materials for Directional Control of the Mechanical Properties

    PubMed Central

    Zemtsova, Elena

    2014-01-01

    We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology. PMID:24695459

  7. The process of nanostructuring of metal (iron) matrix in composite materials for directional control of the mechanical properties.

    PubMed

    Zemtsova, Elena; Yurchuk, Denis; Smirnov, Vladimir

    2014-01-01

    We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1-50 nm. This material can be represented as the material type "frame in the frame" that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology.

  8. Repeatable Hydrogen Storage using Nano-structured Graphite Materials

    NASA Astrophysics Data System (ADS)

    Kajiura, Hisashi; Kadono, Koji; Tsutsui, Shigemitsu; Murakami, Yousuke

    2004-03-01

    Repeatable hydrogen adsorption and desorption with nano-structured graphite material (NSG) was confirmed using a high-accuracy volumetric measuring apparatus at room temperature [1]. The NSG was prepared from commercially obtained graphite powder with a purity of 99.997% (GoodFellow Cambridge Ltd.) using a mechanical milling process at a pressure of 2.0 x 10-4 Pa. The untreated graphite adsorbed 0.02wt% of hydrogen, while 0.20 - 0.25wt% of hydrogen can be repeatedly adsorbed by the NSG. Measurements of the hydrogen adsorption rate at constant pressure and pore-size distribution suggest that the hydrogen molecules are adsorbed through a diffusion process into pores with a diameter less than 1 nm. [1] H.Kajiura et al., APL82(2003)1929.

  9. Nano-structured electron transporting materials for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Hefei; Huang, Ziru; Wei, Shiyuan; Zheng, Lingling; Xiao, Lixin; Gong, Qihuang

    2016-03-01

    Organic-inorganic hybrid perovskite solar cells have been developing rapidly in the past several years, and their power conversion efficiency has reached over 20%, nearing that of polycrystalline silicon solar cells. Because the diffusion length of the hole in perovskites is longer than that of the electron, the performance of the device can be improved by using an electron transporting layer, e.g., TiO2, ZnO and TiO2/Al2O3. Nano-structured electron transporting materials facilitate not only electron collection but also morphology control of the perovskites. The properties, morphology and preparation methods of perovskites are reviewed in the present article. A comprehensive understanding of the relationship between the structure and property will benefit the precise control of the electron transporting process and thus further improve the performance of perovskite solar cells.

  10. Nano-structured electron transporting materials for perovskite solar cells.

    PubMed

    Liu, Hefei; Huang, Ziru; Wei, Shiyuan; Zheng, Lingling; Xiao, Lixin; Gong, Qihuang

    2016-03-28

    Organic-inorganic hybrid perovskite solar cells have been developing rapidly in the past several years, and their power conversion efficiency has reached over 20%, nearing that of polycrystalline silicon solar cells. Because the diffusion length of the hole in perovskites is longer than that of the electron, the performance of the device can be improved by using an electron transporting layer, e.g., TiO2, ZnO and TiO2/Al2O3. Nano-structured electron transporting materials facilitate not only electron collection but also morphology control of the perovskites. The properties, morphology and preparation methods of perovskites are reviewed in the present article. A comprehensive understanding of the relationship between the structure and property will benefit the precise control of the electron transporting process and thus further improve the performance of perovskite solar cells.

  11. Characterization of nanostructured material images using fractal descriptors

    NASA Astrophysics Data System (ADS)

    Florindo, João B.; Sikora, Mariana S.; Pereira, Ernesto C.; Bruno, Odemir M.

    2013-04-01

    This work presents a methodology to the morphology analysis and characterization of nanostructured material images acquired from FEG-SEM (Field Emission Gun-Scanning Electron Microscopy) technique. The metrics were extracted from the image texture (mathematical surface) by the volumetric fractal descriptors, a methodology based on the Bouligand-Minkowski fractal dimension, which considers the properties of the Minkowski dilation of the surface points. An experiment with galvanostatic anodic titanium oxide samples prepared in oxalyc acid solution using different conditions of applied current, oxalyc acid concentration and solution temperature was performed. The results demonstrate that the approach is capable of characterizing complex morphology characteristics such as those present in the anodic titanium oxide.

  12. Functional surface chemistry of carbon-based nanostructures

    NASA Astrophysics Data System (ADS)

    Abdula, Daner

    The recently discovered abilities to synthesize single-walled carbon nanotubes and prepare single layer graphene have spurred interest in these sp2-bonded carbon nanostructures. In particular, studies of their potential use in electronic devices are many as silicon integrated circuits are encountering processing limitations, quantum effects, and thermal management issues due to rapid device scaling. Nanotube and graphene implementation in devices does come with significant hurdles itself. Among these issues are the ability to dope these materials and understanding what influences defects have on expected properties. Because these nanostructures are entirely all-surface, with every atom exposed to ambient, introduction of defects and doping by chemical means is expected to be an effective route for addressing these issues. Raman spectroscopy has been a proven characterization method for understanding vibrational and even electronic structure of graphene, nanotubes, and graphite, especially when combined with electrical measurements, due to a wealth of information contained in each spectrum. In Chapter 1, a discussion of the electronic structure of graphene is presented. This outlines the foundation for all sp2-bonded carbon electronic properties and is easily extended to carbon nanotubes. Motivation for why these materials are of interest is readily gained. Chapter 2 presents various synthesis/preparation methods for both nanotubes and graphene, discusses fabrication techniques for making devices, and describes characterization methods such as electrical measurements as well as static and time-resolved Raman spectroscopy. Chapter 3 outlines changes in the Raman spectra of individual metallic single-walled carbon nantoubes (SWNTs) upon sidewall covalent bond formation. It is observed that the initial degree of disorder has a strong influence on covalent sidewall functionalization which has implications on developing electronically selective covalent chemistries and

  13. Nanostructured lithium sulfide materials for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Kyu; Lee, Yun Jung; Sun, Yang-Kook

    2016-08-01

    Upon the maturation and saturation of Li-ion battery technologies, the demand for the development of energy storage systems with higher energy densities has surged to meet the needs of key markets such as electric vehicles. Among the many next generation high-energy storage options, the Lisbnd S battery system is considered particularly close to mass commercialization because of its low cost and the natural abundance of sulfur. In this review, we focus on nanostructured Li2S materials for Lisbnd S batteries. Due to a lithium source in its molecular structure, Li2S can be coupled with various Li-free anode materials, thereby giving it the potential to surmount many of the problems related with a Li-metal anode. The hurdles that impede the full utilization of Li2S materials include its high activation barrier and the low electrical conductivity of bulk Li2S particles. Various strategies that can be used to assist the activation process and facilitate electrical transport are analyzed. To provide insight into the opportunities specific to Li2S materials, we highlight some major advances and results that have been achieved in the development of metal Li-free full cells and all-solid-state cells based on Li2S cathodes.

  14. Nanostructured Materials Utilized in Biopolymer-based Plastics for Food Packaging Applications.

    PubMed

    Ghanbarzadeh, Babak; Oleyaei, Seyed Amir; Almasi, Hadi

    2015-01-01

    Most materials currently used for food packaging are nondegradable, generating environmental problems. Several biopolymers have been exploited to develop materials for ecofriendly food packaging. However, the use of biopolymers has been limited because of their usually poor mechanical and barrier properties, which may be improved by adding reinforcing compounds (fillers), forming composites. Most reinforced materials present poor matrix-filler interactions, which tend to improve with decreasing filler dimensions. The use of fillers with at least one nanoscale dimension (nanoparticles) produces nanocomposites. Nanoparticles have proportionally larger surface area than their microscale counterparts, which favors the filler-matrix interactions and the performance of the resulting material. Besides nanoreinforcements, nanoparticles can have other functions when added to a polymer, such as antimicrobial activity, etc. in this review paper, the structure and properties of main kinds of nanostructured materials which have been studied to use as nanofiller in biopolymer matrices are overviewed, as well as their effects and applications.

  15. Preparation and properties on hollow nano-structured smoke material

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-cui; Dai, Meng-yan; Fang, Guo-feng; Shi, Wei-dong; Cheng, Xiang; Liu, Hai-feng; Zhang, Tong

    2013-09-01

    In recent years, the weapon systems of laser guidance and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. Notwithstanding, military smoke, as a rapid and effective passive jamming means, can effectively counteract the attack of enemy precision-guided weapons by scattering and absorbability. Conventional smoke has good attenuation capability only to visible light (0.4-0.76 μm), but hardly any effect to other electromagnetic wave band. The weapon systems of laser guidance and IR imaging guidance usually work in broad band, including near IR (1-3 μm), middle IR (3-5 μm), far IR (8-14 μm), and so on. Accordingly, exploiting and using new efficient obscurant materials, which is one of the important factors that develop smoke technology, have become a focus and attracted more interests around the world. Then nano-structured materials that are developing very quickly have turned into our new choice. Hollow nano-structured materials (HNSM) have many special properties because of their nano-size wall-thickness and sub-micron grain-size. After a lot of HNSM were synthesized in this paper, their physical and chemical properties, including grain size, phase composition, microstructure, optical properties and resistivity were tested and analysed. Then the experimental results of the optical properties showed that HNSM exhibit excellent wave-absorbing ability in ultraviolet, visible and infrared regions. On the basis of the physicochemmical properties, HNSM are firstly applied in smoke technology field. And the obscuration performance of HNSM smoke was tested in smoke chamber. The testing waveband included 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. Then the main parameters were obtained, including the attenuation rate, the transmission rate, the mass extinction coefficient, the efficiency obscuring time, and the sedimentation rate, etc. The main parameters of HNSM smoke were

  16. Nanostructured Materials for Advanced Electrochemical Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Wilson, Benjamin E.

    This dissertation discusses work aimed at developing and improving nanostructured materials for electrochemical energy storage, specifically electrochemical double layer capacitors (EDLCs) and lithium-ion batteries (LIBs). This was achieved through a combination of templating, precursor selection, and heteroatom doping to control the morphology and composition of the materials for improved performance in both types of energy storage. The first part of the thesis discusses EDLCs. First, a new method to produce soft-templated carbon materials is described. This process allows for improved production of mesoporous carbon made through soft templating. The work continues with using ionic liquids to dope nitrogen into hard templated mesoporous carbon. This led to a 40% improvement in specific capacitance due to improved conductivity. The section concludes with an investigation of physical and electrochemical properties of twelve ionic liquid electrolytes to determine which parameters are most important to achieve a high energy density. The second part discusses my work on LIBs, starting with a design of a low-cost electrochemical cell for in-situ X-ray diffraction monitoring during galvanostatic cycling. It continues with the development of a novel cathode material, Li8ZrO6, with a high lithium content. In this material, the redox activity is localized on oxygen atoms. Li8ZrO6 displays initial capacities higher than those of commercial materials but has large polarization. The capacity is further improved with transition metal doping, leading to a final specific capacity of over 175 mAh/g after 140 cycles at a rate of C/5.

  17. 2014 TMS RF Mehl Medal Symposium on Frontiers in Nanostructured Electronic and Structural Materials and Their Application

    DTIC Science & Technology

    2015-05-19

    Nanostructured Materials and Applications at the TMS 2014 spring meeting. The symposium has attracted more than 100 abstracts (both oral and poster...Medal Symposium on Frontiers in Nanostructured Electronic and Structural Materials and Their Application The views, opinions and/or findings...Nanostructured Electronic and Structural Materials and Their Application Report Title With the funding support from ARO ($6000), we have successfully

  18. Nanoporous and Nanostructured Materials for Energy Storage and Sensor Applications

    NASA Astrophysics Data System (ADS)

    Vu, Anh D.

    The major objective of this work is to design nanostructured and nanoporous materials targeting the special needs of the energy storage and sensing fields. Nanostructured and nanoporous materials are increasingly finding applications in many fields, including electrical energy storage and explosive sensing. The advancement of energy storage devices is important to the development of three fields that have strong effects on human society: renewable energy, transportation, and portable devices. More sensitive explosive sensors will help to prevent terrorism activities and boost national security. Hierarchically porous LiFePO4 (LFP)/C composites were prepared using a surfactant and colloidal crystals as dual templates. The surfactant serves as the template for mesopores and polymeric colloidal spheres serve as the template for macropores. The confinement of the surfactant-LFP-carbon precursor in the colloidal templates is crucial to suppress the fast crystallization of LFP and helps to maintain the ordered structure. The obtained composites with high surface areas and ordered porous structure showed excellent rate performance when used as cathode materials for LIBs, which will allow them to be used as a power source for EVs and HEVs. The synthesis of LiFePO 4 in three dimensionally confined spaces within the colloidal template resulted in the formation of spherical particles. Densely packed LiFePO 4 spheres in a carbon matrix were obtained by spin-casting the LFP-carbon precursor on a quartz substrate and then pyrolyzing it. The product showed high capacity and could be charged /discharged with very little capacity fading over many cycles. Three-dimensionally ordered mesoporous carbons were prepared from nano-sized silica sphere colloidal crystal templates. These materials with very high surface areas and ordered porous structure showed high capacitance and excellent rate capability when used as electrodes for supercapacitors. Mesoporous silica thin films of different

  19. Ultrafast laser functionalized rare phased gold-silicon/silicon oxide nanostructured hybrid biomaterials.

    PubMed

    Premnath, P; Tan, B; Venkatakrishnan, K

    2015-12-01

    We introduce a hybrid nanostructured biomaterial that is a combination of rare phases of immiscible gold and silicon oxide, functionalized via ultrafast laser synthesis. For the first time, we show cancer controlling properties of rare phases of gold silicides, which include Au7Si, Au5Si, Au0.7Si2.3 and Au8Si2. Conventionally, pure forms of gold and silicon/silicon oxide are extensively employed in targeted therapy and drug delivery systems due to their unique properties. While silicon and silicon oxide nanoparticles have shown biocompatibility, gold nanoparticles show conflicting results based on their size and material properties. Several studies have shown that gold and silicon combinations produce cell controlling properties, however, these studies were not able to produce a homogenous combination of gold and silicon, owing to its immiscibility. A homogenous combination of gold and silicon may potentially enable properties that have not previously been reported. We describe rare phased gold-silicon oxide nanostructured hybrid biomaterials and its unique cancer controlling properties, owing to material properties, concentration, size and density. The gold-silicon oxide nanostructured hybrid is composed of individual gold-silicon oxide nanoparticles in various concentrations of gold and silicon, some nanoparticles possess a gold-core and silicon-shell like structure. The individual nanoparticles are bonded together forming a three dimensional nanostructured hybrid. The interaction of the nanostructured hybrids with cervical cancer cells showed a 96% reduction in 24h. This engineered nanostructured hybrid biomaterial presents significant potential due to the combination of immiscible gold and silicon oxide in varying phases and can potentially satiate the current vacuum in cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Development of nanostructured biocompatible materials for chemical and biological sensors

    NASA Astrophysics Data System (ADS)

    Curley, Michael; Chilvery, Ashwith K.; Kukhatreva, Tatiana; Sharma, Anup; Corda, John; Farley, Carlton

    2012-10-01

    This research is focused on the fabrication of thin films followed by Surface Enhanced Raman Spectroscopy (SERS) testing of these films for various applications. One technique involves the mixture of nanoparticles with twophoton material to be used as an indicator dye. Another method involved embedding silver nanoparticles in a ceramic nano-membrane. The substrates were characterized by both Atom Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). We applied the nanostructured substrate to measure the SERS spectra of 10-6 Mol/L Rhodomine 6G(Rh6G), e-coli bacteria and RDX explosive. Our results showed that silver coated ceramic membranes can serve as appropriate substrates to enhance Raman signals. In addition, we demonstrated that the in-house-made colloidal silver can work for enhancement of the Raman spectra for bacteria. We measured the Raman spectra of Rh6G molecules on a substrate absorbed by a nanofluid of silver. We observed several strong Raman bands - 613cm-1,768 cm-1,1308cm-1 1356 cm-1,1510cm-1, which correspond to Rh6G vibrational modes υ53,υ65,υ115,υ117,υ146 respectively, using a ceramic membrane coated by silver. The Raman spectra of Rh6G absorbed by silver nanofluid showed strong enhancement of Raman bands 1175cm-1 and 1529cm-1, 1590 cm-1. Those correspond to vibrational frequency modes - υ103,υ151,152. We also measured the Raman spectra of e-coli bacteria, both absorbed by silver nanofluid, and on nanostructured substrate. In addition, the Fourier Transfer Infrared Spectra (FTIR) of the bacteria was measured.

  1. Nanostructured electrode materials for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Balaya, Palani; Saravanan, Kuppan; Hariharan, Srirama

    2010-04-01

    Nanostructured materials have triggered a great excitement in recent times due to both fundamental interest as well as technological impact relevant for lithium ion batteries (LIBs). Size reduction in nanocrystals leads to a variety of unexpected exciting phenomena due to enhanced surface-to-volume ratio and reduced transport length. We will consider a few examples of nanostructured electrode materials in the context of lithium batteries for achieving high storage and high rate performances: 1) LiFePO4 nanoplates synthesized using solvothermal method could store Li-ions comparable to its theoretical capacity at C/10, while at 30C, they exhibit storage capacity up to 45 mAh/g. Size reduction (~30 nm) at the b-axis favors the fast Li-ion diffusion. In addition to this, uniform ~5 nm carbon coating throughout the plates provides excellent electronically conducting path for electrons. This nano architecture enables fast insertion/extraction of both Li-ions as well as electrons; 2) Mesporous-TiO2 with high surface area (135m2/g) synthesized using soft-template method exhibits high volumetric density compared to commercial nanopowder (P25), with excellent Li-storage behavior. C16 meso-TiO2 synthesized from CTAB exhibits reversible storage capacity of 288mAh/g at 0.2C and 109 mAh/g at 30C; 3) Zero strain Li4Ti5O12 anode material has been synthesized using several wet chemical routes. The best condition has been optimized to achieve storage capability close to theoretical limit of 175mAh/g at C/10. At 10C, we could retain lithium storage up to 88 mAh/g; 4) We report our recent results on α-Fe2O3 and γ-Fe2O3 using conversion reaction, providing insight for a better storage capability in γ-phase than the α-phase at 2C resulting solely from the nanocrystallinity.

  2. Functionalized carbon nanostructures for hydrogen catalysis

    NASA Astrophysics Data System (ADS)

    Hu, Lung-Hao

    Sodium borohydride, NaBH4, is widely used as a source of pure hydrogen. Hydrogen is of interest because it is a source of clean energy. It can be converted directly into electrical energy by means of fuel cells. One of the objectives of this thesis was to develop a new catalytic process to (i) enhance the rate of hydrogen generation, and (ii) to achieve hydrogen generation equal to 100% of the theoretically expected value. The catalyst investigated in this research is constructed by starting from single wall carbon nanotubes (SWNT). This material has a very high specific surface area and good conductivity. The SWNT were formed into a paper by a special filtration process. Polysilazane, a polymeric precursor (Ceraset(TM)-SN from KiON Corp., Wiesbaden, Germany) was diluted by acetone and then layered onto SWNT paper. The Ceraset coated SWNT was then pyrolyzed at 1100°C for three hours to form a silicon carbonitride (SiCN), polymer derived ceramic (PDC), layer on the surface of SWNT filtered paper. This functionalized SiCN carbon nanotube paper (SiCN/CNT) was used as the substrate for catalyst dispersions. The catalyst consisted of transition metals, Pt/Pd/Ru. Suspension solutions of Pt, Pd and Ru were impregnated onto the SiCN/CNT paper with the expectation of creating a monolayer of these transition metals on surface of the SiCN/CNT substrate. It is likely that an interaction could occur between the transition metals and the silicon atoms present in the SiCN layer on the surface of the carbon nanotubes. It is known that transition metals and silicon react to form silicides, suggesting the formation of a strong Si-transition metal bond. Therefore, it is possible that this bond could provide good wetting of metal atoms on SiCN functionalized carbon nanotube substrate. In the limit a monolayer of the transition metals may be achieved, which would correspond to a near zero dihedral angle between the substrate and the cluster of transition metals. In such a scenario a

  3. Method of producing catalytic materials for fabricating nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-02-19

    Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.

  4. Some aspects of applying nanostructured materials in air filtration, water filtration and electrical engineering

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Lovecka, Lenka; Kazda, Tomas; Giurg, Adam; Skorvan, Ondrej

    2017-05-01

    Nanostructures prepared from nanofibres and nanostructured composites prepared from nanofibres and fillers are gradually becoming increasingly demanded materials for applications in various industrial branches connected with catalysis, environment protection (air filtration, waste water treatment, sound absorption), in biological engineering, electronics (battery separators, electrode materials), etc. Selected applications of these materials prepared in the company SPUR a.s. are summed up in the following presentation.

  5. Functionalized surfaces and nanostructures for nanotechnological applications

    NASA Astrophysics Data System (ADS)

    2003-01-01

    CMOS roadmap in sight at around 10 nm, combined with the uncertainly principal's limit of Von Neuman electronics at 2 nm, that merely making things smaller will not help us. Replacing CMOS transistors on a one for one basis with some type of nano device would have the effect of drastically increasing fabrication costs, while offering only a marginal improvement over current technologies. However, nanotechnology offers us a way out of this technological and financial cul-de-sac by building devices from the bottom up. Techniques such as self assembly, perhaps assisted by templates created by nano imprint lithography, a notable European success, combined with our understanding of the workings of polymers and molecules such as Rotoxane at the nanoscale open up a whole new host of possibilities. Whether it is avoiding Moore's second law by switching to plastic electronics, or using molecular electronics, our understanding of the behaviour of materials on the scale of small molecules allows a variety of alternative approaches, to produce smarter, cheaper devices. The new understandings will also allow us to design new architectures, with the end result that functionality will become a more valid measure of performance than transistor density or operations per second. 8. Nanotechnology is new It often comes as a surprise to learn that the Romans and Chinese were using nanoparticles thousands of years ago. Similarly, every time you light a match, fullerenes are produced. Degusssa have been producing carbon black, the substance that makes car tyres black and improves the wear resistance of the rubber, since the 1920s. Of course they were not aware that they were using nanotechnology, and as they had no control over particle size, or even any knowledge of the nanoscale they were not using nanotechnology as currently defined. What is new about nanotechnology is our ability to not only see, and manipulate matter on the nanoscale, but our understanding of atomic scale interactions

  6. Single-Molecule Investigations of Morphology and Mass Transport Dynamics in Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Higgins, Daniel A.; Park, Seok Chan; Tran-Ba, Khanh-Hoa; Ito, Takashi

    2015-07-01

    Nanostructured materials such as mesoporous metal oxides and phase-separated block copolymers form the basis for new monolith, membrane, and thin film technologies having applications in energy storage, chemical catalysis, and separations. Mass transport plays an integral role in governing the application-specific performance characteristics of many such materials. The majority of methods employed in their characterization provide only ensemble data, often masking the nanoscale, molecular-level details of materials morphology and mass transport. Single-molecule fluorescence methods offer direct routes to probing these characteristics on a single-molecule/single-nanostructure basis. This article provides a review of single-molecule studies focused on measurements of anisotropic diffusion, adsorption, partitioning, and confinement in nanostructured materials. Experimental methods covered include confocal and wide-field fluorescence microscopy. The results obtained promise to deepen our understanding of mass transport mechanisms in nanostructures, thus aiding in the realization of advanced materials systems.

  7. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage.

    PubMed

    Li, Gao-Ren; Xu, Han; Lu, Xue-Feng; Feng, Jin-Xian; Tong, Ye-Xiang; Su, Cheng-Yong

    2013-05-21

    Electrochemical synthesis represents a highly efficient method for the fabrication of nanostructured energy materials, and various nanostructures, such as nanorods, nanowires, nanotubes, nanosheets, dendritic nanostructures, and composite nanostructures, can be easily fabricated with advantages of low cost, low synthetic temperature, high purity, simplicity, and environmental friendliness. The electrochemical synthesis, characterization, and application of electrochemical energy nanomaterials have advanced greatly in the past few decades, allowing an increasing understanding of nanostructure-property-performance relationships. Herein, we highlight some recent progress in the electrochemical synthesis of electrochemical energy materials with the assistance of additives and templates in solution or grafted onto metal or conductive polymer supports, with special attention to the effects on surface morphologies, structures and, more importantly, electrochemical performance. The methodology for preparing novel electrochemical energy nanomaterials and their potential applications has been summarized. Finally, we outline our personal perspectives on the electrochemical synthesis and applications of electrochemical energy nanomaterials.

  8. Repeat protein engineering: creating functional nanostructures/biomaterials from modular building blocks.

    PubMed

    Main, Ewan R G; Phillips, Jonathan J; Millership, Charlotte

    2013-10-01

    There is enormous interest in molecular self-assembly and the development of biological systems to form smart nanostructures for biotechnology (so-called 'bottom-up fabrications'). Repeat proteins are ideal choices for development of such systems as they: (i) possess a relatively simple relationship between sequence, structure and function; (ii) are modular and non-globular in structure; (iii) act as diverse scaffolds for the mediation of a diverse range of protein-protein interactions; and (iv) have been extensively studied and successfully engineered and designed. In the present review, we summarize recent advances in the use of engineered repeat proteins in the self-assembly of novel materials, nanostructures and biosensors. In particular, we show that repeat proteins are excellent monomeric programmable building blocks that can be triggered to associate into a range of morphologies and can readily be engineered as stimuli-responsive biofunctional materials.

  9. Spark Plasma Sintering (SPS) for Nanostructured Smart Materials

    DTIC Science & Technology

    2006-02-05

    ferromagnetic SMA composites, piezo-composites with and without functionally graded microstructure( FGM ), a new active materials such as piezo-SMA composites...without functionally graded microstructure( FGM ), a new active materials such as piezo-SMA composites. These composites will be used for higher performance...ferromagnetic SMA, Fe-Pd, based on the hybrid mechanism, we performed a bending test of an Fe-Pd specimen and a NiMnGa specimen with a high magnetic

  10. Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics.

    PubMed

    Kovalenko, Maksym V; Spokoyny, Boris; Lee, Jong-Soo; Scheele, Marcus; Weber, Andrew; Perera, Susanthri; Landry, Daniel; Talapin, Dmitri V

    2010-05-19

    The energy efficiency of heat engines could be improved by the partial recovery of waste heat using thermoelectric (TE) generators. We show the possibility of designing nanostructured TE materials using colloidal inorganic nanocrystals functionalized with molecular antimony telluride complexes belonging to the family of Zintl ions. The unique advantage of using Zintl ions as the nanocrystal surface ligands is the possibility to convert them into crystalline metal chalcogenides, thus linking individual nanobuilding blocks into a macroscopic assembly of electronically coupled functional modules. This approach allows preserving the benefits of nanostructuring and quantum confinement while enabling facile charge transport through the interparticle boundaries. A developed methodology was applied for solution-based fabrication of nanostructured n- and p-type Bi(2-x)Sb(x)Te(3) alloys with tunable composition and PbTe-Sb(2)Te(3) nanocomposites with controlled grain size. Characterization of the TE properties of these materials showed that their Seebeck coefficients, electrical and thermal conductivities, and ZT values compared favorably with those of previously reported solution-processed TE materials.

  11. Dendrimer-modified solid supports: nanostructured materials with potential drug allergy diagnostic applications.

    PubMed

    Ruiz-Sanchez, A J; Montañez, M I; Mayorga, C; Torres, M J; Kehr, N S; Vida, Y; Collado, D; Najera, F; De Cola, L; Perez-Inestrosa, E

    2012-01-01

    Complex functional materials consisting of bioactive molecules immobilized on solid supports present potential applications in biosensoring. Advances in the fabrication of these surface materials are of growing interest for antibody-based diagnosis. This work exploits dendrimers as versatile nanostructures for templating sensor surfaces and the critical role of the immobilization protocol in the solid supports cellulose and zeolites, of organic and inorganic composition respectively. The fabrication and characterization, including the degree of functionalization and reproducibility, of different nanostructured materials are described. To validate the approach, the fabricated supports were further used as a solid phase for developing a radioimmunoassay to detect immunoglobulin E (IgE) specific to penicillin, the antibody involved in immediate allergy responses to this drug. The dendrimer-modified supports provide assays with significantly enhanced sensitivity, as well as increase the availability of biomolecules for specific interaction and minimize nonspecific adsorptions through appropriate functionalization protocols in each case. The manufacturing methodology involved the use of a long, flexible hydrophilic spacer in the cellulose materials, and a higher surface density of the immobilized dendrimers in the zeolite crystals. The ability of hybrid zeolite materials in such biosensing applications was evaluated for the first time. The assays were validated in human serum samples from patients allergic to penicillin and from non-allergic controls. The specificity and improved sensitivity of the dendrimer- modified supports make these strategies versatile for different bioactive molecules and could have significant implications for the quantification of a wide range of specific IgE antibodies and other biomolecules of diagnostic interest.

  12. Nanostructured carbon materials based electrothermal air pump actuators

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Liu, Luqi; Kuang, Jun; Dai, Zhaohe; Han, Jinhua; Zhang, Zhong

    2014-05-01

    Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (<10 V), large generated stress (tens of MPa), high gravimetric density (tens of J kg-1), and short response time (few hundreds of milliseconds). Besides that, the pump actuators exhibited excellent stability under cyclic actuation tests. Among these actuators, a relatively larger actuation strain was obtained for the r-GO film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg-1, respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (~0.4 MPa).Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid

  13. Bioapplicable, nanostructured and nanocomposite materials for catalytic and biosensor applications

    NASA Astrophysics Data System (ADS)

    Patel, Alpa C.

    Novel, nanostructured porous nanocomposites and bioapplicable materials have been successfully developed for catalytic, sensor and reinforcement applications. For the first time, porous silver nanoparticle/silica composites were synthesized using a simple method of silver nitrate reduction. The glucose template present inside the mesoporous silica material reduces silver nitrate to silver nanoparticles. The particles thus formed are lodged inside the porous silica matrix. Organic/inorganic hybrid nanofiber mats were fabricated for the first time using the electrospinning technology. The fiber mats have high surface area and good mechanical properties. These fibers mats are then used in reinforcement applications, by utilizing them as fillers in dental materials. The mechanical properties of dental materials thus produced are seen to improve dramatically with the addition of just a small amount of fiber sample. An in-situ method was used to produce silver and gold nanoparticles inside porous silica nanofibers via electrospinning. Metal salts used to produce the nanoparticles are mixed with silica and polymer precursors and spun into fibers. The fibers are then heat-treated to reduce the metal salt into metal nanoparticles. The factors affecting the size and distribution of the nanoparticles inside the porous fibers were studied. The fibers thus produced were then tested for catalytic activity. Horseradish peroxidase (HRP) enzyme was also encapsulated in porous silica nanofibers via electrospinning. The fibers showed significant enhancement in enzyme activity, which was three orders of magnitude greater than that of the non-templated, conventional microporous silica materials. The factors affecting the enzyme activity, like pH, temperature, etc., was also studied. The response time of the encapsulated enzymes to the external reagents was ˜ 2 to 3 seconds, showing high efficiency of the fibers to sensor applications. Finally, the encapsulation and alignment of

  14. Nanostructured carbon materials based electrothermal air pump actuators.

    PubMed

    Liu, Qing; Liu, Luqi; Kuang, Jun; Dai, Zhaohe; Han, Jinhua; Zhang, Zhong

    2014-06-21

    Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (<10 V), large generated stress (tens of MPa), high gravimetric density (tens of J kg(-1)), and short response time (few hundreds of milliseconds). Besides that, the pump actuators exhibited excellent stability under cyclic actuation tests. Among these actuators, a relatively larger actuation strain was obtained for the r-GO film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg(-1), respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (∼ 0.4 MPa).

  15. Synthesis and applications of bioinspired inorganic nanostructured materials

    NASA Astrophysics Data System (ADS)

    Bassett, David C.

    2011-12-01

    Although the study of biominerals may be traced back many centuries, it is only recently that biological principles have been applied to synthetic systems in processes termed "biomimetic" and "bioinspired" to yield materials syntheses that are otherwise not possible and may also reduce the expenditure of energy and/or eliminate toxic byproducts. Many investigators have taken inspiration from interesting and unusual minerals formed by organisms, in a process termed biomineralisation, to tailor the nanostructure of inorganic materials not necessarily found biogenically. However, the fields of nanoparticle synthesis and biomineralisation remain largely separate, and this thesis is an attempt to apply new studies on biomineralisation to nanomaterials science. Principally among the proteins that influence biomineralisation is a group comprised largely of negatively charged aspartic acid residues present in serum. This study is an investigation determining the ability of these serum proteins and other anolagous biomolecules to stabilise biologically relevant amorphous minerals and influence the formation of a variety of materials at the nanoscale. Three different materials were chosen to demonstrate this effect; gold was templated into nanosized single crystals by the action of bioorganic molecules, and the utility of these nanoparticles as a biosensor was explored. The influence of bioorganic molecules on the phase selection and crystal size restriction of titanium dioxide, an important semiconductor with many applications, was explored. The use of bioorganically derived nanoparticles of titanium dioxide was then demonstrated as a highly efficient photocatalyst. Finally, calcium carbonate, a prevalent biomineral was shown to form highly ordered structures over a variety of length scales and different crystalline polymorphs under the influence of a templating protein. In addition, an alternative route to producing calcium phosphate nanoparticle dispersions by mechanical

  16. Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics

    NASA Astrophysics Data System (ADS)

    Decker, Manuel; Staude, Isabelle

    2016-10-01

    This review overviews the state of the art of research into high-index dielectric nanoresonators and their use in functional photonic nanostructures at optical frequencies. We start by providing the motivations for this research area and by putting it into context with the more well-established subfields of nanophotonics, in particular nanoplasmonics. Following the introduction, fundamental concepts regarding the optical properties of subwavelength dielectric nanoresonators are established. To this end, we provide a brief summary of the Mie theory, before focussing on optically induced magnetic response in Mie-resonant dielectric nanoparticles. We discuss the influence of the nanoparticle’s shape on its optical response, and provide an overview of directional effects that can occur when light is scattered by a Mie-resonant nanoparticle. We then dedicate a few words to technology-related aspects, including an overview of fabrication methods for Mie-resonant dielectric nanoparticles. Next, recent progress on all-dielectric nanoantennas is presented, focussing on strategies to locally enhance optical near-fields and to achieve directional emission patterns. We then turn to all-dielectric metasurfaces and their potential applications. We touch on dielectric metamaterial reflectors and Fano-resonant dielectric metasurfaces, before discussing graded Mie-resonant dielectric metasurfaces for wavefront control applications in more detail. Following this, an overview of the recent progress in active, tunable and nonlinear dielectric nanostructures is provided. Finally, prospects and challenges are discussed, particularly the realization of highly efficient Mie-resonant nanostructures at visible frequencies, the integration of Mie-resonant nanostructures with active and functional materials, and the construction of three-dimensional high-index dielectric nanostructures.

