Bateman, Nicholas W; Shoji, Yutaka; Conrads, Kelly A; Stroop, Kevin D; Hamilton, Chad A; Darcy, Kathleen M; Maxwell, George L; Risinger, John I; Conrads, Thomas P
2016-01-01
AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, Nicholas W.; The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD; Shoji, Yutaka
2016-01-01
AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. - Highlights: • We have identified a bipartitemore » nuclear localization sequence (NLS) in ARID1A. • Confirmation of the NLS was performed using GFP constructs. • NLS mutant ARID1A exhibits greater stability than wild-type ARID1A.« less
Functional Activity of the Fanconi Anemia Protein FAA Requires FAC Binding and Nuclear Localization
Näf, Dieter; Kupfer, Gary M.; Suliman, Ahmed; Lambert, Kathleen; D’Andrea, Alan D.
1998-01-01
Fanconi anemia (FA) is an autosomal recessive disease characterized by genomic instability, cancer susceptibility, and cellular hypersensitivity to DNA-cross-linking agents. Eight complementation groups of FA (FA-A through FA-H) have been identified. Two FA genes, corresponding to complementation groups FA-A and FA-C, have been cloned, but the functions of the encoded FAA and FAC proteins remain unknown. We have recently demonstrated that FAA and FAC interact to form a nuclear complex. In this study, we have analyzed a series of mutant forms of the FAA protein with respect to functional activity, FAC binding, and nuclear localization. Mutation or deletion of the amino-terminal nuclear localization signal (NLS) of FAA results in loss of functional activity, loss of FAC binding, and cytoplasmic retention of FAA. Replacement of the NLS sequence with a heterologous NLS sequence, derived from the simian virus 40 T antigen, results in nuclear localization but does not rescue functional activity or FAC binding. Nuclear localization of the FAA protein is therefore necessary but not sufficient for FAA function. Mutant forms of FAA which fail to bind to FAC also fail to promote the nuclear accumulation of FAC. In addition, wild-type FAC promotes the accumulation of wild-type FAA in the nucleus. Our results suggest that FAA and FAC perform a concerted function in the cell nucleus, required for the maintenance of chromosomal stability. PMID:9742112
Prm3p is a pheromone-induced peripheral nuclear envelope protein required for yeast nuclear fusion.
Shen, Shu; Tobery, Cynthia E; Rose, Mark D
2009-05-01
Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.
Fission yeast Lem2 and Man1 perform fundamental functions of the animal cell nuclear lamina.
Gonzalez, Yanira; Saito, Akira; Sazer, Shelley
2012-01-01
In animal cells the nuclear lamina, which consists of lamins and lamin-associated proteins, serves several functions: it provides a structural scaffold for the nuclear envelope and tethers proteins and heterochromatin to the nuclear periphery. In yeast, proteins and large heterochromatic domains including telomeres are also peripherally localized, but there is no evidence that yeast have lamins or a fibrous nuclear envelope scaffold. Nonetheless, we found that the Lem2 and Man1 proteins of the fission yeast Schizosaccharomyces pombe, evolutionarily distant relatives of the Lap2/Emerin/Man1 (LEM) sub-family of animal cell lamin-associated proteins, perform fundamental functions of the animal cell lamina. These integral inner nuclear membrane localized proteins, with nuclear localized DNA binding Helix-Extension-Helix (HEH) domains, impact nuclear envelope structure and integrity, are essential for the enrichment of telomeres at the nuclear periphery and by means of their HEH domains anchor chromatin, most likely transcriptionally repressed heterochromatin, to the nuclear periphery. These data indicate that the core functions of the nuclear lamina are conserved between fungi and animal cells and can be performed in fission yeast, without lamins or other intermediate filament proteins.
Rogers, Jason V; Rose, Mark D
2014-12-02
During mating in the budding yeast Saccharomyces cerevisiae, two haploid nuclei fuse via two sequential membrane fusion steps. SNAREs (i.e., soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and Prm3p mediate outer nuclear membrane fusion, but the inner membrane fusogen remains unknown. Kar5p is a highly conserved transmembrane protein that localizes adjacent to the spindle pole body (SPB), mediates nuclear envelope fusion, and recruits Prm3p adjacent to the SPB. To separate Kar5p's functions, we tested localization, Prm3p recruitment, and nuclear fusion efficiency in various kar5 mutants. All domains and the conserved cysteine residues were essential for nuclear fusion. Several kar5 mutant proteins localized properly but did not mediate Prm3p recruitment; other kar5 mutant proteins localized and recruited Prm3p but were nevertheless defective for nuclear fusion, demonstrating additional functions beyond Prm3p recruitment. We identified one Kar5p domain required for SPB localization, which is dependent on the half-bridge protein Mps3p. Electron microscopy revealed a kar5 mutant that arrests with expanded nuclear envelope bridges, suggesting that Kar5p is required after outer nuclear envelope fusion. Finally, a split-GFP assay demonstrated that Kar5p localizes to both the inner and outer nuclear envelope. These insights suggest a mechanism by which Kar5p mediates inner nuclear membrane fusion. Copyright © 2015 Rogers and Rose.
Rogers, Jason V.; Rose, Mark D.
2014-01-01
During mating in the budding yeast Saccharomyces cerevisiae, two haploid nuclei fuse via two sequential membrane fusion steps. SNAREs (i.e., soluble N-ethylmaleimide–sensitive factor attachment protein receptors) and Prm3p mediate outer nuclear membrane fusion, but the inner membrane fusogen remains unknown. Kar5p is a highly conserved transmembrane protein that localizes adjacent to the spindle pole body (SPB), mediates nuclear envelope fusion, and recruits Prm3p adjacent to the SPB. To separate Kar5p’s functions, we tested localization, Prm3p recruitment, and nuclear fusion efficiency in various kar5 mutants. All domains and the conserved cysteine residues were essential for nuclear fusion. Several kar5 mutant proteins localized properly but did not mediate Prm3p recruitment; other kar5 mutant proteins localized and recruited Prm3p but were nevertheless defective for nuclear fusion, demonstrating additional functions beyond Prm3p recruitment. We identified one Kar5p domain required for SPB localization, which is dependent on the half-bridge protein Mps3p. Electron microscopy revealed a kar5 mutant that arrests with expanded nuclear envelope bridges, suggesting that Kar5p is required after outer nuclear envelope fusion. Finally, a split-GFP assay demonstrated that Kar5p localizes to both the inner and outer nuclear envelope. These insights suggest a mechanism by which Kar5p mediates inner nuclear membrane fusion. PMID:25467943
NASA Astrophysics Data System (ADS)
Navarro Pérez, R.; Schunck, N.; Dyhdalo, A.; Furnstahl, R. J.; Bogner, S. K.
2018-05-01
Background: Energy density functional methods provide a generic framework to compute properties of atomic nuclei starting from models of nuclear potentials and the rules of quantum mechanics. Until now, the overwhelming majority of functionals have been constructed either from empirical nuclear potentials such as the Skyrme or Gogny forces, or from systematic gradient-like expansions in the spirit of the density functional theory for atoms. Purpose: We seek to obtain a usable form of the nuclear energy density functional that is rooted in the modern theory of nuclear forces. We thus consider a functional obtained from the density matrix expansion of local nuclear potentials from chiral effective field theory. We propose a parametrization of this functional carefully calibrated and validated on selected ground-state properties that is suitable for large-scale calculations of nuclear properties. Methods: Our energy functional comprises two main components. The first component is a non-local functional of the density and corresponds to the direct part (Hartree term) of the expectation value of local chiral potentials on a Slater determinant. Contributions to the mean field and the energy of this term are computed by expanding the spatial, finite-range components of the chiral potential onto Gaussian functions. The second component is a local functional of the density and is obtained by applying the density matrix expansion to the exchange part (Fock term) of the expectation value of the local chiral potential. We apply the UNEDF2 optimization protocol to determine the coupling constants of this energy functional. Results: We obtain a set of microscopically constrained functionals for local chiral potentials from leading order up to next-to-next-to-leading order with and without three-body forces and contributions from Δ excitations. These functionals are validated on the calculation of nuclear and neutron matter, nuclear mass tables, single-particle shell structure in closed-shell nuclei, and the fission barrier of 240Pu. Quantitatively, they perform noticeably better than the more phenomenological Skyrme functionals. Conclusions: The inclusion of higher-order terms in the chiral perturbation expansion seems to produce a systematic improvement in predicting nuclear binding energies while the impact on other observables is not really significant. This result is especially promising since all the fits have been performed at the single-reference level of the energy density functional approach, where important collective correlations such as center-of-mass correction, rotational correction, or zero-point vibrational energies have not been taken into account yet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuchi, Mikoto; Wanotayan, Rujira; Liu, Sicheng
2015-06-12
XRCC4 and DNA Ligase IV (LIG4) cooperate to join two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). However, it is not fully understood how these proteins are localized to the nucleus. Here we created XRCC4{sup K271R} mutant, as Lys271 lies within the putative nuclear localization signal (NLS), and XRCC4{sup K210R} mutant, as Lys210 was reported to undergo SUMOylation, implicated in the nuclear localization of XRCC4. Wild-type and mutated XRCC4 with EGFP tag were introduced into HeLa cell, in which endogenous XRCC4 had been knocked down using siRNA directed to 3′-untranslated region,more » and tested for the nuclear localization function by fluorescence microscopy. XRCC4{sup K271R} was defective in the nuclear localization of itself and LIG4, whereas XRCC4{sup K210R} was competent for the nuclear localization with LIG4. To examine DSB repair function, wild-type and mutated XRCC4 were introduced into XRCC4-deficient M10. M10-XRCC4{sup K271R}, but not M10-XRCC4{sup K210R}, showed significantly reduced surviving fraction after 2 Gy γ-ray irradiation as compared to M10-XRCC4{sup WT}. The number of γ-H2AX foci remaining 2 h after 2 Gy γ-ray irradiation was significantly greater in M10-XRCC4{sup K271R} than in M10-XRCC4{sup WT}, whereas it was only marginally increased in M10-XRCC4{sup K210R} as compared to M10-XRCC4{sup WT}. The present results collectively indicated that Lys271, but not Lys210, of XRCC4 is required for the nuclear localization of XRCC4 and LIG4 and that the nuclear localizing ability is essential for DSB repair function of XRCC4. - Highlights: • XRCC4{sup K271R} is defective in the nuclear localization of itself and LIG4. • XRCC4{sup K210R} is competent for the nuclear localization of itself and LIG4. • XRCC4{sup K271R} is deficient in DSB repair function. • XRCC4{sup K210R} is mostly normal in DSB repair function.« less
Serotype-specific differences in dengue virus non-structural protein 5 nuclear localization.
Hannemann, Holger; Sung, Po-Yu; Chiu, Han-Chen; Yousuf, Amjad; Bird, Jim; Lim, Siew Pheng; Davidson, Andrew D
2013-08-02
The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-β did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes.
Serotype-specific Differences in Dengue Virus Non-structural Protein 5 Nuclear Localization*
Hannemann, Holger; Sung, Po-Yu; Chiu, Han-Chen; Yousuf, Amjad; Bird, Jim; Lim, Siew Pheng; Davidson, Andrew D.
2013-01-01
The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-β did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes. PMID:23770669
Nuclear localization of coactivator RAC3 is mediated by a bipartite NLS and importin {alpha}3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeung, Percy Luk; Zhang, Aihua; Chen, J. Don
2006-09-15
The nuclear receptor coactivator RAC3 (also known as SRC-3/ACTR/AIB1/p/CIP/TRAM-1) belongs to the p160 coactivator family, which are involved in several physiological processes and diseases. Here we have investigated how RAC3 is translocated into the nucleus and show that it is mediated through a bipartite NLS and importin {alpha}3. This bipartite NLS is located within the conserved bHLH domain, and its mutation abolished nuclear localization. The NLS is also sufficient to cause nuclear import of EGFP, and the activity requires basic amino acids within the NLS. RAC3 binds strongly to importin {alpha}3, which also depends on the basic amino acids. Functionally,more » RAC3 cytoplasmic mutant loses its ability to enhance transcription, suggesting that nuclear localization is essential for coactivator function. Together, these results reveal a previous unknown mechanism for nuclear translocation of p160 coactivators and a critical function of the conserved bHLH within the coactivator.« less
Nuclear localization of Merkel cell polyomavirus large T antigen in Merkel cell carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Tomoyuki; Sato, Yuko; Watanabe, Daisuke
2010-03-15
To clarify whether mutations in the large T gene encoded by Merkel cell polyomavirus affect the expression and function of large T antigen in Merkel cell carcinoma cases, we investigated the expression of large T antigen in vitro and in vivo. Immunohistochemistry using a rabbit polyclonal antibody revealed that large T antigen was expressed in the nuclei of Merkel cell carcinoma cells with Merkel cell polyomavirus infection. Deletion mutant analyses identified an Arg-Lys-Arg-Lys sequence (amino acids 277-280) as a nuclear localization signal in large T antigen. Sequence analyses revealed that there were no mutations in the nuclear localization signal inmore » any of the eleven Merkel cell polyomavirus strains examined. Furthermore, stop codons were not observed in the upstream of the nuclear localization signal in any of the Merkel cell carcinoma cases examined. These data suggest that the nuclear localization signal is highly conserved and functional in Merkel cell carcinoma cases.« less
Nuclear location of a chromatin insulator in Drosophila melanogaster.
Xu, Qinghao; Li, Mo; Adams, Jessica; Cai, Haini N
2004-03-01
Chromatin-related functions are associated with spatial organization in the nucleus. We have investigated the relationship between the enhancer-blocking activity and subnuclear localization of the Drosophila melanogaster suHw insulator. Using fluorescent in situ hybridization, we observed that genomic loci containing the gypsy retrotransposon were distributed closer to the nuclear periphery than regions without the gypsy retrotransposon. However, transgenes containing a functional 340 bp suHw insulator did not exhibit such biased distribution towards the nuclear periphery, which suggests that the suHw insulator sequence is not responsible for the peripheral localization of the gypsy retrotransposon. Antibody stains showed that the two proteins essential for the suHw insulator activity, SUHW and MOD(MDG4), are not restricted to the nuclear periphery. The enhancer-blocking activity of suHw remained intact under the heat shock conditions, which was shown to disrupt the association of gypsy, SUHW and MOD(MDG4) with the nuclear periphery. Our results indicate that the suHw insulator can function in the nuclear interior, possibly through local interactions with chromatin components or other nuclear structures.
Yao, Hongyan; Wang, Geliang; Guo, Liang; Wang, Xuemin
2013-12-01
Phosphatidic acid (PA) has emerged as a class of cellular mediators involved in various cellular and physiological processes, but little is known about its mechanism of action. Here we show that PA interacts with werewolf (WER), a R2R3 MYB transcription factor involved in root hair formation. The PA-interacting region is confined to the end of the R2 subdomain. The ablation of the PA binding motif has no effect on WER binding to DNA, but abolishes its nuclear localization and its function in regulating epidermal cell fate. Inhibition of PA production by phospholipase Dζ also suppresses WER's nuclear localization, root hair formation, and elongation. These results suggest a role for PA in promoting protein nuclear localization.
Yao, Hongyan; Wang, Geliang; Guo, Liang; Wang, Xuemin
2013-01-01
Phosphatidic acid (PA) has emerged as a class of cellular mediators involved in various cellular and physiological processes, but little is known about its mechanism of action. Here we show that PA interacts with WEREWOLF (WER), a R2R3 MYB transcription factor involved in root hair formation. The PA-interacting region is confined to the end of the R2 subdomain. The ablation of the PA binding motif has no effect on WER binding to DNA, but abolishes its nuclear localization and its function in regulating epidermal cell fate. Inhibition of PA production by phospholipase Dζ also suppresses WER’s nuclear localization, root hair formation, and elongation. These results suggest a role for PA in promoting protein nuclear localization. PMID:24368785
Shiheido, Hirokazu; Shimizu, Jun
2015-02-20
BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND356-58, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. Copyright © 2015 Elsevier Inc. All rights reserved.
Subcellular localization of celery mannitol dehydrogenase. A cytosolic metabolic enzyme in nuclei.
Yamamoto, Y T; Zamski, E; Williamson, J D; Conkling, M A; Pharr, D M
1997-01-01
Mannitol dehydrogenase (MTD) is the first enzyme in mannitol catabolism in celery (Apium graveolens L. var dulce [Mill] Pers. cv Florida 638). Mannitol is an important photoassimilate, as well as providing plants with resistance to salt and osmotic stress. Previous work has shown that expression of the celery Mtd gene is regulated by many factors, such as hexose sugars, salt and osmotic stress, and salicylic acid. Furthermore, MTD is present in cells of sink organs, phloem cells, and mannitol-grown suspension cultures. Immunogold localization and biochemical analyses presented here demonstrate that celery MTD is localized in the cytosol and nuclei. Although the cellular density of MTD varies among different cell types, densities of nuclear and cytosolic MTD in a given cell are approximately equal. Biochemical analyses of nuclear extracts from mannitol-grown cultured cells confirmed that the nuclear-localized MTD is enzymatically active. The function(s) of nuclear-localized MTD is unknown. PMID:9414553
Mapping the nuclear localization signal in the matrix protein of potato yellow dwarf virus.
Anderson, Gavin; Jang, Chanyong; Wang, Renyuan; Goodin, Michael
2018-05-01
The ability of the matrix (M) protein of potato yellow dwarf virus (PYDV) to remodel nuclear membranes is controlled by a di-leucine motif located at residues 223 and 224 of its primary structure. This function can be uncoupled from that of its nuclear localization signal (NLS), which is controlled primarily by lysine and arginine residues immediately downstream of the LL motif. In planta localization of green fluorescent protein fusions, bimolecular fluorescence complementation assays with nuclear import receptor importin-α1 and yeast-based nuclear import assays provided three independent experimental approaches to validate the authenticity of the M-NLS. The carboxy terminus of M is predicted to contain a nuclear export signal, which is belived to be functional, given the ability of M to bind the Arabidopsis nuclear export receptor 1 (XPO1). The nuclear shuttle activity of M has implications for the cell-to-cell movement of PYDV nucleocapsids, based upon its interaction with the N and Y proteins.
Sepuri, Naresh Babu V; Tammineni, Prasad; Mohammed, Fareed; Paripati, Arunkumar
2017-01-01
Noncanonical functions of several nuclear transcription factors in the mitochondria have been gaining exceptional traction over the years. These transcription factors include nuclear hormone receptors like estrogen, glucocorticoid, and thyroid hormone receptors: p53, IRF3, STAT3, STAT5, CREB, NF-kB, and MEF-2D. Mitochondria-localized nuclear transcription factors regulate mitochondrial processes like apoptosis, respiration and mitochondrial transcription albeit being nuclear in origin and having nuclear functions. Hence, the cell permits these multi-stationed transcription factors to orchestrate and fine-tune cellular metabolism at various levels of operation. Despite their ubiquitous distribution in different subcompartments of mitochondria, their targeting mechanism is poorly understood. Here, we review the current status of mitochondria-localized transcription factors and discuss the possible targeting mechanism besides the functional interplay between these factors.
Nuclear Lipids in the Nervous System: What they do in Health and Disease.
