A new class of methods for functional connectivity estimation
NASA Astrophysics Data System (ADS)
Lin, Wutu
Measuring functional connectivity from neural recordings is important in understanding processing in cortical networks. The covariance-based methods are the current golden standard for functional connectivity estimation. However, the link between the pair-wise correlations and the physiological connections inside the neural network is unclear. Therefore, the power of inferring physiological basis from functional connectivity estimation is limited. To build a stronger tie and better understand the relationship between functional connectivity and physiological neural network, we need (1) a realistic model to simulate different types of neural recordings with known ground truth for benchmarking; (2) a new functional connectivity method that produce estimations closely reflecting the physiological basis. In this thesis, (1) I tune a spiking neural network model to match with human sleep EEG data, (2) introduce a new class of methods for estimating connectivity from different kinds of neural signals and provide theory proof for its superiority, (3) apply it to simulated fMRI data as an application.
Sun, Junfeng; Li, Zhijun; Tong, Shanbao
2012-01-01
Functional neural connectivity is drawing increasing attention in neuroscience research. To infer functional connectivity from observed neural signals, various methods have been proposed. Among them, phase synchronization analysis is an important and effective one which examines the relationship of instantaneous phase between neural signals but neglecting the influence of their amplitudes. In this paper, we review the advances in methodologies of phase synchronization analysis. In particular, we discuss the definitions of instantaneous phase, the indexes of phase synchronization and their significance test, the issues that may affect the detection of phase synchronization and the extensions of phase synchronization analysis. In practice, phase synchronization analysis may be affected by observational noise, insufficient samples of the signals, volume conduction, and reference in recording neural signals. We make comments and suggestions on these issues so as to better apply phase synchronization analysis to inferring functional connectivity from neural signals. PMID:22577470
Fukushima, Makoto; Betzel, Richard F; He, Ye; van den Heuvel, Martijn P; Zuo, Xi-Nian; Sporns, Olaf
2018-04-01
Structural white matter connections are thought to facilitate integration of neural information across functionally segregated systems. Recent studies have demonstrated that changes in the balance between segregation and integration in brain networks can be tracked by time-resolved functional connectivity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data and that fluctuations between segregated and integrated network states are related to human behavior. However, how these network states relate to structural connectivity is largely unknown. To obtain a better understanding of structural substrates for these network states, we investigated how the relationship between structural connectivity, derived from diffusion tractography, and functional connectivity, as measured by rs-fMRI, changes with fluctuations between segregated and integrated states in the human brain. We found that the similarity of edge weights between structural and functional connectivity was greater in the integrated state, especially at edges connecting the default mode and the dorsal attention networks. We also demonstrated that the similarity of network partitions, evaluated between structural and functional connectivity, increased and the density of direct structural connections within modules in functional networks was elevated during the integrated state. These results suggest that, when functional connectivity exhibited an integrated network topology, structural connectivity and functional connectivity were more closely linked to each other and direct structural connections mediated a larger proportion of neural communication within functional modules. Our findings point out the possibility of significant contributions of structural connections to integrative neural processes underlying human behavior.
Nonequilibrium landscape theory of neural networks.
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-11-05
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.
Nonequilibrium landscape theory of neural networks
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-01-01
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451
ERIC Educational Resources Information Center
Han, Yvonne M. Y.; Chan, Agnes S.; Sze, Sophia L.; Cheung, Mei-Chun; Wong, Chun-kwok; Lam, Joseph M. K.; Poon, Priscilla M. K.
2013-01-01
Previous studies have shown that children with autism spectrum disorders (ASDs) have impaired executive function, disordered neural connectivity, and abnormal immunologic function. The present study examined whether these abnormalities were associated. Seventeen high-functioning (HFA) and 17 low-functioning (LFA) children with ASD, aged 8-17…
Intranasal oxytocin modulates neural functional connectivity during human social interaction.
Rilling, James K; Chen, Xiangchuan; Chen, Xu; Haroon, Ebrahim
2018-02-10
Oxytocin (OT) modulates social behavior in primates and many other vertebrate species. Studies in non-primate animals have demonstrated that, in addition to influencing activity within individual brain areas, OT influences functional connectivity across networks of areas involved in social behavior. Previously, we used fMRI to image brain function in human subjects during a dyadic social interaction task following administration of either intranasal oxytocin (INOT) or placebo, and analyzed the data with a standard general linear model. Here, we conduct an extensive re-analysis of these data to explore how OT modulates functional connectivity across a neural network that animal studies implicate in social behavior. OT induced widespread increases in functional connectivity in response to positive social interactions among men and widespread decreases in functional connectivity in response to negative social interactions among women. Nucleus basalis of Meynert, an important regulator of selective attention and motivation with a particularly high density of OT receptors, had the largest number of OT-modulated connections. Regions known to receive mesolimbic dopamine projections such as the nucleus accumbens and lateral septum were also hubs for OT effects on functional connectivity. Our results suggest that the neural mechanism by which OT influences primate social cognition may include changes in patterns of activity across neural networks that regulate social behavior in other animals. © 2018 Wiley Periodicals, Inc.
Swinnen, Stephan P.; Wenderoth, Nicole
2016-01-01
Autism spectrum disorders (ASD) are far more prevalent in males than in females. Little is known however about the differential neural expression of ASD in males and females. We used a resting-state fMRI-dataset comprising 42 males/42 females with ASD and 75 male/75 female typical-controls to examine whether autism-related alterations in intrinsic functional connectivity are similar or different in males and females, and particularly whether alterations reflect ‘neural masculinization’, as predicted by the Extreme Male Brain theory. Males and females showed a differential neural expression of ASD, characterized by highly consistent patterns of hypo-connectivity in males with ASD (compared to typical males), and hyper-connectivity in females with ASD (compared to typical females). Interestingly, patterns of hyper-connectivity in females with ASD reflected a shift towards the (high) connectivity levels seen in typical males (neural masculinization), whereas patterns of hypo-connectivity observed in males with ASD reflected a shift towards the (low) typical feminine connectivity patterns (neural feminization). Our data support the notion that ASD is a disorder of sexual differentiation rather than a disorder characterized by masculinization in both genders. Future work is needed to identify underlying factors such as sex hormonal alterations that drive these sex-specific neural expressions of ASD. PMID:26989195
Tsvetanov, Kamen A; Henson, Richard N A; Tyler, Lorraine K; Razi, Adeel; Geerligs, Linda; Ham, Timothy E; Rowe, James B
2016-03-16
The maintenance of wellbeing across the lifespan depends on the preservation of cognitive function. We propose that successful cognitive aging is determined by interactions both within and between large-scale functional brain networks. Such connectivity can be estimated from task-free functional magnetic resonance imaging (fMRI), also known as resting-state fMRI (rs-fMRI). However, common correlational methods are confounded by age-related changes in the neurovascular signaling. To estimate network interactions at the neuronal rather than vascular level, we used generative models that specified both the neural interactions and a flexible neurovascular forward model. The networks' parameters were optimized to explain the spectral dynamics of rs-fMRI data in 602 healthy human adults from population-based cohorts who were approximately uniformly distributed between 18 and 88 years (www.cam-can.com). We assessed directed connectivity within and between three key large-scale networks: the salience network, dorsal attention network, and default mode network. We found that age influences connectivity both within and between these networks, over and above the effects on neurovascular coupling. Canonical correlation analysis revealed that the relationship between network connectivity and cognitive function was age-dependent: cognitive performance relied on neural dynamics more strongly in older adults. These effects were driven partly by reduced stability of neural activity within all networks, as expressed by an accelerated decay of neural information. Our findings suggest that the balance of excitatory connectivity between networks, and the stability of intrinsic neural representations within networks, changes with age. The cognitive function of older adults becomes increasingly dependent on these factors. Maintaining cognitive function is critical to successful aging. To study the neural basis of cognitive function across the lifespan, we studied a large population-based cohort (n = 602, 18-88 years), separating neural connectivity from vascular components of fMRI signals. Cognitive ability was influenced by the strength of connection within and between functional brain networks, and this positive relationship increased with age. In older adults, there was more rapid decay of intrinsic neuronal activity in multiple regions of the brain networks, which related to cognitive performance. Our data demonstrate increased reliance on network flexibility to maintain cognitive function, in the presence of more rapid decay of neural activity. These insights will facilitate the development of new strategies to maintain cognitive ability. Copyright © 2016 Tsvetanov et al.
Henson, Richard N.A.; Tyler, Lorraine K.; Razi, Adeel; Geerligs, Linda; Ham, Timothy E.; Rowe, James B.
2016-01-01
The maintenance of wellbeing across the lifespan depends on the preservation of cognitive function. We propose that successful cognitive aging is determined by interactions both within and between large-scale functional brain networks. Such connectivity can be estimated from task-free functional magnetic resonance imaging (fMRI), also known as resting-state fMRI (rs-fMRI). However, common correlational methods are confounded by age-related changes in the neurovascular signaling. To estimate network interactions at the neuronal rather than vascular level, we used generative models that specified both the neural interactions and a flexible neurovascular forward model. The networks' parameters were optimized to explain the spectral dynamics of rs-fMRI data in 602 healthy human adults from population-based cohorts who were approximately uniformly distributed between 18 and 88 years (www.cam-can.com). We assessed directed connectivity within and between three key large-scale networks: the salience network, dorsal attention network, and default mode network. We found that age influences connectivity both within and between these networks, over and above the effects on neurovascular coupling. Canonical correlation analysis revealed that the relationship between network connectivity and cognitive function was age-dependent: cognitive performance relied on neural dynamics more strongly in older adults. These effects were driven partly by reduced stability of neural activity within all networks, as expressed by an accelerated decay of neural information. Our findings suggest that the balance of excitatory connectivity between networks, and the stability of intrinsic neural representations within networks, changes with age. The cognitive function of older adults becomes increasingly dependent on these factors. SIGNIFICANCE STATEMENT Maintaining cognitive function is critical to successful aging. To study the neural basis of cognitive function across the lifespan, we studied a large population-based cohort (n = 602, 18–88 years), separating neural connectivity from vascular components of fMRI signals. Cognitive ability was influenced by the strength of connection within and between functional brain networks, and this positive relationship increased with age. In older adults, there was more rapid decay of intrinsic neuronal activity in multiple regions of the brain networks, which related to cognitive performance. Our data demonstrate increased reliance on network flexibility to maintain cognitive function, in the presence of more rapid decay of neural activity. These insights will facilitate the development of new strategies to maintain cognitive ability. PMID:26985024
Disconnection Between Amygdala and Medial Prefrontal Cortex in Psychotic Disorders
Mukherjee, Prerona; Sabharwal, Amri; Kotov, Roman; Szekely, Akos; Parsey, Ramin; Barch, Deanna M.; Mohanty, Aprajita
2016-01-01
Distracting emotional information impairs attention more in schizophrenia (SCZ) than in never-psychotic individuals. However, it is unclear whether this impairment and its neural circuitry is indicative generally of psychosis, or specifically of SCZ, and whether it is even more specific to certain SCZ symptoms (eg, deficit syndrome). It is also unclear if this abnormality contributes to impaired behavioral performance and real-world functioning. Functional imaging data were recorded while individuals with SCZ, bipolar disorder with psychosis (BDP) and no history of psychotic disorders (CON) attended to identity of faces while ignoring their emotional expressions. We examined group differences in functional connectivity between amygdala, involved in emotional evaluation, and sub-regions of medial prefrontal cortex (MPFC), involved in emotion regulation and cognitive control. Additionally, we examined correlation of this connectivity with deficit syndrome and real-world functioning. Behaviorally, SCZ showed the worst accuracy when matching the identity of emotional vs neutral faces. Neurally, SCZ showed lower amygdala-MPFC connectivity than BDP and CON. BPD did not differ from CON, neurally or behaviorally. In patients, reduced amygdala-MPFC connectivity during emotional distractors was related to worse emotional vs neutral accuracy, greater deficit syndrome severity, and unemployment. Thus, reduced amygdala-MPFC functional connectivity during emotional distractors reflects a deficit that is specific to SCZ. This reduction in connectivity is associated with worse clinical and real-world functioning. Overall, these findings provide support for the specificity and clinical utility of amygdala-MPFC functional connectivity as a potential neural marker of SCZ. PMID:26908926
Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M
2014-11-01
Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.
Mogensen, Jesper; Overgaard, Morten
2017-01-01
In the present paper it is argued that the “neural correlate of consciousness” (NCC) does not appear to be a separate “module” – but an aspect of information processing within the neural substrate of various cognitive processes. Consequently, NCC can only be addressed adequately within frameworks that model the general relationship between neural processes and mental states – and take into account the dynamic connectivity of the brain. We presently offer the REFGEN (general reorganization of elementary functions) model as such a framework. This model builds upon and expands the REF (reorganization of elementary functions) and REFCON (of elementary functions and consciousness) models. All three models integrate the relationship between the neural and mental layers of description via the construction of an intermediate level dealing with computational states. The importance of experience based organization of neural and cognitive processes is stressed. The models assume that the mechanisms of consciousness are in principle the same as the basic mechanisms of all aspects of cognition – when information is processed to a sufficiently “high level” it becomes available to conscious experience. The NCC is within the REFGEN model seen as aspects of the dynamic and experience driven reorganizations of the synaptic connectivity between the neurocognitive “building blocks” of the model – the elementary functions. PMID:28473797
Alaerts, Kaat; Swinnen, Stephan P; Wenderoth, Nicole
2016-06-01
Autism spectrum disorders (ASD) are far more prevalent in males than in females. Little is known however about the differential neural expression of ASD in males and females. We used a resting-state fMRI-dataset comprising 42 males/42 females with ASD and 75 male/75 female typical-controls to examine whether autism-related alterations in intrinsic functional connectivity are similar or different in males and females, and particularly whether alterations reflect 'neural masculinization', as predicted by the Extreme Male Brain theory. Males and females showed a differential neural expression of ASD, characterized by highly consistent patterns of hypo-connectivity in males with ASD (compared to typical males), and hyper-connectivity in females with ASD (compared to typical females). Interestingly, patterns of hyper-connectivity in females with ASD reflected a shift towards the (high) connectivity levels seen in typical males (neural masculinization), whereas patterns of hypo-connectivity observed in males with ASD reflected a shift towards the (low) typical feminine connectivity patterns (neural feminization). Our data support the notion that ASD is a disorder of sexual differentiation rather than a disorder characterized by masculinization in both genders. Future work is needed to identify underlying factors such as sex hormonal alterations that drive these sex-specific neural expressions of ASD. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Differential reward network functional connectivity in cannabis dependent and non-dependent users☆
Filbey, Francesca M.; Dunlop, Joseph
2015-01-01
Background Emergent studies show that similar to other substances of abuse, cue-reactivity to cannabis is also associated with neural response in the brain’s reward pathway (Filbey et al., 2009). However, the inter-relatedness of brain regions during cue-reactivity in cannabis users remains unknown. Methods In this study, we conducted a series of investigations to determine functional connectivity during cue-reactivity in 71 cannabis users. First, we used psychophysiological interaction (PPI) analysis to examine coherent neural response to cannabis cues. Second, we evaluated whether these patterns of network functional connectivity differentiated dependent and non-dependent users. Finally, as an exploratory analysis, we determined the directionality of these connections via Granger connectivity analyses. Results PPI analyses showed reward network functional connectivity with the nucleus accumbens (NAc) seed region during cue exposure. Between-group contrasts found differential effects of dependence status. Dependent users (N = 31) had greater functional connectivity with amygdala and anterior cingulate gyrus (ACG) seeds while the non-dependent users (N = 24) had greater functional connectivity with the NAc, orbitofrontal cortex (OFC) and hippocampus seeds. Granger analyses showed that hippocampal and ACG activation preceded neural response in reward areas. Conclusions Both PPI and Granger analyses demonstrated strong functional coherence in reward regions during exposure to cannabis cues in current cannabis users. Functional connectivity (but not regional activation) in the reward network differentiated dependent from non-dependent cannabis users. Our findings suggest that repeated cannabis exposure causes observable changes in functional connectivity in the reward network and should be considered in intervention strategies. PMID:24838032
Ma, Ying; Shaik, Mohammed A; Kozberg, Mariel G; Kim, Sharon H; Portes, Jacob P; Timerman, Dmitriy; Hillman, Elizabeth M C
2016-12-27
Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (<0.04 Hz) hemodynamic fluctuations that were not well-predicted by local Thy1-GCaMP recordings. These results support that resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI.
Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Portes, Jacob P.; Timerman, Dmitriy
2016-01-01
Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (<0.04 Hz) hemodynamic fluctuations that were not well-predicted by local Thy1-GCaMP recordings. These results support that resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI. PMID:27974609
Akeju, Oluwaseun; Loggia, Marco L; Catana, Ciprian; Pavone, Kara J; Vazquez, Rafael; Rhee, James; Contreras Ramirez, Violeta; Chonde, Daniel B; Izquierdo-Garcia, David; Arabasz, Grae; Hsu, Shirley; Habeeb, Kathleen; Hooker, Jacob M; Napadow, Vitaly; Brown, Emery N; Purdon, Patrick L
2014-01-01
Understanding the neural basis of consciousness is fundamental to neuroscience research. Disruptions in cortico-cortical connectivity have been suggested as a primary mechanism of unconsciousness. By using a novel combination of positron emission tomography and functional magnetic resonance imaging, we studied anesthesia-induced unconsciousness and recovery using the α2-agonist dexmedetomidine. During unconsciousness, cerebral metabolic rate of glucose and cerebral blood flow were preferentially decreased in the thalamus, the Default Mode Network (DMN), and the bilateral Frontoparietal Networks (FPNs). Cortico-cortical functional connectivity within the DMN and FPNs was preserved. However, DMN thalamo-cortical functional connectivity was disrupted. Recovery from this state was associated with sustained reduction in cerebral blood flow and restored DMN thalamo-cortical functional connectivity. We report that loss of thalamo-cortical functional connectivity is sufficient to produce unconsciousness. DOI: http://dx.doi.org/10.7554/eLife.04499.001 PMID:25432022
Functional neural networks underlying response inhibition in adolescents and adults.
Stevens, Michael C; Kiehl, Kent A; Pearlson, Godfrey D; Calhoun, Vince D
2007-07-19
This study provides the first description of neural network dynamics associated with response inhibition in healthy adolescents and adults. Functional and effective connectivity analyses of whole brain hemodynamic activity elicited during performance of a Go/No-Go task were used to identify functionally integrated neural networks and characterize their causal interactions. Three response inhibition circuits formed a hierarchical, inter-dependent system wherein thalamic modulation of input to premotor cortex by fronto-striatal regions led to response suppression. Adolescents differed from adults in the degree of network engagement, regional fronto-striatal-thalamic connectivity, and network dynamics. We identify and characterize several age-related differences in the function of neural circuits that are associated with behavioral performance changes across adolescent development.
Functional neural networks underlying response inhibition in adolescents and adults
Stevens, Michael C.; Kiehl, Kent A.; Pearlson, Godfrey D.; Calhoun, Vince D.
2008-01-01
This study provides the first description of neural network dynamics associated with response inhibition in healthy adolescents and adults. Functional and effective connectivity analyses of whole brain hemodynamic activity elicited during performance of a Go/No-Go task were used to identify functionally-integrated neural networks and characterize their causal interactions. Three response inhibition circuits formed a hierarchical, inter-dependent system wherein thalamic modulation of input to premotor cortex by frontostriatal regions led to response suppression. Adolescents differed from adults in the degree of network engagement, regional fronto-striatal-thalamic connectivity, and network dynamics. We identify and characterize several age-related differences in the function of neural circuits that are associated with behavioral performance changes across adolescent development. PMID:17467816
Neural system prediction and identification challenge.
Vlachos, Ioannis; Zaytsev, Yury V; Spreizer, Sebastian; Aertsen, Ad; Kumar, Arvind
2013-01-01
Can we infer the function of a biological neural network (BNN) if we know the connectivity and activity of all its constituent neurons?This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC). We provide the connectivity and activity of all neurons and invite participants (1) to infer the functions implemented (hard-wired) in spiking neural networks (SNNs) by stimulating and recording the activity of neurons and, (2) to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered.
Neural system prediction and identification challenge
Vlachos, Ioannis; Zaytsev, Yury V.; Spreizer, Sebastian; Aertsen, Ad; Kumar, Arvind
2013-01-01
Can we infer the function of a biological neural network (BNN) if we know the connectivity and activity of all its constituent neurons?This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC). We provide the connectivity and activity of all neurons and invite participants (1) to infer the functions implemented (hard-wired) in spiking neural networks (SNNs) by stimulating and recording the activity of neurons and, (2) to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered. PMID:24399966
Varoquaux, G; Gramfort, A; Poline, J B; Thirion, B
2012-01-01
Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wang, Tianqi; Zhang, Xiaolong; Li, Ang; Zhu, Meifang; Liu, Shu; Qin, Wen; Li, Jin; Yu, Chunshui; Jiang, Tianzi; Liu, Bing
2017-01-01
Major psychiatric disorders, including attention deficit hyperactivity disorder (ADHD), autism (AUT), bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SZ), are highly heritable and polygenic. Evidence suggests that these five disorders have both shared and distinct genetic risks and neural connectivity abnormalities. To measure aggregate genetic risks, the polygenic risk score (PGRS) was computed. Two independent general populations (N = 360 and N = 323) were separately examined to investigate whether the cross-disorder PGRS and PGRS for a specific disorder were associated with individual variability in functional connectivity. Consistent altered functional connectivity was found with the bilateral insula: for the left supplementary motor area and the left superior temporal gyrus with the cross-disorder PGRS, for the left insula and right middle and superior temporal lobe associated with the PGRS for autism, for the bilateral midbrain, posterior cingulate, cuneus, and precuneus associated with the PGRS for BD, and for the left angular gyrus and the left dorsolateral prefrontal cortex associated with the PGRS for schizophrenia. No significant functional connectivity was found associated with the PGRS for ADHD and MDD. Our findings indicated that genetic effects on the cross-disorder and disorder-specific neural connectivity of common genetic risk loci are detectable in the general population. Our findings also indicated that polygenic risk contributes to the main neurobiological phenotypes of psychiatric disorders and that identifying cross-disorder and specific functional connectivity related to polygenic risks may elucidate the neural pathways for these disorders.
Meszlényi, Regina J.; Buza, Krisztian; Vidnyánszky, Zoltán
2017-01-01
Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network. PMID:29089883
Meszlényi, Regina J; Buza, Krisztian; Vidnyánszky, Zoltán
2017-01-01
Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network.
Kozberg, Mariel G; Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Hillman, Elizabeth M C
2016-06-22
In the adult brain, increases in neural activity lead to increases in local blood flow. However, many prior measurements of functional hemodynamics in the neonatal brain, including functional magnetic resonance imaging (fMRI) in human infants, have noted altered and even inverted hemodynamic responses to stimuli. Here, we demonstrate that localized neural activity in early postnatal mice does not evoke blood flow increases as in the adult brain, and elucidate the neural and metabolic correlates of these altered functional hemodynamics as a function of developmental age. Using wide-field GCaMP imaging, the development of neural responses to somatosensory stimulus is visualized over the entire bilaterally exposed cortex. Neural responses are observed to progress from tightly localized, unilateral maps to bilateral responses as interhemispheric connectivity becomes established. Simultaneous hemodynamic imaging confirms that spatiotemporally coupled functional hyperemia is not present during these early stages of postnatal brain development, and develops gradually as cortical connectivity is established. Exploring the consequences of this lack of functional hyperemia, measurements of oxidative metabolism via flavoprotein fluorescence suggest that neural activity depletes local oxygen to below baseline levels at early developmental stages. Analysis of hemoglobin oxygenation dynamics at the same age confirms oxygen depletion for both stimulus-evoked and resting-state neural activity. This state of unmet metabolic demand during neural network development poses new questions about the mechanisms of neurovascular development and its role in both normal and abnormal brain development. These results also provide important insights for the interpretation of fMRI studies of the developing brain. This work demonstrates that the postnatal development of neuronal connectivity is accompanied by development of the mechanisms that regulate local blood flow in response to neural activity. Novel in vivo imaging reveals that, in the developing mouse brain, strong and localized GCaMP neural responses to stimulus fail to evoke local blood flow increases, leading to a state in which oxygen levels become locally depleted. These results demonstrate that the development of cortical connectivity occurs in an environment of altered energy availability that itself may play a role in shaping normal brain development. These findings have important implications for understanding the pathophysiology of abnormal developmental trajectories, and for the interpretation of functional magnetic resonance imaging data acquired in the developing brain. Copyright © 2016 the authors 0270-6474/16/366704-14$15.00/0.
Microstructural and functional connectivity in the developing preterm brain
Lubsen, Julia; Vohr, Betty; Myers, Eliza; Hampson, Michelle; Lacadie, Cheryl; Schneider, Karen C.; Katz, Karol H.; Constable, R. Todd; Ment, Laura R.
2011-01-01
Prematurely born children are at increased risk for cognitive deficits, but the neurobiological basis of these findings remains poorly understood. Since variations in neural circuitry may influence performance on cognitive tasks, recent investigations have explored the impact of preterm birth on connectivity in the developing brain. Diffusion tensor imaging studies demonstrate widespread alterations in fractional anisotropy, a measure of axonal integrity and microstructural connectivity, throughout the developing preterm brain. Functional connectivity studies report that preterm neonates, children and adolescents exhibit alterations in both resting state and task-based connectivity when compared to term control subjects. Taken together, these data suggest that neurodevelopmental impairment following preterm birth may represent a disease of neural connectivity. PMID:21255705
Robertson, Edwin M.; Manoach, Dara S.; Stickgold, Robert
2016-01-01
Abstract We investigated whether functional neuroimaging of quiet “rest” can reveal the neural correlates of conscious thought. Using resting-state functional MRI, we measured functional connectivity during a resting scan that immediately followed performance of a finger tapping motor sequence task. Self-reports of the amount of time spent thinking about the task during the resting scan correlated with connectivity between regions of the motor network activated during task performance. Thus, thinking about a task is associated with coordinated activity in brain regions responsible for that task's performance. More generally, this study demonstrates the feasibility of using the combination of functional connectivity MRI and self-reports to examine the neural correlates of thought. PMID:26650337
What We Know About the Brain Structure-Function Relationship.
Batista-García-Ramó, Karla; Fernández-Verdecia, Caridad Ivette
2018-04-18
How the human brain works is still a question, as is its implication with brain architecture: the non-trivial structure–function relationship. The main hypothesis is that the anatomic architecture conditions, but does not determine, the neural network dynamic. The functional connectivity cannot be explained only considering the anatomical substrate. This involves complex and controversial aspects of the neuroscience field and that the methods and methodologies to obtain structural and functional connectivity are not always rigorously applied. The goal of the present article is to discuss about the progress made to elucidate the structure–function relationship of the Central Nervous System, particularly at the brain level, based on results from human and animal studies. The current novel systems and neuroimaging techniques with high resolutive physio-structural capacity have brought about the development of an integral framework of different structural and morphometric tools such as image processing, computational modeling and graph theory. Different laboratories have contributed with in vivo, in vitro and computational/mathematical models to study the intrinsic neural activity patterns based on anatomical connections. We conclude that multi-modal techniques of neuroimaging are required such as an improvement on methodologies for obtaining structural and functional connectivity. Even though simulations of the intrinsic neural activity based on anatomical connectivity can reproduce much of the observed patterns of empirical functional connectivity, future models should be multifactorial to elucidate multi-scale relationships and to infer disorder mechanisms.
Liu, Yung-Chiang; Lee, I-Chi; Lei, Kin Fong
2018-02-14
An in vitro model mimicking the in vivo environment of the brain must be developed to study neural communication and regeneration and to obtain an understanding of cellular and molecular responses. In this work, a multilayered neural network was successfully constructed on a biochip by guiding and promoting neural stem/progenitor cell differentiation and network formation. The biochip consisted of 3 × 3 arrays of cultured wells connected with channels. Neurospheroids were cultured on polyelectrolyte multilayer (PEM) films in the culture wells. Neurite outgrowth and neural differentiation were guided and promoted by the micropatterns and the PEM films. After 5 days in culture, a 3 × 3 neural network was constructed on the biochip. The function and the connections of the network were evaluated by immunocytochemistry and impedance measurements. Neurons were generated and produced functional and recyclable synaptic vesicles. Moreover, the electrical connections of the neural network were confirmed by measuring the impedance across the neurospheroids. The current work facilitates the development of an artificial brain on a chip for investigations of electrical stimulations and recordings of multilayered neural communication and regeneration.
Stanfield, Briana R.; Staib, Jennifer M.; David, Nina P.; Keller, Samantha M.; DePietro, Thomas
2016-01-01
Single prolonged stress (SPS) has been used to examine mechanisms via which stress exposure leads to post-traumatic stress disorder symptoms. SPS induces fear extinction retention deficits, but neural circuits critical for mediating these deficits are unknown. To address this gap, we examined the effect of SPS on neural activity in brain regions critical for extinction retention (i.e., fear extinction circuit). These were the ventral hippocampus (vHipp), dorsal hippocampus (dHipp), basolateral amygdala (BLA), prelimbic cortex (PL), and infralimbic cortex (IL). SPS or control rats were fear conditioned then subjected to extinction training and testing. Subsets of rats were euthanized after extinction training, extinction testing, or immediate removal from the housing colony (baseline condition) to assay c-Fos levels (measure of neural activity) in respective brain region. SPS induced extinction retention deficits. During extinction training SPS disrupted enhanced IL neural activity and inhibited BLA neural activity. SPS also disrupted inhibited BLA and vHipp neural activity during extinction testing. Statistical analyses suggested that SPS disrupted functional connectivity within the dHipp during extinction training and increased functional connectivity between the BLA and vHipp during extinction testing. Our findings suggest that SPS induces extinction retention deficits by disrupting both excitatory and inhibitory changes in neural activity within the fear extinction circuit and inducing changes in functional connectivity within the Hipp and BLA. PMID:27918273
Chaotic simulated annealing by a neural network with a variable delay: design and application.
Chen, Shyan-Shiou
2011-10-01
In this paper, we have three goals: the first is to delineate the advantages of a variably delayed system, the second is to find a more intuitive Lyapunov function for a delayed neural network, and the third is to design a delayed neural network for a quadratic cost function. For delayed neural networks, most researchers construct a Lyapunov function based on the linear matrix inequality (LMI) approach. However, that approach is not intuitive. We provide a alternative candidate Lyapunov function for a delayed neural network. On the other hand, if we are first given a quadratic cost function, we can construct a delayed neural network by suitably dividing the second-order term into two parts: a self-feedback connection weight and a delayed connection weight. To demonstrate the advantage of a variably delayed neural network, we propose a transiently chaotic neural network with variable delay and show numerically that the model should possess a better searching ability than Chen-Aihara's model, Wang's model, and Zhao's model. We discuss both the chaotic and the convergent phases. During the chaotic phase, we simply present bifurcation diagrams for a single neuron with a constant delay and with a variable delay. We show that the variably delayed model possesses the stochastic property and chaotic wandering. During the convergent phase, we not only provide a novel Lyapunov function for neural networks with a delay (the Lyapunov function is independent of the LMI approach) but also establish a correlation between the Lyapunov function for a delayed neural network and an objective function for the traveling salesman problem. © 2011 IEEE
Shared neural circuits for mentalizing about the self and others.
Lombardo, Michael V; Chakrabarti, Bhismadev; Bullmore, Edward T; Wheelwright, Sally J; Sadek, Susan A; Suckling, John; Baron-Cohen, Simon
2010-07-01
Although many examples exist for shared neural representations of self and other, it is unknown how such shared representations interact with the rest of the brain. Furthermore, do high-level inference-based shared mentalizing representations interact with lower level embodied/simulation-based shared representations? We used functional neuroimaging (fMRI) and a functional connectivity approach to assess these questions during high-level inference-based mentalizing. Shared mentalizing representations in ventromedial prefrontal cortex, posterior cingulate/precuneus, and temporo-parietal junction (TPJ) all exhibited identical functional connectivity patterns during mentalizing of both self and other. Connectivity patterns were distributed across low-level embodied neural systems such as the frontal operculum/ventral premotor cortex, the anterior insula, the primary sensorimotor cortex, and the presupplementary motor area. These results demonstrate that identical neural circuits are implementing processes involved in mentalizing of both self and other and that the nature of such processes may be the integration of low-level embodied processes within higher level inference-based mentalizing.
Fang, Weidong; Chen, Huiyue; Wang, Hansheng; Zhang, Han; Liu, Mengqi; Puneet, Munankami; Lv, Fajin; Cheng, Oumei; Wang, Xuefeng; Lu, Xiurong; Luo, Tianyou
2015-12-01
The heterogeneous clinical features of essential tremor indicate that the dysfunctions of this syndrome are not confined to motor networks, but extend to nonmotor networks. Currently, these neural network dysfunctions in essential tremor remain unclear. In this study, independent component analysis of resting-state functional MRI was used to study these neural network mechanisms. Thirty-five essential tremor patients and 35 matched healthy controls with clinical and neuropsychological tests were included, and eight resting-state networks were identified. After considering the structure and head-motion factors and testing the reliability of the selected resting-state networks, we assessed the functional connectivity changes within or between resting-state networks. Finally, image-behavior correlation analysis was performed. Compared to healthy controls, essential tremor patients displayed increased functional connectivity in the sensorimotor and salience networks and decreased functional connectivity in the cerebellum network. Additionally, increased functional network connectivity was observed between anterior and posterior default mode networks, and a decreased functional network connectivity was noted between the cerebellum network and the sensorimotor and posterior default mode networks. Importantly, the functional connectivity changes within and between these resting-state networks were correlated with the tremor severity and total cognitive scores of essential tremor patients. The findings of this study provide the first evidence that functional connectivity changes within and between multiple resting-state networks are associated with tremors and cognitive features of essential tremor, and this work demonstrates a potential approach for identifying the underlying neural network mechanisms of this syndrome. © 2015 International Parkinson and Movement Disorder Society.
Estimation of effective connectivity via data-driven neural modeling
Freestone, Dean R.; Karoly, Philippa J.; Nešić, Dragan; Aram, Parham; Cook, Mark J.; Grayden, David B.
2014-01-01
This research introduces a new method for functional brain imaging via a process of model inversion. By estimating parameters of a computational model, we are able to track effective connectivity and mean membrane potential dynamics that cannot be directly measured using electrophysiological measurements alone. The ability to track the hidden aspects of neurophysiology will have a profound impact on the way we understand and treat epilepsy. For example, under the assumption the model captures the key features of the cortical circuits of interest, the framework will provide insights into seizure initiation and termination on a patient-specific basis. It will enable investigation into the effect a particular drug has on specific neural populations and connectivity structures using minimally invasive measurements. The method is based on approximating brain networks using an interconnected neural population model. The neural population model is based on a neural mass model that describes the functional activity of the brain, capturing the mesoscopic biophysics and anatomical structure. The model is made subject-specific by estimating the strength of intra-cortical connections within a region and inter-cortical connections between regions using a novel Kalman filtering method. We demonstrate through simulation how the framework can be used to track the mechanisms involved in seizure initiation and termination. PMID:25506315
Structure-function clustering in multiplex brain networks
NASA Astrophysics Data System (ADS)
Crofts, J. J.; Forrester, M.; O'Dea, R. D.
2016-10-01
A key question in neuroscience is to understand how a rich functional repertoire of brain activity arises within relatively static networks of structurally connected neural populations: elucidating the subtle interactions between evoked “functional connectivity” and the underlying “structural connectivity” has the potential to address this. These structural-functional networks (and neural networks more generally) are more naturally described using a multilayer or multiplex network approach, in favour of standard single-layer network analyses that are more typically applied to such systems. In this letter, we address such issues by exploring important structure-function relations in the Macaque cortical network by modelling it as a duplex network that comprises an anatomical layer, describing the known (macro-scale) network topology of the Macaque monkey, and a functional layer derived from simulated neural activity. We investigate and characterize correlations between structural and functional layers, as system parameters controlling simulated neural activity are varied, by employing recently described multiplex network measures. Moreover, we propose a novel measure of multiplex structure-function clustering which allows us to investigate the emergence of functional connections that are distinct from the underlying cortical structure, and to highlight the dependence of multiplex structure on the neural dynamical regime.
Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks.
Sharghi Ido, A; Bonyadi, M R; Etaati, G R; Shahriari, M
2009-10-01
Artificial neural networks technology has been applied to unfold the neutron spectra from the pulse height distribution measured with NE213 liquid scintillator. Here, both the single and multi-layer perceptron neural network models have been implemented to unfold the neutron spectrum from an Am-Be neutron source. The activation function and the connectivity of the neurons have been investigated and the results have been analyzed in terms of the network's performance. The simulation results show that the neural network that utilizes the Satlins transfer function has the best performance. In addition, omitting the bias connection of the neurons improve the performance of the network. Also, the SCINFUL code is used for generating the response functions in the training phase of the process. Finally, the results of the neural network simulation have been compared with those of the FORIST unfolding code for both (241)Am-Be and (252)Cf neutron sources. The results of neural network are in good agreement with FORIST code.
McDonough, Ian M.; Nashiro, Kaoru
2014-01-01
An emerging field of research focused on fluctuations in brain signals has provided evidence that the complexity of those signals, as measured by entropy, conveys important information about network dynamics (e.g., local and distributed processing). While much research has focused on how neural complexity differs in populations with different age groups or clinical disorders, substantially less research has focused on the basic understanding of neural complexity in populations with young and healthy brain states. The present study used resting-state fMRI data from the Human Connectome Project (Van Essen et al., 2013) to test the extent that neural complexity in the BOLD signal, as measured by multiscale entropy (1) would differ from random noise, (2) would differ between four major resting-state networks previously associated with higher-order cognition, and (3) would be associated with the strength and extent of functional connectivity—a complementary method of estimating information processing. We found that complexity in the BOLD signal exhibited different patterns of complexity from white, pink, and red noise and that neural complexity was differentially expressed between resting-state networks, including the default mode, cingulo-opercular, left and right frontoparietal networks. Lastly, neural complexity across all networks was negatively associated with functional connectivity at fine scales, but was positively associated with functional connectivity at coarse scales. The present study is the first to characterize neural complexity in BOLD signals at a high temporal resolution and across different networks and might help clarify the inconsistencies between neural complexity and functional connectivity, thus informing the mechanisms underlying neural complexity. PMID:24959130
Electronic implementation of associative memory based on neural network models
NASA Technical Reports Server (NTRS)
Moopenn, A.; Lambe, John; Thakoor, A. P.
1987-01-01
An electronic embodiment of a neural network based associative memory in the form of a binary connection matrix is described. The nature of false memory errors, their effect on the information storage capacity of binary connection matrix memories, and a novel technique to eliminate such errors with the help of asymmetrical extra connections are discussed. The stability of the matrix memory system incorporating a unique local inhibition scheme is analyzed in terms of local minimization of an energy function. The memory's stability, dynamic behavior, and recall capability are investigated using a 32-'neuron' electronic neural network memory with a 1024-programmable binary connection matrix.
Neural Connectivity Evidence for a Categorical-Dimensional Hybrid Model of Autism Spectrum Disorder.
Elton, Amanda; Di Martino, Adriana; Hazlett, Heather Cody; Gao, Wei
2016-07-15
Autism spectrum disorder (ASD) encompasses a complex manifestation of symptoms that include deficits in social interaction and repetitive or stereotyped interests and behaviors. In keeping with the increasing recognition of the dimensional characteristics of ASD symptoms and the categorical nature of a diagnosis, we sought to delineate the neural mechanisms of ASD symptoms based on the functional connectivity of four known neural networks (i.e., default mode network, dorsal attention network, salience network, and executive control network). We leveraged an open data resource (Autism Brain Imaging Data Exchange) providing resting-state functional magnetic resonance imaging data sets from 90 boys with ASD and 95 typically developing boys. This data set also included the Social Responsiveness Scale as a dimensional measure of ASD traits. Seed-based functional connectivity was paired with linear regression to identify functional connectivity abnormalities associated with categorical effects of ASD diagnosis, dimensional effects of ASD-like behaviors, and their interaction. Our results revealed the existence of dimensional mechanisms of ASD uniquely affecting each network based on the presence of connectivity-behavioral relationships; these were independent of diagnostic category. However, we also found evidence of categorical differences (i.e., diagnostic group differences) in connectivity strength for each network as well as categorical differences in connectivity-behavioral relationships (i.e., diagnosis-by-behavior interactions), supporting the coexistence of categorical mechanisms of ASD. Our findings support a hybrid model for ASD characterization that includes a combination of categorical and dimensional brain mechanisms and provide a novel understanding of the neural underpinnings of ASD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Knox, Dayan; Stanfield, Briana R; Staib, Jennifer M; David, Nina P; Keller, Samantha M; DePietro, Thomas
2016-12-01
Single prolonged stress (SPS) has been used to examine mechanisms via which stress exposure leads to post-traumatic stress disorder symptoms. SPS induces fear extinction retention deficits, but neural circuits critical for mediating these deficits are unknown. To address this gap, we examined the effect of SPS on neural activity in brain regions critical for extinction retention (i.e., fear extinction circuit). These were the ventral hippocampus (vHipp), dorsal hippocampus (dHipp), basolateral amygdala (BLA), prelimbic cortex (PL), and infralimbic cortex (IL). SPS or control rats were fear conditioned then subjected to extinction training and testing. Subsets of rats were euthanized after extinction training, extinction testing, or immediate removal from the housing colony (baseline condition) to assay c-Fos levels (measure of neural activity) in respective brain region. SPS induced extinction retention deficits. During extinction training SPS disrupted enhanced IL neural activity and inhibited BLA neural activity. SPS also disrupted inhibited BLA and vHipp neural activity during extinction testing. Statistical analyses suggested that SPS disrupted functional connectivity within the dHipp during extinction training and increased functional connectivity between the BLA and vHipp during extinction testing. Our findings suggest that SPS induces extinction retention deficits by disrupting both excitatory and inhibitory changes in neural activity within the fear extinction circuit and inducing changes in functional connectivity within the Hipp and BLA. © 2016 Knox et al.; Published by Cold Spring Harbor Laboratory Press.
Feng, Pan; Zheng, Yong
2016-01-01
Investigations of fear conditioning have elucidated the neural mechanisms of fear acquisition, consolidation and extinction, but it is not clear how the neural activation following fear reminder influence the following extinction. To address this question, we measured human brain activity following fear reminder using resting-state functional magnetic resonance imaging, and investigated whether the extinction effect can be predicted by resting-state functional connectivity (RSFC). Behaviorally, we found no significant differences of fear ratings between the reminder group and the no reminder group at the fear acquisition and extinction stages, but spontaneous recovery during re-extinction stage appeared only in the no reminder group. Imaging data showed that functional connectivity between ventromedial prefrontal cortex (vmPFC) and amygdala in the reminder group was greater than that in the no reminder group after fear memory reactivation. More importantly, the functional connectivity between amygdala and vmPFC of the reminder group after fear memory reactivation was positively correlated with extinction effect. These results suggest RSFC between amygdala and the vmPFC following fear reminder can predict fear extinction, which provide important insight into the neural mechanisms of fear memory after fear memory reactivation. PMID:27013104
The implications of brain connectivity in the neuropsychology of autism
Maximo, Jose O.; Cadena, Elyse J.; Kana, Rajesh K.
2014-01-01
Autism is a neurodevelopmental disorder that has been associated with atypical brain functioning. Functional connectivity MRI (fcMRI) studies examining neural networks in autism have seen an exponential rise over the last decade. Such investigations have led to characterization of autism as a distributed neural systems disorder. Studies have found widespread cortical underconnectivity, local overconnectivity, and mixed results suggesting disrupted brain connectivity as a potential neural signature of autism. In this review, we summarize the findings of previous fcMRI studies in autism with a detailed examination of their methodology, in order to better understand its potential and to delineate the pitfalls. We also address how a multimodal neuroimaging approach (incorporating different measures of brain connectivity) may help characterize the complex neurobiology of autism at a global level. Finally, we also address the potential of neuroimaging-based markers in assisting neuropsychological assessment of autism. The quest for a biomarker for autism is still ongoing, yet new findings suggest that aberrant brain connectivity may be a promising candidate. PMID:24496901
Righi, Giulia; Tierney, Adrienne L; Tager-Flusberg, Helen; Nelson, Charles A
2014-01-01
In the field of autism research, recent work has been devoted to studying both behavioral and neural markers that may aide in early identification of autism spectrum disorder (ASD). These studies have often tested infants who have a significant family history of autism spectrum disorder, given the increased prevalence observed among such infants. In the present study we tested infants at high- and low-risk for ASD (based on having an older sibling diagnosed with the disorder or not) at 6- and 12-months-of-age. We computed intrahemispheric linear coherence between anterior and posterior sites as a measure of neural functional connectivity derived from electroencephalography while the infants were listening to speech sounds. We found that by 12-months-of-age infants at risk for ASD showed reduced functional connectivity compared to low risk infants. Moreover, by 12-months-of-age infants later diagnosed with ASD showed reduced functional connectivity, compared to both infants at low risk for the disorder and infants at high risk who were not later diagnosed with ASD. Significant differences in functional connectivity were also found between low-risk infants and high-risk infants who did not go onto develop ASD. These results demonstrate that reduced functional connectivity appears to be related to genetic vulnerability for ASD. Moreover, they provide further evidence that ASD is broadly characterized by differences in neural integration that emerge during the first year of life.
Hellyer, Peter J; Scott, Gregory; Shanahan, Murray; Sharp, David J; Leech, Robert
2015-06-17
Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome. Copyright © 2015 the authors 0270-6474/15/359050-14$15.00/0.
Ruiz, Sergio; Birbaumer, Niels; Sitaram, Ranganatha
2012-01-01
Considering that single locations of structural and functional abnormalities are insufficient to explain the diverse psychopathology of schizophrenia, new models have postulated that the impairments associated with the disease arise from a failure to integrate the activity of local and distributed neural circuits: the “abnormal neural connectivity hypothesis.” In the last years, new evidence coming from neuroimaging have supported and expanded this theory. However, despite the increasing evidence that schizophrenia is a disorder of neural connectivity, so far there are no treatments that have shown to produce a significant change in brain connectivity, or that have been specifically designed to alleviate this problem. Brain-Computer Interfaces based on real-time functional Magnetic Resonance Imaging (fMRI-BCI) are novel techniques that have allowed subjects to achieve self-regulation of circumscribed brain regions. In recent studies, experiments with this technology have resulted in new findings suggesting that this methodology could be used to train subjects to enhance brain connectivity, and therefore could potentially be used as a therapeutic tool in mental disorders including schizophrenia. The present article summarizes the findings coming from hemodynamics-based neuroimaging that support the abnormal connectivity hypothesis in schizophrenia, and discusses a new approach that could address this problem. PMID:23525496
Recovery of directed intracortical connectivity from fMRI data
NASA Astrophysics Data System (ADS)
Gilson, Matthieu; Ritter, Petra; Deco, Gustavo
2016-06-01
The brain exhibits complex spatio-temporal patterns of activity. In particular, its baseline activity at rest has a specific structure: imaging techniques (e.g., fMRI, EEG and MEG) show that cortical areas experience correlated fluctuations, which is referred to as functional connectivity (FC). The present study relies on our recently developed model in which intracortical white-matter connections shape noise-driven fluctuations to reproduce FC observed in experimental data (here fMRI BOLD signal). Here noise has a functional role and represents the variability of neural activity. The model also incorporates anatomical information obtained using diffusion tensor imaging (DTI), which estimates the density of white-matter fibers (structural connectivity, SC). After optimization to match empirical FC, the model provides an estimation of the efficacies of these fibers, which we call effective connectivity (EC). EC differs from SC, as EC not only accounts for the density of neural fibers, but also the concentration of synapses formed at their end, the type of neurotransmitters associated and the excitability of target neural populations. In summary, the model combines anatomical SC and activity FC to evaluate what drives the neural dynamics, embodied in EC. EC can then be analyzed using graph theory to understand how it generates FC and to seek for functional communities among cortical areas (parcellation of 68 areas). We find that intracortical connections are not symmetric, which affects the dynamic range of cortical activity (i.e., variety of states it can exhibit).
Yan, Xiaodan
2010-01-01
The current study investigated the functional connectivity of the primary sensory system with resting state fMRI and applied such knowledge into the design of the neural architecture of autonomous humanoid robots. Correlation and Granger causality analyses were utilized to reveal the functional connectivity patterns. Dissociation was within the primary sensory system, in that the olfactory cortex and the somatosensory cortex were strongly connected to the amygdala whereas the visual cortex and the auditory cortex were strongly connected with the frontal cortex. The posterior cingulate cortex (PCC) and the anterior cingulate cortex (ACC) were found to maintain constant communication with the primary sensory system, the frontal cortex, and the amygdala. Such neural architecture inspired the design of dissociated emergent-response system and fine-processing system in autonomous humanoid robots, with separate processing units and another consolidation center to coordinate the two systems. Such design can help autonomous robots to detect and respond quickly to danger, so as to maintain their sustainability and independence.
Karunamuni, Ganga H.; Ma, Pei; Gu, Shi; Rollins, Andrew M.; Jenkins, Michael W.; Watanabe, Michiko
2014-01-01
Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest is in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies. PMID:25220155
Changes in the interaction of resting-state neural networks from adolescence to adulthood.
Stevens, Michael C; Pearlson, Godfrey D; Calhoun, Vince D
2009-08-01
This study examined how the mutual interactions of functionally integrated neural networks during resting-state fMRI differed between adolescence and adulthood. Independent component analysis (ICA) was used to identify functionally connected neural networks in 100 healthy participants aged 12-30 years. Hemodynamic timecourses that represented integrated neural network activity were analyzed with tools that quantified system "causal density" estimates, which indexed the proportion of significant Granger causality relationships among system nodes. Mutual influences among networks decreased with age, likely reflecting stronger within-network connectivity and more efficient between-network influences with greater development. Supplemental tests showed that this normative age-related reduction in causal density was accompanied by fewer significant connections to and from each network, regional increases in the strength of functional integration within networks, and age-related reductions in the strength of numerous specific system interactions. The latter included paths between lateral prefrontal-parietal circuits and "default mode" networks. These results contribute to an emerging understanding that activity in widely distributed networks thought to underlie complex cognition influences activity in other networks. (c) 2009 Wiley-Liss, Inc.
Neural electrical activity and neural network growth.
Gafarov, F M
2018-05-01
The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cortical connective field estimates from resting state fMRI activity.
Gravel, Nicolás; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V; Dumoulin, Serge O; Renken, Remco; Curčić-Blake, Branislava; Cornelissen, Frans W
2014-01-01
One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another visual area. In combination with pRF mapping, CF locations on the cortical surface can be interpreted in visual space, thus enabling reconstruction of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization. Therefore, we conclude that-despite some variability in CF estimates between RS scans-neural properties such as CF maps and CF size can be derived from resting state data.
Sailamul, Pachaya; Jang, Jaeson; Paik, Se-Bum
2017-12-01
Correlated neural activities such as synchronizations can significantly alter the characteristics of spike transfer between neural layers. However, it is not clear how this synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. To address this question, we implemented computer simulations of model neural networks: a source and a target layer connected with different types of convergent wiring rules. In the Gaussian-Gaussian (GG) model, both the connection probability and the strength are given as Gaussian distribution as a function of spatial distance. In the Uniform-Constant (UC) and Uniform-Exponential (UE) models, the connection probability density is a uniform constant within a certain range, but the connection strength is set as a constant value or an exponentially decaying function, respectively. Then we examined how the spike transfer function is modulated under these conditions, while static or synchronized input patterns were introduced to simulate different levels of feedforward spike synchronization. We observed that the synchronization-dependent modulation of the transfer function appeared noticeably different for each convergence condition. The modulation of the spike transfer function was largest in the UC model, and smallest in the UE model. Our analysis showed that this difference was induced by the different spike weight distributions that was generated from convergent synapses in each model. Our results suggest that, the structure of the feedforward convergence is a crucial factor for correlation-dependent spike control, thus must be considered important to understand the mechanism of information transfer in the brain.
Attractor neural networks with resource-efficient synaptic connectivity
NASA Astrophysics Data System (ADS)
Pehlevan, Cengiz; Sengupta, Anirvan
Memories are thought to be stored in the attractor states of recurrent neural networks. Here we explore how resource constraints interplay with memory storage function to shape synaptic connectivity of attractor networks. We propose that given a set of memories, in the form of population activity patterns, the neural circuit choses a synaptic connectivity configuration that minimizes a resource usage cost. We argue that the total synaptic weight (l1-norm) in the network measures the resource cost because synaptic weight is correlated with synaptic volume, which is a limited resource, and is proportional to neurotransmitter release and post-synaptic current, both of which cost energy. Using numerical simulations and replica theory, we characterize optimal connectivity profiles in resource-efficient attractor networks. Our theory explains several experimental observations on cortical connectivity profiles, 1) connectivity is sparse, because synapses are costly, 2) bidirectional connections are overrepresented and 3) are stronger, because attractor states need strong recurrence.
Yanagisawa, Kuniaki; Abe, Nobuhito; Kashima, Emiko S; Nomura, Michio
2016-03-01
Reminders of death often elicit defensive responses in individuals, especially among those with low self-esteem. Although empirical evidence indicates that self-esteem serves as a buffer against mortality threats, the precise neural mechanism underlying this effect remains unknown. We used functional magnetic resonance imaging (fMRI) to test the hypothesis that self-esteem modulates neural responses to death-related stimuli, especially functional connectivity within the limbic-frontal circuitry, thereby affecting subsequent defensive reactions. As predicted, individuals with high self-esteem subjected to a mortality threat exhibited increased amygdala-ventrolateral prefrontal cortex (VLPFC) connectivity during the processing of death-related stimuli compared with individuals who have low self-esteem. Further analysis revealed that stronger functional connectivity between the amygdala and the VLPFC predicted a subsequent decline in responding defensively to those who threaten one's beliefs. These results suggest that the amygdala-VLPFC interaction, which is modulated by self-esteem, can reduce the defensiveness caused by death-related stimuli, thereby providing a neural explanation for why individuals with high self-esteem exhibit less defensive reactions to mortality threats. (c) 2016 APA, all rights reserved).
Neural Trade-Offs between Recognizing and Categorizing Own- and Other-Race Faces
Liu, Jiangang; Wang, Zhe; Feng, Lu; Li, Jun; Tian, Jie; Lee, Kang
2015-01-01
Behavioral research has suggested a trade-off relationship between individual recognition and race categorization of own- and other-race faces, which is an important behavioral marker of face processing expertise. However, little is known about the neural mechanisms underlying this trade-off. Using functional magnetic resonance imaging (fMRI) methodology, we concurrently asked participants to recognize and categorize own- and other-race faces to examine the neural correlates of this trade-off relationship. We found that for other-race faces, the fusiform face area (FFA) and occipital face area (OFA) responded more to recognition than categorization, whereas for own-race faces, the responses were equal for the 2 tasks. The right superior temporal sulcus (STS) responses were the opposite to those of the FFA and OFA. Further, recognition enhanced the functional connectivity from the right FFA to the right STS, whereas categorization enhanced the functional connectivity from the right OFA to the right STS. The modulatory effects of these 2 couplings were negatively correlated. Our findings suggested that within the core face processing network, although recognizing and categorizing own- and other-race faces activated the same neural substrates, there existed neural trade-offs whereby their activations and functional connectivities were modulated by face race type and task demand due to one's differential processing expertise with own- and other-race faces. PMID:24591523
Huang, Zirui; Davis, Henry Hap; Wolff, Annemarie; Northoff, Georg
2017-01-01
Brain plasticity studies have shown functional reorganization in participants with outstanding motor expertise. Little is known about neural plasticity associated with exceptionally long motor training or of its predictive value for motor performance excellence. The present study utilised resting-state functional magnetic resonance imaging (rs-fMRI) in a unique sample of world-class athletes: Olympic, elite, and internationally ranked swimmers ( n = 30). Their world ranking ranged from 1st to 250th: each had prepared for participation in the Olympic Games. Combining rs-fMRI graph-theoretical and seed-based functional connectivity analyses, it was discovered that the thalamus has its strongest connections with the sensorimotor network in elite swimmers with the highest world rankings (career best rank: 1-35). Strikingly, thalamo-sensorimotor functional connections were highly correlated with the swimmers' motor performance excellence, that is, accounting for 41% of the individual variance in best world ranking. Our findings shed light on neural correlates of long-term athletic performance involving thalamo-sensorimotor functional circuits.
Linking structure and activity in nonlinear spiking networks
Josić, Krešimir; Shea-Brown, Eric
2017-01-01
Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks’ spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities—including those of different cell types—combine with connectivity to shape population activity and function. PMID:28644840
McGrath, Jane; Johnson, Katherine; O'Hanlon, Erik; Garavan, Hugh; Leemans, Alexander; Gallagher, Louise
2013-01-01
Disruption of structural and functional neural connectivity has been widely reported in Autism Spectrum Disorder (ASD) but there is a striking lack of research attempting to integrate analysis of functional and structural connectivity in the same study population, an approach that may provide key insights into the specific neurobiological underpinnings of altered functional connectivity in autism. The aims of this study were (1) to determine whether functional connectivity abnormalities were associated with structural abnormalities of white matter (WM) in ASD and (2) to examine the relationships between aberrant neural connectivity and behavior in ASD. Twenty-two individuals with ASD and 22 age, IQ-matched controls completed a high-angular-resolution diffusion MRI scan. Structural connectivity was analysed using constrained spherical deconvolution (CSD) based tractography. Regions for tractography were generated from the results of a previous study, in which 10 pairs of brain regions showed abnormal functional connectivity during visuospatial processing in ASD. WM tracts directly connected 5 of the 10 region pairs that showed abnormal functional connectivity; linking a region in the left occipital lobe (left BA19) and five paired regions: left caudate head, left caudate body, left uncus, left thalamus, and left cuneus. Measures of WM microstructural organization were extracted from these tracts. Fractional anisotropy (FA) reductions in the ASD group relative to controls were significant for WM connecting left BA19 to left caudate head and left BA19 to left thalamus. Using a multimodal imaging approach, this study has revealed aberrant WM microstructure in tracts that directly connect brain regions that are abnormally functionally connected in ASD. These results provide novel evidence to suggest that structural brain pathology may contribute (1) to abnormal functional connectivity and (2) to atypical visuospatial processing in ASD. PMID:24133425
Feng, Pan; Zheng, Yong; Feng, Tingyong
2016-06-01
Investigations of fear conditioning have elucidated the neural mechanisms of fear acquisition, consolidation and extinction, but it is not clear how the neural activation following fear reminder influence the following extinction. To address this question, we measured human brain activity following fear reminder using resting-state functional magnetic resonance imaging, and investigated whether the extinction effect can be predicted by resting-state functional connectivity (RSFC). Behaviorally, we found no significant differences of fear ratings between the reminder group and the no reminder group at the fear acquisition and extinction stages, but spontaneous recovery during re-extinction stage appeared only in the no reminder group. Imaging data showed that functional connectivity between ventromedial prefrontal cortex (vmPFC) and amygdala in the reminder group was greater than that in the no reminder group after fear memory reactivation. More importantly, the functional connectivity between amygdala and vmPFC of the reminder group after fear memory reactivation was positively correlated with extinction effect. These results suggest RSFC between amygdala and the vmPFC following fear reminder can predict fear extinction, which provide important insight into the neural mechanisms of fear memory after fear memory reactivation. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Tone-deafness – a new disconnection syndrome?
Loui, Psyche; Alsop, David; Schlaug, Gottfried
2009-01-01
Communicating with one’s environment requires efficient neural interaction between action and perception. Neural substrates ofsound perception and production are connected by the arcuate fasciculus (AF). While AF is known to be involved in language, its roles in non-linguistic functions are unexplored. Here we show that tone-deaf people, with impaired sound perception and production, have reduced AF connectivity. Diffusion tensor tractography and psychophysics were assessed in tone-deaf individuals and matched controls. Abnormally-reduced AF connectivity was observed in the tone-deaf. Furthermore, we observed relationships between AF and auditory-motor behavior: superior and inferior AF branches predict psychophysically-assessed pitch-discrimination and sound production-perception abilities respectively. This neural abnormality suggests that tone-deafness leads to a reduction in connectivity resulting in pitch-related impairments. Results support a dual-stream anatomy of sound production and perception implicated in vocal communications. By identifying white-matter differences and their psychophysical correlates, results contribute to our understanding of how neural connectivity subserves behavior. PMID:19692596
Spatial working memory in neurofibromatosis 1: Altered neural activity and functional connectivity.
Ibrahim, Amira F A; Montojo, Caroline A; Haut, Kristen M; Karlsgodt, Katherine H; Hansen, Laura; Congdon, Eliza; Rosser, Tena; Bilder, Robert M; Silva, Alcino J; Bearden, Carrie E
2017-01-01
Neurofibromatosis Type 1 (NF1) is a genetic disorder that disrupts central nervous system development and neuronal function. Cognitively, NF1 is characterized by difficulties with executive control and visuospatial abilities. Little is known about the neural substrates underlying these deficits. The current study utilized Blood-Oxygen-Level-Dependent (BOLD) functional MRI (fMRI) to explore the neural correlates of spatial working memory (WM) deficits in patients with NF1. BOLD images were acquired from 23 adults with NF1 (age M = 32.69; 61% male) and 25 matched healthy controls (age M = 33.08; 64% male) during an in-scanner visuo-spatial WM task. Whole brain functional and psycho-physiological interaction analyses were utilized to investigate neural activity and functional connectivity, respectively, during visuo-spatial WM performance. Participants also completed behavioral measures of spatial reasoning and verbal WM. Relative to healthy controls, participants with NF1 showed reduced recruitment of key components of WM circuitry, the left dorsolateral prefrontal cortex and right parietal cortex. In addition, healthy controls exhibited greater simultaneous deactivation between the posterior cingulate cortex (PCC) and temporal regions than NF1 patients. In contrast, NF1 patients showed greater PCC and bilateral parietal connectivity with visual cortices as well as between the PCC and the cerebellum. In NF1 participants, increased functional coupling of the PCC with frontal and parietal regions was associated with better spatial reasoning and WM performance, respectively; these relationships were not observed in controls. Dysfunctional engagement of WM circuitry, and aberrant functional connectivity of 'task-negative' regions in NF1 patients may underlie spatial WM difficulties characteristic of the disorder.
ERIC Educational Resources Information Center
Thomason, Moriah E.; Hamilton, J. Paul; Gotlib, Ian H.
2011-01-01
Background: Responses to stress vary greatly in young adolescents, and little is known about neural correlates of the stress response in youth. The purpose of this study was to examine whether variability in cortisol responsivity following a social stress test in young adolescents is associated with altered neural functional connectivity (FC) of…
Neural systems for speech and song in autism
Pantazatos, Spiro P.; Schneider, Harry
2012-01-01
Despite language disabilities in autism, music abilities are frequently preserved. Paradoxically, brain regions associated with these functions typically overlap, enabling investigation of neural organization supporting speech and song in autism. Neural systems sensitive to speech and song were compared in low-functioning autistic and age-matched control children using passive auditory stimulation during functional magnetic resonance and diffusion tensor imaging. Activation in left inferior frontal gyrus was reduced in autistic children relative to controls during speech stimulation, but was greater than controls during song stimulation. Functional connectivity for song relative to speech was also increased between left inferior frontal gyrus and superior temporal gyrus in autism, and large-scale connectivity showed increased frontal–posterior connections. Although fractional anisotropy of the left arcuate fasciculus was decreased in autistic children relative to controls, structural terminations of the arcuate fasciculus in inferior frontal gyrus were indistinguishable between autistic and control groups. Fractional anisotropy correlated with activity in left inferior frontal gyrus for both speech and song conditions. Together, these findings indicate that in autism, functional systems that process speech and song were more effectively engaged for song than for speech and projections of structural pathways associated with these functions were not distinguishable from controls. PMID:22298195
Riem, Madelon M E; van IJzendoorn, Marinus H; Tops, Mattie; Boksem, Maarten A S; Rombouts, Serge A R B; Bakermans-Kranenburg, Marian J
2012-04-01
Infant laughter is a rewarding experience. It activates neural reward circuits and promotes parental proximity and care, thus facilitating parent-infant attachment. The neuropeptide oxytocin might enhance the incentive salience of infant laughter by modulating neural circuits related to the perception of infant cues. In a randomized controlled trial with functional magnetic resonance imaging we investigated the influence of intranasally administered oxytocin on functional brain connectivity in response to infant laughter. Blood oxygenation level-dependent responses to infant laughter were measured in 22 nulliparous women who were administered oxytocin and 20 nulliparous women who were administered a placebo. Elevated oxytocin levels reduced activation in the amygdala during infant laughter and enhanced functional connectivity between the amygdala and the orbitofrontal cortex, the anterior cingulate, the hippocampus, the precuneus, the supramarginal gyri, and the middle temporal gyrus. Increased functional connectivity between the amygdala and regions involved in emotion regulation may reduce negative emotional arousal while enhancing the incentive salience of the infant laughter.
Riem, Madelon M E; van IJzendoorn, Marinus H; Tops, Mattie; Boksem, Maarten A S; Rombouts, Serge A R B; Bakermans-Kranenburg, Marian J
2012-01-01
Infant laughter is a rewarding experience. It activates neural reward circuits and promotes parental proximity and care, thus facilitating parent–infant attachment. The neuropeptide oxytocin might enhance the incentive salience of infant laughter by modulating neural circuits related to the perception of infant cues. In a randomized controlled trial with functional magnetic resonance imaging we investigated the influence of intranasally administered oxytocin on functional brain connectivity in response to infant laughter. Blood oxygenation level-dependent responses to infant laughter were measured in 22 nulliparous women who were administered oxytocin and 20 nulliparous women who were administered a placebo. Elevated oxytocin levels reduced activation in the amygdala during infant laughter and enhanced functional connectivity between the amygdala and the orbitofrontal cortex, the anterior cingulate, the hippocampus, the precuneus, the supramarginal gyri, and the middle temporal gyrus. Increased functional connectivity between the amygdala and regions involved in emotion regulation may reduce negative emotional arousal while enhancing the incentive salience of the infant laughter. PMID:22189289
Cell-type Specific Optogenetic Mice for Dissecting Neural Circuitry Function
Zhao, Shengli; Ting, Jonathan T.; Atallah, Hisham E.; Qiu, Li; Tan, Jie; Gloss, Bernd; Augustine, George J.; Deisseroth, Karl; Luo, Minmin; Graybiel, Ann M.; Feng, Guoping
2011-01-01
Optogenetic methods have emerged as powerful tools for dissecting neural circuit connectivity, function, and dysfunction. We used a Bacterial Artificial Chromosome (BAC) transgenic strategy to express Channelrhodopsin2 (ChR2) under the control of cell-type specific promoter elements. We provide a detailed functional characterization of the newly established VGAT-ChR2-EYFP, ChAT-ChR2-EYFP, TPH2-ChR2-EYFP and Pvalb-ChR2-EYFP BAC transgenic mouse lines and demonstrate the utility of these lines for precisely controlling action potential firing of GABAergic, cholinergic, serotonergic, and parvalbumin+ neuron subsets using blue light. This resource of cell type-specific ChR2 mouse lines will facilitate the precise mapping of neuronal connectivity and the dissection of the neural basis of behavior. PMID:21985008
Contextual and Developmental Differences in the Neural Architecture of Cognitive Control.
Petrican, Raluca; Grady, Cheryl L
2017-08-09
Because both development and context impact functional brain architecture, the neural connectivity signature of a cognitive or affective predisposition may similarly vary across different ages and circumstances. To test this hypothesis, we investigated the effects of age and cognitive versus social-affective context on the stable and time-varying neural architecture of inhibition, the putative core cognitive control component, in a subsample ( N = 359, 22-36 years, 174 men) of the Human Connectome Project. Among younger individuals, a neural signature of superior inhibition emerged in both stable and dynamic connectivity analyses. Dynamically, a context-free signature emerged as stronger segregation of internal cognition (default mode) and environmentally driven control (salience, cingulo-opercular) systems. A dynamic social-affective context-specific signature was observed most clearly in the visual system. Stable connectivity analyses revealed both context-free (greater default mode segregation) and context-specific (greater frontoparietal segregation for higher cognitive load; greater attentional and environmentally driven control system segregation for greater reward value) signatures of inhibition. Superior inhibition in more mature adulthood was typified by reduced segregation in the default network with increasing reward value and increased ventral attention but reduced cingulo-opercular and subcortical system segregation with increasing cognitive load. Failure to evidence this neural profile after the age of 30 predicted poorer life functioning. Our results suggest that distinguishable neural mechanisms underlie individual differences in cognitive control during different young adult stages and across tasks, thereby underscoring the importance of better understanding the interplay among dispositional, developmental, and contextual factors in shaping adaptive versus maladaptive patterns of thought and behavior. SIGNIFICANCE STATEMENT The brain's functional architecture changes across different contexts and life stages. To test whether the neural signature of a trait similarly varies, we investigated cognitive versus social-affective context effects on the stable and time-varying neural architecture of inhibition during a period of neurobehavioral fine-tuning (age 22-36 years). Younger individuals with superior inhibition showed distinguishable context-free and context-specific neural profiles, evidenced in both static and dynamic connectivity analyses. More mature individuals with superior inhibition evidenced only context-specific profiles, revealed in the static connectivity patterns linked to increased reward or cognitive load. Delayed expression of this profile predicted poorer life functioning. Our results underscore the importance of understanding the interplay among dispositional, developmental, and contextual factors in shaping behavior. Copyright © 2017 the authors 0270-6474/17/377711-16$15.00/0.
SPIDER OR NO SPIDER? NEURAL CORRELATES OF SUSTAINED AND PHASIC FEAR IN SPIDER PHOBIA.
Münsterkötter, Anna Luisa; Notzon, Swantje; Redlich, Ronny; Grotegerd, Dominik; Dohm, Katharina; Arolt, Volker; Kugel, Harald; Zwanzger, Peter; Dannlowski, Udo
2015-09-01
Processes of phasic fear responses to threatening stimuli are thought to be distinct from sustained, anticipatory anxiety toward an unpredicted, potential threat. There is evidence for dissociable neural correlates of phasic fear and sustained anxiety. Whereas increased amygdala activity has been associated with phasic fear, sustained anxiety has been linked with activation of the bed nucleus of stria terminalis (BNST), anterior cingulate cortex (ACC), and the insula. So far, only a few studies have focused on the dissociation of neural processes related to both phasic and sustained fear in specific phobia. We suggested that first, conditions of phasic and sustained fear would involve different neural networks and, second, that overall neural activity would be enhanced in a sample of phobic compared to nonphobic participants. Pictures of spiders and neutral stimuli under conditions of either predicted (phasic) or unpredicted (sustained) fear were presented to 28 subjects with spider phobia and 28 nonphobic control subjects during functional magnetic resonance imaging (fMRI) scanning. Phobic patients revealed significantly higher amygdala activation than controls under conditions of phasic fear. Sustained fear processing was significantly related to activation in the insula and ACC, and phobic patients showed a stronger activation than controls of the BNST and the right ACC under conditions of sustained fear. Functional connectivity analysis revealed enhanced connectivity of the BNST and the amygdala in phobic subjects. Our findings support the idea of distinct neural correlates of phasic and sustained fear processes. Increased neural activity and functional connectivity in these networks might be crucial for the development and maintenance of anxiety disorders. © 2015 Wiley Periodicals, Inc.
Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and Functions.
Hyafil, Alexandre; Giraud, Anne-Lise; Fontolan, Lorenzo; Gutkin, Boris
2015-11-01
Neural oscillations are ubiquitously observed in the mammalian brain, but it has proven difficult to tie oscillatory patterns to specific cognitive operations. Notably, the coupling between neural oscillations at different timescales has recently received much attention, both from experimentalists and theoreticians. We review the mechanisms underlying various forms of this cross-frequency coupling. We show that different types of neural oscillators and cross-frequency interactions yield distinct signatures in neural dynamics. Finally, we associate these mechanisms with several putative functions of cross-frequency coupling, including neural representations of multiple environmental items, communication over distant areas, internal clocking of neural processes, and modulation of neural processing based on temporal predictions. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yashchenko, Vitaliy A.