  17. Radial distribution function imaging by STEM diffraction: Phase mapping and analysis of heterogeneous nanostructured glasses.

    PubMed

    Mu, Xiaoke; Wang, Di; Feng, Tao; Kübel, Christian

    2016-09-01

    Characterizing heterogeneous nanostructured amorphous materials is a challenging topic, because of difficulty to solve disordered atomic arrangement in nanometer scale. We developed a new transmission electron microscopy (TEM) method to enable phase analysis and mapping of heterogeneous amorphous structures. That is to combine scanning TEM (STEM) diffraction mapping, radial distribution function (RDF) analysis, and hyperspectral analysis. This method was applied to an amorphous zirconium oxide and zirconium iron multilayer system, and showed extreme sensitivity to small atomic packing variations. This approach helps to understand local structure variations in glassy composite materials and provides new insights to correlate structure and properties of glasses.

  18. Nanostructured materials for ocular delivery: nanodesign for enhanced bioadhesion, transepithelial permeability and sustained delivery

    PubMed Central

    Kim, Jean; Schlesinger, Erica B; Desai, Tejal A

    2015-01-01

    Effective drug delivery to the eye is an ongoing challenge due to poor patient compliance coupled with numerous physiological barriers. Eye drops for the front of the eye and ocular injections for the back of the eye are the most prevalent delivery methods, both of which require relatively frequent administration and are burdensome to the patient. Novel drug delivery techniques stand to drastically improve safety, efficacy and patient compliance for ocular therapeutics. Remarkable advances in nanofabrication technologies make the application of nanostructured materials to ocular drug delivery possible. This article focuses on the use of nanostructured materials with nanoporosity or nanotopography for ocular delivery. Specifically, we discuss nanotopography for enhanced bioadhesion and permeation and nanoporous materials for controlled release drug delivery. As examples, application of polymeric nanostructures for greater transepithelial permeability, nanostructured microparticles for enhanced preocular retention time and nanoporous membranes for tuning drug release profile are covered. PMID:26652282

  19. Synthesis of nanostructured materials for biosensor and fuel cell applications

    NASA Astrophysics Data System (ADS)

    Gil, Maria Paula

    Nanotechnology has attracted the attention of many different fields due to the new and exiting possibilities it entails. However, the future of nanotechnology depends on (i) the successful understanding and discovery of material properties at the nanoscale, (ii) efficient manufacture of nanoscale materials, and (iii) most importantly, incorporation of nanomaterials into real world applications and devices. The purpose of this research is to synthesize macroscale materials for applications such as fuel cell membranes or biosensors by assembly or modification at the nanoscale. This research is concentrated in two main projects. The first project focuses on the direct synthesis of a PEEK fuel cell membrane from sulfonated monomers with nanoscale features. S-PEEK membranes were evaluated for possible fuel cell applications by determining the degree of sulfonation, water swelling, proton conductivity, methanol diffusivity and thermal stability. As synthesized S-PEEK membranes exhibit conductivities (25°C) from 0.02--0.07 S/cm, water swelling from 13--54%, ion-exchange capacities (IEC) from 0.7--1.5 mmol/g and methanol diffusion coefficients from 3 x 10-7 --5 x 10-8 cm2/s at 25°C. These diffusion coefficients are much lower than that of NafionRTM (2 x 10-6 cm2/s), making S-PEEK membranes a good alternative to reduce problems associated with high methanol crossover in direct methanol fuel cells. The second project consists of synthesizing (2D) or (3D) nanowire thin film Pt electrodes for applications as glucose sensors. Although platinum nanowires have shown to have unique properties, it is still challenging to fabricate nanowire devices such as sensors. This research reports the fabrication of platinum nanowires into continuous thin film electrodes and the application as biosensors. The electrodes were synthesized by the following steps: (1) construction of a nanostructured mesoporous thin film template by self-assembly of surfactant and silicate species, (2

  20. Synthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz-repetition femtosecond laser pulses

    PubMed Central

    2012-01-01

    In this work, we have proposed a concept for the generation of three-dimensional (3D) nanostructured metal alloys of immiscible materials induced by megahertz-frequency ultrafast laser pulses. A mixture of two microparticle materials (aluminum and nickel oxide) and nickel oxide microparticles coated onto an aluminum foil have been used in this study. After laser irradiation, three different types of nanostructure composites have been observed: aluminum embedded in nickel nuclei, agglomerated chain of aluminum and nickel nanoparticles, and finally, aluminum nanoparticles grown on nickel microparticles. In comparison with current nanofabrication methods which are used only for one-dimensional nanofabrication, this technique enables us to fabricate 3D nanostructured metal alloys of two or more nanoparticle materials with varied composite concentrations under various predetermined conditions. This technique can lead to promising solutions for the fabrication of 3D nanostructured metal alloys in applications such as fuel-cell energy generation and development of custom-designed, functionally graded biomaterials and biocomposites. PMID:22999219

  1. Boron-based nanostructures: Synthesis, functionalization, and characterization

    NASA Astrophysics Data System (ADS)

    Bedasso, Eyrusalam Kifyalew

    Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any

  2. FEM analysis of spur gears forging from nano-structured materials

    NASA Astrophysics Data System (ADS)

    Salcedo, D.; Luis-Pérez, C. J.; Luri, R.; León, J.

    2012-04-01

    The ECAE process is a novel technology which allows us to obtain materials with sub-micrometric and/or nanometric grain size as a result of accumulating very high levels of plastic deformation in the presence of a high hydrostatic pressure. This avoids the fracture of the material and allows us to obtain very high values of plastic deformation (ɛ >>1). Therefore, these nano-structured materials can be used as starting materials for other manufacturing processes such as: extrusion, rolling and forging, among others; with the advantage of providing nanostructure and hence, improved mechanical properties. In this present work, the forging by finite element method (FEM) of materials that have been previously processed by ECAE is analyzed. MSC. MarcTM software will be employed with the aim of analyzing the possibility of manufacturing mechanical components (spur gears) from materials nano-structured by ECAE.

  3. Fabrication of bioinspired nanostructured materials via colloidal self-assembly

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Han

    ultimate strains than nacre and pure GO paper (also synthesized by filtration). Specifically, it exhibits ˜30 times higher fracture energy than filtrated graphene paper and nacre, ˜100 times tougher than filtrated GO paper. Besides reinforced nanocomposites, we further explored the self-assembly of spherical colloids and the templating nanofabrication of moth-eye-inspired broadband antireflection coatings. Binary crystalline structures can be easily accomplished by spin-coating double-layer nonclose-packed colloidal crystals as templates, followed by colloidal templating. The polymer matrix between self-assembled colloidal crystal has been used as a sacrificial template to define the resulting periodic binary nanostructures, including intercalated arrays of silica spheres and polymer posts, gold nanohole arrays with binary sizes, and dimple-nipple antireflection coatings. The binary-structured antireflection coatings exhibit better antireflective properties than unitary coatings. Natural optical structures and nanocomposites teach us a great deal on how to create high performance artificial materials. The bottom-up technologies developed in this thesis are scalable and compatible with standard industrial processes, promising for manufacturing high-performance materials for the benefits of human beings.

  4. Vertically Aligned Nanostructured Arrays of Inorganic Materials: Synthesis, Distinctive Physical Phenomena, and Device Integration

    NASA Astrophysics Data System (ADS)

    Velazquez, Jesus Manuel

    materials to obtain a fundamental understanding of the influence of finite size and surface restructuring on electronic instabilities in the proximity of the Fermi level. We present here a novel synthetic approach that takes advantage of the intrinsic octahedral symmetry of rock-salt-structured VO to facilitate the growth of six-armed nanocrystallites of related, technologically more important binary vanadium oxide V2O5 . The prepared nanostructures exhibit clear six-fold symmetry and most notably show remarkable retention of electronic structure. The latter has been evidenced through extensive X-ray absorption spectroscopy measurements. We have further designed a facile, generalizable, and entirely scalable approach for the fabrication of vertically aligned arrays of Fe2O 3/polypyrrole core---shell nanostructures and polypyrrole nanotubes. Our "all electrochemical" approach is based on the fabrication of α-Fe 2O3 nanowire arrays by the simple heat treatment of commodity low carbon steel substrates, followed by electropolymerization of conformal polypyrrole sheaths around the nanowires. Subsequently, electrochemical etching of the nanowires yields large-area vertically aligned polypyrrole nanotube arrays on the steel substrate. The developed methodology is generalizable to functionalized pyrrole monomers and represents a significant practical advance of relevance to the technological implementation of conjugated polymer nanostructures in electrochromics, electrochemical energy storage, and sensing. As another variation of this general synthetic route, we have extended the practice of our simple oxidative process for the fabrication of large-area ZnO nanostructures, specifically highly aligned nanowire arrays integrated onto galvanized steel substrates which via a simple device design and additive piezoelectric nanopower generation were measured across the array substrates. The nanomaterial syntheses and device fabrication approaches developed here will enable facile

  5. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In

  6. Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectric materials.

    PubMed

    Feng, Shien-Ping; Chang, Ya-Huei; Yang, Jian; Poudel, Bed; Yu, Bo; Ren, Zhifeng; Chen, Gang

    2013-05-14

    A cost-effective and reliable Ni-Au contact on nanostructured Bi2Te3-based alloys for a solar thermoelectric generator (STEG) is reported. The use of MPS SAMs creates a strong covalent binding and more nucleation sites with even distribution for electroplating contact electrodes on nanostructured thermoelectric materials. A reliable high-performance flat-panel STEG can be obtained by using this new method.

  7. Computational study of nanostructured composite materials for photonic crystal fibre sensors

    NASA Astrophysics Data System (ADS)

    Johny, Jincy; Prabhu, Radhakrishna; Keung Fung, Wai

    2017-05-01

    Photonic Crystal Fibres (PCFs) developed using nanostructured composite materials provides special optical properties which can revolutionise current optical sensing technologies. The modal and propagation characteristics of the PCF can be tailored by altering their geometrical parameters and material infiltrations. A drawback of commercially available PCF is their limited operating wavelengths, which is mostly in the infrared (IR) spectral band. Nanostructured composite materials manipulates the optical properties of the PCF, facilitating their operation in the higher sensitivity near infrared (NIR) wavelength regime. Hence, there arises a need to closely investigate the effect of nanostructure and composite materials on various optical parameters of the PCF sensor. This paper presents a hexagonal PCF designed using COMSOL MULTIPHYSICS 5.1 software, with a nanostructured core and microstructured cladding. Propagation characteristics like confinement loss and mode field diameter (MFD) are investigated and compared with various geometrical parameters like core diameter, cladding hole diameter, pitch, etc. Theoretical study revealed that a nanostructured PCF experiences reduced confinement losses and also improved mode field diameter. Furthermore, studies are also carried out by infiltrating the cladding holes with composite materials (liquid crystal and glass). These simulations helped in analysing the effect of different liquid crystal materials on PCF bandwidth and spectral positions.

  8. Tissue conditioning materials as functional impression materials.

    PubMed

    Chander, Satinder; Hill, Mark; Moore, Derek; Morrow, Leean

    2007-06-01

    There has been much written on the subject of tissue conditioner materials. In the context of functional impressions however there exists a lack of consensus opinion. In this article various aspects of functional impression materials have been considered. These include the effects of powder to liquid mixing ratio (P/L) on the visco elastic properties, effects on the surface hardness of dental stone when these materials are cast, undercut reproducibility, compressibility and dimensional stability. Definitive conclusions are difficult to draw however it seems the evidence supports the use of tissue conditioners as functional impression materials.

  9. Novel biomaterials: plasma-enabled nanostructures and functions

    NASA Astrophysics Data System (ADS)

    Levchenko, Igor; Keidar, Michael; Cvelbar, Uroš; Mariotti, Davide; Mai-Prochnow, Anne; Fang, Jinghua; (Ken Ostrikov, Kostya

    2016-07-01

    Material processing techniques utilizing low-temperature plasmas as the main process tool feature many unique capabilities for the fabrication of various nanostructured materials. As compared with the neutral-gas based techniques and methods, the plasma-based approaches offer higher levels of energy and flux controllability, often leading to higher quality of the fabricated nanomaterials and sometimes to the synthesis of the hierarchical materials with interesting properties. Among others, nanoscale biomaterials attract significant attention due to their special properties towards the biological materials (proteins, enzymes), living cells and tissues. This review briefly examines various approaches based on the use of low-temperature plasma environments to fabricate nanoscale biomaterials exhibiting high biological activity, biological inertness for drug delivery system, and other features of the biomaterials make them highly attractive. In particular, we briefly discuss the plasma-assisted fabrication of gold and silicon nanoparticles for bio-applications; carbon nanoparticles for bioimaging and cancer therapy; carbon nanotube-based platforms for enzyme production and bacteria growth control, and other applications of low-temperature plasmas in the production of biologically-active materials.

  10. Fast photoreduction of a heme peptide encapsulated in nanostructured materials.

    PubMed

    Zhang, B Paul; Janicke, Michael T; Woodruff, William H; Bailey, James A

    2005-10-27

    Microperoxidase-11 has been immobilized on siliceous materials MCM-41 and SBA-15 and on amino-functionalized SBA-15. Resonance Raman spectroscopy has provided solid evidence that the exogenous species occupy the pores of the mesoporous silica materials. Photoreduction of the microperoxidase-11 Fe(III) center has been observed to occur in the immobilized samples and results in a long-lived stable reduced heme. Reoxidation of the heme occurs upon addition of oxygen, and the redox cycle can be repeated numerous times. The source of the electron resulting in reduction of the heme is proposed to originate from the silica matrix, and functionalization of silica surface is suggested to facilitate electron transfer to the heme.

  11. Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zhuiykov, Serge; Kawaguchi, Toshikazu; Hai, Zhenyin; Karbalaei Akbari, Mohammad; Heynderickx, Philippe M.

    2017-01-01

    Atomic Layer Deposition (ALD) is an enabling technology which provides coating and material features with significant advantages compared to other existing techniques for depositing precise nanometer-thin two-dimensional (2D) nanostructures. It is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. ALD is especially advantageous when the film quality or thickness is critical, offering ultra-high aspect ratios. ALD provides digital thickness control to the atomic level by depositing film one atomic layer at a time, as well as pinhole-free films even over a very large and complex areas. Digital control extends to sandwiches, hetero-structures, nano-laminates, metal oxides, graded index layers and doping, and it is perfect for conformal coating and challenging 2D electrodes for various functional devices. The technique's capabilities are presented on the example of ALD-developed ultra-thin 2D tungsten oxide (WO3) over the large area of standard 4" Si substrates. The discussed advantages of ALD enable and endorse the employment of this technique for the development of hetero-nanostructure 2D semiconductors with unique properties.

  12. Recent advances in MoS2 nanostructured materials for energy and environmental applications - A review

    NASA Astrophysics Data System (ADS)

    Theerthagiri, J.; Senthil, R. A.; Senthilkumar, B.; Reddy Polu, Anji; Madhavan, J.; Ashokkumar, Muthupandian

    2017-08-01

    Molybdenum disulfide (MoS2), a layered transition metal dichalcogenide with an analogous structure to graphene, has attracted enormous attention worldwide owing to its use in a variety of applications such as energy storage, energy conversion, environmental remediation and sensors. MoS2 and graphene have almost similar functional properties such as high charge carrier transport, high wear resistance and good mechanical strength and friction. However, MoS2 is advantageous over graphene due to its low-cost, abundancy, tailorable morphologies and tuneable band gap with good visible light absorption properties. In this review, we have focussed mainly on recent advances in MoS2 nanostructured materials for the applications in the broad area of energy and environment. Special attention has been paid to their applications in dye-sensitized solar cells, supercapacitor, Li-ion battery, hydrogen evolution reaction, photocatalysis for the degradation of organic pollutants, chemical/bio sensors and gas sensors. Finally, the challenges to design MoS2 nanostructures suitable for energy and environmental applications are also highlighted.

  13. Quantum Simulations of Materials and Nanostructures (Q-SIMAN). Final Report

    SciTech Connect

    Galli, Giulia; Bai, Zhaojun; Ceperley, David; Cai, Wei; Gygi, Francois; Marzari, Nicola; Pickett, Warren; Spaldin, Nicola; Fattebert, Jean-Luc; Schwegler, Eric

    2015-09-16

    The focus of this SciDAC SAP (Scientific Application) is the development and use of quantum simulations techniques to understand materials and nanostructures at the microscopic level, predict their physical and chemical properties, and eventually design integrated materials with targeted properties. (Here the word ‘materials’ is used in a broad sense and it encompasses different thermodynamic states of matter, including solid, liquids and nanostructures.) Therefore our overarching goal is to enable scientific discoveries in the field of condensed matter and advanced materials through high performance computing.

  14. Methods of electrophoretic deposition for functionally graded porous nanostructures and systems thereof

    DOEpatents

    Worsley, Marcus A; Baumann, Theodore F; Satcher, Joe H; Olson, Tammy Y; Kuntz, Joshua D; Rose, Klint A

    2015-03-03

    In one embodiment, an aerogel includes a layer of shaped particles having a particle packing density gradient in a thickness direction of the layer, wherein the shaped particles are characterized by being formed in an electrophoretic deposition (EPD) process using an impurity. In another embodiment, a method for forming a functionally graded porous nanostructure includes adding particles of an impurity and a solution to an EPD chamber, applying a voltage difference across the two electrodes of the EPD chamber to create an electric field in the EPD chamber, and depositing the material onto surfaces of the particles of the impurity to form shaped particles of the material. Other functionally graded materials and methods are described according to more embodiments.

  15. Modeling Mechanical Properties of Carbon Molecular Clusters and Carbon Nanostructural Materials

    DTIC Science & Technology

    2003-01-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014264 TITLE: Modeling Mechanical Properties of Carbon Molecular...Clusters and Carbon Nanostructural Materials DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report...Res. Soc. Symp. Proc. Vol. 740 © 2003 Materials Research Society 17.2 Modeling mechanical properties of carbon molecular clusters and carbon

  16. Optical and electrical properties of composite nanostructured materials

    NASA Astrophysics Data System (ADS)

    Amooali Khosroabadi, Akram

    A novel lithographic fabrication method is used to fabricate nanopillars arrays of anisotropic Ag and TCO electrodes. Optical and electrical properties of the electrodes including bandgap, free carrier concentration, resistivity and surface plasmon frequency of different electrodes can be tuned by adjusting the dimensions and geometry of the pillars. Given the ability to tune the nonlocal responses of the plasmonic field enhancements, we attempt to determine the nature of the effective refractive index profile within the visible wavelength region for multi-layer hybrid nanostructures. Knowledge of the effective optical constants of the obtained structure is critical for various applications. nanopillars of TCOAg core shell structures have been successfully fabricated. The Maxwell-Garnett mixing law has been used to determine the optical constants of the nanostructure based on spectroscopic ellipsometry measurements. Simulated reflection spectra indicate a down shift in the Brewster angle of the pillars resulting from the reduction in the effective refractive index of the nanostructure. Two plasmonic resonances were observed, with one in the visible region and the other in the IR region. Plasmon hybridization model is used to describe the behavior of metal and metal oxide core shell nanostructured electrodes. Different charge density distributions around the pillars determine the plasma frequency which depends on the core and surrounding media dielectric constants. Finite Difference Time Domain (FDTD) simulation of different structures agree well with experiment and help us to understand electric field behavior at different structures with different geometries and dielectric constants. Plasmonic Ag nanopillar arrays are effective substrates for surface enhanced Raman spectroscopy (SERS). An enhancement factor up to 6 orders of magnitude is obtained. Monolayers of C60 is deposited on the Ag nanopillars and the interface of C60/Ag is studied which is important in

  17. Confinement effects on chemical reactions in nanostructured carbon materials

    NASA Astrophysics Data System (ADS)

    George, Aaron; Kostov, Milen; Buongiorno Nardelli, Marco

    2005-03-01

    Chemical reactions are frequently carried out in nano-structured media, such as micellar or colloidal solutions, nano-porous media, hydrogels or organogels, or in systems involving nano-particles. Nanostructured environments have been shown to enhance reaction rates through a variety of catalytic effects, such as high surface area, interactions with the nano-structure or confinement. In this work, we have used state-of-the-art electronic structure techniques to study the prototypical example of the hydrogen-producing reaction of formaldehyde dissociation (H2CO -> H2 + CO) within various configurations of a graphitic pore. Using the Nudged Elastic Band (NEB) method for transition states analysis, we have found that the activation energy of the dissociation can be influenced by the presence of a graphitic pore. In particular, while a graphene surface reduces the activation barrier for the reaction, this catalytic effect is enhanced by the presence of two planar sheets, which mimic the geometry of a nano-pore. These findings will be discussed in terms of the charge transfer and/or polarization mechanism associated with the catalytic process.

  18. Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials.

    PubMed

    Zhu, Zhihua; Evans, Philip G; Haglund, Richard F; Valentine, Jason G

    2017-08-09

    Mastering dynamic free-space spectral control and modulation in the near-infrared (NIR) and optical regimes remains a challenging task that is hindered by the available functional materials at high frequencies. In this work, we have realized an efficient metadevice capable of spectral control by minimizing the thermal mass of a vanadium dioxide phase-change material (PCM) and placing the PCM at the feed gap of a bow-tie field antenna. The device has an experimentally measured tuning range of up to 360 nm in the NIR and a modulation depth of 33% at the resonant wavelength. The metadevice is configured for integrated and local heating, leading to faster switching and more precise spatial control compared with devices based on phase-change thin films. We envisage that the combined advantages of this device will open new opportunities for signal processing, memory, security, and holography at optical frequencies.

  19. Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials

    DOE PAGES

    Haglund, Richard F.; Valentine, Jason; Zhu, Zhihua; ...

    2017-07-01

    Mastering dynamic free-space spectral control and modulation in the near-infrared (NIR) and optical regimes remains a challenging task that is hindered by the available functional materials at high frequencies. In this work, we have realized an efficient metadevice capable of spectral control by minimizing the thermal mass of a vanadium dioxide phase-change material (PCM) and placing the PCM at the feed gap of a bow-tie field antenna. The device has an experimentally measured tuning range of up to 360 nm in the NIR and a modulation depth of 33% at the resonant wavelength. The metadevice is configured for integrated andmore » local heating, leading to faster switching and more precise spatial control compared with devices based on phase-change thin films. We envisage that the combined advantages of this device will open new opportunities for signal processing, memory, security, and holography at optical frequencies.« less

  20. First Principles Investigations of Technologically and Environmentally Important Nano-structured Materials and Devices

    NASA Astrophysics Data System (ADS)

    Paul, Sujata

    In the course of my PhD I have worked on a broad range of problems using simulations from first principles: from catalysis and chemical reactions at surfaces and on nanostructures, characterization of carbon-based systems and devices, and surface and interface physics. My research activities focused on the application of ab-initio electronic structure techniques to the theoretical study of important aspects of the physics and chemistry of materials for energy and environmental applications and nano-electronic devices. A common theme of my research is the computational study of chemical reactions of environmentally important molecules (CO, CO2) using high performance simulations. In particular, my principal aim was to design novel nano-structured functional catalytic surfaces and interfaces for environmentally relevant remediation and recycling reactions, with particular attention to the management of carbon dioxide. We have studied the carbon-mediated partial sequestration and selective oxidation of carbon monoxide (CO), both in the presence and absence of hydrogen, on graphitic edges. Using first-principles calculations we have studied several reactions of CO with carbon nanostructures, where the active sites can be regenerated by the deposition of carbon decomposed from the reactant (CO) to make the reactions self-sustained. Using statistical mechanics, we have also studied the conditions under which the conversion of CO to graphene and carbon dioxide is thermodynamically favorable, both in the presence and in the absence of hydrogen. These results are a first step toward the development of processes for the carbon-mediated partial sequestration and selective oxidation of CO in a hydrogen atmosphere. We have elucidated the atomic scale mechanisms of activation and reduction of carbon dioxide on specifically designed catalytic surfaces via the rational manipulation of the surface properties that can be achieved by combining transition metal thin films on oxide

  1. Processing and nanostructure influences on mechanical properties of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Schmidt, Robert David

    Thermoelectric (TE) materials are materials that can generate an electric current from a thermal gradient, with possible service in recovery of waste heat such as engine exhaust. Significant progress has been made in improving TE conversion efficiency, typically reported according to the figure of merit, ZT, with several recent papers publishing ZT values above 2. Furthermore, cost reductions may be made by the use of lower cost elements such as Mg, Si, Sn, Pb, Se and S in TE materials, while achieving ZT values between 1.3 and 1.8. To be used in a device, the thermoelectric material must be able to withstand the applied thermal and mechanical forces without failure. However, these materials are brittle, with low fracture toughness typically less than 1.5 MPa-m1/2, and often less than 0.5 MPa-m1/2. For comparison, window glass is approximately 0.75 MPa-m1/2. They have been optimized with nanoprecipitates, nanoparticles, doping, alterations in stoichiometry, powder processing and other techniques, all of which may alter the mechanical properties. In this study, the effect of SiC nanoparticle additions in Mg2Si, SnTe and Ag nanoparticle additions in the skutterudite Ba0.3Co 4Sb12 on the elastic moduli, hardness and fracture toughness are measured. Large changes (˜20%) in the elastic moduli in SnTe 1+x as a function of x at 0 and 0.016 are shown. The effect on mechanical properties of doping and precipitates of CdS or ZnS in a PbS or PbSe matrix have been reported. Changes in sintering behavior of the skutterudite with the Ag nanoparticle additions were explored. Possible liquid phase sintering, with associated benefits in lower processing temperature, faster densification and lower cost, has been shown. A technique has been proposed for determining additional liquid phase sintering aids in other TE materials. The effects of porosity, grain size, powder processing method, and sintering method were explored with YbAl3 and Ba0.3Co4Sb 12, with the porosity dependence of

  2. Covalent bridging of surface functionalized Fe3O4 and YPO4:Eu nanostructures for simultaneous imaging and therapy.

    PubMed

    Barick, K C; Sharma, Anusha; Shetake, Neena G; Ningthoujam, R S; Vatsa, R K; Babu, P D; Pandey, B N; Hassan, P A

    2015-09-07

    Magnetic luminescent hybrid nanostructures (MLHN) have received a great deal of attention due to their potential biomedical applications such as thermal therapy, magnetic resonance imaging, drug delivery and intracellular imaging. We report the development of bifunctional Fe3O4 decorated YPO4:Eu hybrid nanostructures by covalent bridging of carboxyl PEGylated Fe3O4 and amine functionalized YPO4:Eu particles. The surface functionalization of individual nanoparticulates as well as their successful conjugation was evident from Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), zeta-potential and transmission electron microscopy (TEM) studies. X-ray diffraction (XRD) analysis reveals the formation of highly crystalline hybrid nanostructures. TEM micrographs clearly show the binding/anchoring of 10 nm Fe3O4 nanoparticles onto the surface of 100-150 nm rice grain shaped YPO4:Eu nanostructures. These MLHN show good colloidal stability, magnetic field responsivity and self-heating capacity under an external AC magnetic field. The induction heating studies confirmed localized heating of MLHN under an AC magnetic field with a high specific absorption rate. Photoluminescence spectroscopy and fluorescence microscopy results show optical imaging capability of MLHN. Furthermore, successful internalization of these MLHN in the cells and their cellular imaging ability are confirmed from confocal microscopy imaging. Specifically, the hybrid nanostructure provides an excellent platform to integrate luminescent and magnetic materials into one single entity that can be used as a potential tool for hyperthermia treatment of cancer and cellular imaging.

  3. Functional and Regulatory Biomolecular Networks Organized by DNA Nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Minghui

    DNA has recently emerged as an extremely promising material to organize molecules on nanoscale. The reliability of base recognition, self-assembling behavior, and attractive structural properties of DNA are of unparalleled value in systems of this size. DNA scaffolds have already been used to organize a variety of molecules including nanoparticles and proteins. New protein-DNA bio-conjugation chemistries make it possible to precisely position proteins and other biomolecules on underlying DNA scaffolds, generating multi-biomolecule pathways with the ability to modulate intermolecular interactions and the local environment. This dissertation focuses on studying the application of using DNA nanostructure to direct the self-assembly of other biomolecular networks to translate biochemical pathways to non-cellular environments. Presented here are a series of studies toward this application. First, a novel strategy utilized DNA origami as a scaffold to arrange spherical virus capsids into one-dimensional arrays with precise nanoscale positioning. This hierarchical self-assembly allows us to position the virus particles with unprecedented control and allows the future construction of integrated multi-component systems from biological scaffolds using the power of rationally engineered DNA nanostructures. Next, discrete glucose oxidase (GOx)/ horseradish peroxidase (HRP) enzyme pairs were organized on DNA origami tiles with controlled interenzyme spacing and position. This study revealed two different distance-dependent kinetic processes associated with the assembled enzyme pairs. Finally, a tweezer-like DNA nanodevice was designed and constructed to actuate the activity of an enzyme/cofactor pair. Using this approach, several cycles of externally controlled enzyme inhibition and activation were successfully demonstrated. This principle of responsive enzyme nanodevices may be used to regulate other types of enzymes and to introduce feedback or feed-forward control loops.

  4. Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality.

    PubMed

    Joshi, Ravi K; Schneider, Jörg J

    2012-08-07

    This review will focus on the synthesis, arrangement, structural assembly, for current and future applications, of 1D nanomaterials (tubes, wires, rods) in 2D and 3D ordered arrangements. The ability to synthesize and arrange one dimensional nanomaterials into ordered 2D or 3D micro or macro sized structures is of utmost importance in developing new devices and applications of these materials. Micro and macro sized architectures based on such 1D nanomaterials (e.g. tubes, wires, rods) provide a platform to integrate nanostructures at a larger and thus manageable scale into high performance electronic devices like field effect transistors, as chemo- and biosensors, catalysts, or in energy material applications. Carbon based, metal oxide and metal based 1D arranged materials as well as hybrid or composite 1D materials of the latter provide a broad materials platform, offering a perspective for new entries into fascinating structures and future applications of such assembled architectures. These architectures allow bridging the gap between 1D nanostructures and the micro and macro world and are the basis for an assembly of 1D materials into higher hierarchy domains. This critical review is intended to provide an interesting starting point to view the current state of the art and show perspectives for future developments in this field. The emphasis is on selected nanomaterials and the possibilities for building three dimensional arrays starting from one dimensional building blocks. Carbon nanotubes, metal oxide nanotubes and nanowires (e.g. ZnO, TiO(2), V(2)O(5), Cu(2)O, NiO, Fe(2)O(3)), silicon and germanium nanowires, and group III-V or II-VI based 1D semiconductor nanostructures like GaS and GaN, pure metals as well as 1D hybrid materials and their higher organized architectures (foremost in 3D) will be focussed. These materials have been the most intensively studied within the last 5-10 years with respect to nano-micro integration aspects and their functional and

  5. Nanostructured carbon materials decorated with organophosphorus moieties: synthesis and application

    PubMed Central

    Biagiotti, Giacomo; Langè, Vittoria; Ligi, Cristina; Caporali, Stefano; Muniz-Miranda, Maurizio; Flis, Anna; Pietrusiewicz, K Michał; Ghini, Giacomo; Brandi, Alberto

    2017-01-01

    A new synthetic approach for the production of carbon nanomaterials (CNM) decorated with organophosphorus moieties is presented. Three different triphenylphosphine oxide (TPPO) derivatives were used to decorate oxidized multiwalled carbon nanotubes (ox-MWCNTs) and graphene platelets (GPs). The TPPOs chosen bear functional groups able to react with the CNMs by Tour reaction (an amino group), nitrene cycloaddition (an azido group) or CuAAC reaction (one terminal C–C triple bond). All the adducts were characterized by FTIR, Raman spectroscopy, TEM, XPS, elemental analysis and ICP-AES. The cycloaddition of nitrene provided the higher loading on ox-MWCNTs and GPs as well, while the Tour approach gave best results with nanotubes (CNTs). Finally, we investigated the possibility to reduce the TPPO functionalized CNMs to the corresponding phosphine derivatives and applied one of the materials produced as heterogeneous organocatalyst in a Staudinger ligation reaction. PMID:28326239

  6. Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures.

    PubMed

    Koussa, Mounir A; Sotomayor, Marcos; Wong, Wesley P

    2014-05-15

    Recent methods in DNA nanotechnology are enabling the creation of intricate nanostructures through the use of programmable, bottom-up self-assembly. However, structures consisting only of DNA are limited in their ability to act on other biomolecules. Proteins, on the other hand, perform a variety of functions on biological materials, but directed control of the self-assembly process remains a challenge. While DNA-protein hybrids have the potential to provide the best-of-both-worlds, they can be difficult to create as many of the conventional techniques for linking proteins to DNA render proteins dysfunctional. We present here a sortase-based protocol for covalently coupling proteins to DNA with minimal disturbance to protein function. To accomplish this we have developed a two-step process. First, a small synthetic peptide is bioorthogonally and covalently coupled to a DNA oligo using click chemistry. Next, the DNA-peptide chimera is covalently linked to a protein of interest under protein-compatible conditions using the enzyme sortase. Our protocol allows for the simple coupling and purification of a functional DNA-protein hybrid. We use this technique to form oligos bearing cadherin-23 and protocadherin-15 protein fragments. Upon incorporation into a linear M13 scaffold, these protein-DNA hybrids serve as the gate to a binary nanoswitch. The outlined protocol is reliable and modular, facilitating the construction of libraries of oligos and proteins that can be combined to form functional DNA-protein nanostructures. These structures will enable a new class of functional nanostructures, which could be used for therapeutic and industrial processes.

  7. TiO2-based nanostructured materials fabricated by template sol-gel synthesis

    NASA Astrophysics Data System (ADS)

    Zheleznov, V. V.; Mayorov, V. Yu.; Sushkov, Yu. V.; Voit, E. I.

    2017-09-01

    Two types of nanostructured materials have been synthesized by the template sol-gel method. It has been demonstrated that the structure of nanostructured samples is determined, first of all, by the type of the used template. At using the carbon template, the Zr-dopant enters the structure of TiO2 (anatase), thus distorting the crystal lattice. Using the siloxane-acrylate emulsion as a template results in the fact that the zirconium-enriched phase is located in the anatase inter-crystallite space. Good prospects of practical application of the fabricated materials were shown.