Garcia-Gil, Mercedes; Albi, Elisabetta
2017-02-01
In the last 20 years it has been widely demonstrated that cell nucleus contains neutral and polar lipids localized in nuclear membranes, nucleoli, nuclear matrix and chromatin. Nuclear lipids may show specific organization forming nuclear lipid microdomains and have both structural and functional roles. Depending on their localization, nuclear lipids play different roles such as the regulation of nuclear membrane and nuclear matrix fluidity but they also can act as platforms for vitamin and hormone function, for active chromatin anchoring, and for the regulation of gene expression, DNA duplication and transcription. Crosstalk among different kinds of lipid signalling pathways influence the physiopathology of numerous cell types. In neural cells the nuclear lipids are involved in cell proliferation, differentiation, inflammation, migration and apoptosis. Abnormal metabolism of nuclear lipids might be closely associated with tumorigenesis and neurodegenerative diseases such as Alzheimer disease and Parkinson disease among others.
Heat stress-induced nuclear transport mediated by Hikeshi confers nuclear function of Hsp70s.
Imamoto, Naoko
2018-06-01
The prime feature of eukaryotic cells is the separation of the intracellular space into two compartments, the nucleus and the cytoplasm. Active nuclear transport is crucial for the maintenance of this separation. In this report, we focus on a nuclear transport receptor named Hikeshi, which mediates the heat stress-induced nuclear import of 70-kDa heat shock proteins (Hsp70s), and discuss how the same protein can function differently depending on the cellular compartment in which it is localized. Hsp70 is a molecular chaperone that is predominantly localized in the cytoplasm under normal conditions but is known to accumulate in the nucleus under conditions of heat stress. Although the reported function of Hsp70 is mostly attributed to its molecular function in the cytoplasm, the functions of Hsp70 may extend beyond molecular chaperone activity in the nucleus. Copyright © 2018 The Author. Published by Elsevier Ltd.. All rights reserved.
Tracking STAT nuclear traffic.
Reich, Nancy C; Liu, Ling
2006-08-01
Accurate cellular localization is crucial for the effective function of most signalling molecules and nuclear translocation is central to the function of transcription factors. The passage of large molecules between the cytoplasm and nucleus is restricted, and this restriction affords a mechanism to regulate transcription by controlling the access of transcription factors to the nucleus. In this Review, we focus on the signal transducer and activator of transcription (STAT) family of transcription factors. The regulation of the nuclear trafficking of STAT-family members is diverse. Some STAT proteins constitutively shuttle between the nucleus and cytoplasm, whereas others require tyrosine phosphorylation for nuclear localization. In either case, the regulation of nuclear trafficking can provide a target for therapeutic intervention.
Uckun, Fatih M.; Ma, Hong; Zhang, Jian; Ozer, Zahide; Dovat, Sinisa; Mao, Cheney; Ishkhanian, Rita; Goodman, Patricia; Qazi, Sanjive
2012-01-01
Ikaros is a zinc finger-containing DNA-binding protein that plays a pivotal role in immune homeostasis through transcriptional regulation of the earliest stages of lymphocyte ontogeny and differentiation. Functional deficiency of Ikaros has been implicated in the pathogenesis of acute lymphoblastic leukemia, the most common form of childhood cancer. Therefore, a stringent regulation of Ikaros activity is considered of paramount importance, but the operative molecular mechanisms responsible for its regulation remain largely unknown. Here we provide multifaceted genetic and biochemical evidence for a previously unknown function of spleen tyrosine kinase (SYK) as a partner and posttranslational regulator of Ikaros. We demonstrate that SYK phoshorylates Ikaros at unique C-terminal serine phosphorylation sites S358 and S361, thereby augmenting its nuclear localization and sequence-specific DNA binding activity. Mechanistically, we establish that SYK-induced Ikaros activation is essential for its nuclear localization and optimal transcription factor function. PMID:23071339
Johansson, Bente Berg; Fjeld, Karianne; Solheim, Marie Holm; Shirakawa, Jun; Zhang, Enming; Keindl, Magdalena; Hu, Jiang; Lindqvist, Andreas; Døskeland, Anne; Mellgren, Gunnar; Flatmark, Torgeir; Njølstad, Pål Rasmus; Kulkarni, Rohit N; Wierup, Nils; Aukrust, Ingvild; Bjørkhaug, Lise
2017-10-15
The localization of glucokinase in pancreatic beta-cell nuclei is a controversial issue. Although previous reports suggest such a localization, the mechanism for its import has so far not been identified. Using immunofluorescence, subcellular fractionation and mass spectrometry, we present evidence in support of glucokinase localization in beta-cell nuclei of human and mouse pancreatic sections, as well as in human and mouse isolated islets, and murine MIN6 cells. We have identified a conserved, seven-residue nuclear localization signal ( 30 LKKVMRR 36 ) in the human enzyme. Substituting the residues KK 31,32 and RR 35,36 with AA led to a loss of its nuclear localization in transfected cells. Furthermore, our data indicates that SUMOylation of glucokinase modulates its nuclear import, while high glucose concentrations do not significantly alter the enzyme nuclear/cytosolic ratio. Thus, for the first time, we provide data in support of a nuclear import of glucokinase mediated by a redundant mechanism, involving a nuclear localization signal, and which is modulated by its SUMOylation. These findings add new knowledge to the functional role of glucokinase in the pancreatic beta-cell. Copyright © 2017 Elsevier B.V. All rights reserved.
Martel, Catherine; Macchi, Paolo; Furic, Luc; Kiebler, Michael A.; Desgroseillers, Luc
2005-01-01
Mammalian Stau1 (Staufen1), a modular protein composed of several dsRBDs (double-stranded RNA-binding domains), is probably involved in mRNA localization. Although Stau1 is mostly described in association with the rough endoplasmic reticulum and ribosomes in the cytoplasm, recent studies suggest that it may transit through the nucleus/nucleolus. Using a sensitive yeast import assay, we show that Stau1 is actively imported into the nucleus through a newly identified bipartite nuclear localization signal. As in yeast, the bipartite nuclear localization signal is necessary for Stau1 nuclear import in mammalian cells. It is also required for Stau1 nucleolar trafficking. However, Stau1 nuclear transit seems to be regulated by mechanisms that involve cytoplasmic retention and/or facilitated nuclear export. Cytoplasmic retention is mainly achieved through the action of dsRBD3, with dsRBD2 playing a supporting role in this function. Similarly, dsRBD3, but not its RNA-binding activity, is critical for Stau1 nucleolar trafficking. The function of dsRBD3 is strengthened or stabilized by the presence of dsRBD4 but prevented by the interdomain between dsRBD2 and dsRBD3. Altogether, these results suggest that Stau1 nuclear trafficking is a highly regulated process involving several determinants. The presence of Stau1 in the nucleus/nucleolus suggests that it may be involved in ribonucleoprotein formation in the nucleus and/or in other nuclear functions not necessarily related to mRNA transport. PMID:16162096
Molecular targets and signaling pathways regulated by nuclear translocation of syndecan-1.
Szatmári, Tünde; Mundt, Filip; Kumar-Singh, Ashish; Möbus, Lena; Ötvös, Rita; Hjerpe, Anders; Dobra, Katalin
2017-12-08
The cell-surface heparan sulfate proteoglycan syndecan-1 is important for tumor cell proliferation, migration, and cell cycle regulation in a broad spectrum of malignancies. Syndecan-1, however, also translocates to the cell nucleus, where it might regulate various molecular functions. We used a fibrosarcoma model to dissect the functions of syndecan-1 related to the nucleus and separate them from functions related to the cell-surface. Nuclear translocation of syndecan-1 hampered the proliferation of fibrosarcoma cells compared to the mutant lacking nuclear localization signal. The growth inhibitory effect of nuclear syndecan-1 was accompanied by significant accumulation of cells in the G0/G1 phase, which indicated a possible G1/S phase arrest. We implemented multiple, unsupervised global transcriptome and proteome profiling approaches and combined them with functional assays to disclose the molecular mechanisms that governed nuclear translocation and its related functions. We identified genes and pathways related to the nuclear compartment with network enrichment analysis of the transcriptome and proteome. The TGF-β pathway was activated by nuclear syndecan-1, and three genes were significantly altered with the deletion of nuclear localization signal: EGR-1 (early growth response 1), NEK11 (never-in-mitosis gene a-related kinase 11), and DOCK8 (dedicator of cytokinesis 8). These candidate genes were coupled to growth and cell-cycle regulation. Nuclear translocation of syndecan-1 influenced the activity of several other transcription factors, including E2F, NFκβ, and OCT-1. The transcripts and proteins affected by syndecan-1 showed a striking overlap in their corresponding biological processes. These processes were dominated by protein phosphorylation and post-translation modifications, indicative of alterations in intracellular signaling. In addition, we identified molecules involved in the known functions of syndecan-1, including extracellular matrix organization and transmembrane transport. Collectively, abrogation of nuclear translocation of syndecan-1 resulted in a set of changes clustering in distinct patterns, which highlighted the functional importance of nuclear syndecan-1 in hampering cell proliferation and the cell cycle. This study emphasizes the importance of the localization of syndecan-1 when considering its effects on tumor cell fate.
Clustering and pasta phases in nuclear density functional theory
Schuetrumpf, Bastian; Zhang, Chunli; Nazarewicz, Witold
2017-05-23
Nuclear density functional theory is the tool of choice in describing properties of complex nuclei and intricate phases of bulk nucleonic matter. It is a microscopic approach based on an energy density functional representing the nuclear interaction. An attractive feature of nuclear DFT is that it can be applied to both finite nuclei and pasta phases appearing in the inner crust of neutron stars. While nuclear pasta clusters in a neutron star can be easily characterized through their density distributions, the level of clustering of nucleons in a nucleus can often be difficult to assess. To this end, we usemore » the concept of nucleon localization. We demonstrate that the localization measure provides us with fingerprints of clusters in light and heavy nuclei, including fissioning systems. Furthermore we investigate the rod-like pasta phase using twist-averaged boundary conditions, which enable calculations in finite volumes accessible by state of the art DFT solvers.« less
Sun, Kai; Montana, Vedrana; Chellappa, Karthikeyani; Brelivet, Yann; Moras, Dino; Maeda, Yutaka; Parpura, Vladimir; Paschal, Bryce M; Sladek, Frances M
2007-06-01
Nuclear receptors (NRs) are a superfamily of transcription factors whose genomic functions are known to be activated by lipophilic ligands, but little is known about how to deactivate them or how to turn on their nongenomic functions. One obvious mechanism is to alter the nuclear localization of the receptors. Here, we show that protein kinase C (PKC) phosphorylates a highly conserved serine (Ser) between the two zinc fingers of the DNA binding domain of orphan receptor hepatocyte nuclear factor 4alpha (HNF4alpha). This Ser (S78) is adjacent to several positively charged residues (Arg or Lys), which we show here are involved in nuclear localization of HNF4alpha and are conserved in nearly all other NRs, along with the Ser/threonine (Thr). A phosphomimetic mutant of HNF4alpha (S78D) reduced DNA binding, transactivation ability, and protein stability. It also impaired nuclear localization, an effect that was greatly enhanced in the MODY1 mutant Q268X. Treatment of the hepatocellular carcinoma cell line HepG2 with PKC activator phorbol 12-myristate 13-acetate also resulted in increased cytoplasmic localization of HNF4alpha as well as decreased endogenous HNF4alpha protein levels in a proteasome-dependent fashion. We also show that PKC phosphorylates the DNA binding domain of other NRs (retinoic acid receptor alpha, retinoid X receptor alpha, and thyroid hormone receptor beta) and that phosphomimetic mutants of the same Ser/Thr result in cytoplasmic localization of retinoid X receptor alpha and peroxisome proliferator-activated receptor alpha. Thus, phosphorylation of this conserved Ser between the two zinc fingers may be a common mechanism for regulating the function of NRs.
Chang, Ji Suk; Henry, Kenneth; Geli, María Isabel; Lemmon, Sandra K.
2006-01-01
Scd5p regulates endocytosis and cortical actin organization as a targeting subunit for the Ser/Thr protein phosphatase-1 (PP1) in yeast. To identify localization signals in Scd5p required for cell surface recruitment, visualization of GFP-tagged Scd5 truncations and deletions was performed. Scd5p contains a PP1 binding site, a 3-repeat region of 20 amino acids (3R), and a 9-repeat region of 12 amino acids (9R). We found that the 9R is critical for cortical localization of Scd5p, but cortical recruitment is not essential for Scd5p's function in actin organization and endocytosis. We propose that Scd5p can target PP1 to endocytic factors in the cytoplasm that have been disassembled and/or inactivated by phosphorylation. We also found that Scd5p undergoes nuclear-cytoplasmic shuttling in a Crm1p-dependent manner. Scd5p-ΔCT lacking the 9R region and its nuclear export signal (NES) accumulates in the nucleus, causing cortical actin and endocytic defects. Cytoplasmic localization and function of Scd5p-ΔCT is restored by NES addition. However, removal of Scd5p's nuclear localization signal prevents nuclear entry, but endocytosis and actin organization remain relatively normal. These results indicate that nuclear-cytoplasmic shuttling is not required for regulation of Scd5p's cortical function and suggest that Scd5p has an independent nuclear function. PMID:16251346
Cytochemistry of the functional domains of the nucleus in normal and in pathologic conditions.
Maraldi, N M; Zini, N; Santi, S; Ognibene, A; Rizzoli, R; Mazzotti, G; Manzoli, F A
1998-01-01
By means of ultrastructural cytochemistry significant advances have been made in understanding the functional roles of many nuclear domains. This review gives schematic information about the main nuclear domains involved in replication, transcription, processing and transport of the transcripts in normal and in pathologic conditions. Particular attention is paid to a functional domain that appears to be involved in signal transduction. Data are reported on the intranuclear specific localization of key elements of the polyphosphoinositide signal transduction system in different cell types including human osteosarcoma cell lines. Compared with the compartmentalization of the cytoplasm, the nucleus has long been considered as relatively unstructured. On the other hand, fundamental nuclear functions, such as DNA replication and RNA transcription, can be molecularly characterized also in cell-free systems, suggesting that supramolecular organization is not so strictly required as for other cell functions occurring within intact cytoplasmic organelles. Nevertheless, a stringent organization is required for packing about 200 cm of DNA in the about 30 micron 3 of the nucleus. In the absence of membrane-delimited organelles, the nuclear organization is based on functional compartments, or domains, whose spatial localization involves the nuclear matrix, which shares many properties with the cytoskeleton. The nuclear domains are defined as structural compartments, not necessarily stable but dynamically variable, which perform specific metabolic functions through the partitioning of molecular complexes. Their identification has been made possible in the last few years by the development of specific nuclear probes for confocal and electron microscope immunocytochemistry. Therefore, the complex network of structures and enzymatic functions that make up the nucleus is in several cases yielding to molecular analysis, but a large part remains unknown (Strouboulis and Wolffe, 1996; Laemmli and Tjian, 1996). Rapid advances in understanding the functional role of the nuclear domains have been made recently: in particular, of the nuclear envelope, of the nucleolus, and of RNA splicing. In other cases, e.g. the precise localization of the nuclear domains involved in signal transduction, much remains to be clarified (Forbes and Johnson, 1997). It is conceivable that in the near future unexpected new nuclear domains will come to light and new nuclear functions may emerge, especially in field of post-transcriptional processing and transport of RNAs, and in the relationships between the nucleo-skeleton and enzymic fixed sites involved in replication, transcription and signal transduction. The aim of this review is to provide information about the morphological characteristics, the associated functions and the molecular composition of the main nuclear domains found to date. To simplify the exposition, the main data on each nuclear domain are reported in Tables, together with the principal references on the subject. Figures refer to original findings on some aspects of nuclear domain organization.
Immunological and biochemical evidence for nuclear localization of annexin in peas
NASA Technical Reports Server (NTRS)
Clark, G. B.; Dauwalder, M.; Roux, S. J.
1998-01-01
Immunofluorescent localization of annexins using an anti-pea annexin polyclonal antibody (anti-p35) in pea (Pisum sativum) leaf and stem epidermal peels showed staining of the nuclei and the cell periphery. Nuclear staining was also seen in cell teases prepared from pea plumules. The amount of nuclear stain was reduced both by fixation time and by dehydration and organic solvent treatment. Observation with confocal microscopy demonstrated that the anti-p35 stain was diffusely distributed throughout the nuclear structure. Immunoblots of purified nuclei, nuclear envelope matrix, nucleolar, and chromatin fractions showed a cross-reactive protein band of 35 kDa. These data are the first to show annexins localized in plant cell nuclei where they may play a role in nuclear function.
Kelley, Joshua B.; Datta, Sutirtha; Snow, Chelsi J.; Chatterjee, Mandovi; Ni, Li; Spencer, Adam; Yang, Chun-Song; Cubeñas-Potts, Caelin; Matunis, Michael J.; Paschal, Bryce M.
2011-01-01
The mutant form of lamin A responsible for the premature aging disease Hutchinson-Gilford progeria syndrome (termed progerin) acts as a dominant negative protein that changes the structure of the nuclear lamina. How the perturbation of the nuclear lamina in progeria is transduced into cellular changes is undefined. Using patient fibroblasts and a variety of cell-based assays, we determined that progerin expression in Hutchinson-Gilford progeria syndrome inhibits the nucleocytoplasmic transport of several factors with key roles in nuclear function. We found that progerin reduces the nuclear/cytoplasmic concentration of the Ran GTPase and inhibits the nuclear localization of Ubc9, the sole E2 for SUMOylation, and of TPR, the nucleoporin that forms the basket on the nuclear side of the nuclear pore complex. Forcing the nuclear localization of Ubc9 in progerin-expressing cells rescues the Ran gradient and TPR import, indicating that these pathways are linked. Reducing nuclear SUMOylation decreases the nuclear mobility of the Ran nucleotide exchange factor RCC1 in vivo, and the addition of SUMO E1 and E2 promotes the dissociation of RCC1 and Ran from chromatin in vitro. Our data suggest that the cellular effects of progerin are transduced, at least in part, through reduced function of the Ran GTPase and SUMOylation pathways. PMID:21670151
Kelley, Joshua B; Datta, Sutirtha; Snow, Chelsi J; Chatterjee, Mandovi; Ni, Li; Spencer, Adam; Yang, Chun-Song; Cubeñas-Potts, Caelin; Matunis, Michael J; Paschal, Bryce M
2011-08-01
The mutant form of lamin A responsible for the premature aging disease Hutchinson-Gilford progeria syndrome (termed progerin) acts as a dominant negative protein that changes the structure of the nuclear lamina. How the perturbation of the nuclear lamina in progeria is transduced into cellular changes is undefined. Using patient fibroblasts and a variety of cell-based assays, we determined that progerin expression in Hutchinson-Gilford progeria syndrome inhibits the nucleocytoplasmic transport of several factors with key roles in nuclear function. We found that progerin reduces the nuclear/cytoplasmic concentration of the Ran GTPase and inhibits the nuclear localization of Ubc9, the sole E2 for SUMOylation, and of TPR, the nucleoporin that forms the basket on the nuclear side of the nuclear pore complex. Forcing the nuclear localization of Ubc9 in progerin-expressing cells rescues the Ran gradient and TPR import, indicating that these pathways are linked. Reducing nuclear SUMOylation decreases the nuclear mobility of the Ran nucleotide exchange factor RCC1 in vivo, and the addition of SUMO E1 and E2 promotes the dissociation of RCC1 and Ran from chromatin in vitro. Our data suggest that the cellular effects of progerin are transduced, at least in part, through reduced function of the Ran GTPase and SUMOylation pathways.
Featured Article: Nuclear export of opioid growth factor receptor is CRM1 dependent.