2000-03-01
On the basis of the analysis of scientific ideas reflecting the law in the structure and functioning the biological structures of a brain, and analysis and synthesis of knowledge, developed by various directions in Computer Science, also there were developed the bases of the theory of a new class neural-like growing networks, not having the analogue in world practice. In a base of neural-like growing networks the synthesis of knowledge developed by classical theories - semantic and neural of networks is. The first of them enable to form sense, as objects and connections between them in accordance with construction of the network. With thus each sense gets a separate a component of a network as top, connected to other tops. In common it quite corresponds to structure reflected in a brain, where each obvious concept is presented by certain structure and has designating symbol. Secondly, this network gets increased semantic clearness at the expense owing to formation not only connections between neural by elements, but also themselves of elements as such, i.e. here has a place not simply construction of a network by accommodation sense structures in environment neural of elements, and purely creation of most this environment, as of an equivalent of environment of memory. Thus neural-like growing networks are represented by the convenient apparatus for modeling of mechanisms of teleological thinking, as a fulfillment of certain psychophysiological of functions.
Spectral mapping of brain functional connectivity from diffusion imaging.
Becker, Cassiano O; Pequito, Sérgio; Pappas, George J; Miller, Michael B; Grafton, Scott T; Bassett, Danielle S; Preciado, Victor M
2018-01-23
Understanding the relationship between the dynamics of neural processes and the anatomical substrate of the brain is a central question in neuroscience. On the one hand, modern neuroimaging technologies, such as diffusion tensor imaging, can be used to construct structural graphs representing the architecture of white matter streamlines linking cortical and subcortical structures. On the other hand, temporal patterns of neural activity can be used to construct functional graphs representing temporal correlations between brain regions. Although some studies provide evidence that whole-brain functional connectivity is shaped by the underlying anatomy, the observed relationship between function and structure is weak, and the rules by which anatomy constrains brain dynamics remain elusive. In this article, we introduce a methodology to map the functional connectivity of a subject at rest from his or her structural graph. Using our methodology, we are able to systematically account for the role of structural walks in the formation of functional correlations. Furthermore, in our empirical evaluations, we observe that the eigenmodes of the mapped functional connectivity are associated with activity patterns associated with different cognitive systems.
Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L
2013-01-01
Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. We have hypothesized that the changes in neural activity observed during increased cholinergic function reflect an increase in neural efficiency that leads to improved task performance. The current study tested this hypothesis by assessing neural efficiency based on cholinergically-mediated effects on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover fMRI study. Following an infusion of physostigmine (1 mg/h) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Physostigmine administration also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus processing regions support the hypothesis that cholinergic augmentation results in enhanced neural efficiency. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.
Thalamic structures and associated cognitive functions: Relations with age and aging.
Fama, Rosemary; Sullivan, Edith V
2015-07-01
The thalamus, with its cortical, subcortical, and cerebellar connections, is a critical node in networks supporting cognitive functions known to decline in normal aging, including component processes of memory and executive functions of attention and information processing. The macrostructure, microstructure, and neural connectivity of the thalamus changes across the adult lifespan. Structural and functional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) have demonstrated, regional thalamic volume shrinkage and microstructural degradation, with anterior regions generally more compromised than posterior regions. The integrity of selective thalamic nuclei and projections decline with advancing age, particularly those in thalamofrontal, thalamoparietal, and thalamolimbic networks. This review presents studies that assess the relations between age and aging and the structure, function, and connectivity of the thalamus and associated neural networks and focuses on their relations with processes of attention, speed of information processing, and working and episodic memory. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ebner, Marc; Hameroff, Stuart
2011-01-01
Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on “autopilot”). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the “conscious pilot”) suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious “auto-pilot” cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways “gap junctions” in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain. PMID:22046178
Ebner, Marc; Hameroff, Stuart
2011-01-01
Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on "autopilot"). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the "conscious pilot") suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious "auto-pilot" cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways "gap junctions" in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain.
Passaro, Antony D; Vettel, Jean M; McDaniel, Jonathan; Lawhern, Vernon; Franaszczuk, Piotr J; Gordon, Stephen M
2017-03-01
During an experimental session, behavioral performance fluctuates, yet most neuroimaging analyses of functional connectivity derive a single connectivity pattern. These conventional connectivity approaches assume that since the underlying behavior of the task remains constant, the connectivity pattern is also constant. We introduce a novel method, behavior-regressed connectivity (BRC), to directly examine behavioral fluctuations within an experimental session and capture their relationship to changes in functional connectivity. This method employs the weighted phase lag index (WPLI) applied to a window of trials with a weighting function. Using two datasets, the BRC results are compared to conventional connectivity results during two time windows: the one second before stimulus onset to identify predictive relationships, and the one second after onset to capture task-dependent relationships. In both tasks, we replicate the expected results for the conventional connectivity analysis, and extend our understanding of the brain-behavior relationship using the BRC analysis, demonstrating subject-specific BRC maps that correspond to both positive and negative relationships with behavior. Comparison with Existing Method(s): Conventional connectivity analyses assume a consistent relationship between behaviors and functional connectivity, but the BRC method examines performance variability within an experimental session to understand dynamic connectivity and transient behavior. The BRC approach examines connectivity as it covaries with behavior to complement the knowledge of underlying neural activity derived from conventional connectivity analyses. Within this framework, BRC may be implemented for the purpose of understanding performance variability both within and between participants. Published by Elsevier B.V.
Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P. C.; Livesey, Frederick J.
2015-01-01
A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. PMID:26395144
Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J
2015-09-15
A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.
Neural substrates of context- and person-dependent altruistic punishment.
Wang, Lili; Lu, Xiaping; Gu, Ruolei; Zhu, Ruida; Xu, Rui; Broster, Lucas S; Feng, Chunliang
2017-11-01
Human altruistic behaviors are heterogeneous across both contexts and people, whereas the neural signatures underlying the heterogeneity remain to be elucidated. To address this issue, we examined the neural signatures underlying the context- and person-dependent altruistic punishment, conjoining event-related fMRI with both task-based and resting-state functional connectivity (RSFC). Acting as an impartial third party, participants decided how to punish norm violators either alone or in the presence of putative others. We found that the presence of others decreased altruistic punishment due to diffusion of responsibility. Those behavioral effects paralleled altered neural responses in the dorsal anterior cingulate cortex (dACC) and putamen. Further, we identified modulation of responsibility diffusion on task-based functional connectivity of dACC with the brain regions implicated in reward processing (i.e., posterior cingulate cortex and amygdala/orbital frontal cortex). Finally, the RSFC results revealed that (i) increased intrinsic connectivity strengths of the putamen with temporoparietal junction and dorsolateral PFC were associated with attenuated responsibility diffusion in altruistic punishment and (ii) increased putamen-dorsomedial PFC connectivity strengths were associated with reduced responsibility diffusion in self-reported responsibility. Taken together, our findings elucidate the context- and person-dependent altruistic behaviors as well as associated neural substrates and thus provide a potential neurocognitive mechanism of heterogeneous human altruistic behaviors. Hum Brain Mapp 38:5535-5550, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Memory in ASD: Have We Been Barking up the Wrong Tree?
ERIC Educational Resources Information Center
Boucher, Jill; Mayes, Andrew
2012-01-01
In this theoretical note, possible neural causes of episodic memory impairment in individuals with ASD and currently normal intellectual and linguistic function are considered. The neural causes most commonly argued for are hippocampal or prefrontal cortex dysfunction, associated with impaired neural connectivity. It is argued here that a…
Functional connectivity mapping of regions associated with self- and other-processing.
Murray, Ryan J; Debbané, Martin; Fox, Peter T; Bzdok, Danilo; Eickhoff, Simon B
2015-04-01
Neuroscience literature increasingly suggests a conceptual self composed of interacting neural regions, rather than independent local activations, yet such claims have yet to be investigated. We, thus, combined task-dependent meta-analytic connectivity modeling (MACM) with task-independent resting-state (RS) connectivity analysis to delineate the neural network of the self, across both states. Given psychological evidence implicating the self's interdependence on social information, we also delineated the neural network underlying conceptual other-processing. To elucidate the relation between the self-/other-networks and their function, we mined the MACM metadata to generate a cognitive-behavioral profile for an empirically identified region specific to conceptual self, the pregenual anterior cingulate (pACC), and conceptual other, posterior cingulate/precuneus (PCC/PC). Mining of 7,200 published, task-dependent, neuroimaging studies, using healthy human subjects, yielded 193 studies activating the self-related seed and were conjoined with RS connectivity analysis to delineate a differentiated self-network composed of the pACC (seed) and anterior insula, relative to other functional connectivity. Additionally, 106 studies activating the other-related seed were conjoined with RS connectivity analysis to delineate a differentiated other-network of PCC/PC (seed) and angular gyrus/temporoparietal junction, relative to self-functional connectivity. The self-network seed related to emotional conflict resolution and motivational processing, whereas the other-network seed related to socially oriented processing and contextual information integration. Notably, our findings revealed shared RS connectivity between ensuing self-/other-networks within the ventromedial prefrontal cortex and medial orbitofrontal cortex, suggesting self-updating via integration of self-relevant social information. We, therefore, present initial neurobiological evidence corroborating the increasing claims of an intricate self-network, the architecture of which may promote social value processing. © 2014 Wiley Periodicals, Inc.
Ground states of partially connected binary neural networks
NASA Technical Reports Server (NTRS)
Baram, Yoram
1990-01-01
Neural networks defined by outer products of vectors over (-1, 0, 1) are considered. Patterns over (-1, 0, 1) define by their outer products partially connected neural networks consisting of internally strongly connected, externally weakly connected subnetworks. Subpatterns over (-1, 1) define subnetworks, and their combinations that agree in the common bits define permissible words. It is shown that the permissible words are locally stable states of the network, provided that each of the subnetworks stores mutually orthogonal subwords, or, at most, two subwords. It is also shown that when each of the subnetworks stores two mutually orthogonal binary subwords at most, the permissible words, defined as the combinations of the subwords (one corresponding to each subnetwork), that agree in their common bits are the unique ground states of the associated energy function.
Youssofzadeh, Vahab; Prasad, Girijesh; Naeem, Muhammad; Wong-Lin, KongFatt
2016-01-01
Partial Granger causality (PGC) has been applied to analyse causal functional neural connectivity after effectively mitigating confounding influences caused by endogenous latent variables and exogenous environmental inputs. However, it is not known how this connectivity obtained from PGC evolves over time. Furthermore, PGC has yet to be tested on realistic nonlinear neural circuit models and multi-trial event-related potentials (ERPs) data. In this work, we first applied a time-domain PGC technique to evaluate simulated neural circuit models, and demonstrated that the PGC measure is more accurate and robust in detecting connectivity patterns as compared to conditional Granger causality and partial directed coherence, especially when the circuit is intrinsically nonlinear. Moreover, the connectivity in PGC settles faster into a stable and correct configuration over time. After method verification, we applied PGC to reveal the causal connections of ERP trials of a mismatch negativity auditory oddball paradigm. The PGC analysis revealed a significant bilateral but asymmetrical localised activity in the temporal lobe close to the auditory cortex, and causal influences in the frontal, parietal and cingulate cortical areas, consistent with previous studies. Interestingly, the time to reach a stable connectivity configuration (~250–300 ms) coincides with the deviation of ensemble ERPs of oddball from standard tones. Finally, using a sliding time window, we showed higher resolution dynamics of causal connectivity within an ERP trial. In summary, time-domain PGC is promising in deciphering directed functional connectivity in nonlinear and ERP trials accurately, and at a sufficiently early stage. This data-driven approach can reduce computational time, and determine the key architecture for neural circuit modeling.
Wade, Natasha E; Padula, Claudia B; Anthenelli, Robert M; Nelson, Erik; Eliassen, James; Lisdahl, Krista M
2017-12-01
Scant research has been conducted on neural mechanisms underlying stress processing in individuals with alcohol dependence (AD). We examined neural substrates of stress in AD individuals compared with controls using an fMRI task previously shown to induce stress, assessing amygdala functional connectivity to medial prefrontal cortex (mPFC). For this novel pilot study, 10 abstinent AD individuals and 11 controls completed a modified Trier stress task while undergoing fMRI acquisition. The amygdala was used as a seed region for whole-brain seed-based functional connectivity analysis. After controlling for family-wise error (p = 0.05), there was significantly decreased left and right amygdala connectivity with frontal (specifically mPFC), temporal, parietal, and cerebellar regions. Subjective stress, but not craving, increased from pre-to post-task. This study demonstrated decreased connectivity between the amygdala and regions important for stress and emotional processing in long-term abstinent individuals with AD. These results suggest aberrant stress processing in individuals with AD even after lengthy periods of abstinence.
Financial literacy is associated with medial brain region functional connectivity in old age.
Han, S Duke; Boyle, Patricia A; Yu, Lei; Fleischman, Debra A; Arfanakis, Konstantinos; Leurgans, Sue; Bennett, David A
2014-01-01
Financial literacy refers to the ability to access and utilize financial information in ways that promote better outcomes. In old age, financial literacy has been associated with a wide range of positive characteristics; however, the neural correlates remain unclear. Recent work has suggested greater co-activity between anterior-posterior medial brain regions is associated with better brain functioning. We hypothesized financial literacy would be associated with this pattern. We assessed whole-brain functional connectivity to a posterior cingulate cortex (PCC) seed region of interest (ROI) in 138 participants of the Rush Memory and Aging Project. Results revealed financial literacy was associated with greater functional connectivity between the PCC and three regions: the right ventromedial prefrontal cortex (vmPFC), the left postcentral gyrus, and the right precuneus. Results also revealed financial literacy was associated negatively with functional connectivity between the PCC and left caudate. Post hoc analyses showed the PCC-vmPFC relationship accounted for the most variance in a regression model adjusted for all four significant functional connectivity relationships, demographic factors, and global cognition. These findings provide information on the neural mechanisms associated with financial literacy in old age. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Financial Literacy is Associated with Medial Brain Region Functional Connectivity in Old Age
Han, S. Duke; Boyle, Patricia A.; Yu, Lei; Fleischman, Debra A.; Arfanakis, Konstantinos; Leurgans, Sue; Bennett, David A.
2014-01-01
Financial literacy refers to the ability to access and utilize financial information in ways that promote better outcomes. In old age, financial literacy has been associated with a wide range of positive characteristics; however, the neural correlates remain unclear. Recent work has suggested greater co-activity between anterior-posterior medial brain regions is associated with better brain functioning. We hypothesized financial literacy would be associated with this pattern. We assessed whole-brain functional connectivity to a posterior cingulate cortex (PCC) seed region of interest in 138 participants of the Rush Memory and Aging Project. Results revealed financial literacy was associated with greater functional connectivity between the PCC and three regions: the right ventromedial prefrontal cortex (vmPFC), the left postcentral gyrus, and the right precuneus. Results also revealed financial literacy was associated negatively with functional connectivity between the PCC and left caudate. Post-hoc analyses showed the PCC-vmPFC relationship accounted for the most variance in a regression model adjusted for all four significant functional connectivity relationships, demographic factors, and global cognition. These findings provide information on the neural mechanisms associated with financial literacy in old age. PMID:24893911
NASA Astrophysics Data System (ADS)
D'Souza, Adora M.; Abidin, Anas Zainul; Nagarajan, Mahesh B.; Wismüller, Axel
2016-03-01
We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 +/- 0.037) as well as the underlying network structure (Rand index = 0.87 +/- 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.
DSouza, Adora M; Abidin, Anas Zainul; Nagarajan, Mahesh B; Wismüller, Axel
2016-03-29
We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 ± 0.037) as well as the underlying network structure (Rand index = 0.87 ± 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.
Consciousness, cognition and brain networks: New perspectives.
Aldana, E M; Valverde, J L; Fábregas, N
2016-10-01
A detailed analysis of the literature on consciousness and cognition mechanisms based on the neural networks theory is presented. The immune and inflammatory response to the anesthetic-surgical procedure induces modulation of neuronal plasticity by influencing higher cognitive functions. Anesthetic drugs can cause unconsciousness, producing a functional disruption of cortical and thalamic cortical integration complex. The external and internal perceptions are processed through an intricate network of neural connections, involving the higher nervous activity centers, especially the cerebral cortex. This requires an integrated model, formed by neural networks and their interactions with highly specialized regions, through large-scale networks, which are distributed throughout the brain collecting information flow of these perceptions. Functional and effective connectivity between large-scale networks, are essential for consciousness, unconsciousness and cognition. It is what is called the "human connectome" or map neural networks. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Loss of Neurofilament Labeling in the Primary Visual Cortex of Monocularly Deprived Monkeys
Duffy, Kevin R.; Livingstone, Margaret S.
2009-01-01
Visual experience during early life is important for the development of neural organizations that support visual function. Closing one eye (monocular deprivation) during this sensitive period can cause a reorganization of neural connections within the visual system that leaves the deprived eye functionally disconnected. We have assessed the pattern of neurofilament labeling in monocularly deprived macaque monkeys to examine the possibility that a cytoskeleton change contributes to deprivation-induced reorganization of neural connections within the primary visual cortex (V-1). Monocular deprivation for three months starting around the time of birth caused a significant loss of neurofilament labeling within deprived-eye ocular dominance columns. Three months of monocular deprivation initiated in adulthood did not produce a loss of neurofilament labeling. The evidence that neurofilament loss was found only when deprivation occurred during the sensitive period supports the notion that the loss permits restructuring of deprived-eye neural connections within the visual system. These results provide evidence that, in addition to reorganization of LGN inputs, the intrinsic circuitry of V-1 neurons is altered when monocular deprivation occurs early in development. PMID:15563721
Skeide, Michael A; Kirsten, Holger; Kraft, Indra; Schaadt, Gesa; Müller, Bent; Neef, Nicole; Brauer, Jens; Wilcke, Arndt; Emmrich, Frank; Boltze, Johannes; Friederici, Angela D
2015-09-01
Phonological awareness is the best-validated predictor of reading and spelling skill and therefore highly relevant for developmental dyslexia. Prior imaging genetics studies link several dyslexia risk genes to either brain-functional or brain-structural factors of phonological deficits. However, coherent evidence for genetic associations with both functional and structural neural phenotypes underlying variation in phonological awareness has not yet been provided. Here we demonstrate that rs11100040, a reported modifier of SLC2A3, is related to the functional connectivity of left fronto-temporal phonological processing areas at resting state in a sample of 9- to 12-year-old children. Furthermore, we provide evidence that rs11100040 is related to the fractional anisotropy of the arcuate fasciculus, which forms the structural connection between these areas. This structural connectivity phenotype is associated with phonological awareness, which is in turn associated with the individual retrospective risk scores in an early dyslexia screening as well as to spelling. These results suggest a link between a dyslexia risk genotype and a functional as well as a structural neural phenotype, which is associated with a phonological awareness phenotype. The present study goes beyond previous work by integrating genetic, brain-functional and brain-structural aspects of phonological awareness within a single approach. These combined findings might be another step towards a multimodal biomarker for developmental dyslexia. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li
2012-01-01
Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor function rehabilitation and motor skill learning deserves more attention and further investigation. PMID:22629308
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konova, Anna B.; Moeller, Scott J.; Tomasi, Dardo
Cocaine addiction is associated with altered resting-state functional connectivity among regions of the mesocorticolimbic dopamine pathways. Methylphenidate hydrochloride, an indirect dopamine agonist, normalizes task-related regional brain activity and associated behavior in cocaine users; however, the neural systems–level effects of methylphenidate in this population have not yet been described. To use resting-state functional magnetic resonance imaging to examine changes in mesocorticolimbic connectivity with methylphenidate and how connectivity of affected pathways relates to severity of cocaine addiction.
[Measurement and performance analysis of functional neural network].
Li, Shan; Liu, Xinyu; Chen, Yan; Wan, Hong
2018-04-01
The measurement of network is one of the important researches in resolving neuronal population information processing mechanism using complex network theory. For the quantitative measurement problem of functional neural network, the relation between the measure indexes, i.e. the clustering coefficient, the global efficiency, the characteristic path length and the transitivity, and the network topology was analyzed. Then, the spike-based functional neural network was established and the simulation results showed that the measured network could represent the original neural connections among neurons. On the basis of the former work, the coding of functional neural network in nidopallium caudolaterale (NCL) about pigeon's motion behaviors was studied. We found that the NCL functional neural network effectively encoded the motion behaviors of the pigeon, and there were significant differences in four indexes among the left-turning, the forward and the right-turning. Overall, the establishment method of spike-based functional neural network is available and it is an effective tool to parse the brain information processing mechanism.
Neural field model to reconcile structure with function in primary visual cortex.
Rankin, James; Chavane, Frédéric
2017-10-01
Voltage-sensitive dye imaging experiments in primary visual cortex (V1) have shown that local, oriented visual stimuli elicit stable orientation-selective activation within the stimulus retinotopic footprint. The cortical activation dynamically extends far beyond the retinotopic footprint, but the peripheral spread stays non-selective-a surprising finding given a number of anatomo-functional studies showing the orientation specificity of long-range connections. Here we use a computational model to investigate this apparent discrepancy by studying the expected population response using known published anatomical constraints. The dynamics of input-driven localized states were simulated in a planar neural field model with multiple sub-populations encoding orientation. The realistic connectivity profile has parameters controlling the clustering of long-range connections and their orientation bias. We found substantial overlap between the anatomically relevant parameter range and a steep decay in orientation selective activation that is consistent with the imaging experiments. In this way our study reconciles the reported orientation bias of long-range connections with the functional expression of orientation selective neural activity. Our results demonstrate this sharp decay is contingent on three factors, that long-range connections are sufficiently diffuse, that the orientation bias of these connections is in an intermediate range (consistent with anatomy) and that excitation is sufficiently balanced by inhibition. Conversely, our modelling results predict that, for reduced inhibition strength, spurious orientation selective activation could be generated through long-range lateral connections. Furthermore, if the orientation bias of lateral connections is very strong, or if inhibition is particularly weak, the network operates close to an instability leading to unbounded cortical activation.
Ding, Xiao Pan; Fu, Genyue; Lee, Kang
2013-01-01
The present study used the functional Near-infrared Spectroscopy (fNIRS) methodology to investigate the neural correlates of elementary school children’s own- and other-race face processing. An old-new paradigm was used to assess children’s recognition ability of own- and other-race faces. FNIRS data revealed that other-race faces elicited significantly greater [oxy-Hb] changes than own-race faces in the right middle frontal gyrus and inferior frontal gyrus regions (BA9) and the left cuneus (BA18). With increased age, the [oxy-Hb] activity differences between own- and other-race faces, or the neural other-race effect (NORE), underwent significant changes in these two cortical areas: at younger ages, the neural response to the other-race faces was modestly greater than that to the own-race faces, but with increased age, the neural response to the own-race faces became increasingly greater than that to the other-race faces. Moreover, these areas had strong regional functional connectivity with a swath of the cortical regions in terms of the neural other-race effect that also changed with increased age. We also found significant and positive correlations between the behavioral other-race effect (reaction time) and the neural other-race effect in the right middle frontal gyrus and inferior frontal gyrus regions (BA9). These results taken together suggest that children, like adults, devote different amounts of neural resources to processing own- and other-race faces, but the size and direction of the neural other-race effect and associated functional regional connectivity change with increased age. PMID:23891903
Ding, Xiao Pan; Fu, Genyue; Lee, Kang
2014-01-15
The present study used the functional Near-infrared Spectroscopy (fNIRS) methodology to investigate the neural correlates of elementary school children's own- and other-race face processing. An old-new paradigm was used to assess children's recognition ability of own- and other-race faces. FNIRS data revealed that other-race faces elicited significantly greater [oxy-Hb] changes than own-race faces in the right middle frontal gyrus and inferior frontal gyrus regions (BA9) and the left cuneus (BA18). With increased age, the [oxy-Hb] activity differences between own- and other-race faces, or the neural other-race effect (NORE), underwent significant changes in these two cortical areas: at younger ages, the neural response to the other-race faces was modestly greater than that to the own-race faces, but with increased age, the neural response to the own-race faces became increasingly greater than that to the other-race faces. Moreover, these areas had strong regional functional connectivity with a swath of the cortical regions in terms of the neural other-race effect that also changed with increased age. We also found significant and positive correlations between the behavioral other-race effect (reaction time) and the neural other-race effect in the right middle frontal gyrus and inferior frontal gyrus regions (BA9). These results taken together suggest that children, like adults, devote different amounts of neural resources to processing own- and other-race faces, but the size and direction of the neural other-race effect and associated functional regional connectivity change with increased age. © 2013.
Modeling fluctuations in default-mode brain network using a spiking neural network.
Yamanishi, Teruya; Liu, Jian-Qin; Nishimura, Haruhiko
2012-08-01
Recently, numerous attempts have been made to understand the dynamic behavior of complex brain systems using neural network models. The fluctuations in blood-oxygen-level-dependent (BOLD) brain signals at less than 0.1 Hz have been observed by functional magnetic resonance imaging (fMRI) for subjects in a resting state. This phenomenon is referred to as a "default-mode brain network." In this study, we model the default-mode brain network by functionally connecting neural communities composed of spiking neurons in a complex network. Through computational simulations of the model, including transmission delays and complex connectivity, the network dynamics of the neural system and its behavior are discussed. The results show that the power spectrum of the modeled fluctuations in the neuron firing patterns is consistent with the default-mode brain network's BOLD signals when transmission delays, a characteristic property of the brain, have finite values in a given range.
Mindfulness and dynamic functional neural connectivity in children and adolescents.
Marusak, Hilary A; Elrahal, Farrah; Peters, Craig A; Kundu, Prantik; Lombardo, Michael V; Calhoun, Vince D; Goldberg, Elimelech K; Cohen, Cindy; Taub, Jeffrey W; Rabinak, Christine A
2018-01-15
Interventions that promote mindfulness consistently show salutary effects on cognition and emotional wellbeing in adults, and more recently, in children and adolescents. However, we lack understanding of the neurobiological mechanisms underlying mindfulness in youth that should allow for more judicious application of these interventions in clinical and educational settings. Using multi-echo multi-band fMRI, we examined dynamic (i.e., time-varying) and conventional static resting-state connectivity between core neurocognitive networks (i.e., salience/emotion, default mode, central executive) in 42 children and adolescents (ages 6-17). We found that trait mindfulness in youth relates to dynamic but not static resting-state connectivity. Specifically, more mindful youth transitioned more between brain states over the course of the scan, spent overall less time in a certain connectivity state, and showed a state-specific reduction in connectivity between salience/emotion and central executive networks. The number of state transitions mediated the link between higher mindfulness and lower anxiety, providing new insights into potential neural mechanisms underlying benefits of mindfulness on psychological health in youth. Our results provide new evidence that mindfulness in youth relates to functional neural dynamics and interactions between neurocognitive networks, over time. Copyright © 2017 Elsevier B.V. All rights reserved.
Lin, Tiger W.; Das, Anup; Krishnan, Giri P.; Bazhenov, Maxim; Sejnowski, Terrence J.
2017-01-01
With our ability to record more neurons simultaneously, making sense of these data is a challenge. Functional connectivity is one popular way to study the relationship of multiple neural signals. Correlation-based methods are a set of currently well-used techniques for functional connectivity estimation. However, due to explaining away and unobserved common inputs (Stevenson, Rebesco, Miller, & Körding, 2008), they produce spurious connections. The general linear model (GLM), which models spike trains as Poisson processes (Okatan, Wilson, & Brown, 2005; Truccolo, Eden, Fellows, Donoghue, & Brown, 2005; Pillow et al., 2008), avoids these confounds. We develop here a new class of methods by using differential signals based on simulated intracellular voltage recordings. It is equivalent to a regularized AR(2) model. We also expand the method to simulated local field potential recordings and calcium imaging. In all of our simulated data, the differential covariance-based methods achieved performance better than or similar to the GLM method and required fewer data samples. This new class of methods provides alternative ways to analyze neural signals. PMID:28777719
Lin, Tiger W; Das, Anup; Krishnan, Giri P; Bazhenov, Maxim; Sejnowski, Terrence J
2017-10-01
With our ability to record more neurons simultaneously, making sense of these data is a challenge. Functional connectivity is one popular way to study the relationship of multiple neural signals. Correlation-based methods are a set of currently well-used techniques for functional connectivity estimation. However, due to explaining away and unobserved common inputs (Stevenson, Rebesco, Miller, & Körding, 2008 ), they produce spurious connections. The general linear model (GLM), which models spike trains as Poisson processes (Okatan, Wilson, & Brown, 2005 ; Truccolo, Eden, Fellows, Donoghue, & Brown, 2005 ; Pillow et al., 2008 ), avoids these confounds. We develop here a new class of methods by using differential signals based on simulated intracellular voltage recordings. It is equivalent to a regularized AR(2) model. We also expand the method to simulated local field potential recordings and calcium imaging. In all of our simulated data, the differential covariance-based methods achieved performance better than or similar to the GLM method and required fewer data samples. This new class of methods provides alternative ways to analyze neural signals.
Soehner, Adriane M; Bertocci, Michele A; Manelis, Anna; Bebko, Genna; Ladouceur, Cecile D; Graur, Simona; Monk, Kelly; Bonar, Lisa K; Hickey, Mary Beth; Axelson, David; Goldstein, Benjamin I; Goldstein, Tina R; Birmaher, Boris; Phillips, Mary L
2016-11-15
Altered reward circuitry function is observed in individuals with bipolar disorder (BD) and their unaffected offspring (OBP). While OBP are at elevated risk for BD, modifiable risk factors that may exacerbate neural vulnerabilities in OBP remain under-characterized. As sleep loss is strongly linked to mania in BD, this study tested associations between sleep duration, reward circuitry function, and mood dysregulation in OBP. Two groups of youth unaffected with BD (9-17yr) completed a number-guessing fMRI reward paradigm: 25 OBP and 21 age-sex-IQ-matched offspring of control parents with non-BD psychopathology (OCP), to differentiate risk for BD from risk for psychopathology more broadly. Regressions tested effects of group status, self-reported past-week sleep duration, and their interaction on neural activity and bilateral ventral striatum (VS) functional connectivity to win>control. Correlations with parent-reported mood dysregulation were assessed. Group effects were observed for right posterior insula activity (OCP>OBP) and VS-left posterior insula connectivity (OBP>OCP). Group ⁎ sleep duration interactions were observed for left dorsal anterior-mid-cingulate (daMCC) activity and VS-left anterior insula/ventrolateral prefrontal cortex (VLPFC) connectivity. Specifically, sleep duration and daMCC activity were positively related in OBP, but negatively related in OCP and sleep duration and VS-left anterior insula/VLPFC connectivity were negatively related in OBP, but positively in OCP. Additionally, increased VS-left posterior insula connectivity and VS-left anterior insula/VLPFC connectivity were associated with greater mood dysregulation in OBP only. Cross-sectional design and small sample size. Altered reward-related VS-insula connectivity could represent a neural pathway underpinning mood dysregulation in OBP, and may be modulated by shortened sleep duration. Copyright © 2016 Elsevier B.V. All rights reserved.
Pinho, Ana Luísa; de Manzano, Örjan; Fransson, Peter; Eriksson, Helene; Ullén, Fredrik
2014-04-30
Musicians have been used extensively to study neural correlates of long-term practice, but no studies have investigated the specific effects of training musical creativity. Here, we used human functional MRI to measure brain activity during improvisation in a sample of 39 professional pianists with varying backgrounds in classical and jazz piano playing. We found total hours of improvisation experience to be negatively associated with activity in frontoparietal executive cortical areas. In contrast, improvisation training was positively associated with functional connectivity of the bilateral dorsolateral prefrontal cortices, dorsal premotor cortices, and presupplementary areas. The effects were significant when controlling for hours of classical piano practice and age. These results indicate that even neural mechanisms involved in creative behaviors, which require a flexible online generation of novel and meaningful output, can be automated by training. Second, improvisational musical training can influence functional brain properties at a network level. We show that the greater functional connectivity seen in experienced improvisers may reflect a more efficient exchange of information within associative networks of importance for musical creativity.
Pinho, Ana Luísa; de Manzano, Örjan; Fransson, Peter; Eriksson, Helene
2014-01-01
Musicians have been used extensively to study neural correlates of long-term practice, but no studies have investigated the specific effects of training musical creativity. Here, we used human functional MRI to measure brain activity during improvisation in a sample of 39 professional pianists with varying backgrounds in classical and jazz piano playing. We found total hours of improvisation experience to be negatively associated with activity in frontoparietal executive cortical areas. In contrast, improvisation training was positively associated with functional connectivity of the bilateral dorsolateral prefrontal cortices, dorsal premotor cortices, and presupplementary areas. The effects were significant when controlling for hours of classical piano practice and age. These results indicate that even neural mechanisms involved in creative behaviors, which require a flexible online generation of novel and meaningful output, can be automated by training. Second, improvisational musical training can influence functional brain properties at a network level. We show that the greater functional connectivity seen in experienced improvisers may reflect a more efficient exchange of information within associative networks of importance for musical creativity. PMID:24790186
ERIC Educational Resources Information Center
Li, Weiwei; Yang, Wenjing; Li, Wenfu; Li, Yadan; Wei, Dongtao; Li, Huimin; Qiu, Jiang; Zhang, Qinglin
2015-01-01
Creative persons play an important role in technical innovation and social progress. There is little research on the neural correlates with researchers with high academic achievement. We used a combined structural (regional gray matter volume, rGMV) and functional (resting-state functional connectivity analysis, rsFC) approach to examine the…
Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L.
2012-01-01
Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. Previous findings by our group strongly suggested that the changes in neural activity observed during increased cholinergic function may reflect an increase in neural efficiency that leads to improved task performance. The current study was designed to assess the effects of cholinergic enhancement on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover functional magnetic resonance imaging (fMRI) study. Following an infusion of physostigmine (1mg/hr) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions was reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Cholinergic enhancement also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus processing regions provide further support to the hypothesis that cholinergic augmentation results in enhanced neural efficiency. PMID:22906685
Intrinsic connectivity of neural networks in the awake rabbit.
Schroeder, Matthew P; Weiss, Craig; Procissi, Daniel; Disterhoft, John F; Wang, Lei
2016-04-01
The way in which the brain is functionally connected into different networks has emerged as an important research topic in order to understand normal neural processing and signaling. Since some experimental manipulations are difficult or unethical to perform in humans, animal models are better suited to investigate this topic. Rabbits are a species that can undergo MRI scanning in an awake and conscious state with minimal preparation and habituation. In this study, we characterized the intrinsic functional networks of the resting New Zealand White rabbit brain using BOLD fMRI data. Group independent component analysis revealed seven networks similar to those previously found in humans, non-human primates and/or rodents including the hippocampus, default mode, cerebellum, thalamus, and visual, somatosensory, and parietal cortices. For the first time, the intrinsic functional networks of the resting rabbit brain have been elucidated demonstrating the rabbit's applicability as a translational animal model. Without the confounding effects of anesthetics or sedatives, future experiments may employ rabbits to understand changes in neural connectivity and brain functioning as a result of experimental manipulation (e.g., temporary or permanent network disruption, learning-related changes, and drug administration). Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of the BDNF Val66Met polymorphism on neural responses to facial emotion.
Mukherjee, Prerona; Whalley, Heather C; McKirdy, James W; McIntosh, Andrew M; Johnstone, Eve C; Lawrie, Stephen M; Hall, Jeremy
2011-03-31
The brain derived neurotrophic factor (BDNF) Val66Met polymorphism has been associated with affective disorders, but its role in emotion processing has not been fully established. Due to the clinically heterogeneous nature of these disorders, studying the effect of genetic variation in the BDNF gene on a common attribute such as fear processing may elucidate how the BDNF Val66Met polymorphism impacts brain function. Here we use functional magnetic resonance imaging examine the effect of the BDNF Val66Met genotype on neural activity for fear processing. Forty healthy participants performed an implicit fear task during scanning, where subjects made gender judgments from facial images with neutral or fearful emotion. Subjects were tested for facial emotion recognition post-scan. Functional connectivity was investigated using psycho-physiological interactions. Subjects were genotyped for the BDNF Val66Met polymorphism and the measures compared between genotype groups. Met carriers showed overactivation in the anterior cingulate cortex (ACC), brainstem and insula bilaterally for fear processing, along with reduced functional connectivity from the ACC to the left hippocampus, and impaired fear recognition ability. The results show that during fear processing, Met allele carriers show an increased neural response in regions previously implicated in mediating autonomic arousal. Further, the Met carriers show decreased functional connectivity with the hippocampus, which may reflect differential retrieval of emotional associations. Together, these effects show significant differences in the neural substrate for fear processing with genetic variation in BDNF. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
A neural substrate for behavioral inhibition in the risk for major depressive disorder.
Frost Bellgowan, Julie; Molfese, Peter; Marx, Michael; Thomason, Moriah; Glen, Daniel; Santiago, Jessica; Gotlib, Ian H; Drevets, Wayne C; Hamilton, J Paul
2015-10-01
Behavioral inhibition (BI) is an early developing trait associated with cautiousness and development of clinical depression and anxiety. Little is known about the neural basis of BI and its predictive importance concerning risk for internalizing disorders. We looked at functional connectivity of the default-mode network (DMN) and salience network (SN), given their respective roles in self-relational and threat processing, in the risk for internalizing disorders, with an emphasis on determining the functional significance of these networks for BI. We used functional magnetic resonance imaging to scan, during the resting state, children and adolescents 8 to 17 years of age who were either at high familial risk (HR; n = 16) or low familial risk (LR; n = 18) for developing clinical depression and/or anxiety. Whole-brain DMN and SN functional connectivity were estimated for each participant and compared across groups. We also compared the LR and HR groups on levels of BI and anxiety, and incorporated these data into follow-up neurobehavioral correlation analyses. The HR group, relative to the LR group, showed significantly decreased DMN connectivity with the ventral striatum and bilateral sensorimotor cortices. Within the HR group, trait BI increased as DMN connectivity with the ventral striatum and sensorimotor cortex decreased. The HR and LR groups did not differ with respect to SN connectivity. Our findings show, in the risk for internalizing disorders, a negative functional relation between brain regions supporting self-relational processes and reward prediction. These findings represent a potential neural substrate for behavioral inhibition in the risk for clinical depression and anxiety. Published by Elsevier Inc.
Neural Predictors of Visuomotor Adaptation Rate and Multi-Day Savings
NASA Technical Reports Server (NTRS)
Cassady, Kaitlin; Ruitenberg, Marit; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos Castenada, Roy; Kofman, Igor; Bloomberg, Jacob;
2017-01-01
Recent studies of sensorimotor adaptation have found that individual differences in task-based functional brain activation are associated with the rate of adaptation and savings at subsequent sessions. However, few studies to date have investigated offline neural predictors of adaptation and multi-day savings. In the present study, we explore whether individual differences in the rate of visuomotor adaptation and multi-day savings are associated with differences in resting state functional connectivity and gray matter volume. Thirty-four participants performed a manual adaptation task during two separate test sessions, on average 9 days apart. We found that resting state functional connectivity strength between sensorimotor, anterior cingulate, and temporoparietal areas of the brain was a significant predictor of adaptation rate during the early, cognitive phase of practice. In contrast, default mode network functional connectivity strength was found to predict late adaptation rate and savings on day two, which suggests that these behaviors may rely on overlapping processes. We also found that gray matter volume in temporoparietal and occipital regions was a significant predictor of early learning, whereas gray matter volume in superior posterior regions of the cerebellum was a significant predictor of late adaptation. The results from this study suggest that offline neural predictors of early adaptation facilitate the cognitive mechanisms of sensorimotor adaptation, with support from by the involvement of temporoparietal and cingulate networks. In contrast, the neural predictors of late adaptation and savings, including the default mode network and the cerebellum, likely support the storage and modification of newly acquired sensorimotor representations. These findings provide novel insights into the neural processes associated with individual differences in sensorimotor adaptation.
van Rooij, Daan; Hartman, Catharina A.; Mennes, Maarten; Oosterlaan, Jaap; Franke, Barbara; Rommelse, Nanda; Heslenfeld, Dirk; Faraone, Stephen V.; Buitelaar, Jan K.; Hoekstra, Pieter J.
2015-01-01
Introduction Response inhibition is one of the executive functions impaired in attention-deficit/hyperactivity disorder (ADHD). Increasing evidence indicates that altered functional and structural neural connectivity are part of the neurobiological basis of ADHD. Here, we investigated if adolescents with ADHD show altered functional connectivity during response inhibition compared to their unaffected siblings and healthy controls. Methods Response inhibition was assessed using the stop signal paradigm. Functional connectivity was assessed using psycho-physiological interaction analyses applied to BOLD time courses from seed regions within inferior- and superior frontal nodes of the response inhibition network. Resulting networks were compared between adolescents with ADHD (N = 185), their unaffected siblings (N = 111), and controls (N = 125). Results Control subjects showed stronger functional connectivity than the other two groups within the response inhibition network, while subjects with ADHD showed relatively stronger connectivity between default mode network (DMN) nodes. Stronger connectivity within the response inhibition network was correlated with lower ADHD severity, while stronger connectivity with the DMN was correlated with increased ADHD severity. Siblings showed connectivity patterns similar to controls during successful inhibition and to ADHD subjects during failed inhibition. Additionally, siblings showed decreased connectivity with the primary motor areas as compared to both participants with ADHD and controls. Discussion Subjects with ADHD fail to integrate activation within the response inhibition network and to inhibit connectivity with task-irrelevant regions. Unaffected siblings show similar alterations only during failed stop trials, as well as unique suppression of motor areas, suggesting compensatory strategies. These findings support the role of altered functional connectivity in understanding the neurobiology and familial transmission of ADHD. PMID:25610797
van Rooij, Daan; Hartman, Catharina A; Mennes, Maarten; Oosterlaan, Jaap; Franke, Barbara; Rommelse, Nanda; Heslenfeld, Dirk; Faraone, Stephen V; Buitelaar, Jan K; Hoekstra, Pieter J
2015-01-01
Response inhibition is one of the executive functions impaired in attention-deficit/hyperactivity disorder (ADHD). Increasing evidence indicates that altered functional and structural neural connectivity are part of the neurobiological basis of ADHD. Here, we investigated if adolescents with ADHD show altered functional connectivity during response inhibition compared to their unaffected siblings and healthy controls. Response inhibition was assessed using the stop signal paradigm. Functional connectivity was assessed using psycho-physiological interaction analyses applied to BOLD time courses from seed regions within inferior- and superior frontal nodes of the response inhibition network. Resulting networks were compared between adolescents with ADHD (N = 185), their unaffected siblings (N = 111), and controls (N = 125). Control subjects showed stronger functional connectivity than the other two groups within the response inhibition network, while subjects with ADHD showed relatively stronger connectivity between default mode network (DMN) nodes. Stronger connectivity within the response inhibition network was correlated with lower ADHD severity, while stronger connectivity with the DMN was correlated with increased ADHD severity. Siblings showed connectivity patterns similar to controls during successful inhibition and to ADHD subjects during failed inhibition. Additionally, siblings showed decreased connectivity with the primary motor areas as compared to both participants with ADHD and controls. Subjects with ADHD fail to integrate activation within the response inhibition network and to inhibit connectivity with task-irrelevant regions. Unaffected siblings show similar alterations only during failed stop trials, as well as unique suppression of motor areas, suggesting compensatory strategies. These findings support the role of altered functional connectivity in understanding the neurobiology and familial transmission of ADHD.
Distributed Neural Activity Patterns during Human-to-Human Competition
Piva, Matthew; Zhang, Xian; Noah, J. Adam; Chang, Steve W. C.; Hirsch, Joy
2017-01-01
Interpersonal interaction is the essence of human social behavior. However, conventional neuroimaging techniques have tended to focus on social cognition in single individuals rather than on dyads or groups. As a result, relatively little is understood about the neural events that underlie face-to-face interaction. We resolved some of the technical obstacles inherent in studying interaction using a novel imaging modality and aimed to identify neural mechanisms engaged both within and across brains in an ecologically valid instance of interpersonal competition. Functional near-infrared spectroscopy was utilized to simultaneously measure hemodynamic signals representing neural activity in pairs of subjects playing poker against each other (human–human condition) or against computer opponents (human–computer condition). Previous fMRI findings concerning single subjects confirm that neural areas recruited during social cognition paradigms are individually sensitive to human–human and human–computer conditions. However, it is not known whether face-to-face interactions between opponents can extend these findings. We hypothesize distributed effects due to live processing and specific variations in across-brain coherence not observable in single-subject paradigms. Angular gyrus (AG), a component of the temporal-parietal junction (TPJ) previously found to be sensitive to socially relevant cues, was selected as a seed to measure within-brain functional connectivity. Increased connectivity was confirmed between AG and bilateral dorsolateral prefrontal cortex (dlPFC) as well as a complex including the left subcentral area (SCA) and somatosensory cortex (SS) during interaction with a human opponent. These distributed findings were supported by contrast measures that indicated increased activity at the left dlPFC and frontopolar area that partially overlapped with the region showing increased functional connectivity with AG. Across-brain analyses of neural coherence between the players revealed synchrony between dlPFC and supramarginal gyrus (SMG) and SS in addition to synchrony between AG and the fusiform gyrus (FG) and SMG. These findings present the first evidence of a frontal-parietal neural complex including the TPJ, dlPFC, SCA, SS, and FG that is more active during human-to-human social cognition both within brains (functional connectivity) and across brains (across-brain coherence), supporting a model of functional integration of socially and strategically relevant information during live face-to-face competitive behaviors. PMID:29218005
NASA Astrophysics Data System (ADS)
Deeba, Farah; Sanz-Leon, Paula; Robinson, Peter
A neural field model of the corticothalamic system is used to investigate the dynamics of absence seizures in the presence of temporally varying connection strength between the cerebral cortex and thalamus. Variation of connection strength from cortex to thalamus drives the system into seizure once a threshold is passed and a supercritical Hopf bifurcation occurs. The dynamics and spectral characteristics of the resulting seizures are explored as functions of maximum connection strength, time above threshold, and ramp rate. The results enable spectral and temporal characteristics of seizures to be related to underlying physiological variations via nonlinear dynamics and neural field theory. Notably, this analysis adds to neural field modeling of a wide variety of brain activity phenomena and measurements in recent years. Australian Research Council Grants FL1401000225 and CE140100007.
ERIC Educational Resources Information Center
Karten, Ariel; Hirsch, Joy
2015-01-01
Neural mechanisms that underlie language disability in autism spectrum disorder (ASD) have been associated with reduced excitatory processes observed as positive blood oxygen level dependent (BOLD) responses. However, negative BOLD responses (NBR) associated with language and inhibitory processes have been less studied in ASD. In this study,…
Smith, David V.; Sip, Kamila E.; Delgado, Mauricio R.
2016-01-01
Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility—indexed as the increase in gambling behavior in loss frames compared to gain frames—was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. PMID:25858445
Smith, David V; Sip, Kamila E; Delgado, Mauricio R
2015-07-01
Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial-prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility-indexed as the increase in gambling behavior in loss frames compared to gain frames-was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. © 2015 Wiley Periodicals, Inc.
Clerkin, Suzanne M; Schulz, Kurt P; Berwid, Olga G; Fan, Jin; Newcorn, Jeffrey H; Tang, Cheuk Y; Halperin, Jeffrey M
2013-09-01
The neural correlates of stimulus-driven processes, such as response preparation, have been posited to be associated with the onset of attention deficit hyperactivity disorder (ADHD) while being distinct from the neural mechanisms associated with recovery. The authors tested this hypothesis in adults with remitted and persistent ADHD. Thirty-eight young adults who were diagnosed with combined-type ADHD in childhood (probands) and 32 carefully matched comparison subjects were followed longitudinally and scanned with functional MRI while performing an event-related cued reaction time task. Probands were characterized as individuals with persistent or remitted ADHD. Differences in thalamo-cortical activation and functional connectivity during response preparation between comparison subjects and probands and between individuals with persistent ADHD and those with remitted ADHD were assessed by contrasting neural activation and functional connectivity during cue or noncue events. Probands exhibited less cue-related activation than comparison subjects in the thalamus, anterior cingulate cortex, supplementary motor area, inferior parietal lobe, and dorsolateral prefrontal cortex despite similar overall patterns of activation. There were no differences in activation between individuals in the remitted ADHD group and those in the persistent ADHD group in any hypothesized regions. However, cue-related functional connectivity between the right thalamus and brainstem was greater in comparison subjects relative to probands, and cue-related connectivity was greater between the right thalamus and prefrontal regions in individuals with remitted ADHD relative to those with persistent ADHD. Decreased thalamo-cortical activation during response preparation was present in adults diagnosed with ADHD in childhood regardless of symptom remission in adulthood, and may be partly driven by less functional coordination between the brainstem and thalamus. Greater functional integration of the thalamo-cortical network might parallel symptom recovery.
Bhowmik, David; Shanahan, Murray
2013-01-01
Groups of neurons firing synchronously are hypothesized to underlie many cognitive functions such as attention, associative learning, memory, and sensory selection. Recent theories suggest that transient periods of synchronization and desynchronization provide a mechanism for dynamically integrating and forming coalitions of functionally related neural areas, and that at these times conditions are optimal for information transfer. Oscillating neural populations display a great amount of spectral complexity, with several rhythms temporally coexisting in different structures and interacting with each other. This paper explores inter-band frequency modulation between neural oscillators using models of quadratic integrate-and-fire neurons and Hodgkin-Huxley neurons. We vary the structural connectivity in a network of neural oscillators, assess the spectral complexity, and correlate the inter-band frequency modulation. We contrast this correlation against measures of metastable coalition entropy and synchrony. Our results show that oscillations in different neural populations modulate each other so as to change frequency, and that the interaction of these fluctuating frequencies in the network as a whole is able to drive different neural populations towards episodes of synchrony. Further to this, we locate an area in the connectivity space in which the system directs itself in this way so as to explore a large repertoire of synchronous coalitions. We suggest that such dynamics facilitate versatile exploration, integration, and communication between functionally related neural areas, and thereby supports sophisticated cognitive processing in the brain. PMID:23614040
Kajimura, Shogo; Kochiyama, Takanori; Nakai, Ryusuke; Abe, Nobuhito; Nomura, Michio
2016-06-01
Transcranial direct current stimulation (tDCS) can modulate mind wandering, which is a shift in the contents of thought away from an ongoing task and/or from events in the external environment to self-generated thoughts and feelings. Although modulation of the mind-wandering propensity is thought to be associated with neural alterations of the lateral prefrontal cortex (LPFC) and regions in the default mode network (DMN), the precise neural mechanisms remain unknown. Using functional magnetic resonance imaging (fMRI), we investigated the causal relationships among tDCS (one electrode placed over the right IPL, which is a core region of the DMN, and another placed over the left LPFC), stimulation-induced directed connection alterations within the DMN, and modulation of the mind-wandering propensity. At the behavioral level, anodal tDCS on the right IPL (with cathodal tDCS on the left LPFC) reduced mind wandering compared to the reversed stimulation. At the neural level, the anodal tDCS on the right IPL decreased the afferent connections of the posterior cingulate cortex (PCC) from the right IPL and the medial prefrontal cortex (mPFC). Furthermore, mediation analysis revealed that the changes in the connections from the right IPL and mPFC correlated with the facilitation and inhibition of mind wandering, respectively. These effects are the result of the heterogeneous function of effective connectivity: the connection from the right IPL to the PCC inhibits mind wandering, whereas the connection from the mPFC to the PCC facilitates mind wandering. The present study is the first to demonstrate the neural mechanisms underlying tDCS modulation of mind-wandering propensity. Copyright © 2016 Elsevier Inc. All rights reserved.
Altered Connectivity and Action Model Formation in Autism Is Autism
Mostofsky, Stewart H.; Ewen, Joshua B.
2014-01-01
Internal action models refer to sensory-motor programs that form the brain basis for a wide range of skilled behavior and for understanding others’ actions. Development of these action models, particularly those reliant on visual cues from the external world, depends on connectivity between distant brain regions. Studies of children with autism reveal anomalous patterns of motor learning and impaired execution of skilled motor gestures. These findings robustly correlate with measures of social and communicative function, suggesting that anomalous action model formation may contribute to impaired development of social and communicative (as well as motor) capacity in autism. Examination of the pattern of behavioral findings, as well as convergent data from neuroimaging techniques, further suggests that autism-associated action model formation may be related to abnormalities in neural connectivity, particularly decreased function of long-range connections. This line of study can lead to important advances in understanding the neural basis of autism and, more critically, can be used to guide effective therapies targeted at improving social, communicative, and motor function. PMID:21467306
Aberrant Neural Connectivity during Emotional Processing Associated with Posttraumatic Stress
Sadeh, Naomi; Spielberg, Jeffrey M.; Warren, Stacie L.; Miller, Gregory A.; Heller, Wendy
2014-01-01
Given the complexity of the brain, characterizing relations among distributed brain regions is likely essential to describing the neural instantiation of posttraumatic stress symptoms. This study examined patterns of functional connectivity among key brain regions implicated in the pathophysiology of posttraumatic stress disorder (PTSD) in 35 trauma-exposed adults using an emotion-word Stroop task. PTSD symptom severity (particularly hyperarousal symptoms) moderated amygdala-mPFC coupling during the processing of unpleasant words, and this moderation correlated positively with reported real-world impairment and amygdala reactivity. Reexperiencing severity moderated hippocampus-insula coupling during pleasant and unpleasant words. Results provide evidence that PTSD symptoms differentially moderate functional coupling during emotional interference and underscore the importance of examining network connectivity in research on PTSD. They suggest that hyperarousal is associated with negative mPFC-amygdala coupling and that reexperiencing is associated with altered insula-hippocampus function, patterns of connectivity that may represent separable indicators of dysfunctional inhibitory control during affective processing. PMID:25419500
Aberrant Neural Connectivity during Emotional Processing Associated with Posttraumatic Stress.
Sadeh, Naomi; Spielberg, Jeffrey M; Warren, Stacie L; Miller, Gregory A; Heller, Wendy
2014-11-01
Given the complexity of the brain, characterizing relations among distributed brain regions is likely essential to describing the neural instantiation of posttraumatic stress symptoms. This study examined patterns of functional connectivity among key brain regions implicated in the pathophysiology of posttraumatic stress disorder (PTSD) in 35 trauma-exposed adults using an emotion-word Stroop task. PTSD symptom severity (particularly hyperarousal symptoms) moderated amygdala-mPFC coupling during the processing of unpleasant words, and this moderation correlated positively with reported real-world impairment and amygdala reactivity. Reexperiencing severity moderated hippocampus-insula coupling during pleasant and unpleasant words. Results provide evidence that PTSD symptoms differentially moderate functional coupling during emotional interference and underscore the importance of examining network connectivity in research on PTSD. They suggest that hyperarousal is associated with negative mPFC-amygdala coupling and that reexperiencing is associated with altered insula-hippocampus function, patterns of connectivity that may represent separable indicators of dysfunctional inhibitory control during affective processing.
Behavioral and neural stability of attention bias to threat in healthy adolescents
Britton, Jennifer C.; Sequeira, Stefanie; Ronkin, Emily G.; Chen, Gang; Bar-Haim, Yair; Shechner, Tomer; Ernst, Monique; Fox, Nathan A.; Leibenluft, Ellen; Pine, Daniel S.
2016-01-01
Considerable translational research on anxiety examines attention bias to threat and the efficacy of attention training in reducing symptoms. Imaging research on the stability of brain functions engaged by attention bias tasks could inform such research. Perturbed fronto-amygdala function consistently arises in attention bias research on adolescent anxiety. The current report examines the stability of the activation and functional connectivity of these regions on the dot-probe task. Functional magnetic resonance imaging (fMRI) activation and connectivity data were acquired with the dot-probe task in 39 healthy youth (f =18, Mean Age = 13.71 years, SD = 2.31) at two time points, separated by approximately nine weeks. Intraclass-correlations demonstrate good reliability in both neural activation for the ventrolateral PFC and task-specific connectivity for fronto-amygdala circuitry. Behavioral measures showed generally poor test-retest reliability. These findings suggest potential avenues for future brain imaging work by highlighting brain circuitry manifesting stable functioning on the dot-probe attention bias task. PMID:27129757
The C. elegans Connectome Consists of Homogenous Circuits with Defined Functional Roles
Azulay, Aharon; Zaslaver, Alon
2016-01-01
A major goal of systems neuroscience is to decipher the structure-function relationship in neural networks. Here we study network functionality in light of the common-neighbor-rule (CNR) in which a pair of neurons is more likely to be connected the more common neighbors it shares. Focusing on the fully-mapped neural network of C. elegans worms, we establish that the CNR is an emerging property in this connectome. Moreover, sets of common neighbors form homogenous structures that appear in defined layers of the network. Simulations of signal propagation reveal their potential functional roles: signal amplification and short-term memory at the sensory/inter-neuron layer, and synchronized activity at the motoneuron layer supporting coordinated movement. A coarse-grained view of the neural network based on homogenous connected sets alone reveals a simple modular network architecture that is intuitive to understand. These findings provide a novel framework for analyzing larger, more complex, connectomes once these become available. PMID:27606684
Synaptogenesis Is Modulated by Heparan Sulfate in Caenorhabditis elegans
Lázaro-Peña, María I.; Díaz-Balzac, Carlos A.; Bülow, Hannes E.; Emmons, Scott W.
2018-01-01
The nervous system regulates complex behaviors through a network of neurons interconnected by synapses. How specific synaptic connections are genetically determined is still unclear. Male mating is the most complex behavior in Caenorhabditis elegans. It is composed of sequential steps that are governed by > 3000 chemical connections. Here, we show that heparan sulfates (HS) play a role in the formation and function of the male neural network. HS, sulfated in position 3 by the HS modification enzyme HST-3.1/HS 3-O-sulfotransferase and attached to the HS proteoglycan glypicans LON-2/glypican and GPN-1/glypican, functions cell-autonomously and nonautonomously for response to hermaphrodite contact during mating. Loss of 3-O sulfation resulted in the presynaptic accumulation of RAB-3, a molecule that localizes to synaptic vesicles, and disrupted the formation of synapses in a component of the mating circuits. We also show that the neural cell adhesion protein NRX-1/neurexin promotes and the neural cell adhesion protein NLG-1/neuroligin inhibits the formation of the same set of synapses in a parallel pathway. Thus, neural cell adhesion proteins and extracellular matrix components act together in the formation of synaptic connections. PMID:29559501
Cross-hemispheric functional connectivity in the human fetal brain.
Thomason, Moriah E; Dassanayake, Maya T; Shen, Stephen; Katkuri, Yashwanth; Alexis, Mitchell; Anderson, Amy L; Yeo, Lami; Mody, Swati; Hernandez-Andrade, Edgar; Hassan, Sonia S; Studholme, Colin; Jeong, Jeong-Won; Romero, Roberto
2013-02-20
Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC.
Brain networks for visual creativity: a functional connectivity study of planning a visual artwork.
De Pisapia, Nicola; Bacci, Francesca; Parrott, Danielle; Melcher, David
2016-12-19
Throughout recorded history, and across cultures, humans have made visual art. In recent years, the neural bases of creativity, including artistic creativity, have become a topic of interest. In this study we investigated the neural bases of the visual creative process with both professional artists and a group of control participants. We tested the idea that creativity (planning an artwork) would influence the functional connectivity between regions involved in the default mode network (DMN), implicated in divergent thinking and generating novel ideas, and the executive control network (EN), implicated in evaluating and selecting ideas. We measured functional connectivity with functional Magnetic Resonance Imaging (fMRI) during three different conditions: rest, visual imagery of the alphabet and planning an artwork to be executed immediately after the scanning session. Consistent with our hypothesis, we found stronger connectivity between areas of the DMN and EN during the creative task, and this difference was enhanced in professional artists. These findings suggest that creativity involves an expert balance of two brain networks typically viewed as being in opposition.
Brain networks for visual creativity: a functional connectivity study of planning a visual artwork
De Pisapia, Nicola; Bacci, Francesca; Parrott, Danielle; Melcher, David
2016-01-01
Throughout recorded history, and across cultures, humans have made visual art. In recent years, the neural bases of creativity, including artistic creativity, have become a topic of interest. In this study we investigated the neural bases of the visual creative process with both professional artists and a group of control participants. We tested the idea that creativity (planning an artwork) would influence the functional connectivity between regions involved in the default mode network (DMN), implicated in divergent thinking and generating novel ideas, and the executive control network (EN), implicated in evaluating and selecting ideas. We measured functional connectivity with functional Magnetic Resonance Imaging (fMRI) during three different conditions: rest, visual imagery of the alphabet and planning an artwork to be executed immediately after the scanning session. Consistent with our hypothesis, we found stronger connectivity between areas of the DMN and EN during the creative task, and this difference was enhanced in professional artists. These findings suggest that creativity involves an expert balance of two brain networks typically viewed as being in opposition. PMID:27991592
Nasrallah, Fatima A; Lew, Si Kang; Low, Amanda Si-Min; Chuang, Kai-Hsiang
2014-01-01
Correlative fluctuations in functional MRI (fMRI) signals across the brain at rest have been taken as a measure of functional connectivity, but the neural basis of this resting-state MRI (rsMRI) signal is not clear. Previously, we found that the α2 adrenergic agonist, medetomidine, suppressed the rsMRI correlation dose-dependently but not the stimulus evoked activation. To understand the underlying electrophysiology and neurovascular coupling, which might be altered due to the vasoconstrictive nature of medetomidine, somatosensory evoked potential (SEP) and resting electroencephalography (EEG) were measured and correlated with corresponding BOLD signals in rat brains under three dosages of medetomidine. The SEP elicited by electrical stimulation to both forepaws was unchanged regardless of medetomidine dosage, which was consistent with the BOLD activation. Identical relationship between the SEP and BOLD signal under different medetomidine dosages indicates that the neurovascular coupling was not affected. Under resting state, EEG power was the same but a depression of inter-hemispheric EEG coherence in the gamma band was observed at higher medetomidine dosage. Different from medetomidine, both resting EEG power and BOLD power and coherence were significantly suppressed with increased isoflurane level. Such reduction was likely due to suppressed neural activity as shown by diminished SEP and BOLD activation under isoflurane, suggesting different mechanisms of losing synchrony at resting-state. Even though, similarity between electrophysiology and BOLD under stimulation and resting-state implicates a tight neurovascular coupling in both medetomidine and isoflurane. Our results confirm that medetomidine does not suppress neural activity but dissociates connectivity in the somatosensory cortex. The differential effect of medetomidine and its receptor specific action supports the neuronal origin of functional connectivity and implicates the mechanism of its sedative effect. © 2013. Published by Elsevier Inc. All rights reserved.
Subspecialization in the human posterior medial cortex
Bzdok, Danilo; Heeger, Adrian; Langner, Robert; Laird, Angela R.; Fox, Peter T.; Palomero-Gallagher, Nicola; Vogt, Brent A.; Zilles, Karl; Eickhoff, Simon B.
2014-01-01
The posterior medial cortex (PMC) is particularly poorly understood. Its neural activity changes have been related to highly disparate mental processes. We therefore investigated PMC properties with a data-driven exploratory approach. First, we subdivided the PMC by whole-brain coactivation profiles. Second, functional connectivity of the ensuing PMC regions was compared by task-constrained meta-analytic coactivation mapping (MACM) and task-unconstrained resting-state correlations (RSFC). Third, PMC regions were functionally described by forward/reverse functional inference. A precuneal cluster was mostly connected to the intraparietal sulcus, frontal eye fields, and right temporo-parietal junction; associated with attention and motor tasks. A ventral posterior cingulate cortex (PCC) cluster was mostly connected to the ventromedial prefrontal cortex and middle left inferior parietal cortex (IPC); associated with facial appraisal and language tasks. A dorsal PCC cluster was mostly connected to the dorsomedial prefrontal cortex, anterior/posterior IPC, posterior midcingulate cortex, and left dorsolateral prefrontal cortex; associated with delay discounting. A cluster in the retrosplenial cortex was mostly connected to the anterior thalamus and hippocampus. Furthermore, all PMC clusters were congruently coupled with the default mode network according to task-constrained but not task-unconstrained connectivity. We thus identified distinct regions in the PMC and characterized their neural networks and functional implications. PMID:25462801
Limbic hyperconnectivity in the vegetative state.
Di Perri, Carol; Bastianello, Stefano; Bartsch, Andreas J; Pistarini, Caterina; Maggioni, Giorgio; Magrassi, Lorenzo; Imberti, Roberto; Pichiecchio, Anna; Vitali, Paolo; Laureys, Steven; Di Salle, Francesco
2013-10-15
To investigate functional connectivity between the default mode network (DMN) and other networks in disorders of consciousness. We analyzed MRI data from 11 patients in a vegetative state and 7 patients in a minimally conscious state along with age- and sex-matched healthy control subjects. MRI data analysis included nonlinear spatial normalization to compensate for disease-related anatomical distortions. We studied brain connectivity data from resting-state MRI temporal series, combining noninferential (independent component analysis) and inferential (seed-based general linear model) methods. In DMN hypoconnectivity conditions, a patient's DMN functional connectivity shifts and paradoxically increases in limbic structures, including the orbitofrontal cortex, insula, hypothalamus, and the ventral tegmental area. Concurrently with DMN hypoconnectivity, we report limbic hyperconnectivity in patients in vegetative and minimally conscious states. This hyperconnectivity may reflect the persistent engagement of residual neural activity in self-reinforcing neural loops, which, in turn, could disrupt normal patterns of connectivity.
Motor Sequence Learning-Induced Neural Efficiency in Functional Brain Connectivity
Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M
2016-01-01
Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. PMID:27845228
Solomon, Marjorie; Yoon, Jong; Ragland, J. Daniel; Niendam, Tara; Lesh, Tyler A.; Fairbrother, Wonja; Carter, Cameron S.
2013-01-01
Background Autism spectrum disorders (ASD) involve impairments in cognitive control. In typical development (TYP), neural systems underlying cognitive control undergo substantial maturation during adolescence. Development is delayed in adolescents with ASD. Little is known about the neural substrates of this delay. Method We used event-related functional magnetic resonance imaging (fMRI) and a cognitive control task involving overcoming a prepotent response tendency to examine the development of cognitive control in young (ages 12–15; n = 13 with ASD and n = 13 with TYP) and older (ages 16–18; n= 14 with ASD and n = 14 with TYP) adolescents with whole-brain voxel-wise univariate and task-related functional connectivity analyses. Results Older ASD and TYP showed reduced activation in sensory and premotor areas relative to younger ones. The older ASD group showed reduced left parietal activation relative to TYP. Functional connectivity analyses showed a significant age by group interaction with the older ASD group exhibiting increased functional connectivity strength between the ventrolateral prefrontal cortex (VLPFC) and the anterior cingulate cortex (ACC), bilaterally. This functional connectivity strength was related to task performance in ASD, whereas that between DLPFC and parietal cortex (BA 9 and BA 40) was related to task performance in TYP. Conclusions Adolescents with ASD rely more on “reactive” cognitive control, involving last minute conflict detection and control implementation by the ACC and VLPFC, versus “proactive” cognitive control requiring processing by DLPFC and parietal cortex. Findings await replication in larger longitudinal studies that examine their functional consequences and amenability to intervention. PMID:24209777
Neurocircuitry underlying risk and resilience to social anxiety disorder
Clauss, Jacqueline A.; Avery, Suzanne N.; VanDerKlok, Ross M.; Rogers, Baxter P.; Cowan, Ronald L.; Benningfield, Margaret M.; Blackford, Jennifer Urbano
2015-01-01
Background Almost half of children with an inhibited temperament will develop social anxiety disorder by late adolescence. Importantly, this means that half of children with an inhibited temperament will not develop social anxiety disorder. Studying adults with an inhibited temperament provides a unique opportunity to identify neural signatures of both risk and resilience to social anxiety disorder. Methods Functional MRI was used to measure brain activation during the anticipation of viewing fear faces in 34 young adults (17 inhibited, 17 uninhibited). To identify neural signatures of risk, we tested for group differences in functional activation and connectivity in regions implicated in social anxiety disorder, including the prefrontal cortex, amygdala, and insula. To identify neural signatures of resilience, we tested correlations between brain activation and both emotion regulation and social anxiety scores. Results Inhibited subjects had greater activation of a prefrontal network when anticipating viewing fear faces, relative to uninhibited subjects. No group differences were identified in the amygdala. Inhibited subjects had more negative connectivity between the rostral anterior cingulate cortex (ACC) and the bilateral amygdala. Within the inhibited group, those with fewer social anxiety symptoms and better emotion regulation skills had greater ACC activation and greater functional connectivity between the ACC and amygdala. Conclusions These finding suggest that engaging regulatory prefrontal regions during anticipation may be a protective factor, or putative neural marker of resilience, in high-risk individuals. Cognitive training targeting prefrontal cortex function may provide protection against anxiety, especially in high-risk individuals, such as those with inhibited temperament. PMID:24753211
Jang, Sung Ho; Kwon, Hyeok Gyu
2014-01-24
A few studies have reported on the neural connectivity of the fornix in the human brain, however, little is known about the neural connectivity of the anterior body of the fornix. In this study, we used diffusion tensor imaging in investigation of the neural connectivity of the anterior body of the fornix in normal subjects. Forty healthy subjects were recruited for this study. A seed region of interest was placed on the anterior body of the fornix using the FMRIB Software Library. Connectivity was defined as the incidence of connection between the anterior body of the fornix and any neural structure of the brain at the threshold of 5, 25, and 50 streamlines. In all subjects, the anterior body of the fornix showed 100% connectivity to the anterior commissure and hypothalamus at thresholds of 5, 25, and 50. On the other hand, regarding the thresholds of 5, 25, and 50, the anterior body of the fornix showed connectivity to the septal forebrain region (53.8, 23.8, and 15.0%), frontal lobe via anterior commissure (41.3,12.5, and 10.0%), medial temporal lobe (85.0,66.3, and 62.5%), lateral temporal lobe (75.0, 56.3, and 35.0%), occipital lobe (21.3, 5.0, and 1.3%), frontal lobe via septum pellucidum (28.8, 13.8, and 8.8%), tegmentum of midbrain (7.5, 5.0, and 0%), tectum of midbrain (2.5,0, and 0%), and tegmentum of pons (5.0,0, and 0%). The anterior body of the fornix showed high connectivity with the anterior commissure and hypothalamus, and brain areas relevant to cholinergic nuclei (the septal forebrain region and brainstem) and memory function (the medial temporal lobe). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Implications of newborn amygdala connectivity for fear and cognitive development at 6-months-of-age
Graham, Alice M.; Buss, Claudia; Rasmussen, Jerod M.; Rudolph, Marc D.; Demeter, Damion V.; Gilmore, John H.; Styner, Martin; Entringer, Sonja; Wadhwa, Pathik D.; Fair, Damien A.
2015-01-01
The first year of life is an important period for emergence of fear in humans. While animal models have revealed developmental changes in amygdala circuitry accompanying emerging fear, human neural systems involved in early fear development remain poorly understood. To increase understanding of the neural foundations of human fear, it is important to consider parallel cognitive development, which may modulate associations between typical development of early fear and subsequent risk for fear-related psychopathology. We, therefore, examined amygdala functional connectivity with rs-fcMRI in 48 neonates (M=3.65 weeks, SD=1.72), and measured fear and cognitive development at 6-months-of-age. Stronger, positive neonatal amygdala connectivity to several regions, including bilateral anterior insula and ventral striatum, was prospectively associated with higher fear at 6-months. Stronger amygdala connectivity to ventral anterior cingulate/anterior medial prefrontal cortex predicted a specific phenotype of higher fear combined with more advanced cognitive development. Overall, findings demonstrate unique profiles of neonatal amygdala functional connectivity related to emerging fear and cognitive development, which may have implications for normative and pathological fear in later years. Consideration of infant fear in the context of cognitive development will likely contribute to a more nuanced understanding of fear, its neural bases, and its implications for future mental health. PMID:26499255
The neural circuits for arithmetic principles.
Liu, Jie; Zhang, Han; Chen, Chuansheng; Chen, Hui; Cui, Jiaxin; Zhou, Xinlin
2017-02-15
Arithmetic principles are the regularities underlying arithmetic computation. Little is known about how the brain supports the processing of arithmetic principles. The current fMRI study examined neural activation and functional connectivity during the processing of verbalized arithmetic principles, as compared to numerical computation and general language processing. As expected, arithmetic principles elicited stronger activation in bilateral horizontal intraparietal sulcus and right supramarginal gyrus than did language processing, and stronger activation in left middle temporal lobe and left orbital part of inferior frontal gyrus than did computation. In contrast, computation elicited greater activation in bilateral horizontal intraparietal sulcus (extending to posterior superior parietal lobule) than did either arithmetic principles or language processing. Functional connectivity analysis with the psychophysiological interaction approach (PPI) showed that left temporal-parietal (MTG-HIPS) connectivity was stronger during the processing of arithmetic principle and language than during computation, whereas parietal-occipital connectivities were stronger during computation than during the processing of arithmetic principles and language. Additionally, the left fronto-parietal (orbital IFG-HIPS) connectivity was stronger during the processing of arithmetic principles than during computation. The results suggest that verbalized arithmetic principles engage a neural network that overlaps but is distinct from the networks for computation and language processing. Copyright © 2016 Elsevier Inc. All rights reserved.