  8. Nanostructured materials detect epidermal growth factor receptor, neuron specific enolase and carcinoembryonic antigen

    NASA Astrophysics Data System (ADS)

    Stefan-van Staden, Raluca-Ioana; Comnea-Stancu, Ionela Raluca; Surdu-Bob, Carmen Cristina; Badulescu, Marius

    2015-09-01

    New nanostructured materials based on thin films of Cu and Ni deposited on textile material (veil), as well as gold nanostructured microspheres were used for the design of new stochastic sensors. The stochastic sensors were able to detect simultaneously a panel of biomarkers comprising epidermal growth factor receptor, neuron specific enolase, and carcinoembryonic antigen from whole blood samples with high reliabilities - recovery tests higher than 97.00%, with a RSD (%) lower than 0.1%. The stochastic sensors had shown high sensitivities and low determination levels for the detection of the proposed panel of biomarkers making early detection of lung cancer possible by fast screening of whole blood.

  9. Thermoelectric and thermospintronic transport in Dirac material-based nanostructures

    NASA Astrophysics Data System (ADS)

    Chang, Po-Hao

    The growing need for power due to the rapid developments of the technologies has urged both engineers and scientists to study more sustainable types of energy. On the other hand, the improvement of our abilities although enable us, for example, to double the number of transistors in a dense integrated circuit approximately every two years (Moore's law), comes with side effect due to overheating. Taking advantage of thermoelectric effect has thus become one of the obvious solutions for the problems. But due to the poor efficiency of electricity-heat conversion, there are still challenges to be overcome in order to fully utilize the idea. In the past few years, the realization of graphene along with the discoveries of topological insulators (TI) which are both considered as Dirac material (DM) have offer alternative routs for improving the energy conversion efficiency through different approaches as well as novel quantum effects of materials themselves for investigation. The aim of this thesis is to present contributions to improving the efficiency of thermoelectric conversion as well as analyzing spin transport phenomena that occur in nano-devices. This thesis spans the areas of thermoelectric (TE) effect, spin-Seebeck effect (SSE) and the spin transport on the 3D topological insulator (TI). The different methods have been applied ranging from tight-binding (TB) approximation to density function theory (DFT) combined with non-equilibrium function (NEGF) techniques.

  10. Nano-structured carbon materials for improved biosensing applications

    NASA Astrophysics Data System (ADS)

    Razumiene, J.; Sakinyte, I.; Barkauskas, J.; Baronas, R.

    2015-04-01

    A set of oxidized graphite samples have been newly synthesized using different protocols. Atomic force microscopy, Raman spectroscopy, thermal gravimetric analysis and Brunauer-Emmett-Teller analysis revealed the changes in structure and functionalities of obtained graphite oxidation products (GOPs) compared to pristine graphite. The substances have been tested as electrode materials applicable for bioelectrocatalytic systems using pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH). The application of GOPs allowed achieving the direct electron transfer (DET) from active site of PQQ-GDH to the electrode surface. Needless of additional electron transfer (ET) mediating compounds highly improved features of the biosensors. The efficiency of the biosensors has been evaluated for all types of biosensors varied from 32 μA/cm2 to 64 μA/cm2 using as electrode materials GOP1 and thermally reduced graphite oxide (TRGO), respectively. TRGO containing function groups (according TGA, ∼6% of the weight loss) and smallest particles (average diameter was ∼11 nm and the average height was ∼0.5 nm) exhibited the higher efficiency for ET acceleration in the biosensor acting on principle of DET.

  11. Micro- and Nanostructured Materials for Active Devices and Molecular Electronics

    SciTech Connect

    Martin, Peter M.; Graff, Gordon L.; Gross, Mark E.; Burrows, Paul E.; Bennett, Wendy D.; Mast, Eric S.; Hall, Michael G.; Bonham, Charles C.; Zumhoff, Mac R.; Williford, Rick E.

    2003-10-01

    Traditional single layer barrier coatings are not adequate in preventing degradation of the performance of organic molecular electronic and other active devices. Most advanced devices used in display technology now consist of micro and nanostructured small molecule, polymer and inorganic coatings with thin high reactive group 1A metals. This includes organic electronics such as organic light emitting devices (OLED). The lifetimes of these devices rapidly degrades when they are exposed to atmospheric oxygen and water vapor. Thin film photovoltaics and batteries are also susceptible to degradation by moisture and oxygen. Using in-line coating techniques we apply a composite nanostructured inorganic/polymer thin film barrier that restricts moisture and oxygen permeation to undetectable levels using conventional permeation test equipment. We describe permeation mechanisms for this encapsulation coating and flat panel display and other device applications. Permeation through the multilayer barrier coating is defect and pore limited and can be described by Knudsen diffusion involving a long and tortuous path. Device lifetime is also enhanced by the long lag times required to reach the steady state flux regime. Permeation rates in the range of 10-6 cc,g/m2/d have been achieved and OLED device lifetimes. The structure is robust, yet flexible. The resulting device performance and lifetimes will also be described. The barrier film can be capped with a thin film of transparent conductive oxide yielding an engineered nanostructured device for next generation, rugged, lightweight or flexible displays. This enables, for the first time, thin film encapsulation of emissive organic displays.

  12. Zinc-oxide-based nanostructured materials for heterostructure solar cells

    SciTech Connect

    Bobkov, A. A.; Maximov, A. I.; Moshnikov, V. A. Somov, P. A.; Terukov, E. I.

    2015-10-15

    Results obtained in the deposition of nanostructured zinc-oxide layers by hydrothermal synthesis as the basic method are presented. The possibility of controlling the structure and morphology of the layers is demonstrated. The important role of the procedure employed to form the nucleating layer is noted. The faceted hexagonal nanoprisms obtained are promising for the fabrication of solar cells based on oxide heterostructures, and aluminum-doped zinc-oxide layers with petal morphology, for the deposition of an antireflection layer. The results are compatible and promising for application in flexible electronics.

  13. Microwave-assisted functionalization of carbon nanostructures in ionic liquids.

    PubMed

    Guryanov, Ivan; Toma, Francesca Maria; Montellano López, Alejandro; Carraro, Mauro; Da Ros, Tatiana; Angelini, Guido; D'Aurizio, Eleonora; Fontana, Antonella; Maggini, Michele; Prato, Maurizio; Bonchio, Marcella

    2009-11-23

    The effect of microwave (MW) irradiation and ionic liquids (IL) on the cycloaddition of azomethine ylides to [60]fullerene has been investigated by screening the reaction protocol with regard to the IL medium composition, the applied MW power, and the simultaneous cooling of the system. [60]Fullerene conversion up to 98 % is achieved in 2-10 min, by using a 1:3 mixture of the IL 1-methyl-3-n-octyl imidazolium tetrafluoroborate ([omim]BF(4)) and o-dichlorobenzene, and an applied power as low as 12 W. The mono- versus poly-addition selectivity to [60]fullerene can be tuned as a function of fullerene concentration. The reaction scope includes aliphatic, aromatic, and fluorous-tagged (FT) derivatives. MW irradiation of IL-structured bucky gels is instrumental for the functionalization of single-walled carbon nanotubes (SWNTs), yielding group coverages of up to one functional group per 60 carbon atoms of the SWNT network. An improved performance is obtained in low viscosity bucky gels, in the order [bmim]BF(4)> [omim]BF(4)> [hvim]TF(2)N (bmim=1-methyl-3-n-butyl imidazolium; hvim=1-vinyl-3-n-hexadecyl imidazolium). With this protocol, the introduction of fluorous-tagged pyrrolidine moieties onto the SWNT surface (1/108 functional coverage) yields novel FT-CNS (carbon nanostructures) with high affinity for fluorinated phases.

  14. An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications.

    PubMed

    Mohamed, Mohamad Azuwa; Abd Mutalib, Muhazri; Mohd Hir, Zul Adlan; M Zain, M F; Mohamad, Abu Bakar; Jeffery Minggu, Lorna; Awang, Nor Asikin; W Salleh, W N

    2017-10-01

    A combination between the nanostructured photocatalyst and cellulose-based materials promotes a new functionality of cellulose towards the development of new bio-hybrid materials for various applications especially in water treatment and renewable energy. The excellent compatibility and association between nanostructured photocatalyst and cellulose-based materials was induced by bio-combability and high hydrophilicity of the cellulose components. The electron rich hydroxyl group of celluloses helps to promote superior interaction with photocatalyst. The formation of bio-hybrid nanostructured are attaining huge interest nowadays due to the synergistic properties of individual cellulose-based material and photocatalyst nanoparticles. Therefore, in this review we introduce some cellulose-based material and discusses its compatibility with nanostructured photocatalyst in terms of physical and chemical properties. In addition, we gather information and evidence on the fabrication techniques of cellulose-based hybrid nanostructured photocatalyst and its recent application in the field of water treatment and renewable energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Functionalized carbon micro/nanostructures for biomolecular detection

    NASA Astrophysics Data System (ADS)

    Penmatsa, Varun

    Advancements in the micro-and nano-scale fabrication techniques have opened up new avenues for the development of portable, scalable and easier-to-use biosensors. Over the last few years, electrodes made of carbon have been widely used as sensing units in biosensors due to their attractive physiochemical properties. The aim of this research is to investigate different strategies to develop functionalized high surface carbon micro/nano-structures for electrochemical and biosensing devices. High aspect ratio three-dimensional carbon microarrays were fabricated via carbon microelectromechanical systems (C-MEMS) technique, which is based on pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. (i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. Electrochemical characterization showed that porous carbon thin film electrodes prepared by using F127 as porogen had an effective surface area (Aeff 185%) compared to the conventional carbon electrode. To achieve enhanced electrochemical sensitivity for C-MEMS based functional devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250μM to 5.5mM. Furthermore, carbon structures with dimensions from 50 nano-to micrometer level have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic resist polymer. Microstructure, elemental composition and resistivity characterization of the carbon nanostructures produced by this process were very similar to conventional photoresist derived carbon. Surface functionalization of the carbon nanostructures was performed using

  16. Green energy storage materials: advanced nanostructured materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tripathi, Alok Mani; Chandrasekar, M. S.; Mitra, Sagar

    2011-06-01

    The projected doubling of world energy consumption in the next fifty years requires certain measures to meet this demand. The ideal energy provider is reliable, efficient, with low emissions source - wind, solar, etc. The low carbon footprint of renewables is an added benefit, which makes them especially attractive during this era of environmental consciousness. Unfortunately, the intermittent nature of energy from these renewables is not suitable for the commercial and residential grid application, unless the power delivery is 24/7, with minimum fluctuation. This requires intervention of efficient electrical energy storage technology to make power generation from renewable practical. The progress to higher energy and power density especially for battery technology will push material to the edge of stability and yet these materials must be rendered safe, stable and with reliable operation throughout their long life. A major challenge for chemical energy storage is developing the ability to store more energy while maintaining stable electrode-electrolyte interface. A structural transformation occurs during charge-discharge cycle, accompanied by a volume change, degrading the microstructure over-time. The need to mitigate this volume and structural change accompanying charge-discharge cycle necessitates going to nanostructured and multifunctional materials that have the potential of dramatically enhancing the energy density and power density.

  17. Could Nano-Structured Materials Enable the Improved Pressure Vessels for Deep Atmospheric Probes?

    NASA Technical Reports Server (NTRS)

    Srivastava, D.; Fuentes, A.; Bienstock, B.; Arnold, J. O.

    2005-01-01

    A viewgraph presentation on the use of Nano-Structured Materials to enable pressure vessel structures for deep atmospheric probes is shown. The topics include: 1) High Temperature/Pressure in Key X-Environments; 2) The Case for Use of Nano-Structured Materials Pressure Vessel Design; 3) Carbon based Nanomaterials; 4) Nanotube production & purification; 5) Nanomechanics of Carbon Nanotubes; 6) CNT-composites: Example (Polymer); 7) Effect of Loading sequence on Composite with 8% by volume; 8) Models for Particulate Reinforced Composites; 9) Fullerene/Ti Composite for High Strength-Insulating Layer; 10) Fullerene/Epoxy Composite for High Strength-Insulating Layer; 11) Models for Continuous Fiber Reinforced Composites; 12) Tensile Strength for Discontinuous Fiber Composite; 13) Ti + SWNT Composites: Thermal/Mechanical; 14) Ti + SWNT Composites: Tensile Strength; and 15) Nano-structured Shell for Pressure Vessels.

  18. Two-photon reduction: a cost-effective method for fabrication of functional metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Tabrizi, Sahar; Cao, YaoYu; Lin, Han; Jia, BaoHua

    2017-03-01

    Metallic nanostructures have underpinned plasmonic-based advanced photonic devices in a broad range of research fields over the last decade including physics, engineering, material science and bioscience. The key to realizing functional plasmonic resonances that can manipulate light at the optical frequencies relies on the creation of conductive metallic structures at the nanoscale with low structural defects. Currently, most plasmonic nanostructures are fabricated either by electron beam lithography (EBL) or by focused ion beam (FIB) milling, which are expensive, complicated and time-consuming. In comparison, the direct laser writing (DLW) technique has demonstrated its high spatial resolution and cost-effectiveness in three-dimensional fabrication of micro/nanostructures. Furthermore, the recent breakthroughs in superresolution nanofabrication and parallel writing have significantly advanced the fabrication resolution and throughput of the DLW method and made it one of the promising future nanofabrication technologies with low-cost and scalability. In this review, we provide a comprehensive summary of the state-of-the-art DLW fabrication technology for nanometer scale metallic structures. The fabrication mechanisms, different material choices, fabrication capability, including resolution, conductivity and structure surface smoothness, as well as the characterization methods and achievable devices for different applications are presented. In particular, the development trends of the field and the perspectives for future opportunities and challenges are provided at the end of the review. It has been demonstrated that the quality of the metallic structures fabricated using the DLW method is excellent compared with other methods providing a new and enabling platform for functional nanophotonic device fabrication.

  19. Two-photon reduction: a cost-effective method for fabrication of functional metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Tabrizi, Sahar; Cao, YaoYu; Lin, Han; Jia, BaoHua

    2017-03-01

    Metallic nanostructures have underpinned plasmonic-based advanced photonic devices in a broad range of research fields over the last decade including physics, engineering, material science and bioscience. The key to realizing functional plasmonic resonances that can manipulate light at the optical frequencies relies on the creation of conductive metallic structures at the nanoscale with low structural defects. Currently, most plasmonic nanostructures are fabricated either by electron beam lithography (EBL) or by focused ion beam (FIB) milling, which are expensive, complicated and time-consuming. In comparison, the direct laser writing (DLW) technique has demonstrated its high spatial resolution and cost-effectiveness in three-dimensional fabrication of micro/nanostructures. Furthermore, the recent breakthroughs in superresolution nanofabrication and parallel writing have significantly advanced the fabrication resolution and throughput of the DLW method and made it one of the promising future nanofabrication technologies with low-cost and scalability. In this review, we provide a comprehensive summary of the state-of-the-art DLW fabrication technology for nanometer scale metallic structures. The fabrication mechanisms, different material choices, fabrication capability, including resolution, conductivity and structure surface smoothness, as well as the characterization methods and achievable devices for different applications are presented. In particular, the development trends of the field and the perspectives for future opportunities and challenges are provided at the end of the review. It has been demonstrated that the quality of the metallic structures fabricated using the DLW method is excellent compared with other methods providing a new and enabling platform for functional nanophotonic device fabrication.

  20. Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures.

    PubMed

    Lu, Chun-Hua; Cecconello, Alessandro; Willner, Itamar

    2016-04-27

    Interlocked circular DNA nanostructures, e.g., catenanes or rotaxanes, provide functional materials within the area of DNA nanotechnology. Specifically, the triggered reversible reconfiguration of the catenane or rotaxane structures provides a means to yield new DNA switches and to use them as dynamic scaffolds for controlling chemical functions and positioning functional cargoes. The synthesis of two-ring catenanes and their switchable reconfiguration by pH, metal ions, or fuel/anti-fuel stimuli are presented, and the functions of these systems, as pendulum or rotor devices or as switchable catalysts, are described. Also, the synthesis of three-, five-, and seven-ring catenanes is presented, and their switchable reconfiguration using fuel/anti-fuel strands is addressed. Implementation of the dynamically reconfigured catenane structures for the programmed organization of Au nanoparticle (NP) assemblies, which allows the plasmonic control of the fluorescence properties of Au NP/fluorophore loads associated with the scaffold, and for the operation of logic gates is discussed. Interlocked DNA rotaxanes and their different synthetic approaches are presented, and their switchable reconfiguration by means of fuel/anti-fuel strands or photonic stimuli is described. Specifically, the use of the rotaxane as a scaffold to organize Au NP assemblies, and the control of the fluorescence properties with Au NP/fluorophore hybrids loaded on the rotaxane scaffold, are introduced. The future prospectives and challenges in the field of interlocked DNA nanostructures and the possible applications are discussed.

  1. Nanostructured electrochemical sensors based on functionalized nanoporous silica for voltammetric analysis of lead, mercury, and copper.

    PubMed

    Yantasee, Wassana; Fryxell, Glen E; Conner, Marianne M; Lin, Yuehe

    2005-09-01

    We have successfully developed electrochemical sensors based on functionalized nanostructured materials for voltammetric analysis of toxic metal ions. Glycinylurea self-assembled monolayers on mesoporous silica (Gly-UR SAMMS) were incorporated in carbon paste electrodes for the detection of toxic metal ions such as lead, copper, and mercury based on adsorptive stripping voltammetry (AdSV). The electrochemical sensor yields a linear response at a low ppb level of Pb2+ (i.e., 2.5-50 ppb) after a 2-min preconcentration period, with reproducible measurements (%RSD = 3.5, N = 6) and an excellent detection limit (1 ppb). By exploiting the interfacial functionality of Gly-UR SAMMS, the sensor is selective for the target species, does not require the use of a mercury film, and can be easily regenerated in dilute acid solution. The rigid, open, parallel pore structure, combined with suitable interfacial chemistry of SAMMS, also results in fast analysis times (2-3 min). The nanostructured SAMMS materials enable the development of miniature sensing devices that are compact and low cost, have low energy consumption, and are easily integrated into field-deployable units.

  2. Synthesis and Electron Field-Emission of 1-D Carbon-Related Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Shih, Han C.

    2002-10-01

    Carbon nanotubes, a new stable form of carbon that was first identified in 1991 [1], are fullerene-related structures which consist of graphitic cylinders closed at either end with caps containing pentagonal rings. Although carbon nanotube structures are closely related to graphite, the curvature, symmetry and small size induce marked deviations from the graphitic behavior. Various methods have been used to produce carbon nanotubes, e.g., arc-discharge, laser-vaporization, catalytic chemical vapor deposition, but too many impurities also be produced, such as fullerenes, carbon nanoparticles and amorphous carbons. The microwave plasma enhanced chemical vapor deposition (MPECVD) system has been used to grow carbon nanotubes in this work and other 1-D carbon-related nanostructured materials was synthesized by the electron cyclotron resonance (ECR) plasma system. Plasma is generated by microwave excitation at 2.45 GHz by a magnetron passes through a waveguide and fed perpendicularly through a quartz dome into an 875 G magnetic field generated by the coils surrounding the resonance volume that creates the ECR condition. The deposition chamber was pumped down to the base pressure of 6.7X10-4 Pa (5X10-6 Torr) with a turbomolecular pump for ECR-plasma and subatmospheric pressures for MPECVD by a rotary mechanical pump. Well-aligned carbon-related nanostructures have been synthesized in nanoporous alumina or silicon with a uniform diameter of 30-100 nm by microwave excited plasma of CH_4, C_2H_2, N_2, H2 and Ar precursors. Nickel nanowires not only serve as catalysts to decompose hydrocarbons to form nanostructures but also function as an electrical conductor for other advanced applications. A negative dc bias is always applied to the substrate to promote the flow of ion fluxes through the nanochannels of the template materials that facilitate the physical adsorption and subsequent chemical absorption in the formation of carbon- and carbon-nitride nanotubes[2]. The electron

  3. Nonlinear optical switch creation on the base of step change refractive index of nanostructure materials

    NASA Astrophysics Data System (ADS)

    Salikhov, Aydar I.; Sultanov, Albert H.; Vinogradova, Irina L.

    2008-12-01

    Optical characteristics of materials being in nanostructure condition are described. Possible versions of use of the detected spasmodic variation of a parameter of refraction of new materials are offered. The method of construction high-speed the optical switch, operated by variation of a parameter of refraction of a transparent optical material by means of additional radiation, or variation of parameters of the transferred signal is developed, allowing to make switching in time, compared in due course relaxations of substance.

  4. Raman Studies of the Nanostructure of Sol-Gel Materials

    NASA Astrophysics Data System (ADS)

    Doss, Calvin James

    Four sol-gel systems (alumina, aluminum hydroxide, zirconia, and magnesia) were investigated, primarily by laser spectroscopy, on several series of materials prepared by systematically varying the synthesis procedures. Nanocrystalline boehmite, gamma -AlO(OH), was found to be the principal component in the sol-gel alumina system. Materials were prepared by the hot-water hydrolysis/condensation of rm Al(OC_4H_9)_3, the Yoldas process, as a function of process variables such as the time spent in the sol phase. Small but systematic changes, as a function of sol aging time, were discovered in the lineshape and position of the dominant boehmite Raman band observed in the alumina hydrogels. These spectral changes were interpreted in terms of nanocrystallinity-induced finite-size effects associated with the slow growth of AlO(OH) nanocrystals in the sol. X-ray diffraction experiments were used to determine nanocrystal sizes (as small as 3 nm for gels prepared from fresh sols) and to estimate growth kinetics from the Raman-lineshape results. These results appear to be among the first available for crystallite growth kinetics (ripening) in the near-atomic-scale nanocrystal regime. The trihydroxide polymorph system is closely related to the sol-gel alumina system. The processing temperature and the method of hydrolysis were varied, in order to determine their effect on the trihydroxide phase mix. The trihydroxide phase mix does not change with time; it depends only on the initial hydrolysis conditions. Bayerite is the primary phase present for materials processed at 25 C, while nordstrandite is the primary phase present for materials processed at 60 C. It is shown that the trihydroxide crystal nucleation kinetics are responsible for the Al(OH)_3 phase mix. Hydroxide/oxyhydroxide phase-mix kinetics were also studied; this ratio increases with time. The associated rate constant decreases with increasing temperature. Sol-gel zirconia was prepared by using atmospheric water to

  5. Nanostructure multilayer dielectric materials for capacitors and insulators

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3) in alternating layers to form a nano-laminate.

  6. Poly(3-hexylthiophene) nanostructured materials for organic electronics applications.

    PubMed

    Bhatt, M P; Magurudeniya, H D; Rainbolt, E A; Huang, P; Dissanayake, D S; Biewer, M C; Stefan, M C

    2014-02-01

    Semiconducting polymers have been developed during the last few decades and are currently used in various organic electronics applications. Regioregular poly(3-hexylthiophene) (P3HT) is the most employed semiconducting polymer for organic electronics applications. The development of living Grignard metathesis polymerization (GRIM) allowed the synthesis of P3HT with well-defined molecular weights and functional end groups. A large number of block copolymers containing P3HT have been reported, and their opto-electronic properties have been investigated. The performance of P3HT homopolymer and block copolymers in field-effect transistors and bulk heterojunction solar cells are discussed in this review. The morphology of the P3HT materials is also discussed.

  7. Nanostructure multilayer dielectric materials for capacitors and insulators

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}) in alternating layers to form a nano-laminate. 1 fig.

  8. Rational Design of Molecular Ferroelectric Materials and Nanostructures

    SciTech Connect

    Ducharme, Stephen

    2012-09-25

    The purpose of this project was to gain insight into the properties of molecular ferroelectrics through the detailed study of oligomer analogs of polyvinylidene fluoride (PVDF). By focusing on interactions at both the molecular level and the nanoscale level, we expect to gain improved understanding about the fundamental mechanism of ferroelectricity and its key properties. The research consisted of three complementary components: 1) Rational synthesis of VDF oligomers by Prof. Takacs' group; 2) Detailed structural and electrical studies of thin by Prof. Ducharme's Group; and 3) First-principles computational studies by DOE Lab Partner Dr. Serge Nakhman-son at Argonne National Laboratory. The main results of the work was a detailed understanding of the relationships between the molecular interactions and macroscopic phenomenology of fer-roelectricity VDF oligomers. This is valuable information supporting the development of im-proved electromechanical materials for, e.g., sonar, ultrasonic imaging, artificial muscles, and compliant actuators. Other potential applications include nonvolatile ferroelectric memories, heat-sensing imaging arrays, photovoltaic devices, and functional biomimetic materials. The pro-ject contributed to the training and professional development of undergraduate students and graduate students, post-doctoral assistants, and a high-school teacher. Project personnel took part in several outreach and education activities each year.

  9. Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function.

    PubMed

    Wang, Guifang; Li, Jinhua; Zhang, Wenjie; Xu, Lianyi; Pan, Hongya; Wen, Jin; Wu, Qianju; She, Wenjun; Jiao, Ting; Liu, Xuanyong; Jiang, Xinquan

    2014-01-01

    As one of the important ions associated with bone osseointegration, magnesium was incorporated into a micro/nanostructured titanium surface using a magnesium plasma immersion ion-implantation method. Hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 30 minutes (Mg30) and hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 60 minutes (Mg60) were used as test groups. The surface morphology, chemical properties, and amount of magnesium ions released were evaluated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, field-emission transmission electron microscopy, and inductively coupled plasma-optical emission spectrometry. Rat bone marrow mesenchymal stem cells (rBMMSCs) were used to evaluate cell responses, including proliferation, spreading, and osteogenic differentiation on the surface of the material or in their medium extraction. Greater increases in the spreading and proliferation ability of rBMMSCs were observed on the surfaces of magnesium-implanted micro/nanostructures compared with the control plates. Furthermore, the osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) genes were upregulated on both surfaces and in their medium extractions. The enhanced cell responses were correlated with increasing concentrations of magnesium ions, indicating that the osteoblastic differentiation of rBMMSCs was stimulated through the magnesium ion function. The magnesium ion-implanted micro/nanostructured titanium surfaces could enhance the proliferation, spreading, and osteogenic differentiation activity of rBMMSCs, suggesting they have potential application in improving bone-titanium integration.

  10. Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function

    PubMed Central

    Wang, Guifang; Li, Jinhua; Zhang, Wenjie; Xu, Lianyi; Pan, Hongya; Wen, Jin; Wu, Qianju; She, Wenjun; Jiao, Ting; Liu, Xuanyong; Jiang, Xinquan

    2014-01-01

    As one of the important ions associated with bone osseointegration, magnesium was incorporated into a micro/nanostructured titanium surface using a magnesium plasma immersion ion-implantation method. Hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 30 minutes (Mg30) and hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 60 minutes (Mg60) were used as test groups. The surface morphology, chemical properties, and amount of magnesium ions released were evaluated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, field-emission transmission electron microscopy, and inductively coupled plasma-optical emission spectrometry. Rat bone marrow mesenchymal stem cells (rBMMSCs) were used to evaluate cell responses, including proliferation, spreading, and osteogenic differentiation on the surface of the material or in their medium extraction. Greater increases in the spreading and proliferation ability of rBMMSCs were observed on the surfaces of magnesium-implanted micro/nanostructures compared with the control plates. Furthermore, the osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) genes were upregulated on both surfaces and in their medium extractions. The enhanced cell responses were correlated with increasing concentrations of magnesium ions, indicating that the osteoblastic differentiation of rBMMSCs was stimulated through the magnesium ion function. The magnesium ion-implanted micro/nanostructured titanium surfaces could enhance the proliferation, spreading, and osteogenic differentiation activity of rBMMSCs, suggesting they have potential application in improving bone-titanium integration. PMID:24940056

  11. Functional Metal Oxide Nanostructures: Their Synthesis, Characterization, and Energy Applications

    NASA Astrophysics Data System (ADS)

    Iyer, Aparna

    in oxidation reactions and adsorption of heavy metal. Spontaneous formation of OMS-2 nanospheres was possible by tuning reaction parameters in the ultrasonic atomization process. In the second part, a microwave-hydrothermal route has been developed for the synthesis of 1D cobalt compounds (Chapter 5). These compounds are transformed to spinel type Co3O4 nanorods. The effects of solvents, cobalt sources, and microwave radiation time in the formation of 1D cobalt oxide nanostructures were studied in detail. These materials are catalytically active for CO oxidation and styrene oxidation reactions. Magnesia-yttria nanocomposites with controlled nanoscale grain sizes and homogenous microstructures are useful as IR transparent materials. A simple cost-effective sucrose based sol-gel route was devised for making MgO-Y 2O3 nanocomposites. Grain growth in these nanocomposites was systematically evaluated using transmission electron microscopy studies.

  12. The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review

    PubMed Central

    Armentano, Ilaria; Arciola, Carla Renata; Fortunati, Elena; Ferrari, Davide; Mattioli, Samantha; Amoroso, Concetta Floriana; Rizzo, Jessica; Kenny, Jose M.; Imbriani, Marcello; Visai, Livia

    2014-01-01

    Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections. PMID:25025086

  13. Use of facile mechanochemical method to functionalize carbon nanofibers with nanostructured polyaniline and their electrochemical capacitance

    NASA Astrophysics Data System (ADS)

    Du, Xusheng; Liu, Hong-Yuan; Cai, Guipeng; Mai, Yiu-Wing; Baji, Avinash

    2012-02-01

    A facile approach to functionalize carbon nanofibers [CNFs] with nanostructured polyaniline was developed via in situ mechanochemical polymerization of polyaniline in the presence of chemically treated CNFs. The nanostructured polyaniline grafting on the CNF was mainly in a form of branched nanofibers as well as rough nanolayers. The good dispersibility and processability of the hybrid nanocomposite could be attributed to its overall nanostructure which enhanced its accessibility to the electrolyte. The mechanochemical oxidation polymerization was believed to be related to the strong Lewis acid characteristic of FeCl3 and the Lewis base characteristic of aniline. The growth mechanism of the hierarchical structured nanofibers was also discussed. After functionalization with the nanostructured polyaniline, the hybrid polyaniline/CNF composite showed an enhanced specific capacitance, which might be related to its hierarchical nanostructure and the interaction between the aromatic polyaniline molecules and the CNFs.

  14. Use of facile mechanochemical method to functionalize carbon nanofibers with nanostructured polyaniline and their electrochemical capacitance

    PubMed Central

    2012-01-01

    A facile approach to functionalize carbon nanofibers [CNFs] with nanostructured polyaniline was developed via in situ mechanochemical polymerization of polyaniline in the presence of chemically treated CNFs. The nanostructured polyaniline grafting on the CNF was mainly in a form of branched nanofibers as well as rough nanolayers. The good dispersibility and processability of the hybrid nanocomposite could be attributed to its overall nanostructure which enhanced its accessibility to the electrolyte. The mechanochemical oxidation polymerization was believed to be related to the strong Lewis acid characteristic of FeCl3 and the Lewis base characteristic of aniline. The growth mechanism of the hierarchical structured nanofibers was also discussed. After functionalization with the nanostructured polyaniline, the hybrid polyaniline/CNF composite showed an enhanced specific capacitance, which might be related to its hierarchical nanostructure and the interaction between the aromatic polyaniline molecules and the CNFs. PMID:22315992

  15. Novel applications exploiting the thermal properties of nanostructured materials.

    SciTech Connect

    Eastman, J. A.

    1998-11-20

    A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers.

  16. Biocompatible and Biomimetic Self-Assembly of Functional Nanostructures

    DTIC Science & Technology

    2017-03-15

    cells, biomolecularinterfaces and bio-mimetic processes to direct the formation of new classes of complex, symbiotic, hierarchical materials with life...of complex, hierarchical materials with lifelike (or new) structures and functionality, evidenced by the preservation of cell and organism structure in...Lumileds) Key Collaborators: Jacob O. Agola PhD, Center for Micro-Engineered Materials , University of New Mexico, Albuquerque, NM 87131. Kimberly

  17. Development of Nanostructured Materials with Improved Radiation Tolerance for Advanced Nuclear Systems

    SciTech Connect

    Zinghang Zhang; K. Ted Hartwig

    2009-08-12

    This project will explore the fundamental mechanisms through which interfaces in nanolayered structures and grain boundaries of bulk nanomaterials are able to attract and rapidly eliminate point defects and unwanted foreign species. Candidate materials that will be studied include both nanostructured multilayer composites synthesized by magnetron sputtering and structural bulk nanomaterials produced by severed plastic deformation, equal channel angular extrusion.

  18. Polyoxometalate-Based Gels and Nanostructured Materials for Decontamination Under Ambient Conditions

    DTIC Science & Technology

    2003-11-19

    features will be addressed. This work was and is supported by Army Research Office. Transition-metal oxygen anion clusters ( polyoxometalates or... Polyoxometalate -based gels and nanostructured materials for decontamination under ambient conditions Craig L. Hill, Wade Neiwert, Nelya Okun...2003 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Polyoxometalate -based gels and nanostructuredmaterials for

  19. A review of nanostructured lithium ion battery materials via low temperature synthesis.

    PubMed

    Chen, Jiajun

    2013-01-01

    Nanostructured materials afford us new opportunities to improve the current technology for synthesizing Li ion batteries. Generating nanomaterials with new properties via an inexpensive approach offers a tremendous potential for realizing high performance Li-ion batteries. In this review, I mainly summarize some of the recent progress made, and describe the patents awarded on synthesizing nanostructured cathode materials for these batteries via low temperature wet- chemistry methods. From an economical view, such syntheses, especially hydrothermal synthesis, may offer the opportunities for significantly lowering the cost of manufacturing battery materials, while conferring distinct environmental advantages. Recent advances in in-situ (real time) X-ray diffraction for studying hydrothermal synthesis have great potential for bettering the rational design of advanced lithium-electrode materials. The development of this technique also will be discussed.

  20. Covalent functionalization of metal oxide and carbon nanostructures with polyoctasilsesquioxane (POSS) and their incorporation in polymer composites

    SciTech Connect

    Gomathi, A.; Gopalakrishnan, K.; Rao, C.N.R.

    2010-12-15

    Polyoctasilsesquioxane (POSS) has been employed to covalently functionalize nanostructures of TiO{sub 2}, ZnO and Fe{sub 2}O{sub 3} as well as carbon nanotubes, nanodiamond and graphene to enable their dispersion in polar solvents. Covalent functionalization of these nanostructures with POSS has been established by electron microscopy, EDAX analysis and infrared spectroscopy. On heating the POSS-functionalized nanostructures, silica-coated nanostructures are obtained. POSS-functionalized nanoparticles of TiO{sub 2}, Fe{sub 2}O{sub 3} and graphite were utilized to prepare polymer-nanostructure composites based on PVA and nylon-6,6.

  1. Glass-ceramics: A class of nanostructured materials for photonics

    NASA Astrophysics Data System (ADS)

    de Pablos-Martin, A.; Ferrari, M.; Pascual, M. J.; Righini, G. C.