Kren, Nancy P; Zagon, Ian S; McLaughlin, Patricia J
2016-02-01
Opioid growth factor receptor (OGFr) facilitates growth inhibition in the presence of its specific ligand opioid growth factor (OGF), chemically termed [Met(5)]-enkephalin. The function of the OGF-OGFr axis requires the receptor to translocate to the nucleus. However, the mechanism of nuclear export of OGFr is unknown. In this study, endogenous OGFr, as well as exogenously expressed OGFr-EGFP, demonstrated significant nuclear accumulation in response to leptomycin B (LMB), an inhibitor of CRM1-dependent nuclear export, suggesting that OGFr is exported in a CRM1-dependent manner. One consensus sequence for a nuclear export signal (NES) was identified. Mutation of the associated leucines, L217 L220 L223 and L225, to alanine resulted in decreased nuclear accumulation. NES-EGFP responded to LMB, indicating that this sequence is capable of functioning as an export signal in isolation. To determine why the sequence functions differently in isolation than as a full length protein, the localization of subNES was evaluated in the presence and absence of MG132, a potent inhibitor of proteosomal degradation. MG132 had no effect of subNES localization. The role of tandem repeats located at the C-terminus of OGFr was examined for their role in nuclear trafficking. Six of seven tandem repeats were removed to form deltaTR. DeltaTR localized exclusively to the nucleus indicating that the tandem repeats may contribute to the localization of the receptor. Similar to the loss of cellular proliferation activity (i.e. inhibition) recorded with subNES, deltaTR also demonstrated a significant loss of inhibitory activity indicating that the repeats may be integral to receptor function. These experiments reveal that OGFr contains one functional NES, L217 L220 L223 and L225 and can be exported from the nucleus in a CRM1-dependent manner. © 2015 by the Society for Experimental Biology and Medicine.
Iwamoto, Masaaki; Mori, Chie; Osakada, Hiroko; Koujin, Takako; Hiraoka, Yasushi; Haraguchi, Tokuko
2018-06-08
Ciliated protozoa possess two morphologically and functionally distinct nuclei: a macronucleus (MAC) and a micronucleus (MIC). The MAC is transcriptionally active and functions in all cellular events. The MIC is transcriptionally inactive during cell growth, but functions in meiotic events to produce progeny nuclei. Thus, these two nuclei must be distinguished by the nuclear proteins required for their distinct functions during cellular events such as cell proliferation and meiosis. To understand the mechanism of the nuclear transport specific to either MAC or MIC, we identified specific nuclear localization signals (NLSs) in two MAC- and MIC-specific nuclear proteins, macronuclear histone H1 and micronuclear linker histone-like protein (Mlh1), respectively. By expressing GFP-fused fragments of these proteins in Tetrahymena thermophila cells, two distinct regions in macronuclear histone H1 protein were assigned as independent MAC-specific NLSs and two distinct regions in Mlh1 protein were assigned as independent MIC-specific NLSs. These NLSs contain several essential lysine residues responsible for the MAC- and MIC-specific nuclear transport, but neither contains any consensus sequence with known monopartite or bipartite NLSs in other model organisms. Our findings contribute to understanding how specific nuclear targeting is achieved to perform distinct nuclear functions in binucleated ciliates. © 2018 The Authors. Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Zhao, Xiangshan; Gan, Lixia; Pan, Haiyun; Kan, Donghui; Majeski, Michael; Adam, Stephen A; Unterman, Terry G
2004-01-01
FOXO1, a Forkhead transcription factor, is an important target of insulin and growth factor action. Phosphorylation of Thr-24, Ser-256 and Ser-319 promotes nuclear exclusion of FOXO1, yet the mechanisms regulating nuclear/cytoplasmic shuttling of FOXO1 are poorly understood. Previous studies have identified an NLS (nuclear localization signal) in the C-terminal basic region of the DBD (DNA-binding domain), and a leucine-rich, leptomycin-B sensitive NES (nuclear export signal) located further downstream. Here, we find that other elements in the DBD also contribute to nuclear localization, and that multiple mechanisms contribute to nuclear exclusion of FOXO1. Phosphorylation of Ser-319 and a cluster of nearby residues (Ser-322, Ser-325 and Ser-329) functions co-operatively with the nearby NES to promote nuclear exclusion. The N-terminal region of FOXO1 (amino acids 1-149) also is sufficient to promote nuclear exclusion, and does so through multiple mechanisms. Amino acids 1-50 are sufficient to promote nuclear exclusion of green fluorescent protein fusion proteins, and the phosphorylation of Thr-24 is required for this effect. A leucine-rich, leptomycin B-sensitive export signal is also present nearby. Phosphorylated FOXO1 binds 14-3-3 proteins, and co-precipitation studies with tagged proteins indicate that 14-3-3 binding involves co-operative interactions with both Thr-24 and Ser-256. Ser-256 is located in the C-terminal region of the DBD, where 14-3-3 proteins may interfere both with DNA-binding and with nuclear-localization functions. Together, these studies demonstrate that multiple elements contribute to nuclear/cytoplasmic shuttling of FOXO1, and that phosphorylation and 14-3-3 binding regulate the cellular distribution and function of FOXO1 through multiple mechanisms. The presence of these redundant mechanisms supports the concept that the regulation of FOXO1 function plays a critical role in insulin and growth factor action. PMID:14664696
Dubey, Aditi; Copeland, Paul R
2016-01-01
Selenocysteine (Sec) is a critical residue in at least 25 human proteins that are essential for antioxidant defense and redox signaling in cells. Sec is inserted into proteins cotranslationally by the recoding of an in-frame UGA termination codon to a Sec codon. In eukaryotes, this recoding event requires several specialized factors, including a dedicated, Sec-specific elongation factor called eEFSec, which binds Sec-tRNASec with high specificity and delivers it to the ribosome for selenoprotein production. Unlike most translation factors, including the canonical elongation factor eEF1A, eEFSec readily localizes to the nucleus of mammalian cells and shuttles between the cytoplasmic and nuclear compartments. The functional significance of eEFSec's nuclear localization has remained unclear. In this study, we have examined the subcellular localization of eEFSec in the context of altered Sec incorporation to demonstrate that reduced selenoprotein production does not correlate with changes in the nuclear localization of eEFSec. In addition, we identify several novel sequences of the protein that are essential for localization as well as Sec insertion activity, and show that eEFSec utilizes CRM1-mediated nuclear export pathway. Our findings argue for two distinct pools of eEFSec in the cell, where the cytoplasmic pool participates in Sec incorporation and the nuclear pool may be involved in an as yet unknown function.
Wang, Yi-Ping; Du, Wen-Juan; Huang, Li-Ping; Wei, Yan-Wu; Wu, Hong-Li; Feng, Li; Liu, Chang-Ming
2016-01-01
Pseudorabies virus (PRV) DNA replication occurs in the nuclei of infected cells and requires the viral DNA polymerase. The PRV DNA polymerase comprises a catalytic subunit, UL30, and an accessory subunit, UL42, that confers processivity to the enzyme. Its nuclear localization is a prerequisite for its enzymatic function in the initiation of viral DNA replication. However, the mechanisms by which the PRV DNA polymerase holoenzyme enters the nucleus have not been determined. In this study, we characterized the nuclear import pathways of the PRV DNA polymerase catalytic and accessory subunits. Immunofluorescence analysis showed that UL42 localizes independently in the nucleus, whereas UL30 alone predominantly localizes in the cytoplasm. Intriguingly, the localization of UL30 was completely shifted to the nucleus when it was coexpressed with UL42, demonstrating that nuclear transport of UL30 occurs in an UL42-dependent manner. Deletion analysis and site-directed mutagenesis of the two proteins showed that UL42 contains a functional and transferable bipartite nuclear localization signal (NLS) at amino acids 354–370 and that K354, R355, and K367 are important for the NLS function, whereas UL30 has no NLS. Coimmunoprecipitation assays verified that UL42 interacts with importins α3 and α4 through its NLS. In vitro nuclear import assays demonstrated that nuclear accumulation of UL42 is a temperature- and energy-dependent process and requires both importins α and β, confirming that UL42 utilizes the importin α/β-mediated pathway for nuclear entry. In an UL42 NLS-null mutant, the UL42/UL30 heterodimer was completely confined to the cytoplasm when UL42 was coexpressed with UL30, indicating that UL30 utilizes the NLS function of UL42 for its translocation into the nucleus. Collectively, these findings suggest that UL42 contains an importin α/β-mediated bipartite NLS that transports the viral DNA polymerase holoenzyme into the nucleus in an in vitro expression system. PMID:26913023
Regulation of the Drosophila Hypoxia-Inducible Factor α Sima by CRM1-Dependent Nuclear Export ▿
Romero, Nuria M.; Irisarri, Maximiliano; Roth, Peggy; Cauerhff, Ana; Samakovlis, Christos; Wappner, Pablo
2008-01-01
Hypoxia-inducible factor α (HIF-α) proteins are regulated by oxygen levels through several different mechanisms that include protein stability, transcriptional coactivator recruitment, and subcellular localization. It was previously reported that these transcription factors are mainly nuclear in hypoxia and cytoplasmic in normoxia, but so far the molecular basis of this regulation is unclear. We show here that the Drosophila melanogaster HIF-α protein Sima shuttles continuously between the nucleus and the cytoplasm. We identified the relevant nuclear localization signal and two functional nuclear export signals (NESs). These NESs are in the Sima basic helix-loop-helix (bHLH) domain and promote CRM1-dependent nuclear export. Site-directed mutagenesis of either NES provoked Sima nuclear retention and increased transcriptional activity, suggesting that nuclear export contributes to Sima regulation. The identified NESs are conserved and probably functional in the bHLH domains of several bHLH-PAS proteins. We propose that rapid nuclear export of Sima regulates the duration of cellular responses to hypoxia. PMID:18332128
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Michael J.; King, Cason R.; Dikeakos, Jimmy D.
The immortalizing function of the human adenovirus 5 E1A oncoprotein requires efficient localization to the nucleus. In 1987, a consensus monopartite nuclear localization sequence (NLS) was identified at the C-terminus of E1A. Since that time, various experiments have suggested that other regions of E1A influence nuclear import. In addition, a novel bipartite NLS was recently predicted at the C-terminal region of E1A in silico. In this study, we used immunofluorescence microscopy and co-immunoprecipitation analysis with importin-α to verify that full nuclear localization of E1A requires the well characterized NLS spanning residues 285–289, as well as a second basic patch situatedmore » between residues 258 and 263 ({sup 258}RVGGRRQAVECIEDLLNEPGQPLDLSCKRPRP{sup 289}). Thus, the originally described NLS located at the C-terminus of E1A is actually a bipartite signal, which had been misidentified in the existing literature as a monopartite signal, altering our understanding of one of the oldest documented NLSs. - Highlights: • Human adenovirus E1A is localized to the nucleus. • The C-terminus of E1A contains a bipartite nuclear localization signal (NLS). • This signal was previously misidentified to be a monopartite NLS. • Key basic amino acid residues within this sequence are highly conserved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muha, Villo; Zagyva, Imre; Venkei, Zsolt
2009-04-03
Two dUTPase isoforms (23 kDa and 21 kDa) are present in the fruitfly with the sole difference of an N-terminal extension. In Drosophila embryo, both isoforms are detected inside the nucleus. Here, we investigated the function of the N-terminal segment using eYFP-dUTPase constructs. In Schneider 2 cells, only the 23 kDa construct showed nuclear localization arguing that it may contain a nuclear localization signal (NLS). Sequence comparisons identified a lysine-rich nonapeptide with similarity to the human c-myc NLS. In Drosophila embryos during nuclear cleavages, the 23 kDa isoform showed the expected localization shifts. Contrariwise, although the 21 kDa isoform wasmore » excluded from the nuclei during interphase, it was shifted to the nucleus during prophase and forthcoming mitotic steps. The observed dynamic localization character showed strict timing to the nuclear cleavage phases and explained how both isoforms can be present within the nuclear microenvironment, although at different stages of cell cycle.« less
RNF38 encodes a nuclear ubiquitin protein ligase that modifies p53
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheren, Jamie E.; Kassenbrock, C. Kenneth, E-mail: ken.kassenbrock@ucdenver.edu; Department of Biology, Colorado State University, Fort Collins, CO 80523-1878
2013-11-01
Highlights: •RNF38 is shown to be a nuclear protein with a bipartite nuclear localization signal. •RNF38 protein is purified and shown to have ubiquitin protein ligase (E3) activity. •We show that RNF38 binds p53 and can ubiquitinate p53 in vitro. •Overexpression of RNF38 increases p53 ubiquitination in HEK293T cells. •Overexpression of RNF38 in HEK293T cells alters p53 localization. -- Abstract: The RNF38 gene encodes a RING finger protein of unknown function. Here we demonstrate that RNF38 is a functional ubiquitin protein ligase (E3). We show that RNF38 isoform 1 is localized to the nucleus by a bipartite nuclear localization sequencemore » (NLS). We confirm that RNF38 is a binding partner of p53 and demonstrate that RNF38 can ubiquitinate p53 in vitro and in vivo. Finally, we show that overexpression of RNF38 in HEK293T cells results in relocalization of p53 to discrete foci associated with PML nuclear bodies. These results suggest RNF38 is an E3 ubiquitin ligase that may play a role in regulating p53.« less
Lan, H N; Hong, P; Li, R N; Shan, A S; Zheng, X
2017-10-01
The phenomenon of nuclear translocation of growth hormone receptor (GHR) in human, rat, and fish has been reported. To date, this phenomenon has not been described in a domestic animal (such as pig). In addition, the molecular mechanisms of GHR nuclear translocation have not been thoroughly elucidated. To this end, porcine hepatocytes were isolated and used as a cell model. We observed that porcine growth hormone (pGH) can induce porcine GHR's nuclear localization in porcine hepatocytes. Subsequently, the dynamics of pGH-induced pGHR's nuclear localization were analyzed and demonstrated that pGHR's nuclear localization occurs in a time-dependent manner. Next, we explored the mechanism of pGHR nuclear localization using different pGHR ligands, and we demonstrated that pGHR's nuclear translocation is GH(s)-dependent. We also observed that pGHR translocates into cell nuclei in a pGH dimerization-dependent fashion, whereas further experiments indicated that IMPα/β is involved in the nuclear translocation of the pGH-pGHR dimer. The pGH-pGHR dimer may form a pGH-GHR-JAK2 multiple complex in cell nuclei, which would suggest that similar to its function in the cell membrane, the nuclear-localized pGH-pGHR dimer might still have the ability to signal. Copyright © 2017 Elsevier Inc. All rights reserved.
Taddei, Angela; Schober, Heiko; Gasser, Susan M.
2010-01-01
The budding yeast nucleus, like those of other eukaryotic species, is highly organized with respect to both chromosomal sequences and enzymatic activities. At the nuclear periphery interactions of nuclear pores with chromatin, mRNA, and transport factors promote efficient gene expression, whereas centromeres, telomeres, and silent chromatin are clustered and anchored away from pores. Internal nuclear organization appears to be function-dependent, reflecting localized sites for tRNA transcription, rDNA transcription, ribosome assembly, and DNA repair. Recent advances have identified new proteins involved in the positioning of chromatin and have allowed testing of the functional role of higher-order chromatin organization. The unequal distribution of silent information regulatory factors and histone modifying enzymes, which arises in part from the juxtaposition of telomeric repeats, has been shown to influence chromatin-mediated transcriptional repression. Other localization events suppress unwanted recombination. These findings highlight the contribution budding yeast genetics and cytology have made to dissecting the functional role of nuclear structure. PMID:20554704
Zlopasa, Livija; Brachner, Andreas; Foisner, Roland
2016-06-01
Ankyrin repeats and LEM domain containing protein 1 (Ankle1) belongs to the LEM protein family, whose members share a chromatin-interacting LEM motif. Unlike most other LEM proteins, Ankle1 is not an integral protein of the inner nuclear membrane but shuttles between the nucleus and the cytoplasm. It contains a GIY-YIG-type nuclease domain, but its function is unknown. The mammalian genome encodes only one other GIY-YIG domain protein, termed Slx1. Slx1 has been described as a resolvase that processes Holliday junctions during homologous recombination-mediated DNA double strand break repair. Resolvase activity is regulated in a spatial and temporal manner during the cell cycle. We hypothesized that Ankle1 may have a similar function and its nucleo-cytoplasmic shuttling may contribute to the regulation of Ankle1 activity. Hence, we aimed at identifying the domains mediating Ankle1 shuttling and investigating whether cellular localization is affected during DNA damage response. Sequence analysis predicts the presence of two canonical nuclear import and export signals in Ankle1. Immunofluorescence microscopy of cells expressing wild-type and various mutated Ankle1-fusion proteins revealed a C-terminally located classical monopartite nuclear localization signal and a centrally located CRM1-dependent nuclear export signal that mediate nucleo-cytoplasmic shuttling of Ankle1. These sequences are also functional in heterologous proteins. The predominant localization of Ankle1 in the cytoplasm, however, does not change upon induction of several DNA damage response pathways throughout the cell cycle. We identified the domains mediating nuclear import and export of Ankle1. Ankle1's cellular localization was not affected following DNA damage.
Identification of multiple nuclear localization signals in murine Elf3, an ETS transcription factor.
Do, Hyun-Jin; Song, Hyuk; Yang, Heung-Mo; Kim, Dong-Ku; Kim, Nam-Hyung; Kim, Jin-Hoi; Cha, Kwang-Yul; Chung, Hyung-Min; Kim, Jae-Hwan
2006-03-20
We investigated nuclear localization signal (NLS) determinants within the AT-hook and ETS DNA-binding domains of murine Elf3 (mElf3), a member of the subfamily of epithelium-specific ETS transcription factors. Deletion mutants containing the AT-hook, ETS domain or both localized strictly in the nucleus, suggesting that these individual domains contain independent NLS motif(s). Within the AT-hook domain, four basic residues (244KRKR247) were critical for strong NLS activity, and two potent bipartite NLS motifs (236-252 and 249-267) were sufficient for nuclear import of mElf3, although less efficient than the full domain. In addition, one stretch of basic residues (318KKK320) within the ETS domain appears to be essential for mElf3 nuclear localization. Taken together, mElf3 contains multiple NLS motifs, which may function cooperatively to effect efficient nuclear transport.
NASA Astrophysics Data System (ADS)
Aymard, François; Gulminelli, Francesca; Margueron, Jérôme
2016-08-01
The problem of determination of nuclear surface energy is addressed within the framework of the extended Thomas Fermi (ETF) approximation using Skyrme functionals. We propose an analytical model for the density profiles with variationally determined diffuseness parameters. In this first paper, we consider the case of symmetric nuclei. In this situation, the ETF functional can be exactly integrated, leading to an analytical formula expressing the surface energy as a function of the couplings of the energy functional. The importance of non-local terms is stressed and it is shown that they cannot be deduced simply from the local part of the functional, as it was suggested in previous works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busch, Albert; Kiel, Tilman; Heupel, Wolfgang-M.
Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associatedmore » proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.« less
Chapman, Mark A.; Zhang, Jianlin; Banerjee, Indroneal; Guo, Ling T.; Zhang, Zhiwei; Shelton, G. Diane; Ouyang, Kunfu; Lieber, Richard L.; Chen, Ju
2014-01-01
Proper localization and anchorage of nuclei within skeletal muscle is critical for cellular function. Alterations in nuclear anchoring proteins modify a number of cellular functions including mechanotransduction, nuclear localization, chromatin positioning/compaction and overall organ function. In skeletal muscle, nesprin 1 and desmin are thought to link the nucleus to the cytoskeletal network. Thus, we hypothesize that both of these factors play a key role in skeletal muscle function. To examine this question, we utilized global ablation murine models of nesprin 1, desmin or both nesprin 1 and desmin. Herein, we have created the nesprin-desmin double-knockout (DKO) mouse, eliminating a major fraction of nuclear-cytoskeletal connections and enabling understanding of the importance of nuclear anchorage in skeletal muscle. Globally, DKO mice are marked by decreased lifespan, body weight and muscle strength. With regard to skeletal muscle, DKO myonuclear anchorage was dramatically decreased compared with wild-type, nesprin 1−/− and desmin−/− mice. Additionally, nuclear-cytoskeletal strain transmission was decreased in DKO skeletal muscle. Finally, loss of nuclear anchorage in DKO mice coincided with a fibrotic response as indicated by increased collagen and extracellular matrix deposition and increased passive mechanical properties of muscle bundles. Overall, our data demonstrate that nesprin 1 and desmin serve redundant roles in nuclear anchorage and that the loss of nuclear anchorage in skeletal muscle results in a pathological response characterized by increased tissue fibrosis and mechanical stiffness. PMID:24943590
Saito, Shoko; Yokokawa, Takafumi; Iizuka, Gemmei; Cigdem, Sadik; Okuwaki, Mitsuru; Nagata, Kyosuke
2017-05-20
Nup98 is a component of the nuclear pore complex. The nup98-fusion genes derived by chromosome translocations are involved in hematopoietic malignancies. Here, we investigated the functions of Nup98 isoforms and two unexamined Nup98-fusion proteins, Nup98-TopIIβ and Nup98-SETBP1. We first demonstrated that two Nup98 isoforms are expressed in various mouse tissues and similarly localized in the nucleus and the nuclear envelope. We also showed that Nup98-TopIIβ and Nup98-SETBP1 are localized in the nucleus and partially co-localized with full-length Nup98 and a nuclear export receptor XPO1. We demonstrated that Nup98-TopIIβ and Nup98-SETBP1 negatively regulate the XPO1-mediated protein export. Our results will contribute to the understanding of the molecular mechanism by which the Nup98-fusion proteins induce tumorigenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Nucleolar localization of cirhin, the protein mutated in North American Indian childhood cirrhosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Bin; Mitchell, Grant A.; Richter, Andrea
2005-12-10
Cirhin (NP{sub 1}16219), the product of the CIRH1A gene is mutated in North American Indian childhood cirrhosis (NAIC/CIRH1A, OMIM 604901), a severe autosomal recessive intrahepatic cholestasis. It is a 686-amino-acid WD40-repeat containing protein of unknown function that is predicted to contain multiple targeting signals, including an N-terminal mitochondrial targeting signal, a C-terminal monopartite nuclear localization signal (NLS) and a bipartite nuclear localization signal (BNLS). We performed the direct determination of subcellular localization of cirhin as a crucial first step in unraveling its biological function. Using EGFP and His-tagged cirhin fusion proteins expressed in HeLa and HepG2, cells we show thatmore » cirhin is a nucleolar protein and that the R565W mutation, for which all NAIC patients are homozygous, has no effect on subcellular localization. Cirhin has an active C-terminal monopartite nuclear localization signal (NLS) and a unique nucleolar localization signal (NrLS) between residues 315 and 432. The nucleolus is not known to be important specifically for intrahepatic cholestasis. These observations provide a new dimension in the study of hereditary cholestasis.« less
Landau parameters for energy density functionals generated by local finite-range pseudopotentials
NASA Astrophysics Data System (ADS)
Idini, A.; Bennaceur, K.; Dobaczewski, J.
2017-06-01
In Landau theory of Fermi liquids, the particle-hole interaction near the Fermi energy in different spin-isospin channels is probed in terms of an expansion over the Legendre polynomials. This provides a useful and efficient way to constrain properties of nuclear energy density functionals in symmetric nuclear matter and finite nuclei. In this study, we present general expressions for Landau parameters corresponding to a two-body central local regularized pseudopotential. We also show results obtained for two recently adjusted NLO and N2LO parametrizations. Such pseudopotentials will be used to determine mean-field and beyond-mean-field properties of paired nuclei across the entire nuclear chart.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwab, Ryan S.; Ihnatovych, Ivanna; Yunus, Sharifah Z.S.A.
Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosinmore » IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms. - Highlights: ► Two NoLS have been identified in the myosin IC isoform B sequence. ► Both NoLS are necessary for myosin IC isoform B specific nucleolar localization. ► First mechanistic explanation of functional differences between the isoforms.« less
Prolonged, brain-wide expression of nuclear-localized GCaMP3 for functional circuit mapping
Kim, Christina K.; Miri, Andrew; Leung, Louis C.; Berndt, Andre; Mourrain, Philippe; Tank, David W.; Burdine, Rebecca D.
2014-01-01
Larval zebrafish offer the potential for large-scale optical imaging of neural activity throughout the central nervous system; however, several barriers challenge their utility. First, ~panneuronal probe expression has to date only been demonstrated at early larval stages up to 7 days post-fertilization (dpf), precluding imaging at later time points when circuits are more mature. Second, nuclear exclusion of genetically-encoded calcium indicators (GECIs) limits the resolution of functional fluorescence signals collected during imaging. Here, we report the creation of transgenic zebrafish strains exhibiting robust, nuclearly targeted expression of GCaMP3 across the brain up to at least 14 dpf utilizing a previously described optimized Gal4-UAS system. We confirmed both nuclear targeting and functionality of the modified probe in vitro and measured its kinetics in response to action potentials (APs). We then demonstrated in vivo functionality of nuclear-localized GCaMP3 in transgenic zebrafish strains by identifying eye position-sensitive fluorescence fluctuations in caudal hindbrain neurons during spontaneous eye movements. Our methodological approach will facilitate studies of larval zebrafish circuitry by both improving resolution of functional Ca2+ signals and by allowing brain-wide expression of improved GECIs, or potentially any probe, further into development. PMID:25505384
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiheido, Hirokazu, E-mail: shiheido@ak.med.kyoto-u.ac.jp; Shimizu, Jun
BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND3{sub 56–58}, KRK) are essential,more » suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. - Highlights: • BEND3 localizes to the nucleus. • The N-terminal 60 amino acids region of BEND3 contains NLS. • Amino acids located between 56 and 58 of BEND3 (KRK) are part of NLS. • KRK motif is highly conserved among BEND3 homologs.« less
Exact solution of equations for proton localization in neutron star matter
NASA Astrophysics Data System (ADS)
Kubis, Sebastian; Wójcik, Włodzimierz
2015-11-01
The rigorous treatment of proton localization phenomenon in asymmetric nuclear matter is presented. The solution of proton wave function and neutron background distribution is found by the use of the extended Thomas-Fermi approach. The minimum of energy is obtained in the Wigner-Seitz approximation of a spherically symmetric cell. The analysis of four different nuclear models suggests that the proton localization is likely to take place in the interior of a neutron star.
Aschrafi, Armaz; Kar, Amar N; Gale, Jenna R; Elkahloun, Abdel G; Vargas, Jose Noberto S; Sales, Naomi; Wilson, Gabriel; Tompkins, Miranda; Gioio, Anthony E; Kaplan, Barry B
2016-09-01
Mitochondria are enriched in subcellular regions of high energy consumption, such as axons and pre-synaptic nerve endings. Accumulating evidence suggests that mitochondrial maintenance in these distal structural/functional domains of the neuron depends on the "in-situ" translation of nuclear-encoded mitochondrial mRNAs. In support of this notion, we recently provided evidence for the axonal targeting of several nuclear-encoded mRNAs, such as cytochrome c oxidase, subunit 4 (COXIV) and ATP synthase, H+ transporting and mitochondrial Fo complex, subunit C1 (ATP5G1). Furthermore, we showed that axonal trafficking and local translation of these mRNAs plays a critical role in the generation of axonal ATP. Using a global gene expression analysis, this study identified a highly diverse population of nuclear-encoded mRNAs that were enriched in the axon and presynaptic nerve terminals. Among this population of mRNAs, fifty seven were found to be at least two-fold more abundant in distal axons, as compared with the parental cell bodies. Gene ontology analysis of the nuclear-encoded mitochondrial mRNAs suggested functions for these gene products in molecular and biological processes, including but not limited to oxidoreductase and electron carrier activity and proton transport. Based on these results, we postulate that local translation of nuclear-encoded mitochondrial mRNAs present in the axons may play an essential role in local energy production and maintenance of mitochondrial function. Published by Elsevier B.V.
Protein Sub-Nuclear Localization Prediction Using SVM and Pfam Domain Information
Kumar, Ravindra; Jain, Sohni; Kumari, Bandana; Kumar, Manish
2014-01-01
The nucleus is the largest and the highly organized organelle of eukaryotic cells. Within nucleus exist a number of pseudo-compartments, which are not separated by any membrane, yet each of them contains only a specific set of proteins. Understanding protein sub-nuclear localization can hence be an important step towards understanding biological functions of the nucleus. Here we have described a method, SubNucPred developed by us for predicting the sub-nuclear localization of proteins. This method predicts protein localization for 10 different sub-nuclear locations sequentially by combining presence or absence of unique Pfam domain and amino acid composition based SVM model. The prediction accuracy during leave-one-out cross-validation for centromeric proteins was 85.05%, for chromosomal proteins 76.85%, for nuclear speckle proteins 81.27%, for nucleolar proteins 81.79%, for nuclear envelope proteins 79.37%, for nuclear matrix proteins 77.78%, for nucleoplasm proteins 76.98%, for nuclear pore complex proteins 88.89%, for PML body proteins 75.40% and for telomeric proteins it was 83.33%. Comparison with other reported methods showed that SubNucPred performs better than existing methods. A web-server for predicting protein sub-nuclear localization named SubNucPred has been established at http://14.139.227.92/mkumar/subnucpred/. Standalone version of SubNucPred can also be downloaded from the web-server. PMID:24897370
Markina-Iñarrairaegui, Ane; Etxebeste, Oier; Herrero-García, Erika; Araújo-Bazán, Lidia; Fernández-Martínez, Javier; Flores, Jairo A.; Osmani, Stephen A.; Espeso, Eduardo A.
2011-01-01
Nuclear transporters mediate bidirectional macromolecule traffic through the nuclear pore complex (NPC), thus participating in vital processes of eukaryotic cells. A systematic functional analysis in Aspergillus nidulans permitted the identification of 4 essential nuclear transport pathways of a hypothetical number of 14. The absence of phenotypes for most deletants indicates redundant roles for these nuclear receptors. Subcellular distribution studies of these carriers show three main distributions: nuclear, nucleocytoplasmic, and in association with the nuclear envelope. These locations are not specific to predicted roles as exportins or importins but indicate that bidirectional transport may occur coordinately in all nuclei of a syncytium. Coinciding with mitotic NPC rearrangements, transporters dynamically modified their localizations, suggesting supplementary roles to nucleocytoplasmic transport specifically during mitosis. Loss of transportin-SR and Mex/TAP from the nuclear envelope indicates absence of RNA transport during the partially open mitosis of Aspergillus, whereas nucleolar accumulation of Kap121 and Kap123 homologues suggests a role in nucleolar disassembly. This work provides new insight into the roles of nuclear transporters and opens an avenue for future studies of the molecular mechanisms of transport among nuclei within a common cytoplasm, using A. nidulans as a model organism. PMID:21880896
Petri, Sebastian; Grimmler, Matthias; Over, Sabine; Fischer, Utz; Gruss, Oliver J.
2007-01-01
The survival motor neuron (SMN) complex functions in maturation of uridine-rich small nuclear ribonucleoprotein (RNP) particles. SMN mediates the cytoplasmic assembly of Sm proteins onto uridine-rich small RNAs, and then participates in targeting RNPs to nuclear Cajal bodies (CBs). Recent studies have suggested that phosphorylation might control localization and function of the SMN complex. Here, we show that the nuclear phosphatase PPM1G/PP2Cγ interacts with and dephosphorylates the SMN complex. Small interfering RNA knockdown of PPM1G leads to an altered phosphorylation pattern of SMN and Gemin3, loss of SMN from CBs, and reduced stability of SMN. Accumulation in CBs is restored upon overexpression of catalytically active, but not that of inactive, PPM1G. This demonstrates that PPM1G's phosphatase activity is necessary to maintain SMN subcellular distribution. Concomitant knockdown of unr interacting protein (unrip), a component implicated in cytoplasmic retention of the SMN complex, also rescues the localization defects. Our data suggest that an interplay between PPM1G and unrip determine compartment-specific phosphorylation patterns, localization, and function of the SMN complex. PMID:17984321
Chapman, Mark A; Zhang, Jianlin; Banerjee, Indroneal; Guo, Ling T; Zhang, Zhiwei; Shelton, G Diane; Ouyang, Kunfu; Lieber, Richard L; Chen, Ju
2014-11-15
Proper localization and anchorage of nuclei within skeletal muscle is critical for cellular function. Alterations in nuclear anchoring proteins modify a number of cellular functions including mechanotransduction, nuclear localization, chromatin positioning/compaction and overall organ function. In skeletal muscle, nesprin 1 and desmin are thought to link the nucleus to the cytoskeletal network. Thus, we hypothesize that both of these factors play a key role in skeletal muscle function. To examine this question, we utilized global ablation murine models of nesprin 1, desmin or both nesprin 1 and desmin. Herein, we have created the nesprin-desmin double-knockout (DKO) mouse, eliminating a major fraction of nuclear-cytoskeletal connections and enabling understanding of the importance of nuclear anchorage in skeletal muscle. Globally, DKO mice are marked by decreased lifespan, body weight and muscle strength. With regard to skeletal muscle, DKO myonuclear anchorage was dramatically decreased compared with wild-type, nesprin 1(-/-) and desmin(-/-) mice. Additionally, nuclear-cytoskeletal strain transmission was decreased in DKO skeletal muscle. Finally, loss of nuclear anchorage in DKO mice coincided with a fibrotic response as indicated by increased collagen and extracellular matrix deposition and increased passive mechanical properties of muscle bundles. Overall, our data demonstrate that nesprin 1 and desmin serve redundant roles in nuclear anchorage and that the loss of nuclear anchorage in skeletal muscle results in a pathological response characterized by increased tissue fibrosis and mechanical stiffness. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Nuclear ferritin: A new role for ferritin in cell biology.
Alkhateeb, Ahmed A; Connor, James R
2010-08-01
Ferritin has been traditionally considered a cytoplasmic iron storage protein. However, several studies over the last two decades have reported the nuclear localization of ferritin, specifically H-ferritin, in developing neurons, hepatocytes, corneal epithelial cells, and some cancer cells. These observations encouraged a new perspective on ferritin beyond iron storage, such as a role in the regulation of iron accessibility to nuclear components, DNA protection from iron-induced oxidative damage, and transcriptional regulation. This review will address the translocation and functional significance of nuclear ferritin in the context of human development and disease. The nuclear translocation of ferritin is a selective energy-dependent process that does not seem to require a consensus nuclear localization signal. It is still unclear what regulates the nuclear import/export of ferritin. Some reports have implicated the phosphorylation and O-glycosylation of the ferritin protein in nuclear transport; others suggested the existence of a specific nuclear chaperone for ferritin. The data argue strongly for nuclear ferritin as a factor in human development and disease. Ferritin can bind and protect DNA from oxidative damage. It also has the potential of playing a regulatory role in transcription. Nuclear ferritin represents a novel new outlook on ferritin functionality beyond its classical role as an iron storage molecule. Copyright 2010 Elsevier B.V. All rights reserved.
HIV-1 nucleocapsid protein localizes efficiently to the nucleus and nucleolus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Kyung Lee; Lee, Sun Hee; Lee, Eun Soo
The HIV-1 nucleocapsid (NC) is an essential viral protein containing two highly conserved retroviral-type zinc finger (ZF) motifs, which functions in multiple stages of the HIV-1 life cycle. Although a number of functions for NC either in its mature form or as a domain of Gag have been revealed, little is known about the intracellular localization of NC and, moreover, its role in Gag protein trafficking. Here, we have investigated various forms of HIV-1 NC protein for its cellular localization and found that the NC has a strong nuclear and nucleolar localization activity. The linker region, composed of a stretchmore » of basic amino acids between the two ZF motifs, was necessary and sufficient for the activity. - Highlights: • HIV-1 NC possess a NLS and leads to nuclear and nucleolus localization. • Mutations in basic residues between two ZFs in NC decrease the nucleus localization. • ZFs of NC affect cytoplasmic organelles localization rather than nucleus localization.« less
Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu
2003-03-01
VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region.
Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu
2003-01-01
VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region. PMID:12588991
A Functional Nuclear Localization Sequence in the C. elegans TRPV Channel OCR-2
Ezak, Meredith J.; Ferkey, Denise M.