Konova, Anna B.; Moeller, Scott J.; Tomasi, Dardo; Volkow, Nora D.; Goldstein, Rita Z.
2015-01-01
Importance Cocaine addiction is associated with altered resting-state functional connectivity among regions of the mesocorticolimbic dopamine pathways. Methylphenidate hydrochloride, an indirect dopamine agonist, normalizes task-related regional brain activity and associated behavior in cocaine users; however, the neural systems–level effects of methylphenidate in this population have not yet been described. Objective To use resting-state functional magnetic resonance imaging to examine changes in mesocorticolimbic connectivity with methylphenidate and how connectivity of affected pathways relates to severity of cocaine addiction. Design Randomized, placebo-controlled, before-after, crossover study. Setting Clinical research center. Participants Eighteen nonabstaining individuals with cocaine use disorders. Interventions Single doses of oral methylphenidate (20 mg) or placebo were administered at each of 2 study sessions. At each session, resting scans were acquired twice: immediately after drug administration (before the onset of effects [baseline]) and 120 minutes later (within the window of peak effects). Main outcomes and Measures Functional connectivity strength was evaluated using a seed voxel correlation approach. Changes in this measure were examined to characterize the neural systems–level effects of methylphenidate; severity of cocaine addiction was assessed by interview and questionnaire. Results Short-term methylphenidate administration reduced an abnormally strong connectivity of the ventral striatum with the dorsal striatum (putamen/globus pallidus), and lower connectivity between these regions during placebo administration uniquely correlated with less severe addiction. In contrast, methylphenidate strengthened several corticolimbic and corticocortical connections. Conclusions and Relevance These findings help elucidate the neural systems–level effects of methylphenidate and suggest that short-term methylphenidate can, at least transiently, remodel abnormal circuitry relevant to the pathophysiologic characteristics of cocaine addiction. In particular, the effects of methylphenidate within striatal and cortical pathways constitute a potentially viable mechanism by which methylphenidate could facilitate control of behavior in cocaine addiction. PMID:23803700
Functional brain connectivity when cooperation fails.
Balconi, Michela; Vanutelli, Maria Elide; Gatti, Laura
2018-06-01
Functional connectivity during cooperative actions is an important topic in social neuroscience that has yet to be answered. Here, we examined the effects of administration of (fictitious) negative social feedback in relation to cooperative capabilities. Cognitive performance and neural activation underlying the execution of joint actions was recorded with functional near-infrared spectroscopy (fNIRS) on prefrontal regions during a task where pairs of participants received negative feedback after their joint action. Performance (error rates (ERs) and response times (RTs)) and intra- and inter-brain connectivity indices were computed, along with the ConIndex (inter-brain/intra-brain connectivity). Finally, correlational measures were considered to assess the relation between these different measures. Results showed that the negative feedback was able to modulate participants' responses for both behavioral and neural components. Cognitive performance was decreased after the feedback. Moreover, decreased inter-brain connectivity and increased intra-brain connectivity was induced by the feedback, whereas the cooperative task pre-feedback condition was able to increase the brain-to-brain coupling, mainly localized within the dorsolateral prefrontal cortex (DLPFC). Finally, the presence of significant correlations between RTs and inter-brain connectivity revealed that ineffective joint action produces the worst cognitive performance and a more 'individual strategy' for brain activity, limiting the inter-brain connectivity. The present study provides a significant contribution to the identification of patterns of intra- and inter-brain functional connectivity when negative social reinforcement is provided in relation to cooperative actions. Copyright © 2018 Elsevier Inc. All rights reserved.
Demonstration of a neural circuit critical for imprinting behavior in chicks.
Nakamori, Tomoharu; Sato, Katsushige; Atoji, Yasuro; Kanamatsu, Tomoyuki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko
2010-03-24
Imprinting behavior in birds is elicited by visual and/or auditory cues. It has been demonstrated previously that visual cues are recognized and processed in the visual Wulst (VW), and imprinting memory is stored in the intermediate medial mesopallium (IMM) of the telencephalon. Alteration of neural responses in these two regions according to imprinting has been reported, yet direct evidence of the neural circuit linking these two regions is lacking. Thus, it remains unclear how memory is formed and expressed in this circuit. Here, we present anatomical as well as physiological evidence of the neural circuit connecting the VW and IMM and show that imprinting training during the critical period strengthens and refines this circuit. A functional connection established by imprint training resulted in an imprinting behavior. After the closure of the critical period, training could not activate this circuit nor induce the imprinting behavior. Glutamatergic neurons in the ventroposterior region of the VW, the core region of the hyperpallium densocellulare (HDCo), sent their axons to the periventricular part of the HD, just dorsal and afferent to the IMM. We found that the HDCo is important in imprinting behavior. The refinement and/or enhancement of this neural circuit are attributed to increased activity of HDCo cells, and the activity depended on NR2B-containing NMDA receptors. These findings show a neural connection in the telencephalon in Aves and demonstrate that NR2B function is indispensable for the plasticity of HDCo cells, which are key mediators of imprinting.
Zador, Anthony M.; Dubnau, Joshua; Oyibo, Hassana K.; Zhan, Huiqing; Cao, Gang; Peikon, Ian D.
2012-01-01
Connectivity determines the function of neural circuits. Historically, circuit mapping has usually been viewed as a problem of microscopy, but no current method can achieve high-throughput mapping of entire circuits with single neuron precision. Here we describe a novel approach to determining connectivity. We propose BOINC (“barcoding of individual neuronal connections”), a method for converting the problem of connectivity into a form that can be read out by high-throughput DNA sequencing. The appeal of using sequencing is that its scale—sequencing billions of nucleotides per day is now routine—is a natural match to the complexity of neural circuits. An inexpensive high-throughput technique for establishing circuit connectivity at single neuron resolution could transform neuroscience research. PMID:23109909
Johnston, Jennifer A Y; Wang, Fei; Liu, Jie; Blond, Benjamin N; Wallace, Amanda; Liu, Jiacheng; Spencer, Linda; Cox Lippard, Elizabeth T; Purves, Kirstin L; Landeros-Weisenberger, Angeli; Hermes, Eric; Pittman, Brian; Zhang, Sheng; King, Robert; Martin, Andrés; Oquendo, Maria A; Blumberg, Hilary P
2017-07-01
Bipolar disorder is associated with high risk for suicidal behavior that often develops in adolescence and young adulthood. Elucidation of involved neural systems is critical for prevention. This study of adolescents and young adults with bipolar disorder with and without a history of suicide attempts combines structural, diffusion tensor, and functional MR imaging methods to investigate implicated abnormalities in the morphology and structural and functional connectivity within frontolimbic systems. The study had 26 participants with bipolar disorder who had a prior suicide attempt (the attempter group) and 42 participants with bipolar disorder without a suicide attempt (the nonattempter group). Regional gray matter volume, white matter integrity, and functional connectivity during processing of emotional stimuli were compared between groups, and differences were explored for relationships between imaging modalities and associations with suicide-related symptoms and behaviors. Compared with the nonattempter group, the attempter group showed significant reductions in gray matter volume in the orbitofrontal cortex, hippocampus, and cerebellum; white matter integrity in the uncinate fasciculus, ventral frontal, and right cerebellum regions; and amygdala functional connectivity to the left ventral and right rostral prefrontal cortex. In exploratory analyses, among attempters, there was a significant negative correlation between right rostral prefrontal connectivity and suicidal ideation and between left ventral prefrontal connectivity and attempt lethality. Adolescent and young adult suicide attempters with bipolar disorder demonstrate less gray matter volume and decreased structural and functional connectivity in a ventral frontolimbic neural system subserving emotion regulation. Among attempters, reductions in amygdala-prefrontal functional connectivity may be associated with severity of suicidal ideation and attempt lethality.
Johnston, Jennifer A. Y.; Wang, Fei; Liu, Jie; Blond, Benjamin N.; Wallace, Amanda; Liu, Jiacheng; Spencer, Linda; Cox Lippard, Elizabeth T.; Purves, Kirstin L.; Landeros-Weisenberger, Angeli; Hermes, Eric; Pittman, Brian; Zhang, Sheng; King, Robert; Martin, Andrés; Oquendo, Maria A.; Blumberg, Hilary P.
2018-01-01
Objective Bipolar disorder is associated with high risk for suicide behavior that often develops in adolescence/young adulthood. Elucidation of involved neural systems is critical for prevention. This study of adolescents/young adults with bipolar disorder with and without history of suicide attempts combines structural, diffusion tensor and functional magnetic resonance imaging methods to investigate implicated abnormalities in structural and functional connectivity within fronto-limbic systems. Method Participants with bipolar disorder included 26 with a prior suicide attempt and 42 without attempts. Regional gray matter volume, white matter integrity and functional connectivity during processing of emotional stimuli were compared between groups and differences were explored for relationships between imaging modalities and associations with suicide-related symptoms and behaviors. Results Compared to the non-attempter group, the attempter group showed reductions in gray matter volume in orbitofrontal cortex, hippocampus and cerebellum; white matter integrity in uncinate fasciculus, ventral frontal and right cerebellum regions; and amygdala functional connectivity to left ventral and right rostral prefrontal cortex (p<0.05, corrected). In exploratory analyses, among attempters, right rostral prefrontal connectivity was negatively correlated with suicidal ideation (p<0.05), and left ventral prefrontal connectivity was negatively correlated with attempt lethality (p<0.05). Conclusions Adolescent/young adult suicide attempters with bipolar disorder demonstrate less gray matter volume and decreased structural and functional connectivity in a ventral fronto-limbic neural system subserving emotion regulation. Among suicide attempters, reductions in amygdala-prefrontal functional connectivity may be associated with severity of suicide ideation and attempt lethality. PMID:28135845
Resting-State Functional Connectivity Differentiates Anxious Apprehension and Anxious Arousal
Burdwood, Erin N.; Infantolino, Zachary P.; Crocker, Laura D.; Spielberg, Jeffrey M.; Banich, Marie T.; Miller, Gregory A.; Heller, Wendy
2016-01-01
Brain regions in the default mode network (DMN) display greater functional connectivity at rest or during self-referential processing than during goal-directed tasks. The present study assessed resting-state connectivity as a function of anxious apprehension and anxious arousal, independent of depressive symptoms, in order to understand how these dimensions disrupt cognition. Whole-brain, seed-based analyses indicated differences between anxious apprehension and anxious arousal in DMN functional connectivity. Lower connectivity associated with higher anxious apprehension suggests decreased adaptive, inner-focused thought processes, whereas higher connectivity at higher levels of anxious arousal may reflect elevated monitoring of physiological responses to threat. These findings further the conceptualization of anxious apprehension and anxious arousal as distinct psychological dimensions with distinct neural instantiations. PMID:27406406
Selective Manipulation of Neural Circuits.
Park, Hong Geun; Carmel, Jason B
2016-04-01
Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. The first uses the genetic identity of a cell, such as a transcription factor unique to a circuit, to drive expression of a molecule that can manipulate cell function. The second uses the spatial connectivity of a circuit to achieve specificity: one genetic element is introduced at the origin of a circuit and the other at its termination. When the two genetic elements combine within a neuron, they can alter its function. These two general approaches can be combined to allow manipulation of neurons with a specific genetic identity by introducing a regulatory gene into the origin or termination of the circuit. We consider the advantages and disadvantages of both these general approaches with regard to specificity and efficacy of the manipulations. We also review the genetic techniques that allow gain- and loss-of-function within specific neural circuits. These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.
NASA Astrophysics Data System (ADS)
Shan, Bonan; Wang, Jiang; Deng, Bin; Zhang, Zhen; Wei, Xile
2017-03-01
Assessment of the effective connectivity among different brain regions during seizure is a crucial problem in neuroscience today. As a consequence, a new model inversion framework of brain function imaging is introduced in this manuscript. This framework is based on approximating brain networks using a multi-coupled neural mass model (NMM). NMM describes the excitatory and inhibitory neural interactions, capturing the mechanisms involved in seizure initiation, evolution and termination. Particle swarm optimization method is used to estimate the effective connectivity variation (the parameters of NMM) and the epileptiform dynamics (the states of NMM) that cannot be directly measured using electrophysiological measurement alone. The estimated effective connectivity includes both the local connectivity parameters within a single region NMM and the remote connectivity parameters between multi-coupled NMMs. When the epileptiform activities are estimated, a proportional-integral controller outputs control signal so that the epileptiform spikes can be inhibited immediately. Numerical simulations are carried out to illustrate the effectiveness of the proposed framework. The framework and the results have a profound impact on the way we detect and treat epilepsy.
AbdulSabur, Nuria Y; Xu, Yisheng; Liu, Siyuan; Chow, Ho Ming; Baxter, Miranda; Carson, Jessica; Braun, Allen R
2014-08-01
The neural correlates of narrative production and comprehension remain poorly understood. Here, using positron emission tomography (PET), functional magnetic resonance imaging (fMRI), contrast and functional network connectivity analyses we comprehensively characterize the neural mechanisms underlying these complex behaviors. Eighteen healthy subjects told and listened to fictional stories during scanning. In addition to traditional language areas (e.g., left inferior frontal and posterior middle temporal gyri), both narrative production and comprehension engaged regions associated with mentalizing and situation model construction (e.g., dorsomedial prefrontal cortex, precuneus and inferior parietal lobules) as well as neocortical premotor areas, such as the pre-supplementary motor area and left dorsal premotor cortex. Narrative comprehension alone showed marked bilaterality, activating right hemisphere homologs of perisylvian language areas. Narrative production remained predominantly left lateralized, uniquely activating executive and motor-related regions essential to language formulation and articulation. Connectivity analyses revealed strong associations between language areas and the superior and middle temporal gyri during both tasks. However, only during storytelling were these same language-related regions connected to cortical and subcortical motor regions. In contrast, during story comprehension alone, they were strongly linked to regions supporting mentalizing. Thus, when employed in a more complex, ecologically-valid context, language production and comprehension show both overlapping and idiosyncratic patterns of activation and functional connectivity. Importantly, in each case the language system is integrated with regions that support other cognitive and sensorimotor domains. Copyright © 2014. Published by Elsevier Ltd.
Kwon, Osung; Feng, Linqing; Druckmann, Shaul; Kim, Jinhyun
2018-05-30
Neural circuits, governed by a complex interplay between excitatory and inhibitory neurons, are the substrate for information processing, and the organization of synaptic connectivity in neural network is an important determinant of circuit function. Here, we analyzed the fine structure of connectivity in hippocampal CA1 excitatory and inhibitory neurons innervated by Schaffer collaterals (SCs) using mGRASP in male mice. Our previous study revealed spatially structured synaptic connectivity between CA3 and CA1 pyramidal cells (PCs). Surprisingly, parvalbumin-positive interneurons (PVs) showed a significantly more random pattern spatial structure. Notably, application of Peters' rule for synapse prediction by random overlap between axons and dendrites enhanced structured connectivity in PCs, but, by contrast, made the connectivity pattern in PVs more random. In addition, PCs in a deep sublayer of striatum pyramidale appeared more highly structured than PCs in superficial layers, and little or no sublayer specificity was found in PVs. Our results show that CA1 excitatory PCs and inhibitory PVs innervated by the same SC inputs follow different connectivity rules. The different organizations of fine scale structured connectivity in hippocampal excitatory and inhibitory neurons provide important insights into the development and functions of neural networks. SIGNIFICANCE STATEMENT Understanding how neural circuits generate behavior is one of the central goals of neuroscience. An important component of this endeavor is the mapping of fine-scale connection patterns that underlie, and help us infer, signal processing in the brain. Here, using our recently developed synapse detection technology (mGRASP and neuTube), we provide detailed profiles of synaptic connectivity in excitatory (CA1 pyramidal) and inhibitory (CA1 parvalbumin-positive) neurons innervated by the same presynaptic inputs (CA3 Schaffer collaterals). Our results reveal that these two types of CA1 neurons follow different connectivity patterns. Our new evidence for differently structured connectivity at a fine scale in hippocampal excitatory and inhibitory neurons provides a better understanding of hippocampal networks and will guide theoretical and experimental studies. Copyright © 2018 the authors 0270-6474/18/385140-13$15.00/0.
Ihme, Matthias; Marsden, Alison L; Pitsch, Heinz
2008-02-01
A pattern search optimization method is applied to the generation of optimal artificial neural networks (ANNs). Optimization is performed using a mixed variable extension to the generalized pattern search method. This method offers the advantage that categorical variables, such as neural transfer functions and nodal connectivities, can be used as parameters in optimization. When used together with a surrogate, the resulting algorithm is highly efficient for expensive objective functions. Results demonstrate the effectiveness of this method in optimizing an ANN for the number of neurons, the type of transfer function, and the connectivity among neurons. The optimization method is applied to a chemistry approximation of practical relevance. In this application, temperature and a chemical source term are approximated as functions of two independent parameters using optimal ANNs. Comparison of the performance of optimal ANNs with conventional tabulation methods demonstrates equivalent accuracy by considerable savings in memory storage. The architecture of the optimal ANN for the approximation of the chemical source term consists of a fully connected feedforward network having four nonlinear hidden layers and 117 synaptic weights. An equivalent representation of the chemical source term using tabulation techniques would require a 500 x 500 grid point discretization of the parameter space.
Diano, Matteo; Tamietto, Marco; Celeghin, Alessia; Weiskrantz, Lawrence; Tatu, Mona-Karina; Bagnis, Arianna; Duca, Sergio; Geminiani, Giuliano; Cauda, Franco; Costa, Tommaso
2017-03-27
The quest to characterize the neural signature distinctive of different basic emotions has recently come under renewed scrutiny. Here we investigated whether facial expressions of different basic emotions modulate the functional connectivity of the amygdala with the rest of the brain. To this end, we presented seventeen healthy participants (8 females) with facial expressions of anger, disgust, fear, happiness, sadness and emotional neutrality and analyzed amygdala's psychophysiological interaction (PPI). In fact, PPI can reveal how inter-regional amygdala communications change dynamically depending on perception of various emotional expressions to recruit different brain networks, compared to the functional interactions it entertains during perception of neutral expressions. We found that for each emotion the amygdala recruited a distinctive and spatially distributed set of structures to interact with. These changes in amygdala connectional patters characterize the dynamic signature prototypical of individual emotion processing, and seemingly represent a neural mechanism that serves to implement the distinctive influence that each emotion exerts on perceptual, cognitive, and motor responses. Besides these differences, all emotions enhanced amygdala functional integration with premotor cortices compared to neutral faces. The present findings thus concur to reconceptualise the structure-function relation between brain-emotion from the traditional one-to-one mapping toward a network-based and dynamic perspective.
The neural correlates of risk propensity in males and females using resting-state fMRI
Zhou, Yuan; Li, Shu; Dunn, John; Li, Huandong; Qin, Wen; Zhu, Maohu; Rao, Li-Lin; Song, Ming; Yu, Chunshui; Jiang, Tianzi
2014-01-01
Men are more risk prone than women, but the underlying basis remains unclear. To investigate this question, we developed a trait-like measure of risk propensity which we correlated with resting-state functional connectivity to identify sex differences. Specifically, we used short- and long-range functional connectivity densities to identify associated brain regions and examined their functional connectivities in resting-state functional magnetic resonance imaging (fMRI) data collected from a large sample of healthy young volunteers. We found that men had a higher level of general risk propensity (GRP) than women. At the neural level, although they shared a common neural correlate of GRP in a network centered at the right inferior frontal gyrus, men and women differed in a network centered at the right secondary somatosensory cortex, which included the bilateral dorsal anterior/middle insular cortices and the dorsal anterior cingulate cortex. In addition, men and women differed in a local network centered at the left inferior orbitofrontal cortex. Most of the regions identified by this resting-state fMRI study have been previously implicated in risk processing when people make risky decisions. This study provides a new perspective on the brain-behavioral relationships in risky decision making and contributes to our understanding of sex differences in risk propensity. PMID:24478649
McLeod, Kevin R; Langevin, Lisa Marie; Dewey, Deborah; Goodyear, Bradley G
2016-01-01
Developmental coordination disorder (DCD) and attention-deficit hyperactivity disorder (ADHD) are highly comorbid neurodevelopmental disorders; however, the neural mechanisms of this comorbidity are poorly understood. Previous research has demonstrated that children with DCD and ADHD have altered brain region communication, particularly within the motor network. The structure and function of the motor network in a typically developing brain exhibits hemispheric dominance. It is plausible that functional deficits observed in children with DCD and ADHD are associated with neurodevelopmental alterations in within- and between-hemisphere motor network functional connection strength that disrupt this hemispheric dominance. We used resting-state functional magnetic resonance imaging to examine functional connections of the left and right primary and sensory motor (SM1) cortices in children with DCD, ADHD and DCD + ADHD, relative to typically developing children. Our findings revealed that children with DCD, ADHD and DCD + ADHD exhibit atypical within- and between-hemisphere functional connection strength between SM1 and regions of the basal ganglia, as well as the cerebellum. Our findings further support the assertion that development of atypical motor network connections represents common and distinct neural mechanisms underlying DCD and ADHD. In children with DCD and DCD + ADHD (but not ADHD), a significant correlation was observed between clinical assessment of motor function and the strength of functional connections between right SM1 and anterior cingulate cortex, supplementary motor area, and regions involved in visuospatial processing. This latter finding suggests that behavioral phenotypes associated with atypical motor network development differ between individuals with DCD and those with ADHD.
Distinctive neural processes during learning in autism.
Schipul, Sarah E; Williams, Diane L; Keller, Timothy A; Minshew, Nancy J; Just, Marcel Adam
2012-04-01
This functional magnetic resonance imaging study compared the neural activation patterns of 18 high-functioning individuals with autism and 18 IQ-matched neurotypical control participants as they learned to perform a social judgment task. Participants learned to identify liars among pairs of computer-animated avatars uttering the same sentence but with different facial and vocal expressions, namely those that have previously been associated with lying versus truth-telling. Despite showing a behavioral learning effect similar to the control group, the autism group did not show the same pattern of decreased activation in cortical association areas as they learned the task. Furthermore, the autism group showed a significantly smaller increase in interregion synchronization of activation (functional connectivity) with learning than did the control group. Finally, the autism group had decreased structural connectivity as measured by corpus callosum size, and this measure was reliably related to functional connectivity measures. The findings suggest that cortical underconnectivity in autism may constrain the ability of the brain to rapidly adapt during learning.
Chen, Xingui; Tao, Longxiang; Li, Jingjing; Wu, Jiaonan; Zhu, Chunyan; Yu, Fengqiong; Zhang, Lei; Zhang, Jingjie; Qiu, Bensheng; Yu, Yongqiang; He, Xiaoxuan
2017-01-01
Abstract Background: Tamoxifen is the most widely used drug for treating patients with estrogen receptor-sensitive breast cancer. There is evidence that breast cancer patients treated with tamoxifen exhibit cognitive dysfunction. However, the underlying neural mechanism remains unclear. The present study aimed to investigate the neural mechanisms underlying working memory deficits in combination with functional connectivity changes in premenopausal women with breast cancer who received long-term tamoxifen treatment. Methods: A total of 31 premenopausal women with breast cancer who received tamoxifen and 32 matched healthy control participants were included. The participants completed n-back tasks and underwent resting-state functional magnetic resonance imaging, which measure working memory performance and brain functional connectivity, respectively. A seed-based functional connectivity analysis within the whole brain was conducted, for which the dorsolateral prefrontal cortex was chosen as the seed region. Results: Our results indicated that the tamoxifen group had significant deficits in working memory and general executive function performance and significantly lower functional connectivity of the right dorsolateral prefrontal cortex with the right hippocampus compared with the healthy controls. There were no significant changes in functional connectivity in the left dorsolateral prefrontal cortex within the whole brain between the tamoxifen group and healthy controls. Moreover, significant correlations were found in the tamoxifen group between the functional connectivity strength of the dorsolateral prefrontal cortex with the right hippocampus and decreased working memory performance. Conclusion: This study demonstrates that the prefrontal cortex and hippocampus may be affected by tamoxifen treatment, supporting an antagonistic role of tamoxifen in the long-term treatment of breast cancer patients. PMID:28177081
Posner, Jonathan; Nagel, Bonnie J.; Maia, Tiago V.; Mechling, Anna; Oh, Milim; Wang, Zhishun; Peterson, Bradley S.
2011-01-01
Objective Emotional reactivity is one of the most disabling symptoms associated with ADHD. We aimed to identify neural substrates associated with emotional reactivity and assess the effects of stimulants on those substrates. Method We used functional magnetic resonance imaging (fMRI) to assess neural activity in adolescents with (N=15) and without (N=15) ADHD while they performed a task involving the subliminal presentation of fearful faces. Using dynamic causal modeling, we also examined the effective connectivity of two regions associated with emotional reactivity — the amygdala and the lateral prefrontal cortex (LPFC). The participants with ADHD were scanned both on and off stimulant medication in a counterbalanced fashion. Results During the task, we found that activity in the right amygdala was greater in adolescents with ADHD than in controls. Additionally, in adolescents with ADHD, greater connectivity was detected between the amygdala and LPFC. Stimulants had a normalizing effect on both the activity in the right amygdala and the connectivity between the amygdala and LPFC. Conclusions Our findings demonstrate that in adolescents with ADHD, a neural substrate of fear processing is atypical, as is the connectivity between the amygdala and LPFC. These findings suggest possible neural substrates for the emotional reactivity that is often present in youths with ADHD and provide putative neural targets for the development of novel therapeutic interventions for this condition. PMID:21784302
Relationships between cortical myeloarchitecture and electrophysiological networks
Hunt, Benjamin A. E.; Tewarie, Prejaas K.; Mougin, Olivier E.; Geades, Nicolas; Singh, Krish D.; Morris, Peter G.; Gowland, Penny A.; Brookes, Matthew J.
2016-01-01
The human brain relies upon the dynamic formation and dissolution of a hierarchy of functional networks to support ongoing cognition. However, how functional connectivities underlying such networks are supported by cortical microstructure remains poorly understood. Recent animal work has demonstrated that electrical activity promotes myelination. Inspired by this, we test a hypothesis that gray-matter myelin is related to electrophysiological connectivity. Using ultra-high field MRI and the principle of structural covariance, we derive a structural network showing how myelin density differs across cortical regions and how separate regions can exhibit similar myeloarchitecture. Building upon recent evidence that neural oscillations mediate connectivity, we use magnetoencephalography to elucidate networks that represent the major electrophysiological pathways of communication in the brain. Finally, we show that a significant relationship exists between our functional and structural networks; this relationship differs as a function of neural oscillatory frequency and becomes stronger when integrating oscillations over frequency bands. Our study sheds light on the way in which cortical microstructure supports functional networks. Further, it paves the way for future investigations of the gray-matter structure/function relationship and its breakdown in pathology. PMID:27830650
Joel Shaw, Daniel; Mareček, Radek; Grosbras, Marie-Helene; Leonard, Gabriel; Bruce Pike, G.
2016-01-01
Our ability to process complex social cues presented by faces improves during adolescence. Using multivariate analyses of neuroimaging data collected longitudinally from a sample of 38 adolescents (17 males) when they were 10, 11.5, 13 and 15 years old, we tested the possibility that there exists parallel variations in the structural and functional development of neural systems supporting face processing. By combining measures of task-related functional connectivity and brain morphology, we reveal that both the structural covariance and functional connectivity among ‘distal’ nodes of the face-processing network engaged by ambiguous faces increase during this age range. Furthermore, we show that the trajectory of increasing functional connectivity between the distal nodes occurs in tandem with the development of their structural covariance. This demonstrates a tight coupling between functional and structural maturation within the face-processing network. Finally, we demonstrate that increased functional connectivity is associated with age-related improvements of face-processing performance, particularly in females. We suggest that our findings reflect greater integration among distal elements of the neural systems supporting the processing of facial expressions. This, in turn, might facilitate an enhanced extraction of social information from faces during a time when greater importance is placed on social interactions. PMID:26772669
Tarusawa, Etsuko; Sanbo, Makoto; Okayama, Atsushi; Miyashita, Toshio; Kitsukawa, Takashi; Hirayama, Teruyoshi; Hirabayashi, Takahiro; Hasegawa, Sonoko; Kaneko, Ryosuke; Toyoda, Shunsuke; Kobayashi, Toshihiro; Kato-Itoh, Megumi; Nakauchi, Hiromitsu; Hirabayashi, Masumi; Yagi, Takeshi; Yoshimura, Yumiko
2016-12-02
The specificity of synaptic connections is fundamental for proper neural circuit function. Specific neuronal connections that underlie information processing in the sensory cortex are initially established without sensory experiences to a considerable extent, and then the connections are individually refined through sensory experiences. Excitatory neurons arising from the same single progenitor cell are preferentially connected in the postnatal cortex, suggesting that cell lineage contributes to the initial wiring of neurons. However, the postnatal developmental process of lineage-dependent connection specificity is not known, nor how clonal neurons, which are derived from the same neural stem cell, are stamped with the identity of their common neural stem cell and guided to form synaptic connections. We show that cortical excitatory neurons that arise from the same neural stem cell and reside within the same layer preferentially establish reciprocal synaptic connections in the mouse barrel cortex. We observed a transient increase in synaptic connections between clonal but not nonclonal neuron pairs during postnatal development, followed by selective stabilization of the reciprocal connections between clonal neuron pairs. Furthermore, we demonstrate that selective stabilization of the reciprocal connections between clonal neuron pairs is impaired by the deficiency of DNA methyltransferase 3b (Dnmt3b), which determines DNA-methylation patterns of genes in stem cells during early corticogenesis. Dnmt3b regulates the postnatal expression of clustered protocadherin (cPcdh) isoforms, a family of adhesion molecules. We found that cPcdh deficiency in clonal neuron pairs impairs the whole process of the formation and stabilization of connections to establish lineage-specific connection reciprocity. Our results demonstrate that local, reciprocal neural connections are selectively formed and retained between clonal neurons in layer 4 of the barrel cortex during postnatal development, and that Dnmt3b and cPcdhs are required for the establishment of lineage-specific reciprocal connections. These findings indicate that lineage-specific connection reciprocity is predetermined by Dnmt3b during embryonic development, and that the cPcdhs contribute to postnatal cortical neuron identification to guide lineage-dependent synaptic connections in the neocortex.
The Effects of Pharmacological Opioid Blockade on Neural Measures of Drug Cue-Reactivity in Humans.
Courtney, Kelly E; Ghahremani, Dara G; Ray, Lara A
2016-11-01
Interactions between dopaminergic and opioidergic systems have been implicated in the reinforcing properties of drugs of abuse. The present study investigated the effects of opioid blockade, via naltrexone, on functional magnetic resonance imaging (fMRI) measures during methamphetamine cue-reactivity to elucidate the role of endogenous opioids in the neural systems underlying drug craving. To investigate this question, non-treatment seeking individuals with methamphetamine use disorder (N=23; 74% male, mean age=34.70 (SD=8.95)) were recruited for a randomized, placebo controlled, within-subject design and underwent a visual methamphetamine cue-reactivity task during two blood-oxygen-level dependent (BOLD) fMRI sessions following 3 days of naltrexone (50 mg) and matched time for placebo. fMRI analyses tested naltrexone-induced differences in BOLD activation and functional connectivity during cue processing. The results showed that naltrexone administration reduced cue-reactivity in sensorimotor regions and related to altered functional connectivity of dorsal striatum, ventral tegmental area, and precuneus with frontal, visual, sensory, and motor-related regions. Naltrexone also weakened the associations between subjective craving and precuneus functional connectivity with sensorimotor regions and strengthened the associations between subjective craving and dorsal striatum and precuneus connectivity with frontal regions. In conclusion, this study provides the first evidence that opioidergic blockade alters neural responses to drug cues in humans with methamphetamine addiction and suggests that naltrexone may be reducing drug cue salience by decreasing the involvement of sensorimotor regions and by engaging greater frontal regulation over salience attribution.
Li, Ting; Niu, Yan; Xiang, Jie; Cheng, Junjie; Liu, Bo; Zhang, Hui; Yan, Tianyi; Kanazawa, Susumu; Wu, Jinglong
2018-01-01
Category-selective brain areas exhibit varying levels of neural activity to ipsilaterally presented stimuli. However, in face- and house-selective areas, the neural responses evoked by ipsilateral stimuli in the peripheral visual field remain unclear. In this study, we displayed face and house images using a wide-view visual presentation system while performing functional magnetic resonance imaging (fMRI). The face-selective areas (fusiform face area (FFA) and occipital face area (OFA)) exhibited intense neural responses to ipsilaterally presented images, whereas the house-selective areas (parahippocampal place area (PPA) and transverse occipital sulcus (TOS)) exhibited substantially smaller and even negative neural responses to the ipsilaterally presented images. We also found that the category preferences of the contralateral and ipsilateral neural responses were similar. Interestingly, the face- and house-selective areas exhibited neural responses to ipsilateral images that were smaller than the responses to the contralateral images. Multi-voxel pattern analysis (MVPA) was implemented to evaluate the difference between the contralateral and ipsilateral responses. The classification accuracies were much greater than those expected by chance. The classification accuracies in the FFA were smaller than those in the PPA and TOS. The closer eccentricities elicited greater classification accuracies in the PPA and TOS. We propose that these ipsilateral neural responses might be interpreted by interhemispheric communication through intrahemispheric connectivity of white matter connection and interhemispheric connectivity via the corpus callosum and occipital white matter connection. Furthermore, the PPA and TOS likely have weaker interhemispheric communication than the FFA and OFA, particularly in the peripheral visual field. PMID:29451872
ERIC Educational Resources Information Center
Vargas, R.; Johannesdottir, I. P.; Sigurgeirsson, B.; Porsteinsson, H.; Karlsson, K. AE.
2011-01-01
Recently, the zebrafish ("Danio rerio") has been established as a key animal model in neuroscience. Behavioral, genetic, and immunohistochemical techniques have been used to describe the connectivity of diverse neural circuits. However, few studies have used zebrafish to understand the function of cerebral structures or to study neural circuits.…
Longitudinal Changes of Resting-State Functional Connectivity during Motor Recovery after Stroke
Park, Chang-hyun; Chang, Won Hyuk; Ohn, Suk Hoon; Kim, Sung Tae; Bang, Oh Young; Pascual-Leone, Alvaro; Kim, Yun-Hee
2013-01-01
Background and Purpose Functional magnetic resonance imaging (fMRI) studies could provide crucial information on the neural mechanisms of motor recovery in stroke patients. Resting-state fMRI is applicable to stroke patients who are not capable of proper performance of the motor task. In this study, we explored neural correlates of motor recovery in stroke patients by investigating longitudinal changes in resting-state functional connectivity of the ipsilesional primary motor cortex (M1). Methods A longitudinal observational study using repeated fMRI experiments was conducted in 12 patients with stroke. Resting-state fMRI data were acquired four times over a period of 6 months. Patients participated in the first session of fMRI shortly after onset, and thereafter in subsequent sessions at 1, 3, and 6 months after onset. Resting-state functional connectivity of the ipsilesional M1 was assessed and compared with that of healthy subjects. Results Compared with healthy subjects, patients demonstrated higher functional connectivity with the ipsilesional frontal and parietal cortices, bilateral thalamus, and cerebellum. Instead, functional connectivity with the contralesional M1 and occipital cortex were decreased in stroke patients. Functional connectivity between the ipsilesional and contralesional M1 showed the most asymmetry at 1 month after onset to the ipsilesional side. Functional connectivity of the ipsilesional M1 with the contralesional thalamus, supplementary motor area, and middle frontal gyrus at onset was positively correlated with motor recovery at 6 months after stroke. Conclusions Resting-state fMRI elicited distinctive but comparable results with previous task-based fMRI, presenting complementary and practical values for use in the study of stroke patients. PMID:21441147
Neural pathway in the right hemisphere underlies verbal insight problem solving.
Zhao, Q; Zhou, Z; Xu, H; Fan, W; Han, L
2014-01-03
Verbal insight problem solving means to break mental sets, to select the novel semantic information and to form novel, task-related associations. Although previous studies have identified the brain regions associated with these key processes, the interaction among these regions during insight is still unclear. In the present study, we explored the functional connectivity between the key regions during solving Chinese 'chengyu' riddles by using event-related functional magnetic resonance imaging. Results showed that both insight and noninsight solutions activated the bilateral inferior frontal gyri, middle temporal gyri and hippocampi, and these regions constituted a frontal to temporal to hippocampal neural pathway. Compared with noninsight solution, insight solution had a stronger functional connectivity between the inferior frontal gyrus and middle temporal gyrus in the right hemisphere. Our study reveals the neural pathway of information processing during verbal insight problem solving, and supports the right-hemisphere advantage theory of insight. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Evolvable Neural Software System
NASA Technical Reports Server (NTRS)
Curtis, Steven A.
2009-01-01
The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.
Boehm, Ilka; Geisler, Daniel; King, Joseph A.; Ritschel, Franziska; Seidel, Maria; Deza Araujo, Yacila; Petermann, Juliane; Lohmeier, Heidi; Weiss, Jessika; Walter, Martin; Roessner, Veit; Ehrlich, Stefan
2014-01-01
The etiology of anorexia nervosa (AN) is poorly understood. Results from functional brain imaging studies investigating the neural profile of AN using cognitive and emotional task paradigms are difficult to reconcile. Task-related imaging studies often require a high level of compliance and can only partially explore the distributed nature and complexity of brain function. In this study, resting state functional connectivity imaging was used to investigate well-characterized brain networks potentially relevant to understand the neural mechanisms underlying the symptomatology and etiology of AN. Resting state functional magnetic resonance imaging data was obtained from 35 unmedicated female acute AN patients and 35 closely matched healthy controls female participants (HC) and decomposed using spatial group independent component analyses (ICA). Using validated templates, we identified components covering the fronto-parietal “control” network, the default mode network (DMN), the salience network, the visual and the sensory-motor network. Group comparison revealed an increased functional connectivity between the angular gyrus and the other parts of the fronto-parietal network in patients with AN in comparison to HC. Connectivity of the angular gyrus was positively associated with self-reported persistence in HC. In the DMN, AN patients also showed an increased functional connectivity strength in the anterior insula in comparison to HC. Anterior insula connectivity was associated with self-reported problems with interoceptive awareness. This study, with one of the largest sample to date, shows that acute AN is associated with abnormal brain connectivity in two major resting state networks (RSN). The finding of an increased functional connectivity in the fronto-parietal network adds novel support for the notion of AN as a disorder of excessive cognitive control, whereas the elevated functional connectivity of the anterior insula with the DMN may reflect the high levels of self- and body-focused ruminations when AN patients are at rest. PMID:25324749
Yi, S-Q; Ren, K; Kinoshita, M; Takano, N; Itoh, M; Ozaki, N
2016-06-01
Sphincter of Oddi dysfunction is one of the most important symptoms in post-cholecystectomy syndrome. Using either electrical or mechanical stimulation and retrogradely transported neuronal dyes, it has been demonstrated that there are direct neural pathways connecting gall bladder and the sphincter of Oddi in the Australian opossum and the golden hamster. In the present study, we employed whole-mount immunohistochemistry staining to observe and verify that there are two different plexuses of the extrahepatic biliary tract in Suncus murinus. One, named Pathway One, showed a fine, irregular but dense network plexus that ran adhesively and resided on/in the extrahepatic biliary tract wall, and the plexus extended into the intrahepatic area. On the other hand, named Pathway Two, exhibiting simple, thicker and straight neural bundles, ran parallel to the surface of the extrahepatic biliary tract and passed between the gall bladder and duodenum, but did not give off any branches to the liver. Pathway Two was considered to involve direct bidirectional neural connections between the duodenum and the biliary tract system. For the first time, morphologically, we demonstrated direct neural connections between gall bladder and duodenum in S. murinus. Malfunction of the sphincter of Oddi may be caused by injury of the direct neural pathways between gall bladder and duodenum by cholecystectomy. From the viewpoint of preserving the function of the major duodenal papilla and common bile duct, we emphasize the importance of avoiding kocherization of the common bile duct so as to preserve the direct neural connections between gall bladder and sphincter of Oddi. © 2015 Blackwell Verlag GmbH.
The relationship between spatial configuration and functional connectivity of brain regions
Woolrich, Mark W; Glasser, Matthew F; Robinson, Emma C; Beckmann, Christian F; Van Essen, David C
2018-01-01
Brain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated the extent to which patterns of coupling strength between multiple neural populations relates to behaviour. For example, studies have used ‘functional connectivity fingerprints’ to characterise individuals' brain activity. Here, we investigate the extent to which the exact spatial arrangement of cortical regions interacts with measures of brain connectivity. We find that the shape and exact location of brain regions interact strongly with the modelling of brain connectivity, and present evidence that the spatial arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Therefore, a better understanding of these effects is important when interpreting the relationship between functional imaging data and cognitive traits. PMID:29451491
van den Bos, Wouter; Cohen, Michael X; Kahnt, Thorsten; Crone, Eveline A
2012-06-01
During development, children improve in learning from feedback to adapt their behavior. However, it is still unclear which neural mechanisms might underlie these developmental changes. In the current study, we used a reinforcement learning model to investigate neurodevelopmental changes in the representation and processing of learning signals. Sixty-seven healthy volunteers between ages 8 and 22 (children: 8-11 years, adolescents: 13-16 years, and adults: 18-22 years) performed a probabilistic learning task while in a magnetic resonance imaging scanner. The behavioral data demonstrated age differences in learning parameters with a stronger impact of negative feedback on expected value in children. Imaging data revealed that the neural representation of prediction errors was similar across age groups, but functional connectivity between the ventral striatum and the medial prefrontal cortex changed as a function of age. Furthermore, the connectivity strength predicted the tendency to alter expectations after receiving negative feedback. These findings suggest that the underlying mechanisms of developmental changes in learning are not related to differences in the neural representation of learning signals per se but rather in how learning signals are used to guide behavior and expectations.
The New Neurobiology of Autism
Minshew, Nancy J.; Williams, Diane L.
2008-01-01
This review covers a fraction of the new research developments in autism but establishes the basic elements of the new neurobiologic understanding of autism. Autism is a polygenetic developmental neurobiologic disorder with multiorgan system involvement, though it predominantly involves central nervous system dysfunction. The evidence supports autism as a disorder of the association cortex, both its neurons and their projections. In particular, it is a disorder of connectivity, which appears, from current evidence, to primarily involve intrahemispheric connectivity. The focus of connectivity studies thus far has been on white matter, but alterations in functional magnetic resonance imaging activation suggest that intracortical connectivity is also likely to be disturbed. Furthermore, the disorder has a broad impact on cognitive and neurologic functioning. Deficits in high-functioning individuals occur in processing that places high demands on integration of information and coordination of multiple neural systems. Intact or enhanced abilities share a dependence on low information-processing demands and local neural connections. This multidomain model with shared characteristics predicts an underlying pathophysiologic mechanism that impacts the brain broadly, according to a common neurobiologic principle. The multiorgan system involvement and diversity of central nervous system findings suggest an epigenetic mechanism. PMID:17620483
Caffeine reduces resting-state BOLD functional connectivity in the motor cortex.
Rack-Gomer, Anna Leigh; Liau, Joy; Liu, Thomas T
2009-05-15
In resting-state functional magnetic resonance imaging (fMRI), correlations between spontaneous low-frequency fluctuations in the blood oxygenation level dependent (BOLD) signal are used to assess functional connectivity between different brain regions. Changes in resting-state BOLD connectivity measures are typically interpreted as changes in coherent neural activity across spatially distinct brain regions. However, this interpretation can be complicated by the complex dependence of the BOLD signal on both neural and vascular factors. For example, prior studies have shown that vasoactive agents that alter baseline cerebral blood flow, such as caffeine and carbon dioxide, can significantly alter the amplitude and dynamics of the task-related BOLD response. In this study, we examined the effect of caffeine (200 mg dose) on resting-state BOLD connectivity in the motor cortex across a sample of healthy young subjects (N=9). We found that caffeine significantly (p<0.05) reduced measures of resting-state BOLD connectivity in the motor cortex. Baseline cerebral blood flow and spectral energy in the low-frequency BOLD fluctuations were also significantly decreased by caffeine. These results suggest that caffeine usage should be carefully considered in the design and interpretation of resting-state BOLD fMRI studies.
Cerebellum and Integration of Neural Networks in Dual-Task Processing
Wu, Tao; Liu, Jun; Hallett, Mark; Zheng, Zheng; Chan, Piu
2014-01-01
Performing two tasks simultaneously (dual-task) is common in human daily life. The neural correlates of dual-task processing remain unclear. In the current study, we used a dual motor and counting task with functional MRI (fMRI) to determine whether there are any areas additionally activated for dual-task performance. Moreover, we investigated the functional connectivity of these added activated areas, as well as the training effect on brain activity and connectivity. We found that the right cerebellar vermis, left lobule V of the cerebellar anterior lobe and precuneus are additionally activated for this type of dual-tasking. These cerebellar regions had functional connectivity with extensive motor- and cognitive-related regions. Dual-task training induced less activation in several areas, but increased the functional connectivity between these cerebellar regions and numbers of motor- and cognitive-related areas. Our findings demonstrate that some regions within the cerebellum can be additionally activated with dual-task performance. Their role in dual motor and cognitive task processes is likely to integrate motor and cognitive networks, and may be involved in adjusting these networks to be more efficient in order to perform dual-tasking properly. The connectivity of the precuneus differs from the cerebellar regions. A possible role of the precuneus in dual-task may be monitoring the operation of active brain networks. PMID:23063842
Becker, Alena; Kirsch, Martina; Gerchen, Martin Fungisai; Kiefer, Falk; Kirsch, Peter
2017-05-01
According to prevailing neurobiological theories of addiction, altered function in neural reward circuitry is a central mechanism of alcohol dependence. Growing evidence postulates that the ventral striatum (VS), as well as areas of the prefrontal cortex, contribute to the increased incentive salience of alcohol-associated cues, diminished motivation to pursue non-drug rewards and weakened strength of inhibitory cognitive control, which are central to addiction. The present study aims to investigate the neural response and functional connectivity underlying monetary, non-drug reward processing in alcohol dependence. We utilized a reward paradigm to investigate the anticipation of monetary reward in 32 alcohol-dependent inpatients and 35 healthy controls. Functional magnetic resonance imaging was used to measure task-related brain activation and connectivity. Alcohol-dependent patients showed increased activation of the VS during anticipation of monetary gain compared with healthy controls. Generalized psychophysiological interaction analyses revealed decreased functional connectivity between the VS and the dorsolateral prefrontal cortex in alcohol dependent patients relative to controls. Increased activation of the VS and reduced frontostriatal connectivity were associated with increased craving. These findings provide evidence that alcohol dependence is rather associated with disrupted integration of striatal and prefrontal processes than with a global reward anticipation deficit. © 2016 Society for the Study of Addiction.
Leavitt, Victoria M; Wylie, Glenn R; Girgis, Peter A; DeLuca, John; Chiaravalloti, Nancy D
2014-09-01
Identifying effective behavioral treatments to improve memory in persons with learning and memory impairment is a primary goal for neurorehabilitation researchers. Memory deficits are the most common cognitive symptom in multiple sclerosis (MS), and hold negative professional and personal consequences for people who are often in the prime of their lives when diagnosed. A 10-session behavioral treatment, the modified Story Memory Technique (mSMT), was studied in a randomized, placebo-controlled clinical trial. Behavioral improvements and increased fMRI activation were shown after treatment. Here, connectivity within the neural networks underlying memory function was examined with resting-state functional connectivity (RSFC) in a subset of participants from the clinical trial. We hypothesized that the treatment would result in increased integrity of connections within two primary memory networks of the brain, the hippocampal memory network, and the default network (DN). Seeds were placed in left and right hippocampus, and the posterior cingulate cortex. Increased connectivity was found between left hippocampus and cortical regions specifically involved in memory for visual imagery, as well as among critical hubs of the DN. These results represent the first evidence for efficacy of a behavioral intervention to impact the integrity of neural networks subserving memory functions in persons with MS.
Zhang, Chenyan; Ni, Yan; Feng, Tingyong
2017-06-30
Previous research has elucidated that procrastination can be influenced by regulatory mode orientations. However, the neural mechanism of regulatory modes affecting procrastination is not well understood. To address this question, we employed resting-state functional magnetic resonance imaging (RS-fMRI) to test the influence of two regulatory modes (assessment and locomotion) on procrastination. The behavioral results showed that procrastination was positively correlated with assessment orientation but negatively correlated with locomotion orientation. Neuroimaging results indicated that the functional connectivity between parahippocampal cortex (PHC) and dorsal anterior cingulate (dACC) was negatively correlated with assessment scores, while the functional connectivity between anterior prefrontal cortex (aPFC) and parahippocampal cortex (PHC) was negatively correlated with locomotion scores. Critically, mediation analysis showed that the different effects of two distinct regulatory modes on procrastination were mediated by PHC-dACC and aPFC-PHC functional connectivity respectively. These results suggested that people's procrastination could be predicted by regulatory mode orientations, which is mediated by PHC connectivity with dACC and aPFC respectively. The present study extends our knowledge on procrastination and provides neural mechanism for understanding the link between regulatory mode orientations and procrastination. Copyright © 2017. Published by Elsevier B.V.
Functional connectivity of the rodent brain using optical imaging
NASA Astrophysics Data System (ADS)
Guevara Codina, Edgar
The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis showed a decreasing trend of homologous correlation in the motor and cingulate cortices. Graph analyses showed a randomization of the cortex functional networks, suggesting a loss of connectivity, more specifically in the motor cortex ipsilateral to the treated carotid; however these changes are not reflected in differentiated metabolic estimates. Confounds remain due to the fact that carotid rigidification gives rise to neural decline in the hippocampus as well as unilateral alteration of vascular pulsatility; however the results support the need to look at several hemodynamic parameters when imaging the brain after arterial remodeling. The third article of this thesis studies a model of inflammatory injury on the newborn rat. Oxygen saturation and functional connectivity were assessed with photoacoustic tomography. Oxygen saturation was decreased in the site of the lesion and on the cortex ipsilateral to the injury; however this decrease is not fully explained by hypovascularization revealed by histology. Seed-based functional connectivity analysis showed that inter-hemispheric connectivity is not affected by inflammatory injury.
Neural network connectivity differences in children who stutter
Zhu, David C.
2013-01-01
Affecting 1% of the general population, stuttering impairs the normally effortless process of speech production, which requires precise coordination of sequential movement occurring among the articulatory, respiratory, and resonance systems, all within millisecond time scales. Those afflicted experience frequent disfluencies during ongoing speech, often leading to negative psychosocial consequences. The aetiology of stuttering remains unclear; compared to other neurodevelopmental disorders, few studies to date have examined the neural bases of childhood stuttering. Here we report, for the first time, results from functional (resting state functional magnetic resonance imaging) and structural connectivity analyses (probabilistic tractography) of multimodal neuroimaging data examining neural networks in children who stutter. We examined how synchronized brain activity occurring among brain areas associated with speech production, and white matter tracts that interconnect them, differ in young children who stutter (aged 3–9 years) compared with age-matched peers. Results showed that children who stutter have attenuated connectivity in neural networks that support timing of self-paced movement control. The results suggest that auditory-motor and basal ganglia-thalamocortical networks develop differently in stuttering children, which may in turn affect speech planning and execution processes needed to achieve fluent speech motor control. These results provide important initial evidence of neurological differences in the early phases of symptom onset in children who stutter. PMID:24131593
Resting state electrical brain activity and connectivity in fibromyalgia
Vanneste, Sven; Ost, Jan; Van Havenbergh, Tony; De Ridder, Dirk
2017-01-01
The exact mechanism underlying fibromyalgia is unknown, but increased facilitatory modulation and/or dysfunctional descending inhibitory pathway activity are posited as possible mechanisms contributing to sensitization of the central nervous system. The primary goal of this study is to identify a fibromyalgia neural circuit that can account for these abnormalities in central pain. The second goal is to gain a better understanding of the functional connectivity between the default and the executive attention network (salience network plus dorsal lateral prefrontal cortex) in fibromyalgia. We examine neural activity associated with fibromyalgia (N = 44) and compare these with healthy controls (N = 44) using resting state source localized EEG. Our data support an important role of the pregenual anterior cingulate cortex but also suggest that the degree of activation and the degree of integration between different brain areas is important. The inhibition of the connectivity between the dorsal lateral prefrontal cortex and the posterior cingulate cortex on the pain inhibitory pathway seems to be limited by decreased functional connectivity with the pregenual anterior cingulate cortex. Our data highlight the functional dynamics of brain regions integrated in brain networks in fibromyalgia patients. PMID:28650974
Resting-state functional connectivity differentiates anxious apprehension and anxious arousal.
Burdwood, Erin N; Infantolino, Zachary P; Crocker, Laura D; Spielberg, Jeffrey M; Banich, Marie T; Miller, Gregory A; Heller, Wendy
2016-10-01
Brain regions in the default mode network (DMN) display greater functional connectivity at rest or during self-referential processing than during goal-directed tasks. The present study assessed resting-state connectivity as a function of anxious apprehension and anxious arousal, independent of depressive symptoms, in order to understand how these dimensions disrupt cognition. Whole-brain, seed-based analyses indicated differences between anxious apprehension and anxious arousal in DMN functional connectivity. Lower connectivity associated with higher anxious apprehension suggests decreased adaptive, inner-focused thought processes, whereas higher connectivity at higher levels of anxious arousal may reflect elevated monitoring of physiological responses to threat. These findings further the conceptualization of anxious apprehension and anxious arousal as distinct psychological dimensions with distinct neural instantiations. © 2016 Society for Psychophysiological Research.
Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory
2017-01-01
Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom sound perception and potentially serve as an objective measure of central neural pathology. PMID:28604786
Price, Rebecca B; Lane, Stephanie; Gates, Kathleen; Kraynak, Thomas E; Horner, Michelle S; Thase, Michael E; Siegle, Greg J
2017-02-15
There is well-known heterogeneity in affective mechanisms in depression that may extend to positive affect. We used data-driven parsing of neural connectivity to reveal subgroups present across depressed and healthy individuals during positive processing, informing targets for mechanistic intervention. Ninety-two individuals (68 depressed patients, 24 never-depressed control subjects) completed a sustained positive mood induction during functional magnetic resonance imaging. Directed functional connectivity paths within a depression-relevant network were characterized using Group Iterative Multiple Model Estimation (GIMME), a method shown to accurately recover the direction and presence of connectivity paths in individual participants. During model selection, individuals were clustered using community detection on neural connectivity estimates. Subgroups were externally tested across multiple levels of analysis. Two connectivity-based subgroups emerged: subgroup A, characterized by weaker connectivity overall, and subgroup B, exhibiting hyperconnectivity (relative to subgroup A), particularly among ventral affective regions. Subgroup predicted diagnostic status (subgroup B contained 81% of patients; 50% of control subjects; χ 2 = 8.6, p = .003) and default mode network connectivity during a separate resting-state task. Among patients, subgroup B members had higher self-reported symptoms, lower sustained positive mood during the induction, and higher negative bias on a reaction-time task. Symptom-based depression subgroups did not predict these external variables. Neural connectivity-based categorization travels with diagnostic category and is clinically predictive, but not clinically deterministic. Both patients and control subjects showed heterogeneous, and overlapping, profiles. The larger and more severely affected patient subgroup was characterized by ventrally driven hyperconnectivity during positive processing. Data-driven parsing suggests heterogeneous substrates of depression and possible resilience in control subjects in spite of biological overlap. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Functional Connectivity Evidence of Cortico-Cortico Inhibition in Temporal Lobe Epilepsy
Tracy, Joseph I.; Osipowicz, Karol; Spechler, Philip; Sharan, Ashwini; Skidmore, Christopher; Doucet, Gaelle; Sperling, Michael R.
2012-01-01
Epileptic seizures can initiate a neural circuit and lead to aberrant neural communication with brain areas outside the epileptogenic region. We focus on interictal activity in focal temporal lobe epilepsy and evaluate functional connectivity differences that emerge as function of bilateral versus strictly unilateral epileptiform activity. We assess the strength of functional connectivity at rest between the ictal and non-ictal temporal lobes, in addition to whole brain connectivity with the ictal temporal lobe. Results revealed strong connectivity between the temporal lobes for both patient groups, but this did not vary as a function of unilateral versus bilateral interictal status. Both the left and right unilateral temporal lobe groups showed significant anti-correlated activity in regions outside the epileptogenic temporal lobe, primarily involving the contralateral (non-ictal/non-pathologic) hemisphere, with precuneus involvement prominent. The bilateral groups did not show this contralateral anti-correlated activity. This anti-correlated connectivity may represent a form of protective and adaptive inhibition, helping to constrain epileptiform activity to the pathologic temporal lobe. The absence of this activity in the bilateral groups may be indicative of flawed inhibitory mechanisms, helping to explain their more widespread epileptiform activity. Our data suggest that the location and build up of epilepsy networks in the brain are not truly random, and are not limited to the formation of strictly epileptogenic networks. Functional networks may develop to take advantage of the regulatory function of structures such as the precuneus to instantiate an anti-correlated network, generating protective cortico-cortico inhibition for the purpose of limiting seizure spread or epileptogenesis. PMID:22987774
Rod-Shaped Neural Units for Aligned 3D Neural Network Connection.
Kato-Negishi, Midori; Onoe, Hiroaki; Ito, Akane; Takeuchi, Shoji
2017-08-01
This paper proposes neural tissue units with aligned nerve fibers (called rod-shaped neural units) that connect neural networks with aligned neurons. To make the proposed units, 3D fiber-shaped neural tissues covered with a calcium alginate hydrogel layer are prepared with a microfluidic system and are cut in an accurate and reproducible manner. These units have aligned nerve fibers inside the hydrogel layer and connectable points on both ends. By connecting the units with a poly(dimethylsiloxane) guide, 3D neural tissues can be constructed and maintained for more than two weeks of culture. In addition, neural networks can be formed between the different neural units via synaptic connections. Experimental results indicate that the proposed rod-shaped neural units are effective tools for the construction of spatially complex connections with aligned nerve fibers in vitro. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dynamic functional connectivity: Promise, issues, and interpretations
Hutchison, R. Matthew; Womelsdorf, Thilo; Allen, Elena A.; Bandettini, Peter A.; Calhoun, Vince D.; Corbetta, Maurizio; Penna, Stefania Della; Duyn, Jeff H.; Glover, Gary H.; Gonzalez-Castillo, Javier; Handwerker, Daniel A.; Keilholz, Shella; Kiviniemi, Vesa; Leopold, David A.; de Pasquale, Francesco; Sporns, Olaf; Walter, Martin; Chang, Catie
2013-01-01
The brain must dynamically integrate, coordinate, and respond to internal and external stimuli across multiple time scales. Non-invasive measurements of brain activity with fMRI have greatly advanced our understanding of the large-scale functional organization supporting these fundamental features of brain function. Conclusions from previous resting-state fMRI investigations were based upon static descriptions of functional connectivity (FC), and only recently studies have begun to capitalize on the wealth of information contained within the temporal features of spontaneous BOLD FC. Emerging evidence suggests that dynamic FC metrics may index changes in macroscopic neural activity patterns underlying critical aspects of cognition and behavior, though limitations with regard to analysis and interpretation remain. Here, we review recent findings, methodological considerations, neural and behavioral correlates, and future directions in the emerging field of dynamic FC investigations. PMID:23707587
New Computer Simulations of Macular Neural Functioning
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; Doshay, D.; Linton, S.; Parnas, B.; Montgomery, K.; Chimento, T.
1994-01-01
We use high performance graphics workstations and supercomputers to study the functional significance of the three-dimensional (3-D) organization of gravity sensors. These sensors have a prototypic architecture foreshadowing more complex systems. Scaled-down simulations run on a Silicon Graphics workstation and scaled-up, 3-D versions run on a Cray Y-MP supercomputer. A semi-automated method of reconstruction of neural tissue from serial sections studied in a transmission electron microscope has been developed to eliminate tedious conventional photography. The reconstructions use a mesh as a step in generating a neural surface for visualization. Two meshes are required to model calyx surfaces. The meshes are connected and the resulting prisms represent the cytoplasm and the bounding membranes. A finite volume analysis method is employed to simulate voltage changes along the calyx in response to synapse activation on the calyx or on calyceal processes. The finite volume method insures that charge is conserved at the calyx-process junction. These and other models indicate that efferent processes act as voltage followers, and that the morphology of some afferent processes affects their functioning. In a final application, morphological information is symbolically represented in three dimensions in a computer. The possible functioning of the connectivities is tested using mathematical interpretations of physiological parameters taken from the literature. Symbolic, 3-D simulations are in progress to probe the functional significance of the connectivities. This research is expected to advance computer-based studies of macular functioning and of synaptic plasticity.
Modeling task-specific neuronal ensembles improves decoding of grasp
NASA Astrophysics Data System (ADS)
Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.
2018-06-01
Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p < 0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more reliable and accurate neural prosthesis.
Yamada, Takashi; Hashimoto, Ryu-Ichiro; Yahata, Noriaki; Ichikawa, Naho; Yoshihara, Yujiro; Okamoto, Yasumasa; Kato, Nobumasa; Takahashi, Hidehiko; Kawato, Mitsuo
2017-10-01
Psychiatric research has been hampered by an explanatory gap between psychiatric symptoms and their neural underpinnings, which has resulted in poor treatment outcomes. This situation has prompted us to shift from symptom-based diagnosis to data-driven diagnosis, aiming to redefine psychiatric disorders as disorders of neural circuitry. Promising candidates for data-driven diagnosis include resting-state functional connectivity MRI (rs-fcMRI)-based biomarkers. Although biomarkers have been developed with the aim of diagnosing patients and predicting the efficacy of therapy, the focus has shifted to the identification of biomarkers that represent therapeutic targets, which would allow for more personalized treatment approaches. This type of biomarker (i.e., "theranostic biomarker") is expected to elucidate the disease mechanism of psychiatric conditions and to offer an individualized neural circuit-based therapeutic target based on the neural cause of a condition. To this end, researchers have developed rs-fcMRI-based biomarkers and investigated a causal relationship between potential biomarkers and disease-specific behavior using functional MRI (fMRI)-based neurofeedback on functional connectivity. In this review, we introduce a recent approach for creating a theranostic biomarker, which consists mainly of 2 parts: (1) developing an rs-fcMRI-based biomarker that can predict diagnosis and/or symptoms with high accuracy, and (2) the introduction of a proof-of-concept study investigating the relationship between normalizing the biomarker and symptom changes using fMRI-based neurofeedback. In parallel with the introduction of recent studies, we review rs-fcMRI-based biomarker and fMRI-based neurofeedback, focusing on the technological improvements and limitations associated with clinical use. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Yamada, Takashi; Hashimoto, Ryu-ichiro; Yahata, Noriaki; Ichikawa, Naho; Yoshihara, Yujiro; Okamoto, Yasumasa; Kato, Nobumasa; Takahashi, Hidehiko
2017-01-01
Abstract Psychiatric research has been hampered by an explanatory gap between psychiatric symptoms and their neural underpinnings, which has resulted in poor treatment outcomes. This situation has prompted us to shift from symptom-based diagnosis to data-driven diagnosis, aiming to redefine psychiatric disorders as disorders of neural circuitry. Promising candidates for data-driven diagnosis include resting-state functional connectivity MRI (rs-fcMRI)-based biomarkers. Although biomarkers have been developed with the aim of diagnosing patients and predicting the efficacy of therapy, the focus has shifted to the identification of biomarkers that represent therapeutic targets, which would allow for more personalized treatment approaches. This type of biomarker (i.e., “theranostic biomarker”) is expected to elucidate the disease mechanism of psychiatric conditions and to offer an individualized neural circuit-based therapeutic target based on the neural cause of a condition. To this end, researchers have developed rs-fcMRI-based biomarkers and investigated a causal relationship between potential biomarkers and disease-specific behavior using functional MRI (fMRI)-based neurofeedback on functional connectivity. In this review, we introduce a recent approach for creating a theranostic biomarker, which consists mainly of 2 parts: (1) developing an rs-fcMRI-based biomarker that can predict diagnosis and/or symptoms with high accuracy, and (2) the introduction of a proof-of-concept study investigating the relationship between normalizing the biomarker and symptom changes using fMRI-based neurofeedback. In parallel with the introduction of recent studies, we review rs-fcMRI-based biomarker and fMRI-based neurofeedback, focusing on the technological improvements and limitations associated with clinical use. PMID:28977523
Semework, Mulugeta; DiStasio, Marcello
2014-01-01
Recording the activity of large populations of neurons requires new methods to analyze and use the large volumes of time series data thus created. Fast and clear methods for finding functional connectivity are an important step toward the goal of understanding neural processing. This problem presents itself readily in somatosensory neuroprosthesis (SSNP) research, which uses microstimulation (MiSt) to activate neural tissue to mimic natural stimuli, and has the capacity to potentiate, depotentiate, or even destroy functional connections. As the aim of SSNP engineering is artificially creating neural responses that resemble those observed during natural inputs, a central goal is describing the influence of MiSt on activity structure among groups of neurons, and how this structure may be altered to affect perception or behavior. In this paper, we demonstrate the concept of Granger causality, combined with maximum likelihood methods, applied to neural signals recorded before, during, and after natural and electrical stimulation. We show how these analyses can be used to evaluate the changing interactions in the thalamocortical somatosensory system in response to repeated perturbation. Using LFPs recorded from the ventral posterolateral thalamus (VPL) and somatosensory cortex (S1) in anesthetized rats, we estimated pair-wise functional interactions between functional microdomains. The preliminary results demonstrate input-dependent modulations in the direction and strength of information flow during and after application of MiSt. Cortico-cortical interactions during cortical MiSt and baseline conditions showed the largest causal influence differences, while there was no statistically significant difference between pre- and post-stimulation baseline causal activities. These functional connectivity changes agree with physiologically accepted communication patterns through the network, and their particular parameters have implications for both rehabilitation and brain—machine interface SSNP applications. PMID:25249973
Karbasi, Amin; Salavati, Amir Hesam; Vetterli, Martin
2018-04-01
The connectivity of a neuronal network has a major effect on its functionality and role. It is generally believed that the complex network structure of the brain provides a physiological basis for information processing. Therefore, identifying the network's topology has received a lot of attentions in neuroscience and has been the center of many research initiatives such as Human Connectome Project. Nevertheless, direct and invasive approaches that slice and observe the neural tissue have proven to be time consuming, complex and costly. As a result, the inverse methods that utilize firing activity of neurons in order to identify the (functional) connections have gained momentum recently, especially in light of rapid advances in recording technologies; It will soon be possible to simultaneously monitor the activities of tens of thousands of neurons in real time. While there are a number of excellent approaches that aim to identify the functional connections from firing activities, the scalability of the proposed techniques plays a major challenge in applying them on large-scale datasets of recorded firing activities. In exceptional cases where scalability has not been an issue, the theoretical performance guarantees are usually limited to a specific family of neurons or the type of firing activities. In this paper, we formulate the neural network reconstruction as an instance of a graph learning problem, where we observe the behavior of nodes/neurons (i.e., firing activities) and aim to find the links/connections. We develop a scalable learning mechanism and derive the conditions under which the estimated graph for a network of Leaky Integrate and Fire (LIf) neurons matches the true underlying synaptic connections. We then validate the performance of the algorithm using artificially generated data (for benchmarking) and real data recorded from multiple hippocampal areas in rats.
Neuromorphic device architectures with global connectivity through electrolyte gating
NASA Astrophysics Data System (ADS)
Gkoupidenis, Paschalis; Koutsouras, Dimitrios A.; Malliaras, George G.
2017-05-01
Information processing in the brain takes place in a network of neurons that are connected with each other by an immense number of synapses. At the same time, neurons are immersed in a common electrochemical environment, and global parameters such as concentrations of various hormones regulate the overall network function. This computational paradigm of global regulation, also known as homeoplasticity, has important implications in the overall behaviour of large neural ensembles and is barely addressed in neuromorphic device architectures. Here, we demonstrate the global control of an array of organic devices based on poly(3,4ethylenedioxythiophene):poly(styrene sulf) that are immersed in an electrolyte, a behaviour that resembles homeoplasticity phenomena of the neural environment. We use this effect to produce behaviour that is reminiscent of the coupling between local activity and global oscillations in the biological neural networks. We further show that the electrolyte establishes complex connections between individual devices, and leverage these connections to implement coincidence detection. These results demonstrate that electrolyte gating offers significant advantages for the realization of networks of neuromorphic devices of higher complexity and with minimal hardwired connectivity.
Pan, Weigang; Liu, Congcong; Yang, Qian; Gu, Yan; Yin, Shouhang
2016-01-01
Self-esteem is an affective, self-evaluation of oneself and has a significant effect on mental and behavioral health. Although research has focused on the neural substrates of self-esteem, little is known about the spontaneous brain activity that is associated with trait self-esteem (TSE) during the resting state. In this study, we used the resting-state functional magnetic resonance imaging (fMRI) signal of the amplitude of low-frequency fluctuations (ALFFs) and resting state functional connectivity (RSFC) to identify TSE-related regions and networks. We found that a higher level of TSE was associated with higher ALFFs in the left ventral medial prefrontal cortex (vmPFC) and lower ALFFs in the left cuneus/lingual gyrus and right lingual gyrus. RSFC analyses revealed that the strengths of functional connectivity between the left vmPFC and bilateral hippocampus were positively correlated with TSE; however, the connections between the left vmPFC and right inferior frontal gyrus and posterior superior temporal sulcus were negatively associated with TSE. Furthermore, the strengths of functional connectivity between the left cuneus/lingual gyrus and right dorsolateral prefrontal cortex and anterior cingulate cortex were positively related to TSE. These findings indicate that TSE is linked to core regions in the default mode network and social cognition network, which is involved in self-referential processing, autobiographical memory and social cognition. PMID:26400859
Robin, Jessica; Hirshhorn, Marnie; Rosenbaum, R Shayna; Winocur, Gordon; Moscovitch, Morris; Grady, Cheryl L
2015-01-01
Several recent studies have compared episodic and spatial memory in neuroimaging paradigms in order to understand better the contribution of the hippocampus to each of these tasks. In the present study, we build on previous findings showing common neural activation in default network areas during episodic and spatial memory tasks based on familiar, real-world environments (Hirshhorn et al. (2012) Neuropsychologia 50:3094-3106). Following previous demonstrations of the presence of functionally connected sub-networks within the default network, we performed seed-based functional connectivity analyses to determine how, depending on the task, the hippocampus and prefrontal cortex differentially couple with one another and with distinct whole-brain networks. We found evidence for a medial prefrontal-parietal network and a medial temporal lobe network, which were functionally connected to the prefrontal and hippocampal seeds, respectively, regardless of the nature of the memory task. However, these two networks were functionally connected with one another during the episodic memory task, but not during spatial memory tasks. Replicating previous reports of fractionation of the default network into stable sub-networks, this study also shows how these sub-networks may flexibly couple and uncouple with one another based on task demands. These findings support the hypothesis that episodic memory and spatial memory share a common medial temporal lobe-based neural substrate, with episodic memory recruiting additional prefrontal sub-networks. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Jin; Lu, Chun-Ming; Biswal, Bharat B.; Zang, Yu-Feng; Peng, Dan-Lin; Zhu, Chao-Zhe
2010-07-01
Functional connectivity has become one of the important approaches to understanding the functional organization of the human brain. Recently, functional near-infrared spectroscopy (fNIRS) was demonstrated as a feasible method to study resting-state functional connectivity (RSFC) in the sensory and motor systems. However, whether such fNIRS-based RSFC can be revealed in high-level and complex functional systems remains unknown. In the present study, the feasibility of such an approach is tested on the language system, of which the neural substrates have been well documented in the literature. After determination of a seed channel by a language localizer task, the correlation strength between the low frequency fluctuations of the fNIRS signal at the seed channel and those at all other channels is used to evaluate the language system RSFC. Our results show a significant RSFC between the left inferior frontal cortex and superior temporal cortex, components both associated with dominant language regions. Moreover, the RSFC map demonstrates left lateralization of the language system. In conclusion, the present study successfully utilized fNIRS-based RSFC to study a complex and high-level neural system, and provides further evidence for the validity of the fNIRS-based RSFC approach.
The Functional Neuroanatomy of Human Face Perception.