    2015-07-01

    Glass-ceramics (GCs) are constituted by nanometer-to-micron-sized crystals embedded in a glass matrix; usually, their structural or functional elements (clusters, crystallites or molecules) have dimensions in the 1 to 100nm range. As the name says, GCs must be considered an intermediate material between inorganic glasses and ceramics; in most cases the crystallinity is between 30 and 50%. GCs share many properties with both glasses and ceramics, offering low defects, extra hardness, high thermal shock resistance (typical of ceramics) together with the ease of fabrication and moulding (typical of glasses). The embedded crystalline phase, however, can enhance the existing properties of the matrix glass or lead to entirely new properties. GCs are produced by controlled crystallization of certain glasses, generally induced by nucleating additives; they may result opaque or transparent. Transparent GCs are now gaining a competitive advantage with respect to amorphous glasses and, sometimes, to crystals too. The aim of the present paper is to introduce the basic characteristics of transparent glass-ceramics, with particular attention to the relationship between structure and transparency and to the mechanism of crystallization, which may also be induced by selective laser treatments. Their applications to the development of guided-wave structures are also briefly described.

  2. Aerosol Route Synthesis and Applications of Doped Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Sahu, Manoranjan

    Nanotechnology presents an attractive opportunity to address various challenges in air and water purification, energy, and other environment issues. Thus, the development of new nanoscale materials in low-cost scalable synthesis processes is important. Furthermore, the ability to independently manipulate the material properties as well as characterize the material at different steps along the synthesis route will aide in product optimization. In addition, to ensure safe and sustainable development of nanotechnology applications, potential impacts need to be evaluated. In this study, nanomaterial synthesis in a single-step gas phase reactor to continuously produce doped metal oxides was demonstrated. Copper-doped TiO2 nanomaterial properties (composition, size, and crystal phase) were independently controlled based on nanoparticle formation and growth mechanisms dictated by process control parameters. Copper dopant found to significantly affect TiO2 properties such as particle size, crystal phase, stability in the suspension, and absorption spectrum (shift from UV to visible light absorption). The in-situ charge distribution characterization of the synthesized nanomaterials was carried out by integrating a tandem differential mobility analyzer (TDMA) set up with the flame reactor synthesis system. Both singly- and doubly- charged nanoparticles were measured, with the charged fractions dependent on particle mobility and dopant concentration. A theoretical calculation was conducted to evaluate the relative importance of the two charging mechanisms, diffusion and thermo-ionization, in the flame. Nanoparticle exposure characterization was conducted during synthesis as a function of operating condition, product recovery and handling technique, and during maintenance of the reactors. Strategies were then indentified to minimize the exposure risk. The nanoparticle exposure potential varied depending on the operating conditions such as precursor feed rate, working

  3. Using the Hybrid Nanoscope for Non-destructive Control of Nanostructural Materials

    NASA Astrophysics Data System (ADS)

    Gelever, V.; Usachev, E.; Manushkin, A.

    2016-01-01

    In Moscow State University of Information Technology, Radio Engineering and Electronics there was developed a hybrid nanoscope (HN), which is intended for the study and control of nanostructure materials using a variety of microscopes and spectroscopy. When operating as X-ray microscope, it allows to obtain information on micron and nanometer level about internal structure of different composites and hybrid materials without their destruction.

  4. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tripathi, Bijay P.; Schieda, M.; Shahi, Vinod K.; Nunes, Suzana P.

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm -1 at 30 °C and 16.8 × 10 -2 S cm -1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level.

  5. Anti-reflective conducting indium oxide layer on nanostructured substrate as a function of aspect ratio

    NASA Astrophysics Data System (ADS)

    Park, Hyun-Woo; Ji, Seungmuk; Lim, Hyuneui; Choi, Dong-won; Park, Jin-Seong; Chung, Kwun-Bum

    2016-09-01

    Antireflective conducting indium oxide layers were deposited using atomic layer deposition on a transparent nanostructured substrate grown using colloidal lithography. In order to explain the changes in the electrical resistivity and the optical transmittance of conducting indium oxide layers depending on various aspect ratios of the nanostructured substrates, we investigated the surface area and refractive index of the indium oxide layers in the film depth direction as a function of aspect ratio. The conformal indium oxide layer on a transparent nanostructured substrate with optimized geometry exhibited transmittance of 88% and resistivity of 7.32 × 10-4 Ω cm. The enhancement of electrical resistivity is strongly correlated with the surface area of the indium oxide layer depending on the aspect ratio of the nanostructured substrates. In addition, the improvement in transparency was explained by the gradual changes of the refractive index in the film depth direction according to the aspect ratio of the nanostructures.

  6. Carbon nanotube nanostructured hybrid materials systems for renewable energy applications

    NASA Astrophysics Data System (ADS)

    Marquis, Fernand D. S.

    2011-01-01

    Global energy demand is growing at an alarming and unsustainable rate, drawing mainly on the use of fossil fuels. These reserves are decreasing rapidly and becoming increasingly expensive. The associated emissions of greenhouse gases and other toxic pollutants are becoming environmentally unacceptable. Energy security has become a major issue as fossil fuels are confined to few areas in the world and their availability is controlled by political, economic, and ecological factors. A global coherent energy strategy that encompasses the entire energy life cycle is required in order to address all the forms of energy harvesting, storage, conversion, transmission, and distribution. Hybrid nanomaterial systems hold the key to fundamental advances in direct renewable energy and energy storage and conversion which are needed to enable renewable energy and meet the general energy challenges and associated environmental effects. This paper presents new approaches and methodologies used to design and develop carbon nanotube nanostructured hybrid nanomaterial systems incorporating structural and light-absorbing electron donor polymers, inorganic semiconductors, metallic and ceramic nanoparticles as energy harvesting and storage systems.

  7. Nanostructured multilayered thin film barriers for Mg{sub 2}Si thermoelectric materials

    SciTech Connect

    Battiston, S.; Boldrini, S.; Fiameni, S.; Agresti, F.; Famengo, A.; Fabrizio, M.; Barison, S.

    2012-06-26

    The Mg{sub 2}Si-based alloys are promising candidates for thermoelectric energy conversion in the middle-high temperature range in order to replace lead compounds. The main advantages of silicide-based thermoelectrics are the nontoxicity and the abundance of their constituent elements in the earth crust. The drawback of such kind of materials is their oxygen sensitivity at high temperature that entails their use under vacuum or inert atmosphere. In order to limit the corrosion phenomena, nanostructured multilayered molybdenum silicide-based materials were deposited via RF magnetron sputtering onto stainless steel, alumina and silicon (100) to set up the deposition process and then onto Mg{sub 2}Si pellets. XRD, EDS, FE-SEM and electrical measurements at high temperature were carried out in order to obtain, respectively, the structural, compositional, morphological and electrical characterization of the deposited coatings. At the end, the mechanical behavior of the system thin film/Mg{sub 2}Si-substrate as a function of temperature and the barrier properties for oxygen protection after thermal treatment in air at high temperature were qualitatively evaluated by FE-SEM.

  8. Enhanced functions of vascular cells on nanostructured Ti for improved stent applications.

    PubMed

    Choudhary, Saba; Haberstroh, Karen M; Webster, Thomas J

    2007-07-01

    Vascular tissue possesses numerous nanostructured surface features, but most metallic vascular stents proposed to restore blood flow are smooth at the nanoscale. Thus, the objective of the present study was to determine in vitro vascular cell functions on nanostructured titanium (Ti) compared to conventional commercially pure (c.p.) Ti. Results of this study showed for the first time greater competitive adhesion of endothelial versus vascular smooth muscle cells on nanostructured Ti compared to conventional Ti after 4 hours. Moreover, when cultured separately, increased endothelial and vascular smooth muscle cell density was observed on nanostructured Ti compared to conventional c.p. Ti after 1, 3, and 5 days; endothelial cells formed confluent monolayers before vascular smooth muscle cells on nanostructured Ti. Results also showed greater total amounts of collagen and elastin synthesis by vascular cells when cultured on nanostructured Ti. Since a major mode of failure of conventional vascular stents is the overgrowth of smooth muscle cells compared to endothelial cells, these results suggest that while the functions of both types of vascular cells were promoted on nanostructured c.p. Ti, endothelial cell functions (of particular importance, cell density or confluence) were enhanced over that of vascular smooth muscle cells. Thus, the present in vitro study showed that vascular stents composed of nanometer c.p. Ti particles may invoke advantageous cellular responses for improved stent applications.

  9. Using cell structures to develop functional nanomaterials and nanostructures--case studies of actin filaments and microtubules.

    PubMed

    Wu, Kevin Chia-Wen; Yang, Chung-Yao; Cheng, Chao-Min

    2014-04-25

    This article is based on the continued development of biologically relevant elements (i.e., actin filaments and microtubules in living cells) as building blocks to create functional nanomaterials and nanostructures that can then be used to manufacture nature-inspired small-scale devices or systems. Here, we summarize current progress in the field and focus specifically on processes characterized by (1) robustness and ease of use, (2) inexpensiveness, and (3) potential expandability to mass production. This article, we believe, will provide scientists and engineers with a more comprehensive understanding of how to mine biological materials and natural design features to construct functional materials and devices.

  10. Carbon nanostructured materials for applications in nano-medicine, cultural heritage, and electrochemical biosensors.

    PubMed

    Valentini, F; Carbone, M; Palleschi, G

    2013-01-01

    This review covers applications of pristine and functionalized single-wall carbon nanotubes (SWCNTs) in nano-medicine, cultural heritage, and biosensors. The physicochemical properties of these engineered nanoparticles are similar to those of ultrafine components of airborne pollution (UF) and might have similar adverse effects. UF may impair cardiovascular autonomic control (inducing a high-risk condition for adverse cardiovascular effects), cause mammalian embryo toxicity, and increase geno-cytotoxic risk. SWCNTs coated with a biopolymer, for example polyethylenimine (PEI), become extremely biocompatible, hence are useful for in-vivo and in-vitro drug delivery and gene transfection. It is also possible to successfully immobilize a human enteric virus on PEI/SWCNT composites, suggesting application as a carrier in non-permissive media. The effectiveness of carbon nanostructured materials in the cleaning, restoration, and consolidation of deteriorated historical surfaces has been widely shown by the use of carbon nanomicelles to remove black dendritic crust from stone surfaces. The nanomicelles, here, have the twofold role of delivery and controlled release of the cleaning agents. The high biocompatibility of functionalized SWCNTs with enzymes and proteins is a fundamental feature used in the assembly of electrochemical biosensors. In particular, a third-generation protoporphyrin IX-based biosensor has been assembled for amperometric detection of nitrite, an environmental pollutant involved in the biodeterioration and black encrustation of historical surfaces.

  11. Nanostructured thin film-based near-infrared tunable perfect absorber using phase-change material

    NASA Astrophysics Data System (ADS)

    Kocer, Hasan

    2015-01-01

    Nanostructured thin film absorbers embedded with phase-change thermochromic material can provide a large level of absorption tunability in the near-infrared region. Vanadium dioxide was employed as the phase-change material in the designed structures. The optical absorption properties of the designed structures with respect to the geometric and material parameters were systematically investigated using finite-difference time-domain computations. Absorption level of the resonance wavelength in the near-IR region was tuned from the perfect absorption level to a low level (17%) with a high positive dynamic range of near-infrared absorption intensity tunability (83%). Due to the phase transition of vanadium dioxide, the resonance at the near-infrared region is being turned on and turned off actively and reversibly under the thermal bias, thereby rendering these nanostructures suitable for infrared camouflage, emitters, and sensors.

  12. Acquisition of a Modified Suction Casting Instrument for the Fabrication of Radiation Tolerant Bulk nNanostructured Metallic Materials

    DTIC Science & Technology

    2015-01-13

    ST, Wang YQ, Farkas D. Are Nanoporous Materials Radiation Resistant? Nano Letters. 2011; 12: 3351-3355. [34] Kiener D, Hosemann P, Maloy S, Minor A...Acquisition of a Modified Suction Casting Instrument for the Fabrication of Radiation Tolerant Bulk nNanostructured Metallic Materials This is the... materials via a modified suction casting technique. The ultimate goal is to provide a platform that supports the design and fabrication of nanostructured

  13. Nanostructured phosphides as photoelectrode materials for artificial photosynthesis

    NASA Astrophysics Data System (ADS)

    Wen, Wen; Collins, Sean M.; Maldonado, Stephen

    2011-10-01

    In this work we describe present experimental results for two related ternary phosphide materials, N-alloyed GaP and ZnGeP2. These materials represent two potential mid-bandgap photoelectrode materials for artificial photosynthetic systems for solar energy conversion/storage. For photoelectrochemical cells designed to generate energyrich chemical fuels under illumination, candidate photoelectrode materials should demonstrate the capacity to sustain large photovoltages and photocurrent densities under solar insolation. The results in this work show that the optical properties of these two materials should enable the possibilities for light collection out past 600 nm. For N-alloyed GaP nanowire films, diffuse reflectance spectra show the increase of light absorption at sub-bandgap wavelengths with increasing NH3(g) used during the annealing step. Corresponding photoelectrochemical data show that the quantum efficiency for light collection at sub-bandgap wavelengths does not follow the same monotonic trend. Separately, we report the first demonstration of ZnGeP2 nanowire films. The as-prepared materials show reflectance responses consistent with a mid-bandgap material featuring a pseudo-direct bandgap.

  14. Solid-state nanostructured materials from self-assembly of a globular protein-polymer diblock copolymer.

    PubMed

    Thomas, Carla S; Glassman, Matthew J; Olsen, Bradley D

    2011-07-26

    Self-assembly of three-dimensional solid-state nanostructures containing approximately 33% by weight globular protein is demonstrated using a globular protein-polymer diblock copolymer, providing a route to direct nanopatterning of proteins for use in bioelectronic and biocatalytic materials. A mutant red fluorescent protein, mCherryS131C, was prepared by incorporation of a unique cysteine residue and site-specifically conjugated to end-functionalized poly(N-isopropylacrylamide) through thiol-maleimide coupling to form a well-defined model protein-polymer block copolymer. The block copolymer was self-assembled into bulk nanostructures by solvent evaporation from concentrated solutions. Small-angle X-ray scattering and transmission electron microscopy illustrated the formation of highly disordered lamellae or hexagonally perforated lamellae depending upon the selectivity of the solvent during evaporation. Solvent annealing of bulk samples resulted in a transition toward lamellar nanostructures with mCherry packed in a bilayer configuration and a large improvement in long-range ordering. Wide-angle X-ray scattering indicated that mCherry did not crystallize within the block copolymer nanodomains and that the β-sheet spacing was not affected by self-assembly. Circular dichroism showed no change in protein secondary structure after self-assembly, while UV-vis spectroscopy indicated approximately 35% of the chromophore remained optically active.

  15. Solid-State Nanostructured Materials from Self-Assembly of a Globular Protein-Polymer Diblock Copolymer

    PubMed Central

    Thomas, Carla S.; Glassman, Matthew J.; Olsen, Bradley D.

    2014-01-01

    Self-assembly of three-dimensional solid-state nanostructures containing approximately 33% by weight globular protein is demonstrated using a globular protein-polymer diblock copolymer, providing a route to direct nanopatterning of proteins for use in bioelectronic and biocatalytic materials. A mutant red fluorescent protein, mCherryS131C, was prepared by incorporation of a unique cysteine residue and site-specifically conjugated to end-functionalized poly(N-isopropylacrylamide) through thiol-maleimide coupling to form a well-defined model protein-polymer block copolymer. The block copolymer was self-assembled into bulk nanostructures by solvent evaporation from concentrated solutions. Small-angle X-ray scattering and transmission electron microscopy illustrated the formation of highly disordered lamellae or hexagonally perforated lamellae depending upon the selectivity of the solvent during evaporation. Solvent annealing of bulk samples resulted in a transition towards lamellar nanostructures with mCherry packed in a bilayer configuration and a large improvement in long range ordering. Wide-angle X-ray scattering indicated that mCherry did not crystallize within the block copolymer nanodomains and that the β-sheet spacing was not affected by self-assembly. Circular dichroism showed no change in protein secondary structure after self-assembly, while UV-vis spectroscopy indicated approximately 35% of the chromophore remained optically active. PMID:21696135

  16. CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS

    SciTech Connect

    Xiao, S.; Heung, L.

    2010-10-07

    Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

  17. Guanidinium-Based Polymerizable Surfactant as a Multifunctional Molecule for Controlled Synthesis of Nanostructured Materials with Tunable Morphologies.

    PubMed

    Ji, Jingwei; Zhu, Wei; Li, Jian; Wang, Peng; Liang, Yun; Zhang, Wanlin; Yin, Xianpeng; Wu, Baozhen; Li, Guangtao

    2017-06-07

    Rationally and efficiently controlling the morphology of nanomaterials plays a crucial role in significantly enhancing their functional properties and expending their applications. In this work, a strategy for controlled synthesis of diverse nanostructured materials with tunable morphologies was developed using a guanidinium-based surfactant with a polymerizable pyrrole unit as a multifunctional molecule that can serve not only as a structure-directing agent for mesostucture formation but also as a monomer and carbon source. The unique self-assembly behavior of the guanidinium head group under different conditions allows the synthesized surfactants to form different aggregates and thus to produce silica nanomaterials with multiple morphologies (such as sphere, disk, fiber, and cocoon) in conjunction with sol-gel chemistry. Besides the mesostructured silicates, by further exploring the polymerization and carbonization features of pyrrole units that were densely packed in the formed silica nanochannels, diverse nanostructured materials such as mesostructured conducting polymers, carbon materials, and metal-nanoparticle (NP)-decorated forms could also be easily obtained in one-pot fashion for various applications, such as energy storage and catalysis. As a demonstration, carbon nanotubes and Pd-NP-doped hollow carbon spheres were fabricated, which exhibited good specific capacitance (101.7 F g(-1)) at the scan rates of 5 mV s(-1) and excellent catalytic performance (100% conversion for three cycles) in the Suzuki C-C coupling reaction, respectively. All of the results indicate that our strategy may open a new avenue for efficiently accessing diverse nanostructured materials with tunable morphologies for wide applications.

  18. Realization of New and Enhanced Materials Properties Through Nanostructural Control

    DTIC Science & Technology

    2007-06-11

    methods have been used to guide the design of novel new organic electroactive materials (e.g., electro - optic binary chromophore organic glasses...These new materials have yielded electro - optic coefficients as high as 450 pm/V (15 times lithium niobate) with auxiliary properties of modest optical... electro - optic activity has been achieved for the first time and theoretical conclusions have been verified by a number of new measurement techniques

  19. Fundamental Understanding and Theoretical Design of Novel Nanostructured Semiconductor Materials

    DTIC Science & Technology

    2012-01-04

    approach, and transport properties including electrical conductivity and Seebeck coefficients using our newly developed transport codes. Specific...photovoltaic materials and transparent conducting oxides. Electronic structure and volume effect on thermoelectric transport in p-type Bi and Sb...technologies. The efficiency of TE materials is represented by the figure of merit, ZT=SlaT/ (Ke+K/.), where S is the Seebeck coefficient, a is the electrical

  20. Realistic performance prediction in nanostructured solar cells as a function of nanostructure dimensionality and density

    NASA Astrophysics Data System (ADS)

    Tobías, I.; Luque, A.; Antolín, E.; García-Linares, P.; Ramiro, I.; Hernández, E.; Martí, A.

    2012-12-01

    The behavior of quantum dot, quantum wire, and quantum well InAs/GaAs solar cells is studied with a very simplified model based on experimental results in order to assess their performance as a function of the low bandgap material volume fraction fLOW. The efficiency of structured devices is found to exceed the efficiency of a non-structured GaAs cell, in particular under concentration, when fLOW is high; this condition is easier to achieve with quantum wells. If three different quasi Fermi levels appear with quantum dots the efficiency can be much higher.

  1. Nanostructured energetic materials using sol-gel methodologies

    SciTech Connect

    Tillotson, T M; Simpson, R L; Hrubesh, L W; Gash, A E; Thomas, I M; Poco, J F

    2000-09-27

    The fundamental differences between energetic composites and energetic materials made from a monomolecular approach are the energy density attainable and the energy release rates. For the past 4 years, we have been exploiting sol-gel chemistry as a route to process energetic materials on a microstructural scale. At the last ISA conference, we described four specific sol-gel approaches to fabricating energetic materials and presented our early work and results on two methods - solution crystallization and powder addition. Here, we detail our work on a third approach, energetic nanocomposites. Synthesis of thermitic types of energetic nanocomposites are presented using transition and main group metal-oxide skeletons. Results on characterization of structure and performance will also be given.

  2. Electromagnetic functionalized and core-shell micro/nanostructured polypyrrole composites.

    PubMed

    Li, Xin; Wan, Meixiang; Wei, Yen; Shen, Jiaoyan; Chen, Zhaojia

    2006-08-03

    Core-shell micro/nanostructured and electromagnetic functionalized polypyrrole (PPy) composites were prepared by a self-assembly process associated with the template method in the presence of p-toluenesulfonate acid (p-TSA) as the dopant, in which the spherical hydroxyl iron (Fe[OH], 0.5-5 microm in diameter) functioned not only as the hard template, but also as the "core" of the micro/nanostructure, and the self-assembled PPy-p-TSA nanofibers (20-30 nm in diameter) acted as the "shell" (50-100 nm in thickness) of the microspheres. We found that the core-shell micro/nanostructures exhibit controllable electromagnetic properties by adjusting the mass ratio of Fe[OH] to pyrrole monomer. The micelle model was proposed to interpret the self-assembly of the core-shell micro/nanostructured composites.

  3. Nanostructured polyoxometalate arrays with unprecedented properties and functions.

    SciTech Connect

    Dunphy, Darren Robert; Brinker, C. Jeffrey; Singh, Seema; Nyman, May Devan

    2003-11-01

    Polyoxometalates (POMs) are ionic (usually anionic) metal -oxo clusters that are both functional entities for a variety of applications, as well as structural units that can be used as building blocks if reacted under appropriate conditions. This is a powerful combination in that functionality can be built into materials, or doped into matrices. Additionally, by assembling functional POMs in ordered materials, new collective behaviors may be realized. Further, the vast variety of POM geometries, compositions and charges that are achievable gives this system a high degree of tunability. Processing conditions to link together POMs to build materials offer another vector of control, thus providing infinite possibilities of materials that can he nano-engineered through POM building blocks. POM applications that can be built into POM-based materials include catalysis, electro-optic and electro-chromic, anti-viral, metal binding, and protein binding. We have begun to explore three approaches in developing this field of functional, nano-engineered POM-based materials; and this report summarizes the work carried out for these approaches to date. The three strategies are: (1) doping POMs into silica matrices using sol-gel science, (2) forming POM-surfactant arrays and metal-POM-surfactant arrays, (3) using aerosol-spray pyrolysis of the POM-surfactant arrays to superimpose hierarchical architecture by self-assembly during aerosol-processing. Doping POMs into silica matrices was successful, but the POMs were partially degraded upon attempts to remove the structure-directing templates. The POM-surfactant and metal-POM-surfactant arrays approach was highly successful and holds much promise as a novel approach to nano-engineering new materials from structural and functional POM building blocks, as well as forming metastable or unusual POM geometries that may not be obtained by other synthetic methods. The aerosol-assisted self assembly approach is in very preliminary state of

  4. In situ neutron scattering study of nanostructured PbTe-PbS bulk thermoelectric material

    SciTech Connect

    Ren, Fei; Schmidt, Robert D; Case, Eldon D; An, Ke

    2016-01-01

    Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570 600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.

  5. Nano-structured Materials in New and Existing Buildings: To Improved Performance and Saving of Energy

    NASA Astrophysics Data System (ADS)

    Scalisi, F.

    Improving well-being in buildings, in relation to energy conservation, represents a great challenge. In southern Italy a basic problem is that of keeping buildings cool in the summer months. This problem affects not only newly-erected buildings, but also the large number of existing buildings, some of which are of historical importance. Nano-technology represents an excellent opportunity to harness the salvage of existing buildings to the living requirements of contemporary society. The use of nano-structured materials in newly-erected buildings will lead to improved performance and a considerable saving of energy. Above all, the use of nano-structured materials in existing buildings will provide the possibility of intervention in these buildings and help improve, for example, insulation or lighting, without invasive intervention and consequent damage to the building itself.

  6. Temperature Prediction in a Free-Burning Arc and Electrodes for Nanostructured Materials and Systems.

    PubMed

    Lee, Won-Ho; Kim, Youn-Jea; Lee, Jong-Chul

    2015-11-01

    Temperature in a free-burning arc used for synthesis of nanoparticles and nanostructured materials is generally around 20,000 K just below the cathode, falling to about 15,000 K just above the anode, and decreasing rapidly in the radial direction. Therefore, the electrode erosion is indispensable for these atmospheric plasma systems, as well as for switching devices, due to the high heat flux transferred from high temperature arcs to electrodes, but experimental and theoretical works have not identified the characteristic phenomena because of the complex physical processes. To the previous study, we have focused on the arc self-induced fluid flow in a free-burning arc using the computational fluid dynamics (CFD) technique. At this time, our investigation is concerned with the whole region of free-burning high-intensity arcs including the tungsten cathode, the arc plasma and the anode using a unified numerical model for applying synthesis of nanoparticles and nanostructured materials practically.

  7. Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference.

    PubMed

    Yang, Qiaoyin; Zhang, Xu A; Bagal, Abhijeet; Guo, Wei; Chang, Chih-Hao

    2013-06-14

    Thin-film interference is a well-known effect, and it is commonly observed in the colored appearance of many natural phenomena. Caused by the interference of light reflected from the interfaces of thin material layers, such interference effects can lead to wavelength and angle-selective behavior in thin-film devices. In this work, we describe the use of interfacial nanostructures to eliminate interference effects in thin films. Using the same principle inspired by moth-eye structures, this approach creates an effective medium where the index is gradually varying between the neighboring materials. We present the fabrication process for such nanostructures at a polymer-silicon interface, and experimentally demonstrate its effectiveness in suppressing thin-film interference. The principle demonstrated in this work can lead to enhanced efficiency and reduce wavelength/angle sensitivity in multilayer optoelectronic devices.

  8. In Situ Neutron Scattering Study of Nanostructured PbTe-PbS Bulk Thermoelectric Material

    NASA Astrophysics Data System (ADS)

    Ren, Fei; Schmidt, Robert; Case, Eldon D.; An, Ke

    2017-05-01

    Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570-600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.

  9. Sustainable approach toward synthesis of green functional carbonaceous 3-D micro/nanostructures from biomass

    NASA Astrophysics Data System (ADS)

    Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2013-08-01

    This study proposes a novel technique to synthesize functional carbonaceous three-dimensional (3-D) micro/nanocompounds from agricultural by-products using femtosecond laser irradiation. Biowastes of rice husk and wheat straw are value-engineered to carbonaceous structures in a single-step process under ambient conditions. Our results demonstrate that by controlling the laser fluence, structures with a variety of different morphologies from nanostructures to microstructures can be achieved. Also, the results indicate that altering the laser processing parameters influences the chemical composition of the synthesized structures. This sustainable approach presents an important step towards synthesizing 3-D micro/nanofibrous compounds from biowaste materials. These structures, as-synthesized or as nanocomposite fillers, can have practical uses in electronic, sensing, biological, and environmental applications.

  10. Realization of New and Enhanced Materials Properties Through Nanostructural Control

    DTIC Science & Technology

    2006-05-15

    Fifield, L. R. Dalton, A. Mazzoldi, D. De-Rossi, I. I. Khayrullin , and R. H. Baughman, "Pneumatic Carbon Nanotube Actuators," Adv. Mater., 14, 1728-32 (2002... Khayrullin , and B. H. Baughman, "Pneumatic Actuator Response from Carbon Nanotube Sheets," Materials Research Society Symposium Proceedings, v. 706

  11. Producing Three Dimensional Nanostructured Magnetic Materials for Novel Magnetic Devices

    DTIC Science & Technology

    2012-02-22

    Hc) and remanance magnetization (Mr). A review of our processing technique was published in Annual Review of Materials Research [2]. (c...crystallographic magnetic directions can have higher coercivities, remanences , and/or exchange coupling. We produced preferentially ordered magnetic iron

  12. Nanostructured Interfaces for Organized Mesoscopic Biotic-Abiotic Materials

    DTIC Science & Technology

    2011-09-30

    material for lithium batteries and solar cells . Previously, the proteins silicatein, lysozyme, silaffins, and amino- acids have been employed for...a fundamental basis for prospective ultra-sensing platform from hybrid organized nanomaterials for chemical, optical, and biological applications...with potential for dramatic miniaturization and superior sensitivity of lightweight hybrid sensor arrays. Students trained in this field will form a

  13. Ordered Nanostructured Amphiphile Self-Assembly Materials from Endogenous Nonionic Unsaturated Monoethanolamide Lipids in Water

    SciTech Connect

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Moghaddam, Minoo; Seddon, John M.; Drummond, Calum J.

    2010-08-23

    The self-assembly, solid state and lyotropic liquid crystalline phase behavior of a series of endogenous n-acylethanolamides (NAEs) with differing degrees of unsaturation, viz., oleoyl monoethanolamide, linoleoyl monoethanolamide, and linolenoyl monoethanolamide, have been examined. The studied molecules are known to possess inherent biological function. Both the monoethanolamide headgroup and the unsaturated hydrophobe are found to be important in dictating the self-assembly behavior of these molecules. In addition, all three molecules form lyotropic liquid crystalline phases in water, including the inverse bicontinuous cubic diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) phases. The ability of the NAE's to form inverse cubic phases and to be dispersed into ordered nanostructured colloidal particles, cubosomes, in excess water, combined with their endogenous nature and natural medicinal properties, makes this new class of soft mesoporous amphiphile self-assembly materials suitable candidates for investigation in a variety of advanced multifunctional applications, including encapsulation and controlled release of therapeutic agents and incorporation of medical imaging agents.

  14. Multiscale Methods for the Systematic Analysis and Design of Nanostructures and Nanostructrued Materials

    DTIC Science & Technology

    2012-02-22

    coming from the Hellmann- Feynman theorem based on full Born-Oppenheimer quantum mechanics. The manifold also depends on time in an explicit way. The...James, Objective formulas, preprint. [5] Kaushik Dayal and Richard D. James, Nonequilibrium molecular dynamics for bulk materi- als and...nanostructures. J. Mech. Phys. Solids 58 (2010), 145-163. [6] Kaushik Dayal and Richard D. James, Design of viscometers corresponding to a universal molecular

  15. High-capacity nanostructured germanium-containing materials and lithium alloys thereof

    DOEpatents

    Graetz, Jason A.; Fultz, Brent T.; Ahn, Channing; Yazami, Rachid

    2010-08-24

    Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula Si.sub.zGe.sub.(z-1), where 0

  16. Functional micro/nanostructures: simple synthesis and application in sensors, fuel cells, and gene delivery.

    PubMed

    Guo, Shaojun; Wang, Erkang

    2011-07-19

    In order to develop new, high technology devices for a variety of applications, researchers would like to better control the structure and function of micro/nanomaterials through an understanding of the role of size, shape, architecture, composition, hybridization, molecular engineering, assembly, and microstructure. However, researchers continue to face great challenges in the construction of well-defined micro/nanomaterials with diverse morphologies. At the same time, the research interface where micro/nanomaterials meet electrochemistry, analytical chemistry, biomedicine, and other fields provides rich opportunities to reveal new chemical, physical, and biological properties of micro/nanomaterials and to uncover many new functions and applications of these materials. In this Account, we describe our recent progress in the construction of novel inorganic and polymer nanostructures formed through different simple strategies. Our synthetic strategies include wet-chemical and electrochemical methods for the controlled production of inorganic and polymer nanomaterials with well-defined morphologies. These methods are both facile and reliable, allowing us to produce high-quality micro/nanostructures, such as nanoplates, micro/nanoflowers, monodisperse micro/nanoparticles, nanowires, nanobelts, and polyhedron and even diverse hybrid structures. We implemented a series of approaches to address the challenges in the preparation of new functional micro/nanomaterials for a variety of important applications This Account also highlights new or enhanced applications of certain micro/nanomaterials in sensing applications. We singled out analytical techniques that take advantage of particular properties of micro/nanomaterials. Then by rationally tailoring experimental parameters, we readily and selectively obtained different types of micro/nanomaterials with novel morphologies with high performance in applications such as electrochemical sensors, electrochemiluminescent sensors

  17. A Hybrid Laser/Aerosol Method for the Synthesis of Porous Nanostructured Calcium Phosphate Materials for Bone Tissue Engineering Applications

    DTIC Science & Technology

    2005-01-01

    carbon-based materials [4]. Nanostructured calcium phosphate bioceramics comprising mixtures of resorbable and nonresorbable calcium phosphate phases are...over the phase composition and microstructure of coatings of these mixtures, establishing them as suitable bioceramic substrates for bone tissue

  18. Sensors as probes for the environmental dynamics of nanostructured materials

    NASA Astrophysics Data System (ADS)

    Sadik, Wunmi

    2012-02-01

    The last decade has witnessed an explosion of interests in the science and technology of engineered nanomaterials. The primary drive for most nanotechnology research and development is to synthesize new nanomaterials and to identify novel applications for them. Nanomaterials offer new possibilities for the development of novel sensing and monitoring technologies. Nanosensors can be classified under two main categories: (1) sensors that are used to measure nanoscale properties; and (2) sensors that are themselves nanoscale or have nanoscale materials or components. The first category can enhance our understanding of the fate and transport of engineered nanomaterials in environmental and biological systems. This is an area of critical interest in risk assessment. The second category can eventually result in lower material cost, reduced weight and power consumption. This presentation will focus on category 1 sensor for fullerenes and metal nanoparticles.

  19. Formation of nanostructural materials induced by mechanical processings (overview)

    NASA Astrophysics Data System (ADS)

    Gaffet, E.; Abdellaoui, M.; Malhouroux-Gaffet, N.

    1995-02-01

    Mechanical alloying (MA) was firstly developed to synthesize metallic matrix composite by mechanically incorporating preformed oxide and or carbide particles into a metallic matrix. A compaction process is then applied to obtain bulk materials. During MA, powders are repeatedly welded, fractured and rewelded in a high-energy mill leading to an intimate mixing on a nano/micro-scale with the possible formation of far-from-equilibrium phases. The versatility of MA is well-known; high-volume, low-energy mills can be used to commercially produce dispersion-strengthened Al, Ni and other transition metal alloys. An overview of the dynamics of the process is presented to help gain a full appreciation of the industrial potential of the technique for synthesizing materials.