2011-01-01
The ability to modulate gene expression in response to sensory experience is critical to the normal development and function of the nervous system. Calcium is a key activator of the signal transduction cascades that mediate the process of translating a cellular stimulus into transcriptional changes. With the recent discovery that the mammalian Cav1.2 calcium channel can be cleaved, enter the nucleus and act as a transcription factor to control neuronal gene expression, a more direct role for the calcium channels themselves in regulating transcription has begun to be appreciated. Here we report the identification of a nuclear localization sequence (NLS) in the C. elegans transient receptor potential vanilloid (TRPV) cation channel OCR-2. TRPV channels have previously been implicated in transcriptional regulation of neuronal genes in the nematode, although the precise mechanism remains unclear. We show that the NLS in OCR-2 is functional, being able to direct nuclear accumulation of a synthetic cargo protein as well as the carboxy-terminal cytosolic tail of OCR-2 where it is endogenously found. Furthermore, we discovered that a carboxy-terminal portion of the full-length channel can localize to the nucleus of neuronal cells. These results suggest that the OCR-2 TRPV cation channel may have a direct nuclear function in neuronal cells that was not previously appreciated. PMID:21957475
Characterization of a nuclear localization signal in the foot-and-mouth disease virus polymerase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Aparicio, Maria Teresa; Rosas, Maria Flora; Sobrino, Francisco, E-mail: fsobrino@cbm.uam.es
2013-09-15
We have experimentally tested whether the MRKTKLAPT sequence in FMDV 3D protein (residues 16 to 24) can act as a nuclear localization signal (NLS). Mutants with substitutions in two basic residues within this sequence, K18E and K20E, were generated. A decreased nuclear localization was observed in transiently expressed 3D and its precursor 3CD, suggesting a role of K18 and K20 in nuclear targeting. Fusion of MRKTKLAPT to the green fluorescence protein (GFP) increased the nuclear localization of GFP, which was not observed when GFP was fused to the 3D mutated sequences. These results indicate that the sequence MRKTKLAPT can bemore » functionally considered as a NLS. When introduced in a FMDV full length RNA replacements K18E and K20E led to production of revertant viruses that replaced the acidic residues introduced (E) by K, suggesting that the presence of lysins at positions 18 and 20 of 3D is essential for virus multiplication. - Highlights: • The FMDV 3D polymerase contains a nuclear localization signal. • Replacements K18E and K20E decrease nuclear localization of 3D and its precursor 3CD. • Fusion of the MRKTKLAPT 3D motif to GFP increases the nuclear localization of GFP. • Replacements K18E and K20E abolish the ability of MRKTKLAPT to relocate GFP. • RNAs harboring replacements K18E and K20E lead to recovery of revertant FMDVs.« less
Cytoplasmic proteasomes are not indispensable for cell growth in Saccharomyces cerevisiae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuchiya, Hikaru; Arai, Naoko; Tanaka, Keiji, E-mail: tanaka-kj@igakuken.or.jp
2013-07-05
Highlights: •We succeeded to control the proteasome localization by the anchor-away technique. •Nuclear proteasome-depleted cells showed a lethal phenotype. •Cytoplasmic proteasomes are not indispensable for cell growth in dividing cells. -- Abstract: The 26S proteasome is an essential protease complex responsible for the degradation of ubiquitinated proteins in eukaryotic cells. In rapidly proliferating yeast cells, proteasomes are mainly localized in the nucleus, but the biological significance of the proteasome localization is still unclear. In this study, we investigated the relationship between the proteasome localization and the functions by the anchor-away technique, a ligand-dependent sequestration of a target protein into specificmore » compartment(s). Anchoring of the proteasome to the plasma membrane or the ribosome resulted in conditional depletion of the nuclear proteasomes, whereas anchoring to histone resulted in the proteasome sequestration into the nucleus. We observed that the accumulation of ubiquitinated proteins in all the proteasome-targeted cells, suggesting that both the nuclear and cytoplasmic proteasomes have proteolytic functions and that the ubiquitinated proteins are produced and degraded in each compartment. Consistent with previous studies, the nuclear proteasome-depleted cells exhibited a lethal phenotype. In contrast, the nuclear sequestration of the proteasome resulted only in a mild growth defect, suggesting that the cytoplasmic proteasomes are not basically indispensable for cell growth in rapidly growing yeast cells.« less
Nuclear Localization of Suppressor of Cytokine Signaling-1 Regulates Local Immunity in the Lung
Zimmer, Jana; Weitnauer, Michael; Boutin, Sébastien; Küblbeck, Günter; Thiele, Sabrina; Walker, Patrick; Lasitschka, Felix; Lunding, Lars; Orinska, Zane; Vock, Christina; Arnold, Bernd; Wegmann, Michael; Dalpke, Alexander
2016-01-01
Suppressor of cytokine signaling 1 (SOCS1) is a negative feedback inhibitor of cytoplasmic Janus kinase and signal transducer and activator of transcription (STAT) signaling. SOCS1 also contains a nuclear localization sequence (NLS), yet, the in vivo importance of nuclear translocation is unknown. We generated transgenic mice containing mutated Socs1ΔNLS that fails to translocate in the cell nucleus (MGLtg mice). Whereas mice fully deficient for SOCS1 die within the first 3 weeks due to excessive interferon signaling and multiorgan inflammation, mice expressing only non-nuclear Socs1ΔNLS (Socs1−/−MGLtg mice) were rescued from early lethality. Canonical interferon gamma signaling was still functional in Socs1−/−MGLtg mice as shown by unaltered tyrosine phosphorylation of STAT1 and whole genome expression analysis. However, a subset of NFκB inducible genes was dysregulated. Socs1−/−MGLtg mice spontaneously developed low-grade inflammation in the lung and had elevated Th2-type cytokines. Upon ovalbumin sensitization and challenge, airway eosinophilia was increased in Socs1−/−MGLtg mice. Decreased transepithelial electrical resistance in trachea epithelial cells from Socs1−/−MGLtg mice suggests disrupted epithelial cell barrier. The results indicate that nuclear SOCS1 is a regulator of local immunity in the lung and unravel a so far unrecognized function for SOCS1 in the cell nucleus. PMID:27917175
Reich, Nancy C
2013-10-01
Understanding the mechanisms that regulate dynamic localization of a protein within a cell can provide critical insight to its functional molecular interactions. Signal transducers and activators of transcription (STATs) play essential roles in development, proliferation, and immune defense. However the consequences of STAT hyperactivity can predispose to diseases including autoimmunity and cancer. To function as transcription factors STATs must gain access to the nucleus, and knowledge of the mechanisms that regulate STAT nuclear trafficking can provide a means to control STAT action. This review presents a synopsis of some of the studies that address the nuclear dynamics of the STAT proteins. Evidence suggests that not all STATs are the same. Nuclear import of STAT1 and STAT4 appears linked to their tyrosine phosphorylation and the formation of parallel dimers via reciprocal phosphotyrosine and Src homology 2 domain interactions. This dimer arrangement generates a conformational nuclear localization signal. STAT2 is imported continually to the nucleus in an unphosphorylated state due to its association with IRF9, but the dominant nuclear export signal of STAT2 shuttles the complex back to the cytoplasm. Following STAT2 tyrosine phosphorylation, it can form dimers with STAT1 to affect nuclear import as the trimeric complex (ISGF3). Distinctly, STAT3, STAT5, and STAT6 are continually imported to the nucleus independent of tyrosine phosphorylation. Mutational studies indicate the nuclear localization signals in these STATs require the conformational structure of their coiled-coil domains. Increases in STAT nuclear accumulation following cytokine stimulation appear coordinate with their ability to bind DNA.
Stronger activation of SREBP-1a by nucleus-localized HBx
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qi; Qiao, Ling; Yang, Jian
2015-05-08
We previously showed that hepatitis B virus (HBV) X protein activates the sterol regulatory element-binding protein-1a (SREBP-1a). Here we examined the role of nuclear localization of HBx in this process. In comparison to the wild-type and cytoplasmic HBx, nuclear HBx had stronger effects on SREBP-1a and fatty acid synthase transcription activation, intracellular lipid accumulation and cell proliferation. Furthermore, nuclear HBx could activate HBV enhancer I/X promoter and was more effective on up-regulating HBV mRNA level in the context of HBV replication than the wild-type HBx, while the cytoplasmic HBx had no effect. Our results demonstrate the functional significance of themore » nucleus-localized HBx in regulating host lipogenic pathway and HBV replication. - Highlights: • Nuclear HBx is more effective on activating SREBP-1a and FASN transcription. • Nuclear HBx is more effective on enhancing intracellular lipid accumulation. • Nuclear HBx is more effective on enhancing cell proliferation. • Nuclear HBx up-regulates HBV enhancer I/X promoter activity. • Nuclear HBx increases HBV mRNA level in the context of HBV replication.« less
Lynn, J. E.; Tews, I.; Carlson, J.; ...
2017-11-30
Local chiral effective field theory interactions have recently been developed and used in the context of quantum Monte Carlo few- and many-body methods for nuclear physics. In this paper, we go over detailed features of local chiral nucleon-nucleon interactions and examine their effect on properties of the deuteron, paying special attention to the perturbativeness of the expansion. We then turn to three-nucleon interactions, focusing on operator ambiguities and their interplay with regulator effects. We then discuss the nuclear Green's function Monte Carlo method, going over both wave-function correlations and approximations for the two- and three-body propagators. Finally, following this, wemore » present a range of results on light nuclei: Binding energies and distribution functions are contrasted and compared, starting from several different microscopic interactions.« less
NASA Astrophysics Data System (ADS)
Li, Chen; Requist, Ryan; Gross, E. K. U.
2018-02-01
We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = Rc, where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical Rc by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M-1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇Rχ(R) and ∇Rn(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation—an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuetrumpf, Bastian; Zhang, Chunli; Nazarewicz, Witold
Nuclear density functional theory is the tool of choice in describing properties of complex nuclei and intricate phases of bulk nucleonic matter. It is a microscopic approach based on an energy density functional representing the nuclear interaction. An attractive feature of nuclear DFT is that it can be applied to both finite nuclei and pasta phases appearing in the inner crust of neutron stars. While nuclear pasta clusters in a neutron star can be easily characterized through their density distributions, the level of clustering of nucleons in a nucleus can often be difficult to assess. To this end, we usemore » the concept of nucleon localization. We demonstrate that the localization measure provides us with fingerprints of clusters in light and heavy nuclei, including fissioning systems. Furthermore we investigate the rod-like pasta phase using twist-averaged boundary conditions, which enable calculations in finite volumes accessible by state of the art DFT solvers.« less
Nuclear Function of Smad7 Promotes Myogenesis▿
Miyake, Tetsuaki; Alli, Nezeka S.; McDermott, John C.
2010-01-01
In the “canonical” view of transforming growth factor β (TGF-β) signaling, Smad7 plays an inhibitory role. While Smad7 represses Smad3 activation by TGF-β, it does not reverse the inhibitory effect of TGF-β on myogenesis, suggesting a different function in myogenic cells. We previously reported a promyogenic role of Smad7 mediated by an interaction with MyoD. Based on this association, we hypothesized a possible nuclear function of Smad7 independent of its role at the level of the receptor. We therefore engineered a chimera of Smad7 with a nuclear localization signal (NLS), which serves to prevent and therefore bypass binding to the TGF-β receptor while concomitantly constitutively localizing Smad7 to the nucleus. This Smad7-NLS did not repress Smad3 activation by TGF-β but did retain its ability to enhance myogenic gene activation and phenotypic myogenesis, indicating that the nuclear, receptor-independent function of Smad7 is sufficient to promote myogenesis. Furthermore, Smad7 physically interacts with MyoD and antagonizes the repressive effects of active MEK on MyoD. Reporter and myogenic conversion assays indicate a pivotal regulation of MyoD transcriptional properties by the balance between Smad7 and active MEK. Thus, Smad7 has a nuclear coactivator function that is independent of TGF-β signaling and necessary to promote myogenic differentiation. PMID:19995910
Pirici, Daniel; Pirici, Ionica; Mogoanta, Laurentiu; Margaritescu, Otilia; Tudorica, Valerica; Margaritescu, Claudiu; Ion, Daniela A; Simionescu, Cristiana; Coconu, Marieta
2012-10-01
Matrix metalloproteinases (MMPs) are well-recognized denominators for extracellular matrix remodeling in the pathology of both ischemic and hemorrhagic strokes. Recent data on non-nervous system tissue showed intracellular and even intranuclear localizations for different MMPs, and together with this, a plethora of new functions have been proposed for these intracellular active enzymes, but are mostly related to apoptosis induction and malign transformation. In neurons and glial cells, on human tissue, animal models and cell cultures, different active MMPs have been also proven to be located in the intra-cytoplasmic or intra-nuclear compartments, with no clear-cut function. In the present study we show for the first time on human tissue the nuclear expression of MMP-9, mainly in neurons and to a lesser extent in astrocytes. We have studied ischemic and hemorrhagic stroke patients, as well as aged control patients. Age and ischemic suffering seemed to be the best predictors for an elevated MMP-9 nuclear expression, and there was no evidence of a clear-cut extracellular proteolytic activity for this compartment, as revealed by intact vascular basement membranes and assessment of vascular densities. More, the majority of the cells expressing MMP-9 in the nuclear compartment also co-expressed activated-caspase 3, indicating a possible link between nuclear MMP-9 localization and apoptosis in neuronal and glial cells following an ischemic or hemorrhagic event. These results, besides showing for the first time the nuclear localization of MMP-9 on a large series of human stroke and aged brain tissues, raise new questions regarding the unknown spectrum of the functions MMPs in human CNS pathology. © 2011 Japanese Society of Neuropathology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassell, Geoffrey D.; Weitzman, Matthew D.
2004-10-01
Adeno-associated virus (AAV) replicates in the nucleus of infected cells, and therefore multiple nuclear import events are required for productive infection. We analyzed nuclear import of the viral Rep proteins and characterized a nuclear localization signal (NLS) in the C-terminus. We demonstrate that basic residues in this region constitute an NLS that is transferable and mediates interaction with the nuclear import receptor importin {alpha} in vitro. Mutant Rep proteins are predominantly cytoplasmic and are severely compromised for interactions with importin {alpha}, but retain their enzymatic functions in vitro. Interestingly, mutations of the NLS had significantly less effect on importin {alpha}more » interaction and replication in the context of Rep78 than when incorporated into the Rep68 protein. Together, our results demonstrate that a bipartite NLS exists in the shared part of Rep68 and Rep78, and suggest that an alternate entry mechanism may also contribute to nuclear localization of the Rep78 protein.« less
Jang, Jiwon; Byun, Sung-Hyun; Han, Dasol; Lee, Junsub; Kim, Juwan; Lee, Nayeon; Kim, Inhee; Park, Soojeong; Ha, Soobong; Kwon, Mookwang; Ahn, Jyhyun; Chung, Woo-Jae; Kweon, Dae-Hyuk; Cho, Jae Youl; Kim, Sunyoung; Yoon, Keejung
2014-12-01
Notch has a broad range of regulatory functions in many developmental processes, including hematopoiesis, neurogenesis, and angiogenesis. Notch has several key functional regions such as the RBP-Jκ/CBF1 association module (RAM) domain, nuclear localization signals (NLS), and ankyrin (ANK) repeats. However, previous reports assessing the level of importance of these domains in the Notch signaling pathway are controversial. In this study, we have assessed the level of contribution of each Notch domain to the regulation of mammalian neural stem cells in vivo as well as in vitro. Reporter assays and real-time polymerase chain reactions show that the ANK repeats and RAM domain are indispensable to the transactivation of Notch target genes, whereas a nuclear export signal (NES)-fused Notch intracellular domain (NICD) mutant defective in nuclear localization exerts a level of activity comparable to unmodified NICD. Transactivational ability appears to be tightly coupled to Notch functions during brain development. Unlike ANK repeats and RAM domain deletion mutants, NES-NICD recapitulates NICD features such as promotion of astrogenesis at the expense of neurogenesis in vitro and enhancement of neural stem cell character in vivo. Our data support the previous observation that intranuclear localization is not essential to the oncogenesis of Notch1 in certain types of cells and imply the importance of the noncanonical Notch signaling pathway in the regulation of mammalian neural stem cells.
Görner, Wolfram; Durchschlag, Erich; Wolf, Julia; Brown, Elizabeth L.; Ammerer, Gustav; Ruis, Helmut; Schüller, Christoph
2002-01-01
In yeast, environmental conditions control the transcription factor Msn2, the nuclear accumulation and function of which serve as a sensitive indicator of nutrient availablity and environmental stress load. We show here that the nuclear localization signal (NLS) of Msn2 is a direct target of cAMP-dependent protein kinase (cAPK). Genetic analysis suggests that Msn2-NLS function is inhibited by phosphorylation and activated by dephosphorylation. Msn2-NLS function is unaffected by many stress conditions that normally induce nuclear accumulation of full-length Msn2. The Msn2-NLS phosphorylation status is, however, highly sensitive to carbohydrate fluctuations during fermentative growth. Dephosphorylation occurs in >2 min after glucose withdrawal but the effect is reversed rapidly by refeeding with glucose. This response to glucose depletion is due to changes in cAPK activity rather than an increase in protein phosphatase activity. Surprisingly, the classical glucose-sensing systems are not connected to this rapid response system. Our results further imply that generic stress signals do not cause short-term depressions in cAPK activity. They operate on Msn2 by affecting an Msn5-dependent nuclear export and/or retention mechanism. PMID:11782433
Modulation of integrin-linked kinase nucleo-cytoplasmic shuttling by ILKAP and CRM1.
Nakrieko, Kerry-Ann; Vespa, Alisa; Mason, David; Irvine, Timothy S; D'Souza, Sudhir J A; Dagnino, Lina
2008-07-15
Integrin-linked kinase (ILK) plays key roles in a variety of cell functions, including cell proliferation, adhesion and migration. Within the cell, ILK localizes to multiple sites, including the cytoplasm, focal adhesion complexes that mediate cell adhesion to extracellular substrates, as well as cell-cell junctions in epidermal keratinocytes. Central to understanding ILK function is the elucidation of the mechanisms that regulate its subcellular localization. We now demonstrate that ILK is imported into the nucleus through sequences in its N-terminus, via active transport mechanisms that involve nuclear pore complexes. In addition, nuclear ILK can be rapidly exported into the cytoplasm through a CRM1-dependent pathway, and its export is enhanced by the type 2C protein phosphatase ILKAP. Nuclear localization of ILK in epidermal keratinocytes is associated with increased DNA synthesis, which is sensitive to inhibition by ILKAP. Our studies demonstrate the importance for keratinocyte proliferation of ILK regulation through changes in its subcellular localization, and establish ILKAP and CRM1 as pivotal modulators of ILK subcellular distribution and activity in these cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumeta, Masahiro, E-mail: kumeta@lif.kyoto-u.ac.jp; Hirai, Yuya; Yoshimura, Shige H.
2013-12-10
To uncover the molecular composition and dynamics of the functional scaffold for the nucleus, three fractions of biochemically-stable nuclear protein complexes were extracted and used as immunogens to produce a variety of monoclonal antibodies. Many helix-based cytoskeletal proteins were identified as antigens, suggesting their dynamic contribution to nuclear architecture and function. Interestingly, sets of antibodies distinguished distinct subcellular localization of a single isoform of certain cytoskeletal proteins; distinct molecular forms of keratin and actinin were found in the nucleus. Their nuclear shuttling properties were verified by the apparent nuclear accumulations under inhibition of CRM1-dependent nuclear export. Nuclear keratins do notmore » take an obvious filamentous structure, as was revealed by non-filamentous cytoplasmic keratin-specific monoclonal antibody. These results suggest the distinct roles of the helix-based cytoskeletal proteins in the nucleus. - Highlights: • A set of monoclonal antibodies were raised against nuclear scaffold proteins. • Helix-based cytoskeletal proteins were involved in nuclear scaffold. • Many cytoskeletal components shuttle into the nucleus in a CRM1-dependent manner. • Sets of antibodies distinguished distinct subcellular localization of a single isoform. • Nuclear keratin is soluble and does not form an obvious filamentous structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuan, Man I; O’Dowd, John M.; Fortunato, Elizabeth
Our electron microscopy study (Kuan et al., 2016) found HCMV nuclear capsid egress was significantly reduced in p53 knockout cells (p53KOs), correlating with inhibited formation of infoldings of the inner nuclear membrane (IINMs). Molecular examination of these phenomena has found p53KOs expressed UL97 and phosphorylated lamins, however the lamina failed to remodel. The nuclear egress complex (NEC) protein UL50 was expressed in almost all cells. UL50 re-localized to the inner nuclear membrane (INM) in ~90% of wt cells, but only ~35% of p53KOs. UL53 expression was significantly reduced in p53KOs, and cells lacking UL50 nuclear staining, expressed no UL53. Re-introductionmore » of p53 into p53KOs largely recovered UL53 positivity and UL50 nuclear re-localization. Nuclear rim located UL50/53 puncta, which co-localized with the major capsid protein, were largely absent in p53KOs. We believe these puncta were IINMs. In the absence of p53, UL53 expression was inhibited, disrupting formation of the NEC/IINMs, and reducing functional virion secretion. -- Highlights: •Phosphorylated nuclear lamins were inefficiently remodeled in p53KO cells. •p53KO cells expressed UL50, but it was not efficiently targeted to the nuclear rim. •UL53 was not expressed in the large majority of p53KO cells. •Cells failing to express UL53 did not localize UL50 to the nucleus. •NEC puncta/infoldings of the inner nuclear membrane were scarce in p53KO cells.« less
Prolonged exposure to particulate chromate inhibits RAD51 nuclear import mediator proteins.