Grill-Spector, Kalanit; Weiner, Kevin S; Kay, Kendrick; Gomez, Jesse
2017-09-15
Face perception is critical for normal social functioning and is mediated by a network of regions in the ventral visual stream. In this review, we describe recent neuroimaging findings regarding the macro- and microscopic anatomical features of the ventral face network, the characteristics of white matter connections, and basic computations performed by population receptive fields within face-selective regions composing this network. We emphasize the importance of the neural tissue properties and white matter connections of each region, as these anatomical properties may be tightly linked to the functional characteristics of the ventral face network. We end by considering how empirical investigations of the neural architecture of the face network may inform the development of computational models and shed light on how computations in the face network enable efficient face perception.
The Functional Architecture of the Brain Underlies Strategic Deception in Impression Management
Luo, Qiang; Ma, Yina; Bhatt, Meghana A.; Montague, P. Read; Feng, Jianfeng
2017-01-01
Impression management, as one of the most essential skills of social function, impacts one's survival and success in human societies. However, the neural architecture underpinning this social skill remains poorly understood. By employing a two-person bargaining game, we exposed three strategies involving distinct cognitive processes for social impression management with different levels of strategic deception. We utilized a novel adaptation of Granger causality accounting for signal-dependent noise (SDN), which captured the directional connectivity underlying the impression management during the bargaining game. We found that the sophisticated strategists engaged stronger directional connectivity from both dorsal anterior cingulate cortex and retrosplenial cortex to rostral prefrontal cortex, and the strengths of these directional influences were associated with higher level of deception during the game. Using the directional connectivity as a neural signature, we identified the strategic deception with 80% accuracy by a machine-learning classifier. These results suggest that different social strategies are supported by distinct patterns of directional connectivity among key brain regions for social cognition. PMID:29163095
The Functional Architecture of the Brain Underlies Strategic Deception in Impression Management.
Luo, Qiang; Ma, Yina; Bhatt, Meghana A; Montague, P Read; Feng, Jianfeng
2017-01-01
Impression management, as one of the most essential skills of social function, impacts one's survival and success in human societies. However, the neural architecture underpinning this social skill remains poorly understood. By employing a two-person bargaining game, we exposed three strategies involving distinct cognitive processes for social impression management with different levels of strategic deception. We utilized a novel adaptation of Granger causality accounting for signal-dependent noise (SDN), which captured the directional connectivity underlying the impression management during the bargaining game. We found that the sophisticated strategists engaged stronger directional connectivity from both dorsal anterior cingulate cortex and retrosplenial cortex to rostral prefrontal cortex, and the strengths of these directional influences were associated with higher level of deception during the game. Using the directional connectivity as a neural signature, we identified the strategic deception with 80% accuracy by a machine-learning classifier. These results suggest that different social strategies are supported by distinct patterns of directional connectivity among key brain regions for social cognition.
The Rich Get Richer: Brain Injury Elicits Hyperconnectivity in Core Subnetworks
Hillary, Frank G.; Rajtmajer, Sarah M.; Roman, Cristina A.; Medaglia, John D.; Slocomb-Dluzen, Julia E.; Calhoun, Vincent D.; Good, David C.; Wylie, Glenn R.
2014-01-01
There remains much unknown about how large-scale neural networks accommodate neurological disruption, such as moderate and severe traumatic brain injury (TBI). A primary goal in this study was to examine the alterations in network topology occurring during the first year of recovery following TBI. To do so we examined 21 individuals with moderate and severe TBI at 3 and 6 months after resolution of posttraumatic amnesia and 15 age- and education-matched healthy adults using functional MRI and graph theoretical analyses. There were two central hypotheses in this study: 1) physical disruption results in increased functional connectivity, or hyperconnectivity, and 2) hyperconnectivity occurs in regions typically observed to be the most highly connected cortical hubs, or the “rich club”. The current findings generally support the hyperconnectivity hypothesis showing that during the first year of recovery after TBI, neural networks show increased connectivity, and this change is disproportionately represented in brain regions belonging to the brain's core subnetworks. The selective increases in connectivity observed here are consistent with the preferential attachment model underlying scale-free network development. This study is the largest of its kind and provides the unique opportunity to examine how neural systems adapt to significant neurological disruption during the first year after injury. PMID:25121760
The rich get richer: brain injury elicits hyperconnectivity in core subnetworks.
Hillary, Frank G; Rajtmajer, Sarah M; Roman, Cristina A; Medaglia, John D; Slocomb-Dluzen, Julia E; Calhoun, Vincent D; Good, David C; Wylie, Glenn R
2014-01-01
There remains much unknown about how large-scale neural networks accommodate neurological disruption, such as moderate and severe traumatic brain injury (TBI). A primary goal in this study was to examine the alterations in network topology occurring during the first year of recovery following TBI. To do so we examined 21 individuals with moderate and severe TBI at 3 and 6 months after resolution of posttraumatic amnesia and 15 age- and education-matched healthy adults using functional MRI and graph theoretical analyses. There were two central hypotheses in this study: 1) physical disruption results in increased functional connectivity, or hyperconnectivity, and 2) hyperconnectivity occurs in regions typically observed to be the most highly connected cortical hubs, or the "rich club". The current findings generally support the hyperconnectivity hypothesis showing that during the first year of recovery after TBI, neural networks show increased connectivity, and this change is disproportionately represented in brain regions belonging to the brain's core subnetworks. The selective increases in connectivity observed here are consistent with the preferential attachment model underlying scale-free network development. This study is the largest of its kind and provides the unique opportunity to examine how neural systems adapt to significant neurological disruption during the first year after injury.
Linked Sex Differences in Cognition and Functional Connectivity in Youth.
Satterthwaite, Theodore D; Wolf, Daniel H; Roalf, David R; Ruparel, Kosha; Erus, Guray; Vandekar, Simon; Gennatas, Efstathios D; Elliott, Mark A; Smith, Alex; Hakonarson, Hakon; Verma, Ragini; Davatzikos, Christos; Gur, Raquel E; Gur, Ruben C
2015-09-01
Sex differences in human cognition are marked, but little is known regarding their neural origins. Here, in a sample of 674 human participants ages 9-22, we demonstrate that sex differences in cognitive profiles are related to multivariate patterns of resting-state functional connectivity MRI (rsfc-MRI). Males outperformed females on motor and spatial cognitive tasks; females were faster in tasks of emotion identification and nonverbal reasoning. Sex differences were also prominent in the rsfc-MRI data at multiple scales of analysis, with males displaying more between-module connectivity, while females demonstrated more within-module connectivity. Multivariate pattern analysis using support vector machines classified subject sex on the basis of their cognitive profile with 63% accuracy (P < 0.001), but was more accurate using functional connectivity data (71% accuracy; P < 0.001). Moreover, the degree to which a given participant's cognitive profile was "male" or "female" was significantly related to the masculinity or femininity of their pattern of brain connectivity (P = 2.3 × 10(-7)). This relationship was present even when considering males and female separately. Taken together, these results demonstrate for the first time that sex differences in patterns of cognition are in part represented on a neural level through divergent patterns of brain connectivity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Altered neural responses to heat pain in drug-naive patients with Parkinson disease.
Forkmann, Katarina; Grashorn, Wiebke; Schmidt, Katharina; Fründt, Odette; Buhmann, Carsten; Bingel, Ulrike
2017-08-01
Pain is a frequent but still neglected nonmotor symptom of Parkinson disease (PD). However, neural mechanisms underlying pain in PD are poorly understood. Here, we explored whether the high prevalence of pain in PD might be related to dysfunctional descending pain control. Using functional magnetic resonance imaging we explored neural responses during the anticipation and processing of heat pain in 21 PD patients (Hoehn and Yahr I-III) and 23 healthy controls (HC). Parkinson disease patients were naive to dopaminergic medication to avoid confounding drug effects. Fifteen heat pain stimuli were applied to the participants' forearm. Intensity and unpleasantness ratings were provided for each stimulus. Subjective pain perception was comparable for PD patients and HC. Neural processing, however, differed between groups: PD patients showed lower activity in several descending pain modulation regions (dorsal anterior cingulate cortex [dACC], subgenual anterior cingulate cortex, and dorsolateral prefrontal cortex [DLPFC]) and lower functional connectivity between dACC and DLPFC during pain anticipation. Parkinson disease symptom severity was negatively correlated with dACC-DLPFC connectivity indicating impaired functional coupling of pain modulatory regions with disease progression. During pain perception PD patients showed higher midcingulate cortex activity compared with HC, which also scaled with PD severity. Interestingly, dACC-DLPFC connectivity during pain anticipation was negatively associated with midcingulate cortex activity during the receipt of pain in PD patients. This study indicates altered neural processing during the anticipation and receipt of experimental pain in drug-naive PD patients. It provides first evidence for a progressive decline in descending pain modulation in PD, which might be related to the high prevalence of pain in later stages of PD.
Motor sequence learning-induced neural efficiency in functional brain connectivity.
Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M
2017-02-15
Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Resting state neural networks for visual Chinese word processing in Chinese adults and children.
Li, Ling; Liu, Jiangang; Chen, Feiyan; Feng, Lu; Li, Hong; Tian, Jie; Lee, Kang
2013-07-01
This study examined the resting state neural networks for visual Chinese word processing in Chinese children and adults. Both the functional connectivity (FC) and amplitude of low frequency fluctuation (ALFF) approaches were used to analyze the fMRI data collected when Chinese participants were not engaged in any specific explicit tasks. We correlated time series extracted from the visual word form area (VWFA) with those in other regions in the brain. We also performed ALFF analysis in the resting state FC networks. The FC results revealed that, regarding the functionally connected brain regions, there exist similar intrinsically organized resting state networks for visual Chinese word processing in adults and children, suggesting that such networks may already be functional after 3-4 years of informal exposure to reading plus 3-4 years formal schooling. The ALFF results revealed that children appear to recruit more neural resources than adults in generally reading-irrelevant brain regions. Differences between child and adult ALFF results suggest that children's intrinsic word processing network during the resting state, though similar in functional connectivity, is still undergoing development. Further exposure to visual words and experience with reading are needed for children to develop a mature intrinsic network for word processing. The developmental course of the intrinsically organized word processing network may parallel that of the explicit word processing network. Copyright © 2013 Elsevier Ltd. All rights reserved.
External modulation of the sustained attention network in traumatic brain injury.
Richard, Nadine M; O'Connor, Charlene; Dey, Ayan; Robertson, Ian H; Levine, Brian
2018-05-07
Traumatic brain injury (TBI) is associated with impairments in processing speed as well as higher-level cognitive functions that depend on distributed neural networks, such as regulating and sustaining attention. Although exogenous alerting cues have been shown to support patients in sustaining attentive, goal-directed behavior, the neural correlates of this rehabilitative effect are unclear. The purpose of this study was to explore the effects of moderate to severe TBI on activity and functional connectivity in the well-documented right-lateralized frontal-subcortical-parietal sustained attention network, and to assess the effects of alerting cues. Using multivariate analysis of fMRI data, TBI patients and matched neurologically healthy (NH) comparison participants were scanned as they performed the Sustained Attention to Response Task (SART) in 60-s blocks, with or without exogenous cueing through brief auditory alerting tones. Results documented inefficient voluntary control of attention in the TBI patients, with reduced functional connectivity in the sustained attention network relative to NH participants. When alerting cues were present during the SART, however, functional connectivity increased and became comparable to activity patterns seen in the NH group. These findings provide novel evidence of a neural mechanism for the facilitatory effects of alerting cues on goal-directed behavior in patients with damaged attentional brain systems, and support their use in cognitive rehabilitation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Yang, Wenjing; Cun, Lingli; Du, Xue; Yang, Junyi; Wang, Yanqiu; Wei, Dongtao; Zhang, Qinglin; Qiu, Jiang
2015-06-25
Although cognitive and personality studies have observed gender differences in narcissism, the neural bases of these differences remain unknown. The current study combined the voxel-based morphometry and resting state functional connectivity (rsFC) analyses to explore the sex-specific neural basis of narcissistic personality. The VBM results showed that the relationship between narcissistic personality and regional gray matter volume (rGMV) differed between sexes. Narcissistic scores had a significant positive correlation with the rGMV of the right SPL in females, but not in males. Further analyses were conducted to investigate the sex-specific relationship between rsFC and narcissism, using right SPL/frontal eye fields (FEF) as the seed regions (key nodes of the dorsal attention network, DAN). Interestingly, decreased anticorrelations between the right SPL/FEF and areas of the precuneus and middle frontal gyrus (key nodes of the the default mode network, DMN) were associated with higher narcissistic personality scores in males, whereas females showed the opposite tendency. The findings indicate that gender differences in narcissism may be associated with differences in the intrinsic and dynamic interplay between the internally-directed DMN and the externally-directed TPN. Morphometry and functional connectivity analyses can enhance our understanding of the neural basis of sex-specific narcissism.
Individual differences in self-reported self-control predict successful emotion regulation
Dörfel, Denise; Steimke, Rosa; Trempler, Ima; Magrabi, Amadeus; Ludwig, Vera U.; Schubert, Torsten; Stelzel, Christine; Walter, Henrik
2016-01-01
Both self-control and emotion regulation enable individuals to adapt to external circumstances and social contexts, and both are assumed to rely on the overlapping neural resources. Here, we tested whether high self-reported self-control is related to successful emotion regulation on the behavioral and neural level. One hundred eight participants completed three self-control questionnaires and regulated their negative emotions during functional magnetic resonance imaging using reappraisal (distancing). Trait self-control correlated positively with successful emotion regulation both subjectively and neurally, as indicated by online ratings of negative emotions and functional connectivity strength between the amygdala and prefrontal areas, respectively. This stronger overall connectivity of the left amygdala was related to more successful subjective emotion regulation. Comparing amygdala activity over time showed that high self-controllers successfully maintained down-regulation of the left amygdala over time, while low self-controllers failed to down-regulate towards the end of the experiment. This indicates that high self-controllers are better at maintaining a motivated state supporting emotion regulation over time. Our results support assumptions concerning a close relation of self-control and emotion regulation as two domains of behavioral control. They further indicate that individual differences in functional connectivity between task-related brain areas directly relate to differences in trait self-control. PMID:27013102
Ventral striatal hyperconnectivity during rewarded interference control in adolescents with ADHD.
Ma, Ili; van Holstein, Mieke; Mies, Gabry W; Mennes, Maarten; Buitelaar, Jan; Cools, Roshan; Cillessen, Antonius H N; Krebs, Ruth M; Scheres, Anouk
2016-09-01
Attention-deficit/hyperactivity disorder (ADHD) is characterized by cognitive deficits (e.g., interference control) and altered reward processing. Cognitive control is influenced by incentive motivation and according to current theoretical models, ADHD is associated with abnormal interactions between incentive motivation and cognitive control. However, the neural mechanisms by which reward modulates cognitive control in individuals with ADHD are unknown. We used event-related functional resonance imaging (fMRI) to study neural responses during a rewarded Stroop color-word task in adolescents (14-17 years) with ADHD (n = 25; 19 boys) and healthy controls (n = 33; 22 boys). Adolescents with ADHD showed increased reward signaling within the superior frontal gyrus and ventral striatum (VS) relative to controls. Importantly, functional connectivity analyses revealed a hyperconnectivity between VS and motor control regions in the ADHD group, as a function of reward-cognitive control integration. Connectivity was associated with performance improvement in controls but not in the ADHD group, suggesting inefficient connectivity. Adolescents with ADHD show increased neural sensitivity to rewards and its interactions with interference control in VS and motor regions, respectively. The findings support theoretical models of altered reward-cognitive control integration in individuals with ADHD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Wenjing; Cun, Lingli; Du, Xue; Yang, Junyi; Wang, Yanqiu; Wei, Dongtao; Zhang, Qinglin; Qiu, Jiang
2015-01-01
Although cognitive and personality studies have observed gender differences in narcissism, the neural bases of these differences remain unknown. The current study combined the voxel-based morphometry and resting state functional connectivity (rsFC) analyses to explore the sex-specific neural basis of narcissistic personality. The VBM results showed that the relationship between narcissistic personality and regional gray matter volume (rGMV) differed between sexes. Narcissistic scores had a significant positive correlation with the rGMV of the right SPL in females, but not in males. Further analyses were conducted to investigate the sex-specific relationship between rsFC and narcissism, using right SPL/frontal eye fields (FEF) as the seed regions (key nodes of the dorsal attention network, DAN). Interestingly, decreased anticorrelations between the right SPL/FEF and areas of the precuneus and middle frontal gyrus (key nodes of the the default mode network, DMN) were associated with higher narcissistic personality scores in males, whereas females showed the opposite tendency. The findings indicate that gender differences in narcissism may be associated with differences in the intrinsic and dynamic interplay between the internally-directed DMN and the externally-directed TPN. Morphometry and functional connectivity analyses can enhance our understanding of the neural basis of sex-specific narcissism. PMID:26109334
Distinct pathways of neural coupling for different basic emotions.
Tettamanti, Marco; Rognoni, Elena; Cafiero, Riccardo; Costa, Tommaso; Galati, Dario; Perani, Daniela
2012-01-16
Emotions are complex events recruiting distributed cortical and subcortical cerebral structures, where the functional integration dynamics within the involved neural circuits in relation to the nature of the different emotions are still unknown. Using fMRI, we measured the neural responses elicited by films representing basic emotions (fear, disgust, sadness, happiness). The amygdala and the associative cortex were conjointly activated by all basic emotions. Furthermore, distinct arrays of cortical and subcortical brain regions were additionally activated by each emotion, with the exception of sadness. Such findings informed the definition of three effective connectivity models, testing for the functional integration of visual cortex and amygdala, as regions processing all emotions, with domain-specific regions, namely: i) for fear, the frontoparietal system involved in preparing adaptive motor responses; ii) for disgust, the somatosensory system, reflecting protective responses against contaminating stimuli; iii) for happiness: medial prefrontal and temporoparietal cortices involved in understanding joyful interactions. Consistently with these domain-specific models, the results of the effective connectivity analysis indicate that the amygdala is involved in distinct functional integration effects with cortical networks processing sensorimotor, somatosensory, or cognitive aspects of basic emotions. The resulting effective connectivity networks may serve to regulate motor and cognitive behavior based on the quality of the induced emotional experience. Copyright © 2011. Published by Elsevier Inc.
The Effects of Pharmacological Opioid Blockade on Neural Measures of Drug Cue-Reactivity in Humans
Courtney, Kelly E; Ghahremani, Dara G; Ray, Lara A
2016-01-01
Interactions between dopaminergic and opioidergic systems have been implicated in the reinforcing properties of drugs of abuse. The present study investigated the effects of opioid blockade, via naltrexone, on functional magnetic resonance imaging (fMRI) measures during methamphetamine cue-reactivity to elucidate the role of endogenous opioids in the neural systems underlying drug craving. To investigate this question, non-treatment seeking individuals with methamphetamine use disorder (N=23; 74% male, mean age=34.70 (SD=8.95)) were recruited for a randomized, placebo controlled, within-subject design and underwent a visual methamphetamine cue-reactivity task during two blood-oxygen-level dependent (BOLD) fMRI sessions following 3 days of naltrexone (50 mg) and matched time for placebo. fMRI analyses tested naltrexone-induced differences in BOLD activation and functional connectivity during cue processing. The results showed that naltrexone administration reduced cue-reactivity in sensorimotor regions and related to altered functional connectivity of dorsal striatum, ventral tegmental area, and precuneus with frontal, visual, sensory, and motor-related regions. Naltrexone also weakened the associations between subjective craving and precuneus functional connectivity with sensorimotor regions and strengthened the associations between subjective craving and dorsal striatum and precuneus connectivity with frontal regions. In conclusion, this study provides the first evidence that opioidergic blockade alters neural responses to drug cues in humans with methamphetamine addiction and suggests that naltrexone may be reducing drug cue salience by decreasing the involvement of sensorimotor regions and by engaging greater frontal regulation over salience attribution. PMID:27312405
Neural Modularity Helps Organisms Evolve to Learn New Skills without Forgetting Old Skills
Ellefsen, Kai Olav; Mouret, Jean-Baptiste; Clune, Jeff
2015-01-01
A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to alleviate the problem of catastrophic forgetting. PMID:25837826
Neural modularity helps organisms evolve to learn new skills without forgetting old skills.
Ellefsen, Kai Olav; Mouret, Jean-Baptiste; Clune, Jeff
2015-04-01
A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to alleviate the problem of catastrophic forgetting.
Diminished Neural Adaptation during Implicit Learning in Autism
Schipul, Sarah E.; Just, Marcel Adam
2015-01-01
Neuroimaging studies have shown evidence of disrupted neural adaptation during learning in individuals with autism spectrum disorder (ASD) in several types of tasks, potentially stemming from frontal-posterior cortical underconnectivity (Schipul et al., 2012). The aim of the current study was to examine neural adaptations in an implicit learning task that entails participation of frontal and posterior regions. Sixteen high-functioning adults with ASD and sixteen neurotypical control participants were trained on and performed an implicit dot pattern prototype learning task in a functional magnetic resonance imaging (fMRI) session. During the preliminary exposure to the type of implicit prototype learning task later to be used in the scanner, the ASD participants took longer than the neurotypical group to learn the task, demonstrating altered implicit learning in ASD. After equating task structure learning, the two groups’ brain activation differed during their learning of a new prototype in the subsequent scanning session. The main findings indicated that neural adaptations in a distributed task network were reduced in the ASD group, relative to the neurotypical group, and were related to ASD symptom severity. Functional connectivity was reduced and did not change as much during learning for the ASD group, and was related to ASD symptom severity. These findings suggest that individuals with ASD show altered neural adaptations during learning, as seen in both activation and functional connectivity measures. This finding suggests why many real-world implicit learning situations may pose special challenges for ASD. PMID:26484826
Mash, Lisa E; Reiter, Maya A; Linke, Annika C; Townsend, Jeanne; Müller, Ralph-Axel
2018-05-01
Atypical functional connectivity has been implicated in autism spectrum disorders (ASDs). However, the literature to date has been largely inconsistent, with mixed and conflicting reports of hypo- and hyper-connectivity. These discrepancies are partly due to differences between various neuroimaging modalities. Functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) measure distinct indices of functional connectivity (e.g., blood-oxygenation level-dependent [BOLD] signal vs. electrical activity). Furthermore, each method has unique benefits and disadvantages with respect to spatial and temporal resolution, vulnerability to specific artifacts, and practical implementation. Thus far, functional connectivity research on ASDs has remained almost exclusively unimodal; therefore, interpreting findings across modalities remains a challenge. Multimodal integration of fMRI, EEG, and MEG data is critical in resolving discrepancies in the literature, and working toward a unifying framework for interpreting past and future findings. This review aims to provide a theoretical foundation for future multimodal research on ASDs. First, we will discuss the merits and shortcomings of several popular theories in ASD functional connectivity research, using examples from the literature to date. Next, the neurophysiological relationships between imaging modalities, including their relationship with invasive neural recordings, will be reviewed. Finally, methodological approaches to multimodal data integration will be presented, and their future application to ASDs will be discussed. Analyses relating transient patterns of neural activity ("states") are particularly promising. This strategy provides a comparable measure across modalities, captures complex spatiotemporal patterns, and is a natural extension of recent dynamic fMRI research in ASDs. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 456-473, 2018. © 2017 Wiley Periodicals, Inc.
Neural-Network Quantum States, String-Bond States, and Chiral Topological States
NASA Astrophysics Data System (ADS)
Glasser, Ivan; Pancotti, Nicola; August, Moritz; Rodriguez, Ivan D.; Cirac, J. Ignacio
2018-01-01
Neural-network quantum states have recently been introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between neural-network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann machines are entangled plaquette states, while fully connected restricted Boltzmann machines are string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body quantum states. String-bond states also provide a generic way of enhancing the power of neural-network quantum states and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of tensor networks and the efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a chiral spin liquid with better accuracy than entangled plaquette states and local string-bond states. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of string-bond states as a tool in more traditional machine-learning applications.
Shaw, Daniel Joel; Mareček, Radek; Grosbras, Marie-Helene; Leonard, Gabriel; Pike, G Bruce; Paus, Tomáš
2016-04-01
Our ability to process complex social cues presented by faces improves during adolescence. Using multivariate analyses of neuroimaging data collected longitudinally from a sample of 38 adolescents (17 males) when they were 10, 11.5, 13 and 15 years old, we tested the possibility that there exists parallel variations in the structural and functional development of neural systems supporting face processing. By combining measures of task-related functional connectivity and brain morphology, we reveal that both the structural covariance and functional connectivity among 'distal' nodes of the face-processing network engaged by ambiguous faces increase during this age range. Furthermore, we show that the trajectory of increasing functional connectivity between the distal nodes occurs in tandem with the development of their structural covariance. This demonstrates a tight coupling between functional and structural maturation within the face-processing network. Finally, we demonstrate that increased functional connectivity is associated with age-related improvements of face-processing performance, particularly in females. We suggest that our findings reflect greater integration among distal elements of the neural systems supporting the processing of facial expressions. This, in turn, might facilitate an enhanced extraction of social information from faces during a time when greater importance is placed on social interactions. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Beyond the word and image: II- Structural and functional connectivity of a common semantic system.
Jouen, A L; Ellmore, T M; Madden-Lombardi, C J; Pallier, C; Dominey, P F; Ventre-Dominey, J
2018-02-01
Understanding events requires interplaying cognitive processes arising in neural networks whose organisation and connectivity remain subjects of controversy in humans. In the present study, by combining diffusion tensor imaging and functional interaction analysis, we aim to provide new insights on the organisation of the structural and functional pathways connecting the multiple nodes of the identified semantic system -shared by vision and language (Jouen et al., 2015). We investigated a group of 19 healthy human subjects during experimental tasks of reading sentences or seeing pictures. The structural connectivity was realised by deterministic tractography using an algorithm to extract white matter fibers terminating in the selected regions of interest (ROIs) and the functional connectivity by independent component analysis to measure correlated activities among these ROIs. The major connections link ventral neural stuctures including the parietal and temporal cortices through inferior and middle longitudinal fasciculi, the retrosplenial and parahippocampal cortices through the cingulate bundle, and the temporal and prefrontal structures through the uncinate fasciculus. The imageability score provided when the subject was reading a sentence was significantly correlated with the factor of anisotropy of the left parieto-temporal connections of the middle longitudinal fasciculus. A large part of this ventrally localised structural connectivity corresponds to functional interactions between the main parietal, temporal and frontal nodes. More precisely, the strong coactivation both in the anterior temporal pole and in the region of the temporo-parietal cortex suggests dual and cooperating roles for these areas within the semantic system. These findings are discussed in terms of two semantics-related sub-systems responsible for conceptual representation. Copyright © 2017 Elsevier Inc. All rights reserved.
Computational Account of Spontaneous Activity as a Signature of Predictive Coding
Koren, Veronika
2017-01-01
Spontaneous activity is commonly observed in a variety of cortical states. Experimental evidence suggested that neural assemblies undergo slow oscillations with Up ad Down states even when the network is isolated from the rest of the brain. Here we show that these spontaneous events can be generated by the recurrent connections within the network and understood as signatures of neural circuits that are correcting their internal representation. A noiseless spiking neural network can represent its input signals most accurately when excitatory and inhibitory currents are as strong and as tightly balanced as possible. However, in the presence of realistic neural noise and synaptic delays, this may result in prohibitively large spike counts. An optimal working regime can be found by considering terms that control firing rates in the objective function from which the network is derived and then minimizing simultaneously the coding error and the cost of neural activity. In biological terms, this is equivalent to tuning neural thresholds and after-spike hyperpolarization. In suboptimal working regimes, we observe spontaneous activity even in the absence of feed-forward inputs. In an all-to-all randomly connected network, the entire population is involved in Up states. In spatially organized networks with local connectivity, Up states spread through local connections between neurons of similar selectivity and take the form of a traveling wave. Up states are observed for a wide range of parameters and have similar statistical properties in both active and quiescent state. In the optimal working regime, Up states are vanishing, leaving place to asynchronous activity, suggesting that this working regime is a signature of maximally efficient coding. Although they result in a massive increase in the firing activity, the read-out of spontaneous Up states is in fact orthogonal to the stimulus representation, therefore interfering minimally with the network function. PMID:28114353
A common functional neural network for overt production of speech and gesture.
Marstaller, L; Burianová, H
2015-01-22
The perception of co-speech gestures, i.e., hand movements that co-occur with speech, has been investigated by several studies. The results show that the perception of co-speech gestures engages a core set of frontal, temporal, and parietal areas. However, no study has yet investigated the neural processes underlying the production of co-speech gestures. Specifically, it remains an open question whether Broca's area is central to the coordination of speech and gestures as has been suggested previously. The objective of this study was to use functional magnetic resonance imaging to (i) investigate the regional activations underlying overt production of speech, gestures, and co-speech gestures, and (ii) examine functional connectivity with Broca's area. We hypothesized that co-speech gesture production would activate frontal, temporal, and parietal regions that are similar to areas previously found during co-speech gesture perception and that both speech and gesture as well as co-speech gesture production would engage a neural network connected to Broca's area. Whole-brain analysis confirmed our hypothesis and showed that co-speech gesturing did engage brain areas that form part of networks known to subserve language and gesture. Functional connectivity analysis further revealed a functional network connected to Broca's area that is common to speech, gesture, and co-speech gesture production. This network consists of brain areas that play essential roles in motor control, suggesting that the coordination of speech and gesture is mediated by a shared motor control network. Our findings thus lend support to the idea that speech can influence co-speech gesture production on a motoric level. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Disambiguating brain functional connectivity.
Duff, Eugene P; Makin, Tamar; Cottaar, Michiel; Smith, Stephen M; Woolrich, Mark W
2018-06-01
Functional connectivity (FC) analyses of correlations of neural activity are used extensively in neuroimaging and electrophysiology to gain insights into neural interactions. However, analyses assessing changes in correlation fail to distinguish effects produced by sources as different as changes in neural signal amplitudes or noise levels. This ambiguity substantially diminishes the value of FC for inferring system properties and clinical states. Network modelling approaches may avoid ambiguities, but require specific assumptions. We present an enhancement to FC analysis with improved specificity of inferences, minimal assumptions and no reduction in flexibility. The Additive Signal Change (ASC) approach characterizes FC changes into certain prevalent classes of signal change that involve the input of additional signal to existing activity. With FMRI data, the approach reveals a rich diversity of signal changes underlying measured changes in FC, suggesting that it could clarify our current understanding of FC changes in many contexts. The ASC method can also be used to disambiguate other measures of dependency, such as regression and coherence, providing a flexible tool for the analysis of neural data. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Distinct hippocampal functional networks revealed by tractography-based parcellation.
Adnan, Areeba; Barnett, Alexander; Moayedi, Massieh; McCormick, Cornelia; Cohn, Melanie; McAndrews, Mary Pat
2016-07-01
Recent research suggests the anterior and posterior hippocampus form part of two distinct functional neural networks. Here we investigate the structural underpinnings of this functional connectivity difference using diffusion-weighted imaging-based parcellation. Using this technique, we substantiated that the hippocampus can be parcellated into distinct anterior and posterior segments. These structurally defined segments did indeed show different patterns of resting state functional connectivity, in that the anterior segment showed greater connectivity with temporal and orbitofrontal cortex, whereas the posterior segment was more highly connected to medial and lateral parietal cortex. Furthermore, we showed that the posterior hippocampal connectivity to memory processing regions, including the dorsolateral prefrontal cortex, parahippocampal, inferior temporal and fusiform gyri and the precuneus, predicted interindividual relational memory performance. These findings provide important support for the integration of structural and functional connectivity in understanding the brain networks underlying episodic memory.
Two distinct neural networks support the mapping of meaning to a novel word.
Ye, Zheng; Mestres-Missé, Anna; Rodriguez-Fornells, Antoni; Münte, Thomas F
2011-07-01
Children can learn the meaning of a new word from context during normal reading or listening, without any explicit instruction. It is unclear how such meaning acquisition is supported and achieved in human brain. In this functional magnetic resonance imaging (fMRI) study we investigated neural networks supporting word learning with a functional connectivity approach. Participants were exposed to a new word presented in two successive sentences and needed to derive the meaning of the new word. We observed two neural networks involved in mapping the meaning to the new word. One network connected the left inferior frontal gyrus (LIFG) with the middle frontal gyrus (MFG), medial superior frontal gyrus, caudate nucleus, thalamus, and inferior parietal lobule. The other network connected the left middle temporal gyrus (LMTG) with the MFG, anterior and posterior cingulate cortex. The LIFG network showed stronger interregional interactions for new than real words, whereas the LMTG network showed similar connectivity patterns for new and real words. We proposed that these two networks support different functions during word learning. The LIFG network appears to select the most appropriate meaning from competing candidates and to map the selected meaning onto the new word. The LMTG network may be recruited to integrate the word into sentential context, regardless of whether the word is real or new. The LIFG and the LMTG networks share a common node, the MFG, suggesting that these two networks communicate in working memory. Copyright © 2010 Wiley-Liss, Inc.
Robust prediction of individual creative ability from brain functional connectivity.
Beaty, Roger E; Kenett, Yoed N; Christensen, Alexander P; Rosenberg, Monica D; Benedek, Mathias; Chen, Qunlin; Fink, Andreas; Qiu, Jiang; Kwapil, Thomas R; Kane, Michael J; Silvia, Paul J
2018-01-30
People's ability to think creatively is a primary means of technological and cultural progress, yet the neural architecture of the highly creative brain remains largely undefined. Here, we employed a recently developed method in functional brain imaging analysis-connectome-based predictive modeling-to identify a brain network associated with high-creative ability, using functional magnetic resonance imaging (fMRI) data acquired from 163 participants engaged in a classic divergent thinking task. At the behavioral level, we found a strong correlation between creative thinking ability and self-reported creative behavior and accomplishment in the arts and sciences ( r = 0.54). At the neural level, we found a pattern of functional brain connectivity related to high-creative thinking ability consisting of frontal and parietal regions within default, salience, and executive brain systems. In a leave-one-out cross-validation analysis, we show that this neural model can reliably predict the creative quality of ideas generated by novel participants within the sample. Furthermore, in a series of external validation analyses using data from two independent task fMRI samples and a large task-free resting-state fMRI sample, we demonstrate robust prediction of individual creative thinking ability from the same pattern of brain connectivity. The findings thus reveal a whole-brain network associated with high-creative ability comprised of cortical hubs within default, salience, and executive systems-intrinsic functional networks that tend to work in opposition-suggesting that highly creative people are characterized by the ability to simultaneously engage these large-scale brain networks.
Neural crest does not contribute to the neck and shoulder in the axolotl (Ambystoma mexicanum).
Epperlein, Hans-Henning; Khattak, Shahryar; Knapp, Dunja; Tanaka, Elly M; Malashichev, Yegor B
2012-01-01
A major step during the evolution of tetrapods was their transition from water to land. This process involved the reduction or complete loss of the dermal bones that made up connections to the skull and a concomitant enlargement of the endochondral shoulder girdle. In the mouse the latter is derived from three separate embryonic sources: lateral plate mesoderm, somites, and neural crest. The neural crest was suggested to sustain the muscle attachments. How this complex composition of the endochondral shoulder girdle arose during evolution and whether it is shared by all tetrapods is unknown. Salamanders that lack dermal bone within their shoulder girdle were of special interest for a possible contribution of the neural crest to the endochondral elements and muscle attachment sites, and we therefore studied them in this context. We grafted neural crest from GFP+ fluorescent transgenic axolotl (Ambystoma mexicanum) donor embryos into white (d/d) axolotl hosts and followed the presence of neural crest cells within the cartilage of the shoulder girdle and the connective tissue of muscle attachment sites of the neck-shoulder region. Strikingly, neural crest cells did not contribute to any part of the endochondral shoulder girdle or to the connective tissue at muscle attachment sites in axolotl. Our results in axolotl suggest that neural crest does not serve a general function in vertebrate shoulder muscle attachment sites as predicted by the "muscle scaffold theory," and that it is not necessary to maintain connectivity of the endochondral shoulder girdle to the skull. Our data support the possibility that the contribution of the neural crest to the endochondral shoulder girdle, which is observed in the mouse, arose de novo in mammals as a developmental basis for their skeletal synapomorphies. This further supports the hypothesis of an increased neural crest diversification during vertebrate evolution.
Neural Crest Does Not Contribute to the Neck and Shoulder in the Axolotl (Ambystoma mexicanum)
Epperlein, Hans-Henning; Khattak, Shahryar; Knapp, Dunja; Tanaka, Elly M.; Malashichev, Yegor B.
2012-01-01
Background A major step during the evolution of tetrapods was their transition from water to land. This process involved the reduction or complete loss of the dermal bones that made up connections to the skull and a concomitant enlargement of the endochondral shoulder girdle. In the mouse the latter is derived from three separate embryonic sources: lateral plate mesoderm, somites, and neural crest. The neural crest was suggested to sustain the muscle attachments. How this complex composition of the endochondral shoulder girdle arose during evolution and whether it is shared by all tetrapods is unknown. Salamanders that lack dermal bone within their shoulder girdle were of special interest for a possible contribution of the neural crest to the endochondral elements and muscle attachment sites, and we therefore studied them in this context. Results We grafted neural crest from GFP+ fluorescent transgenic axolotl (Ambystoma mexicanum) donor embryos into white (d/d) axolotl hosts and followed the presence of neural crest cells within the cartilage of the shoulder girdle and the connective tissue of muscle attachment sites of the neck-shoulder region. Strikingly, neural crest cells did not contribute to any part of the endochondral shoulder girdle or to the connective tissue at muscle attachment sites in axolotl. Conclusions Our results in axolotl suggest that neural crest does not serve a general function in vertebrate shoulder muscle attachment sites as predicted by the “muscle scaffold theory,” and that it is not necessary to maintain connectivity of the endochondral shoulder girdle to the skull. Our data support the possibility that the contribution of the neural crest to the endochondral shoulder girdle, which is observed in the mouse, arose de novo in mammals as a developmental basis for their skeletal synapomorphies. This further supports the hypothesis of an increased neural crest diversification during vertebrate evolution. PMID:23300623
Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex.
Ulloa, Antonio; Horwitz, Barry
2016-01-01
A number of recent efforts have used large-scale, biologically realistic, neural models to help understand the neural basis for the patterns of activity observed in both resting state and task-related functional neural imaging data. An example of the former is The Virtual Brain (TVB) software platform, which allows one to apply large-scale neural modeling in a whole brain framework. TVB provides a set of structural connectomes of the human cerebral cortex, a collection of neural processing units for each connectome node, and various forward models that can convert simulated neural activity into a variety of functional brain imaging signals. In this paper, we demonstrate how to embed a previously or newly constructed task-based large-scale neural model into the TVB platform. We tested our method on a previously constructed large-scale neural model (LSNM) of visual object processing that consisted of interconnected neural populations that represent, primary and secondary visual, inferotemporal, and prefrontal cortex. Some neural elements in the original model were "non-task-specific" (NS) neurons that served as noise generators to "task-specific" neurons that processed shapes during a delayed match-to-sample (DMS) task. We replaced the NS neurons with an anatomical TVB connectome model of the cerebral cortex comprising 998 regions of interest interconnected by white matter fiber tract weights. We embedded our LSNM of visual object processing into corresponding nodes within the TVB connectome. Reciprocal connections between TVB nodes and our task-based modules were included in this framework. We ran visual object processing simulations and showed that the TVB simulator successfully replaced the noise generation originally provided by NS neurons; i.e., the DMS tasks performed with the hybrid LSNM/TVB simulator generated equivalent neural and fMRI activity to that of the original task-based models. Additionally, we found partial agreement between the functional connectivities using the hybrid LSNM/TVB model and the original LSNM. Our framework thus presents a way to embed task-based neural models into the TVB platform, enabling a better comparison between empirical and computational data, which in turn can lead to a better understanding of how interacting neural populations give rise to human cognitive behaviors.
Faye, Grégory; Rankin, James; Chossat, Pascal
2013-05-01
The existence of spatially localized solutions in neural networks is an important topic in neuroscience as these solutions are considered to characterize working (short-term) memory. We work with an unbounded neural network represented by the neural field equation with smooth firing rate function and a wizard hat spatial connectivity. Noting that stationary solutions of our neural field equation are equivalent to homoclinic orbits in a related fourth order ordinary differential equation, we apply normal form theory for a reversible Hopf bifurcation to prove the existence of localized solutions; further, we present results concerning their stability. Numerical continuation is used to compute branches of localized solution that exhibit snaking-type behaviour. We describe in terms of three parameters the exact regions for which localized solutions persist.
Auditory mismatch impairments are characterized by core neural dysfunctions in schizophrenia
Gaebler, Arnim Johannes; Mathiak, Klaus; Koten, Jan Willem; König, Andrea Anna; Koush, Yury; Weyer, David; Depner, Conny; Matentzoglu, Simeon; Edgar, James Christopher; Willmes, Klaus; Zvyagintsev, Mikhail
2015-01-01
Major theories on the neural basis of schizophrenic core symptoms highlight aberrant salience network activity (insula and anterior cingulate cortex), prefrontal hypoactivation, sensory processing deficits as well as an impaired connectivity between temporal and prefrontal cortices. The mismatch negativity is a potential biomarker of schizophrenia and its reduction might be a consequence of each of these mechanisms. In contrast to the previous electroencephalographic studies, functional magnetic resonance imaging may disentangle the involved brain networks at high spatial resolution and determine contributions from localized brain responses and functional connectivity to the schizophrenic impairments. Twenty-four patients and 24 matched control subjects underwent functional magnetic resonance imaging during an optimized auditory mismatch task. Haemodynamic responses and functional connectivity were compared between groups. These data sets further entered a diagnostic classification analysis to assess impairments on the individual patient level. In the control group, mismatch responses were detected in the auditory cortex, prefrontal cortex and the salience network (insula and anterior cingulate cortex). Furthermore, mismatch processing was associated with a deactivation of the visual system and the dorsal attention network indicating a shift of resources from the visual to the auditory domain. The patients exhibited reduced activation in all of the respective systems (right auditory cortex, prefrontal cortex, and the salience network) as well as reduced deactivation of the visual system and the dorsal attention network. Group differences were most prominent in the anterior cingulate cortex and adjacent prefrontal areas. The latter regions also exhibited a reduced functional connectivity with the auditory cortex in the patients. In the classification analysis, haemodynamic responses yielded a maximal accuracy of 83% based on four features; functional connectivity data performed similarly or worse for up to about 10 features. However, connectivity data yielded a better performance when including more than 10 features yielding up to 90% accuracy. Among others, the most discriminating features represented functional connections between the auditory cortex and the anterior cingulate cortex as well as adjacent prefrontal areas. Auditory mismatch impairments incorporate major neural dysfunctions in schizophrenia. Our data suggest synergistic effects of sensory processing deficits, aberrant salience attribution, prefrontal hypoactivation as well as a disrupted connectivity between temporal and prefrontal cortices. These deficits are associated with subsequent disturbances in modality-specific resource allocation. Capturing different schizophrenic core dysfunctions, functional magnetic resonance imaging during this optimized mismatch paradigm reveals processing impairments on the individual patient level, rendering it a potential biomarker of schizophrenia. PMID:25743635
Hu, Meng; Liang, Hualou
2013-04-01
Generalized flash suppression (GFS), in which a salient visual stimulus can be rendered invisible despite continuous retinal input, provides a rare opportunity to directly study the neural mechanism of visual perception. Previous work based on linear methods, such as spectral analysis, on local field potential (LFP) during GFS has shown that the LFP power at distinctive frequency bands are differentially modulated by perceptual suppression. Yet, the linear method alone may be insufficient for the full assessment of neural dynamic due to the fundamentally nonlinear nature of neural signals. In this study, we set forth to analyze the LFP data collected from multiple visual areas in V1, V2 and V4 of macaque monkeys while performing the GFS task using a nonlinear method - adaptive multi-scale entropy (AME) - to reveal the neural dynamic of perceptual suppression. In addition, we propose a new cross-entropy measure at multiple scales, namely adaptive multi-scale cross-entropy (AMCE), to assess the nonlinear functional connectivity between two cortical areas. We show that: (1) multi-scale entropy exhibits percept-related changes in all three areas, with higher entropy observed during perceptual suppression; (2) the magnitude of the perception-related entropy changes increases systematically over successive hierarchical stages (i.e. from lower areas V1 to V2, up to higher area V4); and (3) cross-entropy between any two cortical areas reveals higher degree of asynchrony or dissimilarity during perceptual suppression, indicating a decreased functional connectivity between cortical areas. These results, taken together, suggest that perceptual suppression is related to a reduced functional connectivity and increased uncertainty of neural responses, and the modulation of perceptual suppression is more effective at higher visual cortical areas. AME is demonstrated to be a useful technique in revealing the underlying dynamic of nonlinear/nonstationary neural signal.
Fair, Damien A.; Nigg, Joel T.; Iyer, Swathi; Bathula, Deepti; Mills, Kathryn L.; Dosenbach, Nico U. F.; Schlaggar, Bradley L.; Mennes, Maarten; Gutman, David; Bangaru, Saroja; Buitelaar, Jan K.; Dickstein, Daniel P.; Di Martino, Adriana; Kennedy, David N.; Kelly, Clare; Luna, Beatriz; Schweitzer, Julie B.; Velanova, Katerina; Wang, Yu-Feng; Mostofsky, Stewart; Castellanos, F. Xavier; Milham, Michael P.
2012-01-01
In recent years, there has been growing enthusiasm that functional magnetic resonance imaging (MRI) could achieve clinical utility for a broad range of neuropsychiatric disorders. However, several barriers remain. For example, the acquisition of large-scale datasets capable of clarifying the marked heterogeneity that exists in psychiatric illnesses will need to be realized. In addition, there continues to be a need for the development of image processing and analysis methods capable of separating signal from artifact. As a prototypical hyperkinetic disorder, and movement-related artifact being a significant confound in functional imaging studies, ADHD offers a unique challenge. As part of the ADHD-200 Global Competition and this special edition of Frontiers, the ADHD-200 Consortium demonstrates the utility of an aggregate dataset pooled across five institutions in addressing these challenges. The work aimed to (1) examine the impact of emerging techniques for controlling for “micro-movements,” and (2) provide novel insights into the neural correlates of ADHD subtypes. Using support vector machine (SVM)-based multivariate pattern analysis (MVPA) we show that functional connectivity patterns in individuals are capable of differentiating the two most prominent ADHD subtypes. The application of graph-theory revealed that the Combined (ADHD-C) and Inattentive (ADHD-I) subtypes demonstrated some overlapping (particularly sensorimotor systems), but unique patterns of atypical connectivity. For ADHD-C, atypical connectivity was prominent in midline default network components, as well as insular cortex; in contrast, the ADHD-I group exhibited atypical patterns within the dlPFC regions and cerebellum. Systematic motion-related artifact was noted, and highlighted the need for stringent motion correction. Findings reported were robust to the specific motion correction strategy employed. These data suggest that resting-state functional connectivity MRI (rs-fcMRI) data can be used to characterize individual patients with ADHD and to identify neural distinctions underlying the clinical heterogeneity of ADHD. PMID:23382713
Disruption of functional networks in dyslexia: a whole-brain, data-driven analysis of connectivity.
Finn, Emily S; Shen, Xilin; Holahan, John M; Scheinost, Dustin; Lacadie, Cheryl; Papademetris, Xenophon; Shaywitz, Sally E; Shaywitz, Bennett A; Constable, R Todd
2014-09-01
Functional connectivity analyses of functional magnetic resonance imaging data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to define network nodes, which might result in mixing distinct activation time-courses within a single node. Here, we improve upon previous methods by using a data-driven brain parcellation to compare connectivity profiles of dyslexic (DYS) versus non-impaired (NI) readers in the first whole-brain functional connectivity analysis of dyslexia. Whole-brain connectivity was assessed in children (n = 75; 43 NI, 32 DYS) and adult (n = 104; 64 NI, 40 DYS) readers. Compared to NI readers, DYS readers showed divergent connectivity within the visual pathway and between visual association areas and prefrontal attention areas; increased right-hemisphere connectivity; reduced connectivity in the visual word-form area (part of the left fusiform gyrus specialized for printed words); and persistent connectivity to anterior language regions around the inferior frontal gyrus. Together, findings suggest that NI readers are better able to integrate visual information and modulate their attention to visual stimuli, allowing them to recognize words on the basis of their visual properties, whereas DYS readers recruit altered reading circuits and rely on laborious phonology-based "sounding out" strategies into adulthood. These results deepen our understanding of the neural basis of dyslexia and highlight the importance of synchrony between diverse brain regions for successful reading. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.
Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Creswell, J David
Mindfulness meditation training has been previously shown to enhance behavioral measures of executive control (e.g., attention, working memory, cognitive control), but the neural mechanisms underlying these improvements are largely unknown. Here, we test whether mindfulness training interventions foster executive control by strengthening functional connections between dorsolateral prefrontal cortex (dlPFC)-a hub of the executive control network-and frontoparietal regions that coordinate executive function. Thirty-five adults with elevated levels of psychological distress participated in a 3-day randomized controlled trial of intensive mindfulness meditation or relaxation training. Participants completed a resting state functional magnetic resonance imaging scan before and after the intervention. We tested whether mindfulness meditation training increased resting state functional connectivity (rsFC) between dlPFC and frontoparietal control network regions. Left dlPFC showed increased connectivity to the right inferior frontal gyrus (T = 3.74), right middle frontal gyrus (MFG) (T = 3.98), right supplementary eye field (T = 4.29), right parietal cortex (T = 4.44), and left middle temporal gyrus (T = 3.97, all p < .05) after mindfulness training relative to the relaxation control. Right dlPFC showed increased connectivity to right MFG (T = 4.97, p < .05). We report that mindfulness training increases rsFC between dlPFC and dorsal network (superior parietal lobule, supplementary eye field, MFG) and ventral network (right IFG, middle temporal/angular gyrus) regions. These findings extend previous work showing increased functional connectivity among brain regions associated with executive function during active meditation by identifying specific neural circuits in which rsFC is enhanced by a mindfulness intervention in individuals with high levels of psychological distress. Clinicaltrials.gov,NCT01628809.
The Neural Substrates of Cognitive Control Deficits in Autism Spectrum Disorders
Solomon, Marjorie; Ozonoff, Sally; Ursu, Stefan; Ravizza, Susan; Cummings, Neil; Ly, Stanford; Carter, Cameron
2009-01-01
Executive functions deficits are among the most frequently reported symptoms of autism spectrum disorders (ASDs), however, there have been few functional magnetic resonance imaging (fMRI) studies that investigate the neural substrates of executive functions deficits in ASDs, and only one in adolescents. The current study examined cognitive control –the ability to maintain task context online to support adaptive functioning in the face of response competition—in 22 adolescents aged 12–18 with autism spectrum disorders and 23 age, gender, and IQ matched typically developing subjects. During the cue phase of the task, where subjects must maintain information online to overcome a prepotent response tendency, typically developing subjects recruited significantly more anterior frontal (BA 10), parietal (BA 7, 40), and occipital regions (BA 18) for high control trials (25% of trials) versus low control trials (75% of trials). Both groups showed similar activation for low control cues, however the ASD group exhibited significantly less activation for high control cues. Functional connectivity analysis using time series correlation, factor analysis, and beta series correlation methods provided convergent evidence that the ASD group exhibited lower levels of functional connectivity and less network integration between frontal, parietal, and occipital regions. In the typically developing group, fronto-parietal connectivity was related to lower error rates on high control trials. In the autism group, reduced fronto-parietal connectivity was related to attention deficit hyperactivity disorder symptoms. PMID:19410583
Connectivity constraints on cortical reorganization of neural circuits involved in object naming.
Papagno, Costanza; Gallucci, Marcello; Casarotti, Alessandra; Castellano, Antonella; Falini, Andrea; Fava, Enrica; Giussani, Carlo; Carrabba, Giorgio; Bello, Lorenzo; Caramazza, Alfonso
2011-04-01
The brain's plasticity in response to sensory deprivation and other perturbations is well established. While the functional properties of the reorganized areas are under vigorous investigation, the factors that constrain cortical reorganization remain poorly understood. One factor constraining such reorganization may be long-distance subcortical connectivity between relevant cortical regions-reorganization attempts to preserve the functionality of subcortical connections. Here we provide human neurophysiological evidence for the role of the subcortical connections in shaping cortical reorganization of the networks involved in object naming following perturbation of normal function. We used direct electrical stimulation (DES) during surgical removal of gliomas to identify the sites that are involved in naming different categories of objects. The sites that were selectively inhibited in naming either living or non-living objects were displaced relative to those observed with other subject populations, possibly reflecting cortical reorganization due to slowly evolving brain damage. Subcortical DES applied to the white matter underlying these regions also led to category-specific naming deficits. The existence of these subcortical fiber pathways was confirmed using diffusion tensor tractography. These results constitute the first neurophysiological evidence for the critical role of subcortical pathways as part of the neural circuits that are involved in object naming; they also highlight the importance of subcortical connectivity in shaping cortical reorganization following perturbations of normal function. Copyright © 2011 Elsevier Inc. All rights reserved.
Finn, Emily S; Todd Constable, R
2016-09-01
Functional brain connectivity measured with functional magnetic resonance imaging (fMRI) is a popular technique for investigating neural organization in both healthy subjects and patients with mental illness. Despite a rapidly growing body of literature, however, functional connectivity research has yet to deliver biomarkers that can aid psychiatric diagnosis or prognosis at the single-subject level. One impediment to developing such practical tools has been uncertainty regarding the ratio of intra- to interindividual variability in functional connectivity; in other words, how much variance is state- versus trait-related. Here, we review recent evidence that functional connectivity profiles are both reliable within subjects and unique across subjects, and that features of these profiles relate to behavioral phenotypes. Together, these results suggest the potential to discover reliable correlates of present and future illness and/or response to treatment in the strength of an individual's functional brain connections. Ultimately, this work could help develop personalized approaches to psychiatric illness.
The relationship between spatial configuration and functional connectivity of brain regions.
Bijsterbosch, Janine Diane; Woolrich, Mark W; Glasser, Matthew F; Robinson, Emma C; Beckmann, Christian F; Van Essen, David C; Harrison, Samuel J; Smith, Stephen M
2018-02-16
Brain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated the extent to which patterns of coupling strength between multiple neural populations relates to behaviour. For example, studies have used 'functional connectivity fingerprints' to characterise individuals' brain activity. Here, we investigate the extent to which the exact spatial arrangement of cortical regions interacts with measures of brain connectivity. We find that the shape and exact location of brain regions interact strongly with the modelling of brain connectivity, and present evidence that the spatial arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Therefore, a better understanding of these effects is important when interpreting the relationship between functional imaging data and cognitive traits. © 2018, Bijsterbosch et al.
Arizono, Naoki; Ohmura, Yuji; Yano, Shiro; Kondo, Toshiyuki
2016-01-01
The self-identification, which is called sense of ownership, has been researched through methodology of rubber hand illusion (RHI) because of its simple setup. Although studies with neuroimaging technique, such as fMRI, revealed that several brain areas are associated with the sense of ownership, near-infrared spectroscopy (NIRS) has not yet been utilized. Here we introduced an automated setup to induce RHI, measured the brain activity during the RHI with NIRS, and analyzed the functional connectivity so as to understand dynamical brain relationship regarding the sense of ownership. The connectivity was evaluated by multivariate Granger causality. In this experiment, the peaks of oxy-Hb on right frontal and right motor related areas during the illusion were significantly higher compared with those during the nonillusion. Furthermore, by analyzing the NIRS recordings, we found a reliable connectivity from the frontal to the motor related areas during the illusion. This finding suggests that frontal cortex and motor related areas communicate with each other when the sense of ownership is induced. The result suggests that the sense of ownership is related to neural mechanism underlying human motor control, and it would be determining whether motor learning (i.e., neural plasticity) will occur. Thus RHI with the functional connectivity analysis will become an appropriate biomarker for neurorehabilitation.
Rissman, Jesse; Gazzaley, Adam; D'Esposito, Mark
2008-07-01
The maintenance of visual stimuli across a delay interval in working memory tasks is thought to involve reverberant neural communication between the prefrontal cortex and posterior visual association areas. Recent studies suggest that the hippocampus might also contribute to this retention process, presumably via reciprocal interactions with visual regions. To characterize the nature of these interactions, we performed functional connectivity analysis on an event-related functional magnetic resonance imaging data set in which participants performed a delayed face recognition task. As the number of faces that participants were required to remember was parametrically increased, the right inferior frontal gyrus (IFG) showed a linearly decreasing degree of functional connectivity with the fusiform face area (FFA) during the delay period. In contrast, the hippocampus linearly increased its delay period connectivity with both the FFA and the IFG as the mnemonic load increased. Moreover, the degree to which participants' FFA showed a load-dependent increase in its connectivity with the hippocampus predicted the degree to which its connectivity with the IFG decreased with load. Thus, these neural circuits may dynamically trade off to accommodate the particular mnemonic demands of the task, with IFG-FFA interactions mediating maintenance at lower loads and hippocampal interactions supporting retention at higher loads.
Functional model of biological neural networks.
Lo, James Ting-Ho
2010-12-01
A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.
Role of local network oscillations in resting-state functional connectivity.
Cabral, Joana; Hugues, Etienne; Sporns, Olaf; Deco, Gustavo
2011-07-01
Spatio-temporally organized low-frequency fluctuations (<0.1 Hz), observed in BOLD fMRI signal during rest, suggest the existence of underlying network dynamics that emerge spontaneously from intrinsic brain processes. Furthermore, significant correlations between distinct anatomical regions-or functional connectivity (FC)-have led to the identification of several widely distributed resting-state networks (RSNs). This slow dynamics seems to be highly structured by anatomical connectivity but the mechanism behind it and its relationship with neural activity, particularly in the gamma frequency range, remains largely unknown. Indeed, direct measurements of neuronal activity have revealed similar large-scale correlations, particularly in slow power fluctuations of local field potential gamma frequency range oscillations. To address these questions, we investigated neural dynamics in a large-scale model of the human brain's neural activity. A key ingredient of the model was a structural brain network defined by empirically derived long-range brain connectivity together with the corresponding conduction delays. A neural population, assumed to spontaneously oscillate in the gamma frequency range, was placed at each network node. When these oscillatory units are integrated in the network, they behave as weakly coupled oscillators. The time-delayed interaction between nodes is described by the Kuramoto model of phase oscillators, a biologically-based model of coupled oscillatory systems. For a realistic setting of axonal conduction speed, we show that time-delayed network interaction leads to the emergence of slow neural activity fluctuations, whose patterns correlate significantly with the empirically measured FC. The best agreement of the simulated FC with the empirically measured FC is found for a set of parameters where subsets of nodes tend to synchronize although the network is not globally synchronized. Inside such clusters, the simulated BOLD signal between nodes is found to be correlated, instantiating the empirically observed RSNs. Between clusters, patterns of positive and negative correlations are observed, as described in experimental studies. These results are found to be robust with respect to a biologically plausible range of model parameters. In conclusion, our model suggests how resting-state neural activity can originate from the interplay between the local neural dynamics and the large-scale structure of the brain. Copyright © 2011 Elsevier Inc. All rights reserved.
Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity.
Just, Marcel Adam; Keller, Timothy A; Malave, Vicente L; Kana, Rajesh K; Varma, Sashank
2012-04-01
The underconnectivity theory of autism attributes the disorder to lower anatomical and functional systems connectivity between frontal and more posterior cortical processing. Here we review evidence for the theory and present a computational model of an executive functioning task (Tower of London) implementing the assumptions of underconnectivity. We make two modifications to a previous computational account of performance and brain activity in typical individuals in the Tower of London task (Newman et al., 2003): (1) the communication bandwidth between frontal and parietal areas was decreased and (2) the posterior centers were endowed with more executive capability (i.e., more autonomy, an adaptation is proposed to arise in response to the lowered frontal-posterior bandwidth). The autism model succeeds in matching the lower frontal-posterior functional connectivity (lower synchronization of activation) seen in fMRI data, as well as providing insight into behavioral response time results. The theory provides a unified account of how a neural dysfunction can produce a neural systems disorder and a psychological disorder with the widespread and diverse symptoms of autism. Copyright © 2012 Elsevier Ltd. All rights reserved.
Autism as a neural systems disorder: A theory of frontal-posterior underconnectivity
Just, Marcel Adam; Keller, Timothy A.; Malave, Vicente L.; Kana, Rajesh K.; Varma, Sashank
2012-01-01
The underconnectivity theory of autism attributes the disorder to lower anatomical and functional systems connectivity between frontal and more posterior cortical processing. Here we review evidence for the theory and present a computational model of an executive functioning task (Tower of London) implementing the assumptions of underconnectivity. We make two modifications to a previous computational account of performance and brain activity in typical individuals in the Tower of London task (Newman et al., 2003): (1) the communication bandwidth between frontal and parietal areas was decreased and (2) the posterior centers were endowed with more executive capability (i.e., more autonomy, an adaptation is proposed to arise in response to the lowered frontal-posterior bandwidth). The autism model succeeds in matching the lower frontal-posterior functional connectivity (lower synchronization of activation) seen in fMRI data, as well as providing insight into behavioral response time results. The theory provides a unified account of how a neural dysfunction can produce a neural systems disorder and a psychological disorder with the widespread and diverse symptoms of autism. PMID:22353426
Cáceda, Ricardo; James, G Andrew; Ely, Timothy D; Snarey, John; Kilts, Clinton D
2011-02-25
Moral sensitivity refers to the interpretive awareness of moral conflict and can be justice or care oriented. Justice ethics is associated primarily with human rights and the application of moral rules, whereas care ethics is related to human needs and a situational approach involving social emotions. Among the core brain regions involved in moral issue processing are: medial prefrontal cortex, anterior (ACC) and posterior (PCC) cingulate cortex, posterior superior temporal sulcus (pSTS), insula and amygdala. This study sought to inform the long standing debate of whether care and justice moral ethics represent one or two different forms of cognition. Model-free and model-based connectivity analysis were used to identify functional neural networks underlying care and justice ethics for a moral sensitivity task. In addition to modest differences in patterns of associated neural activity, distinct modes of functional and effective connectivity were observed for moral sensitivity for care and justice issues that were modulated by individual variation in moral ability. These results support a neurobiological differentiation between care and justice ethics and suggest that human moral behavior reflects the outcome of integrating opposing rule-based, self-other perspectives, and emotional responses.
Neural basis of hierarchical visual form processing of Japanese Kanji characters.
Higuchi, Hiroki; Moriguchi, Yoshiya; Murakami, Hiroki; Katsunuma, Ruri; Mishima, Kazuo; Uno, Akira
2015-12-01
We investigated the neural processing of reading Japanese Kanji characters, which involves unique hierarchical visual processing, including the recognition of visual components specific to Kanji, such as "radicals." We performed functional MRI to measure brain activity in response to hierarchical visual stimuli containing (1) real Kanji characters (complete structure with semantic information), (2) pseudo Kanji characters (subcomponents without complete character structure), (3) artificial characters (character fragments), and (4) checkerboard (simple photic stimuli). As we expected, the peaks of the activation in response to different stimulus types were aligned within the left occipitotemporal visual region along the posterior-anterior axis in order of the structural complexity of the stimuli, from fragments (3) to complete characters (1). Moreover, only the real Kanji characters produced functional connectivity between the left inferotemporal area and the language area (left inferior frontal triangularis), while pseudo Kanji characters induced connectivity between the left inferotemporal area and the bilateral cerebellum and left putamen. Visual processing of Japanese Kanji takes place in the left occipitotemporal cortex, with a clear hierarchy within the region such that the neural activation differentiates the elements in Kanji characters' fragments, subcomponents, and semantics, with different patterns of connectivity to remote regions among the elements.
Disrupted Topological Patterns of Large-Scale Network in Conduct Disorder
Jiang, Yali; Liu, Weixiang; Ming, Qingsen; Gao, Yidian; Ma, Ren; Zhang, Xiaocui; Situ, Weijun; Wang, Xiang; Yao, Shuqiao; Huang, Bingsheng
2016-01-01
Regional abnormalities in brain structure and function, as well as disrupted connectivity, have been found repeatedly in adolescents with conduct disorder (CD). Yet, the large-scale brain topology associated with CD is not well characterized, and little is known about the systematic neural mechanisms of CD. We employed graphic theory to investigate systematically the structural connectivity derived from cortical thickness correlation in a group of patients with CD (N = 43) and healthy controls (HCs, N = 73). Nonparametric permutation tests were applied for between-group comparisons of graphical metrics. Compared with HCs, network measures including global/local efficiency and modularity all pointed to hypo-functioning in CD, despite of preserved small-world organization in both groups. The hubs distribution is only partially overlapped with each other. These results indicate that CD is accompanied by both impaired integration and segregation patterns of brain networks, and the distribution of highly connected neural network ‘hubs’ is also distinct between groups. Such misconfiguration extends our understanding regarding how structural neural network disruptions may underlie behavioral disturbances in adolescents with CD, and potentially, implicates an aberrant cytoarchitectonic profiles in the brain of CD patients. PMID:27841320
Herringa, Ryan J; Burghy, Cory A; Stodola, Diane E; Fox, Michelle E; Davidson, Richard J; Essex, Marilyn J
2016-07-01
Much research has focused on the deleterious neurobiological effects of childhood adversity that may underlie internalizing disorders. While most youth show emotional adaptation following adversity, the corresponding neural mechanisms remain poorly understood. In this longitudinal community study, we examined the associations among childhood family adversity, adolescent internalizing symptoms, and their interaction on regional brain activation and amygdala/hippocampus functional connectivity during emotion processing in 132 adolescents. Consistent with prior work, childhood adversity predicted heightened amygdala reactivity to negative, but not positive, images in adolescence. However, amygdala reactivity was not related to internalizing symptoms. Furthermore, childhood adversity predicted increased fronto-amygdala connectivity to negative, but not positive, images, yet only in lower internalizing adolescents. Childhood adversity also predicted increased fronto-hippocampal connectivity to negative images, but was not moderated by internalizing. These findings were unrelated to adolescence adversity or externalizing symptoms, suggesting specificity to childhood adversity and adolescent internalizing. Together, these findings suggest that adaptation to childhood adversity is associated with augmentation of fronto-subcortical circuits specifically for negative emotional stimuli. Conversely, insufficient enhancement of fronto-amygdala connectivity, with increasing amygdala reactivity, may represent a neural signature of vulnerability for internalizing by late adolescence. These findings implicate early childhood as a critical period in determining the brain's adaptation to adversity, and suggest that even normative adverse experiences can have significant impact on neurodevelopment and functioning. These results offer potential neural mechanisms of adaptation and vulnerability which could be used in the prediction of risk for psychopathology following childhood adversity.
Effects of Aging on the Neural Correlates of Successful Item and Source Memory Encoding
Dennis, Nancy A.; Hayes, Scott M.; Prince, Steven E.; Madden, David J.; Huettel, Scott A.; Cabeza, Roberto
2009-01-01
To investigate the neural basis of age-related source memory (SM) deficits, young and older adults were scanned with fMRI while encoding faces, scenes, and face-scene pairs. Successful encoding activity was identified by comparing encoding activity for subsequently remembered versus forgotten items or pairs. Age deficits in successful encoding activity in hippocampal and prefrontal regions were more pronounced for SM (pairs) compared to item memory (faces and scenes). Age-related reductions were also found in regions specialized in processing faces (fusiform face area) and scenes (parahippocampal place area), but these reductions were similar for item and SM. Functional connectivity between the hippocampus and the rest of the brain was also affected by aging; whereas connections with posterior cortices were weaker in older adults, connections with anterior cortices including prefrontal regions were stronger in older adults. Taken together, the results provide a link between SM deficits in older adults and reduced recruitment of hippocampal and prefrontal regions during encoding. The functional connectivity findings are consistent with a posterior-anterior shift with aging (PASA), previously reported in several cognitive domains and linked to functional compensation. PMID:18605869
Extraversion and neuroticism related to the resting-state effective connectivity of amygdala
Pang, Yajing; Cui, Qian; Wang, Yifeng; Chen, Yuyan; Wang, Xiaona; Han, Shaoqiang; Zhang, Zhiqiang; Lu, Guangming; Chen, Huafu
2016-01-01
The amygdala plays a key role in emotion processing. Its functional connectivity with other brain regions has been extensively demonstrated to be associated with extraversion and neuroticism. However, how the amygdala affects other regions and is affected by others within these connectivity patterns associated with extraversion and neuroticism remains unclear. To address this issue, we investigated the effective connectivity of the amygdala using Granger causality analysis on the resting-state functional magnetic resonance imaging data of 70 participants. Results showed that extraversion was positively correlated with the influence from the right inferior occipital gyrus (IOG) to the left amygdala, and from the bilateral IOG to the right amygdala; such result may represent the neural correlates of social interactions in extraverts. Conversely, neuroticism was associated with an increased influence from right amygdala to right middle frontal gyrus and a decreased influence from right precuneus to right amygdala. This influence might affect the modulations of cognitive regulation function and self-referential processes in neurotic individuals. These findings highlight the importance of the causal influences of amygdala in explaining the individual differences in extraversion and neuroticism, and offer further insights into the specific neural networks underlying personality. PMID:27765947
Pan, Weigang; Liu, Congcong; Yang, Qian; Gu, Yan; Yin, Shouhang; Chen, Antao
2016-03-01
Self-esteem is an affective, self-evaluation of oneself and has a significant effect on mental and behavioral health. Although research has focused on the neural substrates of self-esteem, little is known about the spontaneous brain activity that is associated with trait self-esteem (TSE) during the resting state. In this study, we used the resting-state functional magnetic resonance imaging (fMRI) signal of the amplitude of low-frequency fluctuations (ALFFs) and resting state functional connectivity (RSFC) to identify TSE-related regions and networks. We found that a higher level of TSE was associated with higher ALFFs in the left ventral medial prefrontal cortex (vmPFC) and lower ALFFs in the left cuneus/lingual gyrus and right lingual gyrus. RSFC analyses revealed that the strengths of functional connectivity between the left vmPFC and bilateral hippocampus were positively correlated with TSE; however, the connections between the left vmPFC and right inferior frontal gyrus and posterior superior temporal sulcus were negatively associated with TSE. Furthermore, the strengths of functional connectivity between the left cuneus/lingual gyrus and right dorsolateral prefrontal cortex and anterior cingulate cortex were positively related to TSE. These findings indicate that TSE is linked to core regions in the default mode network and social cognition network, which is involved in self-referential processing, autobiographical memory and social cognition. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Alterations in conflict monitoring are related to functional connectivity in Parkinson's disease.
Rosenberg-Katz, Keren; Maidan, Inbal; Jacob, Yael; Giladi, Nir; Mirelman, Anat; Hausdorff, Jeffrey M
2016-09-01
Patients with Parkinson's disease (PD) have difficulties in executive functions including conflict monitoring. The neural mechanisms underlying these difficulties are not yet fully understood. In order to examine the neural mechanisms related to conflict monitoring in PD, we evaluated 35 patients with PD and 20 healthy older adults while they performed a word-color Stroop paradigm in the MRI. Specifically, we focused on changes between the groups in task-related functional connectivity using psycho-physiological interaction (PPI) analysis. The anterior cingulate cortex (ACC), which is a brain node previously associated with the Stroop paradigm, was selected as the seed region for this analysis. Patients with PD, as compared to healthy controls, had reduced task-related functional connectivity between the ACC and parietal regions including the precuneus and inferior parietal lobe. This was seen only in the incongruent Stroop condition. A higher level of connectivity between the ACC and precuneus was correlated with a lower error rate in the conflicting, incongruent Stroop condition in the healthy controls, but not in the patients with PD. Furthermore, the patients also had reduced functional connectivity between the ACC and the superior frontal gyrus which was present in both the incongruent and congruent task condition. The present findings shed light on brain mechanisms that are apparently associated with specific cognitive difficulties in patients with PD. Among patients with PD, impaired conflict monitoring processing within the ACC-based fronto-parietal network may contribute to difficulties under increased executive demands. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schott, Björn H; Wüstenberg, Torsten; Wimber, Maria; Fenker, Daniela B; Zierhut, Kathrin C; Seidenbecher, Constanze I; Heinze, Hans-Jochen; Walter, Henrik; Düzel, Emrah; Richardson-Klavehn, Alan
2013-02-01
New episodic memory traces represent a record of the ongoing neocortical processing engaged during memory formation (encoding). Thus, during encoding, deep (semantic) processing typically establishes more distinctive and retrievable memory traces than does shallow (perceptual) processing, as assessed by later episodic memory tests. By contrast, the hippocampus appears to play a processing-independent role in encoding, because hippocampal lesions impair encoding regardless of level of processing. Here, we clarified the neural relationship between processing and encoding by examining hippocampal-cortical connectivity during deep and shallow encoding. Participants studied words during functional magnetic resonance imaging and freely recalled these words after distraction. Deep study processing led to better recall than shallow study processing. For both levels of processing, successful encoding elicited activations of bilateral hippocampus and left prefrontal cortex, and increased functional connectivity between left hippocampus and bilateral medial prefrontal, cingulate and extrastriate cortices. Successful encoding during deep processing was additionally associated with increased functional connectivity between left hippocampus and bilateral ventrolateral prefrontal cortex and right temporoparietal junction. In the shallow encoding condition, on the other hand, pronounced functional connectivity increases were observed between the right hippocampus and the frontoparietal attention network activated during shallow study processing. Our results further specify how the hippocampus coordinates recording of ongoing neocortical activity into long-term memory, and begin to provide a neural explanation for the typical advantage of deep over shallow study processing for later episodic memory. Copyright © 2011 Wiley Periodicals, Inc.