  20. Enhancement of Radiation Tolerance by Interfaces in Nanostructured Metallic Materials

    DTIC Science & Technology

    2013-06-05

    heavy ion irradiation can create a large amount of defect clusters, including bubbles, voids, and dislocation loops in irradiated metallic materials...frequently due to irradiation - induced point defects and clusters, as well as diminished dislocation activities. In bulk metals , the concentration of...Fu, A. Misra, M. J. Demkowicz, X. Zhang. Interface-enabled defect reduction in He ion irradiated metallic multilayers, JOM, (12 2010): 75. doi

  1. Temperature-dependent thermal conductivity in silicon nanostructured materials studied by the Boltzmann transport equation

    NASA Astrophysics Data System (ADS)

    Romano, Giuseppe; Esfarjani, Keivan; Strubbe, David A.; Broido, David; Kolpak, Alexie M.

    2016-01-01

    Nanostructured materials exhibit low thermal conductivity because of the additional scattering due to phonon-boundary interactions. As these interactions are highly sensitive to the mean free path (MFP) of phonons, MFP distributions in nanostructures can be dramatically distorted relative to bulk. Here we calculate the MFP distribution in periodic nanoporous Si for different temperatures, using the recently developed MFP-dependent Boltzmann transport equation. After analyzing the relative contribution of each phonon branch to thermal transport in nanoporous Si, we find that at room temperature optical phonons contribute 17 % to heat transport, compared to 5 % in bulk Si. Interestingly, we observe a constant thermal conductivity over the range 200 K nanostructured materials and demonstrate the necessity of multiscale heat transport engineering, in which the bulk material and geometry are optimized concurrently.

  2. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    NASA Technical Reports Server (NTRS)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; hide

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  3. Nanoscale Ordering of Functional Materials by Guided Self-Assembly for Photovoltaic Application: Synthesis and Characterizations

    DTIC Science & Technology

    2007-03-19

    resulting materials to photovoltaic applications 2. Description and Background of Research Organic thin films and nanostructures have attracted...applications, the devices performance is crucially dependent on the ordering and concentration of the functional molecules in the film or the nanostructure ...dithienylpyrrole triads (Figure 4). The π-conjugated 2,5- pyrrole moieties were chosen both as photo-excited electron donor segment and light absorbing chromophore

  4. Methods for high volume production of nanostructured materials

    DOEpatents

    Ripley, Edward B [Knoxville, TN; Morrell, Jonathan S [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Ludtka, Gerald M [Oak Ridge, TN

    2011-03-22

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  5. Pb-Pu superlattices: an example of nanostructured actinide materials.

    PubMed

    Rudin, Sven P

    2007-03-16

    Density functional theory applied to Pb-Pu superlattices reveals two competing phases separated by a Mott transition between itinerant and localized 5f electrons. One phase, corresponding to Pu's bulk alpha phase, exhibits paired up Pu planes, thereby broadening the 5f bandwidth. Allowing spin polarization to emulate the energetics of electron correlation leads to another phase with larger volume, narrow 5f bandwidth, and more uniform local crystal structure, similar to bulk fcc Pu.

  6. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect

    Sigmund, Wolfgang M.; Woan, Karran V.; Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  7. Dinuclear transition metal complexes in carbon nanostructured materials synthesis

    NASA Astrophysics Data System (ADS)

    Ayuso, J. I.; Hernández, E.; Delgado, E.

    2013-06-01

    Carbon nanomaterials (CNMs) were prepared with two similar techniques using organometallic complexes as catalysts precursors. Chemical vapour deposition (CVD) and pyrolysis with chlorine gas approaches were employed in order to explore the effect of dinuclear transition metal compounds [Fe2(CO)6(μ-S2C6H2X2), (X=OH, Cl)] in synthesis of CNMs. Our to-date results have shown these complexes generate different carbonaceous materials when they are used in bulk, it was also observed that their performances in synthesis differ even though these compounds are analogous. With X=OH complex used in CVD process, metal nanoparticles of ca. 20-50 nm in size and embedded in carbon matrix were obtained. X=C1 complex has been used in pyrolysis experiments and showed an entire volatilisation or no reaction, depending on selected temperature. Furthermore, obtaining of a new tetranuclear iron cluster is presented in this work.

  8. Silver nanowires--unique templates for functional nanostructures.

    PubMed

    Sun, Yugang

    2010-09-01

    This feature article reviews the synthesis and application of silver nanowires with the focus on a polyol process that is capable of producing high quality silver nanowires with high yield. The as-synthesized silver nanowires can be used as both physical templates for the synthesis of metal/dielectric core/shell nanowires and chemical templates for the synthesis of metal nanotubes as well as semiconductor nanowires. Typical examples including Ag/SiO(2) coaxial nanocables, single- and multiple-walled nanotubes made of Au-Ag alloy, AgCl nanowires and AgCl/Au core/shell nanowires are discussed in detail to illustrate the versatility of nanostructures derived from silver nanowire templates. Novel properties associated with these one-dimensional nanostructures are also briefly discussed to shed the light on their potential applications in electronics, photonics, optoelectronics, catalysis, and medicine.

  9. Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion.

    PubMed

    Chen, Kan-Sheng; Xu, Rui; Luu, Norman S; Secor, Ethan B; Hamamoto, Koichi; Li, Qianqian; Kim, Soo; Sangwan, Vinod K; Balla, Itamar; Guiney, Linda M; Seo, Jung-Woo T; Yu, Xiankai; Liu, Weiwei; Wu, Jinsong; Wolverton, Chris; Dravid, Vinayak P; Barnett, Scott A; Lu, Jun; Amine, Khalil; Hersam, Mark C

    2017-04-12

    Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-based lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 °C, this work advances lithium-ion battery technology into unprecedented regimes of operation.

  10. Hexagonal CeO2 nanostructures: an efficient electrode material for supercapacitors.

    PubMed

    Maheswari, Nallappan; Muralidharan, Gopalan

    2016-09-28

    Cerium oxide (CeO2) has emerged as a new and promising pseudocapacitive material due to its prominent valance states and extensive applications in various fields. In the present study, hexagonal CeO2 nanostructures have been prepared via the hydrothermal method employing cationic surfactant cetyl trimethyl ammonium bromide (CTAB). CTAB ensures a slow rate of hydrolysis to form small sized CeO2 nanostructures. The role of calcination temperature on the morphological, structural, electrochemical properties and cyclic stability has been assessed for supercapacitor applications. The mesoscopic hexagonal architecture endows the CeO2 with not only a higher specific capacity, but also with an excellent rate capability and cyclability. When the charge/discharge current density is increased from 2 to 10 A g(-1) the reversible charge capacity decreased from 927 F g(-1) to 475 F g(-1) while 100% capacity retention at a high current density of 20 A g(-1) even after 1500 cycles could be achieved. Furthermore, the asymmetric supercapacitor based on CeO2 exhibited a significantly higher energy density of 45.6 W h kg(-1) at a power density of 187.5 W kg(-1) with good cyclic stability. The electrochemical richness of the CeO2 nanostructure makes it a suitable electrode material for supercapacitor applications.

  11. Nanostructured inorganic materials: Synthesis and associated electrochemical properties

    NASA Astrophysics Data System (ADS)

    Yau, Shali Zhu

    Synthetic strategy for preparing potential battery materials at low temperature was developed. Magnetite (Fe3O4), silver hollandnite (AgxMn8O16), magnesium manganese oxide (MgxMnO 2˙yH2O), and silver vanadium phosphorous oxide (Ag 2VO2PO4) were studied. Magnetite (Fe3O4) was prepared by coprecipitation induced by triethylamine from aqueous iron(II) and iron(III) chloride solutions of varying concentrations. Variation of the iron(II) and iron(III) concentrations results in crystallite size control of the Fe3O4 products. Materials characterization of the Fe3O4 samples is reported, including Brunauer-Emmitt-Teller (BET) surface area, x-ray powder diffraction (XRD), transmission electron microscopy (TEM), particle size, and saturation magnetization results. A strong correlation between discharge capacity and voltage recovery behavior versus crystallite size was observed when tested as an electrode material in lithium electrochemical cells. Silver hollandite (AgxMn8O16) was successfully synthesized through a low temperature reflux reaction. The crystallite size and silver content of AgxMn8O16 by varying the reactant ratio of silver permanganate (AgMnO4) and manganese sulfate monohydrate (MnSO4˙H2O). Silver hollandite was characterized by Brunauer-Emmitt-Teller (BET) surface area, inductively coupled plasma-optical emission (ICP-OES) spectrometry, helium pycnometry, simultaneous thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), and x-ray powder diffraction (XRD). The crystallite size showed a strong correlation with silver content, BET surface area, and particle sizes. The silver hollandite cathode showed good discharge capacity retention in 30 cycles of discharge-charge. There were a good relationship between crystallite size and rate capability and pulse ability. Magnesium manganese oxide (MgxMnO2˙yH 2O) was made by redox reaction by mixing sodium hydroxide (NaOH), manganese sulfate monohydrate (MnSO4˙HO2), and potassium persulfate (K2S2O8

  12. Synthesis and characterization of inorganic nanostructured materials for advanced energy storage

    NASA Astrophysics Data System (ADS)

    Xie, Jin

    The performance of advanced energy storage devices is intimately connected to the designs of electrodes. To enable significant developments in this research field, we need detailed information and knowledge about how the functions and performances of the electrodes depend on their chemical compositions, dimensions, morphologies, and surface properties. This thesis presents my successes in synthesizing and characterizing electrode materials for advanced electrochemical energy storage devices, with much attention given to understanding the operation and fading mechanism of battery electrodes, as well as methods to improve their performances and stabilities. This dissertation is presented within the framework of two energy storage technologies: lithium ion batteries and lithium oxygen batteries. The energy density of lithium ion batteries is determined by the density of electrode materials and their lithium storage capabilities. To improve the overall energy densities of lithium ion batteries, silicon has been proposed to replace lithium intercalation compounds in the battery anodes. However, with a ~400% volume expansion upon fully lithiation, silicon-based anodes face serious capacity degradation in battery operation. To overcome this challenge, heteronanostructure-based Si/TiSi2 were designed and synthesized as anode materials for lithium ion batteries with long cycling life. The performance and morphology relationship was also carefully studied through comparing one-dimensional and two-dimensional heteronanostructure-based silicon anodes. Lithium oxygen batteries, on the other hand, are devices based on lithium conversion chemistries and they offer higher energy densities compared to lithium ion batteries. However, existing carbon based electrodes in lithium oxygen batteries only allow for battery operation with limited capacity, poor stability and low round-trip efficiency. The degradation of electrolytes and carbon electrodes have been found to both contribute

  13. Physical Delivery of Macromolecules using High-Aspect Ratio Nanostructured Materials.

    PubMed

    Lee, Kunwoo; Lingampalli, Nithya; Pisano, Albert P; Murthy, Niren; So, Hongyun

    2015-10-28

    There is great need for the development of an efficient delivery method of macromolecules, including nucleic acids, proteins, and peptides, to cell cytoplasm without eliciting toxicity or changing cell behavior. High-aspect ratio nanomaterials have addressed many challenges present in conventional methods, such as cell membrane passage and endosomal degradation, and have shown the feasibility of efficient high-throughput macromolecule delivery with minimal perturbation of cells. This review describes the recent advances of in vitro and in vivo physical macromolecule delivery with high-aspect ratio nanostructured materials and summarizes the synthesis methods, material properties, relevant applications, and various potential directions.

  14. MATERIALS, FABRICATION, AND MANUFACTURING OF MICRO/NANOSTRUCTURED SURFACES FOR PHASE-CHANGE HEAT TRANSFER ENHANCEMENT

    SciTech Connect

    McCarthy, M; Gerasopoulos, K; Maroo, SC; Hart, AJ

    2014-07-23

    This article describes the most prominent materials, fabrication methods, and manufacturing schemes for micro- and nanostructured surfaces that can be employed to enhance phase-change heat transfer phenomena. The numerous processes include traditional microfabrication techniques such as thin-film deposition, lithography, and etching, as well as template-assisted and template-free nanofabrication techniques. The creation of complex, hierarchical, and heterogeneous surface structures using advanced techniques is also reviewed. Additionally, research needs in the field and future directions necessary to translate these approaches from the laboratory to high-performance applications are identified. Particular focus is placed on the extension of these techniques to the design of micro/nanostructures for increased performance, manufacturability, and reliability. The current research needs and goals are detailed, and potential pathways forward are suggested.

  15. Novel preparation of highly photocatalytically active copper chromite nanostructured material via a simple hydrothermal route

    PubMed Central

    Beshkar, Farshad; Zinatloo-Ajabshir, Sahar; Bagheri, Samira; Salavati-Niasari, Masoud

    2017-01-01

    Highly photocatalytically active copper chromite nanostructured material were prepared via a novel simple hydrothermal reaction between [Cu(en)2(H2O)2]Cl2 and [Cr(en)3]Cl3.3H2O at low temperature, without adding any pH regulator or external capping agent. The as-synthesized nanostructured copper chromite was analyzed by transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Results of the morphological investigation of the as-synthesized products illustrate that the shape and size of the copper chromite depended on the surfactant sort, reaction duration and temperature. Moreover, the photocatalytic behavior of as-obtained copper chromite was evaluated by photodegradation of acid blue 92 (anionic dye) as water pollutant. PMID:28582420

  16. Novel preparation of highly photocatalytically active copper chromite nanostructured material via a simple hydrothermal route.

    PubMed

    Beshkar, Farshad; Zinatloo-Ajabshir, Sahar; Bagheri, Samira; Salavati-Niasari, Masoud

    2017-01-01

    Highly photocatalytically active copper chromite nanostructured material were prepared via a novel simple hydrothermal reaction between [Cu(en)2(H2O)2]Cl2 and [Cr(en)3]Cl3.3H2O at low temperature, without adding any pH regulator or external capping agent. The as-synthesized nanostructured copper chromite was analyzed by transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Results of the morphological investigation of the as-synthesized products illustrate that the shape and size of the copper chromite depended on the surfactant sort, reaction duration and temperature. Moreover, the photocatalytic behavior of as-obtained copper chromite was evaluated by photodegradation of acid blue 92 (anionic dye) as water pollutant.

  17. Functionalized bridged silsesquioxane-based nanostructured microspheres: performance as novel drug-delivery devices in bone tissue-related applications.

    PubMed

    Romeo, Hernán Esteban; Fanovich, María Alejandra

    2012-05-01

    Two kinds of functionalized nanostructured hybrid microspheres, based on the bridged silsesquioxane family, were synthesized by employing the sol-gel method via self-assembly of two different organic-inorganic bridged monomers. The architecture reached at molecular level allowed the incorporation of acetylsalicylic acid (ASA) as an anti-inflammatory model drug. The ASA-functionalized microspheres were characterized as delivery devices in simulated body fluid (SBF). The release behaviors of the synthesized microspheres (Fickian or anomalous diffusion mechanisms) were shown to be dependent on the chemical nature of the bridged monomers employed to synthesize the hybrid materials. The functionalized microspheres were proposed as delivery systems into calcium phosphate cements (CPCs), in order to slow down the characteristic drug-delivery kinetics of this kind of bone tissue-related materials. The incorporation of the new functionalized microparticles into the CPCs represented a viable methodology to modify the ASA-release kinetics in comparison to a conventional CPC containing the drug dispersed into the solid phase. The ASA-delivery profiles obtained from the microsphere-loaded CPCs showed that 40-60% of drug can be released after 2 weeks of testing in SBF. The inclusion of the microspheres into the CPC matrices allowed modification of the release profiles through a mechanism that involved two stages: (1) the diffusion of the drug through the organic-inorganic matrix of the microspheres (according to a Fickian or anomalous diffusion, depending on the nanostructuring) and (2) the subsequent diffusion of the drug through the ceramic matrix of the hardened cements. The release behavior of the composite cements was shown to be dependent on the nanostructuring of the hybrid microspheres, which can be selectively tailored by choosing the desired chemical structure of the bridged precursors employed in the sol-gel synthesis. The obtained results demonstrated the ability of

  18. Nanostructured carbon materials for adsorption of methane and other gases

    DOEpatents

    Stadie, Nicholas P.; Fultz, Brent T.; Ahn, Channing; Murialdo, Maxwell

    2015-06-30

    Provided are methods for storing gases on porous adsorbents, methods for optimizing the storage of gases on porous adsorbents, methods of making porous adsorbents, and methods of gas storage of optimized compositions, as in systems containing porous adsorbents and gas adsorbed on the surface of the porous adsorbent. The disclosed methods and systems feature a constant or increasing isosteric enthalpy of adsorption as a function of uptake of the gas onto the exposed surface of a porous adsorbent. Adsorbents with a porous geometry and surface dimensions suited to a particular adsorbate are exposed to the gas at elevated pressures in the specific regime where n/V (density) is larger than predicted by the ideal gas law by more than several percent.

  19. Anisotropic Thermal Properties of Nanostructured Magnetic, Carbon and Hybrid Magnetic - Carbon Materials

    NASA Astrophysics Data System (ADS)

    Ramirez, Sylvester

    In this dissertation research we investigated thermal properties of three groups of nanostructured materials: (i) magnetic; (ii) reduced graphene oxide films; and (iii) hybrid magnetic -- graphite -- graphene composites. The thermal measurements were conducted using the transient "hot disk" and "laser flash" techniques. The rare-earth free nanostructured SrFe12O19 permanent magnets were produced by the current activated pressure assisted densification technique. The thermal conductivity of the nanostructured bulk magnets was found to range from 3.8 to 5.6 W/mK for the in-plane and 2.36 W/mk to 2.65 W/mK for the cross-plane directions, respectively. The heat conduction was dominated by phonons near the room temperature. The anisotropy of heat conduction was explained by the brick-like alignment of crystalline grains with the longer grain size in-plane direction. The thermal conductivity scales up with the average grain size and mass density of the material revealing weak temperature dependence. Using the nanostructured ferromagnetic Fe3O4 composites as an example system, we incorporated graphene and graphite fillers into magnetic material without changing their morphology. It was demonstrated that addition of 5 wt. % of equal mixture of graphene and graphite flakes to the composite results in a factor of x2.6 enhancement of the thermal conductivity without significant degradation of the saturation magnetization. We investigated thermal conductivity of free-standing reduced graphene oxide films subjected to a high-temperature treatment of up to 1000°C. It was found that the high-temperature annealing dramatically increased the in-plane thermal conductivity, K, of the films from ˜3 W/mK to ˜61 W/mK at room temperature. The cross-plane thermal conductivity, K⊥, revealed an interesting opposite trend of decreasing to a very small value of ˜0.09 W/mK in the reduced graphene oxide films annealed at 1000°C. The obtained films demonstrated an exceptionally strong

  20. Protein-driven RNA nanostructured devices that function in vitro and control mammalian cell fate.

    PubMed

    Shibata, Tomonori; Fujita, Yoshihiko; Ohno, Hirohisa; Suzuki, Yuki; Hayashi, Karin; Komatsu, Kaoru R; Kawasaki, Shunsuke; Hidaka, Kumi; Yonehara, Shin; Sugiyama, Hiroshi; Endo, Masayuki; Saito, Hirohide

    2017-09-14

    Nucleic acid nanotechnology has great potential for future therapeutic applications. However, the construction of nanostructured devices that control cell fate by detecting and amplifying protein signals has remained a challenge. Here we design and build protein-driven RNA-nanostructured devices that actuate in vitro by RNA-binding-protein-inducible conformational change and regulate mammalian cell fate by RNA-protein interaction-mediated protein assembly. The conformation and function of the RNA nanostructures are dynamically controlled by RNA-binding protein signals. The protein-responsive RNA nanodevices are constructed inside cells using RNA-only delivery, which may provide a safe tool for building functional RNA-protein nanostructures. Moreover, the designed RNA scaffolds that control the assembly and oligomerization of apoptosis-regulatory proteins on a nanometre scale selectively kill target cells via specific RNA-protein interactions. These findings suggest that synthetic RNA nanodevices could function as molecular robots that detect signals and localize target proteins, induce RNA conformational changes, and programme mammalian cellular behaviour.Nucleic acid nanotechnology has great potential for future therapeutic applications. Here the authors build protein-driven RNA nanostructures that can function within mammalian cells and regulate the cell fate.

  1. Cyclic density functional theory: A route to the first principles simulation of bending in nanostructures

    NASA Astrophysics Data System (ADS)

    Banerjee, Amartya S.; Suryanarayana, Phanish

    2016-11-01

    We formulate and implement Cyclic Density Functional Theory (Cyclic DFT) - a self-consistent first principles simulation method for nanostructures with cyclic symmetries. Using arguments based on Group Representation Theory, we rigorously demonstrate that the Kohn-Sham eigenvalue problem for such systems can be reduced to a fundamental domain (or cyclic unit cell) augmented with cyclic-Bloch boundary conditions. Analogously, the equations of electrostatics appearing in Kohn-Sham theory can be reduced to the fundamental domain augmented with cyclic boundary conditions. By making use of this symmetry cell reduction, we show that the electronic ground-state energy and the Hellmann-Feynman forces on the atoms can be calculated using quantities defined over the fundamental domain. We develop a symmetry-adapted finite-difference discretization scheme to obtain a fully functional numerical realization of the proposed approach. We verify that our formulation and implementation of Cyclic DFT is both accurate and efficient through selected examples. The connection of cyclic symmetries with uniform bending deformations provides an elegant route to the ab-initio study of bending in nanostructures using Cyclic DFT. As a demonstration of this capability, we simulate the uniform bending of a silicene nanoribbon and obtain its energy-curvature relationship from first principles. A self-consistent ab-initio simulation of this nature is unprecedented and well outside the scope of any other systematic first principles method in existence. Our simulations reveal that the bending stiffness of the silicene nanoribbon is intermediate between that of graphene and molybdenum disulphide - a trend which can be ascribed to the variation in effective thickness of these materials. We describe several future avenues and applications of Cyclic DFT, including its extension to the study of non-uniform bending deformations and its possible use in the study of the nanoscale flexoelectric effect.

  2. Doping in controlling the type of conductivity in bulk and nanostructured thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Fuks, D.; Komisarchik, G.; Kaller, M.; Gelbstein, Y.

    2016-08-01

    Doping of materials for thermoelectric applications is widely used nowadays to control the type of conductivity. We report the results of ab-initio calculations aimed at developing the consistent scheme for determining the role of impurities that may change the type of conductivity in two attractive thermoelectric classes of materials. It is demonstrated that alloying of TiNiSn with Cu makes the material of n-type, and alloying with Fe leads to p-type conductivity. Similar calculations for PbTe with small amount of Na substituting for Pb leads to p-type conductivity, while Cl substituting for Te makes PbTe an n-type material. It is shown also that for nano-grained materials the n-type conductivity should be observed. The effect of impurities segregating to the grain boundaries in nano-structured PbTe is also discussed.

  3. High-strength and high-ductility nanostructured and amorphous metallic materials.

    PubMed

    Kou, Hongning; Lu, Jian; Li, Ying

    2014-08-20

    The development of materials with dual properties of high strength and high ductility has been a constant challenge since the foundation of the materials science discipline. The rapid progress of nanotechnology in recent decades has further brought this challenge to a new era. This Research News highlights a few newly developed strategies to optimize advanced nanomaterials and metallic glasses with exceptional dual mechanical properties of high strength and high ductility. A general concept of strain non-localization is presented to describe the role of multiscale (i.e., macroscale, microscale, nanoscale, and atomic scale) heterogeneities in the ductility enhancement of materials reputed to be intrinsically brittle, such as nanostructured metallic materials and bulk metallic glasses. These nanomaterials clearly form a new group of materials that display an extraordinary relationship between yield strength and the uniform elongation with the same chemical composition. Several other examples of nanomaterials such as those reinforced by nanoprecipitates will also be described.

  4. Enhanced functionalization of Mn2O3@SiO2 core-shell nanostructures

    PubMed Central

    2011-01-01

    Core-shell nanostructures of Mn2O3@SiO2, Mn2O3@amino-functionalized silica, Mn2O3@vinyl-functionalized silica, and Mn2O3@allyl-functionalized silica were synthesized using the hydrolysis of the respective organosilane precursor over Mn2O3 nanoparticles dispersed using colloidal solutions of Tergitol and cyclohexane. The synthetic methodology used is an improvement over the commonly used post-grafting or co-condensation method as it ensures a high density of functional groups over the core-shell nanostructures. The high density of functional groups can be useful in immobilization of biomolecules and drugs and thus can be used in targeted drug delivery. The high density of functional groups can be used for extraction of elements present in trace amounts. These functionalized core-shell nanostructures were characterized using TEM, IR, and zeta potential studies. The zeta potential study shows that the hydrolysis of organosilane to form the shell results in more number of functional groups on it as compared to the shell formed using post-grafting method. The amino-functionalized core-shell nanostructures were used for the immobilization of glucose and L-methionine and were characterized by zeta potential studies. PMID:21711685

  5. Identification of the material properties in nonuniform nanostructures

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Xu, Xiang

    2015-12-01

    This paper is concerned with addressing two significant challenges arising from quantifying mechanical properties of nanomaterials, namely nonuniformity of the nanomaterial and the high noise level of measurements. For nonuniformity, an explicit solution is derived for the general Euler-Bernoulli equation in terms of the Green function for the Poisson equation. Then, by examining a stochastic source, the systematic error may be removed from measurements, which leads to more accurate estimation of mechanical properties. Based on Itô integral properties, three deterministic Fredholm integral equations can be deduced to extract the stiffness and the structure of the random source from measured data. To overcome ill-posedness and high nonlinearity in solving the Fredholm equations, a Tikhonov regularization method is developed with an a priori strategy of choosing the regularization parameter. Moreover, under a regularity assumption for the stiffness coefficient and structures of the random source, the convergence rate can be obtained in the sense of probability. Numerical examples are presented to illustrate the validity and effectiveness of the novel model and regularization method.

  6. Synthesis of nanostructured manganese oxides based materials and application for supercapacitor

    NASA Astrophysics Data System (ADS)

    Dung Dang, Trung; Le, Thi Thu Hang; Bich Thuy Hoang, Thi; Mai, Thanh Tung

    2015-01-01

    Manganese oxides are important materials with a variety of applications in different fields such as chemical sensing devices, magnetic devices, field-emission devices, catalysis, ion-sieves, rechargeable batteries, hydrogen storage media and microelectronics. To open up new applications of manganese oxides, novel morphologies or nanostructures are required to be developed. Via sol—gel and anodic electrodeposition methods, M (Co, Fe) doped manganese oxides were prepared. On the other hand, nanostructured (nanoparticles, nanorods and hollow nanotubes) manganese oxides were synthesized via a process including a chemical reaction with carbon nanotubes (CNTs) templates followed by heat treatment. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV) and impedance spectroscopy (EIS) were used for characterization of the prepared materials. The influence of chemical reaction conditions, heat treatment and template present on the morphology, structure, chemical and electrochemical properties of the prepared materials were investigated. Chronopotentiometry (CP) and CV results show high specific capacitance of 186.2 to 298.4 F g-1 and the charge/discharge stability of the prepared materials and the ideal pseudocapacitive behaviors were observed. These results give an opening and promising application of these materials in advanced energy storage applications.

  7. Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials.

    PubMed

    Kamarulzaman, Norlida; Kasim, Muhd Firdaus; Rusdi, Roshidah

    2015-12-01

    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase. UV-visible spectroscopy showed that materials in the nanostructured state exhibit band gap widening with respect to their micron state while for the doped compounds exhibited band gap narrowing both in the nano and micron states with respect to the pure ZnO materials. The degree of band gap change was dependent on the doped elements and crystallite size. X-ray photoelectron spectroscopy (XPS) revealed that there were shifts in the valence bands. From both UV-visible and XPS spectroscopy, it was found that the mechanism for band gap narrowing was due to the shifting of the valance band maximum and conduction band minimum of the materials. The mechanisms were different for different samples depending on the type of dopant and dimensional length scales of the crystallites.

  8. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials

    NASA Astrophysics Data System (ADS)

    Ding, Song-Yuan; Yi, Jun; Li, Jian-Feng; Ren, Bin; Wu, De-Yin; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun

    2016-06-01

    Since 2000, there has been an explosion of activity in the field of plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). In this Review, we explore the mechanism of PERS and discuss PERS hotspots — nanoscale regions with a strongly enhanced local electromagnetic field — that allow trace-molecule detection, biomolecule analysis and surface characterization of various materials. In particular, we discuss a new generation of hotspots that are generated from hybrid structures combining PERS-active nanostructures and probe materials, which feature a strong local electromagnetic field on the surface of the probe material. Enhancement of surface Raman signals up to five orders of magnitude can be obtained from materials that are weakly SERS active or SERS inactive. We provide a detailed overview of future research directions in the field of PERS, focusing on new PERS-active nanomaterials and nanostructures and the broad application prospect for materials science and technology.

  9. Optimally Functionalized Adhesion for Contact Transfer Printing of Plasmonic Nanostructures on Flexible Substrate.

    PubMed

    Lee, Jihye; Lee, Jun-Young; Yeo, Jong-Souk

    2017-02-01

    This paper demonstrates a facile method to achieve high yield and uniform fabrication for the transfer printing of nanoplasmonic structures on a flexible substrate by providing novel understanding on adhesion layers. The mercapto alkyl carboxylic acids and the alkyl dithiols are used as functionalized adhesion layers and further optimized by controlling the terminal group as well as the length and composition of the functionalization on flat and nanostructured gold surfaces. Our approach of optimized adhesion has been successfully implemented to the transfer printing of functionalized gold nanostructure arrays, thus producing much higher yield of 97.6% and uniform fabrication of nanostructures on a flexible substrate and enabling applications such as flexible nanoplasmonic devices and biosensing platforms.

  10. Novel Nanostructures Enabled by On-Wire Lithography: New Materials and Architectures

    NASA Astrophysics Data System (ADS)

    Mangelson, Bryan Farrin

    Advances in nanotechnology enable researches to study and utilize new materials properties and are in large part driven by development and improvement of methods for synthesizing nanostructures. This dissertation discuses the advancement of one such method, On-Wire Lithography (OWL), a template directed electrochemical nanostructure synthesis technique. Chapter 2 is a demonstration of what was the first extension of OWL to an inorganic semiconductor material, namely anatase TiO2. The combination of this material with plasmonically active Au disk dimers results in the formation of composite plasmonic-semiconducting nanowires. This is accomplished via the sol-gel electrochemical deposition of Ti precursors on the Au dimers, followed by the selective chemical etching of Ni, and annealing of the Ti gel to form the anatase phase of TiO2. Chapter 3 extends the OWL toolbox to include Pd metal as a material. It is also shown that by taking advantage of the ability of OWL to form small gaps within the nanowire structure, a Pd based hydrogen gas sensor can be achieved. Chapter 4 shows the power of OWL for controlling the geometric architecture of nanowire-based structures. By introducing multiple nanowire dimers within the same structure, a single nanostructure exhibiting multiple plasmon resonances can be made. The spectral response of these structures is tailorable allowing one to create broadband absorbing structures. It is also demonstrated that by precise placement of the nanowire dimers with respect to each other a near field coupling effect can be observed which increases the total extinction of the structure by 12%. In Chapter 5 a composite plasmonic-semiconductor material composed of OWL fabricated nanowire dimers within sheets of Anatase TiO2 is fabricated. Despite the harsh conditions necessary to synthesize crystalline TiO2 sheets, the gapped nanostructures remain intact. Additionally, the optical properties of these structures can be tailored to produce

  11. Preparation of Nanostructured Materials and Electrical Conductance in Complex Physical Systems

    NASA Astrophysics Data System (ADS)

    Cai, Weilong

    Production of materials with controlled physical characteristics presents a fundamentally new method for materials science. A new facility has been designed and built using evaporation onto a moving liquid surface. Using this technique metallic particles with diameters less than 200 A with well-characterized surfaces can be prepared. The applications of these nanostructured particles to fundamental investigations is discussed. Particular attention has been given to the investigations of electrical transport in three complex physical systems. Aqueous colloidal dispersions of alpha - Fe_2O_3 particles (average diameter 65 nm) have been prepared at different volume concentrations. The electrical conduction of these composites has been investigated as a function of particle concentration, temperature (from 77 K to 300 K), frequency (including the d.c. case) of the applied electric field, and the strength (up to 7 kOe) of the applied magnetic field. The conductivity increases with particle concentration and with temperature. The frequency dependence of conductivity obeys a power law with an index slightly less than unity and decreasing somewhat with increasing temperature. These observations are interpreted with a model of conduction by electron hopping between localized states. The composites also show an increase in conductivity with the application of a magnetic field. This conductivity enhancement is believed to result from field -induced agglomeration and particle chaining. The ferromagnetic Curie temperature (T _{c}) has been determined for Fe -Ge alloys as a function of Ge concentration (up to ~10 at.%) using electrical resistivity studies. The investigation shows that addition of Ge to Fe causes a small, gradual increase in T_{c} , reaching the maximum value of ~ 1050 K at ~1.5 at.%Ge, followed by a gradual decrease with higher Ge concentrations. This behavior is in sharp contrast with the usual theories which predict decrease of T_{c} with increasing the

  12. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    NASA Astrophysics Data System (ADS)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  13. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion.

    PubMed

    Guan, Bu Yuan; Yu, Xin Yao; Wu, Hao Bin; Lou, Xiong Wen David

    2017-09-27

    Metal-organic frameworks (MOFs) have drawn tremendous attention because of their abundant diversity in structure and composition. Recently, there has been growing research interest in deriving advanced nanomaterials with complex architectures and tailored chemical compositions from MOF-based precursors for electrochemical energy storage and conversion. Here, a comprehensive overview of the synthesis and energy-related applications of complex nanostructures derived from MOF-based precursors is provided. After a brief summary of synthetic methods of MOF-based templates and their conversion to desirable nanostructures, delicate designs and preparation of complex architectures from MOFs or their composites are described in detail, including porous structures, single-shelled hollow structures, and multishelled hollow structures, as well as other unusual complex structures. Afterward, their applications are discussed as electrode materials or catalysts for lithium-ion batteries, hybrid supercapacitors, water-splitting devices, and fuel cells. Lastly, the research challenges and possible development directions of complex nanostructures derived from MOF-based-templates for electrochemical energy storage and conversion applications are outlined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mimicking photosynthesis to make functional nanostructures and nanodevices.

    SciTech Connect

    Pereira, Eulalia; Shelnutt, John Allen; Medforth, Craig John; Song, Yujiang; Wang, Zhongchun

    2005-02-01

    Photocatalytic porphyrins are used to reduce metal complexes from aqueous solution and, further, to control the deposition of metals onto porphyrin nanotubes and surfactant assembly templates to produce metal composite nanostructures and nanodevices. For example, surfactant templates lead to spherical platinum dendrites and foam-like nanomaterials composed of dendritic platinum nanosheets. Porphyrin nanotubes are reported for the first time, and photocatalytic porphyrin nanotubes are shown to reduce metal complexes and deposit the metal selectively onto the inner or outer surface of the tubes, leading to nanotube-metal composite structures that are capable of hydrogen evolution and other nanodevices.