Browning, Cynthia L; Wise, John Pierce
2017-09-15
Particulate hexavalent chromium (Cr(VI)) is a human lung carcinogen and a human health concern. The induction of structural chromosome instability is considered to be a driving mechanism of Cr(VI)-induced carcinogenesis. Homologous recombination repair protects against Cr(VI)-induced chromosome damage, due to its highly accurate repair of Cr(VI)-induced DNA double strand breaks. However, recent studies demonstrate Cr(VI) inhibits homologous recombination repair through the misregulation of RAD51. RAD51 is an essential protein in HR repair that facilitates the search for a homologous sequence. Recent studies show prolonged Cr(VI) exposure prevents proper RAD51 subcellular localization, causing it to accumulate in the cytoplasm. Since nuclear import of RAD51 is crucial to its function, this study investigated the effect of Cr(VI) on the RAD51 nuclear import mediators, RAD51C and BRCA2. We show acute (24h) Cr(VI) exposure induces the proper localization of RAD51C and BRCA2. In contrast, prolonged (120h) exposure increased the cytoplasmic localization of both proteins, although RAD51C localization was more severely impaired. These results correlate temporally with the previously reported Cr(VI)-induced RAD51 cytoplasmic accumulation. In addition, we found Cr(VI) does not inhibit interaction between RAD51 and its nuclear import mediators. Altogether, our results suggest prolonged Cr(VI) exposure inhibits the nuclear import of RAD51C, and to a lesser extent, BRCA2, which results in the cytoplasmic accumulation of RAD51. Cr(VI)-induced inhibition of nuclear import may play a key role in its carcinogenic mechanism since the nuclear import of many tumor suppressor proteins and DNA repair proteins is crucial to their function. Copyright © 2017 Elsevier Inc. All rights reserved.
Saunders, Cosmo A.; Harris, Nathan J.; Willey, Patrick T.; Woolums, Brian M.; Wang, Yuexia; McQuown, Alex J.; Schoenhofen, Amy; Dauer, William T.
2017-01-01
The nucleus is positioned toward the rear of most migratory cells. In fibroblasts and myoblasts polarizing for migration, retrograde actin flow moves the nucleus rearward, resulting in the orientation of the centrosome in the direction of migration. In this study, we report that the nuclear envelope–localized AAA+ (ATPase associated with various cellular activities) torsinA (TA) and its activator, the inner nuclear membrane protein lamina-associated polypeptide 1 (LAP1), are required for rearward nuclear movement during centrosome orientation in migrating fibroblasts. Both TA and LAP1 contributed to the assembly of transmembrane actin-associated nuclear (TAN) lines, which couple the nucleus to dorsal perinuclear actin cables undergoing retrograde flow. In addition, TA localized to TAN lines and was necessary for the proper mobility of EGFP-mini–nesprin-2G, a functional TAN line reporter construct, within the nuclear envelope. Furthermore, TA and LAP1 were indispensable for the retrograde flow of dorsal perinuclear actin cables, supporting the recently proposed function for the nucleus in spatially organizing actin flow and cytoplasmic polarity. Collectively, these results identify TA as a key regulator of actin-dependent rearward nuclear movement during centrosome orientation. PMID:28242745
Huber, Robert J; O'Day, Danton H
2011-08-01
The Dictyostelium discoideum homolog of mammalian cyclin dependent kinase 5 (Cdk5) has previously been shown to be required for optimal growth and differentiation in this model organism, however, the subcellular localization of the protein has not previously been studied. In this study, immunolocalizations and a GFP fusion construct localized Cdk5 predominantly to the nucleus of vegetative cells. Western blots showed that Cdk5 was present in both nuclear and non-nuclear fractions, suggesting a functional role in both cellular locales. During the early stages of mitosis, Cdk5 gradually moved from a punctate nucleoplasmic distribution to localize adjacent to the inner nuclear envelope. During anaphase and telophase, Cdk5 localized to the cytoplasm and was not detected in the nucleoplasm. Cdk5 returned to the nucleus during cytokinesis. Proteolytic activity has been shown to be a critical regulator of the cell cycle. Immunoprecipitations coupled with immunolocalizations identified puromycin-sensitive aminopeptidase A (PsaA) as a potential Cdk5 binding partner in Dictyostelium. Immunoprecipitations also identified two phosphotyrosine proteins (35 and 18 kDa) that may interact with Cdk5 in vivo. Together, this work provides new insight into the localization of Cdk5, its function during cell division, and its binding to a proteolytic enzyme in Dictyostelium.
Kawaguchi, Yuka; Nariki, Hiroaki; Kawamoto, Naoko; Kanehiro, Yuichi; Miyazaki, Satoshi; Suzuki, Mari; Magari, Masaki; Tokumitsu, Hiroshi; Kanayama, Naoki
2017-04-01
Activation-induced cytidine deaminase (AID) is essential for diversification of the Ig variable region (IgV). AID is excluded from the nucleus, where it normally functions. However, the molecular mechanisms responsible for regulating AID localization remain to be elucidated. The SR-protein splicing factor SRSF1 is a nucleocytoplasmic shuttling protein, a splicing isoform of which called SRSF1-3, has previously been shown to contribute to IgV diversification in chicken DT40 cells. In this study, we examined whether SRSF1-3 functions in IgV diversification by promoting nuclear localization of AID. AID expressed alone was localized predominantly in the cytoplasm. In contrast, co-expression of AID with SRSF1-3 led to the nuclear accumulation of both AID and SRSF1-3 and the formation of a protein complex that contained them both, although SRSF1-3 was dispensable for nuclear import of AID. Expression of either SRSF1-3 or a C-terminally-truncated AID mutant increased IgV diversification in DT40 cells. However, overexpression of exogenous SRSF1-3 was unable to further enhance IgV diversification in DT40 cells expressing the truncated AID mutant, although SRSF1-3 was able to form a protein complex with the AID mutant. These results suggest that SRSF1-3 promotes nuclear localization of AID probably by forming a nuclear protein complex, which might stabilize nuclear AID and induce IgV diversification in an AID C-terminus-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.
Alefantis, Timothy; Barmak, Kate; Harhaj, Edward W; Grant, Christian; Wigdahl, Brian
2003-06-13
Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia and HTLV-I-associated myelopathy/tropical spastic paraparesis. The HTLV-I transactivator protein Tax plays an integral role in the etiology of adult T cell leukemia, as expression of Tax in T lymphocytes has been shown to result in immortalization. In addition, Tax is known to interface with numerous transcription factor families, including activating transcription factor/cAMP response element-binding protein and nuclear factor-kappaB, requiring Tax to localize to both the nucleus and cytoplasm. In this report, the nucleocytoplasmic localization of Tax was examined in Jurkat, HeLa, and U-87 MG cells. The results reported herein indicate that Tax contains a leucine-rich nuclear export signal (NES) that, when fused to green fluorescent protein (GFP), can direct nuclear export via the CRM-1 pathway, as determined by leptomycin B inhibition of nuclear export. However, cytoplasmic localization of full-length Tax was not altered by treatment with leptomycin B, suggesting that native Tax utilizes another nuclear export pathway. Additional support for the presence of a functional NES has also been shown because the NES mutant Tax(L200A)-GFP localized to the nuclear membrane in the majority of U-87 MG cells. Evidence has also been provided suggesting that the Tax NES likely exists as a conditionally masked signal because the truncation mutant TaxDelta214-GFP localized constitutively to the cytoplasm. These results suggest that Tax localization may be directed by specific changes in Tax conformation or by specific interactions with cellular proteins leading to changes in the availability of the Tax NES and nuclear localization signal.
Region of Nipah virus C protein responsible for shuttling between the cytoplasm and nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horie, Ryo; Yoneda, Misako, E-mail: yone@ims.u-tok
Nipah virus (NiV) causes severe encephalitis in humans, with high mortality. NiV nonstructural C protein (NiV-C) is essential for its pathogenicity, but its functions are unclear. In this study, we focused on NiV-C trafficking in cells and found that it localizes predominantly in the cytoplasm but partly in the nucleus. An analysis of NiV-C mutants showed that amino acids 2, 21–24 and 110–139 of NiV-C are important for its localization in the cytoplasm. Inhibitor treatment indicates that the nuclear export determinant is not a classical CRM1-dependent nuclear export signal. We also determined that amino acids 60–75 and 72–75 were importantmore » for nuclear localization of NiV-C. Furthermore, NiV-C mutants that had lost their capacity for nuclear localization inhibited the interferon (IFN) response more strongly than complete NiV-C. These results indicate that the IFN-antagonist activity of NiV-C occurs in the cytoplasm. -- Highlights: •Nipah virus (NiV) infection resulted in high mortality, but effective treatment has not been established. •Several reports revealed that NiV nonstructural C protein (NiV-C) was essential for NiV pathogenicity, however, whole of NiV-C function is still unknown. •Although nonstructural C proteins of other Paramyxoviruses are expressed in similar mechanism and exert similar activity, subcellular localization and cellular targets are different. In this study, we evaluated the subcellular localization of NiV-C. •To our knowledge, this is the first report showing that NiV-C shuttles between the nucleus and cytoplasm. We also clarified that NiV-C has nuclear export signal and nuclear localization signal using NiV-C deleted, alanine substitution mutants and enhanced green fluorescent protein (EGFP) fused proteins. •And we also showed that interferon (IFN) antagonist activity of NiV-C related to its subcellular localization. Our results indicate that NiV-C exert IFN antagonist activity in the cytoplasm.« less
Tau regulates the subcellular localization of calmodulin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barreda, Elena Gomez de; Avila, Jesus, E-mail: javila@cbm.uam.es; CIBER de Enfermedades Neurodegenerativas, 28031 Madrid
Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in amore » change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.« less
Chu, Chien-Hsin; Chang, Lung-Chun; Hsu, Hong-Ming; Wei, Shu-Yi; Liu, Hsing-Wei; Lee, Yu; Kuo, Chung-Chi; Indra, Dharmu; Chen, Chinpan; Ong, Shiou-Jeng; Tai, Jung-Hsiang
2011-01-01
Nuclear proteins usually contain specific peptide sequences, referred to as nuclear localization signals (NLSs), for nuclear import. These signals remain unexplored in the protozoan pathogen, Trichomonas vaginalis. The nuclear import of a Myb2 transcription factor was studied here using immunodetection of a hemagglutinin-tagged Myb2 overexpressed in the parasite. The tagged Myb2 was localized to the nucleus as punctate signals. With mutations of its polybasic sequences, 48KKQK51 and 61KR62, Myb2 was localized to the nucleus, but the signal was diffusive. When fused to a C-terminal non-nuclear protein, the Myb2 sequence spanning amino acid (aa) residues 48 to 143, which is embedded within the R2R3 DNA-binding domain (aa 40 to 156), was essential and sufficient for efficient nuclear import of a bacterial tetracycline repressor (TetR), and yet the transport efficiency was reduced with an additional fusion of a firefly luciferase to TetR, while classical NLSs from the simian virus 40 T-antigen had no function in this assay system. Myb2 nuclear import and DNA-binding activity were substantially perturbed with mutation of a conserved isoleucine (I74) in helix 2 to proline that altered secondary structure and ternary folding of the R2R3 domain. Disruption of DNA-binding activity alone by point mutation of a lysine residue, K51, preceding the structural domain had little effect on Myb2 nuclear localization, suggesting that nuclear translocation of Myb2, which requires an ordered structural domain, is independent of its DNA binding activity. These findings provide useful information for testing whether myriad Mybs in the parasite use a common module to regulate nuclear import. PMID:22021237
Reich, Nancy C
2013-01-01
Understanding the mechanisms that regulate dynamic localization of a protein within a cell can provide critical insight to its functional molecular interactions. Signal transducers and activators of transcription (STATs) play essential roles in development, proliferation, and immune defense. However the consequences of STAT hyperactivity can predispose to diseases including autoimmunity and cancer. To function as transcription factors STATs must gain access to the nucleus, and knowledge of the mechanisms that regulate STAT nuclear trafficking can provide a means to control STAT action. This review presents a synopsis of some of the studies that address the nuclear dynamics of the STAT proteins. Evidence suggests that not all STATs are the same. Nuclear import of STAT1 and STAT4 appears linked to their tyrosine phosphorylation and the formation of parallel dimers via reciprocal phosphotyrosine and Src homology 2 domain interactions. This dimer arrangement generates a conformational nuclear localization signal. STAT2 is imported continually to the nucleus in an unphosphorylated state due to its association with IRF9, but the dominant nuclear export signal of STAT2 shuttles the complex back to the cytoplasm. Following STAT2 tyrosine phosphorylation, it can form dimers with STAT1 to affect nuclear import as the trimeric complex (ISGF3). Distinctly, STAT3, STAT5, and STAT6 are continually imported to the nucleus independent of tyrosine phosphorylation. Mutational studies indicate the nuclear localization signals in these STATs require the conformational structure of their coiled-coil domains. Increases in STAT nuclear accumulation following cytokine stimulation appear coordinate with their ability to bind DNA. PMID:24470978
Canela-Pérez, Israel; López-Villaseñor, Imelda; Cevallos, Ana María; Hernández, Roberto
2018-03-01
Trypanosoma cruzi is the aetiologic agent of Chagas disease. Our research group studies ribosomal RNA (rRNA) gene transcription and nucleolus dynamics in this species of trypanosomes. RPA31 is an essential subunit of RNA polymerase I (Pol I) whose presence is apparently restricted to trypanosomes. Using fluorescent-tagged versions of this protein (TcRPA31-EGFP), we describe its nuclear distribution during growth and metacyclogenesis. Our findings indicate that TcRPA31-EGFP alters its nuclear presence from concentrated nucleolar localization in exponentially growing epimastigotes to a dispersed granular distribution in the nucleoplasm of stationary epimastigotes and metacyclic trypomastigotes. These changes likely reflect a structural redistribution of the Pol I transcription machinery in quiescent cellular stages where downregulation of rRNA synthesis is known to occur. In addition, and related to the nuclear internalization of this protein, the presence of a classical bipartite-type nuclear localization signal was identified towards its C-terminal end. The functionality of this motif was demonstrated by its partial or total deletion in recombinant versions of the tagged fluorescent protein. Moreover, ivermectin inhibited the nuclear localization of the labelled chimaera, suggesting the involvement of the importin α/β transport system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inagaki, Yuichi; Mitsutake, Susumu; Igarashi, Yasuyuki
2006-05-12
Retinitis pigmentosa (RP) is a genetically heterogeneous disease characterized by degeneration of the retina. A mutation in a new ceramide kinase (CERK) homologous gene, named CERK-like protein (CERKL), was found to cause autosomal recessive retinitis pigmentosa (RP26). Here, we show a point mutation of one of two putative nuclear localization signal (NLS) sequences inhibited the nuclear localization of the protein. Furthermore, the tetra-GFP-tagged NLS, which cannot passively enter the nucleus, was observed not only in the nucleus but also in the nucleolus. Our results provide First evidence of the active nuclear import of CERKL and suggest that the identified NLSmore » might be responsible for nucleolar retention of the protein. As recent studies have shown other RP-related proteins are localized in the nucleus or the nucleolus, our identification of NLS in CERKL suggests that CERKL likely plays important roles for retinal functions in the nucleus and the nucleolus.« less
Li, Chen; Requist, Ryan; Gross, E K U
2018-02-28
We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = R c , where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical R c by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M -1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇ R χ(R) and ∇ R n(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation-an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).
Babar, Prasad H; Dey, Vishakha; Jaiswar, Praveen; Patankar, Swati
Many Plasmodium falciparum proteins do not share homology with, and are generally longer than their respective orthologs. This, to some extent, can be attributed to insertions. Here, we studied a P. falciparum RNA hypermethylase, trimethylguanosine synthase (PfTGS1) that harbors a 76 amino acid insertion in its methyltransferase domain. Bioinformatics analysis revealed that this insertion was present in TGS1 orthologs from other Plasmodium species as well. Interestingly, a classical nuclear localization signal (NLS) was predicted in the insertions of primate parasite TGS1 proteins. To check whether these predicted NLS are functional, we developed an in vivo heterologous system using S. cerevisiae. The predicted NLS when fused to dimeric GFP were able to localize the fusion protein to the nucleus in yeast indicating that it is indeed recognized by the yeast nuclear import machinery. We further showed that the PfTGS1 NLS binds to P. falciparum importin-α in vitro, confirming that the NLS is also recognized by the P. falciparum classical nuclear import machinery. Thus, in this study we report a novel function of the insertion in PfTGS1. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Yan; Morkin, Melina I.; Fernandez, Stephanie G.; Mlacker, Gregory M.; Shechter, Jesse M.; Liu, Xiongfei; Patel, Karan H.; Lapins, Allison; Yang, Steven; Dombrowski, Susan M.
2014-01-01
The failure of the CNS neurons to regenerate axons after injury or stroke is a major clinical problem. Transcriptional regulators like Set-β are well positioned to regulate intrinsic axon regeneration capacity, which declines developmentally in maturing CNS neurons. Set-β also functions at cellular membranes and its subcellular localization is disrupted in Alzheimer's disease, but many of its biological mechanisms have not been explored in neurons. We found that Set-β was upregulated postnatally in CNS neurons, and was primarily localized to the nucleus but was also detected in the cytoplasm and adjacent to the plasma membrane. Remarkably, nuclear Set-β suppressed, whereas Set-β localized to cytoplasmic membranes promoted neurite growth in rodent retinal ganglion cells and hippocampal neurons. Mimicking serine 9 phosphorylation, as found in Alzheimer's disease brains, delayed nuclear import and furthermore blocked the ability of nuclear Set-β to suppress neurite growth. We also present data on gene regulation and protein binding partner recruitment by Set-β in primary neurons, raising the hypothesis that nuclear Set-β may preferentially regulate gene expression whereas Set-β at cytoplasmic membranes may regulate unique cofactors, including PP2A, which we show also regulates axon growth in vitro. Finally, increasing recruitment of Set-β to cellular membranes promoted adult rat optic nerve axon regeneration after injury in vivo. Thus, Set-β differentially regulates axon growth and regeneration depending on subcellular localization and phosphorylation. PMID:24849368
Gervois, P; Torra, I P; Chinetti, G; Grötzinger, T; Dubois, G; Fruchart, J C; Fruchart-Najib, J; Leitersdorf, E; Staels, B
1999-09-01
The peroxisome proliferator-activated receptor alpha (PPARalpha) plays a key role in lipid and lipoprotein metabolism. However, important inter- and intraspecies differences exist in the response to PPARalpha activators. This incited us to screen for PPARalpha variants with different signaling functions. In the present study, using a RT-PCR approach a variant human PPARalpha mRNA species was identified, which lacks the entire exon 6 due to alternative splicing. This deletion leads to the introduction of a premature stop codon, resulting in the formation of a truncated PPARalpha protein (PPARalphatr) lacking part of the hinge region and the entire ligand-binding domain. RNase protection analysis demonstrated that PPARalphatr mRNA is expressed in several human tissues and cells, representing between 20-50% of total PPARalpha mRNA. By contrast, PPARalphatr mRNA could not be detected in rodent tissues. Western blot analysis using PPARalpha-specific antibodies demonstrated the presence of an immunoreactive protein migrating at the size of in vitro produced PPARalphatr protein both in human hepatoma HepG2 cells and in human hepatocytes. Both in the presence or absence of 9-cis-retinoic acid receptor, PPARalphatr did not bind to DNA in gel shift assays. Immunocytochemical analysis of transfected CV-1 cells indicated that, whereas transfected PPARalphawt was mainly nuclear localized, the majority of PPARalphatr resided in the cytoplasm, with presence in the nucleus depending on cell culture conditions. Whereas a chimeric PPARalphatr protein containing a nuclear localization signal cloned at its N-terminal localized into the nucleus and exhibited strong negative activity on PPARalphawt transactivation function, PPARalphatr interfered with PPARalphatr transactivation function only under culture conditions inducing its nuclear localization. Cotransfection of the coactivator CREB-binding protein relieved the transcriptional repression of PPARalphawt by PPARalphatr, suggesting that the dominant negative effect of PPARalphatr might occur through competition for essential coactivators. In addition, PPARalphatr interfered with transcriptional activity of other nuclear receptors such as PPARgamma, hepatic nuclear factor-4, and glucocorticoid receptor-alpha, which share CREB-binding protein/p300 as a coactivator. Thus, we have identified a human PPARalpha splice variant that may negatively interfere with PPARalphawt function. Factors regulating either the ratio of PPARalphawt vs. PPARalphatr mRNA or the nuclear entry of PPARalphatr protein should therefore lead to altered signaling via the PPARalpha and, possibly also, other nuclear receptor pathways.