Wang, Peng; Knösche, Thomas R.
2013-01-01
In this work we propose a biologically realistic local cortical circuit model (LCCM), based on neural masses, that incorporates important aspects of the functional organization of the brain that have not been covered by previous models: (1) activity dependent plasticity of excitatory synaptic couplings via depleting and recycling of neurotransmitters and (2) realistic inter-laminar dynamics via laminar-specific distribution of and connections between neural populations. The potential of the LCCM was demonstrated by accounting for the process of auditory habituation. The model parameters were specified using Bayesian inference. It was found that: (1) besides the major serial excitatory information pathway (layer 4 to layer 2/3 to layer 5/6), there exists a parallel “short-cut” pathway (layer 4 to layer 5/6), (2) the excitatory signal flow from the pyramidal cells to the inhibitory interneurons seems to be more intra-laminar while, in contrast, the inhibitory signal flow from inhibitory interneurons to the pyramidal cells seems to be both intra- and inter-laminar, and (3) the habituation rates of the connections are unsymmetrical: forward connections (from layer 4 to layer 2/3) are more strongly habituated than backward connections (from Layer 5/6 to layer 4). Our evaluation demonstrates that the novel features of the LCCM are of crucial importance for mechanistic explanations of brain function. The incorporation of these features into a mass model makes them applicable to modeling based on macroscopic data (like EEG or MEG), which are usually available in human experiments. Our LCCM is therefore a valuable building block for future realistic models of human cognitive function. PMID:24205009
Walther, Sebastian; Stegmayer, Katharina; Federspiel, Andrea; Bohlhalter, Stephan; Wiest, Roland; Viher, Petra V
2017-09-01
Motor abnormalities are frequently observed in schizophrenia and structural alterations of the motor system have been reported. The association of aberrant motor network function, however, has not been tested. We hypothesized that abnormal functional connectivity would be related to the degree of motor abnormalities in schizophrenia. In 90 subjects (46 patients) we obtained resting stated functional magnetic resonance imaging (fMRI) for 8 minutes 40 seconds at 3T. Participants further completed a motor battery on the scanning day. Regions of interest (ROI) were cortical motor areas, basal ganglia, thalamus and motor cerebellum. We computed ROI-to-ROI functional connectivity. Principal component analyses of motor behavioral data produced 4 factors (primary motor, catatonia and dyskinesia, coordination, and spontaneous motor activity). Motor factors were correlated with connectivity values. Schizophrenia was characterized by hyperconnectivity in 3 main areas: motor cortices to thalamus, motor cortices to cerebellum, and prefrontal cortex to the subthalamic nucleus. In patients, thalamocortical hyperconnectivity was linked to catatonia and dyskinesia, whereas aberrant connectivity between rostral anterior cingulate and caudate was linked to the primary motor factor. Likewise, connectivity between motor cortex and cerebellum correlated with spontaneous motor activity. Therefore, altered functional connectivity suggests a specific intrinsic and tonic neural abnormality in the motor system in schizophrenia. Furthermore, altered neural activity at rest was linked to motor abnormalities on the behavioral level. Thus, aberrant resting state connectivity may indicate a system out of balance, which produces characteristic behavioral alterations. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Disruption of functional networks in dyslexia: A whole-brain, data-driven analysis of connectivity
Finn, Emily S.; Shen, Xilin; Holahan, John M.; Scheinost, Dustin; Lacadie, Cheryl; Papademetris, Xenophon; Shaywitz, Sally E.; Shaywitz, Bennett A.; Constable, R. Todd
2013-01-01
Background Functional connectivity analyses of fMRI data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to define network nodes, which may result in mixing distinct activation timecourses within a single node. Here, we improve upon previous methods by using a data-driven brain parcellation to compare connectivity profiles of dyslexic (DYS) versus non-impaired (NI) readers in the first whole-brain functional connectivity analysis of dyslexia. Methods Whole-brain connectivity was assessed in children (n = 75; 43 NI, 32 DYS) and adult (n = 104; 64 NI, 40 DYS) readers. Results Compared to NI readers, DYS readers showed divergent connectivity within the visual pathway and between visual association areas and prefrontal attention areas; increased right-hemisphere connectivity; reduced connectivity in the visual word-form area (part of the left fusiform gyrus specialized for printed words); and persistent connectivity to anterior language regions around the inferior frontal gyrus. Conclusions Together, findings suggest that NI readers are better able to integrate visual information and modulate their attention to visual stimuli, allowing them to recognize words based on their visual properties, while DYS readers recruit altered reading circuits and rely on laborious phonology-based “sounding out” strategies into adulthood. These results deepen our understanding of the neural basis of dyslexia and highlight the importance of synchrony between diverse brain regions for successful reading. PMID:24124929
The association between resting functional connectivity and dispositional optimism.
Ran, Qian; Yang, Junyi; Yang, Wenjing; Wei, Dongtao; Qiu, Jiang; Zhang, Dong
2017-01-01
Dispositional optimism is an individual characteristic that plays an important role in human experience. Optimists are people who tend to hold positive expectations for their future. Previous studies have focused on the neural basis of optimism, such as task response neural activity and brain structure volume. However, the functional connectivity between brain regions of the dispositional optimists are poorly understood. Previous study suggested that the ventromedial prefrontal cortex (vmPFC) are associated with individual differences in dispositional optimism, but it is unclear whether there are other brain regions that combine with the vmPFC to contribute to dispositional optimism. Thus, the present study used the resting-state functional connectivity (RSFC) approach and set the vmPFC as the seed region to examine if differences in functional brain connectivity between the vmPFC and other brain regions would be associated with individual differences in dispositional optimism. The results found that dispositional optimism was significantly positively correlated with the strength of the RSFC between vmPFC and middle temporal gyrus (mTG) and negativly correlated with RSFC between vmPFC and inferior frontal gyrus (IFG). These findings may be suggested that mTG and IFG which associated with emotion processes and emotion regulation also play an important role in the dispositional optimism.
The association between resting functional connectivity and dispositional optimism
Yang, Wenjing; Wei, Dongtao; Qiu, Jiang; Zhang, Dong
2017-01-01
Dispositional optimism is an individual characteristic that plays an important role in human experience. Optimists are people who tend to hold positive expectations for their future. Previous studies have focused on the neural basis of optimism, such as task response neural activity and brain structure volume. However, the functional connectivity between brain regions of the dispositional optimists are poorly understood. Previous study suggested that the ventromedial prefrontal cortex (vmPFC) are associated with individual differences in dispositional optimism, but it is unclear whether there are other brain regions that combine with the vmPFC to contribute to dispositional optimism. Thus, the present study used the resting-state functional connectivity (RSFC) approach and set the vmPFC as the seed region to examine if differences in functional brain connectivity between the vmPFC and other brain regions would be associated with individual differences in dispositional optimism. The results found that dispositional optimism was significantly positively correlated with the strength of the RSFC between vmPFC and middle temporal gyrus (mTG) and negativly correlated with RSFC between vmPFC and inferior frontal gyrus (IFG). These findings may be suggested that mTG and IFG which associated with emotion processes and emotion regulation also play an important role in the dispositional optimism. PMID:28700613
Long-Term Memory Stabilized by Noise-Induced Rehearsal
Wei, Yi
2014-01-01
Cortical networks can maintain memories for decades despite the short lifetime of synaptic strengths. Can a neural network store long-lasting memories in unstable synapses? Here, we study the effects of ongoing spike-timing-dependent plasticity (STDP) on the stability of memory patterns stored in synapses of an attractor neural network. We show that certain classes of STDP rules can stabilize all stored memory patterns despite a short lifetime of synapses. In our model, unstructured neural noise, after passing through the recurrent network connections, carries the imprint of all memory patterns in temporal correlations. STDP, combined with these correlations, leads to reinforcement of all stored patterns, even those that are never explicitly visited. Our findings may provide the functional reason for irregular spiking displayed by cortical neurons and justify models of system memory consolidation. Therefore, we propose that irregular neural activity is the feature that helps cortical networks maintain stable connections. PMID:25411507
Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors
Nieh, Edward H.; Kim, Sung-Yon; Namburi, Praneeth; Tye, Kay M.
2014-01-01
The neural circuits underlying emotional valence and motivated behaviors are several synapses away from both defined sensory inputs and quantifiable motor outputs. Electrophysiology has provided us with a suitable means for observing neural activity during behavior, but methods for controlling activity for the purpose of studying motivated behaviors have been inadequate: electrical stimulation lacks cellular specificity and pharmacological manipulation lacks temporal resolution. The recent emergence of optogenetic tools provides a new means for establishing causal relationships between neural activity and behavior. Optogenetics, the use of genetically-encodable light-activated proteins, permits the modulation of specific neural circuit elements with millisecond precision. The ability to control individual cell types, and even projections between distal regions, allows us to investigate functional connectivity in a causal manner. The greatest consequence of controlling neural activity with finer precision has been the characterization of individual neural circuits within anatomical brain regions as defined functional units. Within the mesolimbic dopamine system, optogenetics has helped separate subsets of dopamine neurons with distinct functions for reward, aversion and salience processing, elucidated GABA neuronal effects on behavior, and characterized connectivity with forebrain and cortical structures. Within the striatum, optogenetics has confirmed the opposing relationship between direct and indirect pathway medium spiny neurons (MSNs), in addition to characterizing the inhibition of MSNs by cholinergic interneurons. Within the hypothalamus, optogenetics has helped overcome the heterogeneity in neuronal cell-type and revealed distinct circuits mediating aggression and feeding. Within the amygdala, optogenetics has allowed the study of intra-amygdala microcircuitry as well as interconnections with distal regions involved in fear and anxiety. In this review, we will present the body of optogenetic studies that has significantly enhanced our understanding of emotional valence and motivated behaviors. PMID:23142759
Muftuler, L Tugan; Larson, Christine L
2018-01-01
Abstract Political conservatism is associated with an increased negativity bias, including increased attention and reactivity toward negative and threatening stimuli. Although the human amygdala has been implicated in the response to threatening stimuli, no studies to date have investigated whether conservatism is associated with altered amygdala function toward threat. Furthermore, although an influential theory posits that connectivity between the amygdala and bed nucleus of the stria terminalis (BNST) is important in initiating the response to sustained or uncertain threat, whether individual differences in conservatism modulate this connectivity is unknown. To test whether conservatism is associated with increased reactivity in neural threat circuitry, we measured participants’ self-reported social and economic conservatism and asked them to complete high-resolution fMRI scans while under threat of an unpredictable shock and while safe. We found that economic conservatism predicted greater connectivity between the BNST and a cluster of voxels in the left amygdala during threat vs safety. These results suggest that increased amygdala–BNST connectivity during threat may be a key neural correlate of the enhanced negativity bias found in conservatism. PMID:29126127
Pedersen, Walker S; Muftuler, L Tugan; Larson, Christine L
2018-01-01
Political conservatism is associated with an increased negativity bias, including increased attention and reactivity toward negative and threatening stimuli. Although the human amygdala has been implicated in the response to threatening stimuli, no studies to date have investigated whether conservatism is associated with altered amygdala function toward threat. Furthermore, although an influential theory posits that connectivity between the amygdala and bed nucleus of the stria terminalis (BNST) is important in initiating the response to sustained or uncertain threat, whether individual differences in conservatism modulate this connectivity is unknown. To test whether conservatism is associated with increased reactivity in neural threat circuitry, we measured participants' self-reported social and economic conservatism and asked them to complete high-resolution fMRI scans while under threat of an unpredictable shock and while safe. We found that economic conservatism predicted greater connectivity between the BNST and a cluster of voxels in the left amygdala during threat vs safety. These results suggest that increased amygdala-BNST connectivity during threat may be a key neural correlate of the enhanced negativity bias found in conservatism. © The Author (2017). Published by Oxford University Press.
Johnen, Vanessa M; Neubert, Franz-Xaver; Buch, Ethan R; Verhagen, Lennart; O'Reilly, Jill X; Mars, Rogier B; Rushworth, Matthew F S
2015-01-01
Correlations in brain activity between two areas (functional connectivity) have been shown to relate to their underlying structural connections. We examine the possibility that functional connectivity also reflects short-term changes in synaptic efficacy. We demonstrate that paired transcranial magnetic stimulation (TMS) near ventral premotor cortex (PMv) and primary motor cortex (M1) with a short 8-ms inter-pulse interval evoking synchronous pre- and post-synaptic activity and which strengthens interregional connectivity between the two areas in a pattern consistent with Hebbian plasticity, leads to increased functional connectivity between PMv and M1 as measured with functional magnetic resonance imaging (fMRI). Moreover, we show that strengthening connectivity between these nodes has effects on a wider network of areas, such as decreasing coupling in a parallel motor programming stream. A control experiment revealed that identical TMS pulses at identical frequencies caused no change in fMRI-measured functional connectivity when the inter-pulse-interval was too long for Hebbian-like plasticity. DOI: http://dx.doi.org/10.7554/eLife.04585.001 PMID:25664941
A loop-based neural architecture for structured behavior encoding and decoding.
Gisiger, Thomas; Boukadoum, Mounir
2018-02-01
We present a new type of artificial neural network that generalizes on anatomical and dynamical aspects of the mammal brain. Its main novelty lies in its topological structure which is built as an array of interacting elementary motifs shaped like loops. These loops come in various types and can implement functions such as gating, inhibitory or executive control, or encoding of task elements to name a few. Each loop features two sets of neurons and a control region, linked together by non-recurrent projections. The two neural sets do the bulk of the loop's computations while the control unit specifies the timing and the conditions under which the computations implemented by the loop are to be performed. By functionally linking many such loops together, a neural network is obtained that may perform complex cognitive computations. To demonstrate the potential offered by such a system, we present two neural network simulations. The first illustrates the structure and dynamics of a single loop implementing a simple gating mechanism. The second simulation shows how connecting four loops in series can produce neural activity patterns that are sufficient to pass a simplified delayed-response task. We also show that this network reproduces electrophysiological measurements gathered in various regions of the brain of monkeys performing similar tasks. We also demonstrate connections between this type of neural network and recurrent or long short-term memory network models, and suggest ways to generalize them for future artificial intelligence research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Irrational exuberance and neural crash warning signals during endogenous experimental market bubbles
Smith, Alec; Lohrenz, Terry; King, Justin; Montague, P. Read; Camerer, Colin F.
2014-01-01
Groups of humans routinely misassign value to complex future events, especially in settings involving the exchange of resources. If properly structured, experimental markets can act as excellent probes of human group-level valuation mechanisms during pathological overvaluations—price bubbles. The connection between the behavioral and neural underpinnings of such phenomena has been absent, in part due to a lack of enabling technology. We used a multisubject functional MRI paradigm to measure neural activity in human subjects participating in experimental asset markets in which endogenous price bubbles formed and crashed. Although many ideas exist about how and why such bubbles may form and how to identify them, our experiment provided a window on the connection between neural responses and behavioral acts (buying and selling) that created the bubbles. We show that aggregate neural activity in the nucleus accumbens (NAcc) tracks the price bubble and that NAcc activity aggregated within a market predicts future price changes and crashes. Furthermore, the lowest-earning subjects express a stronger tendency to buy as a function of measured NAcc activity. Conversely, we report a signal in the anterior insular cortex in the highest earners that precedes the impending price peak, is associated with a higher propensity to sell in high earners, and that may represent a neural early warning signal in these subjects. Such markets could be a model system to understand neural and behavior mechanisms in other settings where emergent group-level activity exhibits mistaken belief or valuation. PMID:25002476
Takeuchi, Naoyuki; Izumi, Shin-Ichi
2015-01-01
Motor recovery after stroke involves developing new neural connections, acquiring new functions, and compensating for impairments. These processes are related to neural plasticity. Various novel stroke rehabilitation techniques based on basic science and clinical studies of neural plasticity have been developed to aid motor recovery. Current research aims to determine whether using combinations of these techniques can synergistically improve motor recovery. When different stroke neurorehabilitation therapies are combined, the timing of each therapeutic program must be considered to enable optimal neural plasticity. Synchronizing stroke rehabilitation with voluntary neural and/or muscle activity can lead to motor recovery by targeting Hebbian plasticity. This reinforces the neural connections between paretic muscles and the residual motor area. Homeostatic metaplasticity, which stabilizes the activity of neurons and neural circuits, can either augment or reduce the synergic effect depending on the timing of combination therapy and types of neurorehabilitation that are used. Moreover, the possibility that the threshold and degree of induced plasticity can be altered after stroke should be noted. This review focuses on the mechanisms underlying combinations of neurorehabilitation approaches and their future clinical applications. We suggest therapeutic approaches for cortical reorganization and maximal functional gain in patients with stroke, based on the processes of Hebbian plasticity and homeostatic metaplasticity. Few of the possible combinations of stroke neurorehabilitation have been tested experimentally; therefore, further studies are required to determine the appropriate combination for motor recovery. PMID:26157374
Smith, Alec; Lohrenz, Terry; King, Justin; Montague, P Read; Camerer, Colin F
2014-07-22
Groups of humans routinely misassign value to complex future events, especially in settings involving the exchange of resources. If properly structured, experimental markets can act as excellent probes of human group-level valuation mechanisms during pathological overvaluations--price bubbles. The connection between the behavioral and neural underpinnings of such phenomena has been absent, in part due to a lack of enabling technology. We used a multisubject functional MRI paradigm to measure neural activity in human subjects participating in experimental asset markets in which endogenous price bubbles formed and crashed. Although many ideas exist about how and why such bubbles may form and how to identify them, our experiment provided a window on the connection between neural responses and behavioral acts (buying and selling) that created the bubbles. We show that aggregate neural activity in the nucleus accumbens (NAcc) tracks the price bubble and that NAcc activity aggregated within a market predicts future price changes and crashes. Furthermore, the lowest-earning subjects express a stronger tendency to buy as a function of measured NAcc activity. Conversely, we report a signal in the anterior insular cortex in the highest earners that precedes the impending price peak, is associated with a higher propensity to sell in high earners, and that may represent a neural early warning signal in these subjects. Such markets could be a model system to understand neural and behavior mechanisms in other settings where emergent group-level activity exhibits mistaken belief or valuation.
Posner, Jonathan; Rauh, Virginia; Gruber, Allison; Gat, Inbal; Wang, Zhishun; Peterson, Bradley S
2013-07-30
Current neurocognitive models of attention-deficit/hyperactivity disorder (ADHD) suggest that neural circuits involving both attentional and affective processing make independent contributions to the phenomenology of the disorder. However, a clear dissociation of attentional and affective circuits and their behavioral correlates has yet to be shown in medication-naïve children with ADHD. Using resting-state functional connectivity MRI (rs-fcMRI) in a cohort of medication naïve children with (N=22) and without (N=20) ADHD, we demonstrate that children with ADHD have reduced connectivity in two neural circuits: one underlying executive attention (EA) and the other emotional regulation (ER). We also demonstrate a double dissociation between these two neural circuits and their behavioral correlates such that reduced connectivity in the EA circuit correlates with executive attention deficits but not with emotional lability, while on the other hand, reduced connectivity in the ER circuit correlates with emotional lability but not with executive attention deficits. These findings suggest potential avenues for future research such as examining treatment effects on these two neural circuits as well as the potential prognostic and developmental significance of disturbances in one circuit vs the other. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Zhao, Shuzhi; Li, Yangding; Li, Min; Wang, Ruonan; Bi, Yanzhi; Zhang, Yajuan; Lu, Xiaoqi; Yu, Dahua; Yang, Likun; Yuan, Kai
2018-06-20
Studying the neural correlates of craving to smoke is of great importance to improve treatment outcomes in smoking addiction. According to previous studies, the critical roles of striatum and frontal brain regions had been revealed in addiction. However, few studies focused on the hub of brain regions in the 12 h abstinence induced craving in young smokers. Thirty-one young male smokers were enrolled in the present study. A within-subject experiment design was carried out to compare functional connectivity density between 12-h smoking abstinence and smoking satiety conditions during resting state in young adult smokers by using functional connectivity density mapping (FCDM). Then, the functional connectivity density changes during smoking abstinence versus satiety were further used to examine correlations with abstinence-induced changes in subjective craving. We found young adult smokers in abstinence state (vs satiety) had higher local functional connectivity density (lFCD) and global functional connectivity density (gFCD) in brain regions including striatal subregions (i.e., bilateral caudate and putamen), frontal regions (i.e., anterior cingulate cortex (ACC) and orbital frontal cortex (OFC)) and bilateral insula. We also found higher lFCD during smoking abstinence (vs satiety) in bilateral thalamus. Additionally, the lFCD changes of the left ACC, bilateral caudate and right OFC were positively correlated with the changes in craving induced by abstinence (i.e., abstinence minus satiety) in young adult smokers. The present findings improve the understanding of the effects of acute smoking abstinence on the hubs of brain gray matter in the abstinence-induces craving and may contribute new insights into the neural mechanism of abstinence-induced craving in young smokers in smoking addiction.
Qin, Pengmin; Duncan, Niall W; Wiebking, Christine; Gravel, Paul; Lyttelton, Oliver; Hayes, Dave J; Verhaeghe, Jeroen; Kostikov, Alexey; Schirrmacher, Ralf; Reader, Andrew J; Northoff, Georg
2012-01-01
Recent imaging studies have demonstrated that levels of resting γ-aminobutyric acid (GABA) in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABA(A) receptors, in the changes in brain activity between the eyes closed (EC) and eyes open (EO) state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: an EO and EC block design, allowing the modeling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [(18)F]Flumazenil PET to measure GABA(A) receptor binding potentials. It was demonstrated that the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex also predicted the change in functional connectivity between the visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABA(A) receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.
Chen, Yu-Chen; Li, Xiaowei; Liu, Lijie; Wang, Jian; Lu, Chun-Qiang; Yang, Ming; Jiao, Yun; Zang, Feng-Chao; Radziwon, Kelly; Chen, Guang-Di; Sun, Wei; Krishnan Muthaiah, Vijaya Prakash; Salvi, Richard; Teng, Gao-Jun
2015-01-01
Hearing loss often triggers an inescapable buzz (tinnitus) and causes everyday sounds to become intolerably loud (hyperacusis), but exactly where and how this occurs in the brain is unknown. To identify the neural substrate for these debilitating disorders, we induced both tinnitus and hyperacusis with an ototoxic drug (salicylate) and used behavioral, electrophysiological, and functional magnetic resonance imaging (fMRI) techniques to identify the tinnitus–hyperacusis network. Salicylate depressed the neural output of the cochlea, but vigorously amplified sound-evoked neural responses in the amygdala, medial geniculate, and auditory cortex. Resting-state fMRI revealed hyperactivity in an auditory network composed of inferior colliculus, medial geniculate, and auditory cortex with side branches to cerebellum, amygdala, and reticular formation. Functional connectivity revealed enhanced coupling within the auditory network and segments of the auditory network and cerebellum, reticular formation, amygdala, and hippocampus. A testable model accounting for distress, arousal, and gating of tinnitus and hyperacusis is proposed. DOI: http://dx.doi.org/10.7554/eLife.06576.001 PMID:25962854
Silk, Jennifer S.; Ladouceur, Cecile D.; Ryan, Neal D.; Dahl, Ronald E.; Forbes, Erika E.; Siegle, Greg J.
2016-01-01
Vigilance and avoidance of threat are observed in anxious adults during laboratory tasks, and are posited to have real-world clinical relevance, but data are mixed in anxious youth. We propose that vigilance-avoidance patterns will become evident in anxious youth through a focus on individual differences and real-world strategic avoidance. Decreased functional connectivity between the amygdala and prefrontal cortex (PFC) could play a mechanistic role in this link. 78 clinically anxious youth completed a dot-probe task to assess vigilance to threat while undergoing fMRI. Real-world avoidance was assessed using Ecological Momentary Assessment (EMA) of self-reported suppression and distraction during negative life events. Vigilance towards threat was positively associated with EMA distraction and suppression. Functional connectivity between a right amygdala seed region and dorsomedial and right dorsolateral PFC regions was inversely related to EMA distraction. Dorsolateral PFC-amygdalar connectivity statistically mediated the relationship between attentional vigilance and real-world distraction. Findings suggest anxious youth showing attentional vigilance toward threat are more likely to use suppression and distraction to regulate negative emotions. Reduced PFC control over limbic reactivity is a possible neural substrate of this pattern. These findings lend ecological validity to laboratory vigilance assessments and suggest PFC-amygdalar connectivity is a neural mechanism bridging laboratory and naturalistic contexts. PMID:27010577
Su, Yu-Shiang; Chen, Jheng-Ting; Tang, Yong-Jheng; Yuan, Shu-Yun; McCarrey, Anna C; Goh, Joshua Oon Soo
2018-05-21
Appropriate neural representation of value and application of decision strategies are necessary to make optimal investment choices in real life. Normative human aging alters neural selectivity and control processing in brain regions implicated in value-based decision processing including striatal, medial temporal, and frontal areas. However, the specific neural mechanisms of how these age-related functional brain changes modulate value processing in older adults remain unclear. Here, young and older adults performed a lottery-choice functional magnetic resonance imaging experiment in which probabilities of winning different magnitudes of points constituted expected values of stakes. Increasing probability of winning modulated striatal responses in young adults, but modulated medial temporal and ventromedial prefrontal areas instead in older adults. Older adults additionally engaged higher responses in dorso-medio-lateral prefrontal cortices to more unfavorable stakes. Such extrastriatal involvement mediated age-related increase in risk-taking decisions. Furthermore, lower resting-state functional connectivity between lateral prefrontal and striatal areas also predicted lottery-choice task risk-taking that was mediated by higher functional connectivity between prefrontal and medial temporal areas during the task, with this mediation relationship being stronger in older than younger adults. Overall, we report evidence of a systemic neural mechanistic change in processing of probability in mixed-lottery values with age that increases risk-taking of unfavorable stakes in older adults. Moreover, individual differences in age-related effects on baseline frontostriatal communication may be a central determinant of such subsequent age differences in value-based decision neural processing and resulting behaviors. Copyright © 2018 Elsevier Inc. All rights reserved.
Two distinct neural mechanisms underlying indirect reciprocity.
Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki
2014-03-18
Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards.
Two distinct neural mechanisms underlying indirect reciprocity
Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki
2014-01-01
Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards. PMID:24591599
Dynamic Neural Networks Supporting Memory Retrieval
St. Jacques, Peggy L.; Kragel, Philip A.; Rubin, David C.
2011-01-01
How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) Medial Prefrontal Cortex (PFC) Network, associated with self-referential processes, 2) Medial Temporal Lobe (MTL) Network, associated with memory, 3) Frontoparietal Network, associated with strategic search, and 4) Cingulooperculum Network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior. PMID:21550407
Cheng, Wei; Rolls, Edmund T; Zhang, Jie; Sheng, Wenbo; Ma, Liang; Wan, Lin; Luo, Qiang; Feng, Jianfeng
2017-03-01
A powerful new method is described called Knowledge based functional connectivity Enrichment Analysis (KEA) for interpreting resting state functional connectivity, using circuits that are functionally identified using search terms with the Neurosynth database. The method derives its power by focusing on neural circuits, sets of brain regions that share a common biological function, instead of trying to interpret single functional connectivity links. This provides a novel way of investigating how task- or function-related networks have resting state functional connectivity differences in different psychiatric states, provides a new way to bridge the gap between task and resting-state functional networks, and potentially helps to identify brain networks that might be treated. The method was applied to interpreting functional connectivity differences in autism. Functional connectivity decreases at the network circuit level in 394 patients with autism compared with 473 controls were found in networks involving the orbitofrontal cortex, anterior cingulate cortex, middle temporal gyrus cortex, and the precuneus, in networks that are implicated in the sense of self, face processing, and theory of mind. The decreases were correlated with symptom severity. Copyright © 2017. Published by Elsevier Inc.
Functional connectivity evidence of cortico-cortico inhibition in temporal lobe epilepsy.
Tracy, Joseph I; Osipowicz, Karol; Spechler, Philip; Sharan, Ashwini; Skidmore, Christopher; Doucet, Gaelle; Sperling, Michael R
2014-01-01
Epileptic seizures can initiate a neural circuit and lead to aberrant neural communication with brain areas outside the epileptogenic region. We focus on interictal activity in focal temporal lobe epilepsy and evaluate functional connectivity (FC) differences that emerge as function of bilateral versus strictly unilateral epileptiform activity. We assess the strength of FC at rest between the ictal and non-ictal temporal lobes, in addition to whole brain connectivity with the ictal temporal lobe. Results revealed strong connectivity between the temporal lobes for both patient groups, but this did not vary as a function of unilateral versus bilateral interictal status. Both the left and right unilateral temporal lobe groups showed significant anti-correlated activity in regions outside the epileptogenic temporal lobe, primarily involving the contralateral (non-ictal/non-pathologic) hemisphere, with precuneus involvement prominent. The bilateral groups did not show this contralateral anti-correlated activity. This anti-correlated connectivity may represent a form of protective and adaptive inhibition, helping to constrain epileptiform activity to the pathologic temporal lobe. The absence of this activity in the bilateral groups may be indicative of flawed inhibitory mechanisms, helping to explain their more widespread epileptiform activity. Our data suggest that the location and build up of epilepsy networks in the brain are not truly random, and are not limited to the formation of strictly epileptogenic networks. Functional networks may develop to take advantage of the regulatory function of structures such as the precuneus to instantiate an anti-correlated network, generating protective cortico-cortico inhibition for the purpose of limiting seizure spread or epileptogenesis. Copyright © 2012 Wiley Periodicals, Inc.
Andoh, Jamila; Zatorre, Robert J.
2011-01-01
Repetitive transcranial magnetic stimulation (rTMS) has been shown to interfere with many components of language processing, including semantic, syntactic, and phonologic. However, not much is known about its effects on nonlinguistic auditory processing, especially its action on Heschl's gyrus (HG). We aimed to investigate the behavioral and neural basis of rTMS during a melody processing task, while targeting the left HG, the right HG, and the Vertex as a control site. Response times (RT) were normalized relative to the baseline-rTMS (Vertex) and expressed as percentage change from baseline (%RT change). We also looked at sex differences in rTMS-induced response as well as in functional connectivity during melody processing using rTMS and functional magnetic resonance imaging (fMRI). fMRI results showed an increase in the right HG compared with the left HG during the melody task, as well as sex differences in functional connectivity indicating a greater interhemispheric connectivity between left and right HG in females compared with males. TMS results showed that 10 Hz-rTMS targeting the right HG induced differential effects according to sex, with a facilitation of performance in females and an impairment of performance in males. We also found a differential correlation between the %RT change after 10 Hz-rTMS targeting the right HG and the interhemispheric functional connectivity between right and left HG, indicating that an increase in interhemispheric functional connectivity was associated with a facilitation of performance. This is the first study to report a differential rTMS-induced interference with melody processing depending on sex. In addition, we showed a relationship between the interference induced by rTMS on behavioral performance and the neural activity in the network connecting left and right HG, suggesting that the interhemispheric functional connectivity could determine the degree of modulation of behavioral performance. PMID:21811478
Sitek, Kevin R; Cai, Shanqing; Beal, Deryk S; Perkell, Joseph S; Guenther, Frank H; Ghosh, Satrajit S
2016-01-01
Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex (OFC). Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and OFC may underlie successful compensatory mechanisms by more fluent stutterers.
Common and Distinct Neural Mechanisms of Attentional Switching and Response Conflict
Kim, Chobok; Johnson, Nathan F.; Gold, Brian T.
2012-01-01
The human capacities for overcoming prepotent actions and flexibly switching between tasks represent cornerstones of cognitive control. Functional neuroimaging has implicated a diverse set of brain regions contributing to each of these cognitive control processes. However, the extent to which attentional switching and response conflict draw on shared or distinct neural mechanisms remains unclear. The current study examined the neural correlates of response conflict and attentional switching using event-related functional magnetic resonance imaging (fMRI) and a fully randomized 2×2 design. We manipulated an arrow-word version of the Stroop task to measure conflict and switching in the context of a single task decision, in response to a common set of stimuli. Under these common conditions, both behavioral and imaging data showed significant main effects of conflict and switching but no interaction. However, conjunction analyses identified frontal regions involved in both switching and response conflict, including the dorsal anterior cingulate cortex (dACC) and left inferior frontal junction. In addition, connectivity analyses demonstrated task-dependent functional connectivity patterns between dACC and inferior temporal cortex for attentional switching and between dACC and posterior parietal cortex for response conflict. These results suggest that the brain makes use of shared frontal regions, but can dynamically modulate the connectivity patterns of some of those regions, to deal with attentional switching and response conflict. PMID:22750124
Individual differences in self-reported self-control predict successful emotion regulation.
Paschke, Lena M; Dörfel, Denise; Steimke, Rosa; Trempler, Ima; Magrabi, Amadeus; Ludwig, Vera U; Schubert, Torsten; Stelzel, Christine; Walter, Henrik
2016-08-01
Both self-control and emotion regulation enable individuals to adapt to external circumstances and social contexts, and both are assumed to rely on the overlapping neural resources. Here, we tested whether high self-reported self-control is related to successful emotion regulation on the behavioral and neural level. One hundred eight participants completed three self-control questionnaires and regulated their negative emotions during functional magnetic resonance imaging using reappraisal (distancing). Trait self-control correlated positively with successful emotion regulation both subjectively and neurally, as indicated by online ratings of negative emotions and functional connectivity strength between the amygdala and prefrontal areas, respectively. This stronger overall connectivity of the left amygdala was related to more successful subjective emotion regulation. Comparing amygdala activity over time showed that high self-controllers successfully maintained down-regulation of the left amygdala over time, while low self-controllers failed to down-regulate towards the end of the experiment. This indicates that high self-controllers are better at maintaining a motivated state supporting emotion regulation over time. Our results support assumptions concerning a close relation of self-control and emotion regulation as two domains of behavioral control. They further indicate that individual differences in functional connectivity between task-related brain areas directly relate to differences in trait self-control. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Common and distinct neural mechanisms of attentional switching and response conflict.
Kim, Chobok; Johnson, Nathan F; Gold, Brian T
2012-08-21
The human capacities for overcoming prepotent actions and flexibly switching between tasks represent cornerstones of cognitive control. Functional neuroimaging has implicated a diverse set of brain regions contributing to each of these cognitive control processes. However, the extent to which attentional switching and response conflict draw on shared or distinct neural mechanisms remains unclear. The current study examined the neural correlates of response conflict and attentional switching using event-related functional magnetic resonance imaging (fMRI) and a fully randomized 2×2 design. We manipulated an arrow-word version of the Stroop task to measure conflict and switching in the context of a single task decision, in response to a common set of stimuli. Under these common conditions, both behavioral and imaging data showed significant main effects of conflict and switching but no interaction. However, conjunction analyses identified frontal regions involved in both switching and response conflict, including the dorsal anterior cingulate cortex (dACC) and left inferior frontal junction. In addition, connectivity analyses demonstrated task-dependent functional connectivity patterns between dACC and inferior temporal cortex for attentional switching and between dACC and posterior parietal cortex for response conflict. These results suggest that the brain makes use of shared frontal regions, but can dynamically modulate the connectivity patterns of some of those regions, to deal with attentional switching and response conflict. Copyright © 2012 Elsevier B.V. All rights reserved.
Plasticity of brain wave network interactions and evolution across physiologic states
Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.
2015-01-01
Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of network connectivity and link strength, while at the same time each frequency-specific network is characterized by a different signature pattern of sleep-stage stratification, reflecting a remarkable flexibility in response to change in physiologic state. These new aspects of neural plasticity demonstrate that in addition to dominant brain waves, the network of brain wave interactions is a previously unrecognized hallmark of physiologic state and function. PMID:26578891
Anisotropic connectivity implements motion-based prediction in a spiking neural network.
Kaplan, Bernhard A; Lansner, Anders; Masson, Guillaume S; Perrinet, Laurent U
2013-01-01
Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input to establish a coherent representation of the world. Although it is becoming generally accepted, it is not clear on which level spiking neural networks may implement predictive coding and what function their connectivity may have. We present a network model of conductance-based integrate-and-fire neurons inspired by the architecture of retinotopic cortical areas that assumes predictive coding is implemented through network connectivity, namely in the connection delays and in selectiveness for the tuning properties of source and target cells. We show that the applied connection pattern leads to motion-based prediction in an experiment tracking a moving dot. In contrast to our proposed model, a network with random or isotropic connectivity fails to predict the path when the moving dot disappears. Furthermore, we show that a simple linear decoding approach is sufficient to transform neuronal spiking activity into a probabilistic estimate for reading out the target trajectory.
ERIC Educational Resources Information Center
Liu, Jiangang; Li, Jun; Rieth, Cory A.; Huber, David E.; Tian, Jie; Lee, Kang
2011-01-01
The present study employed dynamic causal modeling to investigate the effective functional connectivity between regions of the neural network involved in top-down letter processing. We used an illusory letter detection paradigm in which participants detected letters while viewing pure noise images. When participants detected letters, the response…
Deshpande, Gopikrishna; Wang, Peng; Rangaprakash, D; Wilamowski, Bogdan
2015-12-01
Automated recognition and classification of brain diseases are of tremendous value to society. Attention deficit hyperactivity disorder (ADHD) is a diverse spectrum disorder whose diagnosis is based on behavior and hence will benefit from classification utilizing objective neuroimaging measures. Toward this end, an international competition was conducted for classifying ADHD using functional magnetic resonance imaging data acquired from multiple sites worldwide. Here, we consider the data from this competition as an example to illustrate the utility of fully connected cascade (FCC) artificial neural network (ANN) architecture for performing classification. We employed various directional and nondirectional brain connectivity-based methods to extract discriminative features which gave better classification accuracy compared to raw data. Our accuracy for distinguishing ADHD from healthy subjects was close to 90% and between the ADHD subtypes was close to 95%. Further, we show that, if properly used, FCC ANN performs very well compared to other classifiers such as support vector machines in terms of accuracy, irrespective of the feature used. Finally, the most discriminative connectivity features provided insights about the pathophysiology of ADHD and showed reduced and altered connectivity involving the left orbitofrontal cortex and various cerebellar regions in ADHD.
Comments on "The multisynapse neural network and its application to fuzzy clustering".
Yu, Jian; Hao, Pengwei
2005-05-01
In the above-mentioned paper, Wei and Fahn proposed a neural architecture, the multisynapse neural network, to solve constrained optimization problems including high-order, logarithmic, and sinusoidal forms, etc. As one of its main applications, a fuzzy bidirectional associative clustering network (FBACN) was proposed for fuzzy-partition clustering according to the objective-functional method. The connection between the objective-functional-based fuzzy c-partition algorithms and FBACN is the Lagrange multiplier approach. Unfortunately, the Lagrange multiplier approach was incorrectly applied so that FBACN does not equivalently minimize its corresponding constrained objective-function. Additionally, Wei and Fahn adopted traditional definition of fuzzy c-partition, which is not satisfied by FBACN. Therefore, FBACN can not solve constrained optimization problems, either.
The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury.
Roy, Arnab; Bernier, Rachel A; Wang, Jianli; Benson, Monica; French, Jerry J; Good, David C; Hillary, Frank G
2017-01-01
A somewhat perplexing finding in the systems neuroscience has been the observation that physical injury to neural systems may result in enhanced functional connectivity (i.e., hyperconnectivity) relative to the typical network response. The consequences of local or global enhancement of functional connectivity remain uncertain and this is particularly true for the overall metabolic cost of the network. We examine the hyperconnectivity hypothesis in a sample of 14 individuals with TBI with data collected at approximately 3, 6, and 12 months following moderate and severe TBI. As anticipated, individuals with TBI showed increased network strength and cost early after injury, but by one-year post injury hyperconnectivity was more circumscribed to frontal DMN and temporal-parietal attentional control regions. Cost in these subregions was a significant predictor of cognitive performance. Cost-efficiency analysis in the Power 264 data parcellation suggested that at 6 months post injury the network requires higher cost connections to achieve high efficiency as compared to the network 12 months post injury. These results demonstrate that networks self-organize to re-establish connectivity while balancing cost-efficiency trade-offs.
The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury
Roy, Arnab; Bernier, Rachel A.; Wang, Jianli; Benson, Monica; French, Jerry J.; Good, David C.; Hillary, Frank G.
2017-01-01
A somewhat perplexing finding in the systems neuroscience has been the observation that physical injury to neural systems may result in enhanced functional connectivity (i.e., hyperconnectivity) relative to the typical network response. The consequences of local or global enhancement of functional connectivity remain uncertain and this is particularly true for the overall metabolic cost of the network. We examine the hyperconnectivity hypothesis in a sample of 14 individuals with TBI with data collected at approximately 3, 6, and 12 months following moderate and severe TBI. As anticipated, individuals with TBI showed increased network strength and cost early after injury, but by one-year post injury hyperconnectivity was more circumscribed to frontal DMN and temporal-parietal attentional control regions. Cost in these subregions was a significant predictor of cognitive performance. Cost-efficiency analysis in the Power 264 data parcellation suggested that at 6 months post injury the network requires higher cost connections to achieve high efficiency as compared to the network 12 months post injury. These results demonstrate that networks self-organize to re-establish connectivity while balancing cost-efficiency trade-offs. PMID:28422992
Stress affects the neural ensemble for integrating new information and prior knowledge.
Vogel, Susanne; Kluen, Lisa Marieke; Fernández, Guillén; Schwabe, Lars
2018-06-01
Prior knowledge, represented as a schema, facilitates memory encoding. This schema-related learning is assumed to rely on the medial prefrontal cortex (mPFC) that rapidly integrates new information into the schema, whereas schema-incongruent or novel information is encoded by the hippocampus. Stress is a powerful modulator of prefrontal and hippocampal functioning and first studies suggest a stress-induced deficit of schema-related learning. However, the underlying neural mechanism is currently unknown. To investigate the neural basis of a stress-induced schema-related learning impairment, participants first acquired a schema. One day later, they underwent a stress induction or a control procedure before learning schema-related and novel information in the MRI scanner. In line with previous studies, learning schema-related compared to novel information activated the mPFC, angular gyrus, and precuneus. Stress, however, affected the neural ensemble activated during learning. Whereas the control group distinguished between sets of brain regions for related and novel information, stressed individuals engaged the hippocampus even when a relevant schema was present. Additionally, stressed participants displayed aberrant functional connectivity between brain regions involved in schema processing when encoding novel information. The failure to segregate functional connectivity patterns depending on the presence of prior knowledge was linked to impaired performance after stress. Our results show that stress affects the neural ensemble underlying the efficient use of schemas during learning. These findings may have relevant implications for clinical and educational settings. Copyright © 2018 Elsevier Inc. All rights reserved.
Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure.
Göttlich, Martin; Jandl, Nico M; Wojak, Jann F; Sprenger, Andreas; von der Gablentz, Janina; Münte, Thomas F; Krämer, Ulrike M; Helmchen, Christoph
2014-01-01
Patients with bilateral vestibular failure (BVF) suffer from gait unsteadiness, oscillopsia and impaired spatial orientation. Brain imaging studies applying caloric irrigation to patients with BVF have shown altered neural activity of cortical visual-vestibular interaction: decreased bilateral neural activity in the posterior insula and parietal operculum and decreased deactivations in the visual cortex. It is unknown how this affects functional connectivity in the resting brain and how changes in connectivity are related to vestibular impairment. We applied a novel data driven approach based on graph theory to investigate altered whole-brain resting-state functional connectivity in BVF patients (n= 22) compared to age- and gender-matched healthy controls (n= 25) using resting-state fMRI. Changes in functional connectivity were related to subjective (vestibular scores) and objective functional parameters of vestibular impairment, specifically, the adaptive changes during active (self-guided) and passive (investigator driven) head impulse test (HIT) which reflects the integrity of the vestibulo-ocular reflex (VOR). BVF patients showed lower bilateral connectivity in the posterior insula and parietal operculum but higher connectivity in the posterior cerebellum compared to controls. Seed-based analysis revealed stronger connectivity from the right posterior insula to the precuneus, anterior insula, anterior cingulate cortex and the middle frontal gyrus. Excitingly, functional connectivity in the supramarginal gyrus (SMG) of the inferior parietal lobe and posterior cerebellum correlated with the increase of VOR gain during active as compared to passive HIT, i.e., the larger the adaptive VOR changes the larger was the increase in regional functional connectivity. Using whole brain resting-state connectivity analysis in BVF patients we show that enduring bilateral deficient or missing vestibular input leads to changes in resting-state connectivity of the brain. These changes in the resting brain are robust and task-independent as they were found in the absence of sensory stimulation and without a region-related a priori hypothesis. Therefore they may indicate a fundamental disease-related change in the resting brain. They may account for the patients' persistent deficits in visuo-spatial attention, spatial orientation and unsteadiness. The relation of increasing connectivity in the inferior parietal lobe, specifically SMG, to improvement of VOR during active head movements reflects cortical plasticity in BVF and may play a clinical role in vestibular rehabilitation.
Action and semantic tool knowledge - Effective connectivity in the underlying neural networks.
Kleineberg, Nina N; Dovern, Anna; Binder, Ellen; Grefkes, Christian; Eickhoff, Simon B; Fink, Gereon R; Weiss, Peter H
2018-04-26
Evidence from neuropsychological and imaging studies indicate that action and semantic knowledge about tools draw upon distinct neural substrates, but little is known about the underlying interregional effective connectivity. With fMRI and dynamic causal modeling (DCM) we investigated effective connectivity in the left-hemisphere (LH) while subjects performed (i) a function knowledge and (ii) a value knowledge task, both addressing semantic tool knowledge, and (iii) a manipulation (action) knowledge task. Overall, the results indicate crosstalk between action nodes and semantic nodes. Interestingly, effective connectivity was weakened between semantic nodes and action nodes during the manipulation task. Furthermore, pronounced modulations of effective connectivity within the fronto-parietal action system of the LH (comprising lateral occipito-temporal cortex, intraparietal sulcus, supramarginal gyrus, inferior frontal gyrus) were observed in a bidirectional manner during the processing of action knowledge. In contrast, the function and value knowledge tasks resulted in a significant strengthening of the effective connectivity between visual cortex and fusiform gyrus. Importantly, this modulation was present in both semantic tasks, indicating that processing different aspects of semantic knowledge about tools evokes similar effective connectivity patterns. Data revealed that interregional effective connectivity during the processing of tool knowledge occurred in a bidirectional manner with a weakening of connectivity between areas engaged in action and semantic knowledge about tools during the processing of action knowledge. Moreover, different semantic tool knowledge tasks elicited similar effective connectivity patterns. © 2018 Wiley Periodicals, Inc.
Chen, Heng; Uddin, Lucina Q; Duan, Xujun; Zheng, Junjie; Long, Zhiliang; Zhang, Youxue; Guo, Xiaonan; Zhang, Yan; Zhao, Jingping; Chen, Huafu
2017-11-01
Schizophrenia and autism spectrum disorder (ASD) are two prevalent neurodevelopmental disorders sharing some similar genetic basis and clinical features. The extent to which they share common neural substrates remains unclear. Resting-state fMRI data were collected from 35 drug-naïve adolescent participants with first-episode schizophrenia (15.6 ± 1.8 years old) and 31 healthy controls (15.4 ± 1.6 years old). Data from 22 participants with ASD (13.1 ± 3.1 years old) and 21 healthy controls (12.9 ± 2.9 years old) were downloaded from the Autism Brain Imaging Data Exchange. Resting-state functional networks were constructed using predefined regions of interest. Multivariate pattern analysis combined with multi-task regression feature selection methods were conducted in two datasets separately. Classification between individuals with disorders and controls was achieved with high accuracy (schizophrenia dataset: accuracy = 83%; ASD dataset: accuracy = 80%). Shared atypical brain connections contributing to classification were mostly present in the default mode network (DMN) and salience network (SN). These functional connections were further related to severity of social deficits in ASD (p = 0.002). Distinct atypical connections were also more related to the DMN and SN, but showed different atypical connectivity patterns between the two disorders. These results suggest some common neural mechanisms contributing to schizophrenia and ASD, and may aid in understanding the pathology of these two neurodevelopmental disorders. Autism Res 2017, 10: 1776-1786. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism spectrum disorder (ASD) and schizophrenia are two common neurodevelopmental disorders which share several genetic and behavioral features. The present study identified common neural mechanisms contributing to ASD and schizophrenia using resting-state functional MRI data. The results may help to understand the pathology of these two neurodevelopmental disorders. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Social in, social out: How the brain responds to social language with more social language.
O'Donnell, Matthew Brook; Falk, Emily B; Lieberman, Matthew D
Social connection is a fundamental human need. As such, people's brains are sensitized to social cues, such as those carried by language, and to promoting social communication. The neural mechanisms of certain key building blocks in this process, such as receptivity to and reproduction of social language, however, are not known. We combined quantitative linguistic analysis and neuroimaging to connect neural activity in brain regions used to simulate the mental states of others with exposure to, and re-transmission of, social language. Our results link findings on successful idea transmission from communication science, sociolinguistics and cognitive neuroscience to prospectively predict the degree of social language that participants utilize when re-transmitting ideas as a function of 1) initial language inputs and 2) neural activity during idea exposure.
The hierarchical brain network for face recognition.
Zhen, Zonglei; Fang, Huizhen; Liu, Jia
2013-01-01
Numerous functional magnetic resonance imaging (fMRI) studies have identified multiple cortical regions that are involved in face processing in the human brain. However, few studies have characterized the face-processing network as a functioning whole. In this study, we used fMRI to identify face-selective regions in the entire brain and then explore the hierarchical structure of the face-processing network by analyzing functional connectivity among these regions. We identified twenty-five regions mainly in the occipital, temporal and frontal cortex that showed a reliable response selective to faces (versus objects) across participants and across scan sessions. Furthermore, these regions were clustered into three relatively independent sub-networks in a face-recognition task on the basis of the strength of functional connectivity among them. The functionality of the sub-networks likely corresponds to the recognition of individual identity, retrieval of semantic knowledge and representation of emotional information. Interestingly, when the task was switched to object recognition from face recognition, the functional connectivity between the inferior occipital gyrus and the rest of the face-selective regions were significantly reduced, suggesting that this region may serve as an entry node in the face-processing network. In sum, our study provides empirical evidence for cognitive and neural models of face recognition and helps elucidate the neural mechanisms underlying face recognition at the network level.
NASA Astrophysics Data System (ADS)
Wan, Li; Zhou, Qinghua
2007-10-01
The stability property of stochastic hybrid bidirectional associate memory (BAM) neural networks with discrete delays is considered. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the delay-independent sufficient conditions to guarantee the exponential stability of the equilibrium solution for such networks are given by using the nonnegative semimartingale convergence theorem.
Neural field theory of perceptual echo and implications for estimating brain connectivity
NASA Astrophysics Data System (ADS)
Robinson, P. A.; Pagès, J. C.; Gabay, N. C.; Babaie, T.; Mukta, K. N.
2018-04-01
Neural field theory is used to predict and analyze the phenomenon of perceptual echo in which random input stimuli at one location are correlated with electroencephalographic responses at other locations. It is shown that this echo correlation (EC) yields an estimate of the transfer function from the stimulated point to other locations. Modal analysis then explains the observed spatiotemporal structure of visually driven EC and the dominance of the alpha frequency; two eigenmodes of similar amplitude dominate the response, leading to temporal beating and a line of low correlation that runs from the crown of the head toward the ears. These effects result from mode splitting and symmetry breaking caused by interhemispheric coupling and cortical folding. It is shown how eigenmodes obtained from functional magnetic resonance imaging experiments can be combined with temporal dynamics from EC or other evoked responses to estimate the spatiotemporal transfer function between any two points and hence their effective connectivity.
Lewis, John D.; Elman, Jeffrey L.
2009-01-01
Theoretical considerations, and findings from computational modeling, comparative neuroanatomy and developmental neuroscience, motivate the hypothesis that a deviant brain growth trajectory will lead to deviant patterns of change in cortico-cortical connectivity. Differences in brain size during development will alter the relative cost and effectiveness of short- and long-distance connections, and should thus impact the growth and retention of connections. Reduced brain size should favor long-distance connectivity; brain overgrowth should favor short-distance connectivity; and inconsistent deviations from the normal growth trajectory – as occurs in autism – should result in potentially disruptive changes to established patterns of functional and physical connectivity during development. To explore this hypothesis, neural networks which modeled inter-hemispheric interaction were grown at the rate of either typically developing children or children with autism. The influence of the length of the inter-hemispheric connections was analyzed at multiple developmental time-points. The networks that modeled autistic growth were less affected by removal of the inter-hemispheric connections than those that modeled normal growth – indicating a reduced reliance on long-distance connections – for short response times, and this difference increased substantially at approximately 24 simulated months of age. The performance of the networks showed a corresponding decline during development. And direct analysis of the connection weights showed a parallel reduction in connectivity. These modeling results support the hypothesis that the deviant growth trajectory in autism spectrum disorders may lead to a disruption of established patterns of functional connectivity during development, with potentially negative behavioral consequences, and a subsequent reduction in physical connectivity. The results are discussed in relation to the growing body of evidence of reduced functional and structural connectivity in autism, and in relation to the behavioral phenotype, particularly the developmental aspects. PMID:18171375
Wu, Zhao-Min; Bralten, Janita; An, Li; Cao, Qing-Jiu; Cao, Xiao-Hua; Sun, Li; Liu, Lu; Yang, Li; Mennes, Maarten; Zang, Yu-Feng; Franke, Barbara; Hoogman, Martine; Wang, Yu-Feng
2017-08-01
Few studies have investigated verbal working memory-related functional connectivity patterns in participants with attention-deficit/hyperactivity disorder (ADHD). Thus, we aimed to compare working memory-related functional connectivity patterns in healthy children and those with ADHD, and study effects of methylphenidate (MPH). Twenty-two boys with ADHD were scanned twice, under either MPH (single dose, 10 mg) or placebo, in a randomised, cross-over, counterbalanced placebo-controlled design. Thirty healthy boys were scanned once. We used fMRI during a numerical n-back task to examine functional connectivity patterns in case-control and MPH-placebo comparisons, using independent component analysis. There was no significant difference in behavioural performance between children with ADHD, treated with MPH or placebo, and healthy controls. Compared with controls, participants with ADHD under placebo showed increased functional connectivity within fronto-parietal and auditory networks, and decreased functional connectivity within the executive control network. MPH normalized the altered functional connectivity pattern and significantly enhanced functional connectivity within the executive control network, though in non-overlapping areas. Our study contributes to the identification of the neural substrates of working memory. Single dose of MPH normalized the altered brain functional connectivity network, but had no enhancing effect on (non-impaired) behavioural performance.
Yu, Lianchun; De Mazancourt, Marine; Hess, Agathe; Ashadi, Fakhrul R; Klein, Isabelle; Mal, Hervé; Courbage, Maurice; Mangin, Laurence
2016-08-01
Breathing involves a complex interplay between the brainstem automatic network and cortical voluntary command. How these brain regions communicate at rest or during inspiratory loading is unknown. This issue is crucial for several reasons: (i) increased respiratory loading is a major feature of several respiratory diseases, (ii) failure of the voluntary motor and cortical sensory processing drives is among the mechanisms that precede acute respiratory failure, (iii) several cerebral structures involved in responding to inspiratory loading participate in the perception of dyspnea, a distressing symptom in many disease. We studied functional connectivity and Granger causality of the respiratory network in controls and patients with chronic obstructive pulmonary disease (COPD), at rest and during inspiratory loading. Compared with those of controls, the motor cortex area of patients exhibited decreased connectivity with their contralateral counterparts and no connectivity with the brainstem. In the patients, the information flow was reversed at rest with the source of the network shifted from the medulla towards the motor cortex. During inspiratory loading, the system was overwhelmed and the motor cortex became the sink of the network. This major finding may help to understand why some patients with COPD are prone to acute respiratory failure. Network connectivity and causality were related to lung function and illness severity. We validated our connectivity and causality results with a mathematical model of neural network. Our findings suggest a new therapeutic strategy involving the modulation of brain activity to increase motor cortex functional connectivity and improve respiratory muscles performance in patients. Hum Brain Mapp 37:2736-2754, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex
Ulloa, Antonio; Horwitz, Barry
2016-01-01
A number of recent efforts have used large-scale, biologically realistic, neural models to help understand the neural basis for the patterns of activity observed in both resting state and task-related functional neural imaging data. An example of the former is The Virtual Brain (TVB) software platform, which allows one to apply large-scale neural modeling in a whole brain framework. TVB provides a set of structural connectomes of the human cerebral cortex, a collection of neural processing units for each connectome node, and various forward models that can convert simulated neural activity into a variety of functional brain imaging signals. In this paper, we demonstrate how to embed a previously or newly constructed task-based large-scale neural model into the TVB platform. We tested our method on a previously constructed large-scale neural model (LSNM) of visual object processing that consisted of interconnected neural populations that represent, primary and secondary visual, inferotemporal, and prefrontal cortex. Some neural elements in the original model were “non-task-specific” (NS) neurons that served as noise generators to “task-specific” neurons that processed shapes during a delayed match-to-sample (DMS) task. We replaced the NS neurons with an anatomical TVB connectome model of the cerebral cortex comprising 998 regions of interest interconnected by white matter fiber tract weights. We embedded our LSNM of visual object processing into corresponding nodes within the TVB connectome. Reciprocal connections between TVB nodes and our task-based modules were included in this framework. We ran visual object processing simulations and showed that the TVB simulator successfully replaced the noise generation originally provided by NS neurons; i.e., the DMS tasks performed with the hybrid LSNM/TVB simulator generated equivalent neural and fMRI activity to that of the original task-based models. Additionally, we found partial agreement between the functional connectivities using the hybrid LSNM/TVB model and the original LSNM. Our framework thus presents a way to embed task-based neural models into the TVB platform, enabling a better comparison between empirical and computational data, which in turn can lead to a better understanding of how interacting neural populations give rise to human cognitive behaviors. PMID:27536235
Arizono, Naoki
2016-01-01
The self-identification, which is called sense of ownership, has been researched through methodology of rubber hand illusion (RHI) because of its simple setup. Although studies with neuroimaging technique, such as fMRI, revealed that several brain areas are associated with the sense of ownership, near-infrared spectroscopy (NIRS) has not yet been utilized. Here we introduced an automated setup to induce RHI, measured the brain activity during the RHI with NIRS, and analyzed the functional connectivity so as to understand dynamical brain relationship regarding the sense of ownership. The connectivity was evaluated by multivariate Granger causality. In this experiment, the peaks of oxy-Hb on right frontal and right motor related areas during the illusion were significantly higher compared with those during the nonillusion. Furthermore, by analyzing the NIRS recordings, we found a reliable connectivity from the frontal to the motor related areas during the illusion. This finding suggests that frontal cortex and motor related areas communicate with each other when the sense of ownership is induced. The result suggests that the sense of ownership is related to neural mechanism underlying human motor control, and it would be determining whether motor learning (i.e., neural plasticity) will occur. Thus RHI with the functional connectivity analysis will become an appropriate biomarker for neurorehabilitation. PMID:27413556
Altered Functional Connectivity of the Default Mode Network in Low-Empathy Subjects
Kim, Seung Jun; Kim, Sung-Eun; Kim, Hyo Eun; Han, Kiwan; Jeong, Bumseok; Kim, Jae-Jin; Namkoong, Kee
2017-01-01
Empathy is the ability to identify with or make a vicariously experience of another person's feelings or thoughts based on memory and/or self-referential mental simulation. The default mode network in particular is related to self-referential empathy. In order to elucidate the possible neural mechanisms underlying empathy, we investigated the functional connectivity of the default mode network in subjects from a general population. Resting state functional magnetic resonance imaging data were acquired from 19 low-empathy subjects and 18 medium-empathy subjects. An independent component analysis was used to identify the default mode network, and differences in functional connectivity strength were compared between the two groups. The low-empathy group showed lower functional connectivity of the medial prefrontal cortex and anterior cingulate cortex (Brodmann areas 9 and 32) within the default mode network, compared to the medium-empathy group. The results of the present study suggest that empathy is related to functional connectivity of the medial prefrontal cortex/anterior cingulate cortex within the default mode network. Functional decreases in connectivity among low-empathy subjects may reflect an impairment of self-referential mental simulation. PMID:28792155
Badgaiyan, Rajendra D.; Thanos, Panayotis K.; Kulkarni, Praveen; Giordano, John; Baron, David; Gold, Mark S.
2017-01-01
Dopaminergic reward dysfunction in addictive behaviors is well supported in the literature. There is evidence that alterations in synchronous neural activity between brain regions subserving reward and various cognitive functions may significantly contribute to substance-related disorders. This study presents the first evidence showing that a pro-dopaminergic nutraceutical (KB220Z) significantly enhances, above placebo, functional connectivity between reward and cognitive brain areas in the rat. These include the nucleus accumbens, anterior cingulate gyrus, anterior thalamic nuclei, hippocampus, prelimbic and infralimbic loci. Significant functional connectivity, increased brain connectivity volume recruitment (potentially neuroplasticity), and dopaminergic functionality were found across the brain reward circuitry. Increases in functional connectivity were specific to these regions and were not broadly distributed across the brain. While these initial findings have been observed in drug naïve rodents, this robust, yet selective response implies clinical relevance for addicted individuals at risk for relapse, who show reductions in functional connectivity after protracted withdrawal. Future studies will evaluate KB220Z in animal models of addiction. PMID:28445527
A new optimized GA-RBF neural network algorithm.
Jia, Weikuan; Zhao, Dean; Shen, Tian; Su, Chunyang; Hu, Chanli; Zhao, Yuyan
2014-01-01
When confronting the complex problems, radial basis function (RBF) neural network has the advantages of adaptive and self-learning ability, but it is difficult to determine the number of hidden layer neurons, and the weights learning ability from hidden layer to the output layer is low; these deficiencies easily lead to decreasing learning ability and recognition precision. Aiming at this problem, we propose a new optimized RBF neural network algorithm based on genetic algorithm (GA-RBF algorithm), which uses genetic algorithm to optimize the weights and structure of RBF neural network; it chooses new ways of hybrid encoding and optimizing simultaneously. Using the binary encoding encodes the number of the hidden layer's neurons and using real encoding encodes the connection weights. Hidden layer neurons number and connection weights are optimized simultaneously in the new algorithm. However, the connection weights optimization is not complete; we need to use least mean square (LMS) algorithm for further leaning, and finally get a new algorithm model. Using two UCI standard data sets to test the new algorithm, the results show that the new algorithm improves the operating efficiency in dealing with complex problems and also improves the recognition precision, which proves that the new algorithm is valid.
In Search of Neural Endophenotypes of Postpartum Psychopathology and Disrupted Maternal Caregiving
Moses-Kolko, E. L.; Horner, M. S.; Phillips, M. L.; Hipwell, A. E.; Swain, J. E.
2015-01-01
This is a selective review that provides the context for the study of perinatal affective disorder mechanisms and outlines directions for future research. We integrate existing literature along neural networks of interest for affective disorders and maternal caregiving: (i) the salience/fear network; (ii) the executive network; (iii) the reward/social attachment network; and (iv) the default mode network. Extant salience/fear network research reveals disparate responses and corticolimbic coupling to various stimuli based upon a predominantly depressive versus anxious (post-traumatic stress disorder) clinical phenotype. Executive network and default mode connectivity abnormalities have been described in postpartum depression (PPD), although studies are very limited in these domains. Reward/social attachment studies confirm a robust ventral striatal response to infant stimuli, including cry and happy infant faces, which is diminished in depressed, insecurely attached and substance-using mothers. The adverse parenting experiences received and the attachment insecurity of current mothers are factors that are associated with a diminution in infant stimulus-related neural activity similar to that in PPD, and raise the need for additional studies that integrate mood and attachment concepts in larger study samples. Several studies examining functional connectivity in resting state and emotional activation functional magnetic resonance imaging paradigms have revealed attenuated corticolimbic connectivity, which remains an important outcome that requires dissection with increasing precision to better define neural treatment targets. Methodological progress is expected in the coming years in terms of refining clinical phenotypes of interest and experimental paradigms, as well as enlarging samples to facilitate the examination of multiple constructs. Functional imaging promises to determine neural mechanisms underlying maternal psychopathology and impaired caregiving, such that earlier and more precise detection of abnormalities will be possible. Ultimately, the discovery of such mechanisms will promote the refinement of treatment approaches toward maternal affective disturbance, parenting behaviours and the augmentation of parenting resiliency. PMID:25059408
Neural networks mediating sentence reading in the deaf
Hirshorn, Elizabeth A.; Dye, Matthew W. G.; Hauser, Peter C.; Supalla, Ted R.; Bavelier, Daphne
2014-01-01
The present work addresses the neural bases of sentence reading in deaf populations. To better understand the relative role of deafness and spoken language knowledge in shaping the neural networks that mediate sentence reading, three populations with different degrees of English knowledge and depth of hearing loss were included—deaf signers, oral deaf and hearing individuals. The three groups were matched for reading comprehension and scanned while reading sentences. A similar neural network of left perisylvian areas was observed, supporting the view of a shared network of areas for reading despite differences in hearing and English knowledge. However, differences were observed, in particular in the auditory cortex, with deaf signers and oral deaf showing greatest bilateral superior temporal gyrus (STG) recruitment as compared to hearing individuals. Importantly, within deaf individuals, the same STG area in the left hemisphere showed greater recruitment as hearing loss increased. To further understand the functional role of such auditory cortex re-organization after deafness, connectivity analyses were performed from the STG regions identified above. Connectivity from the left STG toward areas typically associated with semantic processing (BA45 and thalami) was greater in deaf signers and in oral deaf as compared to hearing. In contrast, connectivity from left STG toward areas identified with speech-based processing was greater in hearing and in oral deaf as compared to deaf signers. These results support the growing literature indicating recruitment of auditory areas after congenital deafness for visually-mediated language functions, and establish that both auditory deprivation and language experience shape its functional reorganization. Implications for differential reliance on semantic vs. phonological pathways during reading in the three groups is discussed. PMID:24959127
Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics
NASA Astrophysics Data System (ADS)
Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří
2018-06-01
Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.
Philip, Noah S; Tyrka, Audrey R; Albright, Sarah E; Sweet, Lawrence H; Almeida, Jorge; Price, Lawrence H; Carpenter, Linda L
2016-08-01
Early life stress (ELS) is an established risk factor for psychiatric illness and is associated with altered functional connectivity within- and between intrinsic neural networks. The widespread nature of these disruptions suggests that broad imaging measures of neural connectivity, such as global based connectivity (GBC), may be particularly appropriate for studies of this population. GBC is designed to identify brain regions having maximal functional connectedness with the rest of the brain, and alterations in GBC may reflect a restriction or broadening of network synchronization. We evaluated whether ELS severity predicted GBC in a sample (N = 46) with a spectrum of ELS exposure. Participants included healthy controls without ELS, those with at least moderate ELS but without psychiatric disorders, and a group of patients with ELS- related psychiatric disorders. The spatial distribution of GBC peaked in regions of the salience and default mode networks, and ELS severity predicted increased GBC of the left thalamus (corrected p < 0.005, r = 0.498). Thalamic connectivity was subsequently evaluated and revealed reduced connectivity with the salience network, particularly the dorsal anterior cingulate cortex (corrected p < 0.005), only in the patient group. These findings support a model of disrupted thalamic connectivity in ELS and trauma-related negative affect states, and underscore the importance of a transdiagnostic, dimensional neuroimaging approach to understanding the sequelae of trauma exposure. Published by Elsevier Ltd.
Spike-timing dependent plasticity in primate corticospinal connections induced during free behavior
Nishimura, Yukio; Perlmutter, Steve I.; Eaton, Ryan W.; Fetz, Eberhard E.
2014-01-01
Motor learning and functional recovery from brain damage involve changes in the strength of synaptic connections between neurons. Relevant in vivo evidence on the underlying cellular mechanisms remains limited and indirect. We found that the strength of neural connections between motor cortex and spinal cord in monkeys can be modified with an autonomous recurrent neural interface that delivers electrical stimuli in the spinal cord triggered by action potentials of corticospinal cells during free behavior. The activity-dependent stimulation modified the strength of the terminal connections of single corticomotoneuronal cells, consistent with a bidirectional spike-timing dependent plasticity rule previously derived from in vitro experiments. For some cells the changes lasted for days after the end of conditioning, but most effects eventually reverted to preconditioning levels. These results provide the first direct evidence of corticospinal synaptic plasticity in vivo at the level of single neurons induced by normal firing patterns during free behavior. PMID:24210907
Cáceda, Ricardo; James, G. Andrew; Ely, Timothy D.; Snarey, John; Kilts, Clinton D.
2011-01-01
Background Moral sensitivity refers to the interpretive awareness of moral conflict and can be justice or care oriented. Justice ethics is associated primarily with human rights and the application of moral rules, whereas care ethics is related to human needs and a situational approach involving social emotions. Among the core brain regions involved in moral issue processing are: medial prefrontal cortex, anterior (ACC) and posterior (PCC) cingulate cortex, posterior superior temporal sulcus (pSTS), insula and amygdala. This study sought to inform the long standing debate of whether care and justice moral ethics represent one or two different forms of cognition. Methodology/Principal Findings Model-free and model-based connectivity analysis were used to identify functional neural networks underlying care and justice ethics for a moral sensitivity task. In addition to modest differences in patterns of associated neural activity, distinct modes of functional and effective connectivity were observed for moral sensitivity for care and justice issues that were modulated by individual variation in moral ability. Conclusions/Significance These results support a neurobiological differentiation between care and justice ethics and suggest that human moral behavior reflects the outcome of integrating opposing rule-based, self-other perspectives, and emotional responses. PMID:21364916
Antidepressants normalize the default mode network in patients with dysthymia.
Posner, Jonathan; Hellerstein, David J; Gat, Inbal; Mechling, Anna; Klahr, Kristin; Wang, Zhishun; McGrath, Patrick J; Stewart, Jonathan W; Peterson, Bradley S
2013-04-01
The default mode network (DMN) is a collection of brain regions that reliably deactivate during goal-directed behaviors and is more active during a baseline, or so-called resting, condition. Coherence of neural activity, or functional connectivity, within the brain's DMN is increased in major depressive disorder relative to healthy control (HC) subjects; however, whether similar abnormalities are present in persons with dysthymic disorder (DD) is unknown. Moreover, the effect of antidepressant medications on DMN connectivity in patients with DD is also unknown. To use resting-state functional-connectivity magnetic resonance imaging (MRI) to study (1) the functional connectivity of the DMN in subjects with DD vs HC participants and (2) the effects of antidepressant therapy on DMN connectivity. After collecting baseline MRI scans from subjects with DD and HC participants, we enrolled the participants with DD into a 10-week prospective, double-blind, placebo-controlled trial of duloxetine and collected MRI scans again at the conclusion of the study. Enrollment occurred between 2007 and 2011. University research institute. Volunteer sample of 41 subjects with DD and 25 HC participants aged 18 to 53 years. Control subjects were group matched to patients with DD by age and sex. We used resting-state functional-connectivity MRI to measure the functional connectivity of the brain's DMN in persons with DD compared with HC subjects, and we examined the effects of treatment with duloxetine vs placebo on DMN connectivity. Of the 41 subjects with DD, 32 completed the clinical trial and MRI scans, along with the 25 HC participants. At baseline, we found that the coherence of neural activity within the brain's DMN was greater in persons with DD compared with HC subjects. Following a 10-week clinical trial, we found that treatment with duloxetine, but not placebo, normalized DMN connectivity. The baseline imaging findings are consistent with those found in patients with major depressive disorder and suggest that increased connectivity within the DMN may be important in the pathophysiology of both acute and chronic manifestations of depressive illness. The normalization of DMN connectivity following antidepressant treatment suggests an important causal pathway through which antidepressants may reduce depression.
Dynamical principles in neuroscience
NASA Astrophysics Data System (ADS)
Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.
2006-10-01
Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?
Dynamical principles in neuroscience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.
Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only amore » few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?.« less
ERIC Educational Resources Information Center
Parent, Marise B.; Krebs-Kraft, Desiree L.; Ryan, John P.; Wilson, Jennifer S.; Harenski, Carla; Hamann, Stephan
2011-01-01
Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with…
ERIC Educational Resources Information Center
Park, Joonkoo; Li, Rosa; Brannon, Elizabeth M.
2014-01-01
In early childhood, humans learn culturally specific symbols for number that allow them entry into the world of complex numerical thinking. Yet little is known about how the brain supports the development of the uniquely human symbolic number system. Here, we use functional magnetic resonance imaging along with an effective connectivity analysis…
Wu, Xi; Yang, Zhipeng; Bailey, Stephen K; Zhou, Jiliu; Cutting, Laurie E; Gore, John C; Ding, Zhaohua
2017-05-15
Functional MRI has proven to be effective in detecting neural activity in brain cortices on the basis of blood oxygenation level dependent (BOLD) contrast, but has relatively poor sensitivity for detecting neural activity in white matter. To demonstrate that BOLD signals in white matter are detectable and contain information on neural activity, we stimulated the somatosensory system and examined distributions of BOLD signals in related white matter pathways. The temporal correlation profiles and frequency contents of BOLD signals were compared between stimulation and resting conditions, and between relevant white matter fibers and background regions, as well as between left and right side stimulations. Quantitative analyses show that, overall, MR signals from white matter fiber bundles in the somatosensory system exhibited significantly greater temporal correlations with the primary sensory cortex and greater signal power during tactile stimulations than in a resting state, and were stronger than corresponding measurements for background white matter both during stimulations and in a resting state. The temporal correlation and signal power under stimulation were found to be twice those observed from the same bundle in a resting state, and bore clear relations with the side of stimuli. These indicate that BOLD signals in white matter fibers encode neural activity related to their functional roles connecting cortical volumes, which are detectable with appropriate methods. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.W.
1992-01-01
Computational neural networks (CNNs) are a computational paradigm inspired by the brain's massively parallel network of highly interconnected neurons. The power of computational neural networks derives not so much from their ability to model the brain as from their ability to learn by example and to map highly complex, nonlinear functions, without the need to explicitly specify the functional relationship. Two central questions about CNNs were investigated in the context of predicting chemical reactions: (1) the mapping properties of neural networks and (2) the representation of chemical information for use in CNNs. Chemical reactivity is here considered an example ofmore » a complex, nonlinear function of molecular structure. CNN's were trained using modifications of the back propagation learning rule to map a three dimensional response surface similar to those typically observed in quantitative structure-activity and structure-property relationships. The computational neural network's mapping of the response surface was found to be robust to the effects of training sample size, noisy data and intercorrelated input variables. The investigation of chemical structure representation led to the development of a molecular structure-based connection-table representation suitable for neural network training. An extension of this work led to a BE-matrix structure representation that was found to be general for several classes of reactions. The CNN prediction of chemical reactivity and regiochemistry was investigated for electrophilic aromatic substitution reactions, Markovnikov addition to alkenes, Saytzeff elimination from haloalkanes, Diels-Alder cycloaddition, and retro Diels-Alder ring opening reactions using these connectivity-matrix derived representations. The reaction predictions made by the CNNs were more accurate than those of an expert system and were comparable to predictions made by chemists.« less
Aznárez-Sanado, Maite; Fernández-Seara, Maria A; Loayza, Francis R; Pastor, Maria A
2013-03-01
To elucidate differences in activity and connectivity during early learning due to the performing hand. Twenty right-handed subjects were recruited. The neural correlates of explicit visuospatial learning executed with the right, the left hand, and bimanually were investigated using functional magnetic resonance imaging. Connectivity analyses were carried out using the psychophysiological interactions model, considering right and left anterior putamen as index regions. A common neural network was found for the three tasks during learning. Main activity increases were located in posterior cingulate cortex, supplementary motor area, parietal cortex, anterior putamen, and cerebellum (IV-V), whereas activity decrements were observed in prefrontal regions. However, the left hand task showed a greater recruitment of left hippocampal areas when compared with the other tasks. In addition, enhanced connectivity between the right anterior putamen and motor cortical and cerebellar regions was found for the left hand when compared with the right hand task. An additional recruitment of brain regions and increased striato-cortical and striato-cerebellar functional connections is needed when early learning is performed with the nondominant hand. In addition, access to brain resources during learning may be directed by the dominant hand in the bimanual task. Copyright © 2012 Wiley Periodicals, Inc.
Newton, Allen T; Morgan, Victoria L; Rogers, Baxter P; Gore, John C
2011-10-01
Interregional correlations between blood oxygen level dependent (BOLD) magnetic resonance imaging (fMRI) signals in the resting state have been interpreted as measures of connectivity across the brain. Here we investigate whether such connectivity in the working memory and default mode networks is modulated by changes in cognitive load. Functional connectivity was measured in a steady-state verbal identity N-back task for three different conditions (N = 1, 2, and 3) as well as in the resting state. We found that as cognitive load increases, the functional connectivity within both the working memory the default mode network increases. To test whether functional connectivity between the working memory and the default mode networks changed, we constructed maps of functional connectivity to the working memory network as a whole and found that increasingly negative correlations emerged in a dorsal region of the posterior cingulate cortex. These results provide further evidence that low frequency fluctuations in BOLD signals reflect variations in neural activity and suggests interaction between the default mode network and other cognitive networks. Copyright © 2010 Wiley-Liss, Inc.
Guo, Yiqun; Chen, Zhiyi; Feng, Tingyong
2017-08-14
Balanced time perspective (BTP), which is defined as a mental ability to switch flexibly among different time perspectives Zimbardo and Boyd (1999), has been suggested to be a central component of positive psychology Boniwell and Zimbardo (2004). BTP reflects individual's cognitive flexibility towards different time frames, which leads to many positive outcomes, including positive mood, subjective wellbeing, emotional intelligence, fluid intelligence, and executive control. However, the neural basis of BTP is still unclear. To address this question, we quantified individual's deviation from the BTP (DBTP), and investigated the neural substrates of DBTP using both voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods VBM analysis found that DBTP scores were positively correlated with gray matter volume (GMV) in the ventral precuneus. We further found that DBTP scores were negatively associated with RSFCs between the ventral precuneus seed region and medial prefrontal cortex (mPFC), bilateral temporoparietal junction (TPJ), parahippocampa gyrus (PHG), and middle frontal gyrus (MFG). These brain regions found in both VBM and RSFC analyses are commonly considered as core nodes of the default mode network (DMN) that is known to be involved in many functions, including episodic and autobiographical memory, self-related processing, theory of mind, and imagining the future. These functions of the DMN are also essential to individuals with BTP. Taken together, we provide the first evidence for the structural and functional neural basis of BTP, and highlight the crucial role of the DMN in cultivating an individual's BTP. Copyright © 2017 Elsevier B.V. All rights reserved.
Prat, Chantel S.; Keller, Timothy A.; Just, Marcel Adam
2008-01-01
Language comprehension is neurally underpinned by a network of collaborating cortical processing centers; individual differences in comprehension must be related to some set of this network’s properties. This study investigated the neural bases of individual differences during sentence comprehension by examining the network’s response to two variations in processing demands: reading sentences containing words of high versus low lexical frequency and having simpler versus more complex syntax. In a functional magnetic resonance imaging study, readers who were independently identified as having high or low working memory capacity for language exhibited three differentiating properties of their language network, namely, neural efficiency, adaptability, and synchronization. First, greater efficiency (defined as a reduction in activation associated with improved performance) was manifested as less activation in the bilateral middle frontal and right lingual gyri in high-capacity readers. Second, increased adaptability was indexed by larger lexical frequency effects in high-capacity readers across bilateral middle frontal, bilateral inferior occipital, and right temporal regions. Third, greater synchronization was observed in high-capacity readers between left temporal and left inferior frontal, left parietal, and right occipital regions. Synchronization interacted with adaptability, such that functional connectivity remained constant or increased with increasing lexical and syntactic demands in high-capacity readers, whereas low-capacity readers either showed no reliable differentiation or a decrease in functional connectivity with increasing demands. These results are among the first to relate multiple cortical network properties to individual differences in reading capacity and suggest a more general framework for understanding the relation between neural function and individual differences in cognitive performance. PMID:17892384
Prat, Chantel S; Keller, Timothy A; Just, Marcel Adam
2007-12-01
Language comprehension is neurally underpinned by a network of collaborating cortical processing centers; individual differences in comprehension must be related to some set of this network's properties. This study investigated the neural bases of individual differences during sentence comprehension by examining the network's response to two variations in processing demands: reading sentences containing words of high versus low lexical frequency and having simpler versus more complex syntax. In a functional magnetic resonance imaging study, readers who were independently identified as having high or low working memory capacity for language exhibited three differentiating properties of their language network, namely, neural efficiency, adaptability, and synchronization. First, greater efficiency (defined as a reduction in activation associated with improved performance) was manifested as less activation in the bilateral middle frontal and right lingual gyri in high-capacity readers. Second, increased adaptability was indexed by larger lexical frequency effects in high-capacity readers across bilateral middle frontal, bilateral inferior occipital, and right temporal regions. Third, greater synchronization was observed in high-capacity readers between left temporal and left inferior frontal, left parietal, and right occipital regions. Synchronization interacted with adaptability, such that functional connectivity remained constant or increased with increasing lexical and syntactic demands in high-capacity readers, whereas low-capacity readers either showed no reliable differentiation or a decrease in functional connectivity with increasing demands. These results are among the first to relate multiple cortical network properties to individual differences in reading capacity and suggest a more general framework for understanding the relation between neural function and individual differences in cognitive performance.
Zanutto, B. Silvano
2017-01-01
Animals are proposed to learn the latent rules governing their environment in order to maximize their chances of survival. However, rules may change without notice, forcing animals to keep a memory of which one is currently at work. Rule switching can lead to situations in which the same stimulus/response pairing is positively and negatively rewarded in the long run, depending on variables that are not accessible to the animal. This fact raises questions on how neural systems are capable of reinforcement learning in environments where the reinforcement is inconsistent. Here we address this issue by asking about which aspects of connectivity, neural excitability and synaptic plasticity are key for a very general, stochastic spiking neural network model to solve a task in which rules change without being cued, taking the serial reversal task (SRT) as paradigm. Contrary to what could be expected, we found strong limitations for biologically plausible networks to solve the SRT. Especially, we proved that no network of neurons can learn a SRT if it is a single neural population that integrates stimuli information and at the same time is responsible of choosing the behavioural response. This limitation is independent of the number of neurons, neuronal dynamics or plasticity rules, and arises from the fact that plasticity is locally computed at each synapse, and that synaptic changes and neuronal activity are mutually dependent processes. We propose and characterize a spiking neural network model that solves the SRT, which relies on separating the functions of stimuli integration and response selection. The model suggests that experimental efforts to understand neural function should focus on the characterization of neural circuits according to their connectivity, neural dynamics, and the degree of modulation of synaptic plasticity with reward. PMID:29077735
An integrative neural model of social perception, action observation, and theory of mind.
Yang, Daniel Y-J; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A
2015-04-01
In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.
An integrative neural model of social perception, action observation, and theory of mind
Yang, Daniel Y.-J.; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A.
2016-01-01
In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. PMID:25660957
Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke
Volz, L. J.; Rehme, A. K.; Michely, J.; Nettekoven, C.; Eickhoff, S. B.; Fink, G. R.; Grefkes, C.
2016-01-01
Neural plasticity is a major factor driving cortical reorganization after stroke. We here tested whether repetitively enhancing motor cortex plasticity by means of intermittent theta-burst stimulation (iTBS) prior to physiotherapy might promote recovery of function early after stroke. Functional magnetic resonance imaging (fMRI) was used to elucidate underlying neural mechanisms. Twenty-six hospitalized, first-ever stroke patients (time since stroke: 1–16 days) with hand motor deficits were enrolled in a sham-controlled design and pseudo-randomized into 2 groups. iTBS was administered prior to physiotherapy on 5 consecutive days either over ipsilesional primary motor cortex (M1-stimulation group) or parieto-occipital vertex (control-stimulation group). Hand motor function, cortical excitability, and resting-state fMRI were assessed 1 day prior to the first stimulation and 1 day after the last stimulation. Recovery of grip strength was significantly stronger in the M1-stimulation compared to the control-stimulation group. Higher levels of motor network connectivity were associated with better motor outcome. Consistently, control-stimulated patients featured a decrease in intra- and interhemispheric connectivity of the motor network, which was absent in the M1-stimulation group. Hence, adding iTBS to prime physiotherapy in recovering stroke patients seems to interfere with motor network degradation, possibly reflecting alleviation of post-stroke diaschisis. PMID:26980614
Network-Level Structure-Function Relationships in Human Neocortex
Mišić, Bratislav; Betzel, Richard F.; de Reus, Marcel A.; van den Heuvel, Martijn P.; Berman, Marc G.; McIntosh, Anthony R.; Sporns, Olaf
2016-01-01
The dynamics of spontaneous fluctuations in neural activity are shaped by underlying patterns of anatomical connectivity. While numerous studies have demonstrated edge-wise correspondence between structural and functional connections, much less is known about how large-scale coherent functional network patterns emerge from the topology of structural networks. In the present study, we deploy a multivariate statistical technique, partial least squares, to investigate the association between spatially extended structural networks and functional networks. We find multiple statistically robust patterns, reflecting reliable combinations of structural and functional subnetworks that are optimally associated with one another. Importantly, these patterns generally do not show a one-to-one correspondence between structural and functional edges, but are instead distributed and heterogeneous, with many functional relationships arising from nonoverlapping sets of anatomical connections. We also find that structural connections between high-degree hubs are disproportionately represented, suggesting that these connections are particularly important in establishing coherent functional networks. Altogether, these results demonstrate that the network organization of the cerebral cortex supports the emergence of diverse functional network configurations that often diverge from the underlying anatomical substrate. PMID:27102654
Single-hidden-layer feed-forward quantum neural network based on Grover learning.
Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min
2013-09-01
In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kühn, Simone; Gallinat, Jürgen
2014-07-01
Since pornography appeared on the Internet, the accessibility, affordability, and anonymity of consuming visual sexual stimuli have increased and attracted millions of users. Based on the assumption that pornography consumption bears resemblance with reward-seeking behavior, novelty-seeking behavior, and addictive behavior, we hypothesized alterations of the frontostriatal network in frequent users. To determine whether frequent pornography consumption is associated with the frontostriatal network. In a study conducted at the Max Planck Institute for Human Development in Berlin, Germany, 64 healthy male adults covering a wide range of pornography consumption reported hours of pornography consumption per week. Pornography consumption was associated with neural structure, task-related activation, and functional resting-state connectivity. Gray matter volume of the brain was measured by voxel-based morphometry and resting state functional connectivity was measured on 3-T magnetic resonance imaging scans. We found a significant negative association between reported pornography hours per week and gray matter volume in the right caudate (P < .001, corrected for multiple comparisons) as well as with functional activity during a sexual cue-reactivity paradigm in the left putamen (P < .001). Functional connectivity of the right caudate to the left dorsolateral prefrontal cortex was negatively associated with hours of pornography consumption. The negative association of self-reported pornography consumption with the right striatum (caudate) volume, left striatum (putamen) activation during cue reactivity, and lower functional connectivity of the right caudate to the left dorsolateral prefrontal cortex could reflect change in neural plasticity as a consequence of an intense stimulation of the reward system, together with a lower top-down modulation of prefrontal cortical areas. Alternatively, it could be a precondition that makes pornography consumption more rewarding.
Cummine, Jacqueline; Cribben, Ivor; Luu, Connie; Kim, Esther; Bahktiari, Reyhaneh; Georgiou, George; Boliek, Carol A
2016-05-01
The neural circuitry associated with language processing is complex and dynamic. Graphical models are useful for studying complex neural networks as this method provides information about unique connectivity between regions within the context of the entire network of interest. Here, the authors explored the neural networks during covert reading to determine the role of feedforward and feedback loops in covert speech production. Brain activity of skilled adult readers was assessed in real word and pseudoword reading tasks with functional MRI (fMRI). The authors provide evidence for activity coherence in the feedforward system (inferior frontal gyrus-supplementary motor area) during real word reading and in the feedback system (supramarginal gyrus-precentral gyrus) during pseudoword reading. Graphical models provided evidence of an extensive, highly connected, neural network when individuals read real words that relied on coordination of the feedforward system. In contrast, when individuals read pseudowords the authors found a limited/restricted network that relied on coordination of the feedback system. Together, these results underscore the importance of considering multiple pathways and articulatory loops during language tasks and provide evidence for a print-to-speech neural network. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Neural mechanisms of oxytocin receptor gene mediating anxiety-related temperament.
Wang, Junping; Qin, Wen; Liu, Bing; Zhou, Yuan; Wang, Dawei; Zhang, Yunting; Jiang, Tianzi; Yu, Chunshui
2014-09-01
A common variant (rs53576) of the OXTR gene has been implicated in a number of socio-emotional phenotypes, such as anxiety-related behavior. Previous studies have demonstrated that A-allele carriers have higher levels of physiological and dispositional stress reactivity and depressive symptomatology compared to those with the GG genotype, but the mediating neural mechanisms remain poorly understood. We combined voxel-based morphometry and resting-state functional connectivity analyses in a large cohort of healthy young Chinese Han individuals to test the hypothesis that the OXTR gene polymorphism influences an anxiety-related temperamental trait, as assessed by the harm avoidance subscale from the Tridimensional Personality Questionnaire via modulating the gray matter volume and resting-state functional connectivity of the brain, especially the limbic system. We revealed that female subjects with the AA genotype showed increased harm avoidance scores relative to G-carrier females. We also found that, compared to female individuals with the GG/GA genotype, female individuals with the AA genotype exhibited significantly smaller amygdala volumes bilaterally (especially the centromedial subregion), with a trend of allele-load-dependence. Compared to female individuals with the GG/GA genotype, female subjects with the AA genotype demonstrated reduced resting-state functional coupling between the prefrontal cortex and amygdala bilaterally, also with an allele-load-dependent trend. Furthermore, the magnitude of prefrontal-amygdala coupling in the left hemisphere was positively correlated with harm avoidance scores in female subjects. Our findings highlight a possible neural pathway by which a naturally occurring variation of the OXTR gene may affect an anxiety-related temperamental trait in female subjects by modulating prefrontal-amygdala functional connectivity.
Price, Rebecca B; Allen, Kristy Benoit; Silk, Jennifer S; Ladouceur, Cecile D; Ryan, Neal D; Dahl, Ronald E; Forbes, Erika E; Siegle, Greg J
2016-06-01
Vigilance and avoidance of threat are observed in anxious adults during laboratory tasks, and are posited to have real-world clinical relevance, but data are mixed in anxious youth. We propose that vigilance-avoidance patterns will become evident in anxious youth through a focus on individual differences and real-world strategic avoidance. Decreased functional connectivity between the amygdala and prefrontal cortex (PFC) could play a mechanistic role in this link. 78 clinically anxious youth completed a dot-probe task to assess vigilance to threat while undergoing fMRI. Real-world avoidance was assessed using Ecological Momentary Assessment (EMA) of self-reported suppression and distraction during negative life events. Vigilance toward threat was positively associated with EMA distraction and suppression. Functional connectivity between a right amygdala seed region and dorsomedial and right dorsolateral PFC regions was inversely related to EMA distraction. Dorsolateral PFC-amygdalar connectivity statistically mediated the relationship between attentional vigilance and real-world distraction. Findings suggest anxious youth showing attentional vigilance toward threat are more likely to use suppression and distraction to regulate negative emotions. Reduced PFC control over limbic reactivity is a possible neural substrate of this pattern. These findings lend ecological validity to laboratory vigilance assessments and suggest PFC-amygdalar connectivity is a neural mechanism bridging laboratory and naturalistic contexts. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sitek, Kevin R.; Cai, Shanqing; Beal, Deryk S.; Perkell, Joseph S.; Guenther, Frank H.; Ghosh, Satrajit S.
2016-01-01
Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex (OFC). Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and OFC may underlie successful compensatory mechanisms by more fluent stutterers. PMID:27199712
Measuring functional connectivity using MEG: Methodology and comparison with fcMRI
Brookes, Matthew J.; Hale, Joanne R.; Zumer, Johanna M.; Stevenson, Claire M.; Francis, Susan T.; Barnes, Gareth R.; Owen, Julia P.; Morris, Peter G.; Nagarajan, Srikantan S.
2011-01-01
Functional connectivity (FC) between brain regions is thought to be central to the way in which the brain processes information. Abnormal connectivity is thought to be implicated in a number of diseases. The ability to study FC is therefore a key goal for neuroimaging. Functional connectivity (fc) MRI has become a popular tool to make connectivity measurements but the technique is limited by its indirect nature. A multimodal approach is therefore an attractive means to investigate the electrodynamic mechanisms underlying hemodynamic connectivity. In this paper, we investigate resting state FC using fcMRI and magnetoencephalography (MEG). In fcMRI, we exploit the advantages afforded by ultra high magnetic field. In MEG we apply envelope correlation and coherence techniques to source space projected MEG signals. We show that beamforming provides an excellent means to measure FC in source space using MEG data. However, care must be taken when interpreting these measurements since cross talk between voxels in source space can potentially lead to spurious connectivity and this must be taken into account in all studies of this type. We show good spatial agreement between FC measured independently using MEG and fcMRI; FC between sensorimotor cortices was observed using both modalities, with the best spatial agreement when MEG data are filtered into the β band. This finding helps to reduce the potential confounds associated with each modality alone: while it helps reduce the uncertainties in spatial patterns generated by MEG (brought about by the ill posed inverse problem), addition of electrodynamic metric confirms the neural basis of fcMRI measurements. Finally, we show that multiple MEG based FC metrics allow the potential to move beyond what is possible using fcMRI, and investigate the nature of electrodynamic connectivity. Our results extend those from previous studies and add weight to the argument that neural oscillations are intimately related to functional connectivity and the BOLD response. PMID:21352925
A left cerebellar pathway mediates language in prematurely-born young adults
Constable, R. Todd; Vohr, Betty R.; Scheinost, Dustin; Benjamin, Jennifer R.; Fulbright, Robert K.; Lacadie, Cheryl; Schneider, Karen C.; Katz, Karol H.; Zhang, Heping; Papademetris, Xenophon; Ment, Laura R.
2012-01-01
Preterm (PT) subjects are at risk for developmental delay, and task-based studies suggest that developmental disorders may be due to alterations in neural connectivity. Since emerging data imply the importance of right cerebellar function for language acquisition in typical development, we hypothesized that PT subjects would have alternate areas of cerebellar connectivity, and that these areas would be responsible for differences in cognitive outcomes between PT subjects and term controls at age 20 years. Nineteen PT and 19 term control young adults were prospectively studied using resting-state functional MRI (fMRI) to create voxel-based contrast maps reflecting the functional connectivity of each tissue element in the grey matter through analysis of the intrinsic connectivity contrast degree (ICC-d). Left cerebellar ICC-d differences between subjects identified a region of interest that was used for subsequent seed-based connectivity analyses. Subjects underwent standardized language testing, and correlations with cognitive outcomes were assessed. There were no differences in gender, hand preference, maternal education, age at study, or Peabody Picture Vocabulary Test (PPVT) scores. Functional connectivity (FcMRI) demonstrated increased tissue connectivity in the biventer, simple and quadrangular lobules of the L cerebellum (p<0.05) in PTs compared to term controls; seed-based analyses from these regions demonstrated alterations in connectivity from L cerebellum to both R and L inferior frontal gyri (IFG) in PTs compared to term controls. For PTs but not term controls, there were significant positive correlations between these connections and PPVT scores (R IFG: r=0.555, p=0.01; L IFG: r=0.454, p=0.05), as well as Verbal Comprehension Index (VCI) scores (R IFG: r=0.472, p=0.04). These data suggest the presence of a left cerebellar language circuit in PT subjects at young adulthood. These findings may represent either a delay in maturation or the engagement of alternative neural pathways for language in the developing PT brain. PMID:22982585
Social in, social out: How the brain responds to social language with more social language
O’Donnell, Matthew Brook; Falk, Emily B.; Lieberman, Matthew D.
2014-01-01
Social connection is a fundamental human need. As such, people’s brains are sensitized to social cues, such as those carried by language, and to promoting social communication. The neural mechanisms of certain key building blocks in this process, such as receptivity to and reproduction of social language, however, are not known. We combined quantitative linguistic analysis and neuroimaging to connect neural activity in brain regions used to simulate the mental states of others with exposure to, and re-transmission of, social language. Our results link findings on successful idea transmission from communication science, sociolinguistics and cognitive neuroscience to prospectively predict the degree of social language that participants utilize when re-transmitting ideas as a function of 1) initial language inputs and 2) neural activity during idea exposure. PMID:27642220
Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks
Kucyi, Aaron; Salomons, Tim V.; Davis, Karen D.
2013-01-01
Human minds often wander away from their immediate sensory environment. It remains unknown whether such mind wandering is unsystematic or whether it lawfully relates to an individual’s tendency to attend to salient stimuli such as pain and their associated brain structure/function. Studies of pain–cognition interactions typically examine explicit manipulation of attention rather than spontaneous mind wandering. Here we sought to better represent natural fluctuations in pain in daily life, so we assessed behavioral and neural aspects of spontaneous disengagement of attention from pain. We found that an individual’s tendency to attend to pain related to the disruptive effect of pain on his or her cognitive task performance. Next, we linked behavioral findings to neural networks with strikingly convergent evidence from functional magnetic resonance imaging during pain coupled with thought probes of mind wandering, dynamic resting state activity fluctuations, and diffusion MRI. We found that (i) pain-induced default mode network (DMN) deactivations were attenuated during mind wandering away from pain; (ii) functional connectivity fluctuations between the DMN and periaqueductal gray (PAG) dynamically tracked spontaneous attention away from pain; and (iii) across individuals, stronger PAG–DMN structural connectivity and more dynamic resting state PAG–DMN functional connectivity were associated with the tendency to mind wander away from pain. These data demonstrate that individual tendencies to mind wander away from pain, in the absence of explicit manipulation, are subserved by functional and structural connectivity within and between default mode and antinociceptive descending modulation networks. PMID:24167282
Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks.
Kucyi, Aaron; Salomons, Tim V; Davis, Karen D
2013-11-12
Human minds often wander away from their immediate sensory environment. It remains unknown whether such mind wandering is unsystematic or whether it lawfully relates to an individual's tendency to attend to salient stimuli such as pain and their associated brain structure/function. Studies of pain-cognition interactions typically examine explicit manipulation of attention rather than spontaneous mind wandering. Here we sought to better represent natural fluctuations in pain in daily life, so we assessed behavioral and neural aspects of spontaneous disengagement of attention from pain. We found that an individual's tendency to attend to pain related to the disruptive effect of pain on his or her cognitive task performance. Next, we linked behavioral findings to neural networks with strikingly convergent evidence from functional magnetic resonance imaging during pain coupled with thought probes of mind wandering, dynamic resting state activity fluctuations, and diffusion MRI. We found that (i) pain-induced default mode network (DMN) deactivations were attenuated during mind wandering away from pain; (ii) functional connectivity fluctuations between the DMN and periaqueductal gray (PAG) dynamically tracked spontaneous attention away from pain; and (iii) across individuals, stronger PAG-DMN structural connectivity and more dynamic resting state PAG-DMN functional connectivity were associated with the tendency to mind wander away from pain. These data demonstrate that individual tendencies to mind wander away from pain, in the absence of explicit manipulation, are subserved by functional and structural connectivity within and between default mode and antinociceptive descending modulation networks.
2013-08-01
Waiter GD, Gilchrist A, Perrett DI, Murray AD, Whiten A. Neural mechanisms of imitation and ‘mirror neuron’ functioning in autistic spectrum...or risk factor associated with the onset of ASD, the inherent heterogeneity of endophenotypical presentation makes clinical management challenging. In
Functional Reorganization of the Locomotor Network in Parkinson Patients with Freezing of Gait
Fling, Brett W.; Cohen, Rajal G.; Mancini, Martina; Carpenter, Samuel D.; Fair, Damien A.; Nutt, John G.; Horak, Fay B.
2014-01-01
Freezing of gait (FoG) is a transient inability to initiate or maintain stepping that often accompanies advanced Parkinson’s disease (PD) and significantly impairs mobility. The current study uses a multimodal neuroimaging approach to assess differences in the functional and structural locomotor neural network in PD patients with and without FoG and relates these findings to measures of FoG severity. Twenty-six PD patients and fifteen age-matched controls underwent resting-state functional magnetic resonance imaging and diffusion tensor imaging along with self-reported and clinical assessments of FoG. After stringent movement correction, fifteen PD patients and fourteen control participants were available for analysis. We assessed functional connectivity strength between the supplementary motor area (SMA) and the following locomotor hubs: 1) subthalamic nucleus (STN), 2) mesencephalic and 3) cerebellar locomotor region (MLR and CLR, respectively) within each hemisphere. Additionally, we quantified structural connectivity strength between locomotor hubs and assessed relationships with metrics of FoG. FoG+ patients showed greater functional connectivity between the SMA and bilateral MLR and between the SMA and left CLR compared to both FoG− and controls. Importantly, greater functional connectivity between the SMA and MLR was positively correlated with i) clinical, ii) self-reported and iii) objective ratings of freezing severity in FoG+, potentially reflecting a maladaptive neural compensation. The current findings demonstrate a re-organization of functional communication within the locomotor network in FoG+ patients whereby the higher-order motor cortex (SMA) responsible for gait initiation communicates with the MLR and CLR to a greater extent than in FoG− patients and controls. The observed pattern of altered connectivity in FoG+ may indicate a failed attempt by the CNS to compensate for the loss of connectivity between the STN and SMA and may reflect a loss of lower-order, automatic control of gait by the basal ganglia. PMID:24937008
Long-term memory stabilized by noise-induced rehearsal.
Wei, Yi; Koulakov, Alexei A
2014-11-19
Cortical networks can maintain memories for decades despite the short lifetime of synaptic strengths. Can a neural network store long-lasting memories in unstable synapses? Here, we study the effects of ongoing spike-timing-dependent plasticity (STDP) on the stability of memory patterns stored in synapses of an attractor neural network. We show that certain classes of STDP rules can stabilize all stored memory patterns despite a short lifetime of synapses. In our model, unstructured neural noise, after passing through the recurrent network connections, carries the imprint of all memory patterns in temporal correlations. STDP, combined with these correlations, leads to reinforcement of all stored patterns, even those that are never explicitly visited. Our findings may provide the functional reason for irregular spiking displayed by cortical neurons and justify models of system memory consolidation. Therefore, we propose that irregular neural activity is the feature that helps cortical networks maintain stable connections. Copyright © 2014 the authors 0270-6474/14/3415804-12$15.00/0.
The neural bases of feeling understood and not understood
Torre, Jared B.; Eisenberger, Naomi I.
2014-01-01
Past research suggests that feeling understood enhances both personal and social well-being. However, little research has examined the neurobiological bases of feeling understood and not understood. We addressed these gaps by experimentally inducing felt understanding and not understanding as participants underwent functional magnetic resonance imaging. The results demonstrated that feeling understood activated neural regions previously associated with reward and social connection (i.e. ventral striatum and middle insula), while not feeling understood activated neural regions previously associated with negative affect (i.e. anterior insula). Both feeling understood and not feeling understood activated different components of the mentalizing system (feeling understood: precuneus and temporoparietal junction; not feeling understood: dorsomedial prefrontal cortex). Neural responses were associated with subsequent feelings of social connection and disconnection and were modulated by individual differences in rejection sensitivity. Thus, this study provides insight into the psychological processes underlying feeling understood (or not) and may suggest new avenues for targeted interventions that amplify the benefits of feeling understood or buffer individuals from the harmful consequences of not feeling understood. PMID:24396002
Zhou, Guifei; Liu, Jiangang; Ding, Xiao Pan; Fu, Genyue; Lee, Kang
2016-01-01
Numerous developmental studies have suggested that other-race effect (ORE) in face recognition emerges as early as in infancy and develops steadily throughout childhood. However, there is very limited research on the neural mechanisms underlying this developmental ORE. The present study used Granger causality analysis (GCA) to examine the development of children's cortical networks in processing own- and other-race faces. Children were between 3 and 13 years. An old-new paradigm was used to assess their own- and other-race face recognition with ETG-4000 (Hitachi Medical Co., Japan) acquiring functional near infrared spectroscopy (fNIRS) data. After preprocessing, for each participant and under each face condition, we obtained the causal map by calculating the weights of causal relations between the time courses of [oxy-Hb] of each pair of channels using GCA. To investigate further the differential causal connectivity for own-race faces and other-race faces at the group level, a repeated measure analysis of variance (ANOVA) was performed on the GCA weights for each pair of channels with the face race task (own-race face vs. other-race face) as the within-subject variable and the age as a between-subject factor (continuous variable). We found an age-related increase in functional connectivity, paralleling a similar age-related improvement in behavioral face processing ability. More importantly, we found that the significant differences in neural functional connectivity between the recognition of own-race faces and that of other-race faces were modulated by age. Thus, like the behavioral ORE, the neural ORE emerges early and undergoes a protracted developmental course. PMID:27713696
Neural Mechanisms of Cognitive Reappraisal of Negative Self-Beliefs in Social Anxiety Disorder
Goldin, Philippe R.; Ball, Tali M.; Werner, Kelly; Heimberg, Richard; Gross, James J.
2009-01-01
Background Social anxiety disorder (SAD) is characterized by distorted negative self-beliefs (NSBs) which are thought to enhance emotional reactivity, interfere with emotion regulation, and undermine social functioning. Cognitive reappraisal is a type of emotion regulation used to alter NSBs, with the goal of modulating emotional reactivity. Despite its relevance, little is known about the neural bases and temporal features of cognitive reappraisal in patients with SAD. Methods Twenty-seven patients with SAD and 27 healthy controls (HC) were trained to react and to implement cognitive reappraisal in order to down-regulate negative emotional reactivity to NSBs while undergoing functional magnetic resonance imaging and providing ratings of negative emotion experience. Results Behaviorally, compared with HC, patients with SAD reported greater negative emotion both while reacting to and reappraising NSBs. However, when cued, participants in both groups were able to use cognitive reappraisal to decrease emotion. Neurally, reacting to NSBs resulted in early amygdala response in both groups. Reappraising NSBs resulted in greater early cognitive control, language, and visual processing in HC, but greater late cognitive control, visceral, and visual processing in patients with SAD. Functional connectivity analysis during reappraisal identified more regulatory regions inversely related to left amygdala in HCs than in patients with SAD. Reappraisal-related brain regions that differentiated patients and controls were associated with negative emotion ratings and cognitive reappraisal self-efficacy. Conclusions Findings regarding cognitive reappraisal suggest neural timing, connectivity, and brain-behavioral associations specific to patients with SAD, and elucidate neural mechanisms that might serve as biomarkers of interventions for SAD. PMID:19717138
Homeostatic Scaling of Excitability in Recurrent Neural Networks
Remme, Michiel W. H.; Wadman, Wytse J.
2012-01-01
Neurons adjust their intrinsic excitability when experiencing a persistent change in synaptic drive. This process can prevent neural activity from moving into either a quiescent state or a saturated state in the face of ongoing plasticity, and is thought to promote stability of the network in which neurons reside. However, most neurons are embedded in recurrent networks, which require a delicate balance between excitation and inhibition to maintain network stability. This balance could be disrupted when neurons independently adjust their intrinsic excitability. Here, we study the functioning of activity-dependent homeostatic scaling of intrinsic excitability (HSE) in a recurrent neural network. Using both simulations of a recurrent network consisting of excitatory and inhibitory neurons that implement HSE, and a mean-field description of adapting excitatory and inhibitory populations, we show that the stability of such adapting networks critically depends on the relationship between the adaptation time scales of both neuron populations. In a stable adapting network, HSE can keep all neurons functioning within their dynamic range, while the network is undergoing several (patho)physiologically relevant types of plasticity, such as persistent changes in external drive, changes in connection strengths, or the loss of inhibitory cells from the network. However, HSE cannot prevent the unstable network dynamics that result when, due to such plasticity, recurrent excitation in the network becomes too strong compared to feedback inhibition. This suggests that keeping a neural network in a stable and functional state requires the coordination of distinct homeostatic mechanisms that operate not only by adjusting neural excitability, but also by controlling network connectivity. PMID:22570604
Injured Brains and Adaptive Networks: The Benefits and Costs of Hyperconnectivity.
Hillary, Frank G; Grafman, Jordan H
2017-05-01
A common finding in human functional brain-imaging studies is that damage to neural systems paradoxically results in enhanced functional connectivity between network regions, a phenomenon commonly referred to as 'hyperconnectivity'. Here, we describe the various ways that hyperconnectivity operates to benefit a neural network following injury while simultaneously negotiating the trade-off between metabolic cost and communication efficiency. Hyperconnectivity may be optimally expressed by increasing connections through the most central and metabolically efficient regions (i.e., hubs). While adaptive in the short term, we propose that chronic hyperconnectivity may leave network hubs vulnerable to secondary pathological processes over the life span due to chronically elevated metabolic stress. We conclude by offering novel, testable hypotheses for advancing our understanding of the role of hyperconnectivity in systems-level brain plasticity in neurological disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Low Temperature Performance of High-Speed Neural Network Circuits
NASA Technical Reports Server (NTRS)
Duong, T.; Tran, M.; Daud, T.; Thakoor, A.
1995-01-01
Artificial neural networks, derived from their biological counterparts, offer a new and enabling computing paradigm specially suitable for such tasks as image and signal processing with feature classification/object recognition, global optimization, and adaptive control. When implemented in fully parallel electronic hardware, it offers orders of magnitude speed advantage. Basic building blocks of the new architecture are the processing elements called neurons implemented as nonlinear operational amplifiers with sigmoidal transfer function, interconnected through weighted connections called synapses implemented using circuitry for weight storage and multiply functions either in an analog, digital, or hybrid scheme.
Multi-Connection Pattern Analysis: Decoding the representational content of neural communication.
Li, Yuanning; Richardson, Robert Mark; Ghuman, Avniel Singh
2017-11-15
The lack of multivariate methods for decoding the representational content of interregional neural communication has left it difficult to know what information is represented in distributed brain circuit interactions. Here we present Multi-Connection Pattern Analysis (MCPA), which works by learning mappings between the activity patterns of the populations as a factor of the information being processed. These maps are used to predict the activity from one neural population based on the activity from the other population. Successful MCPA-based decoding indicates the involvement of distributed computational processing and provides a framework for probing the representational structure of the interaction. Simulations demonstrate the efficacy of MCPA in realistic circumstances. In addition, we demonstrate that MCPA can be applied to different signal modalities to evaluate a variety of hypothesis associated with information coding in neural communications. We apply MCPA to fMRI and human intracranial electrophysiological data to provide a proof-of-concept of the utility of this method for decoding individual natural images and faces in functional connectivity data. We further use a MCPA-based representational similarity analysis to illustrate how MCPA may be used to test computational models of information transfer among regions of the visual processing stream. Thus, MCPA can be used to assess the information represented in the coupled activity of interacting neural circuits and probe the underlying principles of information transformation between regions. Copyright © 2017 Elsevier Inc. All rights reserved.
Neural correlates of emotional responses to music: an EEG study.
Daly, Ian; Malik, Asad; Hwang, Faustina; Roesch, Etienne; Weaver, James; Kirke, Alexis; Williams, Duncan; Miranda, Eduardo; Nasuto, Slawomir J
2014-06-24
This paper presents an EEG study into the neural correlates of music-induced emotions. We presented participants with a large dataset containing musical pieces in different styles, and asked them to report on their induced emotional responses. We found neural correlates of music-induced emotion in a number of frequencies over the pre-frontal cortex. Additionally, we found a set of patterns of functional connectivity, defined by inter-channel coherence measures, to be significantly different between groups of music-induced emotional responses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Quantifying hydrologic connectivity with measures from the brain neurosciences - a feasibility study
NASA Astrophysics Data System (ADS)
Rinderer, Michael; Ali, Genevieve; Larsen, Laurel
2017-04-01
While the concept of connectivity is increasingly applied in hydrology and ecology, little agreement exists on its definition and quantification approaches. In contrast, the neurosciences have developed a systematic conceptualization of connectivity and methods to quantify it. In particular, neuroscientists make a clear distinction between: 1) structural connectivity, which is determined by the anatomy of the brain neural network, 2) functional connectivity, that is based on statistical dependencies between neural signals, and 3) effective connectivity, that allows to infer causal relations based on the assumption that "true" interactions occur with a certain time delay. In a similar vein, in hydrology, structural connectivity can be defined as the physical adjacency of landscape elements that are seen as a prerequisite of material transfer, while functional or process connectivity would rather describe interactions or causal relations between spatial adjacency characteristics and temporally varying factors. While hydrologists have suggested methods to derive structural connectivity (SC), the quantification of functional (FC) or effective connectivity (EC) has remained elusive. The goal of the current study was therefore to apply timeseries analysis methods from brain neuroscience to quantify EC and FC among groundwater (n = 34) and stream discharge (n = 1) monitoring sites in a 20-ha Swiss catchment where topography is assumed to be a major driver of connectivity. SC was assessed through influence maps that quantify the percentage of flow from an upslope site to a downslope site by applying a multiple flow direction algorithm. FC was assessed by cross-correlation, total and partial mutual information while EC was quantified via total and partial entropy, Granger causality and a phase slope index. Our results showed that many structural connections were also expressed as functional or effective connections, which is reasonable in a catchment with shallow perched groundwater tables. The differentiation between FC and EC measures allowed us to distinguish between hydrological connectivity (i.e., Darcian fluxes of water) and hydraulic connectivity (i.e. pressure wave-driven processes). However, some FC and EC measures also detected the presence of connectivity despite the absence of SC, which highlights the limits of applying brain connectivity measures to hydrology. We therefore conclude that brain neuroscience methods for assessing FC and EC can be powerful tools in assessing hydrological connectivity as long as they are constrained by SC measures.
Computational neuroanatomy: ontology-based representation of neural components and connectivity.
Rubin, Daniel L; Talos, Ion-Florin; Halle, Michael; Musen, Mark A; Kikinis, Ron
2009-02-05
A critical challenge in neuroscience is organizing, managing, and accessing the explosion in neuroscientific knowledge, particularly anatomic knowledge. We believe that explicit knowledge-based approaches to make neuroscientific knowledge computationally accessible will be helpful in tackling this challenge and will enable a variety of applications exploiting this knowledge, such as surgical planning. We developed ontology-based models of neuroanatomy to enable symbolic lookup, logical inference and mathematical modeling of neural systems. We built a prototype model of the motor system that integrates descriptive anatomic and qualitative functional neuroanatomical knowledge. In addition to modeling normal neuroanatomy, our approach provides an explicit representation of abnormal neural connectivity in disease states, such as common movement disorders. The ontology-based representation encodes both structural and functional aspects of neuroanatomy. The ontology-based models can be evaluated computationally, enabling development of automated computer reasoning applications. Neuroanatomical knowledge can be represented in machine-accessible format using ontologies. Computational neuroanatomical approaches such as described in this work could become a key tool in translational informatics, leading to decision support applications that inform and guide surgical planning and personalized care for neurological disease in the future.
Symmetry Breaking in Space-Time Hierarchies Shapes Brain Dynamics and Behavior.
Pillai, Ajay S; Jirsa, Viktor K
2017-06-07
In order to maintain brain function, neural activity needs to be tightly coordinated within the brain network. How this coordination is achieved and related to behavior is largely unknown. It has been previously argued that the study of the link between brain and behavior is impossible without a guiding vision. Here we propose behavioral-level concepts and mechanisms embodied as structured flows on manifold (SFM) that provide a formal description of behavior as a low-dimensional process emerging from a network's dynamics dependent on the symmetry and invariance properties of the network connectivity. Specifically, we demonstrate that the symmetry breaking of network connectivity constitutes a timescale hierarchy resulting in the emergence of an attractive functional subspace. We show that behavior emerges when appropriate conditions imposed upon the couplings are satisfied, justifying the conductance-based nature of synaptic couplings. Our concepts propose design principles for networks predicting how behavior and task rules are represented in real neural circuits and open new avenues for the analyses of neural data. Copyright © 2017 Elsevier Inc. All rights reserved.
Computing the Social Brain Connectome Across Systems and States.
Alcalá-López, Daniel; Smallwood, Jonathan; Jefferies, Elizabeth; Van Overwalle, Frank; Vogeley, Kai; Mars, Rogier B; Turetsky, Bruce I; Laird, Angela R; Fox, Peter T; Eickhoff, Simon B; Bzdok, Danilo
2017-05-18
Social skills probably emerge from the interaction between different neural processing levels. However, social neuroscience is fragmented into highly specialized, rarely cross-referenced topics. The present study attempts a systematic reconciliation by deriving a social brain definition from neural activity meta-analyses on social-cognitive capacities. The social brain was characterized by meta-analytic connectivity modeling evaluating coactivation in task-focused brain states and physiological fluctuations evaluating correlations in task-free brain states. Network clustering proposed a functional segregation into (1) lower sensory, (2) limbic, (3) intermediate, and (4) high associative neural circuits that together mediate various social phenomena. Functional profiling suggested that no brain region or network is exclusively devoted to social processes. Finally, nodes of the putative mirror-neuron system were coherently cross-connected during tasks and more tightly coupled to embodied simulation systems rather than abstract emulation systems. These first steps may help reintegrate the specialized research agendas in the social and affective sciences. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Parent, Maxime; Li, Ying; Santhakumar, Vijayalakshmi; Hyder, Fahmeed; Sanganahalli, Basavaraju G; Kannurpatti, Sridhar
2018-06-01
TBI is a leading cause of morbidity in children. To investigate outcome of early developmental TBI during adolescence, a rat model of fluid percussion injury was developed, where previous work reported deficits in sensorimotor behavior and cortical blood flow at adolescence. 1 Based on the non-localized outcome, we hypothesized that multiple neurophysiological components of brain function, namely neuronal connectivity, synapse/axonal microstructural integrity and neurovascular function are altered and magnetic resonance imaging (MRI) methods could be used to determine regional alterations. Adolescent outcomes of developmental TBI were studied 2-months after injury, using functional MRI (fMRI) and Diffusion Tensor Imaging (DTI). fMRI based resting state functional connectivity (RSFC), representing neural connectivity, was significantly altered between sham and TBI. RSFC strength decreased in the cortex, hippocampus and thalamus accompanied by decrease in the spatial extent of their corresponding RSFC networks and inter-hemispheric asymmetry. Cerebrovascular reactivity to arterial CO2 changes diminished after TBI across both hemispheres, with a more pronounced decrease in the ipsilateral hippocampus, thalamus and motor cortex. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient (ADC), reporting on axonal and microstructural integrity of the brain, indicated similar inter-hemispheric asymmetry, with highest change in the ipsilateral hippocampus and regions adjoining the ipsilateral thalamus, hypothalamus and amygdala. TBI-induced corpus callosal microstructural alterations indicated measurable changes in inter-hemispheric structural connectivity. Hippocampus, thalamus and select cortical regions were most consistently affected in multiple imaging markers. The multi-modal MRI results demonstrate cortical and subcortical alterations in neural connectivity, cerebrovascular resistance and parenchymal microstructure in the adolescent brain, indicating the highly diffuse and persistent nature of the lateral fluid percussion TBI early in development.
Task-Rest Modulation of Basal Ganglia Connectivity in Mild to Moderate Parkinson’s Disease
Müller-Oehring, Eva M.; Sullivan, Edith V.; Pfefferbaum, Adolf; Huang, Neng C.; Poston, Kathleen L.; Bronte-Stewart, Helen M.; Schulte, Tilman
2014-01-01
Parkinson’s disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG–cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen–medial parietal and pallidum–occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate–supramarginal gyrus and pallidum–inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal–cortical connectivity, specifically between caudate–prefrontal, caudate–precuneus, and putamen–motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance. PMID:25280970
Kim, Na Young; Wittenberg, Ellen; Nam, Chang S
2017-01-01
This study investigated the interaction between two executive function processes, inhibition and updating, through analyses of behavioral, neurophysiological, and effective connectivity metrics. Although, many studies have focused on behavioral effects of executive function processes individually, few studies have examined the dynamic causal interactions between these two functions. A total of twenty participants from a local university performed a dual task combing flanker and n-back experimental paradigms, and completed the Operation Span Task designed to measure working memory capacity. We found that both behavioral (accuracy and reaction time) and neurophysiological (P300 amplitude and alpha band power) metrics on the inhibition task (i.e., flanker task) were influenced by the updating load (n-back level) and modulated by working memory capacity. Using independent component analysis, source localization (DIPFIT), and Granger Causality analysis of the EEG time-series data, the present study demonstrated that manipulation of cognitive demand in a dual executive function task influenced the causal neural network. We compared connectivity across three updating loads (n-back levels) and found that experimental manipulation of working memory load enhanced causal connectivity of a large-scale neurocognitive network. This network contains the prefrontal and parietal cortices, which are associated with inhibition and updating executive function processes. This study has potential applications in human performance modeling and assessment of mental workload, such as the design of training materials and interfaces for those performing complex multitasking under stress.
Just, Marcel Adam; Cherkassky, Vladimir L; Keller, Timothy A; Kana, Rajesh K; Minshew, Nancy J
2007-04-01
The brain activation of a group of high-functioning autistic participants was measured using functional magnetic resonance imaging during the performance of a Tower of London task, in comparison with a control group matched with respect to intelligent quotient, age, and gender. The 2 groups generally activated the same cortical areas to similar degrees. However, there were 3 indications of underconnectivity in the group with autism. First, the degree of synchronization (i.e., the functional connectivity or the correlation of the time series of the activation) between the frontal and parietal areas of activation was lower for the autistic than the control participants. Second, relevant parts of the corpus callosum, through which many of the bilaterally activated cortical areas communicate, were smaller in cross-sectional area in the autistic participants. Third, within the autism group but not within the control group, the size of the genu of the corpus callosum was correlated with frontal-parietal functional connectivity. These findings suggest that the neural basis of altered cognition in autism entails a lower degree of integration of information across certain cortical areas resulting from reduced intracortical connectivity. The results add support to a new theory of cortical underconnectivity in autism, which posits a deficit in integration of information at the neural and cognitive levels.
The Hierarchical Brain Network for Face Recognition
Zhen, Zonglei; Fang, Huizhen; Liu, Jia
2013-01-01
Numerous functional magnetic resonance imaging (fMRI) studies have identified multiple cortical regions that are involved in face processing in the human brain. However, few studies have characterized the face-processing network as a functioning whole. In this study, we used fMRI to identify face-selective regions in the entire brain and then explore the hierarchical structure of the face-processing network by analyzing functional connectivity among these regions. We identified twenty-five regions mainly in the occipital, temporal and frontal cortex that showed a reliable response selective to faces (versus objects) across participants and across scan sessions. Furthermore, these regions were clustered into three relatively independent sub-networks in a face-recognition task on the basis of the strength of functional connectivity among them. The functionality of the sub-networks likely corresponds to the recognition of individual identity, retrieval of semantic knowledge and representation of emotional information. Interestingly, when the task was switched to object recognition from face recognition, the functional connectivity between the inferior occipital gyrus and the rest of the face-selective regions were significantly reduced, suggesting that this region may serve as an entry node in the face-processing network. In sum, our study provides empirical evidence for cognitive and neural models of face recognition and helps elucidate the neural mechanisms underlying face recognition at the network level. PMID:23527282
Default Mode Functional Connectivity is Associated with Social Functioning in Schizophrenia
Fox, Jaclyn M.; Abram, Samantha V.; Reilly, James L.; Eack, Shaun; Goldman, Morris B.; Csernansky, John G.; Wang, Lei; Smith, Matthew J.
2017-01-01
Individuals with schizophrenia display notable deficits in social functioning. Research indicates that neural connectivity within the default mode network (DMN) is related to social cognition and social functioning in healthy and clinical populations. However, the association between DMN connectivity, social cognition, and social functioning has not been studied in schizophrenia. For the present study, we used resting-state neuroimaging data to evaluate connectivity between the main DMN hubs (i.e., the medial prefrontal cortex (mPFC) and the posterior cingulate cortex-anterior precuneus (PPC)) in individuals with schizophrenia (n=28) and controls (n=32). We also examined whether DMN connectivity was associated with social functioning via social attainment (measured by the Specific Levels of Functioning Scale) and social competence (measured by the Social Skills Performance Assessment), and if social cognition mediates the association between DMN connectivity and these measures of social functioning. Results revealed that DMN connectivity did not differ between individuals with schizophrenia and controls. However, connectivity between the mPFC and PCC hubs was significantly associated with social competence and social attainment in individuals with schizophrenia but not in controls as reflected by a significant group-by-connectivity interaction. Social cognition did not mediate the association between social functioning and DMN connectivity in individuals with schizophrenia. Our findings suggest that fronto-parietal DMN connectivity in particular may be differentially associated with social functioning in schizophrenia and controls. As a result, DMN connectivity may be used as a neuroimaging marker to monitor treatment response or as a potential target for interventions that aim to enhance social functioning in schizophrenia. PMID:28358526
A lateralized functional auditory network is involved in anuran sexual selection.
Xue, Fei; Fang, Guangzhan; Yue, Xizi; Zhao, Ermi; Brauth, Steven E; Tang, Yezhong
2016-12-01
Right ear advantage (REA) exists in many land vertebrates in which the right ear and left hemisphere preferentially process conspecific acoustic stimuli such as those related to sexual selection. Although ecological and neural mechanisms for sexual selection have been widely studied, the brain networks involved are still poorly understood. In this study we used multi-channel electroencephalographic data in combination with Granger causal connectivity analysis to demonstrate, for the first time, that auditory neural network interconnecting the left and right midbrain and forebrain function asymmetrically in the Emei music frog (Babina daunchina), an anuran species which exhibits REA. The results showed the network was lateralized. Ascending connections between the mesencephalon and telencephalon were stronger in the left side while descending ones were stronger in the right, which matched with the REA in this species and implied that inhibition from the forebrainmay induce REA partly. Connections from the telencephalon to ipsilateral mesencephalon in response to white noise were the highest in the non-reproductive stage while those to advertisement calls were the highest in reproductive stage, implying the attention resources and living strategy shift when entered the reproductive season. Finally, these connection changes were sexually dimorphic, revealing sex differences in reproductive roles.
Vecchio, F; Miraglia, F; Quaranta, D; Granata, G; Romanello, R; Marra, C; Bramanti, P; Rossini, P M
2016-03-01
Functional brain abnormalities including memory loss are found to be associated with pathological changes in connectivity and network neural structures. Alzheimer's disease (AD) interferes with memory formation from the molecular level, to synaptic functions and neural networks organization. Here, we determined whether brain connectivity of resting-state networks correlate with memory in patients affected by AD and in subjects with mild cognitive impairment (MCI). One hundred and forty-four subjects were recruited: 70 AD (MMSE Mini Mental State Evaluation 21.4), 50 MCI (MMSE 25.2) and 24 healthy subjects (MMSE 29.8). Undirected and weighted cortical brain network was built to evaluate graph core measures to obtain Small World parameters. eLORETA lagged linear connectivity as extracted by electroencephalogram (EEG) signals was used to weight the network. A high statistical correlation between Small World and memory performance was found. Namely, higher Small World characteristic in EEG gamma frequency band during the resting state, better performance in short-term memory as evaluated by the digit span tests. Such Small World pattern might represent a biomarker of working memory impairment in older people both in physiological and pathological conditions. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Hochstadt, Jesse; Nakano, Hiroko; Lieberman, Philip; Friedman, Joseph
2006-01-01
Studies of sentence comprehension deficits in Parkinson's disease (PD) patients suggest that language processing involves circuits connecting subcortical and cortical regions. Anatomically segregated neural circuits appear to support different cognitive and motor functions. To investigate which functions are implicated in PD comprehension…
Compact VLSI neural computer integrated with active pixel sensor for real-time ATR applications
NASA Astrophysics Data System (ADS)
Fang, Wai-Chi; Udomkesmalee, Gabriel; Alkalai, Leon
1997-04-01
A compact VLSI neural computer integrated with an active pixel sensor has been under development to mimic what is inherent in biological vision systems. This electronic eye- brain computer is targeted for real-time machine vision applications which require both high-bandwidth communication and high-performance computing for data sensing, synergy of multiple types of sensory information, feature extraction, target detection, target recognition, and control functions. The neural computer is based on a composite structure which combines Annealing Cellular Neural Network (ACNN) and Hierarchical Self-Organization Neural Network (HSONN). The ACNN architecture is a programmable and scalable multi- dimensional array of annealing neurons which are locally connected with their local neurons. Meanwhile, the HSONN adopts a hierarchical structure with nonlinear basis functions. The ACNN+HSONN neural computer is effectively designed to perform programmable functions for machine vision processing in all levels with its embedded host processor. It provides a two order-of-magnitude increase in computation power over the state-of-the-art microcomputer and DSP microelectronics. A compact current-mode VLSI design feasibility of the ACNN+HSONN neural computer is demonstrated by a 3D 16X8X9-cube neural processor chip design in a 2-micrometers CMOS technology. Integration of this neural computer as one slice of a 4'X4' multichip module into the 3D MCM based avionics architecture for NASA's New Millennium Program is also described.
Abnormal network connectivity in frontotemporal dementia: evidence for prefrontal isolation.
Farb, Norman A S; Grady, Cheryl L; Strother, Stephen; Tang-Wai, David F; Masellis, Mario; Black, Sandra; Freedman, Morris; Pollock, Bruce G; Campbell, Karen L; Hasher, Lynn; Chow, Tiffany W
2013-01-01
Degraded social function, disinhibition, and stereotypy are defining characteristics of frontotemporal dementia (FTD), manifesting in both the behavioral variant of frontotemporal dementia (bvFTD) and semantic dementia (SD) subtypes. Recent neuroimaging research also associates FTD with alterations in the brain's intrinsic connectivity networks. The present study explored the relationship between neural network connectivity and specific behavioral symptoms in FTD. Resting-state functional magnetic resonance imaging was employed to investigate neural network changes in bvFTD and SD. We used independent components analysis (ICA) to examine changes in frontolimbic network connectivity, as well as several metrics of local network strength, such as the fractional amplitude of low-frequency fluctuations, regional homogeneity, and seed-based functional connectivity. For each analysis, we compared each FTD subgroup to healthy controls, characterizing general and subtype-unique network changes. The relationship between abnormal connectivity in FTD and behavior disturbances was explored. Across multiple analytic approaches, both bvFTD and SD were associated with disrupted frontolimbic connectivity and elevated local connectivity within the prefrontal cortex. Even after controlling for structural atrophy, prefrontal hyperconnectivity was robustly associated with apathy scores. Frontolimbic disconnection was associated with lower disinhibition scores, suggesting that abnormal frontolimbic connectivity contributes to positive symptoms in dementia. Unique to bvFTD, stereotypy was associated with elevated default network connectivity in the right angular gyrus. The behavioral variant was also associated with marginally higher apathy scores and a more diffuse pattern of prefrontal hyperconnectivity than SD. The present findings support a theory of FTD as a disorder of frontolimbic disconnection leading to unconstrained prefrontal connectivity. Prefrontal hyperconnectivity may represent a compensatory response to the absence of affective feedback during the planning and execution of behavior. Increased reliance upon prefrontal processes in isolation from subcortical structures appears to be maladaptive and may drive behavioral withdrawal that is commonly observed in later phases of neurodegeneration. Copyright © 2012 Elsevier Ltd. All rights reserved.
Xiu, Daiming; Geiger, Maximilian J; Klaver, Peter
2015-01-01
This study investigated the role of bottom-up and top-down neural mechanisms in the processing of emotional face expression during memory formation. Functional brain imaging data was acquired during incidental learning of positive ("happy"), neutral and negative ("angry" or "fearful") faces. Dynamic Causal Modeling (DCM) was applied on the functional magnetic resonance imaging (fMRI) data to characterize effective connectivity within a brain network involving face perception (inferior occipital gyrus and fusiform gyrus) and successful memory formation related areas (hippocampus, superior parietal lobule, amygdala, and orbitofrontal cortex). The bottom-up models assumed processing of emotional face expression along feed forward pathways to the orbitofrontal cortex. The top-down models assumed that the orbitofrontal cortex processed emotional valence and mediated connections to the hippocampus. A subsequent recognition memory test showed an effect of negative emotion on the response bias, but not on memory performance. Our DCM findings showed that the bottom-up model family of effective connectivity best explained the data across all subjects and specified that emotion affected most bottom-up connections to the orbitofrontal cortex, especially from the occipital visual cortex and superior parietal lobule. Of those pathways to the orbitofrontal cortex the connection from the inferior occipital gyrus correlated with memory performance independently of valence. We suggest that bottom-up neural mechanisms support effects of emotional face expression and memory formation in a parallel and partially overlapping fashion.
Neural correlates of cognitive processing in monolinguals and bilinguals
Grundy, John G.; Anderson, John A.E.; Bialystok, Ellen
2017-01-01
Here we review the neural correlates of cognitive control associated with bilingualism. We demonstrate that lifelong practice managing two languages orchestrates global changes to both the structure and function of the brain. Compared with monolinguals, bilinguals generally show greater gray matter volume, especially in perceptual/motor regions, greater white matter integrity, and greater functional connectivity between gray matter regions. These changes complement electroencephalography findings showing that bilinguals devote neural resources earlier than monolinguals. Parallel functional findings emerge from the functional magnetic resonance imaging literature: bilinguals show reduced frontal activity, suggesting that they do not need to rely on top-down mechanisms to the same extent as monolinguals. This shift for bilinguals to rely more on subcortical/posterior regions, which we term the bilingual anterior-to-posterior and subcortical shift (BAPSS), fits with results from cognitive aging studies and helps to explain why bilinguals experience cognitive decline at later stages of development than monolinguals. PMID:28415142
Optogenetics and the future of neuroscience.
Boyden, Edward S
2015-09-01
Over the last 10 years, optogenetics has become widespread in neuroscience for the study of how specific cell types contribute to brain functions and brain disorder states. The full impact of optogenetics will emerge only when other toolsets mature, including neural connectivity and cell phenotyping tools and neural recording and imaging tools. The latter tools are rapidly improving, in part because optogenetics has helped galvanize broad interest in neurotechnology development.
Dong, Guangheng; Lin, Xiao; Potenza, Marc N
2015-03-03
Resting brain spontaneous neural activities across cortical regions have been correlated with specific functional properties in psychiatric groups. Individuals with Internet gaming disorder (IGD) demonstrate impaired executive control. Thus, it is important to examine executive control networks (ECNs) during resting states and their relationships to executive control during task performance. Thirty-five IGD and 36 healthy control participants underwent a resting-state fMRI scan and performed a Stroop task inside and outside of the MRI scanner. Correlations between Stroop effect and functional connectivity among ECN regions of interest (ROIs) were calculated within and between groups. IGD subjects show lower functional connectivity in ECNs than do HC participants during resting state; functional-connectivity measures in ECNs were negatively correlated with Stroop effect and positively correlated with brain activations in executive-control regions across groups. Within groups, negative trends were found between Stroop effect and functional connectivity in ECNs in IGD and HC groups, separately; positive trends were found between functional connectivity in ECNs and brain activations in Stroop task in IGD and HC groups, separately. Higher functional connectivity in ECNs may underlie better executive control and may provide resilience with respect to IGD. Lower functional connectivity in ECNs may represent an important feature in understanding and treating IGD. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zamora-López, Gorka; Chen, Yuhan; Deco, Gustavo; Kringelbach, Morten L.; Zhou, Changsong
2016-12-01
The large-scale structural ingredients of the brain and neural connectomes have been identified in recent years. These are, similar to the features found in many other real networks: the arrangement of brain regions into modules and the presence of highly connected regions (hubs) forming rich-clubs. Here, we examine how modules and hubs shape the collective dynamics on networks and we find that both ingredients lead to the emergence of complex dynamics. Comparing the connectomes of C. elegans, cats, macaques and humans to surrogate networks in which either modules or hubs are destroyed, we find that functional complexity always decreases in the perturbed networks. A comparison between simulated and empirically obtained resting-state functional connectivity indicates that the human brain, at rest, lies in a dynamical state that reflects the largest complexity its anatomical connectome can host. Last, we generalise the topology of neural connectomes into a new hierarchical network model that successfully combines modular organisation with rich-club forming hubs. This is achieved by centralising the cross-modular connections through a preferential attachment rule. Our network model hosts more complex dynamics than other hierarchical models widely used as benchmarks.
Zamora-López, Gorka; Chen, Yuhan; Deco, Gustavo; Kringelbach, Morten L.; Zhou, Changsong
2016-01-01
The large-scale structural ingredients of the brain and neural connectomes have been identified in recent years. These are, similar to the features found in many other real networks: the arrangement of brain regions into modules and the presence of highly connected regions (hubs) forming rich-clubs. Here, we examine how modules and hubs shape the collective dynamics on networks and we find that both ingredients lead to the emergence of complex dynamics. Comparing the connectomes of C. elegans, cats, macaques and humans to surrogate networks in which either modules or hubs are destroyed, we find that functional complexity always decreases in the perturbed networks. A comparison between simulated and empirically obtained resting-state functional connectivity indicates that the human brain, at rest, lies in a dynamical state that reflects the largest complexity its anatomical connectome can host. Last, we generalise the topology of neural connectomes into a new hierarchical network model that successfully combines modular organisation with rich-club forming hubs. This is achieved by centralising the cross-modular connections through a preferential attachment rule. Our network model hosts more complex dynamics than other hierarchical models widely used as benchmarks. PMID:27917958
Degnan, Andrew J; Wisnowski, Jessica L; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M; Corby, Patricia; Schmithorst, Vincent J; Panigrahy, Ashok
2015-01-01
Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth. Thirty-eight preadolescents (ages 9-13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri). Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups. Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences. Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections. Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing.
Resting-state FMRI confounds and cleanup
Murphy, Kevin; Birn, Rasmus M.; Bandettini, Peter A.
2013-01-01
The goal of resting-state functional magnetic resonance imaging (FMRI) is to investigate the brain’s functional connections by using the temporal similarity between blood oxygenation level dependent (BOLD) signals in different regions of the brain “at rest” as an indicator of synchronous neural activity. Since this measure relies on the temporal correlation of FMRI signal changes between different parts of the brain, any non-neural activity-related process that affects the signals will influence the measure of functional connectivity, yielding spurious results. To understand the sources of these resting-state FMRI confounds, this article describes the origins of the BOLD signal in terms of MR physics and cerebral physiology. Potential confounds arising from motion, cardiac and respiratory cycles, arterial CO2 concentration, blood pressure/cerebral autoregulation, and vasomotion are discussed. Two classes of techniques to remove confounds from resting-state BOLD time series are reviewed: 1) those utilising external recordings of physiology and 2) data-based cleanup methods that only use the resting-state FMRI data itself. Further methods that remove noise from functional connectivity measures at a group level are also discussed. For successful interpretation of resting-state FMRI comparisons and results, noise cleanup is an often over-looked but essential step in the analysis pipeline. PMID:23571418
Sihvonen, Aleksi J; Särkämö, Teppo; Ripollés, Pablo; Leo, Vera; Saunavaara, Jani; Parkkola, Riitta; Rodríguez-Fornells, Antoni; Soinila, Seppo
2017-09-12
Brain damage causing acquired amusia disrupts the functional music processing system, creating a unique opportunity to investigate the critical neural architectures of musical processing in the brain. In this longitudinal fMRI study of stroke patients (N = 41) with a 6-month follow-up, we used natural vocal music (sung with lyrics) and instrumental music stimuli to uncover brain activation and functional network connectivity changes associated with acquired amusia and its recovery. In the acute stage, amusic patients exhibited decreased activation in right superior temporal areas compared to non-amusic patients during instrumental music listening. During the follow-up, the activation deficits expanded to comprise a wide-spread bilateral frontal, temporal, and parietal network. The amusics showed less activation deficits to vocal music, suggesting preserved processing of singing in the amusic brain. Compared to non-recovered amusics, recovered amusics showed increased activation to instrumental music in bilateral frontoparietal areas at 3 months and in right middle and inferior frontal areas at 6 months. Amusia recovery was also associated with increased functional connectivity in right and left frontoparietal attention networks to instrumental music. Overall, our findings reveal the dynamic nature of deficient activation and connectivity patterns in acquired amusia and highlight the role of dorsal networks in amusia recovery.
Multilayer neural networks with extensively many hidden units.
Rosen-Zvi, M; Engel, A; Kanter, I
2001-08-13
The information processing abilities of a multilayer neural network with a number of hidden units scaling as the input dimension are studied using statistical mechanics methods. The mapping from the input layer to the hidden units is performed by general symmetric Boolean functions, whereas the hidden layer is connected to the output by either discrete or continuous couplings. Introducing an overlap in the space of Boolean functions as order parameter, the storage capacity is found to scale with the logarithm of the number of implementable Boolean functions. The generalization behavior is smooth for continuous couplings and shows a discontinuous transition to perfect generalization for discrete ones.
Spreng, R. Nathan; Cassidy, Benjamin N; Darboh, Bri S; DuPre, Elizabeth; Lockrow, Amber W; Setton, Roni; Turner, Gary R
2017-01-01
Abstract Background Age-related brain changes leading to altered socioemotional functioning may increase vulnerability to financial exploitation. If confirmed, this would suggest a novel mechanism leading to heightened financial exploitation risk in older adults. Development of predictive neural markers could facilitate increased vigilance and prevention. In this preliminary study, we sought to identify structural and functional brain differences associated with financial exploitation in older adults. Methods Financially exploited older adults (n = 13, 7 female) and a matched cohort of older adults who had been exposed to, but avoided, a potentially exploitative situation (n = 13, 7 female) were evaluated. Using magnetic resonance imaging, we examined cortical thickness and resting state functional connectivity. Behavioral data were collected using standardized cognitive assessments, self-report measures of mood and social functioning. Results The exploited group showed cortical thinning in anterior insula and posterior superior temporal cortices, regions associated with processing affective and social information, respectively. Functional connectivity encompassing these regions, within default and salience networks, was reduced, while between network connectivity was increased. Self-reported anger and hostility was higher for the exploited group. Conclusions We observed financial exploitation associated with brain differences in regions involved in socioemotional functioning. These exploratory and preliminary findings suggest that alterations in brain regions implicated in socioemotional functioning may be a marker of financial exploitation risk. Large-scale, prospective studies are necessary to validate this neural mechanism, and develop predictive markers for use in clinical practice. PMID:28369260
Akdeniz, Ceren; Tost, Heike; Streit, Fabian; Haddad, Leila; Wüst, Stefan; Schäfer, Axel; Schneider, Michael; Rietschel, Marcella; Kirsch, Peter; Meyer-Lindenberg, Andreas
2014-06-01
Relative risk for the brain disorder schizophrenia is more than doubled in ethnic minorities, an effect that is evident across countries and linked to socially relevant cues such as skin color, making ethnic minority status a well-established social environmental risk factor. Pathoepidemiological models propose a role for chronic social stress and perceived discrimination for mental health risk in ethnic minorities, but the neurobiology is unexplored. To study neural social stress processing, using functional magnetic resonance imaging, and associations with perceived discrimination in ethnic minority individuals. Cross-sectional design in a university setting using 3 validated paradigms to challenge neural social stress processing and, to probe for specificity, emotional and cognitive brain functions. Healthy participants included those with German lineage (n = 40) and those of ethnic minority (n = 40) from different ethnic backgrounds matched for sociodemographic, psychological, and task performance characteristics. Control comparisons examined stress processing with matched ethnic background of investigators (23 Turkish vs 23 German participants) and basic emotional and cognitive tasks (24 Turkish vs 24 German participants). Blood oxygenation level-dependent response, functional connectivity, and psychological and physiological measures. There were significant increases in heart rate (P < .001), subjective emotional response (self-related emotions, P < .001; subjective anxiety, P = .006), and salivary cortisol level (P = .004) during functional magnetic resonance imaging stress induction. Ethnic minority individuals had significantly higher perceived chronic stress levels (P = .02) as well as increased activation (family-wise error-corrected [FWE] P = .005, region of interest corrected) and increased functional connectivity (PFWE = .01, region of interest corrected) of perigenual anterior cingulate cortex (ACC). The effects were specific to stress and not explained by a social distance effect. Ethnic minority individuals had significant correlations between perceived group discrimination and activation in perigenual ACC (PFWE = .001, region of interest corrected) and ventral striatum (PFWE = .02, whole brain corrected) and mediation of the relationship between perceived discrimination and perigenual ACC-dorsal ACC connectivity by chronic stress (P < .05). Epidemiologists proposed a causal role of social-evaluative stress, but the neural processes that could mediate this susceptibility effect were unknown. Our data demonstrate the potential of investigating associations from epidemiology with neuroimaging, suggest brain effects of social marginalization, and highlight a neural system in which environmental and genetic risk factors for mental illness may converge.