  15. Novel high volumetric energy density nanostructured electrode materials for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tong, Wei

    A definitive focus is being made to develop cathode materials of higher energy and good power for primary and rechargeable lithium batteries upon the development of implantable biomedical devices (cardiac defibrillators). In this thesis, novel electroactive nanostructured silver metal oxyfluoride perovskites, Ag1+3Mo6+(O3F 3) and Ag1+3Nb5+(O2F 4) have been successfully synthesized by a mechanochemical reaction. The formation of these perovskites was investigated throughout the Ag-Mo / Nb composition range with the use of either Ag1+ or Ag 2+ in the form of AgF and AgF2 as the reactant, respectively. The compositional study combined with XRD and extensive Raman investigation was utilized to determine structure and cation distribution and infer oxidation state. An electrochemical characterization of these silver metal oxyfluoride perovskite positive electrodes for Li batteries was investigated for the first time as a function of synthesis condition, stoichiometry and effect of Mo and Ag derived second phases. A detailed in-situ electrochemical study by XAS, Raman and XRD was performed, revealing a 3 electron silver displacement or conversion reaction at > 3 V and a 2 electron reduction of Mo6+ to Mo4+ in the region < 3 V. To further improve the rate capability of silver metal oxyfluorides, metallic Ag2F phase has been successfully synthesized through the mechanochemical reaction of Ag and AgF. Its unique metallic character within Ag layers lead to a very good electronic conductivity (7.89x10 -2 S/cm). The efficacy of SMOF composites consisting of conducting matrix (carbon black, Ag2F and Ag phase) for lithium battery was investigated through discharge rate studies. Results indicated that Ag 2F phase could be utilized as an alternative conductive additive with exceptional density.

  16. Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm.

    PubMed

    Al-Shabib, Nasser A; Husain, Fohad Mabood; Ahmed, Faheem; Khan, Rais Ahmad; Ahmad, Iqbal; Alsharaeh, Edreese; Khan, Mohd Shahnawaz; Hussain, Afzal; Rehman, Md Tabish; Yusuf, Mohammad; Hassan, Iftekhar; Khan, Javed Masood; Ashraf, Ghulam Md; Alsalme, Ali Mohammed; Al-Ajmi, Mohamed F; Tarasov, Vadim V; Aliev, Gjumrakch

    2016-12-05

    Bacterial spoilage of food products is regulated by density dependent communication system called quorum sensing (QS). QS control biofilm formation in numerous food pathogens and Biofilms formed on food surfaces act as carriers of bacterial contamination leading to spoilage of food and health hazards. Agents inhibiting or interfering with bacterial QS and biofilm are gaining importance as a novel class of next-generation food preservatives/packaging material. In the present study, Zinc nanostructures were synthesised using Nigella sativa seed extract (NS-ZnNPs). Synthesized nanostructures were characterized hexagonal wurtzite structure of size ~24 nm by UV-visible, XRD, FTIR and TEM. NS-ZnNPs demonstrated broad-spectrum QS inhibition in C. violaceum and P. aeruginosa biosensor strains. Synthesized nanostructures inhibited QS regulated functions of C. violaceum CVO26 (violacein) and elastase, protease, pyocyanin and alginate production in PAO1 significantly. NS-ZnNPs at sub-inhibitory concentrations inhibited the biofilm formation of four-food pathogens viz. C. violaceum 12472, PAO1, L. monocytogenes, E. coli. Moreover, NS-ZnNPs was found effective in inhibiting pre-formed mature biofilms of the four pathogens. Therefore, the broad-spectrum inhibition of QS and biofilm by biogenic Zinc oxide nanoparticles and it is envisaged that these nontoxic bioactive nanostructures can be used as food packaging material and/or as food preservative.

  17. Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm

    PubMed Central

    Al-Shabib, Nasser A.; Husain, Fohad Mabood; Ahmed, Faheem; Khan, Rais Ahmad; Ahmad, Iqbal; Alsharaeh, Edreese; Khan, Mohd Shahnawaz; Hussain, Afzal; Rehman, Md Tabish; Yusuf, Mohammad; Hassan, Iftekhar; Khan, Javed Masood; Ashraf, Ghulam Md; Alsalme, Ali Mohammed; Al-Ajmi, Mohamed F.; Tarasov, Vadim V.; Aliev, Gjumrakch

    2016-01-01

    Bacterial spoilage of food products is regulated by density dependent communication system called quorum sensing (QS). QS control biofilm formation in numerous food pathogens and Biofilms formed on food surfaces act as carriers of bacterial contamination leading to spoilage of food and health hazards. Agents inhibiting or interfering with bacterial QS and biofilm are gaining importance as a novel class of next-generation food preservatives/packaging material. In the present study, Zinc nanostructures were synthesised using Nigella sativa seed extract (NS-ZnNPs). Synthesized nanostructures were characterized hexagonal wurtzite structure of size ~24 nm by UV-visible, XRD, FTIR and TEM. NS-ZnNPs demonstrated broad-spectrum QS inhibition in C. violaceum and P. aeruginosa biosensor strains. Synthesized nanostructures inhibited QS regulated functions of C. violaceum CVO26 (violacein) and elastase, protease, pyocyanin and alginate production in PAO1 significantly. NS-ZnNPs at sub-inhibitory concentrations inhibited the biofilm formation of four-food pathogens viz. C. violaceum 12472, PAO1, L. monocytogenes, E. coli. Moreover, NS-ZnNPs was found effective in inhibiting pre-formed mature biofilms of the four pathogens. Therefore, the broad-spectrum inhibition of QS and biofilm by biogenic Zinc oxide nanoparticles and it is envisaged that these nontoxic bioactive nanostructures can be used as food packaging material and/or as food preservative. PMID:27917856

  18. Nanostructured Materials

    DTIC Science & Technology

    2012-08-30

    resolution (0.75 Å) X-ray diffraction studies (Figure 4). Both FH and FD are triclinic (P1) showing the presence of one and two crystallographically...polymer system. Additional 60 processing/compounding effort is normally required to force compatibilization between a filler and a polymer system...polymers from the chemical 45 classes of polyhedral oligomeric silsesquioxanes, polysils- esquioxanes, polyhedral oligomeric silicates, polysilicates

  19. Nanostructured Materials

    DTIC Science & Technology

    2005-08-01

    technology transfers resulted from this work, including POSS-based dental adhesives, improved plastic food packaging, and fire-retardant plastics. Several... Polydimethylsiloxanes Modified With Polyhedral Oligomeric Silsesquioxanes: From Viscous Oils To Thermoplastics”, ACS National Conference, U.S.A, 1998, ADA397983...Cyclosiloxane”, American Chemical Society Conference, U.S.A, 2001, ADA410685. Haddad, T.S.; Lee, A.; Phillips, S.H., “ Polydimethylsiloxanes Modified With

  20. Highly sensitive ethanol chemical sensor based on Ni-doped SnO₂ nanostructure materials.

    PubMed

    Rahman, Mohammed M; Jamal, Aslam; Khan, Sher Bahadar; Faisal, M

    2011-10-15

    Due to potential applications of semiconductor transition doped nanostructure materials and the important advantages of synthesis in cost-effective and environmental concerns, a significant effort has been consummated for improvement of Ni-doped SnO(2) nanomaterials using hydrothermal technique at room conditions. The structural and optical properties of the low-dimensional (average diameter, 52.4 nm) Ni-doped SnO(2) nanostructures were demonstrated using various conventional techniques such as UV/visible spectroscopy, FT-IR spectroscopy, X-ray powder diffraction (XRD), and Field-emission scanning electron microscopy (FE-SEM). The calcined doped material is an attractive semiconductor nanoparticle for accomplishment in chemical sensing by simple I-V technique, where toxic chemical (ethanol) is used as a target chemical. Thin-film of Ni-doped SnO(2) nanostructure materials with conducting coating agents on silver electrodes (AgE, surface area, 0.0216 cm(2)) revealed higher sensitivity and repeatability. The calibration plot is linear (R, 0.8440) over the large dynamic range (1.0 nM-1.0 mM), where the sensitivity is approximately 2.3148 μA cm(-2) mM(-1) with a detection limit of 0.6 nM, based on signal/noise ratio in short response time. Consequently on the basis of the sensitive communication among structures, morphologies, and properties, it is exemplified that the morphologies and the optical characteristics can be extended to a large scale in doping nanomaterials and proficient chemical sensors applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. An investigation of electromagnetic response of composite polymer materials containing carbon nanostructures within the range of frequencies 10 MHz - 1.1 THz

    NASA Astrophysics Data System (ADS)

    Suslyaev, V. I.; Kuznetsov, V. L.; Zhuravlev, V. A.; Mazov, I. N.; Korovin, E. Yu.; Moseenkov, S. I.; Dorozhkin, K. V.

    2013-01-01

    Electromagnetic characteristics of composite polymer materials based on multilayer carbon nanotubes (MCNTs) and nano-onion carbon structures in a polymethylmethacrylate (PMMA) matrix are investigated. The purpose is to identify a functional relationship between the size, kind, type of processing, concentration of nanotubes and electromagnetic characteristics of composite materials within the frequency range 10 MHz - 1.1 THz. Use is made of the coaxial waveguide, resonator, and quasi-optical methods. The spectra of reflection and transmission coefficients are reported. The composite materials based on carbon nanostructures are shown to actively interact with electromagnetic radiation in a wide range of frequencies.

  2. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    SciTech Connect

    Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  3. A brief review on graphene/inorganic nanostructure composites: materials for the future

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Banerjee, S.; Datta, A.; Chakravorty, D.

    2016-09-01

    The exotic physical properties of graphene have led to intense research activities on the synthesis and characterization of graphene composites during the last decade. The methods developed for preparation of such materials and the different application areas are reviewed. Mainly the inorganic nanostructure/graphene composites have been discussed. The techniques of ex-situ and in-situ hybridization respectively, have been pointed out. Some of the application areas such as batteries, ultracapacitors for energy storage, fuel cells and solar cells for energy generation are discussed. The possible future directions of research are highlighted.

  4. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries.

    PubMed

    Wu, Hao Bin; Chen, Jun Song; Hng, Huey Hoon; Lou, Xiong Wen David

    2012-04-21

    The search for new electrode materials for lithium-ion batteries (LIBs) has been an important way to satisfy the ever-growing demands for better performance with higher energy/power densities, improved safety and longer cycle life. Nanostructured metal oxides exhibit good electrochemical properties, and they are regarded as promising anode materials for high-performance LIBs. In this feature article, we will focus on three different categories of metal oxides with distinct lithium storage mechanisms: tin dioxide (SnO(2)), which utilizes alloying/dealloying processes to reversibly store/release lithium ions during charge/discharge; titanium dioxide (TiO(2)), where lithium ions are inserted/deinserted into/out of the TiO(2) crystal framework; and transition metal oxides including iron oxide and cobalt oxide, which react with lithium ions via an unusual conversion reaction. For all three systems, we will emphasize that creating nanomaterials with unique structures could effectively improve the lithium storage properties of these metal oxides. We will also highlight that the lithium storage capability can be further enhanced through designing advanced nanocomposite materials containing metal oxides and other carbonaceous supports. By providing such a rather systematic survey, we aim to stress the importance of proper nanostructuring and advanced compositing that would result in improved physicochemical properties of metal oxides, thus making them promising negative electrodes for next-generation LIBs.

  5. Probe beam deflection studies of nanostructured catalyst materials for fuel cells.

    PubMed

    García, G; Bruno, M M; Planes, G A; Rodriguez, J L; Barbero, C A; Pastor, E

    2008-11-28

    Probe beam deflection (PBD) techniques, both as cyclic voltadeflectometry (CVD) and chronodeflectometry (CD), were applied for the first time to the study of the electrochemistry of nanostructured Pt materials which are commonly used as electrocatalysts in fuel cells. The electrochemical surface reactions, including faradaic processes, double layer charging and specific anion adsorption were easily detected. Quantitative analysis of the chronodeflectometric data made possible to elucidate the dynamics of double layer charging in such materials and to determine the potential of zero charge (pzc) of the metal present either as a monolithic mesoporous material or as metal nanoparticles supported on carbon. The electro-oxidation of CO, adsorbed on nanostructured Pt, was also studied by CVD and CD being able to detect the formation of CO2 and H3O+ related with the nucleation and growth process which controls the rate of CO stripping. The interplay of Pt oxide formation and COad electrooxidation, both in potential and time, was detected indicating possible application of the technique to other electrocatalysts.

  6. Nanostructured material-based biofuel cells: recent advances and future prospects.

    PubMed

    Zhao, Cui-E; Gai, Panpan; Song, Rongbin; Chen, Ying; Zhang, Jianrong; Zhu, Jun-Jie

    2017-03-06

    During the past decade, biofuel cells (BFCs) have emerged as an emerging technology on account of their ability to directly generate electricity from biologically renewable catalysts and fuels. Due to the boost in nanotechnology, significant advances have been accomplished in BFCs. Although it is still challenging to promote the performance of BFCs, adopting nanostructured materials for BFC construction has been extensively proposed as an effective and promising strategy to achieve high energy production. In this review, we presented the major novel nanostructured materials applied for BFCs and highlighted the breakthroughs in this field. Based on different natures of the bio-catalysts and electron transfer process at the bio-electrode surfaces, the fundamentals of BFC systems, including enzymatic biofuel cells (EBFCs) and microbial fuel cells (MFCs), have been elucidated. In particular, the principle of electrode materials design has been detailed in terms of enhancing electrical communications between biological catalysts and electrodes. Furthermore, we have provided the applications of BFCs and potential challenges of this technology.

  7. Structural and functional engineering of one-dimensional nanostructures for device applications

    NASA Astrophysics Data System (ADS)

    Singh, Krishna Veer

    Fabrication of 1-D nanostructures has been an area of keen interest due to their application in nanodevices. Carbon nanotubes (CNTs) and semiconducting nanorods are 1-D nanostructures of great importance. There are various challenges related to structural and functional aspects of these materials, which need to be addressed for their adaptation in devices. To this end, two approaches have been developed: (1) structural engineering of the nanorods and (2) functionalization of CNTs for device applications. In first approach, a new technique to produce single crystal semiconducting nanorods was developed. Single crystalline structure of nanorods is essential to obtain reproducible performance. The novel synthesis technique 'template assisted sonoelectrochemical deposition' was utilized to develop 'copper sulfide' and 'copper indium sulfide' nanorods. The use of sonoelectrochemical method resulted in the best deposition rate as compared to stirring-assisted and regular electrochemical deposition, respectively. Observed increase in the bulk electrolyte temperature, high acoustic pressure and shock waves generated from the collapse of bubbles could explain improved mass transport and reaction rate, which results in the formation of single crystal nanorods. Nanorods in the range of 50-200nm in diameter were synthesized and electrically characterized as p-type semiconductors. Excellent structural and repeatable electrical properties of the various nanorods developed by this technique make it suitable for developing nanorods for device applications. In addition, detailed statistical analysis of the polycarbonate templates (50-200 nm nominal pore size) used in electrodeposition provided a better understanding of template's as well as nanorods' structure. In the second approach, we functionally engineered single walled carbon nanotubes (SWNTs) with peptide nucleic acid (PNA) to form functional conjugates for molecular electronics. SWNT-PNA-SWNT conjugates were synthesized

  8. High surface area Au-SBA-15 and Au-MCM-41 materials synthesis: tryptophan amino acid mediated confinement of gold nanostructures within the mesoporous silica pore walls.

    PubMed

    Selvakannan, Pr; Mantri, Kshudiram; Tardio, James; Bhargava, Suresh K

    2013-03-15

    Advantages of confining the gold nanostructures formation within the mesoporous silica pore walls during its silica condensation and consequent improvement in the textural properties such as specific surface area, pore volume, pore diameter have been demonstrated, while retaining gold nanostructures within the silica walls. This has been achieved by tryptophan mediated confinement of gold nanoparticles formation within the condensing silica framework, to obtain Au-SBA-15 (SSA 1247 m(2)/g, V(t)~1.37 cm(3)/g) and Au-MCM-41 (SSA 1287 m(2)/g, V(t)~1.1 cm(3)/g), mesoporous silica materials having the combination of very high surface area from the porous support as well as gold nanoparticles infiltrated silica walls. Choice of tryptophan for this purpose is that it has an indole group, which was known to reduce gold ions to form gold nanoparticles and its amine and carboxylic acid groups, catalyze the hydrolysis of silica precursors in a wide range of pH. These properties have been utilized in restricting the gold nanostructures formation inside the condensing silica phase without affecting the self assembly between the silica precursors and the triblock copolymer (for SBA-15) or cetyltrimethylammonium bromide template (for MCM-41). The polytryptophan and the gold nanostructures, which were encapsulated within the silica framework and upon removal of the template by calcination resulting in the formation mesoporous materials wherein the silica walls become microporous due to the removal of occluded polytryptophan and the resulting microchannels contain very small gold nanostructures. Hence, the resulting materials have very high surface area, high pore volume and narrow pore size distribution as compared to their parent SBA-15, MCM-41 and SBA-15, MCM-41 post functionalized with gold nanoparticles inside the pores.

  9. PDMS-on-silicon microsystems: Integration of polymer micro/nanostructures for new MEMS device functions

    NASA Astrophysics Data System (ADS)

    Tung, Yi-Chung

    2005-11-01

    Modern technologies found in military, space-craft, automotive, and telecommunications applications strongly demand reductions of the manufacturing cost, power consumption, size, and weight of integrated sensors and actuators. The research field of microelectromechanical systems (MEMS) has seen significant technological innovations and advancements to meet this demand in the last two decades. Historically, MEMS technology has been seen as an offspring of silicon-based integrated circuit (IC) technology. But recently, the roles that polymer materials play in MEMS have been more pronounced due to their cost effectiveness, manufacturability, and compatibility with micro/nanoscale biological and chemical systems. Among these polymers, an organic elastomer, Polydimethylsiloxane (PDMS), has become one of the most popular materials because of its unique material properties and moldability suited for low-cost rapid prototyping based on a fabrication technique called soft lithography. However, PDMS micro/nanostructures, not allowed to be integrated with other silicon-based devices, find their limited use in MEMS other than in passive microfluidic components. The lack of a technology bridging the gap between silicon and PDMS prohibits us to realize new MEMS devices potentially resulting from the simultaneous use of these two materials. This research explores a fully new technological concept of "PDMS-on-silicon microsystems." "PDMS-on-silicon microsystems" refers to a class of novel MEMS devices integrating PDMS micro/nanostructures onto silicon actuators and/or sensors. The research aims to demonstrate a new type of MEMS devices taking advantage of benefits resulting from both of silicon and PDMS. To achieve this goal, this work develops a new MEMS fabrication technique called "soft-lithographic lift-off and grafting (SLLOG)." The SLLOG process starts with soft lithography-based molding and release of a three-dimensional (3D) PDMS microstructure. This is followed by

  10. Microstructure and composition analysis of nanostructured materials using HREM and FEG-TEM

    PubMed

    Li; Ping; Huang; Yu; Ye

    2000-10-01

    The microstructure in nanostructured (NS) materials synthesized by different methods have been characterized by electron microscopy methods. NS-Pd was prepared by inert-gas condensation and in situ compacting method (IGCC), NS-alloys by amorphous crystallization method (ACM) and NS-Cu and Cu100-xFe(x) alloy by mechanical alloying (MA) methods. The experimental results have revealed that different preparation techniques lead to different microstructures. The grain boundaries have ordered and disordered structures and high density of defects were frequently detected in NS-materials synthesized by IGCC and MA. For the NS-alloys produced by ACM, however, the structures of GBs are similar to those in coarse-grained materials and the grains have nearly perfect crystal structure. For immiscible systems, a supersaturated Fe-Cu solid solution can be obtained by MA, but it is difficult using IGCC.

  11. Application of Traditional and Nanostructure Materials for Medical Electron Beams Collimation: Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Miloichikova, I. A.; Stuchebrov, S. G.; Zhaksybayeva, G. K.; Wagner, A. R.

    2015-11-01

    Nowadays, the commercial application of the electron accelerators grows in the industry, in the research investigations, in the medical diagnosis and treatment. In this regard, the electron beam profile modification in accordance with specific purposes is an actual task. In this paper the model of the TPU microtron extracted electron beam developed in the program “Computer Laboratory (PCLab)” is described. The internal beam divergence influence for the electron beam profile and depth dose distribution in the air is considered. The possibility of using the nanostructure materials for the electron beam formation was analyzed. The simulation data of the electron beam shape collimated by different materials (lead, corund- zirconia nanoceramic, gypsum) are shown. The collimator material influence for the electron beam profile and shape are analyzed.

  12. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices.

    PubMed

    Hirst, Andrew R; Escuder, Beatriu; Miravet, Juan F; Smith, David K

    2008-01-01

    It is likely that nanofabrication will underpin many technologies in the 21st century. Synthetic chemistry is a powerful approach to generate molecular structures that are capable of assembling into functional nanoscale architectures. There has been intense interest in self-assembling low-molecular-weight gelators, which has led to a general understanding of gelation based on the self-assembly of molecular-scale building blocks in terms of non-covalent interactions and packing parameters. The gelator molecules generate hierarchical, supramolecular structures that are macroscopically expressed in gel formation. Molecular modification can therefore control nanoscale assembly, a process that ultimately endows specific material function. The combination of supramolecular chemistry, materials science, and biomedicine allows application-based materials to be developed. Regenerative medicine and tissue engineering using molecular gels as nanostructured scaffolds for the regrowth of nerve cells has been demonstrated in vivo, and the prospect of using self-assembled fibers as one-dimensional conductors in gel materials has captured much interest in the field of nanoelectronics.

  13. WTEC Panel Report on Internaitonal Assessment of Research and Development in Catalysis by Nanostructured Materials

    SciTech Connect

    Davis, Robert J.; Guilants, Vadim V.; Huber, George; Lobo, Raul F.; Neurock, Matthew; Miller, Jeffrey T.; Sharma, Renu; Thompson, Levi

    2009-01-01

    This WTEC panel report assesses the international research and development activities in the field of catalysis by nanostructured materials. Catalysis is important for a wide variety of processes that impact manufacturing, energy conversion, and environmental protection. This study focused specifically on solid catalysts and how nanoscale structures associated with them affect their reactivity. The principal technical areas of the study are (a) design and control of synthetic nanostructures; (b) nanoscale characterization of catalysts in their working state; (c) theory and simulation; and (d) applications. The panel visited over 40 institutions and companies throughout East Asia and Western Europe to explore the active research projects in those institutions, the physical infrastructure used for the projects, the funding schemes that enable the research, and the collaborative interactions among universities, national laboratories, and corporate research centers. A bibliometric analysis of research in catalysis by nanostructured materials published from 1996 to 2005 was conducted as part of this WTEC study. The total number of published papers as well as the expected total number of citations of those papers revealed a growing focus on this subject. Western Europe was the numerical output leader in the world; U.S. output, while published in high-impact journals, was relatively stagnant, and the number of published papers originating from China was growing exponentially and expected to exceed that from the United States in the latter half of this decade. China's rapidly expanding economy together with its growth in large-scale chemical and refining plants motivate its significant commitment to catalysis research. The panel found that cooperation between universities and companies in catalysis R&D is common in Europe and Asia, presumably because of a more favorable intellectual property environment outside of the United States. In the area of catalyst synthesis, there

  14. Survey of materials for nanoskiving and influence of the cutting process on the nanostructures produced.

    PubMed

    Lipomi, Darren J; Martinez, Ramses V; Rioux, Robert M; Cademartiri, Ludovico; Reus, William F; Whitesides, George M

    2010-09-01

    This paper examines the factors that influence the quality of nanostructures fabricated by sectioning thin films with an ultramicrotome ("nanoskiving"). It surveys different materials (metals, ceramics, semiconductors, and conjugated polymers), deposition techniques (evaporation, sputter deposition, electroless deposition, chemical-vapor deposition, solution-phase synthesis, and spin-coating), and geometries (nanowires or two-dimensional arrays of rings and crescents). It then correlates the extent of fragmentation of the nanostructures with the composition of the thin films, the methods used to deposit them, and the parameters used for sectioning. There are four major conclusions. (i) Films of soft and compliant metals (those that have bulk values of hardness less than or equal to those of palladium, or ≤500 MPa) tend to remain intact upon sectioning, whereas hard and stiff metals (those that have values of hardness greater than or equal to those of platinum, or ≥500 MPa) tend to fragment. (ii) All conjugated polymers tested form intact nanostructures. (iii) The extent of fragmentation is lowest when the direction of cutting is perpendicular to the exposed edge of the embedded film. (iv) The speed of cutting-from 0.1 to 8 mm/s-has no effect on the frequency of defects. Defects generated during sectioning include scoring from defects in the knife, delamination of the film from the matrix, and compression of the matrix. The materials tested were: aluminum, titanium, nickel, copper, palladium, silver, platinum, gold, lead, bismuth, germanium, silicon dioxide (SiO2), alumina (Al2O3), tin-doped indium oxide (ITO), lead sulfide nanocrystals, the semiconducting polymers poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV), poly(3-hexylthiophene) (P3HT), and poly(benzimidazobenzophenanthroline ladder) (BBL), and the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS).

  15. Pattern recognition of monocyte chemoattractant protein-1 (MCP-1) in whole blood samples using new platforms based on nanostructured materials

    NASA Astrophysics Data System (ADS)

    Stefan-van Staden, Raluca-Ioana; Gugoasa, Livia Alexandra; Biris, Alexandru Radu

    2015-09-01

    Four stochastic microsensors based on nanostructured materials (graphene, maltodextrin (MD), and diamond) integrated in miniaturized platforms were proposed. Monocyte chemoattractant protein-1 (MCP-1) is a pro-inflammatory cytokine whose main function is to regulate cell trafficking. It is correlated with the incidence of cardiovascular diseases and obesity, and was used as the model analyte in this study. The screening of whole blood samples for MCP-1 can be done for concentrations ranging from 10-12 to 10-8 g mL-1. The method was used for both qualitative and quantitative assessments of MCP-1 in whole blood samples. The lowest quantification limits for the assay of MCP-1 (1 pg mL-1) were reached when the microsensors based on protoporphyrin IX/Graphene-Au-3 and on MD/Graphene were employed in the platform design.

  16. Pattern recognition of monocyte chemoattractant protein-1 (MCP-1) in whole blood samples using new platforms based on nanostructured materials.

    PubMed

    Stefan-van Staden, Raluca-Ioana; Gugoasa, Livia Alexandra; Biris, Alexandru Radu

    2015-09-28

    Four stochastic microsensors based on nanostructured materials (graphene, maltodextrin (MD), and diamond) integrated in miniaturized platforms were proposed. Monocyte chemoattractant protein-1 (MCP-1) is a pro-inflammatory cytokine whose main function is to regulate cell trafficking. It is correlated with the incidence of cardiovascular diseases and obesity, and was used as the model analyte in this study. The screening of whole blood samples for MCP-1 can be done for concentrations ranging from 10(-12) to 10(-8) g mL(-1). The method was used for both qualitative and quantitative assessments of MCP-1 in whole blood samples. The lowest quantification limits for the assay of MCP-1 (1 pg mL(-1)) were reached when the microsensors based on protoporphyrin IX/Graphene-Au-3 and on MD/Graphene were employed in the platform design.

  17. Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines

    PubMed Central

    Elbaz, Johann; Cecconello, Alessandro; Fan, Zhiyuan; Govorov, Alexander O; Willner, Itamar

    2013-01-01

    DNA nanotechnology is a rapidly developing research area in nanoscience. It includes the development of DNA machines, tailoring of DNA nanostructures, application of DNA nanostructures for computing, and more. Different DNA machines were reported in the past and DNA-guided assembly of nanoparticles represents an active research effort in DNA nanotechnology. Several DNA-dictated nanoparticle structures were reported, including a tetrahedron, a triangle or linear nanoengineered nanoparticle structures; however, the programmed, dynamic reversible switching of nanoparticle structures and, particularly, the dictated switchable functions emerging from the nanostructures, are missing elements in DNA nanotechnology. Here we introduce DNA catenane systems (interlocked DNA rings) as molecular DNA machines for the programmed, reversible and switchable arrangement of different-sized gold nanoparticles. We further demonstrate that the machine-powered gold nanoparticle structures reveal unique emerging switchable spectroscopic features, such as plasmonic coupling or surface-enhanced fluorescence. PMID:23759797

  18. Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting.

    PubMed

    Chaudhari, Nitin K; Jin, Haneul; Kim, Byeongyoon; Lee, Kwangyeol

    2017-08-31

    Highly efficient and low-cost electrocatalysts are essential for water spitting via electrolysis in an economically viable fashion. However, the best catalytic performance is found with noble metal-based electrocatalysts, which presents a formidable obstacle for the commercial success of electrolytic water splitting-based H2 production due to their relatively high cost and scarcity. Therefore, the development of alternative inexpensive earth-abundant electrode materials with excellent electrocatalytic properties is of great urgency. In general, efficient electrocatalysts must possess several key characteristics such as low overpotential, good electrocatalytic activity, high stability, and low production costs. Direct synthesis of nanostructured catalysts on a conducting substrate may potentially improve the performance of the resultant electrocatalysts because of their high catalytic surface areas and the synergistic effect between the electrocatalyst and the conductive substrate. In this regard, three dimensional (3D) nickel foams have been advantageously utilized as electrode substrates as they offer a large active surface area and a highly conductive continuous porous 3D network. In this review, we discuss the most recent developments in nanostructured materials directly synthesized on 3D nickel foam as potential electrode candidates for electrochemical water electrolysis, namely, the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). We also provide perspectives and outlooks for catalysts grown directly on 3D conducting substrates for future sustainable energy technologies.

  19. Surface modification of plasmonic nanostructured materials with thiolated oligonucleotides in 10 seconds using selective microwave heating

    PubMed Central

    Abel, Biebele; Aslan, Kadir

    2013-01-01

    This study demonstrates the proof-of-principle of rapid surface modification of plasmonic nanostructured materials with oligonucleotides using low power microwave heating. Due to their interesting optical and electronic properties, silver nanoparticle films (SNFs, 2 nm thick) deposited onto glass slides were used as the model plasmonic nanostructured materials. Rapid surface modification of SNFs with oligonucleotides was carried out using two strategies (1) Strategy 1: for ss-oligonucleotides, surface hybridization and (2) Strategy 2: for ds-oligonucleotides, solution hybridization), where the samples were exposed to 10, 15, 30 and 60 seconds microwave heating. To assess the efficacy of our new rapid surface modification technique, identical experiments carried out without the microwave heating (i.e., conventional method), which requires 24 hours for the completion of the identical steps. It was found that SNFs can be modified with ss- and ds-oligonucleotides in 10 seconds, which typically requires several hours of incubation time for the chemisorption of thiol groups on to the planar metal surface using conventional techniques. PMID:23645933

  20. Nanostructured hybrid layered-spinel cathode material synthesized by hydrothermal method for lithium-ion batteries.

    PubMed

    Liu, Cong; Wang, Zhiyuan; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; Zhao, Naiqin

    2014-06-11

    Nanostructured spinel LiMn1.5Ni0.5O4, layered Li1.5Mn0.75Ni0.25O2.5 and layered-spinel hybrid particles have been successfully synthesized by hydrothermal methods. It is found that the nanostructured hybrid cathode contains both spinel and layered components, which could be expressed as Li1.13Mn0.75Ni0.25O2.32. Diffraction-contrast bright-field (BF) and dark-field (DF) images illustrate that the hybrid cathode has well dispersed spinel component. Electrochemical measurements reveal that the first-cycle efficiency of the layered-spinel hybrid cathode is greatly improved (up to 90%) compared with that of the layered material (71%) by integrating spinel component. Our investigation demonstrates that the spinel containing hybrid material delivers a high capacity of 240 mAh g(-1) with good cycling stability between 2.0 and 4.8 V at a current rate of 0.1 C.

  1. Effect of Strand Symmetry on the Nanostructure and Material Properties in Beta-Hairpin Peptide Hydrogels

    NASA Astrophysics Data System (ADS)

    Hule, Rohan; Pochan, Darrin; Nagarkar, Radhika; Schneider, Joel

    2007-03-01

    Hydrogels have been established as promising biomaterials for applications such as scaffolds for tissue engineering, controlled drug delivery and cell encapsulation. De novo designed beta hairpin peptides, capable of undergoing self assembly and hydrogel formation, were investigated that contain asymmetric beta strand arms surrounding a turn sequence. The stimuli responsive self assembly of the hydrogels occurs via an intramolecular folding and strand interdigitation mechanism. CD and FTIR indicate a beta sheet secondary structure. WAXS shows a fibril structure reminiscent of the cross beta spine. SANS has been employed to globally quantify the local structure as being rod-like. Modification of the strand registry results in fibrils with non-twisting, laminated vs. twisted nanostructure. Fibril dimensions as measured by TEM and AFM corroborate the interdigitated assembly. Bulk material properties of these hydrogels studied using oscillatory rheology vary significantly for the different morphologies. Differences in the peptide registry that drive hydrogel nanostructure and the consequent material properties can be potentially utilized for usage in specific biomaterial applications.

  2. General strategy for designing core-shell nanostructured materials for high-power lithium ion batteries.

    PubMed

    Shen, Laifa; Li, Hongsen; Uchaker, Evan; Zhang, Xiaogang; Cao, Guozhong

    2012-11-14

    Because of its extreme safety and outstanding cycle life, Li(4)Ti(5)O(12) has been regarded as one of the most promising anode materials for next-generation high-power lithium-ion batteries. Nevertheless, Li(4)Ti(5)O(12) suffers from poor electronic conductivity. Here, we develop a novel strategy for the fabrication of Li(4)Ti(5)O(12)/carbon core-shell electrodes using metal oxyacetyl acetonate as titania and single-source carbon. Importantly, this novel approach is simple and general, with which we have successfully produce nanosized particles of an olivine-type LiMPO(4) (M = Fe, Mn, and Co) core with a uniform carbon shell, one of the leading cathode materials for lithium-ion batteries. Metal acetylacetonates first decompose with carbon coating the particles, which is followed by a solid state reaction in the limited reaction area inside the carbon shell to produce the LTO/C (LMPO(4)/C) core-shell nanostructure. The optimum design of the core-shell nanostructures permits fast kinetics for both transported Li(+) ions and electrons, enabling high-power performance.

  3. Simultaneous measurement of orientational and spectral dynamics of single molecules in nanostructured host-guest materials.