Belanger, Kenneth D; Griffith, Amanda L; Baker, Heather L; Hansen, Jeanne N; Kovacs, Laura A Simmons; Seconi, Justin S; Strine, Andrew C
2011-09-01
Nuclear protein import in eukaryotic cells is mediated by karyopherin proteins, which bind to specific nuclear localization signals on substrate proteins and transport them across the nuclear envelope and into the nucleus. Replication protein A (RPA) is a nuclear protein comprised of three subunits (termed Rfa1, Rfa2, and Rfa3 in Saccharomyces cerevisiae) that binds single-stranded DNA and is essential for DNA replication, recombination, and repair. RPA associates with two different karyopherins in yeast, Kap95, and Msn5/Kap142. However, it is unclear which of these karyopherins is responsible for RPA nuclear import. We have generated GFP fusion proteins with each of the RPA subunits and demonstrate that these Rfa-GFP chimeras are functional in yeast cells. The intracellular localization of the RPA proteins in live cells is similar in wild-type and msn5Δ deletion strains but becomes primarily cytoplasmic in cells lacking functional Kap95. Truncating the C-terminus of any of the RPA subunits results in mislocalization of the proteins to the cytoplasm and a loss of protein-protein interactions between the subunits. Our data indicate that Kap95 is likely the primary karyopherin responsible for RPA nuclear import in yeast and that the C-terminal regions of Rfa1, Rfa2, and Rfa3 are essential for efficient nucleocytoplasmic transport of each RPA subunit.
Grewe, Bastian; Hoffmann, Bianca; Ohs, Inga; Blissenbach, Maik; Brandt, Sabine; Tippler, Bettina; Grunwald, Thomas; Uberla, Klaus
2012-03-01
In some retroviruses, such as Rous sarcoma virus and prototype foamy virus, Gag proteins are known to shuttle between the nucleus and the cytoplasm and are implicated in nuclear export of the viral genomic unspliced RNA (gRNA) for subsequent encapsidation. A similar function has been proposed for human immunodeficiency virus type 1 (HIV-1) Gag based on the identification of nuclear localization and export signals. However, the ability of HIV-1 Gag to transit through the nucleus has never been confirmed. In addition, the lentiviral Rev protein promotes efficient nuclear gRNA export, and previous reports indicate a cytoplasmic interaction between Gag and gRNA. Therefore, functional effects of HIV-1 Gag on gRNA and its usage were explored. Expression of gag in the absence of Rev was not able to increase cytoplasmic gRNA levels of subgenomic, proviral, or lentiviral vector constructs, and gene expression from genomic reporter plasmids could not be induced by Gag provided in trans. Furthermore, Gag lacking the reported nuclear localization and export signals was still able to mediate an efficient packaging process. Although small amounts of Gag were detectable in the nuclei of transfected cells, a Crm1-dependent nuclear export signal in Gag could not be confirmed. Thus, our study does not provide any evidence for a nuclear function of HIV-1 Gag. The encapsidation process of HIV-1 therefore clearly differs from that of Rous sarcoma virus and prototype foamy virus.
Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ
Andrews, Joel F.; Sykora, Landon J.; Barik-Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna; Barik, Sailen; Shevde, Lalita A.; Samant, Rajeev S.
2012-01-01
HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington’s, Parkinson’s diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S). PMID:22504047
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farawila, Y.; Gohar, Y.; Maynard, C.
1989-04-01
KAOS/LIB-V: A library of processed nuclear responses for neutronics analyses of nuclear systems has been generated. The library was prepared using the KAOS-V code and nuclear data from ENDF/B-V. The library includes kerma (kinetic energy released in materials) factors and other nuclear response functions for all materials presently of interest in fusion and fission applications for 43 nonfissionable and 15 fissionable isotopes and elements. The nuclear response functions include gas production and tritium-breeding functions, and all important reaction cross sections. KAOS/LIB-V employs the VITAMIN-E weighting function and energy group structure of 174 neutron groups. Auxiliary nuclear data bases, e.g., themore » Japanese evaluated nuclear data library JENDL-2 were used as a source of isotopic cross sections when these data are not provided in ENDF/B-V files for a natural element. These are needed mainly to estimate average quantities such as effective Q-values for the natural element. This analysis of local energy deposition was instrumental in detecting and understanding energy balance deficiencies and other problems in the ENDF/B-V data. Pertinent information about the library and a graphical display of the main nuclear response functions for all materials in the library are given. 35 refs.« less
Characterization of sequences in human TWIST required for nuclear localization
Singh, Shalini; Gramolini, Anthony O
2009-01-01
Background Twist is a transcription factor that plays an important role in proliferation and tumorigenesis. Twist is a nuclear protein that regulates a variety of cellular functions controlled by protein-protein interactions and gene transcription events. The focus of this study was to characterize putative nuclear localization signals (NLSs) 37RKRR40 and 73KRGKK77 in the human TWIST (H-TWIST) protein. Results Using site-specific mutagenesis and immunofluorescences, we observed that altered TWISTNLS1 K38R, TWISTNLS2 K73R and K77R constructs inhibit nuclear accumulation of H-TWIST in mammalian cells, while TWISTNLS2 K76R expression was un-affected and retained to the nucleus. Subsequently, co-transfection of TWIST mutants K38R, K73R and K77R with E12 formed heterodimers and restored nuclear localization despite the NLSs mutations. Using a yeast-two-hybrid assay, we identified a novel TWIST-interacting candidate TCF-4, a basic helix-loop-helix transcription factor. The interaction of TWIST with TCF-4 confirmed using NLS rescue assays, where nuclear expression of mutant TWISTNLS1 with co-transfixed TCF-4 was observed. The interaction of TWIST with TCF-4 was also seen using standard immunoprecipitation assays. Conclusion Our study demonstrates the presence of two putative NLS motifs in H-TWIST and suggests that these NLS sequences are functional. Furthermore, we identified and confirmed the interaction of TWIST with a novel protein candidate TCF-4. PMID:19534813
Nuclear structure and dynamics with density functional theory
NASA Astrophysics Data System (ADS)
Stetcu, Ionel
2015-10-01
Even in the absence of ab initio methods capable of tackling heavy nuclei without restrictions, one can obtain an ab initio description of ground-state properties by means of the density functional theory (DFT), and its extension to superfluid systems in its local variant, the superfluid local density approximation (SLDA). Information about the properties of excited states can be obtained in the same framework by using an extension to the time-dependent (TD) phenomena. Unlike other approaches in which the nuclear structure information is used as a separate input into reaction models, the TD approach treats on the same footing the nuclear structure and dynamics, and is well suited to provide more reliable description for a large number of processes involving heavy nuclei, from the nuclear response to electroweak probes, to nuclear reactions, such as neutron-induced reactions, or nuclear fusion and fission. Such processes, sometimes part of integrated nuclear systems, have important applications in astrophysics, energy production, global security, etc. In this talk, I will present the simulation of a simple reaction, that is the Coulomb excitation of a 238U nucleus, and discuss the application of the TD-DFT formalism to the description of induced fission. I gratefully acknowledge partial support of the U.S. Department of Energy through an Early Career Award of the LANL/LDRD Program.
Intracellular Localization, Interactions and Functions of Capsicum Chlorosis Virus Proteins
Widana Gamage, Shirani M. K.; Dietzgen, Ralf G.
2017-01-01
Tospoviruses are among the most devastating viruses of horticultural and field crops. Capsicum chlorosis virus (CaCV) has emerged as an important pathogen of capsicum and tomato in Australia and South-east Asia. Present knowledge about CaCV protein functions in host cells is lacking. We determined intracellular localization and interactions of CaCV proteins by live plant cell imaging to gain insight into the associations of viral proteins during infection. Proteins were transiently expressed as fusions to autofluorescent proteins in leaf epidermal cells of Nicotiana benthamiana and capsicum. All viral proteins localized at least partially in the cell periphery suggestive of cytoplasmic replication and assembly of CaCV. Nucleocapsid (N) and non-structural movement (NSm) proteins localized exclusively in the cell periphery, while non-structural suppressor of silencing (NSs) protein and Gc and Gn glycoproteins accumulated in both the cell periphery and the nucleus. Nuclear localization of CaCV Gn and NSs is unique among tospoviruses. We validated nuclear localization of NSs by immunofluorescence in protoplasts. Bimolecular fluorescence complementation showed self-interactions of CaCV N, NSs and NSm, and heterotypic interactions of N with NSs and Gn. All interactions occurred in the cytoplasm, except NSs self-interaction was exclusively nuclear. Interactions of a tospoviral NSs protein with itself and with N had not been reported previously. Functionally, CaCV NSs showed strong local and systemic RNA silencing suppressor activity and appears to delay short-distance spread of silencing signal. Cell-to-cell movement activity of NSm was demonstrated by trans-complementation of a movement-defective tobamovirus replicon. CaCV NSm localized at plasmodesmata and its transient expression led to the formation of tubular structures that protruded from protoplasts. The D155 residue in the 30K-like movement protein-specific LxD/N50-70G motif of NSm was critical for plasmodesmata localization and movement activity. Compared to other tospoviruses, CaCV proteins have both conserved and unique properties in terms of in planta localization, interactions and protein functions which will effect viral multiplication and movement in host plants. PMID:28443083
Intracellular Localization, Interactions and Functions of Capsicum Chlorosis Virus Proteins.
Widana Gamage, Shirani M K; Dietzgen, Ralf G
2017-01-01
Tospoviruses are among the most devastating viruses of horticultural and field crops. Capsicum chlorosis virus (CaCV) has emerged as an important pathogen of capsicum and tomato in Australia and South-east Asia. Present knowledge about CaCV protein functions in host cells is lacking. We determined intracellular localization and interactions of CaCV proteins by live plant cell imaging to gain insight into the associations of viral proteins during infection. Proteins were transiently expressed as fusions to autofluorescent proteins in leaf epidermal cells of Nicotiana benthamiana and capsicum. All viral proteins localized at least partially in the cell periphery suggestive of cytoplasmic replication and assembly of CaCV. Nucleocapsid (N) and non-structural movement (NSm) proteins localized exclusively in the cell periphery, while non-structural suppressor of silencing (NSs) protein and Gc and Gn glycoproteins accumulated in both the cell periphery and the nucleus. Nuclear localization of CaCV Gn and NSs is unique among tospoviruses. We validated nuclear localization of NSs by immunofluorescence in protoplasts. Bimolecular fluorescence complementation showed self-interactions of CaCV N, NSs and NSm, and heterotypic interactions of N with NSs and Gn. All interactions occurred in the cytoplasm, except NSs self-interaction was exclusively nuclear. Interactions of a tospoviral NSs protein with itself and with N had not been reported previously. Functionally, CaCV NSs showed strong local and systemic RNA silencing suppressor activity and appears to delay short-distance spread of silencing signal. Cell-to-cell movement activity of NSm was demonstrated by trans -complementation of a movement-defective tobamovirus replicon. CaCV NSm localized at plasmodesmata and its transient expression led to the formation of tubular structures that protruded from protoplasts. The D 155 residue in the 30K-like movement protein-specific LxD/N 50-70 G motif of NSm was critical for plasmodesmata localization and movement activity. Compared to other tospoviruses, CaCV proteins have both conserved and unique properties in terms of in planta localization, interactions and protein functions which will effect viral multiplication and movement in host plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanitchang, Asawin; Narkpuk, Jaraspim; Jongkaewwattana, Anan, E-mail: anan.jon@biotec.or.th
The nucleoprotein of influenza B virus (BNP) shares several characteristics with its influenza A virus counterpart (ANP), including localization in the host's nucleus. However, while the nuclear localization signal(s) (NLS) of ANP are well characterized, little is known about those of BNP. In this study, we showed that the fusion protein bearing the BNP N-terminus fused with GFP (N70–GFP) is exclusively nuclear, and identified a highly conserved KRXR motif spanning residues 44–47 as a putative NLS. In addition, we demonstrated that residues 3–15 of BNP, though not an NLS, are also crucial for nuclear import. Results from mutational analyses ofmore » N70–GFP and the full-length BNP suggest that this region may be required for protection of the N-terminus from proteolytic cleavage. Altogether, we propose that the N-terminal region of BNP contains the NLS and cleavage-protection motif, which together drive its nuclear localization. - Highlights: • The N-terminal region of BNP is required for nuclear accumulation. • The conserved motif at position 44–47 is a putative nuclear localization signal. • The first 15 amino acids of BNP may function as a cleavage-protection motif. • BNP may get access to the nucleus via a mechanism distinct from ANP.« less
Pinarbasi, Emile S; Cağatay, Tolga; Fung, Ho Yee Joyce; Li, Ying C; Chook, Yuh Min; Thomas, Philip J
2018-05-04
ALS (Amyotrophic Lateral Sclerosis) is a neurodegenerative disease characterized by the redistribution of the RNA binding protein TDP-43 in affected neurons: from predominantly nuclear to aggregated in the cytosol. However, the determinants of TDP-43 localization and the cellular insults that promote redistribution are incompletely understood. Here, we show that the putative Nuclear Export Signal (NES) is not required for nuclear egress of TDP-43. Moreover, when the TDP-43 domain which contains the putative NES is fused to a reporter protein, YFP, the presence of the NES is not sufficient to mediate nuclear exclusion of the fusion protein. We find that the previously studied "∆NES" mutant, in which conserved hydrophobic residues are mutated to alanines, disrupts both solubility and splicing function. We further show that nuclear export of TDP-43 is independent of the exportin XPO1. Finally, we provide evidence that nuclear egress of TDP-43 is size dependent; nuclear export of dTomato TDP-43 is significantly impaired compared to Flag TDP-43. Together, these results suggest nuclear export of TDP-43 is predominantly driven by passive diffusion.
NASA Astrophysics Data System (ADS)
Aymard, François; Gulminelli, Francesca; Margueron, Jérôme
2016-08-01
We have recently addressed the problem of the determination of the nuclear surface energy for symmetric nuclei in the framework of the extended Thomas-Fermi (ETF) approximation using Skyrme functionals. We presently extend this formalism to the case of asymmetric nuclei and the question of the surface symmetry energy. We propose an approximate expression for the diffuseness and the surface energy. These quantities are analytically related to the parameters of the energy functional. In particular, the influence of the different equation of state parameters can be explicitly quantified. Detailed analyses of the different energy components (local/non-local, isoscalar/isovector, surface/curvature and higher order) are also performed. Our analytical solution of the ETF integral improves previous models and leads to a precision of better than 200 keV per nucleon in the determination of the nuclear binding energy for dripline nuclei.
Yao, Fan; Zhou, Zhicheng; Kim, Jongchan; Hang, Qinglei; Xiao, Zhenna; Ton, Baochau N; Chang, Liang; Liu, Na; Zeng, Liyong; Wang, Wenqi; Wang, Yumeng; Zhang, Peijing; Hu, Xiaoyu; Su, Xiaohua; Liang, Han; Sun, Yutong; Ma, Li
2018-06-11
Dysregulation of YAP localization and activity is associated with pathological conditions such as cancer. Although activation of the Hippo phosphorylation cascade is known to cause cytoplasmic retention and inactivation of YAP, emerging evidence suggests that YAP can be regulated in a Hippo-independent manner. Here, we report that YAP is subject to non-proteolytic, K63-linked polyubiquitination by the SCF SKP2 E3 ligase complex (SKP2), which is reversed by the deubiquitinase OTUD1. The non-proteolytic ubiquitination of YAP enhances its interaction with its nuclear binding partner TEAD, thereby inducing YAP's nuclear localization, transcriptional activity, and growth-promoting function. Independently of Hippo signaling, mutation of YAP's K63-linkage specific ubiquitination sites K321 and K497, depletion of SKP2, or overexpression of OTUD1 retains YAP in the cytoplasm and inhibits its activity. Conversely, overexpression of SKP2 or loss of OTUD1 leads to nuclear localization and activation of YAP. Altogether, our study sheds light on the ubiquitination-mediated, Hippo-independent regulation of YAP.
Region of Nipah virus C protein responsible for shuttling between the cytoplasm and nucleus.
Horie, Ryo; Yoneda, Misako; Uchida, Shotaro; Sato, Hiroki; Kai, Chieko
2016-10-01
Nipah virus (NiV) causes severe encephalitis in humans, with high mortality. NiV nonstructural C protein (NiV-C) is essential for its pathogenicity, but its functions are unclear. In this study, we focused on NiV-C trafficking in cells and found that it localizes predominantly in the cytoplasm but partly in the nucleus. An analysis of NiV-C mutants showed that amino acids 2, 21-24 and 110-139 of NiV-C are important for its localization in the cytoplasm. Inhibitor treatment indicates that the nuclear export determinant is not a classical CRM1-dependent nuclear export signal. We also determined that amino acids 60-75 and 72-75 were important for nuclear localization of NiV-C. Furthermore, NiV-C mutants that had lost their capacity for nuclear localization inhibited the interferon (IFN) response more strongly than complete NiV-C. These results indicate that the IFN-antagonist activity of NiV-C occurs in the cytoplasm. Copyright © 2016 Elsevier Inc. All rights reserved.
Intracellular distribution of a speech/language disorder associated FOXP2 mutant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizutani, Akifumi; Department of Pediatrics, Jichi Medical University, Yakushiji 3311-1, Shimotsukeshi, Tochigi 329-0498; Matsuzaki, Ayumi
Although a mutation (R553H) in the forkhead box (FOX)P2 gene is associated with speech/language disorder, little is known about the function of FOXP2 or its relevance to this disorder. In the present study, we identify the forkhead nuclear localization domains that contribute to the cellular distribution of FOXP2. Nuclear localization of FOXP2 depended on two distally separated nuclear localization signals in the forkhead domain. A truncated version of FOXP2 lacking the leu-zip, Zn{sup 2+} finger, and forkhead domains that was observed in another patient with speech abnormalities demonstrated an aggregated cytoplasmic localization. Furthermore, FOXP2 (R553H) mainly exhibited a cytoplasmic localizationmore » despite retaining interactions with nuclear transport proteins (importin {alpha} and {beta}). Interestingly, wild type FOXP2 promoted the transport of FOXP2 (R553H) into the nucleus. Mutant and wild type FOXP2 heterodimers in the nucleus or FOXP2 R553H in the cytoplasm may underlie the pathogenesis of the autosomal dominant speech/language disorder.« less
Honda, Akinobu; Chigwechokha, Petros Kingstone; Kamada-Futagami, Yuko; Komatsu, Masaharu; Shiozaki, Kazuhiro
2018-06-01
Sialidase catalyzes the removal of sialic acids from glycoconjugates. Different from Neu1 and Neu3 sialidases, Neu4 enzymatic properties such as substrate specificity and subcellular localization are not well-conserved among vertebrates. In fish only zebrafish and medaka neu4 genes have been cloned and their polypeptides have been characterized so far. Thus, characterization of Neu4 from other fish species is necessary to evaluate Neu4 physiological functions. Here, Nile tilapia was chosen for the characterization of Neu4 polypeptide considering that it is one of the major cultured fish all over the world and that its genomic sequences are now available. Coding DNA sequence of tilapia Neu4 was identified as 1,497 bp and its recombinant protein showed broad substrate specificity and optimal sialidase enzyme activity pH at 4.0. Neu4 activity was sustained even in neutral and alkali pH. Interestingly, immunofluorescence analysis revealed that major subcellular localization of tilapia Neu4 was nuclear, quite distinct from zebrafish (ER) and medaka Neu4 (lysosome). Bioinformatic analysis showed the existence of putative nuclear localization signal (NLS) in tilapia Neu4. In general, it is known that importin families bind to several proteins via NLS and transfer them into nucleus. Therefore, to determine the involvement of putative NLS in Neu4 nuclear localization, Neu4 mutant deleting NLS was constructed and expressed in cultured cells. As a result, NLS deletion significantly diminished the nuclear localization. Furthermore, treatment of importazole, interrupter of binding importin β and RanGTP, significantly suppressed Neu4 nuclear localization. In summary, tilapia Neu4 is a unique sialidase localized at nucleus and its transport system into nucleus is regulated by importin. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Suzuki, Hideaki; Arakawa, Yasuhiro; Ito, Masaki; Saito, Shinobu; Takeda, Nobuakira; Yamada, Hisashi; Horiguchi-Yamada, Junko
2007-01-01
The myelodysplasia/myeloid leukemia factor 1-interacting protein (MLF1LP, also called KLIP1 and CENP-50) is reported to localize in both the nucleus and the cytoplasm. To investigate the functions of MLF1IP, its subnuclear localization was studied. MLF1IP was tagged with green fluorescent protein (EGFP). Fibrillarin was tagged with red fluorescent protein (DsRed). EGFP-tagged MLF1IP deletion vectors were also constructed. Plasmid-constructs were transfected into human cervical adenocarcinoma HeLa cells or monkey kidney fibroblast COS-7 cells, and the localization was studied by either confocal fluorescence microscopy or fluorescence microscopy. Ectopically expressed MLF1IP was localized mainly in the nucleolus. In some cells, small dot-like particles of MLF1IP fluorescence were observed in the nucleoplasm. Co-staining of fibrillarin disclosed that MLF1IP was co-localized with fibrillarin in the nucleolus. Deletion mutants of MLF1IP revealed that the N-terminal bipartite nuclear localization signal (NLS) was responsible for nucleolar targeting. MLF1IP was localized mainly in the nucleolus through the N-terminal bipartite NLS and partly in the nucleoplasm featuring small dot-like particles. These findings suggest that MLF1IP may have multi-functions and its different localizations may contribute to carcinogenesis.