Altered Functional Connectivity of the Default Mode Network in Low-Empathy Subjects.
Kim, Seung Jun; Kim, Sung Eun; Kim, Hyo Eun; Han, Kiwan; Jeong, Bumseok; Kim, Jae Jin; Namkoong, Kee; Kim, Ji Woong
2017-09-01
Empathy is the ability to identify with or make a vicariously experience of another person's feelings or thoughts based on memory and/or self-referential mental simulation. The default mode network in particular is related to self-referential empathy. In order to elucidate the possible neural mechanisms underlying empathy, we investigated the functional connectivity of the default mode network in subjects from a general population. Resting state functional magnetic resonance imaging data were acquired from 19 low-empathy subjects and 18 medium-empathy subjects. An independent component analysis was used to identify the default mode network, and differences in functional connectivity strength were compared between the two groups. The low-empathy group showed lower functional connectivity of the medial prefrontal cortex and anterior cingulate cortex (Brodmann areas 9 and 32) within the default mode network, compared to the medium-empathy group. The results of the present study suggest that empathy is related to functional connectivity of the medial prefrontal cortex/anterior cingulate cortex within the default mode network. Functional decreases in connectivity among low-empathy subjects may reflect an impairment of self-referential mental simulation. © Copyright: Yonsei University College of Medicine 2017.
Thalamic amplification of cortical connectivity sustains attentional control
Schmitt, L. Ian; Wimmer, Ralf D.; Nakajima, Miho; Happ, Michael; Mofakham, Sima; Halassa, Michael M.
2017-01-01
While interactions between the thalamus and cortex are critical for cognitive function1–3, the exact contribution of the thalamus to these interactions is often unclear. Recent studies have shown diverse connectivity patterns across the thalamus 4,5, but whether this diversity translates to thalamic functions beyond relaying information to or between cortical regions6 is unknown. Here, by investigating prefrontal cortical (PFC) representation of two rules used to guide attention, we find that the mediodorsal thalamus (MD) sustains these representations without relaying categorical information. Specifically, MD input amplifies local PFC connectivity, enabling rule-specific neural sequences to emerge and thereby maintain rule representations. Consistent with this notion, broadly enhancing PFC excitability diminishes rule specificity and behavioral performance, while enhancing MD excitability improves both. Overall, our results define a previously unknown principle in neuroscience; thalamic control of functional cortical connectivity. This function indicates that the thalamus plays much more central roles in cognition than previously thought. PMID:28467827
Knox, Dayan; Stanfield, Briana R; Staib, Jennifer M; David, Nina P; DePietro, Thomas; Chamness, Marisa; Schneider, Elizabeth K; Keller, Samantha M; Lawless, Caroline
2018-04-02
Neural circuits via which stress leads to disruptions in fear extinction is often explored in animal stress models. Using the single prolonged stress (SPS) model of post traumatic stress disorder and the immediate early gene (IEG) c-Fos as a measure of neural activity, we previously identified patterns of neural activity through which SPS disrupts extinction retention. However, none of these stress effects were specific to fear or extinction learning and memory. C-Jun is another IEG that is sometimes regulated in a different manner to c-Fos and could be used to identify emotional learning/memory specific patterns of neural activity that are sensitive to SPS. Animals were either fear conditioned (CS-fear) or presented with CSs only (CS-only) then subjected to extinction training and testing. C-Jun was then assayed within neural substrates critical for extinction memory. Inhibited c-Jun levels in the hippocampus (Hipp) and enhanced functional connectivity between the ventromedial prefrontal cortex (vmPFC) and basolateral amygdala (BLA) during extinction training was disrupted by SPS in the CS-fear group only. As a result, these effects were specific to emotional learning/memory. SPS also disrupted inhibited Hipp c-Jun levels, enhanced BLA c-Jun levels, and altered functional connectivity among the vmPFC, BLA, and Hipp during extinction testing in SPS rats in the CS-fear and CS-only groups. As a result, these effects were not specific to emotional learning/memory. Our findings suggest that SPS disrupts neural activity specific to extinction memory, but may also disrupt the retention of fear extinction by mechanisms that do not involve emotional learning/memory. Copyright © 2017 Elsevier B.V. All rights reserved.
Yoo, Jin-Sun; Kim, Oh Lyong; Kim, Seong Ho; Kim, Min Su; Jang, Sung Ho
2014-01-01
This study investigated the relation between cognition and the neural connection from injured cingulum to brainstem cholinergic nuclei in patients with traumatic brain injury (TBI), using diffusion tensor tractography (DTT). Among 353 patients with TBI, 20 chronic patients who showed discontinuation of both anterior cingulums from the basal forebrain on DTT were recruited for this study. The Wechsler Intelligence Scale and the Memory Assessment Scale (MAS; short-term, verbal, visual and total memory) were used for assessment of cognition. Patients were divided into two groups according to the presence of a neural connection between injured cingulum and brainstem cholinergic nuclei. Eight patients who had a neural connection between injured cingulum and brainstem cholinergic nuclei showed better short-term memory on MAS than 12 patients who did not (p < 0.05). However, other results of neuropsychological testing showed no significant difference (p > 0.05). Better short-term memory in patients who had the neural connection between injured cingulum and brainstem cholinergic nuclei appears to have been attributed to the presence of cholinergic innervation to the cerebral cortex through the neural connection instead of the injured anterior cingulum. The neural connection appears to compensate for the injured anterior cingulum in obtaining cholinergic innervation.
Neural Systems Underlying Individual Differences in Intertemporal Decision-making.
Elton, Amanda; Smith, Christopher T; Parrish, Michael H; Boettiger, Charlotte A
2017-03-01
Excessively choosing immediate over larger future rewards, or delay discounting (DD), associates with multiple clinical conditions. Individual differences in DD likely depend on variations in the activation of and functional interactions between networks, representing possible endophenotypes for associated disorders, including alcohol use disorders (AUDs). Numerous fMRI studies have probed the neural bases of DD, but investigations of large-scale networks remain scant. We addressed this gap by testing whether activation within large-scale networks during Now/Later decision-making predicts individual differences in DD. To do so, we scanned 95 social drinkers (18-40 years old; 50 women) using fMRI during hypothetical choices between small monetary amounts available "today" or larger amounts available later. We identified neural networks engaged during Now/Later choice using independent component analysis and tested the relationship between component activation and degree of DD. The activity of two components during Now/Later choice correlated with individual DD rates: A temporal lobe network positively correlated with DD, whereas a frontoparietal-striatal network negatively correlated with DD. Activation differences between these networks predicted individual differences in DD, and their negative correlation during Now/Later choice suggests functional competition. A generalized psychophysiological interactions analysis confirmed a decrease in their functional connectivity during decision-making. The functional connectivity of these two networks negatively correlates with alcohol-related harm, potentially implicating these networks in AUDs. These findings provide novel insight into the neural underpinnings of individual differences in impulsive decision-making with potential implications for addiction and related disorders in which impulsivity is a defining feature.
Jennings, J Richard; Sheu, Lei K; Kuan, Dora C-H; Manuck, Stephen B; Gianaros, Peter J
2016-04-01
Resting high-frequency heart rate variability (HF-HRV) relates to cardiac vagal control and predicts individual differences in health and longevity, but its functional neural correlates are not well defined. The medial prefrontal cortex (mPFC) encompasses visceral control regions that are components of intrinsic networks of the brain, particularly the default mode network (DMN) and the salience network (SN). Might individual differences in resting HF-HRV covary with resting state neural activity in the DMN and SN, particularly within the mPFC? This question was addressed using fMRI data from an eyes-open, 5-min rest period during which echoplanar brain imaging yielded BOLD time series. Independent component analysis yielded functional connectivity estimates defining the DMN and SN. HF-HRV was measured in a rest period outside of the scanner. Midlife (52% female) adults were assessed in two studies (Study 1, N = 107; Study 2, N = 112). Neither overall DMN nor SN connectivity strength was related to HF-HRV. However, HF-HRV related to connectivity of one region within mPFC shared by the DMN and SN, namely, the perigenual anterior cingulate cortex, an area with connectivity to other regions involved in autonomic control. In sum, HF-HRV does not seem directly related to global resting state activity of intrinsic brain networks, but rather to more localized connectivity. A mPFC region was of particular interest as connectivity related to HF-HRV was shared by the DMN and SN. These findings may indicate a functional basis for the coordination of autonomic cardiac control with engagement and disengagement from the environment. © 2015 Society for Psychophysiological Research.
Gut vagal sensory signaling regulates hippocampus function through multi-order pathways.
Suarez, Andrea N; Hsu, Ted M; Liu, Clarissa M; Noble, Emily E; Cortella, Alyssa M; Nakamoto, Emily M; Hahn, Joel D; de Lartigue, Guillaume; Kanoski, Scott E
2018-06-05
The vagus nerve is the primary means of neural communication between the gastrointestinal (GI) tract and the brain. Vagally mediated GI signals activate the hippocampus (HPC), a brain region classically linked with memory function. However, the endogenous relevance of GI-derived vagal HPC communication is unknown. Here we utilize a saporin (SAP)-based lesioning procedure to reveal that selective GI vagal sensory/afferent ablation in rats impairs HPC-dependent episodic and spatial memory, effects associated with reduced HPC neurotrophic and neurogenesis markers. To determine the neural pathways connecting the gut to the HPC, we utilize monosynaptic and multisynaptic virus-based tracing methods to identify the medial septum as a relay connecting the medial nucleus tractus solitarius (where GI vagal afferents synapse) to dorsal HPC glutamatergic neurons. We conclude that endogenous GI-derived vagal sensory signaling promotes HPC-dependent memory function via a multi-order brainstem-septal pathway, thereby identifying a previously unknown role for the gut-brain axis in memory control.
Inferring multi-scale neural mechanisms with brain network modelling
Schirner, Michael; McIntosh, Anthony Randal; Jirsa, Viktor; Deco, Gustavo
2018-01-01
The neurophysiological processes underlying non-invasive brain activity measurements are incompletely understood. Here, we developed a connectome-based brain network model that integrates individual structural and functional data with neural population dynamics to support multi-scale neurophysiological inference. Simulated populations were linked by structural connectivity and, as a novelty, driven by electroencephalography (EEG) source activity. Simulations not only predicted subjects' individual resting-state functional magnetic resonance imaging (fMRI) time series and spatial network topologies over 20 minutes of activity, but more importantly, they also revealed precise neurophysiological mechanisms that underlie and link six empirical observations from different scales and modalities: (1) resting-state fMRI oscillations, (2) functional connectivity networks, (3) excitation-inhibition balance, (4, 5) inverse relationships between α-rhythms, spike-firing and fMRI on short and long time scales, and (6) fMRI power-law scaling. These findings underscore the potential of this new modelling framework for general inference and integration of neurophysiological knowledge to complement empirical studies. PMID:29308767
Bednarz, Haley M; Maximo, Jose O; Murdaugh, Donna L; O'Kelley, Sarah; Kana, Rajesh K
2017-06-01
Despite intact decoding ability, deficits in reading comprehension are relatively common in children with autism spectrum disorders (ASD). However, few neuroimaging studies have tested the neural bases of this specific profile of reading deficit in ASD. This fMRI study examined activation and synchronization of the brain's reading network in children with ASD with specific reading comprehension deficits during a word similarities task. Thirteen typically developing children and 18 children with ASD performed the task in the MRI scanner. No statistically significant group differences in functional activation were observed; however, children with ASD showed decreased functional connectivity between the left inferior frontal gyrus (LIFG) and the left inferior occipital gyrus (LIOG). In addition, reading comprehension ability significantly positively predicted functional connectivity between the LIFG and left thalamus (LTHAL) among all subjects. The results of this study provide evidence for altered recruitment of reading-related neural resources in ASD children and suggest specific weaknesses in top-down modulation of semantic processing. Copyright © 2017 Elsevier Inc. All rights reserved.
Altered Appetitive Conditioning and Neural Connectivity in Subjects With Compulsive Sexual Behavior.
Klucken, Tim; Wehrum-Osinsky, Sina; Schweckendiek, Jan; Kruse, Onno; Stark, Rudolf
2016-04-01
There has been growing interest in a better understanding of the etiology of compulsive sexual behavior (CSB). It is assumed that facilitated appetitive conditioning might be an important mechanism for the development and maintenance of CSB, but no study thus far has investigated these processes. To explore group differences in neural activity associated with appetitive conditioning and connectivity in subjects with CSB and a healthy control group. Two groups (20 subjects with CSB and 20 controls) were exposed to an appetitive conditioning paradigm during a functional magnetic resonance imaging experiment, in which a neutral stimulus (CS+) predicted visual sexual stimuli and a second stimulus (CS-) did not. Blood oxygen level-dependent responses and psychophysiologic interaction. As a main result, we found increased amygdala activity during appetitive conditioning for the CS+ vs the CS- and decreased coupling between the ventral striatum and prefrontal cortex in the CSB vs control group. The findings show that neural correlates of appetitive conditioning and neural connectivity are altered in patients with CSB. The increased amygdala activation might reflect facilitated conditioning processes in patients with CSB. In addition, the observed decreased coupling could be interpreted as a marker for impaired emotion regulation success in this group. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Automatic discovery of cell types and microcircuitry from neural connectomics
Jonas, Eric; Kording, Konrad
2015-01-01
Neural connectomics has begun producing massive amounts of data, necessitating new analysis methods to discover the biological and computational structure. It has long been assumed that discovering neuron types and their relation to microcircuitry is crucial to understanding neural function. Here we developed a non-parametric Bayesian technique that identifies neuron types and microcircuitry patterns in connectomics data. It combines the information traditionally used by biologists in a principled and probabilistically coherent manner, including connectivity, cell body location, and the spatial distribution of synapses. We show that the approach recovers known neuron types in the retina and enables predictions of connectivity, better than simpler algorithms. It also can reveal interesting structure in the nervous system of Caenorhabditis elegans and an old man-made microprocessor. Our approach extracts structural meaning from connectomics, enabling new approaches of automatically deriving anatomical insights from these emerging datasets. DOI: http://dx.doi.org/10.7554/eLife.04250.001 PMID:25928186
Automatic discovery of cell types and microcircuitry from neural connectomics
Jonas, Eric; Kording, Konrad
2015-04-30
Neural connectomics has begun producing massive amounts of data, necessitating new analysis methods to discover the biological and computational structure. It has long been assumed that discovering neuron types and their relation to microcircuitry is crucial to understanding neural function. Here we developed a non-parametric Bayesian technique that identifies neuron types and microcircuitry patterns in connectomics data. It combines the information traditionally used by biologists in a principled and probabilistically coherent manner, including connectivity, cell body location, and the spatial distribution of synapses. We show that the approach recovers known neuron types in the retina and enables predictions of connectivity,more » better than simpler algorithms. It also can reveal interesting structure in the nervous system of Caenorhabditis elegans and an old man-made microprocessor. Our approach extracts structural meaning from connectomics, enabling new approaches of automatically deriving anatomical insights from these emerging datasets.« less
Altered topology of neural circuits in congenital prosopagnosia.
Rosenthal, Gideon; Tanzer, Michal; Simony, Erez; Hasson, Uri; Behrmann, Marlene; Avidan, Galia
2017-08-21
Using a novel, fMRI-based inter-subject functional correlation (ISFC) approach, which isolates stimulus-locked inter-regional correlation patterns, we compared the cortical topology of the neural circuit for face processing in participants with an impairment in face recognition, congenital prosopagnosia (CP), and matched controls. Whereas the anterior temporal lobe served as the major network hub for face processing in controls, this was not the case for the CPs. Instead, this group evinced hyper-connectivity in posterior regions of the visual cortex, mostly associated with the lateral occipital and the inferior temporal cortices. Moreover, the extent of this hyper-connectivity was correlated with the face recognition deficit. These results offer new insights into the perturbed cortical topology in CP, which may serve as the underlying neural basis of the behavioral deficits typical of this disorder. The approach adopted here has the potential to uncover altered topologies in other neurodevelopmental disorders, as well.
Automatic discovery of cell types and microcircuitry from neural connectomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonas, Eric; Kording, Konrad
Neural connectomics has begun producing massive amounts of data, necessitating new analysis methods to discover the biological and computational structure. It has long been assumed that discovering neuron types and their relation to microcircuitry is crucial to understanding neural function. Here we developed a non-parametric Bayesian technique that identifies neuron types and microcircuitry patterns in connectomics data. It combines the information traditionally used by biologists in a principled and probabilistically coherent manner, including connectivity, cell body location, and the spatial distribution of synapses. We show that the approach recovers known neuron types in the retina and enables predictions of connectivity,more » better than simpler algorithms. It also can reveal interesting structure in the nervous system of Caenorhabditis elegans and an old man-made microprocessor. Our approach extracts structural meaning from connectomics, enabling new approaches of automatically deriving anatomical insights from these emerging datasets.« less
Shim, Woo H; Suh, Ji-Yeon; Kim, Jeong K; Jeong, Jaeseung; Kim, Young R
2016-01-01
Neurological recovery after stroke has been extensively investigated to provide better understanding of neurobiological mechanism, therapy, and patient management. Recent advances in neuroimaging techniques, particularly functional MRI (fMRI), have widely contributed to unravel the relationship between the altered neural function and stroke-affected brain areas. As results of previous investigations, the plastic reorganization and/or gradual restoration of the hemodynamic fMRI responses to neural stimuli have been suggested as relevant mechanisms underlying the stroke recovery process. However, divergent study results and modality-dependent outcomes have clouded the proper interpretation of variable fMRI signals. Here, we performed both evoked and resting state fMRI (rs-fMRI) to clarify the link between the fMRI phenotypes and post-stroke functional recovery. The experiments were designed to examine the altered neural activity within the contra-lesional hemisphere and other undamaged brain regions using rat models with large unilateral stroke, which despite the severe injury, exhibited nearly full recovery at ∼6 months after stroke. Surprisingly, both blood oxygenation level-dependent and blood volume-weighted (CBVw) fMRI activities elicited by electrical stimulation of the stroke-affected forelimb were completely absent, failing to reveal the neural origin of the behavioral recovery. In contrast, the functional connectivity maps showed highly robust rs-fMRI activity concentrated in the contra-lesional ventromedial nucleus of thalamus (VM). The negative finding in the stimuli-induced fMRI study using the popular rat middle cerebral artery model denotes weak association between the fMRI hemodynamic responses and neurological improvement. The results strongly caution the indiscreet interpretation of stroke-affected fMRI signals and demonstrate rs-fMRI as a complementary tool for efficiently characterizing stroke recovery.
Verly, Marjolein; Verhoeven, Judith; Zink, Inge; Mantini, Dante; Peeters, Ronald; Deprez, Sabine; Emsell, Louise; Boets, Bart; Noens, Ilse; Steyaert, Jean; Lagae, Lieven; De Cock, Paul; Rommel, Nathalie; Sunaert, Stefan
2014-01-01
The development of language, social interaction and communicative skills is remarkably different in the child with autism spectrum disorder (ASD). Atypical brain connectivity has frequently been reported in this patient population. However, the neural correlates underlying their disrupted language development and functioning are still poorly understood. Using resting state fMRI, we investigated the functional connectivity properties of the language network in a group of ASD patients with clear comorbid language impairment (ASD-LI; N = 19) and compared them to the language related connectivity properties of 23 age-matched typically developing children. A verb generation task was used to determine language components commonly active in both groups. Eight joint language components were identified and subsequently used as seeds in a resting state analysis. Interestingly, both the interregional and the seed-based whole brain connectivity analysis showed preserved connectivity between the classical intrahemispheric language centers, Wernicke's and Broca's areas. In contrast however, a marked loss of functional connectivity was found between the right cerebellar region and the supratentorial regulatory language areas. Also, the connectivity between the interhemispheric Broca regions and modulatory control dorsolateral prefrontal region was found to be decreased. This disruption of normal modulatory control and automation function by the cerebellum may underlie the abnormal language function in children with ASD-LI. PMID:24567909
Network analysis of mesoscale optical recordings to assess regional, functional connectivity.
Lim, Diana H; LeDue, Jeffrey M; Murphy, Timothy H
2015-10-01
With modern optical imaging methods, it is possible to map structural and functional connectivity. Optical imaging studies that aim to describe large-scale neural connectivity often need to handle large and complex datasets. In order to interpret these datasets, new methods for analyzing structural and functional connectivity are being developed. Recently, network analysis, based on graph theory, has been used to describe and quantify brain connectivity in both experimental and clinical studies. We outline how to apply regional, functional network analysis to mesoscale optical imaging using voltage-sensitive-dye imaging and channelrhodopsin-2 stimulation in a mouse model. We include links to sample datasets and an analysis script. The analyses we employ can be applied to other types of fluorescence wide-field imaging, including genetically encoded calcium indicators, to assess network properties. We discuss the benefits and limitations of using network analysis for interpreting optical imaging data and define network properties that may be used to compare across preparations or other manipulations such as animal models of disease.
Development of the brain's functional network architecture.
Vogel, Alecia C; Power, Jonathan D; Petersen, Steven E; Schlaggar, Bradley L
2010-12-01
A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.
Development of the Brain's Functional Network Architecture
Power, Jonathan D.; Petersen, Steven E.; Schlaggar, Bradley L.
2013-01-01
A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks. PMID:20976563
Disrupted resting-state functional connectivity in minimally treated chronic schizophrenia.
Wang, Xijin; Xia, Mingrui; Lai, Yunyao; Dai, Zhengjia; Cao, Qingjiu; Cheng, Zhang; Han, Xue; Yang, Lei; Yuan, Yanbo; Zhang, Yong; Li, Keqing; Ma, Hong; Shi, Chuan; Hong, Nan; Szeszko, Philip; Yu, Xin; He, Yong
2014-07-01
The pathophysiology of chronic schizophrenia may reflect long term brain changes related to the disorder. The effect of chronicity on intrinsic functional connectivity patterns in schizophrenia without the potentially confounding effect of antipsychotic medications, however, remains largely unknown. We collected resting-state fMRI data in 21 minimally treated chronic schizophrenia patients and 20 healthy controls. We computed regional functional connectivity strength for each voxel in the brain, and further divided regional functional connectivity strength into short-range regional functional connectivity strength and long-range regional functional connectivity strength. General linear models were used to detect between-group differences in these regional functional connectivity strength metrics and to further systematically investigate the relationship between these differences and clinical/behavioral variables in the patients. Compared to healthy controls, the minimally treated chronic schizophrenia patients showed an overall reduced regional functional connectivity strength especially in bilateral sensorimotor cortex, right lateral prefrontal cortex, left insula and right lingual gyrus, and these regional functional connectivity strength decreases mainly resulted from disruption of short-range regional functional connectivity strength. The minimally treated chronic schizophrenia patients also showed reduced long-range regional functional connectivity strength in the bilateral posterior cingulate cortex/precuneus, and increased long-range regional functional connectivity strength in the right lateral prefrontal cortex and lingual gyrus. Notably, disrupted short-range regional functional connectivity strength mainly correlated with duration of illness and negative symptoms, whereas disrupted long-range regional functional connectivity strength correlated with neurocognitive performance. All of the results were corrected using Monte-Carlo simulation. This exploratory study demonstrates a disruption of intrinsic functional connectivity without long-term exposure to antipsychotic medications in chronic schizophrenia. Furthermore, this disruption was connection-distance dependent, thus raising the possibility for differential neural pathways in neurocognitive impairment and psychiatric symptoms in schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.
Fu, Zening; Tu, Yiheng; Di, Xin; Du, Yuhui; Pearlson, G D; Turner, J A; Biswal, Bharat B; Zhang, Zhiguo; Calhoun, V D
2017-09-20
The human brain is a highly dynamic system with non-stationary neural activity and rapidly-changing neural interaction. Resting-state dynamic functional connectivity (dFC) has been widely studied during recent years, and the emerging aberrant dFC patterns have been identified as important features of many mental disorders such as schizophrenia (SZ). However, only focusing on the time-varying patterns in FC is not enough, since the local neural activity itself (in contrast to the inter-connectivity) is also found to be highly fluctuating from research using high-temporal-resolution imaging techniques. Exploring the time-varying patterns in brain activity and their relationships with time-varying brain connectivity is important for advancing our understanding of the co-evolutionary property of brain network and the underlying mechanism of brain dynamics. In this study, we introduced a framework for characterizing time-varying brain activity and exploring its associations with time-varying brain connectivity, and applied this framework to a resting-state fMRI dataset including 151 SZ patients and 163 age- and gender matched healthy controls (HCs). In this framework, 48 brain regions were first identified as intrinsic connectivity networks (ICNs) using group independent component analysis (GICA). A sliding window approach was then adopted for the estimation of dynamic amplitude of low-frequency fluctuation (dALFF) and dFC, which were used to measure time-varying brain activity and time-varying brain connectivity respectively. The dALFF was further clustered into six reoccurring states by the k-means clustering method and the group difference in occurrences of dALFF states was explored. Lastly, correlation coefficients between dALFF and dFC were calculated and the group difference in these dALFF-dFC correlations was explored. Our results suggested that 1) ALFF of brain regions was highly fluctuating during the resting-state and such dynamic patterns are altered in SZ, 2) dALFF and dFC were correlated in time and their correlations are altered in SZ. The overall results support and expand prior work on abnormalities of brain activity, static FC (sFC) and dFC in SZ, and provide new evidence on aberrant time-varying brain activity and its associations with brain connectivity in SZ, which might underscore the disrupted brain cognitive functions in this mental disorder. Copyright © 2017 Elsevier Inc. All rights reserved.
Neural correlates underlying micrographia in Parkinson’s disease
Zhang, Jiarong; Hallett, Mark; Feng, Tao; Hou, Yanan; Chan, Piu
2016-01-01
Micrographia is a common symptom in Parkinson’s disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks. PMID:26525918
Macpherson, Lindsey J.; Zaharieva, Emanuela E.; Kearney, Patrick J.; Alpert, Michael H.; Lin, Tzu-Yang; Turan, Zeynep; Lee, Chi-Hon; Gallio, Marco
2015-01-01
Determining the pattern of activity of individual connections within a neural circuit could provide insights into the computational processes that underlie brain function. Here, we develop new strategies to label active synapses by trans-synaptic fluorescence complementation in Drosophila. First, we demonstrate that a synaptobrevin-GRASP chimera functions as a powerful activity-dependent marker for synapses in vivo. Next, we create cyan and yellow variants, achieving activity-dependent, multi-colour fluorescence reconstitution across synapses (X-RASP). Our system allows for the first time retrospective labelling of synapses (rather than whole neurons) based on their activity, in multiple colours, in the same animal. As individual synapses often act as computational units in the brain, our method will promote the design of experiments that are not possible using existing techniques. Moreover, our strategies are easily adaptable to circuit mapping in any genetic system. PMID:26635273
Neural mechanisms of the rejection-aggression link.
Chester, David S; Lynam, Donald R; Milich, Richard; DeWall, C Nathan
2018-05-01
Social rejection is a painful event that often increases aggression. However, the neural mechanisms of this rejection-aggression link remain unclear. A potential clue may be that rejected people often recruit the ventrolateral prefrontal cortex's (VLPFC) self-regulatory processes to manage the pain of rejection. Using functional MRI, we replicated previous links between rejection and activity in the brain's mentalizing network, social pain network and VLPFC. VLPFC recruitment during rejection was associated with greater activity in the brain's reward network (i.e. the ventral striatum) when individuals were given an opportunity to retaliate. This retaliation-related striatal response was associated with greater levels of retaliatory aggression. Dispositionally aggressive individuals exhibited less functional connectivity between the ventral striatum and the right VLPFC during aggression. This connectivity exerted a suppressing effect on dispositionally aggressive individuals' greater aggressive responses to rejection. These results help explain how the pain of rejection and reward of revenge motivate rejected people to behave aggressively.
Psychosocial Stress and Brain Function in Adolescent Psychopathology.
Quinlan, Erin Burke; Cattrell, Anna; Jia, Tianye; Artiges, Eric; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Brühl, Rüdiger; Conrod, Patricia J; Desrivieres, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Martinot, Jean-Luc; Paillère Martinot, Marie-Laure; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Paus, Tomáš; Poustka, Luise; Smolka, Michael N; Vetter, Nora C; Walter, Henrik; Whelan, Robert; Glennon, Jeffrey C; Buitelaar, Jan K; Happé, Francesca; Loth, Eva; Barker, Edward D; Schumann, Gunter
2017-08-01
The authors sought to explore how conduct, hyperactivity/inattention, and emotional symptoms are associated with neural reactivity to social-emotional stimuli, and the extent to which psychosocial stress modulates these relationships. Participants were community adolescents recruited as part of the European IMAGEN study. Bilateral amygdala regions of interest were used to assess the relationship between the three symptom domains and functional MRI neural reactivity during passive viewing of dynamic angry and neutral facial expressions. Exploratory functional connectivity and whole brain multiple regression approaches were used to analyze how the symptoms and psychosocial stress relate to other brain regions. In response to the social-emotional stimuli, adolescents with high levels of conduct or hyperactivity/inattention symptoms who had also experienced a greater number of stressful life events showed hyperactivity of the amygdala and several regions across the brain. This effect was not observed with emotional symptoms. A cluster in the midcingulate was found to be common to both conduct problems and hyperactivity symptoms. Exploratory functional connectivity analyses suggested that amygdala-precuneus connectivity is associated with hyperactivity/inattention symptoms. The results link hyperactive amygdala responses and regions critical for top-down emotional processing with high levels of psychosocial stress in individuals with greater conduct and hyperactivity/inattention symptoms. This work highlights the importance of studying how psychosocial stress affects functional brain responses to social-emotional stimuli, particularly in adolescents with externalizing symptoms.
Breakdown of the brain’s functional network modularity with awareness
Godwin, Douglass; Barry, Robert L.; Marois, René
2015-01-01
Neurobiological theories of awareness propose divergent accounts of the spatial extent of brain changes that support conscious perception. Whereas focal theories posit mostly local regional changes, global theories propose that awareness emerges from the propagation of neural signals across a broad extent of sensory and association cortex. Here we tested the scalar extent of brain changes associated with awareness using graph theoretical analysis applied to functional connectivity data acquired at ultra-high field while subjects performed a simple masked target detection task. We found that awareness of a visual target is associated with a degradation of the modularity of the brain’s functional networks brought about by an increase in intermodular functional connectivity. These results provide compelling evidence that awareness is associated with truly global changes in the brain’s functional connectivity. PMID:25759440
Association between heart rate variability and fluctuations in resting-state functional connectivity
Chang, Catie; Metzger, Coraline D.; Glover, Gary H.; Duyn, Jeff H.; Heinze, Hans-Jochen; Walter, Martin
2012-01-01
Functional connectivity has been observed to fluctuate across the course of a resting state scan, though the origins and functional relevance of this phenomenon remain to be shown. The present study explores the link between endogenous dynamics of functional connectivity and autonomic state in an eyes-closed resting condition. Using a sliding window analysis on resting state fMRI data from 35 young, healthy male subjects, we examined how heart rate variability (HRV) covaries with temporal changes in whole-brain functional connectivity with seed regions previously described to mediate effects of vigilance and arousal (amygdala and dorsal anterior cingulate cortex; dACC). We identified a set of regions, including brainstem, thalamus, putamen, and dorsolateral prefrontal cortex, that became more strongly coupled with the dACC and amygdala seeds during states of elevated HRV. Effects differed between high and low frequency components of HRV, suggesting specific contributions of parasympathetic and sympathetic tone on individual connections. Furthermore, dynamics of functional connectivity could be separated from those primarily related to BOLD signal fluctuations. The present results contribute novel information about the neural basis of transient changes of autonomic nervous system states, and suggest physiological and psychological components of the recently observed non-stationarity in resting state functional connectivity. PMID:23246859
Neural network alterations across eating disorders: a narrative review of fMRI studies.
Steward, Trevor; Menchón, José M; Jiménez-Murcia, Susana; Soriano-Mas, Carles; Fernández-Aranda, Fernando
2017-10-17
Functional magnetic resonance imaging (fMRI) has provided insight on how neural abnormalities are related to the symptomatology of the eating disorders (EDs): anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED). More specifically, an increasingly growing number of brain imaging studies has shed light on how functionally connected brain networks contribute not only to disturbed eating behavior, but also to transdiagnostic alterations in body/interoceptive perception, reward processing and executive functions. This narrative review aims to summarize recent advances in fMRI studies of patients with EDs by highlighting studies investigating network alterations that are shared across EDs. Findings on reward processing in both AN and BN patients point to the presence of altered sensitivity to salient food stimuli in striatal regions and to the possibility of hypothalamic inputs being overridden by top-down cognitive control regions. Additionally, innovative new lines of research suggest that increased activations in fronto-striatal circuits are strongly associated with the maintenance of restrictive eating habits in AN patients. Although significantly fewer studies have been carried out in patients with BN and BED, aberrant neural responses to both food cues and anticipated food receipt appear to occur in these populations. These altered responses, coupled with diminished recruitment of prefrontal cognitive control circuitry, are believed to contribute to the binge eating of palatable foods. Results from functional network connectivity studies are diverse, but findings tend to converge on indicating disrupted resting-state connectivity in executive networks, the default-mode network and the salience network across EDs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Sheng, Jing; Xie, Chao; Fan, Dong-Qiong; Lei, Xu; Yu, Jing
2018-07-01
With advanced age, older adults show functional deterioration in sleep. Transcranial direct current stimulation (tDCS), a noninvasive brain stimulation, modulates individuals' behavioral performance in various cognitive domains. However, the modulation effect and neural mechanisms of tDCS on sleep, especially for the elderly population are not clear. Here, we aimed to investigate whether high-definition transcranial direct current stimulation (HD-tDCS) could modulate community-dwelling older adults' subjective sleep and whether these potential improvements are associated with the large-scale brain activity alterations recorded by functional magnetic resonance imaging. Thirty-one older adults were randomly allocated to the HD-tDCS group and the control group. HD-tDCS was applied for 25 min at 1.5 mA per day for two weeks. The anode electrode was placed over the left dorsolateral prefrontal cortex, surrounded by 4 cathodes at 7 cm radius. All participants completed sleep neuropsychological assessments and fMRI scans individually before and after intervention. Behaviorally, we observed a HD-tDCS-induced enhancement of older adults' sleep duration. On the aspect of the corresponding neural alterations, we observed that HD-tDCS decreased the functional connectivity between the default mode network (DMN) and subcortical network. More importantly, the decoupling connectivity of the DMN-subcortical network was correlated with the improvements of subjective sleep in the HD-tDCS group. Our findings add novel behavioral and neural evidences about tDCS-induced sleep improvement in community-dwelling older adults. With further development, tDCS may be used as an alternative treatment for sleep disorders and alleviate the dysfunction of brain networks induced by aging. Copyright © 2018 Elsevier B.V. All rights reserved.
Stimulation Mapping of Myelinated Tracts in Awake Patients
Duffau, Hugues
2016-01-01
For a long time, although the functional anatomy of human cortex has extensively been studied, subcortical white matter tracts have received little consideration. Recent advances in tractography have opened the door to a non-invasive investigation of the subcortical fibers in vivo. However, this method cannot study directly the function of the bundles. Interestingly, for the first time in the history of cognitive neurosciences, direct axonal electrostimulation (DES) mapping of the neural pathways offers the unique opportunity to investigate the function of the connectomal anatomy. Indeed, this technique is able to perform real-time anatomo-functional correlations in awake patients who undergo brain surgery, especially at the level of the subcortical fibers. Here, the aim is to review original data issued from DES of myelinated tracts in adults, with regard to the functional connectivity mediating the sensorimotor, visuo-spatial, language, cognitive and emotional functions, as well as the interactions between these different sub-networks, leading ultimately to explore consciousness. Therefore, axonal stimulation is a valuable tool in the field of connectomics, that is, the map of neural connections, in order to switch from the traditional localizationist view of brain processing to a networking model in which cerebral functions are underpinned by the dynamic interactions of large-scale distributed and parallel sub-circuits. Such connectomal account should integrate the anatomic constraint represented by the subcortical fascicles. Indeed, post-lesional neuroplasticity is possible only on the condition that the white matter fibers are preserved, to allow communication and temporal synchronization among delocalized inter-connected networks. PMID:29765851
Keshavan, Matcheri S; Eack, Shaun M; Prasad, Konasale M; Haller, Chiara S; Cho, Raymond Y
2017-05-01
Schizophrenia is characterized by impaired -social and non social cognition both of which lead to functional deficits. These deficits may benefit from cognitive remediation, but the neural underpinnings of such improvements have not been clearly delineated. We conducted a functional magnetic resonance (fMRI) study in early course schizophrenia patients randomly assigned to cognitive enhancement therapy (CET) or enriched supportive therapy (EST) and treated for two years. Imaging data over three time points including fMRI blood oxygen level dependent (BOLD) data were acquired during performance of a cognitive control paradigm, the Preparing to Overcome Prepotency (POP) task, and functional connectivity data, were analyzed. During the two years of treatment, CET patients showed a continual increase in BOLD activity in the right dorsolateral prefrontal cortex (DLPFC), whereas EST patients tended to show no change in prefrontal brain function throughout treatment. Increases in right DLPFC activity were modestly associated with improved neurocognition (β = .14, p = .041), but not social cognition. Functional connectivity analyses showed reduced connectivity between the DLPFC and the anterior cingulate cortex (ACC) in CET compared to EST over the two years of treatment, which was associated with neurocognitive improvement. These findings suggest that CET leads to enhanced neural activity in brain regions mediating cognitive control and increased efficiency in prefrontal circuits; such changes may be related to the observed therapeutic effects of CET on neurocognitive function. Copyright © 2017. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Ladouceur, Cecile D.; Farchione, Tiffany; Diwadkar, Vaibhav; Pruitt, Patrick; Radwan, Jacqueline; Axelson, David A.; Birmaher, Boris; Phillips, Mary L.
2011-01-01
Objective: The functioning of neural systems supporting emotion processing and regulation in youth with bipolar disorder not otherwise specified (BP-NOS) remains poorly understood. We sought to examine patterns of activity and connectivity in youth with BP-NOS relative to youth with bipolar disorder type I (BP-I) and healthy controls (HC). Method:…
Newsome, Mary R; Scheibel, Randall S; Mayer, Andrew R; Chu, Zili D; Wilde, Elisabeth A; Hanten, Gerri; Steinberg, Joel L; Lin, Xiaodi; Li, Xiaoqi; Merkley, Tricia L; Hunter, Jill V; Vasquez, Ana C; Cook, Lori; Lu, Hanzhang; Vinton, Kami; Levin, Harvey S
2013-09-01
Outcome of moderate to severe traumatic brain injury (TBI) includes impaired emotion regulation. Emotion regulation has been associated with amygdala and rostral anterior cingulate (rACC). However, functional connectivity between the two structures after injury has not been reported. A preliminary examination of functional connectivity of rACC and right amygdala was conducted in adolescents 2 to 3 years after moderate to severe TBI and in typically developing (TD)control adolescents, with the hypothesis that the TBI adolescents would demonstrate altered functional connectivity in the two regions. Functional connectivity was determined by correlating fluctuations in the blood oxygen level dependent(BOLD) signal of the rACC and right amygdala with that of other brain regions. In the TBI adolescents, the rACC was found to be significantly less functionally connected to medial prefrontal cortices and to right temporal regions near the amygdala (height threshold T = 2.5, cluster level p < .05, FDR corrected), while the right amygdala showed a trend in reduced functional connectivity with the rACC (height threshold T = 2.5, cluster level p = .06, FDR corrected). Data suggest disrupted functional connectivity in emotion regulation regions. Limitations include small sample sizes. Studies with larger sample sizes are necessary to characterize the persistent neural damage resulting from moderate to severe TBI during development.
Investigating the neural basis for functional and effective connectivity. Application to fMRI
Horwitz, Barry; Warner, Brent; Fitzer, Julie; Tagamets, M.-A; Husain, Fatima T; Long, Theresa W
2005-01-01
Viewing cognitive functions as mediated by networks has begun to play a central role in interpreting neuroscientific data, and studies evaluating interregional functional and effective connectivity have become staples of the neuroimaging literature. The neurobiological substrates of functional and effective connectivity are, however, uncertain. We have constructed neurobiologically realistic models for visual and auditory object processing with multiple interconnected brain regions that perform delayed match-to-sample (DMS) tasks. We used these models to investigate how neurobiological parameters affect the interregional functional connectivity between functional magnetic resonance imaging (fMRI) time-series. Variability is included in the models as subject-to-subject differences in the strengths of anatomical connections, scan-to-scan changes in the level of attention, and trial-to-trial interactions with non-specific neurons processing noise stimuli. We find that time-series correlations between integrated synaptic activities between the anterior temporal and the prefrontal cortex were larger during the DMS task than during a control task. These results were less clear when the integrated synaptic activity was haemodynamically convolved to generate simulated fMRI activity. As the strength of the model anatomical connectivity between temporal and frontal cortex was weakened, so too was the strength of the corresponding functional connectivity. These results provide a partial validation for using fMRI functional connectivity to assess brain interregional relations. PMID:16087450
Distinct neural substrates for visual short-term memory of actions.
Cai, Ying; Urgolites, Zhisen; Wood, Justin; Chen, Chuansheng; Li, Siyao; Chen, Antao; Xue, Gui
2018-06-26
Fundamental theories of human cognition have long posited that the short-term maintenance of actions is supported by one of the "core knowledge" systems of human visual cognition, yet its neural substrates are still not well understood. In particular, it is unclear whether the visual short-term memory (VSTM) of actions has distinct neural substrates or, as proposed by the spatio-object architecture of VSTM, shares them with VSTM of objects and spatial locations. In two experiments, we tested these two competing hypotheses by directly contrasting the neural substrates for VSTM of actions with those for objects and locations. Our results showed that the bilateral middle temporal cortex (MT) was specifically involved in VSTM of actions because its activation and its functional connectivity with the frontal-parietal network (FPN) were only modulated by the memory load of actions, but not by that of objects/agents or locations. Moreover, the brain regions involved in the maintenance of spatial location information (i.e., superior parietal lobule, SPL) was also recruited during the maintenance of actions, consistent with the temporal-spatial nature of actions. Meanwhile, the frontoparietal network (FPN) was commonly involved in all types of VSTM and showed flexible functional connectivity with the domain-specific regions, depending on the current working memory tasks. Together, our results provide clear evidence for a distinct neural system for maintaining actions in VSTM, which supports the core knowledge system theory and the domain-specific and domain-general architectures of VSTM. © 2018 Wiley Periodicals, Inc.
Brain responses mediating idiom comprehension: gender and hemispheric differences.
Kana, Rajesh K; Murdaugh, Donna L; Wolfe, Kelly R; Kumar, Sandhya L
2012-07-27
Processing figurative language, such as idioms, is unique in that it requires one to make associations between words and non-literal meanings that are contextually appropriate. At the neural level, processing idiomatic phrases has been linked to recruitment of bilateral dorsolateral prefrontal cortices (DLPFC), the left temporal cortex, superior medial prefrontal gyrus (MPFC), and the left inferior frontal gyrus (LIFG). This functional MRI study examined the brain responses associated with processing idiomatic compared to literal sentences. In addition, gender differences in neural responses associated with language comprehension were also explored. In an fMRI scanner, thirty-six healthy adult volunteers viewed sentences that were either literal or idiomatic in nature, and answered subsequent comprehension questions. This sentence comprehension tasks activated mainly prefrontal language areas (LIFG, LSFG, and RMFG). Consistent with previous findings, idiomatic sentences showed increased response in LIFG. These results are discussed in the backdrop of the graded salience hypothesis. Furthermore, we found gender differences in brain activation and functional connectivity during this task. Women showed greater overall activation than men when comprehending literal and idiomatic sentences; whereas men had significantly greater functional connectivity between LIFG and LMTG than women across tasks. Overall, the findings of this study highlight the gender differences in neural responses associated with figurative language comprehension. Published by Elsevier B.V.
Sinke, Christopher; Forkmann, Katarina; Schmidt, Katharina; Wiech, Katja; Bingel, Ulrike
2016-05-01
Over the recent years, neuroimaging studies have investigated the neural mechanisms underlying the influence of expectations on perception. However, it seems equally reasonable to assume that expectations impact cognitive functions. Here we used fMRI to explore the role of expectations on task performance and its underlying neural mechanisms. 43 healthy participants were randomly assigned to two groups. Using verbal instructions, group 1 was led to believe that pain enhances task performance while group 2 was instructed that pain hampers their performance. All participants performed a Rapid-Serial-Visual-Presentation (RSVP) Task (target detection and short-term memory component) with or without concomitant painful heat stimulation during 3T fMRI scanning. As hypothesized, short-term memory performance showed an interaction between painful stimulation and expectation. Positive expectations induced stronger neural activation in the right inferior parietal cortex (IPC) during painful stimulation than negative expectation. Moreover, IPC displayed differential functional coupling with the left inferior occipital cortex under pain as a function of expectancy. Our data show that an individual's expectation can influence cognitive performance in a visual short-term memory task which is associated with activity and connectivity changes in brain areas implicated in attentional processing and task performance. Copyright © 2016. Published by Elsevier Ltd.
The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer's dementia
Perani, Daniela; Farsad, Mohsen; Ballarini, Tommaso; Lubian, Francesca; Malpetti, Maura; Fracchetti, Alessandro; Magnani, Giuseppe; March, Albert; Abutalebi, Jubin
2017-01-01
Cognitive reserve (CR) prevents cognitive decline and delays neurodegeneration. Recent epidemiological evidence suggests that lifelong bilingualism may act as CR delaying the onset of dementia by ∼4.5 y. Much controversy surrounds the issue of bilingualism and its putative neuroprotective effects. We studied brain metabolism, a direct index of synaptic function and density, and neural connectivity to shed light on the effects of bilingualism in vivo in Alzheimer’s dementia (AD). Eighty-five patients with probable AD and matched for disease duration (45 German-Italian bilingual speakers and 40 monolingual speakers) were included. Notably, bilingual individuals were on average 5 y older than their monolingual peers. In agreement with our predictions and with models of CR, cerebral hypometabolism was more severe in the group of bilingual individuals with AD. The metabolic connectivity analyses crucially supported the neuroprotective effect of bilingualism by showing an increased connectivity in the executive control and the default mode networks in the bilingual, compared with the monolingual, AD patients. Furthermore, the degree of lifelong bilingualism (i.e., high, moderate, or low use) was significantly correlated to functional modulations in crucial neural networks, suggesting both neural reserve and compensatory mechanisms. These findings indicate that lifelong bilingualism acts as a powerful CR proxy in dementia and exerts neuroprotective effects against neurodegeneration. Delaying the onset of dementia is a top priority of modern societies, and the present in vivo neurobiological evidence should stimulate social programs and interventions to support bilingual or multilingual education and the maintenance of the second language among senior citizens. PMID:28137833
The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer's dementia.
Perani, Daniela; Farsad, Mohsen; Ballarini, Tommaso; Lubian, Francesca; Malpetti, Maura; Fracchetti, Alessandro; Magnani, Giuseppe; March, Albert; Abutalebi, Jubin
2017-02-14
Cognitive reserve (CR) prevents cognitive decline and delays neurodegeneration. Recent epidemiological evidence suggests that lifelong bilingualism may act as CR delaying the onset of dementia by ∼4.5 y. Much controversy surrounds the issue of bilingualism and its putative neuroprotective effects. We studied brain metabolism, a direct index of synaptic function and density, and neural connectivity to shed light on the effects of bilingualism in vivo in Alzheimer's dementia (AD). Eighty-five patients with probable AD and matched for disease duration (45 German-Italian bilingual speakers and 40 monolingual speakers) were included. Notably, bilingual individuals were on average 5 y older than their monolingual peers. In agreement with our predictions and with models of CR, cerebral hypometabolism was more severe in the group of bilingual individuals with AD. The metabolic connectivity analyses crucially supported the neuroprotective effect of bilingualism by showing an increased connectivity in the executive control and the default mode networks in the bilingual, compared with the monolingual, AD patients. Furthermore, the degree of lifelong bilingualism (i.e., high, moderate, or low use) was significantly correlated to functional modulations in crucial neural networks, suggesting both neural reserve and compensatory mechanisms. These findings indicate that lifelong bilingualism acts as a powerful CR proxy in dementia and exerts neuroprotective effects against neurodegeneration. Delaying the onset of dementia is a top priority of modern societies, and the present in vivo neurobiological evidence should stimulate social programs and interventions to support bilingual or multilingual education and the maintenance of the second language among senior citizens.
Lv, Han; Zhao, Pengfei; Liu, Zhaohui; Li, Rui; Zhang, Ling; Wang, Peng; Yan, Fei; Liu, Liheng; Wang, Guopeng; Zeng, Rong; Li, Ting; Dong, Cheng; Gong, Shusheng; Wang, Zhenchang
2017-03-01
Abnormal neural activities can be revealed by resting-state functional magnetic resonance imaging (rs-fMRI) using analyses of the regional activity and functional connectivity (FC) of the networks in the brain. This study was designed to demonstrate the functional network alterations in the patients with pulsatile tinnitus (PT). In this study, we recruited 45 patients with unilateral PT in the early stage of disease (less than 48 months of disease duration) and 45 normal controls. We used regional homogeneity (ReHo) and seed-based FC computational methods to reveal resting-state brain activity features associated with pulsatile tinnitus. Compared with healthy controls, PT patients showed regional abnormalities mainly in the left middle occipital gyrus (MOG), posterior cingulate gyrus (PCC), precuneus and right anterior insula (AI). When these regions were defined as seeds, we demonstrated widespread modification of interaction between the auditory and non-auditory networks. The auditory network was positively connected with the cognitive control network (CCN), which may associate with tinnitus related distress. Both altered regional activity and changed FC were found in the visual network. The modification of interactions of higher order networks were mainly found in the DMN, CCN and limbic networks. Functional connectivity between the left MOG and left parahippocampal gyrus could also be an index to reflect the disease duration. This study helped us gain a better understanding of the characteristics of neural network modifications in patients with pulsatile tinnitus. Copyright © 2017 Elsevier B.V. All rights reserved.
Stern, Emily R; Welsh, Robert C; Fitzgerald, Kate D; Gehring, William J; Lister, Jamey J; Himle, Joseph A; Abelson, James L; Taylor, Stephan F
2011-03-15
Patients with obsessive-compulsive disorder (OCD) show abnormal functioning in ventral frontal brain regions involved in emotional/motivational processes, including anterior insula/frontal operculum (aI/fO) and ventromedial frontal cortex (VMPFC). While OCD has been associated with an increased neural response to errors, the influence of motivational factors on this effect remains poorly understood. To investigate the contribution of motivational factors to error processing in OCD and to examine functional connectivity between regions involved in the error response, functional magnetic resonance imaging data were measured in 39 OCD patients (20 unmedicated, 19 medicated) and 38 control subjects (20 unmedicated, 18 medicated) during an error-eliciting interference task where motivational context was varied using monetary incentives (null, loss, and gain). Across all errors, OCD patients showed reduced deactivation of VMPFC and greater activation in left aI/FO compared with control subjects. For errors specifically resulting in a loss, patients further hyperactivated VMPFC, as well as right aI/FO. Independent of activity associated with task events, OCD patients showed greater functional connectivity between VMPFC and regions of bilateral aI/FO and right thalamus. Obsessive-compulsive disorder patients show greater activation in neural regions associated with emotion and valuation when making errors, which could be related to altered intrinsic functional connectivity between brain networks. These results highlight the importance of emotional/motivational responses to mistakes in OCD and point to the need for further study of network interactions in the disorder. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Models of Innate Neural Attractors and Their Applications for Neural Information Processing
Solovyeva, Ksenia P.; Karandashev, Iakov M.; Zhavoronkov, Alex; Dunin-Barkowski, Witali L.
2016-01-01
In this work we reveal and explore a new class of attractor neural networks, based on inborn connections provided by model molecular markers, the molecular marker based attractor neural networks (MMBANN). Each set of markers has a metric, which is used to make connections between neurons containing the markers. We have explored conditions for the existence of attractor states, critical relations between their parameters and the spectrum of single neuron models, which can implement the MMBANN. Besides, we describe functional models (perceptron and SOM), which obtain significant advantages over the traditional implementation of these models, while using MMBANN. In particular, a perceptron, based on MMBANN, gets specificity gain in orders of error probabilities values, MMBANN SOM obtains real neurophysiological meaning, the number of possible grandma cells increases 1000-fold with MMBANN. MMBANN have sets of attractor states, which can serve as finite grids for representation of variables in computations. These grids may show dimensions of d = 0, 1, 2,…. We work with static and dynamic attractor neural networks of the dimensions d = 0 and 1. We also argue that the number of dimensions which can be represented by attractors of activities of neural networks with the number of elements N = 104 does not exceed 8. PMID:26778977
Efficient self-organizing multilayer neural network for nonlinear system modeling.
Han, Hong-Gui; Wang, Li-Dan; Qiao, Jun-Fei
2013-07-01
It has been shown extensively that the dynamic behaviors of a neural system are strongly influenced by the network architecture and learning process. To establish an artificial neural network (ANN) with self-organizing architecture and suitable learning algorithm for nonlinear system modeling, an automatic axon-neural network (AANN) is investigated in the following respects. First, the network architecture is constructed automatically to change both the number of hidden neurons and topologies of the neural network during the training process. The approach introduced in adaptive connecting-and-pruning algorithm (ACP) is a type of mixed mode operation, which is equivalent to pruning or adding the connecting of the neurons, as well as inserting some required neurons directly. Secondly, the weights are adjusted, using a feedforward computation (FC) to obtain the information for the gradient during learning computation. Unlike most of the previous studies, AANN is able to self-organize the architecture and weights, and to improve the network performances. Also, the proposed AANN has been tested on a number of benchmark problems, ranging from nonlinear function approximating to nonlinear systems modeling. The experimental results show that AANN can have better performances than that of some existing neural networks. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators.
Xu, Kesheng; Maidana, Jean Paul; Castro, Samy; Orio, Patricio
2018-05-30
Chaotic dynamics has been shown in the dynamics of neurons and neural networks, in experimental data and numerical simulations. Theoretical studies have proposed an underlying role of chaos in neural systems. Nevertheless, whether chaotic neural oscillators make a significant contribution to network behaviour and whether the dynamical richness of neural networks is sensitive to the dynamics of isolated neurons, still remain open questions. We investigated synchronization transitions in heterogeneous neural networks of neurons connected by electrical coupling in a small world topology. The nodes in our model are oscillatory neurons that - when isolated - can exhibit either chaotic or non-chaotic behaviour, depending on conductance parameters. We found that the heterogeneity of firing rates and firing patterns make a greater contribution than chaos to the steepness of the synchronization transition curve. We also show that chaotic dynamics of the isolated neurons do not always make a visible difference in the transition to full synchrony. Moreover, macroscopic chaos is observed regardless of the dynamics nature of the neurons. However, performing a Functional Connectivity Dynamics analysis, we show that chaotic nodes can promote what is known as multi-stable behaviour, where the network dynamically switches between a number of different semi-synchronized, metastable states.
Neural Activity When People Solve Verbal Problems with Insight
Bowden, Edward M; Haberman, Jason; Frymiare, Jennifer L; Arambel-Liu, Stella; Greenblatt, Richard; Reber, Paul J
2004-01-01
People sometimes solve problems with a unique process called insight, accompanied by an “Aha!” experience. It has long been unclear whether different cognitive and neural processes lead to insight versus noninsight solutions, or if solutions differ only in subsequent subjective feeling. Recent behavioral studies indicate distinct patterns of performance and suggest differential hemispheric involvement for insight and noninsight solutions. Subjects solved verbal problems, and after each correct solution indicated whether they solved with or without insight. We observed two objective neural correlates of insight. Functional magnetic resonance imaging (Experiment 1) revealed increased activity in the right hemisphere anterior superior temporal gyrus for insight relative to noninsight solutions. The same region was active during initial solving efforts. Scalp electroencephalogram recordings (Experiment 2) revealed a sudden burst of high-frequency (gamma-band) neural activity in the same area beginning 0.3 s prior to insight solutions. This right anterior temporal area is associated with making connections across distantly related information during comprehension. Although all problem solving relies on a largely shared cortical network, the sudden flash of insight occurs when solvers engage distinct neural and cognitive processes that allow them to see connections that previously eluded them. PMID:15094802
Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity
Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Liang, Zhu-Yuan; Chen, Xiao-Ping; Zheng, Dang; Tan, Cheng; Tian, Zhi-Qiang; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu
2014-01-01
Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI) to study whether the functional architecture of the brain is altered after 45 days of −6° head-down tilt (HDT) bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of −6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC), to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC) analysis. We found decreased DC in two regions, the left anterior insula (aINS) and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies), in the male volunteers after 45 days of −6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function, and central neural activity. PMID:24926242
Identification of neural connectivity signatures of autism using machine learning
Deshpande, Gopikrishna; Libero, Lauren E.; Sreenivasan, Karthik R.; Deshpande, Hrishikesh D.; Kana, Rajesh K.
2013-01-01
Alterations in interregional neural connectivity have been suggested as a signature of the pathobiology of autism. There have been many reports of functional and anatomical connectivity being altered while individuals with autism are engaged in complex cognitive and social tasks. Although disrupted instantaneous correlation between cortical regions observed from functional MRI is considered to be an explanatory model for autism, the causal influence of a brain area on another (effective connectivity) is a vital link missing in these studies. The current study focuses on addressing this in an fMRI study of Theory-of-Mind (ToM) in 15 high-functioning adolescents and adults with autism and 15 typically developing control participants. Participants viewed a series of comic strip vignettes in the MRI scanner and were asked to choose the most logical end to the story from three alternatives, separately for trials involving physical and intentional causality. The mean time series, extracted from 18 activated regions of interest, were processed using a multivariate autoregressive model (MVAR) to obtain the causality matrices for each of the 30 participants. These causal connectivity weights, along with assessment scores, functional connectivity values, and fractional anisotropy obtained from DTI data for each participant, were submitted to a recursive cluster elimination based support vector machine classifier to determine the accuracy with which the classifier can predict a novel participant's group membership (autism or control). We found a maximum classification accuracy of 95.9% with 19 features which had the highest discriminative ability between the groups. All of the 19 features were effective connectivity paths, indicating that causal information may be critical in discriminating between autism and control groups. These effective connectivity paths were also found to be significantly greater in controls as compared to ASD participants and consisted predominantly of outputs from the fusiform face area and middle temporal gyrus indicating impaired connectivity in ASD participants, particularly in the social brain areas. These findings collectively point toward the fact that alterations in causal connectivity in the brain in ASD could serve as a potential non-invasive neuroimaging signature for autism. PMID:24151458
Kwon, Hyeok Gyu; Jang, Sung Ho
2014-08-22
A few studies have reported on the neural connectivity of some neural structures of the visual system in the human brain. However, little is known about the neural connectivity of the lateral geniculate body (LGB). In the current study, using diffusion tensor tractography (DTT), we attempted to investigate the neural connectivity of the LGB in normal subjects. A total of 52 healthy subjects were recruited for this study. A seed region of interest was placed on the LGB using the FMRIB Software Library which is a probabilistic tractography method based on a multi-fiber model. Connectivity was defined as the incidence of connection between the LGB and target brain areas at the threshold of 5, 25, and 50 streamlines. In addition, connectivity represented the percentage of connection in all hemispheres of 52 subjects. We found the following characteristics of connectivity of the LGB at the threshold of 5 streamline: (1) high connectivity to the corpus callosum (91.3%) and the contralateral temporal cortex (56.7%) via the corpus callosum, (2) high connectivity to the ipsilateral cerebral cortex: the temporal lobe (100%), primary visual cortex (95.2%), and visual association cortex (77.9%). The LGB appeared to have high connectivity to the corpus callosum and both temporal cortexes as well as the ipsilateral occipital cortex. We believe that the results of this study would be helpful in investigation of the neural network associated with the visual system and brain plasticity of the visual system after brain injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain
Wong, Becky; Yin, Bin; O'Brien, Beth
2016-01-01
Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the “universal” language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics. PMID:26881224
Consolidation in older adults depends upon competition between resting-state networks
Jacobs, Heidi I. L.; Dillen, Kim N. H.; Risius, Okka; Göreci, Yasemin; Onur, Oezguer A.; Fink, Gereon R.; Kukolja, Juraj
2015-01-01
Memory encoding and retrieval problems are inherent to aging. To date, however, the effect of aging upon the neural correlates of forming memory traces remains poorly understood. Resting-state fMRI connectivity can be used to investigate initial consolidation. We compared within and between network connectivity differences between healthy young and older participants before encoding, after encoding and before retrieval by means of resting-state fMRI. Alterations over time in the between-network connectivity analyses correlated with retrieval performance, whereas within-network connectivity did not: a higher level of negative coupling or competition between the default mode and the executive networks during the after encoding condition was associated with increased retrieval performance in the older adults, but not in the young group. Data suggest that the effective formation of memory traces depends on an age-dependent, dynamic reorganization of the interaction between multiple, large-scale functional networks. Our findings demonstrate that a cross-network based approach can further the understanding of the neural underpinnings of aging-associated memory decline. PMID:25620930
Antidepressants Normalize the Default Mode Network in Patients With Dysthymia
Posner, Jonathan; Hellerstein, David J.; Gat, Inbal; Mechling, Anna; Klahr, Kristin; Wang, Zhishun; McGrath, Patrick J.; Stewart, Jonathan W.; Peterson, Bradley S.
2014-01-01
Importance The default mode network (DMN) is a collection of brain regions that reliably deactivate during goal-directed behaviors and is more active during a baseline, or so-called resting, condition. Coherence of neural activity, or functional connectivity, within the brain’s DMN is increased in major depressive disorder relative to healthy control (HC) subjects; however, whether similar abnormalities are present in persons with dysthymic disorder (DD) is unknown. Moreover, the effect of antidepressant medications on DMN connectivity in patients with DD is also unknown. Objective To use resting-state functional-connectivity magnetic resonance imaging (MRI) to study (1) the functional connectivity of the DMN in subjects with DD vs HC participants and (2) the effects of antidepressant therapy on DMN connectivity. Design After collecting baseline MRI scans from subjects with DD and HC participants, we enrolled the participants with DD into a 10-week prospective, double-blind, placebo-controlled trial of duloxetine and collected MRI scans again at the conclusion of the study. Enrollment occurred between 2007 and 2011. Setting University research institute. Participants Volunteer sample of 41 subjects with DD and 25 HC participants aged 18 to 53 years. Control subjects were group matched to patients with DD by age and sex. Main Outcome Measures We used resting-state functional-connectivity MRI to measure the functional connectivity of the brain’s DMN in persons with DD compared with HC subjects, and we examined the effects of treatment with duloxetine vs placebo on DMN connectivity. Results Of the 41 subjects with DD, 32 completed the clinical trial and MRI scans, along with the 25 HC participants. At baseline, we found that the coherence of neural activity within the brain’s DMN was greater in persons with DD compared with HC subjects. Following a 10-week clinical trial, we found that treatment with duloxetine, but not placebo, normalized DMN connectivity. Conclusions and Relevance The baseline imaging findings are consistent with those found in patients with major depressive disorder and suggest that increased connectivity within the DMN may be important in the pathophysiology of both acute and chronic manifestations of depressive illness. The normalization of DMN connectivity following antidepressant treatment suggests an important causal pathway through which antidepressants may reduce depression. PMID:23389382
Pineda, J A; Juavinett, A; Datko, M
2012-12-01
Autism is a highly varied developmental disorder typically characterized by deficits in reciprocal social interaction, difficulties with verbal and nonverbal communication, and restricted interests and repetitive behaviors. Although a wide range of behavioral, pharmacological, and alternative medicine strategies have been reported to ameliorate specific symptoms for some individuals, there is at present no cure for the condition. Nonetheless, among the many incompatible observations about aspects of the development, anatomy, and functionality of the autistic brain, it is widely agreed that it is characterized by widespread aberrant connectivity. Such disordered connectivity, be it increased, decreased, or otherwise compromised, may complicate healthy synchronization and communication among and within different neural circuits, thereby producing abnormal processing of sensory inputs necessary for normal social life. It is widely accepted that the innate properties of brain electrical activity produce pacemaker elements and linked networks that oscillate synchronously or asynchronously, likely reflecting a type of functional connectivity. Using phase coherence in multiple frequency EEG bands as a measure of functional connectivity, studies have shown evidence for both global hypoconnectivity and local hyperconnectivity in individuals with ASD. However, the nature of the brain's experience-dependent structural plasticity suggests that these abnormal patterns may be reversed with the proper type of treatment. Indeed, neurofeedback (NF) training, an intervention based on operant conditioning that results in self-regulation of brain electrical oscillations, has shown promise in addressing marked abnormalities in functional and structural connectivity. It is hypothesized that neurofeedback produces positive behavioral changes in ASD children by normalizing the aberrant connections within and between neural circuits. NF exploits the brain's plasticity to normalize aberrant connectivity patterns apparent in the autistic brain. By grounding this training in known anatomical (e.g., mirror neuron system) and functional markers (e.g., mu rhythms) of autism, NF training holds promise to support current treatments for this complex disorder. The proposed hypothesis specifically states that neurofeedback-induced alpha mu (8-12Hz) rhythm suppression or desynchronization, a marker of cortical activation, should induce neuroplastic changes and lead to normalization in relevant mirroring networks that have been associated with higher-order social cognition. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ismaylova, Elmira; Di Sante, Jessica; Gouin, Jean-Philippe; Pomares, Florence B; Vitaro, Frank; Tremblay, Richard E; Booij, Linda
2018-01-01
Numerous studies have shown differences in the functioning in the areas of the frontal-limbic circuitry between depressed patients and controls. However, current knowledge on frontal-limbic neural substrates of individual differences in mood states in everyday life in healthy individuals is scarce. The present study investigates anatomical, resting-state, and functional neural correlates of daily mood states in healthy individuals. We expected to observe associations between mood and the frontal-limbic circuitry and the default-mode network (DMN). A total of 42 healthy adults (19 men, 23 women; 34 ± 1.2 years) regularly followed for behavior and psychosocial functioning since age of 6, underwent a functional magnetic resonance imaging scan, and completed a daily diary of mood states and related cognitions for 5 consecutive days. Results showed that individuals with smaller left hippocampal gray matter volumes experienced more negative mood and rumination in their daily life. Greater resting-state functional connectivity (rsFC) within the DMN, namely between posterior cingulate cortex (PCC) and medial prefrontal cortex regions as well as between PCC and precuneus, was associated with both greater negative and positive mood states in daily life. These rsFC results could be indicative of the role of the DMN regional functioning in emotional arousal, irrespective of valence. Lastly, greater daily positive mood was associated with greater activation in response to negative emotional stimuli in the precentral gyri, previously linked to emotional interference on cognitive control. Altogether, present findings might reflect neural mechanisms underlying daily affect and cognition among healthy individuals.
Differentiating between bipolar and unipolar depression in functional and structural MRI studies.
Han, Kyu-Man; De Berardis, Domenico; Fornaro, Michele; Kim, Yong-Ku
2018-03-28
Distinguishing depression in bipolar disorder (BD) from unipolar depression (UD) solely based on clinical clues is difficult, which has led to the exploration of promising neural markers in neuroimaging measures for discriminating between BD depression and UD. In this article, we review structural and functional magnetic resonance imaging (MRI) studies that directly compare UD and BD depression based on neuroimaging modalities including functional MRI studies on regional brain activation or functional connectivity, structural MRI on gray or white matter morphology, and pattern classification analyses using a machine learning approach. Numerous studies have reported distinct functional and structural alterations in emotion- or reward-processing neural circuits between BD depression and UD. Different activation patterns in neural networks including the amygdala, anterior cingulate cortex (ACC), prefrontal cortex (PFC), and striatum during emotion-, reward-, or cognition-related tasks have been reported between BD and UD. A stronger functional connectivity pattern in BD was pronounced in default mode and in frontoparietal networks and brain regions including the PFC, ACC, parietal and temporal regions, and thalamus compared to UD. Gray matter volume differences in the ACC, hippocampus, amygdala, and dorsolateral prefrontal cortex (DLPFC) have been reported between BD and UD, along with a thinner DLPFC in BD compared to UD. BD showed reduced integrity in the anterior part of the corpus callosum and posterior cingulum compared to UD. Several studies performed pattern classification analysis using structural and functional MRI data to distinguish between UD and BD depression using a supervised machine learning approach, which yielded a moderate level of accuracy in classification. Copyright © 2018 Elsevier Inc. All rights reserved.
Stoddard, Joel; Tseng, Wan-Ling; Kim, Pilyoung; Chen, Gang; Yi, Jennifer; Donahue, Laura; Brotman, Melissa A; Towbin, Kenneth E; Pine, Daniel S; Leibenluft, Ellen
2017-01-01
Psychiatric comorbidity complicates clinical care and confounds efforts to elucidate the pathophysiology of commonly occurring symptoms in youths. To our knowledge, few studies have simultaneously assessed the effect of 2 continuously distributed traits on brain-behavior relationships in children with psychopathology. To determine shared and unique effects of 2 major dimensions of child psychopathology, irritability and anxiety, on neural responses to facial emotions during functional magnetic resonance imaging. Cross-sectional functional magnetic resonance imaging study in a large, well-characterized clinical sample at a research clinic at the National Institute of Mental Health. The referred sample included youths ages 8 to 17 years, 93 youths with anxiety, disruptive mood dysregulation, and/or attention-deficit/hyperactivity disorders and 22 healthy youths. The child's irritability and anxiety were rated by both parent and child on the Affective Reactivity Index and Screen for Child Anxiety Related Disorders, respectively. Using functional magnetic resonance imaging, neural response was measured across the brain during gender labeling of varying intensities of angry, happy, or fearful face emotions. In mixed-effects analyses, the shared and unique effects of irritability and anxiety were tested on amygdala functional connectivity and activation to face emotions. The mean (SD) age of participants was 13.2 (2.6) years; of the 115 included, 64 were male. Irritability and/or anxiety influenced amygdala connectivity to the prefrontal and temporal cortex. Specifically, irritability and anxiety jointly influenced left amygdala to left medial prefrontal cortex connectivity during face emotion viewing (F4,888 = 9.20; P < .001 for mixed model term). During viewing of intensely angry faces, decreased connectivity was associated with high levels of both anxiety and irritability, whereas increased connectivity was associated with high levels of anxiety but low levels of irritability (Wald χ21 = 21.3; P < .001 for contrast). Irritability was associated with differences in neural response to face emotions in several areas (F2, 888 ≥ 13.45; all P < .001). This primarily occurred in the ventral visual areas, with a positive association to angry and happy faces relative to fearful faces. These data extend prior work conducted in youths with irritability or anxiety alone and suggest that research may miss important findings if the pathophysiology of irritability and anxiety are studied in isolation. Decreased amygdala-medial prefrontal cortex connectivity may mediate emotion dysregulation when very anxious and irritable youth process threat-related faces. Activation in the ventral visual circuitry suggests a mechanism through which signals of social approach (ie, happy and angry expressions) may capture attention in irritable youth.
[Review of the regeneration mechanism of complete spinal cord injury].
Li, Jiayin; Li, Xing; Xiao, Zhifeng; Dai, Jianwu
2018-06-01
Spinal cord injury (SCI), especially the complete SCI, usually results in complete paralysis below the level of the injury and seriously affects the patient's quality of life. SCI repair is still a worldwide medical problem. In the last twenty years, Professor DAI Jianwu and his team pioneered complete SCI model by removing spinal tissue with varied lengths in rodents, canine, and non-human primates to verify therapeutic effect of different repair strategies. Moreover, they also started the first clinical study of functional collagen scaffold on patients with acute complete SCI on January 16th, 2015. This review mainly focusses on the possible mechanisms responsible for complete SCI. In common, recovery of some sensory and motor functions post complete SCI include the following three contributing reasons. ① Regeneration of long ascending and descending axons throughout the lesion site to re-connect the original targets; ② New neural circuits formed in the lesion site by newly generated neurons post injury, which effectively re-connect the transected stumps; ③ The combined effect of ① and ②. The numerous studies have confirmed that neural circuits rebuilt across the injury site by newborn neurons might be the main mechanisms for functional recovery of animals from rodents to dogs. In many SCI model, especially the complete spinal cord transection model, many studies have convincingly demonstrated that the quantity and length of regenerated long descending axons, particularly like CST fibers, are too few to across the lesion site that is millimeters in length to realize motor functional recovery. Hence, it is more feasible in guiding neuronal relays formation by bio-scaffolds implantation than directing long motor axons regeneration in improving motor function of animals with complete spinal cord transection. However, some other issues such as promoting more neuronal relays formation, debugging wrong connections, and maintaining adequate neural circuits for functional recovery are urgent problems to be addressed.