    PubMed

    Jung, Christophe; Hellriegel, Christian; Platschek, Barbara; Wöhrle, Dieter; Bein, Thomas; Michaelis, Jens; Bräuchle, Christoph

    2007-05-02

    Nanostructured host-guest materials are important for various applications in nanoscience, and therefore, a thorough understanding of the dynamics of the guest molecules within the host matrix is needed. To this aim we used single-molecule fluorescence techniques to simultaneously examine the spectral and the orientational behavior of single molecules in nanostructured porous host materials. Two types of host-guest systems have been investigated. First, oxazine-1 dye molecules were fixed rigidly in the channels of microporous AlPO4-5 crystals. Second, it was shown that terrylenediimide (TDI) dye molecules move in the mesoporous network of an uncalcined M41S thin film. In the first sample both spectral fluctuations ( approximately 5 nm) and rare spectral jumps (>10 nm) of the emission maximum were observed. However, the orientation of the emission dipole of the dye molecules remained constant. In contrast, the second system showed orientational dynamics as well as substantially more spectral dynamics. In this system the molecules were found to move between different regions in the host. The typical motion of the TDI molecules in the pores of M41S was not continuous but characterized by jumps between specific sites. Moreover, the spectral and orientational dynamics were correlated and arose directly from the different environments that were being explored by the mobile molecule.

  4. Tailoring properties and functionalities of nanostructures through compositions, components and morphologies

    NASA Astrophysics Data System (ADS)

    Weng, Lin

    The field of nanoscience and nanotechnology has made significant progresses over the last thirty years. Sophisticated nanostructures with tunable properties for novel physics and applications have been successfully fabricated, characterized and underwent practical test. In this thesis, I will focus on our recent efforts to develop new strategies to manipulate the properties of nanostructures. Particularly, three questions have been answered from our perspective, based on the nanomaterials synthesized: (1) How does the composition affect a novel nanostructure? We started from single-molecule precursors to reach nanostructures whose bulk counterparts only exist under extreme conditions. Fe3S and Fe3S2 are used as examples to demonstrate this synthetic strategy. Their potential magnetic properties have been measured, which may lead to interesting findings in astronomy and materials science. (2) How to achieve modularity control at nanoscale by a general bottom-up approach? Starting with reviewing the current status of this field, our recent experimental progresses towards delicate modularity control are presented by abundant novel heteronanostructures. An interesting catalytic mechanism of these nanostructures has also been verified, which involves the interaction between phonons, photons, plasmons, and excitons. (3) What can the morphology difference tell us about the inside of nanostructures? By comparing a series of data from three types of CdSe/CdS core-shell structures, a conclusion has been reached on the CdS growth mechanism on CdSe under different conditions, which also may lead to a solution to the asymmetry problem in the synthesis of CdSe/CdS nanorods. Finally this thesis is concluded by a summary and future outlook.

  5. In vivo and in vitro investigations of a nanostructured coating material – a preclinical study

    PubMed Central

    Adam, Martin; Ganz, Cornelia; Xu, Weiguo; Sarajian, Hamid-Reza; Götz, Werner; Gerber, Thomas

    2014-01-01

    Immediate loading of dental implants is only possible if a firm bone-implant anchorage at early stages is developed. This implies early and high bone apposition onto the implant surface. A nanostructured coating material based on an osseoinductive bone grafting is investigated in relation to the osseointegration at early stages. The goal is to transmit the structure (silica matrix with embedded hydroxyapatite) and the properties of the bone grafting into a coating material. The bone grafting substitute offers an osseoinductive potential caused by an exchange of the silica matrix in vivo accompanied by vascularization. X-ray diffraction and transmission electron microscopy analysis show that the coating material consists of a high porous silica matrix with embedded nanocrystalline hydroxyapatite with the same morphology as human hydroxyapatite. An in vitro investigation shows the early interaction between coating and human blood. Energy-dispersive X-ray analysis showed that the silica matrix was replaced by an organic matrix within a few minutes. Uncoated and coated titanium implants were inserted into the femora of New Zealand White rabbits. The bone-to-implant contact (BIC) was measured after 2, 4, and 6 weeks. The BIC of the coated implants was increased significantly at 2 and 4 weeks. After 6 weeks, the BIC was decreased to the level of the control group. A histological analysis revealed high bone apposition on the coated implant surface after 2 and 4 weeks. Osteoblastic and osteoclastic activities on the coating material indicated that the coating participates in the bone-remodeling process. The nanostructure of the coating material led to an exchange of the silica matrix by an autologous, organic matrix without delamination of the coating. This is the key issue in understanding initial bone formation on a coated surface. PMID:24627631

  6. Molecular Design of Bioinspired Nanostructures for Biomedical Applications: Synthesis, Self-Assembly and Functional Properties

    NASA Astrophysics Data System (ADS)

    Xu, Hesheng Victor; Zheng, Xin Ting; Mok, Beverly Yin Leng; Ibrahim, Salwa Ali; Yu, Yong; Tan, Yen Nee

    2016-08-01

    Biomolecules are the nanoscale building blocks of cells, which play multifaceted roles in the critical biological processes such as biomineralization in a living organism. In these processes, the biological molecules such as protein and nucleic acids use their exclusive biorecognition properties enabled from their unique chemical composition, shape and function to initiate a cascade of cellular events. The exceptional features of these biomolecules, coupled with the recent advancement in nanotechnology, have led to the emergence of a new research field that focuses on the molecular design of bioinspired nanostructures that inherit the extraordinary function of natural biomaterials. These “bioinspired” nanostructures could be formulated by biomimetic approaches through either self-assembling of biomolecules or acting as a biomolecular template/precursor to direct the synthesis of nanocomposite. In either situation, the resulting nanomaterials exhibit phenomenal biocompatibility, superb aqueous solubility and excellent colloidal stability, branding them exceptionally desirable for both in vitro and in vivo biomedical applications. In this review, we will present the recent developments in the preparation of “bioinspired” nanostructures through biomimetic self-assembly and biotemplating synthesis, as well as highlight their functional properties and potential applications in biomedical diagnostics and therapeutic delivery. Lastly, we will conclude this topic with some personal perspective on the challenges and future outlooks of the “bioinspired” nanostructures for nanomedicine.

  7. Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials. Final Technical Summary

    SciTech Connect

    Mullins, Michael; Rogers, Tony; King, Julia; Keith, Jason; Cornilsen, Bahne; Allen, Jeffrey; Gilbert, Ryan; Holles, Joseph

    2010-09-28

    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  8. Ultra-strong and damage tolerant metallic bulk materials: A lesson from nanostructured pearlitic steel wires.

    PubMed

    Hohenwarter, A; Völker, B; Kapp, M W; Li, Y; Goto, S; Raabe, D; Pippan, R

    2016-09-14

    Structural materials used for safety critical applications require high strength and simultaneously high resistance against crack growth, referred to as damage tolerance. However, the two properties typically exclude each other and research efforts towards ever stronger materials are hampered by drastic loss of fracture resistance. Therefore, future development of novel ultra-strong bulk materials requires a fundamental understanding of the toughness determining mechanisms. As model material we use today's strongest metallic bulk material, namely, a nanostructured pearlitic steel wire, and measured the fracture toughness on micron-sized specimens in different crack growth directions and found an unexpected strong anisotropy in the fracture resistance. Along the wire axis the material reveals ultra-high strength combined with so far unprecedented damage tolerance. We attribute this excellent property combination to the anisotropy in the fracture toughness inducing a high propensity for micro-crack formation parallel to the wire axis. This effect causes a local crack tip stress relaxation and enables the high fracture toughness without being detrimental to the material's strength.

  9. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  10. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  11. Electrical, thermal, catalytic and magnetic properties of nano-structured materials and their applications

    NASA Astrophysics Data System (ADS)

    Liu, Zuwei

    Nanotechnology is a subject that studies the fabrication, properties, and applications of materials on the nanometer-scale. Top-down and bottom-up approaches are commonly used in nano-structure fabrication. The top-down approach is used to fabricate nano-structures from bulk materials by lithography, etching, and polishing etc. It is commonly used in mechanical, electronic, and photonic devices. Bottom-up approaches fabricate nano-structures from atoms or molecules by chemical synthesis, self-assembly, and deposition, such as sol-gel processing, molecular beam epitaxy (MBE), focused ion beam (FIB) milling/deposition, chemical vapor deposition (CVD), and electro-deposition etc. Nano-structures can have several different dimensionalities, including zero-dimensional nano-structures, such as fullerenes, nano-particles, quantum dots, nano-sized clusters; one-dimensional nano-structures, such as carbon nanotubes, metallic and semiconducting nanowires; two-dimensional nano-structures, such as graphene, super lattice, thin films; and three-dimensional nano-structures, such as photonic structures, anodic aluminum oxide, and molecular sieves. These nano-structured materials exhibit unique electrical, thermal, optical, mechanical, chemical, and magnetic properties in the quantum mechanical regime. Various techniques can be used to study these properties, such as scanning probe microscopy (SPM), scanning/transmission electron microscopy (SEM/TEM), micro Raman spectroscopy, etc. These unique properties have important applications in modern technologies, such as random access memories, display, solar energy conversion, chemical sensing, and bio-medical devices. This thesis includes four main topics in the broad area of nanoscience: magnetic properties of ferro-magnetic cobalt nanowires, plasmonic properties of metallic nano-particles, photocatalytic properties of titanium dioxide nanotubes, and electro-thermal-optical properties of carbon nanotubes. These materials and their

  12. Ultrathin Two-Dimensional Nanostructured Materials for Highly Efficient Water Oxidation.

    PubMed

    Zhang, Wang; Zhou, Kun

    2017-08-01

    Water oxidation, also known as the oxygen evolution reaction (OER), is a crucial process in energy conversion and storage, especially in water electrolysis. The critical challenge of the electrochemical water splitting technology is to explore alternative precious-metal-free catalysts for the promotion of the kinetically sluggish OER. Recently, emerging two-dimensional (2D) ultrathin materials with abundant accessible active sites and improved electrical conductivity provide an ideal platform for the synthesis of promising OER catalysts. This Review focuses on the most recent advances in ultrathin 2D nanostructured materials for enhanced electrochemical activity of the OER. The design, synthesis and performance of such ultrathin 2D nanomaterials-based OER catalysts and their property-structure relationships are discussed, providing valuable insights to the exploration of novel OER catalysts with high efficiency and low overpotential. The potential research directions are also proposed in the research field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Independent control of electrical and heat conduction by nanostructure designing for Si-based thermoelectric materials

    PubMed Central

    Yamasaka, Shuto; Watanabe, Kentaro; Sakane, Shunya; Takeuchi, Shotaro; Sakai, Akira; Sawano, Kentarou; Nakamura, Yoshiaki

    2016-01-01

    The high electrical and drastically-low thermal conductivities, a vital goal for high performance thermoelectric (TE) materials, are achieved in Si-based nanoarchitecture composed of Si channel layers and epitaxial Ge nanodots (NDs) with ultrahigh areal density (~1012 cm−2). In this nanoarchitecture, the ultrasmall NDs and Si channel layers play roles of phonon scattering sources and electrical conduction channels, respectively. Electron conductivity in n-type nanoacrhitecture shows high values comparable to those of epitaxial Si films despite the existence of epitaxial NDs. This is because Ge NDs mainly scattered not electrons but phonons selectively, which could be attributed to the small conduction band offset at the epitaxially-grown Si/Ge interface and high transmission probability through stacking faults. These results demonstrate an independent control of thermal and electrical conduction for phonon-glass electron-crystal TE materials by nanostructure designing and the energetic and structural interface control. PMID:26973092

  14. Independent control of electrical and heat conduction by nanostructure designing for Si-based thermoelectric materials.

    PubMed

    Yamasaka, Shuto; Watanabe, Kentaro; Sakane, Shunya; Takeuchi, Shotaro; Sakai, Akira; Sawano, Kentarou; Nakamura, Yoshiaki

    2016-03-14

    The high electrical and drastically-low thermal conductivities, a vital goal for high performance thermoelectric (TE) materials, are achieved in Si-based nanoarchitecture composed of Si channel layers and epitaxial Ge nanodots (NDs) with ultrahigh areal density (~10(12) cm(-2)). In this nanoarchitecture, the ultrasmall NDs and Si channel layers play roles of phonon scattering sources and electrical conduction channels, respectively. Electron conductivity in n-type nanoacrhitecture shows high values comparable to those of epitaxial Si films despite the existence of epitaxial NDs. This is because Ge NDs mainly scattered not electrons but phonons selectively, which could be attributed to the small conduction band offset at the epitaxially-grown Si/Ge interface and high transmission probability through stacking faults. These results demonstrate an independent control of thermal and electrical conduction for phonon-glass electron-crystal TE materials by nanostructure designing and the energetic and structural interface control.

  15. Propagation modelling based on airborne particle release data from nanostructured materials for exposure estimation and prediction

    NASA Astrophysics Data System (ADS)

    Göhler, Daniel; Gritzki, Ralf; Stintz, Michael; Rösler, Markus; Felsmann, Clemens

    2017-06-01

    The gap between release and exposure is limiting the current risk assessment of nanostructured materials. Both, release and exposure were connected to each other by transport and transformation processes and require therefore the description/specification of complex exposure scenarios. Within this study, propagation modelling based on experimentally determined airborne particle release data was used for exposure estimation and prediction in a defined model room. Therefore, 9 different exposure scenarios based on 3 release scenarios and 3 ventilation scenarios were analysed. Results for near field considerations have shown that the level of inhalation exposure is fundamentally defined by the present exposure scenario, that personal heat can cause particle availability in the breathing zone and that highest exposure levels arise immediate during material processing.

  16. Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design.

    PubMed

    Fong, Celesta; Le, Tu; Drummond, Calum J

    2012-02-07

    Future nanoscale soft matter design will be guided to a large extent by the teachings of amphiphile (lipid or surfactant) self-assembly. Ordered nanostructured lyotropic liquid crystalline mesophases may form in select mixtures of amphiphile and solvent. To reproducibly engineer the low energy amphiphile self-assembly of materials for the future, we must first learn the design principles. In this critical review we discuss the evolution of these design rules and in particular discuss recent key findings regarding (i) what drives amphiphile self-assembly, (ii) what governs the self-assembly structures that are formed, and (iii) how can amphiphile self-assembly materials be used to enhance product formulations, including drug delivery vehicles, medical imaging contrast agents, and integral membrane protein crystallisation media. We focus upon the generation of 'dilutable' lyotropic liquid crystal phases with two- and three-dimensional geometries from amphiphilic small molecules (225 references). This journal is © The Royal Society of Chemistry 2012

  17. Laser photolysis and thermolysis of organic selenides and tellurides for chemical gas-phase deposition of nanostructured materials.

    PubMed

    Pola, Josef; Ouchi, Akihiko

    2009-03-12

    Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn) element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  18. Nanostructuring of Palladium with Low-Temperature Helium Plasma.

    PubMed

    Fiflis, P; Christenson, M P; Connolly, N; Ruzic, D N

    2015-11-25

    Impingement of high fluxes of helium ions upon metals at elevated temperatures has given rise to the growth of nanostructured layers on the surface of several metals, such as tungsten and molybdenum. These nanostructured layers grow from the bulk material and have greatly increased surface area over that of a not nanostructured surface. They are also superior to deposited nanostructures due to a lack of worries over adhesion and differences in material properties. Several palladium samples of varying thickness were biased and exposed to a helium helicon plasma. The nanostructures were characterized as a function of the thickness of the palladium layer and of temperature. Bubbles of ~100 nm in diameter appear to be integral to the nanostructuring process. Nanostructured palladium is also shown to have better catalytic activity than not nanostructured palladium.

  19. Nanostructuring of Palladium with Low-Temperature Helium Plasma

    PubMed Central

    Fiflis, P.; Christenson, M.P.; Connolly, N.; Ruzic, D.N.

    2015-01-01

    Impingement of high fluxes of helium ions upon metals at elevated temperatures has given rise to the growth of nanostructured layers on the surface of several metals, such as tungsten and molybdenum. These nanostructured layers grow from the bulk material and have greatly increased surface area over that of a not nanostructured surface. They are also superior to deposited nanostructures due to a lack of worries over adhesion and differences in material properties. Several palladium samples of varying thickness were biased and exposed to a helium helicon plasma. The nanostructures were characterized as a function of the thickness of the palladium layer and of temperature. Bubbles of ~100 nm in diameter appear to be integral to the nanostructuring process. Nanostructured palladium is also shown to have better catalytic activity than not nanostructured palladium. PMID:28347109

  20. PREFACE: Functional materials and nanotechnologies (FM&NT-2007)

    NASA Astrophysics Data System (ADS)

    Sternberg, Andris; Muzikante, Inta

    2007-06-01

    The International Baltic Sea Region conference Functional Materials and Nanotechnologies (FM&NT-2007) was held in Riga, 2-4 April 2007 in the Institute of Solid State Physics, University of Latvia (ISSP LU). The conference was organized in co-operation with projects ERANET 'MATERA' and EUREKA 'BIONANOCOMPOSITE'. The purpose of the conference was to bring together scientists, engineers and students from universities, research institutes and related industrial companies active in the field of advanced material science and materials technologies trends and future activities. Scientific themes covered in the conference are:

  21. advanced inorganic materials for photonics, energetics and microelectronics
  22. organic materials for photonics and nanoelectronics
  23. advanced methods for investigation of nanostructures
  24. perspective biomaterials and medicine technologies
  25. development of technologies for design of nanostructured materials, nanoparticles, and thin films
  26. design of functional materials and nanocomposites and development of their technologies
  27. The number of registered participants from 14 countries was nearly 110. During three days of the conference 70 oral reports and 58 posters were presented, 50 papers, based on these reports, are included in this volume of Journal of Physics: Conference Series. Additional information about FM&NT-2007 is available in its homepage http://fmnt.lu.lv and http://www.fmnt.lv . The Organizing Committee would like to thank all speakers, contributors, session chairs, referees and meeting staff for their efforts in making the FM&NT-2007 successful. The local Organization Committee would like to acknowledge and thank our sponsors - Latvian Council of Science and the Institute of Solid State Physics, University of Latvia. Andris Sternberg Inta Muzikante Guest editors

  1. Doping in controlling the type of conductivity in bulk and nanostructured thermoelectric materials

    SciTech Connect

    Fuks, D.; Komisarchik, G.; Kaller, M.; Gelbstein, Y.

    2016-08-15

    Doping of materials for thermoelectric applications is widely used nowadays to control the type of conductivity. We report the results of ab-initio calculations aimed at developing the consistent scheme for determining the role of impurities that may change the type of conductivity in two attractive thermoelectric classes of materials. It is demonstrated that alloying of TiNiSn with Cu makes the material of n-type, and alloying with Fe leads to p-type conductivity. Similar calculations for PbTe with small amount of Na substituting for Pb leads to p-type conductivity, while Cl substituting for Te makes PbTe an n-type material. It is shown also that for nano-grained materials the n-type conductivity should be observed. The effect of impurities segregating to the grain boundaries in nano-structured PbTe is also discussed. - Highlights: • Bulk and nano-grained TE materials were analyzed by DFT. • The electronic effects on both PbTe and TiNiSn were demonstrated. • The role of impurities on the conductivity type was analyzed. • Interfacial states in nano-grained PbTe affect the conductivity type.

  2. Ultra-strong and damage tolerant metallic bulk materials: A lesson from nanostructured pearlitic steel wires

    PubMed Central

    Hohenwarter, A.; Völker, B.; Kapp, M. W.; Li, Y.; Goto, S.; Raabe, D.; Pippan, R.

    2016-01-01

    Structural materials used for safety critical applications require high strength and simultaneously high resistance against crack growth, referred to as damage tolerance. However, the two properties typically exclude each other and research efforts towards ever stronger materials are hampered by drastic loss of fracture resistance. Therefore, future development of novel ultra-strong bulk materials requires a fundamental understanding of the toughness determining mechanisms. As model material we use today’s strongest metallic bulk material, namely, a nanostructured pearlitic steel wire, and measured the fracture toughness on micron-sized specimens in different crack growth directions and found an unexpected strong anisotropy in the fracture resistance. Along the wire axis the material reveals ultra-high strength combined with so far unprecedented damage tolerance. We attribute this excellent property combination to the anisotropy in the fracture toughness inducing a high propensity for micro-crack formation parallel to the wire axis. This effect causes a local crack tip stress relaxation and enables the high fracture toughness without being detrimental to the material’s strength. PMID:27624220

  3. Ultra-strong and damage tolerant metallic bulk materials: A lesson from nanostructured pearlitic steel wires

    NASA Astrophysics Data System (ADS)

    Hohenwarter, A.; Völker, B.; Kapp, M. W.; Li, Y.; Goto, S.; Raabe, D.; Pippan, R.

    2016-09-01

    Structural materials used for safety critical applications require high strength and simultaneously high resistance against crack growth, referred to as damage tolerance. However, the two properties typically exclude each other and research efforts towards ever stronger materials are hampered by drastic loss of fracture resistance. Therefore, future development of novel ultra-strong bulk materials requires a fundamental understanding of the toughness determining mechanisms. As model material we use today’s strongest metallic bulk material, namely, a nanostructured pearlitic steel wire, and measured the fracture toughness on micron-sized specimens in different crack growth directions and found an unexpected strong anisotropy in the fracture resistance. Along the wire axis the material reveals ultra-high strength combined with so far unprecedented damage tolerance. We attribute this excellent property combination to the anisotropy in the fracture toughness inducing a high propensity for micro-crack formation parallel to the wire axis. This effect causes a local crack tip stress relaxation and enables the high fracture toughness without being detrimental to the material’s strength.

  4. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors

    NASA Astrophysics Data System (ADS)

    Patil, Umakant; Lee, Su Chan; Kulkarni, Sachin; Sohn, Ji Soo; Nam, Min Sik; Han, Suhyun; Jun, Seong Chan

    2015-04-01

    Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.

  5. Incredible antibacterial activity of noble metal functionalized magnetic core-zeolitic shell nanostructures.

    PubMed

    Padervand, M; Janatrostami, S; Karanji, A Kiani; Gholami, M R

    2014-02-01

    Functionalized magnetic core-zeolitic shell nanostructures were prepared by hydrothermal and coprecipitation methods. The products were characterized by Vibrating Sample Magnetometer (VSM), X-ray powder diffraction (XRD), Fourier Transform Infrared (FTIR) spectra, nitrogen adsorption-desorption isotherms, and Transmission Electron Microscopy (TEM). The growth of mordenite nanoparticles on the surface of silica coated nickel ferrite nanoparticles in the presence of organic templates was also confirmed. Antibacterial activity of the prepared nanostructures was investigated by the inactivation of Escherichia coli as a gram negative bacterium. A new mechanism was proposed for inactivation of E. coli over the prepared samples. In addition, the Minimum Inhibitory Concentration (MIC) and reuse ability were studied. TEM images of the destroyed cell wall after the treatment time were performed to illustrate the inactivation mechanism. According to the experimental results, the core-shell nanostructures which were modified by organic agents and then functionalized with noble metal nanoparticles were the most active. The interaction of the noble metals with the organic components on the surface of nanostructures was studied theoretically and the obtained results were used to interpret the experimental results. © 2013. Published by Elsevier B.V. All rights reserved.

  6. Structural and Functional Hierarchy in Photosynthetic Energy Conversion—from Molecules to Nanostructures

    NASA Astrophysics Data System (ADS)

    Szabó, Tibor; Magyar, Melinda; Hajdu, Kata; Dorogi, Márta; Nyerki, Emil; Tóth, Tünde; Lingvay, Mónika; Garab, Győző; Hernádi, Klára; Nagy, László

    2015-12-01

    Basic principles of structural and functional requirements of photosynthetic energy conversion in hierarchically organized machineries are reviewed. Blueprints of photosynthesis, the energetic basis of virtually all life on Earth, can serve the basis for constructing artificial light energy-converting molecular devices. In photosynthetic organisms, the conversion of light energy into chemical energy takes places in highly organized fine-tunable systems with structural and functional hierarchy. The incident photons are absorbed by light-harvesting complexes, which funnel the excitation energy into reaction centre (RC) protein complexes containing redox-active chlorophyll molecules; the primary charge separations in the RCs are followed by vectorial transport of charges (electrons and protons) in the photosynthetic membrane. RCs possess properties that make their use in solar energy-converting and integrated optoelectronic systems feasible. Therefore, there is a large interest in many laboratories and in the industry toward their use in molecular devices. RCs have been bound to different carrier matrices, with their photophysical and photochemical activities largely retained in the nano-systems and with electronic connection to conducting surfaces. We show examples of RCs bound to carbon-based materials (functionalized and non-functionalized single- and multiwalled carbon nanotubes), transitional metal oxides (ITO) and conducting polymers and porous silicon and characterize their photochemical activities. Recently, we adapted several physical and chemical methods for binding RCs to different nanomaterials. It is generally found that the P+(QAQB)- charge pair, which is formed after single saturating light excitation is stabilized after the attachment of the RCs to the nanostructures, which is followed by slow reorganization of the protein structure. Measuring the electric conductivity in a direct contact mode or in electrochemical cell indicates that there is an

  7. Structural and Functional Hierarchy in Photosynthetic Energy Conversion-from Molecules to Nanostructures.

    PubMed

    Szabó, Tibor; Magyar, Melinda; Hajdu, Kata; Dorogi, Márta; Nyerki, Emil; Tóth, Tünde; Lingvay, Mónika; Garab, Győző; Hernádi, Klára; Nagy, László

    2015-12-01

    Basic principles of structural and functional requirements of photosynthetic energy conversion in hierarchically organized machineries are reviewed. Blueprints of photosynthesis, the energetic basis of virtually all life on Earth, can serve the basis for constructing artificial light energy-converting molecular devices. In photosynthetic organisms, the conversion of light energy into chemical energy takes places in highly organized fine-tunable systems with structural and functional hierarchy. The incident photons are absorbed by light-harvesting complexes, which funnel the excitation energy into reaction centre (RC) protein complexes containing redox-active chlorophyll molecules; the primary charge separations in the RCs are followed by vectorial transport of charges (electrons and protons) in the photosynthetic membrane. RCs possess properties that make their use in solar energy-converting and integrated optoelectronic systems feasible. Therefore, there is a large interest in many laboratories and in the industry toward their use in molecular devices. RCs have been bound to different carrier matrices, with their photophysical and photochemical activities largely retained in the nano-systems and with electronic connection to conducting surfaces. We show examples of RCs bound to carbon-based materials (functionalized and non-functionalized single- and multiwalled carbon nanotubes), transitional metal oxides (ITO) and conducting polymers and porous silicon and characterize their photochemical activities. Recently, we adapted several physical and chemical methods for binding RCs to different nanomaterials. It is generally found that the P(+)(QAQB)(-) charge pair, which is formed after single saturating light excitation is stabilized after the attachment of the RCs to the nanostructures, which is followed by slow reorganization of the protein structure. Measuring the electric conductivity in a direct contact mode or in electrochemical cell indicates that there is an

  8. Paper-supported nanostructured ultrathin gold film electrodes - Characterization and functionalization

    NASA Astrophysics Data System (ADS)

    Ihalainen, Petri; Määttänen, Anni; Pesonen, Markus; Sjöberg, Pia; Sarfraz, Jawad; Österbacka, Ronald; Peltonen, Jouko

    2015-02-01

    Ultrathin gold films (UTGFs) were fabricated on a nanostructured latex-coated paper substrate by physical vapour deposition (PVD) with the aim to provide low-cost and flexible conductive electrodes in paper-based electronics. Morphological, electric and optical properties of UTGFs were dependent on the deposited film thickness. In addition, UTGFs were functionalized with insulating and hydrophobic 1-octadecanethiol self-assembled monolayer and inkjet-printed conductive and hydrophilic poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) layer and their electrochemical properties were examined. Results showed that sufficient mechanical stability and adhesion of UTGFs deposited on latex-coated paper was achieved without the need on any additional adhesive layers, enabling a more robust fabrication process of the electrodes. UTGF electrodes tolerated extensive bending without adverse effects and conductivity comparable to the bulk gold was obtained already with the film thickness of 6 nm. Although not been fabricated with the high-throughput method like printing, a very low material consumption (∼12 μg/cm2) together with a high conductivity (resistivity < 3 × 10-6 Ω cm) makes the UTGFs electrodes potential candidates low-cost components in flexible electronics. In addition, the excellent stability of the UTGF electrodes in electrochemical experiments enables their application in the development of paper-based electrochemical platforms, e.g. for biosensing purposes.

  9. Laser interference lithography for large area patterning and the fabrication of functional nanostructures

    NASA Astrophysics Data System (ADS)

    Wathuthanthri, Ishan

    Nature-inspired phenomena such as the "moth eye" and "lotus leaf" effects have gained a lot of interest in recent years due to potential applications in a wide range of scientific and engineering disciplines. To practically achieve a majority of these biomimetic applications it is necessary to fabricate such nano-featured surfaces in a low-cost and high-throughput manner. To this end, this dissertation focuses on developing and using the Interference Lithography (IL) technologies to achieve large-area nanopatterning. IL is a parallel-type nanolithography technique that shares many of the advantages of other parallel-type techniques such as deep-UV photolithography while alleviating a majority of concerns such as cost and complexity. IL relies on the interference of two or more beams of light where the resulting interference fringes are generally recorded on a light sensitive polymeric material such as photoresist. In simple two-beam IL systems, the periodicity of the interference fringes is simply a function of wavelength and the angle of separation of the two beams, while the maximum coverage area is a constrained by the optical path and the exposed area. To this extent, in the design of interferometers for nanopatterning, the challenge remains in designing systems where a simple mechanism exists for varying the angle of separation of the interfering beams and in turn periodicity of the interference fringes while also enabling large-area exposures. To this end, the first half of this dissertation demonstrates three different IL systems (Lloyd-mirror, two-degree-of freedom Lloyd-mirror, and the tunable two-mirror systems) designed and established at Stevens capable of fast tuning of periodicities while also achieving wafer-scale (4") large-area nanopatterning. Using the large-area nanopatterns of photoresist, various pattern transfer techniques have also been investigated where the photoresist film is used as a template layer to transfer the large-area periodic

  10. Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.

    PubMed

    Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn

    2015-08-26

    In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.

  11. Efficient dual mode multicolor luminescence in a lanthanide doped hybrid nanostructure: a multifunctional material.

    PubMed

    Singh, S K; Singh, A K; Rai, S B

    2011-07-08

    The present work deals with inorganic-organic hybrid nanostructures capable of producing intense visible emission via upconversion (UC), downconversion (DC), and energy transfer (ET) processes which show the potential of the material as a luminescent solar collector (LSC), particularly to improve the efficiency of silicon solar cells. To achieve this, Gd2O3:Yb3+/Er3+ phosphor (average particle size∼35 nm) and a Eu(DBM)3Phen organic complex have been synthesized separately and then the hybrid structure has been developed using a simple mixing procedure. Intense UC emission (in the red, green, and blue regions) due to Er3+ is observed on near infrared (976 nm) excitation which shows color tunability with input pump power. In contrast, intense red emission of Eu3+ is observed on ultaviolet (UV) (355 nm) excitation. The feasibility of energy transfer from Er3+ ions to Eu3+ ions has also been noted. These excellent optical properties are retained even if the particles of the hybrid nanostructure are dispersed in liquid medium, which also makes it suitable for security ink purposes.

  12. Sorptive removal of trinitroglycerin (TNG) from water using nanostructured silica-based materials.

    PubMed

    Saad, Rabih; Thibutot, Sonia; Ampleman, Guy; Hawari, Jalal

    2010-01-01

    Trinitroglycerin (TNG), a nitrate ester, is widely used in the pharmaceutical industry for the treatment of angina pectoris (chest pain) and by the military for the manufacturing of dynamite and propellants. Currently, TNG is considered as a key environmental contaminant due to the discharge of wastewater tainted with the chemical from various military and pharmaceutical industries. The present study describes the use of a nanostructured silica material (Mobil Composite Material no. 48 [MCM-48]) prepared by mixing tetraethylorthosilicate (TEOS) and cetyltrimethylammonium bromide (CTAB) to remove TNG from water. The sorption of TNG onto MCM-48 rapidly reached equilibrium within 1 h. Sorption kinetics were best described using a pseudo-second order model, whereas sorption isotherms were best interpreted using the Langmuir model. The latter gave a maximum sorption capacity of 55.2 mg g(-1) at 40 degrees C. The enthalpy and entropy of TNG sorption onto MCM-48 were 1.89 kJ mol(-1) and 79.0 J mol(-1).K(-1), indicating the endothermic nature of the TNG sorption onto MCM-48. When MCM-48 was heated at 540 degrees C for 5 h, the resulting calcined material (absence of the surfactant) did not sorb TNG, suggesting that the surfactant component of the nanomaterial was responsible for TNG sorption. Finally, we found that MCM-48 lost approximately 30% of its original sorption capacity after five sorption-desorption cycles. In conclusion, the nanostructured silica based sorbent, with high sorption capacity and remarkable reusability, should constitute the basis for the development of an effective technology for the removal of TNG from contaminated water.

  13. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    NASA Astrophysics Data System (ADS)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    adhesion and durability in the environment. Though these coatings are efficient in protecting polymer composites, their application imposes severe constraints. Their thermal expansion coefficients may differ markedly from those of polymer composite substrates: as a result, cracks develop in the coatings on thermal cycling and AO can penetrate through them to the substrate. In addition to the technicalities of forming an effective barrier, such factors as cost, convenience of application and ease of repair are important considerations in the selection of a coating for a particular application. The latter issues drive the aerospace research toward the development of novel light composite materials, like the so called polymer nanocomposites, which are materials with a polymer matrix and a filler with at least one dimension less than 100 nanometers. Current interest in nanocomposites has been generated and maintained because nanoparticle-filled polymers exhibit unique combinations of properties not achievable with traditional composites. These combinations of properties can be achieved because of the small size of the fillers, the large surface area the fillers provide, and in many cases the unique properties of the fillers themselves. In particular, the carbon fiber-based polymeric composite materials are the basic point of interest: the aim of the present study is to find new solution to produce carbon fiber-based composites with even more upgraded performances. One intriguing strategy to tackle such an issue has been picked out in the coupling between the carbon fibers and the carbon nanostructures. That for two main reasons: first, carbon nanostructures have shown fancy potentialities for any kind of technological applications since their discovery, second, the chemical affinity between fiber and nanostructure (made of the same element) should be a likely route to approach the typical problems due to thermo-mechanical compatibility. This work is joined in such framework

  14. Magnetic Alignment and Charge Transport Improvement in Functional Soft Materials

    NASA Astrophysics Data System (ADS)

    Majewski, Pawel W.