Statistical technique for analysing functional connectivity of multiple spike trains.
Masud, Mohammad Shahed; Borisyuk, Roman
2011-03-15
A new statistical technique, the Cox method, used for analysing functional connectivity of simultaneously recorded multiple spike trains is presented. This method is based on the theory of modulated renewal processes and it estimates a vector of influence strengths from multiple spike trains (called reference trains) to the selected (target) spike train. Selecting another target spike train and repeating the calculation of the influence strengths from the reference spike trains enables researchers to find all functional connections among multiple spike trains. In order to study functional connectivity an "influence function" is identified. This function recognises the specificity of neuronal interactions and reflects the dynamics of postsynaptic potential. In comparison to existing techniques, the Cox method has the following advantages: it does not use bins (binless method); it is applicable to cases where the sample size is small; it is sufficiently sensitive such that it estimates weak influences; it supports the simultaneous analysis of multiple influences; it is able to identify a correct connectivity scheme in difficult cases of "common source" or "indirect" connectivity. The Cox method has been thoroughly tested using multiple sets of data generated by the neural network model of the leaky integrate and fire neurons with a prescribed architecture of connections. The results suggest that this method is highly successful for analysing functional connectivity of simultaneously recorded multiple spike trains. Copyright © 2011 Elsevier B.V. All rights reserved.
Kotini, A; Anninos, P; Anastasiadis, A N; Tamiolakis, D
2005-09-07
The aim of this study was to compare a theoretical neural net model with MEG data from epileptic patients and normal individuals. Our experimental study population included 10 epilepsy sufferers and 10 healthy subjects. The recordings were obtained with a one-channel biomagnetometer SQUID in a magnetically shielded room. Using the method of x2-fitting it was found that the MEG amplitudes in epileptic patients and normal subjects had Poisson and Gauss distributions respectively. The Poisson connectivity derived from the theoretical neural model represents the state of epilepsy, whereas the Gauss connectivity represents normal behavior. The MEG data obtained from epileptic areas had higher amplitudes than the MEG from normal regions and were comparable with the theoretical magnetic fields from Poisson and Gauss distributions. Furthermore, the magnetic field derived from the theoretical model had amplitudes in the same order as the recorded MEG from the 20 participants. The approximation of the theoretical neural net model with real MEG data provides information about the structure of the brain function in epileptic and normal states encouraging further studies to be conducted.
The neural bases of feeling understood and not understood.
Morelli, Sylvia A; Torre, Jared B; Eisenberger, Naomi I
2014-12-01
Past research suggests that feeling understood enhances both personal and social well-being. However, little research has examined the neurobiological bases of feeling understood and not understood. We addressed these gaps by experimentally inducing felt understanding and not understanding as participants underwent functional magnetic resonance imaging. The results demonstrated that feeling understood activated neural regions previously associated with reward and social connection (i.e. ventral striatum and middle insula), while not feeling understood activated neural regions previously associated with negative affect (i.e. anterior insula). Both feeling understood and not feeling understood activated different components of the mentalizing system (feeling understood: precuneus and temporoparietal junction; not feeling understood: dorsomedial prefrontal cortex). Neural responses were associated with subsequent feelings of social connection and disconnection and were modulated by individual differences in rejection sensitivity. Thus, this study provides insight into the psychological processes underlying feeling understood (or not) and may suggest new avenues for targeted interventions that amplify the benefits of feeling understood or buffer individuals from the harmful consequences of not feeling understood. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
He, Zongling; Cui, Qian; Zheng, Junjie; Duan, Xujun; Pang, Yajing; Gao, Qing; Han, Shaoqiang; Long, Zhiliang; Wang, Yifeng; Li, Jiao; Wang, Xiao; Zhao, Jingping; Chen, Huafu
2016-11-01
Major depressive disorder (MDD) may involve alterations in brain functional connectivity in multiple neural circuits and present large-scale network dysfunction. Patients with treatment-resistant depression (TRD) and treatment-sensitive depression (TSD) show different responses to antidepressants and aberrant brain functions. This study aims to investigate functional connectivity patterns of TRD and TSD at the whole brain resting state. Seventeen patients with TRD, 17 patients with TSD, and 17 healthy controls matched with age, gender, and years of education were recruited in this study. The brain was divided using an automated anatomical labeling atlas into 90 regions of interest, which were used to construct the entire brain functional networks. An analysis method called network-based statistic was used to explore the dysconnected subnetworks of TRD and TSD at different frequency bands. At resting state, TSD and TRD present characteristic patterns of network dysfunction at special frequency bands. The dysconnected subnetwork of TSD mainly lies in the fronto-parietal top-down control network. Moreover, the abnormal neural circuits of TRD are extensive and complex. These circuits not only depend on the abnormal affective network but also involve other networks, including salience network, auditory network, visual network, and language processing cortex. Our findings reflect that the pathological mechanism of TSD may refer to impairment in cognitive control, whereas TRD mainly triggers the dysfunction of emotion processing and affective cognition. This study reveals that differences in brain functional connectivity at resting state reflect distinct pathophysiological mechanisms in TSD and TRD. These findings may be helpful in differentiating two types of MDD and predicting treatment responses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chimera states in brain networks: Empirical neural vs. modular fractal connectivity
NASA Astrophysics Data System (ADS)
Chouzouris, Teresa; Omelchenko, Iryna; Zakharova, Anna; Hlinka, Jaroslav; Jiruska, Premysl; Schöll, Eckehard
2018-04-01
Complex spatiotemporal patterns, called chimera states, consist of coexisting coherent and incoherent domains and can be observed in networks of coupled oscillators. The interplay of synchrony and asynchrony in complex brain networks is an important aspect in studies of both the brain function and disease. We analyse the collective dynamics of FitzHugh-Nagumo neurons in complex networks motivated by its potential application to epileptology and epilepsy surgery. We compare two topologies: an empirical structural neural connectivity derived from diffusion-weighted magnetic resonance imaging and a mathematically constructed network with modular fractal connectivity. We analyse the properties of chimeras and partially synchronized states and obtain regions of their stability in the parameter planes. Furthermore, we qualitatively simulate the dynamics of epileptic seizures and study the influence of the removal of nodes on the network synchronizability, which can be useful for applications to epileptic surgery.
Theta, mental flexibility, and post-traumatic stress disorder: connecting in the parietal cortex.
Dunkley, Benjamin T; Sedge, Paul A; Doesburg, Sam M; Grodecki, Richard J; Jetly, Rakesh; Shek, Pang N; Taylor, Margot J; Pang, Elizabeth W
2015-01-01
Post-traumatic stress disorder (PTSD) is a mental health injury characterised by re-experiencing, avoidance, numbing and hyperarousal. Whilst the aetiology of the disorder is relatively well understood, there is debate about the prevalence of cognitive sequelae that manifest in PTSD. In particular, there are conflicting reports about deficits in executive function and mental flexibility. Even less is known about the neural changes that underlie such deficits. Here, we used magnetoencephalography to study differences in functional connectivity during a mental flexibility task in combat-related PTSD (all males, mean age = 37.4, n = 18) versus a military control (all males, mean age = 33.05, n = 19) group. We observed large-scale increases in theta connectivity in the PTSD group compared to controls. The PTSD group performance was compromised in the more attentionally-demanding task and this was characterised by 'late-stage' theta hyperconnectivity, concentrated in network connections involving right parietal cortex. Furthermore, we observed significant correlations with the connectivity strength in this region with a number of cognitive-behavioural outcomes, including measures of attention, depression and anxiety. These findings suggest atypical coordination of neural synchronisation in large scale networks contributes to deficits in mental flexibility for PTSD populations in timed, attentionally-demanding tasks, and this propensity toward network hyperconnectivity may play a more general role in the cognitive sequelae evident in this disorder.
Introduction to a system for implementing neural net connections on SIMD architectures
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl
1988-01-01
Neural networks have attracted much interest recently, and using parallel architectures to simulate neural networks is a natural and necessary application. The SIMD model of parallel computation is chosen, because systems of this type can be built with large numbers of processing elements. However, such systems are not naturally suited to generalized communication. A method is proposed that allows an implementation of neural network connections on massively parallel SIMD architectures. The key to this system is an algorithm permitting the formation of arbitrary connections between the neurons. A feature is the ability to add new connections quickly. It also has error recovery ability and is robust over a variety of network topologies. Simulations of the general connection system, and its implementation on the Connection Machine, indicate that the time and space requirements are proportional to the product of the average number of connections per neuron and the diameter of the interconnection network.
Introduction to a system for implementing neural net connections on SIMD architectures
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl
1988-01-01
Neural networks have attracted much interest recently, and using parallel architectures to simulate neural networks is a natural and necessary application. The SIMD model of parallel computation is chosen, because systems of this type can be built with large numbers of processing elements. However, such systems are not naturally suited to generalized elements. A method is proposed that allows an implementation of neural network connections on massively parallel SIMD architectures. The key to this system is an algorithm permitting the formation of arbitrary connections between the neurons. A feature is the ability to add new connections quickly. It also has error recovery ability and is robust over a variety of network topologies. Simulations of the general connection system, and its implementation on the Connection Machine, indicate that the time and space requirements are proportional to the product of the average number of connections per neuron and the diameter of the interconnection network.
Implementing neural nets with programmable logic
NASA Technical Reports Server (NTRS)
Vidal, Jacques J.
1988-01-01
Networks of Boolean programmable logic modules are presented as one purely digital class of artificial neural nets. The approach contrasts with the continuous analog framework usually suggested. Programmable logic networks are capable of handling many neural-net applications. They avoid some of the limitations of threshold logic networks and present distinct opportunities. The network nodes are called dynamically programmable logic modules. They can be implemented with digitally controlled demultiplexers. Each node performs a Boolean function of its inputs which can be dynamically assigned. The overall network is therefore a combinational circuit and its outputs are Boolean global functions of the network's input variables. The approach offers definite advantages for VLSI implementation, namely, a regular architecture with limited connectivity, simplicity of the control machinery, natural modularity, and the support of a mature technology.
A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks
Alemi, Alireza; Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo
2015-01-01
Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns. PMID:26291608
A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.
Alemi, Alireza; Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo
2015-08-01
Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns.
Chen, Yuhan; Wang, Shengjun; Hilgetag, Claus C.; Zhou, Changsong
2013-01-01
The formation of the complex network architecture of neural systems is subject to multiple structural and functional constraints. Two obvious but apparently contradictory constraints are low wiring cost and high processing efficiency, characterized by short overall wiring length and a small average number of processing steps, respectively. Growing evidence shows that neural networks are results from a trade-off between physical cost and functional value of the topology. However, the relationship between these competing constraints and complex topology is not well understood quantitatively. We explored this relationship systematically by reconstructing two known neural networks, Macaque cortical connectivity and C. elegans neuronal connections, from combinatory optimization of wiring cost and processing efficiency constraints, using a control parameter , and comparing the reconstructed networks to the real networks. We found that in both neural systems, the reconstructed networks derived from the two constraints can reveal some important relations between the spatial layout of nodes and the topological connectivity, and match several properties of the real networks. The reconstructed and real networks had a similar modular organization in a broad range of , resulting from spatial clustering of network nodes. Hubs emerged due to the competition of the two constraints, and their positions were close to, and partly coincided, with the real hubs in a range of values. The degree of nodes was correlated with the density of nodes in their spatial neighborhood in both reconstructed and real networks. Generally, the rebuilt network matched a significant portion of real links, especially short-distant ones. These findings provide clear evidence to support the hypothesis of trade-off between multiple constraints on brain networks. The two constraints of wiring cost and processing efficiency, however, cannot explain all salient features in the real networks. The discrepancy suggests that there are further relevant factors that are not yet captured here. PMID:23505352
Computational neuroanatomy: ontology-based representation of neural components and connectivity
Rubin, Daniel L; Talos, Ion-Florin; Halle, Michael; Musen, Mark A; Kikinis, Ron
2009-01-01
Background A critical challenge in neuroscience is organizing, managing, and accessing the explosion in neuroscientific knowledge, particularly anatomic knowledge. We believe that explicit knowledge-based approaches to make neuroscientific knowledge computationally accessible will be helpful in tackling this challenge and will enable a variety of applications exploiting this knowledge, such as surgical planning. Results We developed ontology-based models of neuroanatomy to enable symbolic lookup, logical inference and mathematical modeling of neural systems. We built a prototype model of the motor system that integrates descriptive anatomic and qualitative functional neuroanatomical knowledge. In addition to modeling normal neuroanatomy, our approach provides an explicit representation of abnormal neural connectivity in disease states, such as common movement disorders. The ontology-based representation encodes both structural and functional aspects of neuroanatomy. The ontology-based models can be evaluated computationally, enabling development of automated computer reasoning applications. Conclusion Neuroanatomical knowledge can be represented in machine-accessible format using ontologies. Computational neuroanatomical approaches such as described in this work could become a key tool in translational informatics, leading to decision support applications that inform and guide surgical planning and personalized care for neurological disease in the future. PMID:19208191
Sergi, Fabrizio; Krebs, Hermano Igo; Groissier, Benjamin; Rykman, Avrielle; Guglielmelli, Eugenio; Volpe, Bruce T; Schaechter, Judith D
2011-01-01
We are investigating the neural correlates of motor recovery promoted by robot-mediated therapy in chronic stroke. This pilot study asked whether efficacy of robot-aided motor rehabilitation in chronic stroke could be predicted by a change in functional connectivity within the sensorimotor network in response to a bout of motor rehabilitation. To address this question, two stroke patients participated in a functional connectivity MRI study pre and post a 12-week robot-aided motor rehabilitation program. Functional connectivity was evaluated during three consecutive scans before the rehabilitation program: resting-state; point-to-point reaching movements executed by the paretic upper extremity (UE) using a newly developed MRI-compatible sensorized passive manipulandum; resting-state. A single resting-state scan was conducted after the rehabilitation program. Before the program, UE movement reduced functional connectivity between the ipsilesional and contralesional primary motor cortex. Reduced interhemispheric functional connectivity persisted during the second resting-state scan relative to the first and during the resting-state scan after the rehabilitation program. Greater reduction in interhemispheric functional connectivity during the resting-state was associated with greater gains in UE motor function induced by the 12-week robotic therapy program. These findings suggest that greater reduction in interhemispheric functional connectivity in response to a bout of motor rehabilitation may predict greater efficacy of the full rehabilitation program.
The effect of the neural activity on topological properties of growing neural networks.
Gafarov, F M; Gafarova, V R
2016-09-01
The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.
Waring, Jill D; Etkin, Amit; Hallmayer, Joachim F; O'Hara, Ruth
2014-09-01
The serotonin transporter polymorphism short (s) allele is associated with heightened emotional reactivity and reduced emotion regulation, which increases vulnerability to depression and anxiety disorders. We investigated behavioral and neural markers of emotion regulation in community-dwelling older adults, contrasting s allele carriers and long allele homozygotes. Participants (N = 26) completed a face-word emotion conflict task during functional magnetic resonance imaging, in which facilitated regulation of emotion conflict was observed on face-word incongruent trials following another incongruent trial (i.e., emotional conflict adaptation). There were no differences between genetic groups in behavioral task performance or neural activation in postincongruent versus postcongruent trials. By contrast, connectivity between dorsal anterior cingulate cortex (ACC) and pregenual ACC, regions previously implicated in emotion conflict regulation, was impaired in s carriers for emotional conflict adaptation. This is the first demonstration of an association between serotonin transporter polymorphism and functional connectivity in older adults. Poor dorsal ACC-pregenual ACC connectivity in s carriers may be one route by which these individuals experience greater difficulty in implementing effective emotional regulation, which may contribute to their vulnerability for affective disorders. Copyright © 2014 American Association for Geriatric Psychiatry. All rights reserved.
Polarity-specific high-level information propagation in neural networks.
Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan
2014-01-01
Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals.
Polarity-specific high-level information propagation in neural networks
Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan
2014-01-01
Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals. PMID:24672472
NASA Technical Reports Server (NTRS)
Zak, Michail
1990-01-01
A new neural network architecture is proposed based upon effects of non-Lipschitzian dynamics. The network is fully connected, but these connections are active only during vanishingly short time periods. The advantages of this architecture are discussed.
Spreng, R Nathan; Cassidy, Benjamin N; Darboh, Bri S; DuPre, Elizabeth; Lockrow, Amber W; Setton, Roni; Turner, Gary R
2017-10-01
Age-related brain changes leading to altered socioemotional functioning may increase vulnerability to financial exploitation. If confirmed, this would suggest a novel mechanism leading to heightened financial exploitation risk in older adults. Development of predictive neural markers could facilitate increased vigilance and prevention. In this preliminary study, we sought to identify structural and functional brain differences associated with financial exploitation in older adults. Financially exploited older adults (n = 13, 7 female) and a matched cohort of older adults who had been exposed to, but avoided, a potentially exploitative situation (n = 13, 7 female) were evaluated. Using magnetic resonance imaging, we examined cortical thickness and resting state functional connectivity. Behavioral data were collected using standardized cognitive assessments, self-report measures of mood and social functioning. The exploited group showed cortical thinning in anterior insula and posterior superior temporal cortices, regions associated with processing affective and social information, respectively. Functional connectivity encompassing these regions, within default and salience networks, was reduced, while between network connectivity was increased. Self-reported anger and hostility was higher for the exploited group. We observed financial exploitation associated with brain differences in regions involved in socioemotional functioning. These exploratory and preliminary findings suggest that alterations in brain regions implicated in socioemotional functioning may be a marker of financial exploitation risk. Large-scale, prospective studies are necessary to validate this neural mechanism, and develop predictive markers for use in clinical practice. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America.
Horowitz-Kraus, Tzipi; Buck, Catherine; Dorrmann, Dana
2016-10-01
Narrative comprehension is a linguistic ability that is foundational for future reading ability. The aim of the current study was to examine the neural circuitry of children with reading difficulties (RD) compared to typical readers during a narrative-comprehension task. We hypothesized that due to deficient executive functions, which support narrative comprehension abilities, children with RD would display altered activation and functional connectivity, as well as lower performance on a narrative-comprehension task. Children with RD and typical readers were scanned during a narrative-comprehension task and administered reading behavioral tests. Children with RD scored significantly lower on the narrative-comprehension task than did typical readers. Composite activation maps showed more diffused activation during narrative comprehension in the RD group. Maps comparing the two reading groups showed more activation in the frontal lobes (regions responsible for executive functions), and functional connectivity showed higher global efficiency in children with RD than in typical readers. Global efficiency was negatively correlated with phonological awareness and reading and executive function scores in the entire study group. Children with RD may suffer from narrative-comprehension difficulties due to diffused activation of language areas, as was observed during a narrative-comprehension task. Greater effort in this task may be reflected by the engagement of brain regions related to executive functions and higher functional connectivity or attributed to difficulties in phonological processing and reading and executive functions. Therefore, the accommodation given to children with RD of reading aloud may need to be revised due to the observed difficulty in this domain.
NASA Technical Reports Server (NTRS)
Baram, Yoram
1992-01-01
Report presents analysis of nested neural networks, consisting of interconnected subnetworks. Analysis based on simplified mathematical models more appropriate for artificial electronic neural networks, partly applicable to biological neural networks. Nested structure allows for retrieval of individual subpatterns. Requires fewer wires and connection devices than fully connected networks, and allows for local reconstruction of damaged subnetworks without rewiring entire network.
Ren, Ping; Anthony, Mia; Chapman, Benjamin P.; Heffner, Kathi; Lin, Feng
2017-01-01
Locus of control (LOC) measures the extent to which individuals perceive control over their lives. Those with a more “internal” LOC feel self-sufficient and able to determine important aspects of their own future, while those with a more “external” LOC feel that their lives are governed by events beyond their control. Reduced internal LOC and increased external LOC have been found in cognitive disorders, but the neural substrates of these control perceptions are yet unknown. In the present study, we explored the relationship between amygdala functional connectivity and LOC in 18 amnestic mild cognitive impairment (MCI) and age-, sex-, and education-matched, 22 cognitively healthy controls (HC). Participants completed cognitive challenge tasks (Stroop Word Color task and Dual 1-back) for 20 minutes, and underwent resting-state functional magnetic resonance imaging immediately before and after the tasks. We found significantly lower internal LOC and higher external LOC in the MCI group than the HC group. Compared to HC, MCI group showed significantly stronger positive associations between internal LOC and baseline right amygdala connections (including right middle frontal gyrus and anterior cingulate cortex), and stronger negative associations between internal LOC and change of these right amygdala connections. Across all participants, external LOC explained the relationships between associations of another set of right amygdala connections (including middle cingulate cortex and right superior frontal gyrus), both at baseline and for change, and performance in the cognitive challenge tasks. Our findings indicate that the right amygdala networks might be critical in understanding the neural mechanisms underlying LOC’s role in cognitive aging. PMID:28315366
Lee, Deokjong; Lee, Junghan; Lee, Jung Eun; Jung, Young-Chul
2017-04-03
Internet gaming disorder (IGD) is a type of behavioral addiction characterized by abnormal executive control, leading to loss of control over excessive gaming. Attention deficit and hyperactivity disorder (ADHD) is one of the most common comorbid disorders in IGD, involving delayed development of the executive control system, which could predispose individuals to gaming addiction. We investigated the influence of childhood ADHD on neural network features of IGD. Resting-state functional magnetic resonance imaging analysis was performed on 44 young, male IGD subjects with and without childhood ADHD and 19 age-matched, healthy male controls. Posterior cingulate cortex (PCC)-seeded connectivity was evaluated to assess abnormalities in default mode network (DMN) connectivity, which is associated with deficits in executive control. IGD subjects without childhood ADHD showed expanded functional connectivity (FC) between DMN-related regions (PCC, medial prefrontal cortex, thalamus) compared with controls. These subjects also exhibited expanded FC between the PCC and brain regions implicated in salience processing (anterior insula, orbitofrontal cortex) compared with IGD subjects with childhood ADHD. IGD subjects with childhood ADHD showed expanded FC between the PCC and cerebellum (crus II), a region involved in executive control. The strength of connectivity between the PCC and cerebellum (crus II) was positively correlated with self-reporting scales reflecting impulsiveness. Individuals with IGD showed altered PCC-based FC, the characteristics of which might be dependent upon history of childhood ADHD. Our findings suggest that altered neural networks for executive control in ADHD would be a predisposition for developing IGD. Copyright © 2017 Elsevier Inc. All rights reserved.
Zeng, Xiang; Qiu, Xue-Cheng; Ma, Yuan-Huan; Duan, Jing-Jing; Chen, Yuan-Feng; Gu, Huai-Yu; Wang, Jun-Mei; Ling, Eng-Ang; Wu, Jin-Lang; Wu, Wutian; Zeng, Yuan-Shan
2015-06-01
Functional deficits following spinal cord injury (SCI) primarily attribute to loss of neural connectivity. We therefore tested if novel tissue engineering approaches could enable neural network repair that facilitates functional recovery after spinal cord transection (SCT). Rat bone marrow-derived mesenchymal stem cells (MSCs), genetically engineered to overexpress TrkC, receptor of neurotrophin-3 (NT-3), were pre-differentiated into cells carrying neuronal features via co-culture with NT-3 overproducing Schwann cells in 3-dimensional gelatin sponge (GS) scaffold for 14 days in vitro. Intra-GS formation of MSC assemblies emulating neural network (MSC-GS) were verified morphologically via electron microscopy (EM) and functionally by whole-cell patch clamp recording of spontaneous post-synaptic currents. The differentiated MSCs still partially maintained prototypic property with the expression of some mesodermal cytokines. MSC-GS or GS was then grafted acutely into a 2 mm-wide transection gap in the T9-T10 spinal cord segments of adult rats. Eight weeks later, hindlimb function of the MSC-GS-treated SCT rats was significantly improved relative to controls receiving the GS or lesion only as indicated by BBB score. The MSC-GS transplantation also significantly recovered cortical motor evoked potential (CMEP). Histologically, MSC-derived neuron-like cells maintained their synapse-like structures in vivo; they additionally formed similar connections with host neurites (i.e., mostly serotonergic fibers plus a few corticospinal axons; validated by double-labeled immuno-EM). Moreover, motor cortex electrical stimulation triggered c-fos expression in the grafted and lumbar spinal cord cells of the treated rats only. Our data suggest that MSC-derived neuron-like cells resulting from NT-3-TrkC-induced differentiation can partially integrate into transected spinal cord and this strategy should be further investigated for reconstructing disrupted neural circuits. Copyright © 2015 Elsevier Ltd. All rights reserved.
Diekhof, Esther K; Keil, Maria; Obst, Katrin U; Henseler, Ilona; Dechent, Peter; Falkai, Peter; Gruber, Oliver
2012-09-14
There is ample evidence of gender differences in neural processes and behavior. Differences in reward-related behaviors have been linked to either temporary or permanent organizational influences of gonadal hormones on the mesolimbic dopamine system and reward-related activation. Still, little is known about the association between biological gender and the neural underpinnings of the ability to resist reward-related impulses. Here we assessed with functional magnetic resonance imaging which neural processes enable men and women to successfully control their desire for immediate reward when this is required by a higher-order goal (i.e., during a 'desire-reason dilemma'; Diekhof and Gruber, 2010). Thirty-two participants (16 females) were closely matched for age, personality characteristics (e.g., novelty seeking) and behavioral performance in the 'desire-reason task'. On the neural level, men and women showed similarities in the general response of the nucleus accumbens and of the ventral tegmental area to predictors of immediate reward, but they differed in additional brain mechanisms that enabled self-controlled decisions against the preference for immediate reward. Firstly, men exhibited a stronger reduction of activation in the ventral pallidum, putamen, temporal pole and pregenual anterior cingulate cortex during the 'desire-reason dilemma'. Secondly, connectivity analyses revealed a significant change in the direction of the connectivity between anteroventral prefrontal cortex and nucleus accumbens during decisions counteracting the reward-related impulse when comparing men and women. Together, these findings support the view of a sexual dimorphism that manifested in the recruitment of gender-specific neural resources during the successful deployment of self-control. Copyright © 2012 Elsevier B.V. All rights reserved.
Structural and functional cerebral correlates of hypnotic suggestibility.
Huber, Alexa; Lui, Fausta; Duzzi, Davide; Pagnoni, Giuseppe; Porro, Carlo Adolfo
2014-01-01
Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity.
Arnold Anteraper, Sheeba; Guell, Xavier; D'Mello, Anila; Joshi, Neha; Whitfield-Gabrieli, Susan; Joshi, Gagan
2018-06-13
To examine the resting-state functional-connectivity (RsFc) in young adults with high-functioning autism spectrum disorder (HF-ASD) using state-of-the-art fMRI data acquisition and analysis techniques. Simultaneous multi-slice, high temporal resolution fMRI acquisition; unbiased whole-brain connectome-wide multivariate pattern analysis (MVPA) techniques for assessing RsFc; and post-hoc whole-brain seed-to-voxel analyses using MVPA results as seeds. MVPA revealed two clusters of abnormal connectivity in the cerebellum. Whole-brain seed-based functional connectivity analyses informed by MVPA-derived clusters showed significant under connectivity between the cerebellum and social, emotional, and language brain regions in the HF-ASD group compared to healthy controls. The results we report are coherent with existing structural, functional, and RsFc literature in autism, extend previous literature reporting cerebellar abnormalities in the neuropathology of autism, and highlight the cerebellum as a potential target for therapeutic, diagnostic, predictive, and prognostic developments in ASD. The description of functional connectivity abnormalities using whole-brain, data-driven analyses as reported in the present study may crucially advance the development of ASD biomarkers, targets for therapeutic interventions, and neural predictors for measuring treatment response.
Xu, Benjamin; Sandrini, Marco; Wang, Wen-tung; Smith, Jason F.; Sarlls, Joelle E.; Awosika, Oluwole; Butman, John A.; Horwitz, Barry; Cohen, Leonardo G.
2016-01-01
Previous work using transcranial magnetic stimulation (TMS) demonstrated that the right pre-supplementary motor area (preSMA), a node in the fronto-basal-ganglia network, is critical for response inhibition. However, TMS influences interconnected regions, raising the possibility of a link between the preSMA activity and the functional connectivity within the network. To understand this relationship, we applied single-pulse TMS to the right preSMA during functional magnetic resonance imaging when the subjects were at rest to examine changes in neural activity and functional connectivity within the network in relation to the efficiency of response inhibition evaluated with a stop-signal task. The results showed that preSMA-TMS increased activation in the right inferior-frontal cortex (rIFC) and basal ganglia and modulated their task-free functional connectivity. Both the TMS-induced changes in the basal-ganglia activation and the functional connectivity between rIFC and left striatum, and of the overall network correlated with the efficiency of response inhibition and with the white-matter microstructure along the preSMA – rIFC pathway. These results suggest that the task-free functional and structural connectivity between the rIFCop and basal ganglia are critical to the efficiency of response inhibition. PMID:27144466
A scalable neural chip with synaptic electronics using CMOS integrated memristors.
Cruz-Albrecht, Jose M; Derosier, Timothy; Srinivasa, Narayan
2013-09-27
The design and simulation of a scalable neural chip with synaptic electronics using nanoscale memristors fully integrated with complementary metal-oxide-semiconductor (CMOS) is presented. The circuit consists of integrate-and-fire neurons and synapses with spike-timing dependent plasticity (STDP). The synaptic conductance values can be stored in memristors with eight levels, and the topology of connections between neurons is reconfigurable. The circuit has been designed using a 90 nm CMOS process with via connections to on-chip post-processed memristor arrays. The design has about 16 million CMOS transistors and 73 728 integrated memristors. We provide circuit level simulations of the entire chip performing neuronal and synaptic computations that result in biologically realistic functional behavior.
The Emerging Role of Epigenetics in Stroke
Qureshi, Irfan A.; Mehler, Mark F.
2013-01-01
The transplantation of exogenous stem cells and the activation of endogenous neural stem and progenitor cells (NSPCs) are promising treatments for stroke. These cells can modulate intrinsic responses to ischemic injury and may even integrate directly into damaged neural networks. However, the neuroprotective and neural regenerative effects that can be mediated by these cells are limited and may even be deleterious. Epigenetic reprogramming represents a novel strategy for enhancing the intrinsic potential of the brain to protect and repair itself by modulating pathologic neural gene expression and promoting the recapitulation of seminal neural developmental processes. In fact, recent evidence suggests that emerging epigenetic mechanisms are critical for orchestrating nearly every aspect of neural development and homeostasis, including brain patterning, neural stem cell maintenance, neurogenesis and gliogenesis, neural subtype specification, and synaptic and neural network connectivity and plasticity. In this review, we survey the therapeutic potential of exogenous stem cells and endogenous NSPCs and highlight innovative technological approaches for designing, developing, and delivering epigenetic therapies for targeted reprogramming of endogenous pools of NSPCs, neural cells at risk, and dysfunctional neural networks to rescue and restore neurologic function in the ischemic brain. PMID:21403016
Ulrich, Martin; Kiefer, Markus
2016-06-01
Unconscious visuomotor priming defined as the advantage in reaction time (RT) or accuracy for target shapes mapped to the same (congruent condition) when compared with a different (incongruent condition) motor response as a preceding subliminally presented prime shape has been shown to modulate activity within a visuomotor network comprised of parietal and frontal motor areas in previous functional magnetic resonance imaging (fMRI) studies. The present fMRI study investigated whether, in addition to changes in brain activity, unconscious visuomotor priming results in a modulation of functional connectivity profiles. Activity associated with congruent compared with incongruent trials was lower in the bilateral inferior and medial superior frontal gyri, in the inferior parietal lobules, and in the right caudate nucleus and adjacent portions of the thalamus. Functional connectivity increased under congruent relative to incongruent conditions between ventral visual stream areas (e.g., calcarine, fusiform, and lingual gyri), the precentral gyrus, the supplementary motor area, posterior parietal areas, the inferior frontal gyrus, and the caudate nucleus. Our findings suggest that an increase in coupling between visuomotor regions, reflecting higher efficiency of processing, is an important neural mechanism underlying unconscious visuomotor priming, in addition to changes in the magnitude of activation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Wong, Nichol M. L.; Ma, Ernie Po-Wing; Lee, Tatia M. C.
2017-01-01
Hypertension is a risk factor for cognitive impairment in older age. However, evidence of the neural basis of the relationship between the deterioration of cognitive function and elevated blood pressure is sparse. Based on previous research, we speculate that variations in brain connectivity are closely related to elevated blood pressure even before the onset of clinical conditions and apparent cognitive decline in individuals over 60 years of age. Forty cognitively healthy adults were recruited. Each received a blood pressure test before and after the cognitive assessment in various domains. Diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rsfMRI) data were collected. Our findings confirm that elevated blood pressure is associated with brain connectivity variations in cognitively healthy individuals. The integrity of the splenium of the corpus callosum is closely related to individual differences in systolic blood pressure. In particular, elevated systolic blood pressure is related to resting-state ventral attention network (VAN) and information processing speed. Serial mediation analyses have further revealed that lower integrity of the splenium statistically predicts elevated systolic blood pressure, which in turn predicts weakened functional connectivity (FC) within the VAN and eventually poorer processing speed. The current study sheds light on how neural correlates are involved in the impact of elevated blood pressure on cognitive functioning. PMID:28484386
Depressive Rumination, the Default-Mode Network, and the Dark Matter of Clinical Neuroscience.
Hamilton, J Paul; Farmer, Madison; Fogelman, Phoebe; Gotlib, Ian H
2015-08-15
The intuitive association between self-focused rumination in major depressive disorder (MDD) and the self-referential operations performed by the brain's default-mode network (DMN) has prompted interest in examining the role of the DMN in MDD. In this article, we present meta-analytic findings showing reliably increased functional connectivity between the DMN and subgenual prefrontal cortex (sgPFC)-connectivity that often predicts levels of depressive rumination. We also present meta-analytic findings that, while there is reliably increased regional cerebral blood flow in sgPFC in MDD, no such abnormality has been reliably observed in nodes of the DMN. We then detail a model that integrates the body of research presented. In this model, we propose that increased functional connectivity between sgPFC and the DMN in MDD represents an integration of the self-referential processes supported by the DMN with the affectively laden, behavioral withdrawal processes associated with sgPFC-an integration that produces a functional neural ensemble well suited for depressive rumination and that, in MDD, abnormally taxes only sgPFC and not the DMN. This synthesis explains a broad array of existing data concerning the neural substrates of depressive rumination and provides an explicit account of functional abnormalities in sgPFC in MDD. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince; Kraut, Michael; Hart, John, Jr.; Pearlson, Godfrey
2009-01-01
To explore the temporal sequence of, and the relationship between, the left and right hemispheres (LH and RH) during semantic memory (SM) processing we identified the neural networks involved in the performance of functional MRI semantic object retrieval task (SORT) using group independent component analysis (ICA) in 47 healthy individuals. SORT…
Abnormalities of Intrinsic Functional Connectivity in Autism Spectrum Disorders
Monk, Christopher S.; Peltier, Scott J.; Wiggins, Jillian Lee; Weng, Shih-Jen; Carrasco, Melisa; Risi, Susan; Lord, Catherine
2009-01-01
Autism spectrum disorders (ASD) impact social functioning and communication, and individuals with these disorders often have restrictive and repetitive behaviors. Accumulating data indicate that ASD is associated with alterations of neural circuitry. Functional MRI (FMRI) studies have focused on connectivity in the context of psychological tasks. However, even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic or resting connectivity. Notably, the default network, which includes the posterior cingulate cortex, retro-splenial, lateral parietal cortex/angular gyrus, medial prefrontal cortex, superior frontal gyrus, temporal lobe, and parahippocampal gyrus, is strongly active when there is no task. Altered intrinsic connectivity within the default network may underlie offline processing that may actuate ASD impairments. Using FMRI, we sought to evaluate intrinsic connectivity within the default network in ASD. Relative to controls, the ASD group showed weaker connectivity between the posterior cingulate cortex and superior frontal gyrus and stronger connectivity between the posterior cingulate cortex and both the right temporal lobe and right parahippocampal gyrus. Moreover, poorer social functioning in the ASD group was correlated with weaker connectivity between the posterior cingulate cortex and the superior frontal gyrus. In addition, more severe restricted and repetitive behaviors in ASD were correlated with stronger connectivity between the posterior cingulate cortex and right parahippocampal gyrus. These findings indicate that ASD subjects show altered intrinsic connectivity within the default network, and connectivity between these structures is associated with specific ASD symptoms. PMID:19409498
Modular, Hierarchical Learning By Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Baldi, Pierre F.; Toomarian, Nikzad
1996-01-01
Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.
Neuronal activity during development: permissive or instructive?
Crair, M C
1999-02-01
Experimental studies over the past year have shown that neural activity has a range of effects on the development of neural pathways. Although activity appears unimportant for establishing many aspects of the gross morphology and topology of the brain, there are many cases where the presence of neural activity is essential for the formation of a mature system of neural connections; in some instances, the pattern of neural activity actually orchestrates the final arrangement of neural connections.
Kipping, Judy A; Margulies, Daniel S; Eickhoff, Simon B; Lee, Annie; Qiu, Anqi
2018-08-01
Childhood is a critical period for the development of cognitive planning. There is a lack of knowledge on its neural mechanisms in children. This study aimed to examine cerebello-cortical and cortico-cortical functional connectivity in association with planning skills in 6-year-olds (n = 76). We identified the cerebello-cortical and cortico-cortical functional networks related to cognitive planning using activation likelihood estimation (ALE) meta-analysis on existing functional imaging studies on spatial planning, and data-driven independent component analysis (ICA) of children's resting-state functional MRI (rs-fMRI). We investigated associations of cerebello-cortical and cortico-cortical functional connectivity with planning ability in 6-year-olds, as assessed using the Stockings of Cambridge task. Long-range functional connectivity of two cerebellar networks (lobules VI and lateral VIIa) with the prefrontal and premotor cortex were greater in children with poorer planning ability. In contrast, cortico-cortical association networks were not associated with the performance of planning in children. These results highlighted the key contribution of the lateral cerebello-frontal functional connectivity, but not cortico-cortical association functional connectivity, for planning ability in 6-year-olds. Our results suggested that brain adaptation to the acquisition of planning ability during childhood is partially achieved through the engagement of the cerebello-cortical functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.
Barton, Alan J; Valdés, Julio J; Orchard, Robert
2009-01-01
Classical neural networks are composed of neurons whose nature is determined by a certain function (the neuron model), usually pre-specified. In this paper, a type of neural network (NN-GP) is presented in which: (i) each neuron may have its own neuron model in the form of a general function, (ii) any layout (i.e network interconnection) is possible, and (iii) no bias nodes or weights are associated to the connections, neurons or layers. The general functions associated to a neuron are learned by searching a function space. They are not provided a priori, but are rather built as part of an Evolutionary Computation process based on Genetic Programming. The resulting network solutions are evaluated based on a fitness measure, which may, for example, be based on classification or regression errors. Two real-world examples are presented to illustrate the promising behaviour on classification problems via construction of a low-dimensional representation of a high-dimensional parameter space associated to the set of all network solutions.
Hybrid discrete-time neural networks.
Cao, Hongjun; Ibarz, Borja
2010-11-13
Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.
Gurau, Oana; Bosl, William J.; Newton, Charles R.
2017-01-01
Autism spectrum disorders (ASD) are thought to be associated with abnormal neural connectivity. Presently, neural connectivity is a theoretical construct that cannot be easily measured. Research in network science and time series analysis suggests that neural network structure, a marker of neural activity, can be measured with electroencephalography (EEG). EEG can be quantified by different methods of analysis to potentially detect brain abnormalities. The aim of this review is to examine evidence for the utility of three methods of EEG signal analysis in the ASD diagnosis and subtype delineation. We conducted a review of literature in which 40 studies were identified and classified according to the principal method of EEG analysis in three categories: functional connectivity analysis, spectral power analysis, and information dynamics. All studies identified significant differences between ASD patients and non-ASD subjects. However, due to high heterogeneity in the results, generalizations could not be inferred and none of the methods alone are currently useful as a new diagnostic tool. The lack of studies prevented the analysis of these methods as tools for ASD subtypes delineation. These results confirm EEG abnormalities in ASD, but as yet not sufficient to help in the diagnosis. Future research with larger samples and more robust study designs could allow for higher sensitivity and consistency in characterizing ASD, paving the way for developing new means of diagnosis. PMID:28747892
Joint brain connectivity estimation from diffusion and functional MRI data
NASA Astrophysics Data System (ADS)
Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.
2015-03-01
Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information flow is introduced and used to model the propagation of information between GM areas through WM fiber bundles. The link capacity, i.e., ability to transfer information, is characterized by the relative strength of fiber bundles, e.g., fiber count gathered from the tractography of dMRI data. The node information demand is considered to be proportional to the correlation between neural activity at various cortical areas involved in a particular functional mode (e.g. visual, motor, etc.). These two properties lead to the link capacity and node demand constraints in the proposed model. Moreover, the information flow of a link cannot exceed the demand from either end node. This is captured by the feasibility constraints. Two different cost functions are considered in the optimization formulation in this paper. The first cost function, the reciprocal of fiber strength represents the unit cost for information passing through the link. In the second cost function, a min-max (minimizing the maximal link load) approach is used to balance the usage of each link. Optimizing the first cost function selects the pathway with strongest fiber strength for information propagation. In the second case, the optimization procedure finds all the possible propagation pathways and allocates the flow proportionally to their strength. Additionally, a penalty term is incorporated with both the cost functions to capture the possible missing and weak anatomical connections. With this set of constraints and the proposed cost functions, solving the network optimization problem recovers missing and weak anatomical connections supported by the functional information and provides the functional-associated anatomical subnetworks. Feasibility is demonstrated using realistic diffusion and functional MRI phantom data. It is shown that the proposed model recovers the maximum number of true connections, with fewest number of false connections when compared with the connectivity derived from a joint probabilistic model using the expectation-maximization (EM) algorithm presented in a prior work. We also apply the proposed method to data provided by the Human Connectome Project (HCP).
Effect of dilution in asymmetric recurrent neural networks.
Folli, Viola; Gosti, Giorgio; Leonetti, Marco; Ruocco, Giancarlo
2018-04-16
We study with numerical simulation the possible limit behaviors of synchronous discrete-time deterministic recurrent neural networks composed of N binary neurons as a function of a network's level of dilution and asymmetry. The network dilution measures the fraction of neuron couples that are connected, and the network asymmetry measures to what extent the underlying connectivity matrix is asymmetric. For each given neural network, we study the dynamical evolution of all the different initial conditions, thus characterizing the full dynamical landscape without imposing any learning rule. Because of the deterministic dynamics, each trajectory converges to an attractor, that can be either a fixed point or a limit cycle. These attractors form the set of all the possible limit behaviors of the neural network. For each network we then determine the convergence times, the limit cycles' length, the number of attractors, and the sizes of the attractors' basin. We show that there are two network structures that maximize the number of possible limit behaviors. The first optimal network structure is fully-connected and symmetric. On the contrary, the second optimal network structure is highly sparse and asymmetric. The latter optimal is similar to what observed in different biological neuronal circuits. These observations lead us to hypothesize that independently from any given learning model, an efficient and effective biologic network that stores a number of limit behaviors close to its maximum capacity tends to develop a connectivity structure similar to one of the optimal networks we found. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Tanaka, Shoji; Kirino, Eiji
2016-01-01
Conceiving concrete mental imagery is critical for skillful musical expression and performance. The precuneus, a core component of the default mode network (DMN), is a hub of mental image processing that participates in functions such as episodic memory retrieval and imagining future events. The precuneus connects with many brain regions in the frontal, parietal, temporal, and occipital cortices. The aim of this study was to examine the effects of long-term musical training on the resting-state functional connectivity of the precuneus. Our hypothesis was that the functional connectivity of the precuneus is altered in musicians. We analyzed the functional connectivity of the precuneus using resting-state functional magnetic resonance imaging (fMRI) data recorded in female university students majoring in music and nonmusic disciplines. The results show that the music students had higher functional connectivity of the precuneus with opercular/insular regions, which are associated with interoceptive and emotional processing; Heschl's gyrus (HG) and the planum temporale (PT), which process complex tonal information; and the lateral occipital cortex (LOC), which processes visual information. Connectivity of the precuneus within the DMN did not differ between the two groups. Our finding suggests that functional connections between the precuneus and the regions outside of the DMN play an important role in musical performance. We propose that a neural network linking the precuneus with these regions contributes to translate mental imagery into information relevant to musical performance.
Tanaka, Shoji; Kirino, Eiji
2016-01-01
Conceiving concrete mental imagery is critical for skillful musical expression and performance. The precuneus, a core component of the default mode network (DMN), is a hub of mental image processing that participates in functions such as episodic memory retrieval and imagining future events. The precuneus connects with many brain regions in the frontal, parietal, temporal, and occipital cortices. The aim of this study was to examine the effects of long-term musical training on the resting-state functional connectivity of the precuneus. Our hypothesis was that the functional connectivity of the precuneus is altered in musicians. We analyzed the functional connectivity of the precuneus using resting-state functional magnetic resonance imaging (fMRI) data recorded in female university students majoring in music and nonmusic disciplines. The results show that the music students had higher functional connectivity of the precuneus with opercular/insular regions, which are associated with interoceptive and emotional processing; Heschl’s gyrus (HG) and the planum temporale (PT), which process complex tonal information; and the lateral occipital cortex (LOC), which processes visual information. Connectivity of the precuneus within the DMN did not differ between the two groups. Our finding suggests that functional connections between the precuneus and the regions outside of the DMN play an important role in musical performance. We propose that a neural network linking the precuneus with these regions contributes to translate mental imagery into information relevant to musical performance. PMID:27445765
Neural Correlates of Antidepressant Treatment Response in Adolescents with Major Depressive Disorder
Klimes-Dougan, Bonnie; Vu, Dung Pham; Westlund Schreiner, Melinda; Mueller, Bryon A.; Eberly, Lynn E.; Camchong, Jazmin; Westervelt, Ana; Lim, Kelvin O.
2016-01-01
Abstract Objective: The neural changes underlying response to antidepressant treatment in adolescents are unknown. Identification of neural change correlates of treatment response could (1) aid in understanding mechanisms of depression and its treatment and (2) serve as target biomarkers for future research. Method: Using functional magnetic resonance imaging, we examined changes in brain activation and functional connectivity in 13 unmedicated adolescents with major depressive disorder (MDD) before and after receiving treatment with a selective serotonin reuptake inhibitor medication for 8 weeks. Specifically, we examined brain activation during a negative emotion task and resting-state functional connectivity (RSFC), focusing on the amygdala to capture networks relevant to negative emotion. We conducted whole-brain analyses to identify how symptom improvement was related to change in brain activation during a negative emotion task or amygdala RSFC. Results: After treatment, clinical improvement was associated with decreased task activation in rostral and subgenual anterior cingulate cortex and increased activation in bilateral insula, bilateral middle frontal cortices, right parahippocampus, and left cerebellum. Analysis of change in amygdala RSFC showed that treatment response was associated with increased amygdala RSFC with right frontal cortex, but decreased amygdala RSFC with right precuneus and right posterior cingulate cortex. Conclusion: The findings represent a foothold for advancing understanding of pathophysiology of MDD in adolescents by revealing the critical neural circuitry changes that underlie a positive response to a standard treatment. Although preliminary, the present study provides a research platform for future work needed to confirm these biomarkers at a larger scale before using them in future target engagement studies of novel treatments. PMID:27159204
Multiple mechanisms of consciousness: the neural correlates of emotional awareness.
Amting, Jayna M; Greening, Steven G; Mitchell, Derek G V
2010-07-28
Emotional stimuli, including facial expressions, are thought to gain rapid and privileged access to processing resources in the brain. Despite this access, we are conscious of only a fraction of the myriad of emotion-related cues we face everyday. It remains unclear, therefore, what the relationship is between activity in neural regions associated with emotional representation and the phenomenological experience of emotional awareness. We used functional magnetic resonance imaging and binocular rivalry to delineate the neural correlates of awareness of conflicting emotional expressions in humans. Behaviorally, fearful faces were significantly more likely to be perceived than disgusted or neutral faces. Functionally, increased activity was observed in regions associated with facial expression processing, including the amygdala and fusiform gyrus during emotional awareness. In contrast, awareness of neutral faces and suppression of fearful faces were associated with increased activity in dorsolateral prefrontal and inferior parietal cortices. The amygdala showed increased functional connectivity with ventral visual system regions during fear awareness and increased connectivity with perigenual prefrontal cortex (pgPFC; Brodmann's area 32/10) when fear was suppressed. Despite being prioritized for awareness, emotional items were associated with reduced activity in areas considered critical for consciousness. Contributions to consciousness from bottom-up and top-down neural regions may be additive, such that increased activity in specialized regions within the extended ventral visual system may reduce demands on a frontoparietal system important for awareness. The possibility is raised that interactions between pgPFC and the amygdala, previously implicated in extinction, may also influence whether or not an emotional stimulus is accessible to consciousness.
Neural networks for vertical microcode compaction
NASA Astrophysics Data System (ADS)
Chu, Pong P.
1992-09-01
Neural networks provide an alternative way to solve complex optimization problems. Instead of performing a program of instructions sequentially as in a traditional computer, neural network model explores many competing hypotheses simultaneously using its massively parallel net. The paper shows how to use the neural network approach to perform vertical micro-code compaction for a micro-programmed control unit. The compaction procedure includes two basic steps. The first step determines the compatibility classes and the second step selects a minimal subset to cover the control signals. Since the selection process is an NP- complete problem, to find an optimal solution is impractical. In this study, we employ a customized neural network to obtain the minimal subset. We first formalize this problem, and then define an `energy function' and map it to a two-layer fully connected neural network. The modified network has two types of neurons and can always obtain a valid solution.
Working Memory-Related Effective Connectivity in Huntington's Disease Patients.
Lahr, Jacob; Minkova, Lora; Tabrizi, Sarah J; Stout, Julie C; Klöppel, Stefan; Scheller, Elisa
2018-01-01
Huntington's disease (HD) is a genetically caused neurodegenerative disorder characterized by heterogeneous motor, psychiatric, and cognitive symptoms. Although motor symptoms may be the most prominent presentation, cognitive symptoms such as memory deficits and executive dysfunction typically co-occur. We used functional magnetic resonance imaging (fMRI) and task fMRI-based dynamic causal modeling (DCM) to evaluate HD-related changes in the neural network underlying working memory (WM). Sixty-four pre-symptomatic HD mutation carriers (preHD), 20 patients with early manifest HD symptoms (earlyHD), and 83 healthy control subjects performed an n -back fMRI task with two levels of WM load. Effective connectivity was assessed in five predefined regions of interest, comprising bilateral inferior parietal cortex, left anterior cingulate cortex, and bilateral dorsolateral prefrontal cortex. HD mutation carriers performed less accurately and more slowly at high WM load compared with the control group. While between-group comparisons of brain activation did not reveal differential recruitment of the cortical WM network in mutation carriers, comparisons of brain connectivity as identified with DCM revealed a number of group differences across the whole WM network. Most strikingly, we observed decreasing connectivity from several regions toward right dorsolateral prefrontal cortex (rDLPFC) in preHD and even more so in earlyHD. The deterioration in rDLPFC connectivity complements results from previous studies and might mirror beginning cortical neural decline at premanifest and early manifest stages of HD. We were able to characterize effective connectivity in a WM network of HD mutation carriers yielding further insight into patterns of cognitive decline and accompanying neural deterioration.
Connectivity and functional profiling of abnormal brain structures in pedophilia
Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo
2015-01-01
Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379
Connectivity and functional profiling of abnormal brain structures in pedophilia.
Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo
2015-06-01
Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. © 2015 Wiley Periodicals, Inc.
The neural basis of deictic shifting in linguistic perspective-taking in high-functioning autism
Liu, Yanni; Williams, Diane L.; Keller, Timothy A.; Minshew, Nancy J.; Just, Marcel Adam
2011-01-01
Personal pronouns, such as ‘I’ and ‘you’, require a speaker/listener to continuously re-map their reciprocal relation to their referent, depending on who is saying the pronoun. This process, called ‘deictic shifting’, may underlie the incorrect production of these pronouns, or ‘pronoun reversals’, such as referring to oneself with the pronoun ‘you’, which has been reported in children with autism. The underlying neural basis of deictic shifting, however, is not understood, nor has the processing of pronouns been studied in adults with autism. The present study compared the brain activation pattern and functional connectivity (synchronization of activation across brain areas) of adults with high-functioning autism and control participants using functional magnetic resonance imaging in a linguistic perspective-taking task that required deictic shifting. The results revealed significantly diminished frontal (right anterior insula) to posterior (precuneus) functional connectivity during deictic shifting in the autism group, as well as reliably slower and less accurate behavioural responses. A comparison of two types of deictic shifting revealed that the functional connectivity between the right anterior insula and precuneus was lower in autism while answering a question that contained the pronoun ‘you’, querying something about the participant’s view, but not when answering a query about someone else’s view. In addition to the functional connectivity between the right anterior insula and precuneus being lower in autism, activation in each region was atypical, suggesting over reliance on individual regions as a potential compensation for the lower level of collaborative interregional processing. These findings indicate that deictic shifting constitutes a challenge for adults with high-functioning autism, particularly when reference to one’s self is involved, and that the functional collaboration of two critical nodes, right anterior insula and precuneus, may play a critical role for deictic shifting by supporting an attention shift between oneself and others. PMID:21733887
The neural basis of deictic shifting in linguistic perspective-taking in high-functioning autism.
Mizuno, Akiko; Liu, Yanni; Williams, Diane L; Keller, Timothy A; Minshew, Nancy J; Just, Marcel Adam
2011-08-01
Personal pronouns, such as 'I' and 'you', require a speaker/listener to continuously re-map their reciprocal relation to their referent, depending on who is saying the pronoun. This process, called 'deictic shifting', may underlie the incorrect production of these pronouns, or 'pronoun reversals', such as referring to oneself with the pronoun 'you', which has been reported in children with autism. The underlying neural basis of deictic shifting, however, is not understood, nor has the processing of pronouns been studied in adults with autism. The present study compared the brain activation pattern and functional connectivity (synchronization of activation across brain areas) of adults with high-functioning autism and control participants using functional magnetic resonance imaging in a linguistic perspective-taking task that required deictic shifting. The results revealed significantly diminished frontal (right anterior insula) to posterior (precuneus) functional connectivity during deictic shifting in the autism group, as well as reliably slower and less accurate behavioural responses. A comparison of two types of deictic shifting revealed that the functional connectivity between the right anterior insula and precuneus was lower in autism while answering a question that contained the pronoun 'you', querying something about the participant's view, but not when answering a query about someone else's view. In addition to the functional connectivity between the right anterior insula and precuneus being lower in autism, activation in each region was atypical, suggesting over reliance on individual regions as a potential compensation for the lower level of collaborative interregional processing. These findings indicate that deictic shifting constitutes a challenge for adults with high-functioning autism, particularly when reference to one's self is involved, and that the functional collaboration of two critical nodes, right anterior insula and precuneus, may play a critical role for deictic shifting by supporting an attention shift between oneself and others.
Diminished neural network dynamics in amnestic mild cognitive impairment.
Brenner, Einat K; Hampstead, Benjamin M; Grossner, Emily C; Bernier, Rachel A; Gilbert, Nicholas; Sathian, K; Hillary, Frank G
2018-05-05
Mild cognitive impairment (MCI) is widely regarded as an intermediate stage between typical aging and dementia, with nearly 50% of patients with amnestic MCI (aMCI) converting to Alzheimer's dementia (AD) within 30 months of follow-up (Fischer et al., 2007). The growing literature using resting-state functional magnetic resonance imaging reveals both increased and decreased connectivity in individuals with MCI and connectivity loss between the anterior and posterior components of the default mode network (DMN) throughout the course of the disease progression (Hillary et al., 2015; Sheline & Raichle, 2013; Tijms et al., 2013). In this paper, we use dynamic connectivity modeling and graph theory to identify unique brain "states," or temporal patterns of connectivity across distributed networks, to distinguish individuals with aMCI from healthy older adults (HOAs). We enrolled 44 individuals diagnosed with aMCI and 33 HOAs of comparable age and education. Our results indicated that individuals with aMCI spent significantly more time in one state in particular, whereas neural network analysis in the HOA sample revealed approximately equivalent representation across four distinct states. Among individuals with aMCI, spending a higher proportion of time in the dominant state relative to a state where participants exhibited high cost (a measure combining connectivity and distance), predicted better language performance and less perseveration. This is the first report to examine neural network dynamics in individuals with aMCI. Copyright © 2018 Elsevier B.V. All rights reserved.
Dissociable Frontostriatal White Matter Connectivity Underlies Reward and Motor Impulsivity
Hampton, William H.; Alm, Kylie H.; Venkatraman, Vinod; Nugiel, Tehila; Olson, Ingrid R.
2017-01-01
Dysfunction of cognitive control often leads to impulsive decision-making in clinical and healthy populations. Some research suggests that a generalized cognitive control mechanism underlies the ability to modulate various types of impulsive behavior, while other evidence suggests different forms of impulsivity are dissociable, and rely on distinct neural circuitry. Past research consistently implicates several brain regions, such as the striatum and portions of the prefrontal cortex, in impulsive behavior. However the ventral and dorsal striatum are distinct in regards to function and connectivity. Nascent evidence points to the importance of frontostriatal white matter connectivity in impulsivity, yet it remains unclear whether particular tracts relate to different control behaviors. Here we used probabilistic tractography of diffusion imaging data to relate ventral and dorsal frontostriatal connectivity to reward and motor impulsivity measures. We found a double dissociation such that individual differences in white matter connectivity between the ventral striatum and the ventromedial prefrontal cortex and dorsolateral prefrontal cortex was associated with reward impulsivity, as measured by delay discounting, whereas connectivity between dorsal striatum and supplementary motor area was associated with motor impulsivity, but not vice versa. Our findings suggest that (a) structural connectivity can is associated with a large amount of behavioral variation; (b) different types of impulsivity are driven by dissociable frontostriatal neural circuitry. PMID:28189592
Inman, Cory S.; James, G. Andrew; Hamann, Stephan; Rajendra, Justin K.; Pagnoni, Giuseppe; Butler, Andrew J.
2011-01-01
Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state fMRI data to investigate the relationship between motor deficits and the intrinsic effective connectivity between brain regions involved in motor control and motor execution. An exploratory adaptation of SEM determined the optimal model of motor execution effective connectivity in healthy participants, and confirmatory SEM assessed stroke survivors’ fit to that model. We observed alterations in spontaneous resting-state effective connectivity from fronto-parietal guidance systems to the motor network in stroke survivors. More specifically, diminished connectivity was found in connections from the superior parietal cortex to primary motor cortex and supplementary motor cortex. Furthermore, the paths demonstrated large individual variance in stroke survivors but less variance in healthy participants. These findings suggest that characterizing the deficits in resting-state connectivity of top-down processes in stroke survivors may help optimize cognitive and physical rehabilitation therapies by individually targeting specific neural pathway. PMID:21839174
Dimitriadis, S I; Laskaris, N A; Tzelepi, A; Economou, G
2012-05-01
There is growing interest in studying the association of functional connectivity patterns with particular cognitive tasks. The ability of graphs to encapsulate relational data has been exploited in many related studies, where functional networks (sketched by different neural synchrony estimators) are characterized by a rich repertoire of graph-related metrics. We introduce commute times (CTs) as an alternative way to capture the true interplay between the nodes of a functional connectivity graph (FCG). CT is a measure of the time taken for a random walk to setout and return between a pair of nodes on a graph. Its computation is considered here as a robust and accurate integration, over the FCG, of the individual pairwise measurements of functional coupling. To demonstrate the benefits from our approach, we attempted the characterization of time evolving connectivity patterns derived from EEG signals recorded while the subject was engaged in an eye-movement task. With respect to standard ways, which are currently employed to characterize connectivity, an improved detection of event-related dynamical changes is noticeable. CTs appear to be a promising technique for deriving temporal fingerprints of the brain's dynamic functional organization.
Verdejo-Román, Juan; Fornito, Alex; Soriano-Mas, Carles; Vilar-López, Raquel; Verdejo-García, Antonio
2017-02-01
Overvaluation of palatable food is a primary driver of obesity, and is associated with brain regions of the reward system. However, it remains unclear if this network is specialized in food reward, or generally involved in reward processing. We used functional magnetic resonance imaging (fMRI) to characterize functional connectivity during processing of food and monetary rewards. Thirty-nine adults with excess weight and 37 adults with normal weight performed the Willingness to Pay for Food task and the Monetary Incentive Delay task in the fMRI scanner. A data-driven graph approach was applied to compare whole-brain, task-related functional connectivity between groups. Excess weight was associated with decreased functional connectivity during the processing of food rewards in a network involving primarily frontal and striatal areas, and increased functional connectivity during the processing of monetary rewards in a network involving principally frontal and parietal areas. These two networks were topologically and anatomically distinct, and were independently associated with BMI. The processing of food and monetary rewards involve segregated neural networks, and both are altered in individuals with excess weight. Copyright © 2016 Elsevier Inc. All rights reserved.
Joos, Kathleen; De Ridder, Dirk; Boey, Ronny A.; Vanneste, Sven
2014-01-01
Introduction: Stuttering is defined as speech characterized by verbal dysfluencies, but should not be seen as an isolated speech disorder, but as a generalized sensorimotor timing deficit due to impaired communication between speech related brain areas. Therefore we focused on resting state brain activity and functional connectivity. Method: We included 11 patients with developmental stuttering and 11 age matched controls. To objectify stuttering severity and the impact on quality of life (QoL), we used the Dutch validated Test for Stuttering Severity-Readers (TSS-R) and the Overall Assessment of the Speaker’s Experience of Stuttering (OASES), respectively. Furthermore, we used standardized low resolution brain electromagnetic tomography (sLORETA) analyses to look at resting state activity and functional connectivity differences and their correlations with the TSS-R and OASES. Results: No significant results could be obtained when looking at neural activity, however significant alterations in resting state functional connectivity could be demonstrated between persons who stutter (PWS) and fluently speaking controls, predominantly interhemispheric, i.e., a decreased functional connectivity for high frequency oscillations (beta and gamma) between motor speech areas (BA44 and 45) and the contralateral premotor (BA6) and motor (BA4) areas. Moreover, a positive correlation was found between functional connectivity at low frequency oscillations (theta and alpha) and stuttering severity, while a mixed increased and decreased functional connectivity at low and high frequency oscillations correlated with QoL. Discussion: PWS are characterized by decreased high frequency interhemispheric functional connectivity between motor speech, premotor and motor areas in the resting state, while higher functional connectivity in the low frequency bands indicates more severe speech disturbances, suggesting that increased interhemispheric and right sided functional connectivity is maladaptive. PMID:25352797
The alcoholic brain: neural bases of impaired reward-based decision-making in alcohol use disorders.
Galandra, Caterina; Basso, Gianpaolo; Cappa, Stefano; Canessa, Nicola
2018-03-01
Neuroeconomics is providing insights into the neural bases of decision-making in normal and pathological conditions. In the neuropsychiatric domain, this discipline investigates how abnormal functioning of neural systems associated with reward processing and cognitive control promotes different disorders, and whether such evidence may inform treatments. This endeavor is crucial when studying different types of addiction, which share a core promoting mechanism in the imbalance between impulsive subcortical neural signals associated with immediate pleasurable outcomes and inhibitory signals mediated by a prefrontal reflective system. The resulting impairment in behavioral control represents a hallmark of alcohol use disorders (AUDs), a chronic relapsing disorder characterized by excessive alcohol consumption despite devastating consequences. This review aims to summarize available magnetic resonance imaging (MRI) evidence on reward-related decision-making alterations in AUDs, and to envision possible future research directions. We review functional MRI (fMRI) studies using tasks involving monetary rewards, as well as MRI studies relating decision-making parameters to neurostructural gray- or white-matter metrics. The available data suggest that excessive alcohol exposure affects neural signaling within brain networks underlying adaptive behavioral learning via the implementation of prediction errors. Namely, weaker ventromedial prefrontal cortex activity and altered connectivity between ventral striatum and dorsolateral prefrontal cortex likely underpin a shift from goal-directed to habitual actions which, in turn, might underpin compulsive alcohol consumption and relapsing episodes despite adverse consequences. Overall, these data highlight abnormal fronto-striatal connectivity as a candidate neurobiological marker of impaired choice in AUDs. Further studies are needed, however, to unveil its implications in the multiple facets of decision-making.
[Neural mechanism underlying autistic savant and acquired savant syndrome].
Takahata, Keisuke; Kato, Motoichiro
2008-07-01
It is well known that the cases with savant syndrome, demonstrate outstanding mental capability despite coexisting severe mental disabilities. In many cases, savant skills are characterized by its domain-specificity, enhanced memory capability, and excessive focus on low-level perceptual processing. In addition, impaired integrative cognitive processing such as social cognition or executive function, restricted interest, and compulsive repetition of the same act are observed in savant individuals. All these are significantly relevant to the behavioral characteristics observed in individuals with autistic spectrum disorders (ASD). A neurocognitive model of savant syndrome should explain these cognitive features and the juxtaposition of outstanding talents with cognitive disabilities. In recent neuropsychological studies, Miller (1998) reported clinical cases of "acquired savant," i.e., patients who improved or newly acquired an artistic savant-like skill in the early stage of frontotemporal dementia (FTD). Although the relationship between an autistic savant and acquired savant remains to be elucidated, the advent of neuroimaging study of ASD and the clarification of FTD patients with savant-like skills may clarify the shared neural mechanisms of both types of talent. In this review, we classified current cognitive models of savant syndrome into the following 3 categories. (1) A hypermnesic model that suggests that savant skills develop from existing or dormant cognitive functions such as memory. However, recent findings obtained through neuropsychological examinations imply that savant individuals solve problems using a strategy that is fairly different from a non-autistic one. (2) A paradoxical functional facilitation model (Kapur, 1996) that offers possible explanations about how pathological states in the brain lead to development of prodigious skills. This model emphasizes the role of reciprocal inhibitory interaction among adjacent or distant cortical regions, especially that of the prefrontal cortex and the posterior regions of the brain. (3) Autistic models, including those based on weak central coherence theory (Frith, 1989), that focus on how savant skills emerge from an autistic brain. Based on recent neuroimaging studies of ASD, Just et al. (2004) suggested the underconnectivity theory, which emphasizes the disruption of long-range connectivity and the relative intact or even more enhanced local connectivity in the autistic brain. All the models listed above have certain advantages and shortcomings. At the end of this review, we propose another integrative model of savant syndrome. In this model, we predict an altered balance of local/global connectivity patterns that contribute to an altered functional segregation/integration ratio. In particular, we emphasize the crucial role played by the disruption of global connectivity in a parallel distributed cortical network, which might result in impairment in integrated cognitive processing, such as impairment in executive function and social cognition. On the other hand, the reduced inter-regional collaboration could lead to a disinhibitory enhancement of neural activity and connectivity in local cortical regions. In addition, enhanced connectivity in the local brain regions is partly due to the abnormal organization of the cortical network as a result of developmental and pathological states. This enhanced local connectivity results in the specialization and facilitation of low-level cognitive processing. The disruption of connectivity between the prefrontal cortex and other regions is considered to be a particularly important factor because the prefrontal region shows the most influential inhibitory control on other cortical areas. We propose that these neural mechanisms as the underlying causes for the emergence of savant ability in ASD and FTD patients.
Vogel, Susanne; Klumpers, Floris; Krugers, Harm J; Fang, Zhou; Oplaat, Krista T; Oitzl, Melly S; Joëls, Marian; Fernández, Guillén
2015-03-01
Two research lines argue for rapid stress-induced reallocations of neural network activity involving the amygdala. One focuses on the role of norepinephrine (NE) in mediating a shift towards the salience network and improving vigilance processing, whereas the other focuses on the role of cortisol in enhancing automatic, habitual responses. It has been suggested that the mineralocorticoid receptor (MR) is critical in shifting towards habitual responses, which are supported by the dorsal striatum. However, until now it remained unclear whether these two reallocations of neural recourses might be part of the same phenomenon and develop immediately after stress onset. We combined methods used in both approaches and hypothesized specifically that stress would lead to rapidly enhanced involvement of the striatum as assessed by amygala-striatal connectivity. Furthermore, we tested the hypothesis that this shift depends on cortisol interacting with the MR, by using a randomized, placebo-controlled, full-factorial, between-subjects design with the factors stress and MR-blockade (spironolactone). We investigated 101 young, healthy men using functional magnetic resonance imaging after stress induction, which led to increased negative mood, heart rate, and cortisol levels. We confirmed our hypothesis by revealing a stress-by-MR-blockade interaction on the functional connectivity between the centromedial amygdala (CMA) and the dorsal striatum. Stress rapidly enhanced CMA-striatal connectivity and this effect was correlated with the stress-induced cortisol response, but required MR availability. This finding might suggest that the stress-induced shift described by distinct research lines might capture different aspects of the same phenomenon, ie, a reallocation of neural resources coordinated by both NE and cortisol.
Zou, Ling; Guo, Qian; Xu, Yi; Yang, Biao; Jiao, Zhuqing; Xiang, Jianbo
2016-04-29
Functional magnetic resonance imaging (fMRI) is an important tool in neuroscience for assessing connectivity and interactions between distant areas of the brain. To find and characterize the coherent patterns of brain activity as a means of identifying brain systems for the cognitive reappraisal of the emotion task, both density-based k-means clustering and independent component analysis (ICA) methods can be applied to characterize the interactions between brain regions involved in cognitive reappraisal of emotion. Our results reveal that compared with the ICA method, the density-based k-means clustering method provides a higher sensitivity of polymerization. In addition, it is more sensitive to those relatively weak functional connection regions. Thus, the study concludes that in the process of receiving emotional stimuli, the relatively obvious activation areas are mainly distributed in the frontal lobe, cingulum and near the hypothalamus. Furthermore, density-based k-means clustering method creates a more reliable method for follow-up studies of brain functional connectivity.
Enhancement of Spike Synchrony in Hindmarsh-Rose Neural Networks by Randomly Rewiring Connections
NASA Astrophysics Data System (ADS)
Yang, Renhuan; Song, Aiguo; Yuan, Wujie
Spike synchrony of the neural system is thought to have very dichotomous roles. On the one hand, it is ubiquitously present in the healthy brain and is thought to underlie feature binding during information processing. On the other hand, large scale synchronization is an underlying mechanism of epileptic seizures. In this paper, we investigate the spike synchrony of Hindmarsh-Rose (HR) neural networks. Our focus is the influence of the network connections on the spike synchrony of the neural networks. The simulations show that desynchronization in the nearest-neighbor coupled network evolves into accurate synchronization with connection-rewiring probability p increasing. We uncover a phenomenon of enhancement of spike synchrony by randomly rewiring connections. With connection strength c and average connection number m increasing spike synchrony is enhanced but it is not the whole story. Furthermore, the possible mechanism behind such synchronization is also addressed.
Disrupted intrinsic and remote functional connectivity in heterotopia-related epilepsy.
Liu, W; Hu, X; An, D; Gong, Q; Zhou, D
2018-01-01
Several neuroimaging studies have examined neural interactions in patients with periventricular nodular heterotopia (PNH). However, features of the underlying functional network remain poorly understood. In this study, we examined alterations in the local (regional) and remote (interregional) cerebral networks in this disorder. Twenty-eight subjects all having suffered from PNH with epilepsy, as well as 28 age- and sex- matched healthy controls, were enrolled in this study. Amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity (FC) were calculated to detect regional neural function and functional network integration, respectively. Compared with healthy controls, patients with PNH-related epilepsy showed decreased ALFF in the ventromedial prefrontal cortex (vmPFC) and precuneus areas. ALFF values in both areas were negative correlated with epilepsy duration (P < .05, Bonferroni-corrected). Furthermore, patients with PNH-related epilepsy had increased remote interregional FC mainly in bilateral prefrontal and parietal cortices, supramarginal gyrus, dorsal cingulate gyrus, and right insula; lower FC was found in posterior brain regions including bilateral parahippocampal gyrus and inferior temporal gyrus. Focal spontaneous hypofunction, as assessed by ALFF, correlates with epilepsy duration in patients with PNH-related epilepsy. Abnormalities existed both within the default-mode network and then across the whole brain, demonstrating that intrinsic brain dysfunction may be related to specific network interactions. Our findings provide novel understanding of the connectivity-based pathophysiological mechanisms of PNH. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.