    The realization of nanostructured functional materials by self-assembly in polymers and polymer nanocomposites is adversely affected by persisting structural defects which greatly diminish the performance of the material. The use of magnetic fields to impose long-range order is investigated in three distinct systems - ion-conducting block copolymers, semiconducting nanowire-polymer composites and lyotropic surfactant mesophases. The alignment process is quantitatively studied with X-ray scattering and microscopic methods. Time and temperature resolved data collected in situ during the magnetic experiments provide an insight into the thermodynamic and kinetic aspects of the process. These data together with simultaneous electrical conductivity measurements allow relating fundamental structural properties (e.g., morphology and long-range order) to transport properties (i.e., conductivity). In particular, it is demonstrated that magnetic fields offer a viable route for improvement of electric conductivity in these systems. More than an order of magnitude increase in conductivity is recorded in magnetically-annealed materials. The resulting aligned nanostructured systems are attractive for ordered solid polymer electrolyte membranes, heterojunction photovoltaic devices and generally help to understand charge transport mechanisms in anisotropic heterogeneous systems.

  15. Thermochemical nanolithography fabrication and atomic force microscopy characterization of functional nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Debin

    This thesis presents the development of a novel atomic force microscope (AFM) based nanofabrication technique termed as thermochemical nanolithography (TCNL). TCNL uses a resistively heated AFM cantilever to thermally activate chemical reactions on a surface with nanometer resolution. This technique can be used for fabrication of functional nanostructures that are appealing for various applications in nanofluidics, nanoelectronics, nanophotonics, and biosensing devices. This thesis research is focused on three main objectives. The first objective is to study the fundamentals of TCNL writing aspects. We have conducted a systematic study of the heat transfer mechanism using finite element analysis modeling, Raman spectroscopy, and local glass transition measurement. In addition, based on thermal kinetics analysis, we have identified several key factors to achieve high resolution fabrication of nanostructures during the TCNL writing process. The second objective is to demonstrate the use of TCNL on a variety of systems and thermochemical reactions. We show that TCNL can be employed to (1) modify the wettability of a polymer surface at the nanoscale, (2) fabricate nanoscale templates on polymer films for assembling nano-objects, such as proteins and DNA, (3) fabricate conjugated polymer semiconducting nanowires, and (4) reduce graphene oxide with nanometer resolution. The last objective is to characterize the TCNL nanostructures using AFM based methods, such as friction force microscopy, phase imaging, electric force microscopy, and conductive AFM. We show that they are useful for in situ characterization of nanostructures, which is particularly challenging for conventional macroscopic analytical tools, such as Raman spectroscopy, IR spectroscopy, and fluorescence microscopy.

  16. Plasma-based ion implantation: a valuable technology for the elaboration of innovative materials and nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Vempaire, D.; Pelletier, J.; Lacoste, A.; Béchu, S.; Sirou, J.; Miraglia, S.; Fruchart, D.

    2005-05-01

    Plasma-based ion implantation (PBII), invented in 1987, can now be considered as a mature technology for thin film modification. After a brief recapitulation of the principle and physics of PBII, its advantages and disadvantages, as compared to conventional ion beam implantation, are listed and discussed. The elaboration of thin films and the modification of their functional properties by PBII have already been achieved in many fields, such as microelectronics (plasma doping/PLAD), biomaterials (surgical implants, bio- and blood-compatible materials), plastics (grafting, surface adhesion) and metallurgy (hard coatings, tribology), to name a few. The major advantages of PBII processing lie, on the one hand, in its flexibility in terms of ion implantation energy (from 0 to 100 keV) and operating conditions (plasma density, collisional or non-collisional ion sheath), and, on the other hand, in the easy transferrability of processes from the laboratory to industry. The possibility of modifying the composition and physical nature of the films, or of drastically changing their physical properties over several orders of magnitude makes this technology very attractive for the elaboration of innovative materials, including metastable materials, and the realization of micro- or nanostructures. A review of the state of the art in these domains is presented and illustrated through a few selected examples. The perspectives opened up by PBII processing, as well as its limitations, are discussed.

  17. Functional materials for rechargeable batteries.

    PubMed

    Cheng, Fangyi; Liang, Jing; Tao, Zhanliang; Chen, Jun

    2011-04-19

    There is an ever-growing demand for rechargeable batteries with reversible and efficient electrochemical energy storage and conversion. Rechargeable batteries cover applications in many fields, which include portable electronic consumer devices, electric vehicles, and large-scale electricity storage in smart or intelligent grids. The performance of rechargeable batteries depends essentially on the thermodynamics and kinetics of the electrochemical reactions involved in the components (i.e., the anode, cathode, electrolyte, and separator) of the cells. During the past decade, extensive efforts have been dedicated to developing advanced batteries with large capacity, high energy and power density, high safety, long cycle life, fast response, and low cost. Here, recent progress in functional materials applied in the currently prevailing rechargeable lithium-ion, nickel-metal hydride, lead acid, vanadium redox flow, and sodium-sulfur batteries is reviewed. The focus is on research activities toward the ionic, atomic, or molecular diffusion and transport; electron transfer; surface/interface structure optimization; the regulation of the electrochemical reactions; and the key materials and devices for rechargeable batteries. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Coherent spectroscopic methods for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution

    NASA Astrophysics Data System (ADS)

    Moguilnaya, T.; Suminov, Y.; Botikov, A.; Ignatov, S.; Kononenko, A.; Agibalov, A.

    2017-01-01

    We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.

  19. Ternary eutectic growth of nanostructured thermoelectric Ag-Pb-Te materials

    SciTech Connect

    Wu, Hsin-jay; Chen, Sinn-wen; Foo, Wei-jian; Jeffrey Snyder, G.

    2012-07-09

    Nanostructured Ag-Pb-Te thermoelectric materials were fabricated by unidirectionally solidifying the ternary Ag-Pb-Te eutectic and near-eutectic alloys using the Bridgeman method. Specially, the Bridgman-grown eutectic alloy exhibited a partially aligned lamellar microstructure, which consisted of Ag{sub 5}Te{sub 3} and Te phases, with additional 200-600 nm size particles of PbTe. The self-assembled interfaces altered the thermal and electronic transport properties in the bulk Ag-Pb-Te eutectic alloy. Presumably due to phonon scattering from the nanoscale microstructure, a low thermal conductivity ({kappa} = 0.3 W/mK) was achieved of the eutectic alloy, leading to a zT peak of 0.41 at 400 K.

  20. Attosecond nanotechnology: NEMS of energy storage and nanostructural transformations in materials

    SciTech Connect

    Beznosyuk, Sergey A. Maslova, Olga A.; Zhukovsky, Mark S.

    2015-10-27

    The attosecond technology of the nanoelectromechanical system (NEMS) energy storage as active center fast transformation of nanostructures in materials is considered. The self-organizing relaxation of the NEMS active center containing nanocube of 256-atoms limited by planes (100) in the FCC lattice matrix of 4d-transition metals (Ru, Rh, Pd) is described by the quantum NEMS-kinetics (NK) method. Typical for these metals change of the NEMS active center physicochemical characteristics during the time of relaxation is presented. There are three types of intermediate quasistationary states of the NEMS active center. Their forms are plainly distinguishable. The full relaxed NEMS active centers (Ru{sub 256}, Rh{sub 256}, Pd{sub 256}) accumulate next storage energies: E{sub Ru} = 2.27 eV/at, E{sub Rh} = 1.67 eV/at, E{sub Pd} = 3.02 eV/at.

  1. Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials.

    PubMed

    Teixeira, J M; Lusche, R; Ventura, J; Fermento, R; Carpinteiro, F; Araujo, J P; Sousa, J B; Cardoso, S; Freitas, P P

    2011-04-01

    Magneto-optical Kerr effect (MOKE) magnetometry is an indispensable, reliable, and one of the most widely used techniques for the characterization of nanostructured magnetic materials. Information, such as the magnitude of coercive fields or anisotropy strengths, can be readily obtained from MOKE measurements. We present a description of our state-of-the-art vectorial MOKE magnetometer, being an extremely versatile, accurate, and sensitivity unit with a low cost and comparatively simple setup. The unit includes focusing lenses and an automatized stepper motor stage for angular dependent measurements. The performance of the magnetometer is demonstrated by hysteresis loops of Co thin films displaying uniaxial anisotropy induced on growth, MnIr/CoFe structures exhibiting the so called exchange bias effect, spin valves, and microfabricated flux guides produced by optical lithography.

  2. Coherent spectroscopic methods for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution

    NASA Astrophysics Data System (ADS)

    Moguilnaya, T.; Suminov, Y.; Botikov, A.; Ignatov, S.; Kononenko, A.; Agibalov, A.

    2016-12-01

    We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.

  3. Attosecond nanotechnology: NEMS of energy storage and nanostructural transformations in materials

    NASA Astrophysics Data System (ADS)

    Beznosyuk, Sergey A.; Zhukovsky, Mark S.; Maslova, Olga A.

    2015-10-01

    The attosecond technology of the nanoelectromechanical system (NEMS) energy storage as active center fast transformation of nanostructures in materials is considered. The self-organizing relaxation of the NEMS active center containing nanocube of 256-atoms limited by planes (100) in the FCC lattice matrix of 4d-transition metals (Ru, Rh, Pd) is described by the quantum NEMS-kinetics (NK) method. Typical for these metals change of the NEMS active center physicochemical characteristics during the time of relaxation is presented. There are three types of intermediate quasistationary states of the NEMS active center. Their forms are plainly distinguishable. The full relaxed NEMS active centers (Ru256, Rh256, Pd256) accumulate next storage energies: ERu = 2.27 eV/at, ERh = 1.67 eV/at, EPd = 3.02 eV/at.

  4. Nanostructuring molecular materials as particles and vesicles for drug delivery, using compressed and supercritical fluids.

    PubMed

    Elizondo, Elisa; Veciana, Jaume; Ventosa, Nora

    2012-09-01

    The structuring of synthetic and biological therapeutic actives as micro- and nano-particulate materials is a widely accepted formulation strategy to improve efficacy and reduce the toxicity of drugs. However, the development of efficient production platforms that enable the formulation of these nanomedicines at an industrial scale and with the quality requirements imposed by regulatory agencies remains a challenge. In this framework, compressed fluid-based methods are promising technologies for the controlled and reproducible preparation of uniform micro- and nano-particulate nanomedicines at a large scale. This review provides an overall but practical knowledge about what has been achieved so far in the field of compressed fluids applied to the preparation of solid micro- and nanoparticles and vesicles as drug delivery systems. In addition, recent examples of application of these technologies to the production of polymeric nanostructured microparticles highly loaded with gentamicin and to the preparation of uniform cholesterol-rich vesicular systems are explained.

  5. Nanostructured 2D cellular materials in silicon by sidewall transfer lithography NEMS

    NASA Astrophysics Data System (ADS)

    Syms, Richard R. A.; Liu, Dixi; Ahmad, Munir M.

    2017-07-01

    Sidewall transfer lithography (STL) is demonstrated as a method for parallel fabrication of 2D nanostructured cellular solids in single-crystal silicon. The linear mechanical properties of four lattices (perfect and defected diamond; singly and doubly periodic honeycomb) with low effective Young’s moduli and effective Poisson’s ratio ranging from positive to negative are modelled using analytic theory and the matrix stiffness method with an emphasis on boundary effects. The lattices are fabricated with a minimum feature size of 100 nm and an aspect ratio of 40:1 using single- and double-level STL and deep reactive ion etching of bonded silicon-on-insulator. Nanoelectromechanical systems (NEMS) containing cellular materials are used to demonstrate stretching, bending and brittle fracture. Predicted edge effects are observed, theoretical values of Poisson’s ratio are verified and failure patterns are described.

  6. A Short Overview on the Biomedical Applications of Silica, Alumina and Calcium Phosphate-based Nanostructured Materials.

    PubMed

    Ellahioui, Younes; Prashar, Sanjiv; Gómez-Ruiz, Santiago

    2016-01-01

    This article reviews the use of silica, alumina and calcium phosphate-based nanostructured materials with biomedical applications. A short introduction on the use of the materials in Science, Nanotechnology and Health is included followed by a revision of each of the selected materials. A description of the principal synthetic methods used in the preparation of the materials in nanostructured form is included. The most widely used applications in biomedicine are reviewed including, for example drug-delivery, bone regeneration, imaging, sensoring amongst others. Finally, a short description of the toxicity and cytotoxicity associated with each of the materials of this revision is presented. This short literature revision serves to demonstrate the very promising future ahead of nanosystems based on silica, alumina and calcium phosphate for biological and biomedical applications.

  7. Nanostructured Materials for High Efficiency Low Cost Solution-Processed Photovoltaics

    SciTech Connect

    Salleo, Alberto

    2012-10-31

    The goal of the project was to develop a suite of materials coupled with processing technologies aimed at the fabrication of entirely solution-processed photovoltaic devices. Most of the emphasis in terms of innovation was placed on the transparent electrodes, widely considered a critical component of the solar cell in terms of cost and performance. The active layer technologies proposed hinged on the fabrication and deposition of semiconducting nanoparticles. The electrode development hit all the milestones proposed: by the end of the grant we were able to fabricate transparent and flexible electrodes with transmission over the solar spectrum higher than 85% and sheet resistance lower than 10 Ω/square. To the best of our knowledge, this is the highest-performance transparent electrode reported. Furthermore these electrodes were deposited by spray-coating, a large-area, low-cost deposition techniques. Hence the first main goal of the proposal, which was to find an alternative to ITO was successfully achieved. Organic photovoltaic devices were made with these electrodes having a performance indistinguishable from that of devices made on ITO (the industry standard), e.g. ~5% for P3HT:PCBM cells. We also innovated in the active-area part of the device where semiconducting inks were designed rather than nanoparticle suspensions. The process we selected, called air-stable ink rolling (AIR) allowed to deposit well-controlled films of ternary and quaternary II-VI semiconductors. Developing a new technology from scratch proved to be more challenging than anticipated and therefore we were not able to demonstrate a fully integrated device using our nanostructured high-performance transparent electrodes as well as AIR active layers. As a result, we did not achieve the second main goal of the proposal, which was to fabricate an entire cell using nanostructured materials. We were able to develop the components separately but did not integrate them in a device.

  8. In-situ TEM - a tool for quantitative observations of deformation behavior in thin films and nano-structured materials

    SciTech Connect

    Stach, E.A.

    2001-09-04

    This paper highlights future developments in the field of in-situ transmission electron microscopy, as applied specifically to the issues of deformation in thin films and nanostructured materials. Emphasis is place on the forthcoming technical advances that will aid in extraction of improved quantitative experimental data using this technique.

  9. One dimensional semiconductor nanostructures: An effective active-material for terahertz detection

    SciTech Connect

    Vitiello, Miriam S. Viti, Leonardo; Ercolani, Daniele; Sorba, Lucia; Coquillat, Dominique; Knap, Wojciech

    2015-02-01

    One-dimensional (1D) nanostructure devices are at the frontline of studies on future electronics, although issues like massive parallelization, doping control, surface effects, and compatibility with silicon industrial requirements are still open challenges. The recent progresses in atomic to nanometer scale control of materials morphology, size, and composition including the growth of axial, radial, and branched nanowire (NW)-based heterostructures make the NW an ideal building block for implementing rectifying diodes or detectors that could be well operated into the Terahertz (THz), thanks to their typical achievable attofarad-order capacitance. Here, we report on our recent progresses in the development of 1D InAs or InAs/InSb NW-based field effect transistors exploiting novel morphologies and/or material combinations effective for addressing the goal of a semiconductor plasma-wave THz detector array technology. Through a critical review of material-related parameters (NW doping concentration, geometry, and/or material choice) and antenna-related issues, here we underline the crucial aspects that can affect detection performance across the THz frequency region.

  10. Electronic Properties of Novel Nanostructures

    NASA Astrophysics Data System (ADS)

    Kuzmany, Hans; Fink, Jörg; Mehring, Michael; Roth, Siegmar

    The 19th Winterschool focused mainly on new nanostructured materials, with data presented on functionalized fullerenes and carbon nanotubes, filled and double-wall nanotubes, non-carbon nanotubes, such as BN and MoS2 tubes, and other nanostructures. The direction of nanoelectronics research was explored in depth, and advancements in composite technology and novel applications for nanotubes were discussed. Importantly, participants were updated on the theoretical and experimental determinations of structural and electronic properties as well as on characterization methods for molecular nanostructures.

  11. Interaction of electron beams with optical nanostructures and metamaterials: from coherent photon sources towards shaping the wave function

    NASA Astrophysics Data System (ADS)

    Talebi, Nahid

    2017-10-01

    Investigating the interaction of electron beams with materials and light has been a field of research for more than a century. The field was advanced theoretically by the rise of quantum mechanics and technically by the introduction of electron microscopes and accelerators. It is possible nowadays to uncover a multitude of information from electron-induced excitations in matter by means of advanced techniques like holography, tomography, and, most recently, photon-induced near-field electron microscopy. The question is whether the interaction can be controlled in an even, more efficient way in order to unravel important questions like modal decomposition of the electron-induced polarization by performing experiments with better spatial, temporal, and energy resolutions. This review discusses recent advances in controlling electron and light interactions at the nanoscale. Theoretical and numerical aspects of the interaction of electrons with nanostructures and metamaterials will be discussed with the aim of understanding the mechanisms of radiation in the interaction of electrons with even more sophisticated structures. Based on these mechanisms of radiation, state-of-the art and novel electron-driven few-photon sources will be discussed. Applications of such sources to gain an understanding of quantum optical effects and also to perform spectral interferometry with electron microscopes will be covered. In an inverse approach, as in the case of the inverse Smith–Purcell effect, laser-induced excitations of nanostructures can cause electron beams traveling in the near-field of such structures to accelerate, provided a synchronization criterion is satisfied. This effect is the basis for linear dielectric and metallic electron accelerators. Moreover, acceleration is accompanied by bunching of the electrons. When single electrons are considered, an efficient design of nanostructures can lead to the shaping of the electron wave function travelling adjacent to them, for

  12. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells.

    PubMed

    Orilall, M Christopher; Wiesner, Ulrich

    2011-02-01

    The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices.

  13. In-situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity

    SciTech Connect

    Girard, Steven; He, Jiaqing; Li, Chang-Peng; Moses, Steven; Wang, Guoyu Y.; Uher, Ctirad; Dravid, Vinayak; Kanatzidis, Mercouri G.

    2010-07-26

    We show experimentally the direct reduction in lattice thermal conductivity as a result of in situ nanostructure generation within a thermoelectric material. Solid solution alloys of the high-performance thermoelectric PbTe-PbS 8% can be synthesized through rapid cooling and subsequent high-temperature activation that induces a spontaneous nucleation and growth of PbS nanocrystals. The emergence of coherent PbS nanostructures reduces the lattice thermal conductivity from ~1 to ~0.4 W/mK between 400 and 500 K.

  14. The Effects of Size, Shape, and Surface Functional Group of Gold Nanostructures on Their Adsorption and Internalization by Cells

    PubMed Central

    Cho, Eun Chul; Au, Leslie; Zhang, Qiang; Xia, Younan

    2010-01-01

    In this study, we examined the effects of size, shape, and surface chemistry of gold nanostructures on their uptake (including both adsorption and internalization) by SK-BR-3 breast cancer cells. We used both spherical and cubic Au nanostructures (nanospheres and nanocages, respectively) of two different sizes, and their surface was modified with poly(ethylene glycol) (PEG), antibody anti-HER2, or poly(allyamine hydrochloride) (PAA). Our results showed that the size of the Au nanostructures influenced their uptake by the cells in a similar way regardless of the surface chemistry, while the shape dependency could vary depending on the surface functional group. In addition, the cells preferred to take up the Au nanostructures covered by different surface groups in the following order: PAA>> anti-HER2> PEG. The fraction of Au nanostructures attached to the cell surface was also dependent on the aforementioned parameters. PMID:20029850

  15. In situ X-ray pair distribution function analysis of geopolymer gel nanostructure formation kinetics.

    PubMed

    White, Claire E; Provis, John L; Bloomer, Breaunnah; Henson, Neil J; Page, Katharine

    2013-06-14

    With the ever-increasing environmentally-driven demand for technologically advanced structural materials, geopolymer cement is fast becoming a viable alternative to traditional cements due to its proven engineering characteristics and the reduction in CO2 emitted during manufacturing (as much as 80% less CO2 emitted in manufacture, compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of reaction responsible for nanostructural evolution during the geopolymerisation process. Here, in situ X-ray total scattering measurements and pair distribution function (PDF) analysis are used to quantify the extent of reaction as a function of time for alkali-activated metakaolin/slag geopolymer binders, including the impact of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerisation reaction. Quantifying the reaction process in situ from X-ray PDF data collected during the initial ten hours can provide an estimate of the total reaction extent, but when combined with data obtained at longer times (128 days here) enables more accurate determination of the overall rate of reaction. To further assess the initial stages of the geopolymerisation reaction process, a pseudo-single step first order rate equation is fitted to the extent of reaction data, which reveals important mechanistic information regarding the role of free silica in the activators in the evolution of the binder systems. Hence, it is shown that in situ X-ray PDF analysis is an ideal experimental local structure tool to probe the reaction kinetics of complex reacting systems involving transitions between disordered/amorphous phases, of which geopolymerisation is an important example.

  16. High-rate production of functional nanostructured films and devices by coupling flame spray pyrolysis with supersonic expansion.

    PubMed

    Wegner, K; Vinati, S; Piseri, P; Antonini, A; Zelioli, A; Barborini, E; Ducati, C; Milani, P

    2012-05-11

    The fabrication of functional thin films and devices by direct deposition of nanoparticles from the gas phase is a promising approach enabling, for instance, the integration of complex analytical and sensing capabilities on microfabricated platforms. Aerosol-based techniques ensure large-scale nanoparticle production and they are potentially suited for this goal. However, they are not adequate in terms of fine control over the lateral resolution of the coatings, mild processing conditions (avoiding high temperature and aggressive chemicals), low contamination and compatibility with microfabrication processes. Here we report the high-rate and efficient production of functional nanostructured films by nanoparticle assembling obtained by the combination of flame spray pyrolysis and supersonic expansion. Our approach merges the advantages of flame spray pyrolysis for bulk nanopowders such as process stability and wide material library availability with those of supersonic cluster beam deposition in terms of lateral resolution and of direct integration of nanomaterials on devices. We efficiently produced nanostructured films and devices (such as gas sensors) using metal oxide, pure noble metal and oxide-supported noble metal nanoparticles.

  17. Functionalizing Carbon Nanotubes and Related Nanostructures for Various Applications

    DTIC Science & Technology

    2010-10-26

    applications, such as photovoltaics, optoelectronics, sensing, and energy. 15. SUBJECT TERMS Nano -Materials, Carbon nano tubes, Silicon Nano Tips 16...SiNTs), GaN nanowires, and related advanced nano -composites. Building on these ground works, a number of photovoltaic, optoelectronic, sensing and...energy/power devices that utilize the above-mentioned nanomaterials as their key components have been developed. Nano -structured system with well

  18. Nanostructured TiOx as a catalyst support material for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Phillips, Richard S.

    Recent interest in the development of new catalyst support materials for proton exchange membrane fuel cells (PEMFCs) has stimulated research into the viability of TiO2-based support structures. Specifically, substoichiometric TiO2 (TiOx) has been reported to exhibit a combination of high conductivity, stability, and corrosion resistance. These properties make TiOx-based support materials a promising prospect when considering the inferior corrosion resistance of traditional carbon-based supports. This document presents an investigation into the formation of conductive and stable TiOx thin films employing atomic layer deposition (ALD) and a post deposition oxygen reducing anneal (PDORA). Techniques for manufacturing TiOx-based catalyst support nanostructures by means of ALD in conjunction with carbon black (CB), anodic aluminum oxide (AAO) and silicon nanowires (SiNWs) will also be presented. The composition and thickness of resulting TiOx thin films was determined with the aid of Auger electron spectroscopy (AES), Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). Film crystal structure was determined with X-ray diffraction (XRD) analysis. Film conductivity was calculated using four-point probe (4-PP) and film thickness measurement data. Resulting thin films show a significant decrease of oxygen in ALD TiOx films corresponding with a great increase in conductivity following the PDORA. The effectiveness of the PDORA was also found to be highly dependent on ALD process parameters. TiOx-based nanostructures were coated with platinum using one of three Pt deposition techniques. First, liquid phase deposition (LPD), which was performed at room temperature, provided equal access to catalyst support material surfaces which were suspended in solution. Second, plasma enhanced atomic layer deposition (PEALD), which was performed at 450°C, provided good Pt

  19. Electromagnetic characterization of advanced nanostructured materials and multilayer design optimization for metrological and low radar observability applications

    NASA Astrophysics Data System (ADS)

    Micheli, Davide; Pastore, Roberto; Delfini, Andrea; Giusti, Alfonso; Vricella, Antonio; Santoni, Fabio; Marchetti, Mario; Tolochko, Oleg; Vasilyeva, Ekaterina

    2017-05-01

    In this work the electromagnetic characterization of composite materials reinforced with carbon and metallic nanoparticles is presented. In particular, the electric permittivity and the magnetic permeability as a function of the frequency are used to evaluate the electromagnetic absorption capability of the nanocomposites. The aim is the study of possible applications in advanced coating able to tune the electromagnetic reflectivity of satellite surfaces in specific frequency ranges, in a special way for those surfaces that for some reason could be exposed to the antenna radiation pattern. In fact, the interference caused by the spurious electromagnetic multipath due to good electric conductive satellite surface components could in turn affect the main radiation lobe of TLC and Telemetry antennas, thus modifying its main propagation directions and finally increasing the microwave channel pathloss. The work reports the analysis of different nanostructured materials in the 2-10 GHz frequency range. The employed nanopowders are of carbon nanotubes, cobalt, argent, titanium, nickel, zinc, copper, iron, boron, bismuth, hafnium, in different weight percentages versus the hosting polymeric matrix. The materials are classified as a function of their electromagnetic losses capability by taking into account of both electric and magnetic properties. The possibility to design multi-layered structures optimized to provide specific microwave response is finally analyzed by the aid of swam intelligence algorithm. This novel technique is in general interesting for metrological purpose and remote sensing purposes, and can be effectively used in aerospace field for frequency selective materials design, in order to reduce the aircraft/spacecraft radar observability at certain frequencies.

  20. Controlling the nanostructure of gold nanorod-lyotropic liquid-crystalline hybrid materials using near-infrared laser irradiation.

    PubMed

    Fong, Wye-Khay; Hanley, Tracey L; Thierry, Benjamin; Kirby, Nigel; Waddington, Lynne J; Boyd, Ben J

    2012-10-09

    Lipid-based liquid-crystalline matrixes provide a unique prospect for stimuli-responsive nanomaterials, attributed to the ability to effect self-assembly of the lipids at the molecular level. Differences in liquid crystal nanostructure have previously been shown to change drug diffusion and hence release, with research progressing toward the use of in situ changes to nanostructure to control drug release. Toward this goal, we have previously communicated the ability to switch between nonlamellar structures using gold nanorod (GNR)-phytantriol-based liquid-crystalline hybrid nanomaterials as near-infrared light responsive systems (Fong et al. Langmuir 2010, 26, 6136-6139). In this study, the effect of laser activation on matrix nanostructure with changes in a number of system variables including lipid composition, GNR aspect ratio, GNR concentration, and laser pulse time were investigated. The nanostructure of the matrix was followed using small-angle X-ray scattering, while both cryoFESEM and cryoTEM were used to visualize the effect of GNR incorporation into the liquid crystal nanostructure. The system response was found to be dependent on all variables, thus demonstrating the potential of these nanocomposite materials as reversible "on-demand" drug delivery applications.

  1. Simulation of Semiconductor Nanostructures

    SciTech Connect

    Williamson, A J; Grossman, J C; Puzder, A; Benedict, L X; Galli, G

    2001-07-19

    The field of research into the optical properties of silicon nanostructures has seen enormous growth over the last decade. The discovery that silicon nanoparticles exhibit visible photoluminescence (PL) has led to new insights into the mechanisms responsible for such phenomena. The importance of understanding and controlling the PL properties of any silicon based material is of paramount interest to the optoelectronics industry where silicon nanoclusters could be embedded into existing silicon based circuitry. In this talk, we present a combination of quantum Monte Carlo and density functional approaches to the calculation of the electronic, structural, and optical properties of silicon nanostructures.

  2. Peptide Self-Assembly for Crafting Functional Biological Materials

    PubMed Central

    Matson, John B.; Zha, R. Helen; Stupp, Samuel I.

    2011-01-01

    Self-assembling, peptide-based scaffolds are frontrunners in the search for biomaterials with widespread impact in regenerative medicine. The inherent biocompatibility and cell signaling capabilities of peptides, in combination with control of secondary structure, has led to the development of a broad range of functional materials with potential for many novel therapies. More recently, membranes formed through complexation of peptide nanostructures with natural biopolymers have led to the development of hierarchically-structured constructs with potentially far-reaching applications in biology and medicine. In this review, we highlight recent advances in peptide-based gels and membranes, including work from our group and others. Specifically, we discuss the application of peptide-based materials in the regeneration of bone and enamel, cartilage, and the central nervous system, as well as the transplantation of islets, wound-healing, cardiovascular therapies, and treatment of erectile dysfunction after prostatectomy PMID:22125413

  3. Synthesis and characterization of the mechanical behavior of mechanically strong porous nanostructured materials

    NASA Astrophysics Data System (ADS)

    Churu, Habel Gitogo

    Aerogels are three-dimensional assemblies of nano-particles that are typically synthesized through the sol-gel process and then dried by replacing the pore filling solvent with air. This work presents a robust method to manufacture both organic and inorganic aerogel so that mass production can be done more easily and at a substantially low cost of production. The inherent problems associated with typical aerogel materials such as fragility, hydrophilicity as well as requirement to use supercritical drier are addressed by nano-casting a conformal polymer layer on inorganic templated aerogels, while the microstructure of organic aerogels are refined so that they can be dried in ambient condition. Thus large pieces of aerogels have been synthesized and characterized to ascertain the mechanical properties so that design of components and structures can be done with ease. The first part of this work deals with inorganic templated silica aerogels whose morphology has been optimized to overcome fragility and allow for large samples to be produced. As such a microstructure akin to the naturally occurring honeycomb structure is produced resulting in a material, whose energy absorption is about 187 j/g, indicating that they are far stronger than most manmade materials in production. The second part of this work present a careful synthesis of organic polyurea aerogels whole morphology is varied from nano fibrous at the low density end to nano particulate at the high density end. By so doing we synthesized a nanostructured material which can be dried in ambient conditions at a much lower bulk density (0.2 g/ cm3) that earlier reported. In addition the materials have very high dimensional stability such that they retain their shape and size from the mold even after ambient drying. With that, this work seeks to resolve the inherent problems of aerogel materials, both organic and inorganic that makes them hard to economically mass produce.

  4. Biopolymeric hydrogels - nanostructured TiO2 hybrid materials as potential injectable scaffolds for bone regeneration.

    PubMed

    Zazakowny, Karolina; Lewandowska-Łańcucka, Joanna; Mastalska-Popławska, Joanna; Kamiński, Kamil; Kusior, Anna; Radecka, Marta; Nowakowska, Maria

    2016-12-01

    The present work aims at development of novel hybrid materials from genipin crosslinked collagen or collagen/chitosan hydrogels containing various types of TiO2 nanoparticles characterized with different anatase/rutile ratios. Collagen and chitosan were selected as hydrogel components since they are biopolymers being, like collagen, the major compound present in extracellular matrix or exhibit structural similarity to glycosaminoglycans, like chitosan. TiO2 nanoparticles were introduced to the hydrogel matrices to improve their mechanical properties as well as bioactivity. A series of twelve novel hybrid materials were prepared and their physicochemical, mechanical and biological properties were evaluated. It was found that TiO2 nanostructures introduced to the hydrogels have significant influence on the swelling properties of the synthesized hybrids and their impact is strongly dependent on the type of matrices. The surfaces of hybrid materials were found to be more hydrophilic than these of corresponding hydrogel matrix. It was also observed that, the storage modulus values of the hybrids based on collagen-chitosan hydrogel are comparable to these for plain hydrogels what indicates that the mechanical properties of the materials obtained are satisfactory for possible biomedical application. The in vitro cell culture studies have shown that prepared materials are biocompatible as they can support mitochondrial activity of MEFs as well as MG-63 cells. In vitro experiments performed under simulated body fluid (SBF) conditions have revealed that all studied TiO2 nanoparticles present in hydrogel matrices, regardless of anatase/rutile ratio, successfully induced formation of apatite-like structures. The hybrid materials developed here are promising candidates for preparation of bioactive, injectable scaffolds for tissue engineering.

  5. Imaging the nano-structure of soft and wet materials with new type of DLS methods

    NASA Astrophysics Data System (ADS)

    Sakai, Kazuyuki; Watanabe, Yuta; Kumagai, Hiroaki; Abe, Mei; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    Nano-structure of soft and wet materials are making important roles in radiation therapy, as a three-dimensional (3D) gel dosimeter. In the last decades, radiation therapy instruments have had a large progressive of the accuracy, therefore more precise measurements have became important. We study new materials and apparatus, which measure three dimensional absorbed dose distributions. New materials are double network (DN2) gel and improved PAGAT (yDAGAT) gel, the former has several good points, high transparency, high water content, high mechanical strength, and toughness, the later has similar properties of PAGAT gel but will be more tractable. The new type of optical-CT machine is Scanning Microscopic Light Scattering System (SMILS). Usual optical-CT uses the opacity, which is measured by the intensity, however SMILS also uses dynamic light scattering (DLS) theory with original ensemble average method. By using the intensity and DLS information, more accurate information are expected. We have established one-dimensional measurement by SMILS using irradiated DN gel. Additionally, yDAGAT is successfully composed. In the future, we are planning to develop three-dimensional radiation measurement apparatus by 3D printable gel and 3D SMILS.

  6. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors.

    PubMed

    Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li

    2017-03-14

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10-20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed.

  7. Nanostructured materials and their role as heterogeneous catalysts in the conversion of biomass to biofuels

    NASA Astrophysics Data System (ADS)

    Cadigan, Chris

    Prior to the discovery of inexpensive and readily available fossil fuels, the world relied heavily on biomass to provide its energy needs. Due to a worldwide growth in demand for fossil fuels coupled with the shrinkage of petroleum resources, and mounting economic, political, and environmental concerns, it has become more pressing to develop sustainable fuels and chemicals from biomass. The present dissertation studies multiple nanostructured catalysts investigated in various processes related to gasification of biomass into synthesis gas, and further upgrading to biofuels and value added chemicals. These reactions include: syngas conditioning, alcohol synthesis from carbon monoxide hydrogenation, and steam reforming ethanol to form higher hydrocarbons. Nanomaterials were synthesized, characterized, studied in given reactions, and then further characterized post-reaction. Overall goals were aimed at determining catalytic activities towards desired products and determining which material pro