Chromatin organization as an indicator of glucocorticoid induced natural killer cell dysfunction.
Misale, Michael S; Witek Janusek, Linda; Tell, Dina; Mathews, Herbert L
2018-01-01
It is well-established that psychological distress reduces natural killer cell immune function and that this reduction can be due to the stress-induced release of glucocorticoids. Glucocorticoids are known to alter epigenetic marks associated with immune effector loci, and are also known to influence chromatin organization. The purpose of this investigation was to assess the effect of glucocorticoids on natural killer cell chromatin organization and to determine the relationship of chromatin organization to natural killer cell effector function, e.g. interferon gamma production. Interferon gamma production is the prototypic cytokine produced by natural killer cells and is known to modulate both innate and adaptive immunity. Glucocorticoid treatment of human peripheral blood mononuclear cells resulted in a significant reduction in interferon gamma production. Glucocorticoid treatment also resulted in a demonstrable natural killer cell nuclear phenotype. This phenotype was localization of the histone, post-translational epigenetic mark, H3K27me3, to the nuclear periphery. Peripheral nuclear localization of H3K27me3 was directly related to cellular levels of interferon gamma. This nuclear phenotype was determined by direct visual inspection and by use of an automated, high through-put technology, the Amnis ImageStream. This technology combines the per-cell information content provided by standard microscopy with the statistical significance afforded by large sample sizes common to standard flow cytometry. Most importantly, this technology provides for a direct assessment of the localization of signal intensity within individual cells. The results demonstrate glucocorticoids to dysregulate natural killer cell function at least in part through altered H3K27me3 nuclear organization and demonstrate H3K27me3 chromatin organization to be a predictive indicator of glucocorticoid induced immune dysregulation of natural killer cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Hainan, Lan; Huilin, Liu; Khan, Mahamad; Xin, Zheng; YuJiang, Yang; Hui, Zhang; Naiquan, Yao
2018-06-08
Traditional views suggest that growth hormone and the growth hormone receptor (GH/GHR complex) exert their functions only on the plasma membrane. This paradigm, however, has been challenged by recent new findings that the GH/GHR complex could translocate into cell nuclei where they could still exhibit important physiological functions. We also reported the nuclear localization of porcine GH/GHR and their potential functions in porcine hepatocytes. However, the basic path of pGH/GHR's nuclear translocation remains unclear. Combining previous research results and our current findings, we proposed two basic routes of pGH/GHR's nuclear transportation as follows: 1) after pGH binding to GHR, pGH/GHR enters into the cytoplasm though clathrin- or caveolin-mediated endocytosis, then the pGH/GHR complex enters into early endosomes (Rab5-positive), and the endosome carries the GH/GHR complex to the endoplasmic reticulum (ER). After endosome docking on the ER, the endosome starts fission, and the pGH/GHR complex enters into the ER lumen. Then the pGH/GHR complex transports into the cytoplasm, possibly by the ERAD pathway. Subsequently, the pGH/GHR complex interacts with IMPα/β, which, in turn, mediates GH/GHR nuclear localization; 2) pGH binds with the GHR on the cell membrane and, subsequently, pGH/GHR internalizes into the cell and enters into the endosome (this endosome may belong to a class of endosomes called envelope-associated endosomes (NAE)). Then, the endosome carries the pGH/GHR to the nuclear membrane. After docking on the nuclear membrane, the pGH/GHR complex fuses with the nuclear membrane and then enters into the cell nucleus. Copyright © 2018 Elsevier Inc. All rights reserved.
Expanding the Definition of the Classical Bipartite Nuclear Localization Signal
Lange, Allison; McLane, Laura M.; Mills, Ryan E.; Devine, Scott E.; Corbett, Anita H.
2010-01-01
Nuclear localization signals (NLSs) are amino acid sequences that target cargo proteins into the nucleus. Rigorous characterization of NLS motifs is essential to understanding and predicting pathways for nuclear import. The best-characterized NLS is the classical NLS (cNLS), which is recognized by the cNLS receptor, importin-α. cNLSs are conventionally defined as having one (monopartite) or two clusters of basic amino acids separated by a 9-12 amino acid linker (bipartite). Motivated by the finding that Ty1 integrase, which contains an unconventional putative bipartite cNLS with a 29 amino acid linker, exploits the classical nuclear import machinery, we assessed the functional boundaries for linker length within a bipartite cNLS. We confirmed that the integrase cNLS is a bona fide bipartite cNLS, then carried out a systematic analysis of linker length in an obligate bipartite cNLS cargo, which revealed that some linkers longer than conventionally defined can function in nuclear import. Linker function is dependent on the sequence and likely the inherent flexibility of the linker. Subsequently, we interrogated the Saccharomyces cerevisiae proteome to identify cellular proteins containing putative long bipartite cNLSs. We experimentally confirmed that Rrp4 contains a bipartite cNLS with a 25 amino acid linker. Our studies reveal that the traditional definition of bipartite cNLSs is too restrictive and linker length can vary depending on amino acid composition PMID:20028483
Yanai, Mako; Sakai, Madoka; Makino, Akiko; Tomonaga, Keizo
2017-07-11
Borna disease virus (BoDV), which has a negative-sense, single-stranded RNA genome, causes persistent infection in the cell nucleus. The nuclear export signal (NES) of the viral nucleoprotein (N) consisting of leucine at positions 128 and 131 and isoleucine at positions 133 and 136 overlaps with one of two predicted binding sites for the viral phosphoprotein (P). A previous study demonstrated that higher expression of BoDV-P inhibits nuclear export of N; however, the function of N NES in the interaction with P remains unclear. We examined the subcellular localization, viral polymerase activity, and P-binding ability of BoDV-N NES mutants. We also characterized a recombinant BoDV (rBoDV) harboring an NES mutation of N. BoDV-N with four alanine-substitutions in the leucine and isoleucine residues of the NES impaired its cytoplasmic localization and abolished polymerase activity and P-binding ability. Although an alanine-substitution at position 131 markedly enhanced viral polymerase activity as determined by a minigenome assay, rBoDV harboring this mutation showed expression of viral RNAs and proteins relative to that of wild-type rBoDV. Our results demonstrate that BoDV-N NES has a dual function in BoDV replication, i.e., nuclear export of N and an interaction with P, affecting viral polymerase activity in the nucleus.
Alvisi, Gualtiero; Ripalti, Alessandro; Ngankeu, Apollinaire; Giannandrea, Maila; Caraffi, Stefano G; Dias, Manisha M; Jans, David A
2006-10-01
The catalytic subunit of human cytomegalovirus (HCMV) DNA polymerase pUL54 is a 1242-amino-acid protein, whose function, stimulated by the processivity factor, phosphoprotein UL44 (ppUL44), is essential for viral replication. The C-terminal residues (amino acids 1220-1242) of pUL54 have been reported to be sufficient for ppUL44 binding in vitro. Although believed to be important for functioning in the nuclei of infected cells, no data are available on either the interaction of pUL54 with ppUL44 in living mammalian cells or the mechanism of pUL54 nuclear transport and its relationship with that of ppUL44. The present study examines for the first time the nuclear import pathway of pUL54 and its interaction with ppUL44 using dual color, quantitative confocal laser scanning microscopy on live transfected cells and quantitative gel mobility shift assays. We showed that of two nuclear localization signals (NLSs) located at amino acids 1153-1159 (NLSA) and 1222-1227 (NLSB), NLSA is sufficient to confer nuclear localization on green fluorescent protein (GFP) by mediating interaction with importin alpha/beta. We also showed that pUL54 residues 1213-1242 are sufficient to confer ppUL44 binding abilities on GFP and that pUL54 and ppUL44 can be transported to the nucleus as a complex. Our work thus identified distinct sites within the HCMV DNA polymerase, which represent potential therapeutic targets and establishes the molecular basis of UL54 nuclear import.
Julie, Lagirand-Cantaloube; Sabrina, Batonnet-Pichon; Marie-Pierre, Leibovitch; Leibovitch, Serge A
2012-02-17
In skeletal muscle atrophy, upregulation and nuclear accumulation of the Ubiquitin E3 ligase MAFbx is essential for accelerated muscle protein loss, but the nuclear/cytoplasmic shuttling of MAFbx is undefined. Here we found that MAFbx contains two functional nuclear localization signals (NLS). Mutation or deletion of only one NLS induced cytoplasmic localization of MAFbx. We identified a non-classical NES located in the leucine charged domain (LCD) of MAFbx, which is leptomycin B insensitive. We demonstrated that mutation (L169Q) in LLXXL motif of LCD suppressed cytoplasmic retention of MAFbx. Nucleocytoplasmic shuttling of MAFbx represents a novel mechanism for targeting its substrates and its cytosolic partners in muscle atrophy. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Nucleocytoplasmic shuttling of hexokinase II in a cancer cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neary, Catherine L., E-mail: nearycl@umdnj.edu; Pastorino, John G.
2010-04-16
In yeast, the hexokinase type II enzyme (HXKII) translocates to the nucleus in the presence of excess glucose, and participates in glucose repression. However, no evidence has suggested a nuclear function for HXKII in mammalian cells. Herein, we present data showing nuclear localization of HXKII in HeLa cells, both by immunocytochemistry and subcellular fractionation. HXKII is extruded from the nucleus, at least in part, by the activity of the exportin 1/CrmA system, as demonstrated by increased nuclear expression and decreased cytoplasmic expression after incubation with leptomycin B, a bacterially-derived exportin inhibitor. Furthermore, cytoplasmic localization of HXKII is dependent on itsmore » enzymatic activity, as inhibiting HXKII activity using 2-deoxy-D-glucose (2DG) increased nuclear localization. This effect was more significant in cells incubated in the absence of glucose for 24 h prior to addition of 2DG. Regulated translocation of HXKII to the nucleus of mammalian cells could represent a previously unknown glucose-sensing mechanism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanotayan, Rujira; Fukuchi, Mikoto; Imamichi, Shoji
2015-02-20
XRCC4 is one of the crucial proteins in the repair of DNA double-strand break (DSB) through non-homologous end-joining (NHEJ). As XRCC4 consists of 336 amino acids, N-terminal 200 amino acids include domains for dimerization and for association with DNA ligase IV and XLF and shown to be essential for XRCC4 function in DSB repair and V(D)J recombination. On the other hand, the role of the remaining C-terminal region of XRCC4 is not well understood. In the present study, we noticed that a stretch of ∼20 amino acids located at the extreme C-terminus of XRCC4 is highly conserved among vertebrate species.more » To explore its possible importance, series of mutants in this region were constructed and assessed for the functionality in terms of ability to rescue radiosensitivity of M10 cells lacking XRCC4. Among 13 mutants, M10 transfectant with N326L mutant (M10-XRCC4{sup N326L}) showed elevated radiosensitivity. N326L protein showed defective nuclear localization. N326L sequence matched the consensus sequence of nuclear export signal. Leptomycin B treatment accumulated XRCC4{sup N326L} in the nucleus but only partially rescued radiosensitivity of M10-XRCC4{sup N326L}. These results collectively indicated that the functional defects of XRCC4{sup N326L} might be partially, but not solely, due to its exclusion from nucleus by synthetic nuclear export signal. Further mutation of XRCC4 Asn326 to other amino acids, i.e., alanine, aspartic acid or glutamine did not affect the nuclear localization but still exhibited radiosensitivity. The present results indicated the importance of the extremely C-terminal region of XRCC4 and, especially, Asn326 therein. - Highlights: • Extremely C-terminal region of XRCC4 is highly conserved among vertebrate species. • XRCC4 C-terminal point mutants, R325F and N326L, are functionally deficient in terms of survival after irradiation. • N326L localizes to the cytoplasm because of synthetic nuclear export signal. • Leptomycin B restores the nuclear localization of N326L but only partially reverses radiosensitivity. • Other N326 mutants (N326A, N326D and N326Q) are functionally deficient in terms of survival after irradiation.« less
Marchand, Benoît; Arsenault, Dominique; Raymond-Fleury, Alexandre; Boisvert, François-Michel; Boucher, Marie-Josée
2015-01-01
Glycogen synthase kinase-3 (GSK3) are ubiquitously expressed serine-threonine kinases involved in a plethora of functions ranging from the control of glycogen metabolism to transcriptional regulation. We recently demonstrated that GSK3 inhibition triggers JNK-cJUN-dependent apoptosis in human pancreatic cancer cells. However, the comprehensive picture of downstream GSK3-regulated pathways/functions remains elusive. Herein, counterbalancing the death signals, we show that GSK3 inhibition induces prosurvival signals through increased activity of the autophagy/lysosomal network. Our data also reveal a contribution of GSK3 in the regulation of the master transcriptional regulator of autophagy and lysosomal biogenesis, transcription factor EB (TFEB) in pancreatic cancer cells. Similarly to mammalian target of rapamycin (mTOR) inhibition, GSK3 inhibitors promote TFEB nuclear localization and leads to TFEB dephosphorylation through endogenous serine/threonine phosphatase action. However, GSK3 and mTOR inhibition impinge differently and independently on TFEB phosphorylation suggesting that TFEB is regulated by a panel of kinases and/or phosphatases. Despite their differential impact on TFEB phosphorylation, both GSK3 and mTOR inhibitors promote 14-3-3 dissociation and TFEB nuclear localization. Quantitative mass spectrometry analyses further reveal an increased association of TFEB with nuclear proteins upon GSK3 and mTOR inhibition suggesting a positive impact on TFEB transcriptional function. Finally, a predominant nuclear localization of TFEB is unveiled in fully fed pancreatic cancer cells, whereas a reduction in TFEB expression significantly impairs their capacity for growth in an anchorage-independent manner. In addition, TFEB-restricted cells are more sensitive to apoptosis upon GSK3 inhibition. Altogether, our data uncover new functions under the control of GSK3 in pancreatic cancer cells in addition to providing key insight into TFEB regulation. PMID:25561726
Analyses of pea necrotic yellow dwarf virus-encoded proteins.
Krenz, Björn; Schießl, Ingrid; Greiner, Eva; Krapp, Susanna
2017-06-01
Pea necrotic yellow dwarf virus (PNYDV) is a multipartite, circular, single-stranded DNA plant virus. PNYDV encodes eight proteins and the function of three of which remains unknown-U1, U2, and U4. PNYDV proteins cellular localization was analyzed by GFP tagging and bimolecular fluorescence complementation (BiFC) studies. The interactions of all eight PNYDV proteins were tested pairwise in planta (36 combinations in total). Seven interactions were identified and two (M-Rep with CP and MP with U4) were characterized further. MP and U4 complexes appeared as vesicle-like spots and were localized at the nuclear envelope and cell periphery. These vesicle-like spots were associated with the endoplasmatic reticulum. In addition, a nuclear localization signal (NLS) was mapped for U1, and a mutated U1 with NLS disrupted localized at plasmodesmata and therefore might also have a role in movement. Taken together, this study provides evidence for previously undescribed nanovirus protein-protein interactions and their cellular localization with novel findings not only for those proteins with unknown function, but also for characterized proteins such as the CP.
Yang, Lei; Jiang, Weihua; Qiu, Lipeng; Jiang, Xuewei; Zuo, Daiying; Wang, Dongkai; Yang, Li
2015-04-14
Strong blue fluorescent polyethylene glycol (PEG) anchored carbon nitride dots (CDs@PEG) with a high quantum yield (QY) of 75.8% have been synthesized by a one step hydrothermal treatment. CDs with a diameter of ca. 6 nm are well dispersed in water and present a graphite-like structure. Photoluminescence (PL) studies reveal that CDs display excitation-dependent behavior and are stable under various test conditions. Based on the as-prepared CDs, we designed novel cell nucleus targeting imaging carbon dots functionalized with a nuclear localization signal (NLS) peptide. The favourable biocompatibilities of CDs and NLS modified CDs (NLS-CDs) are confirmed by in vitro cytotoxicity assays. Importantly, intracellular localization experiments in MCF7 and A549 cells demonstrate that NLS-CDs could be internalized in the nucleus and show blue light, which indicates that CDs may serve as cell nucleus imaging probes.
Fascin regulates nuclear actin during Drosophila oogenesis
Kelpsch, Daniel J.; Groen, Christopher M.; Fagan, Tiffany N.; Sudhir, Sweta; Tootle, Tina L.
2016-01-01
Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5–9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved. PMID:27535426
Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf
2015-12-07
Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High-NLS-L-NPs). Results indicate that a higher NLS density does not result in maximum protein nuclear localization and that a universal optimal density for NPs of different sizes does not exist.
Baker, Steven Andrew; Lombardi, Laura Marie; Zoghbi, Huda Yahya
2015-09-11
Methyl-CpG binding protein 2 (MeCP2) is a nuclear protein with important roles in regulating chromatin structure and gene expression, and mutations in MECP2 cause Rett syndrome (RTT). Within the MeCP2 protein sequence, the nuclear localization signal (NLS) is reported to reside between amino acids 255-271, and certain RTT-causing mutations overlap with the MeCP2 NLS, suggesting that they may alter nuclear localization. One such mutation, R270X, is predicted to interfere with the localization of MeCP2, but recent in vivo studies have demonstrated that this mutant remains entirely nuclear. To clarify the mechanism of MeCP2 nuclear import, we isolated proteins that interact with the NLS and identified karyopherin α 3 (KPNA3 or Kap-α3) and karyopherin α 4 (KPNA4 or Kap-α4) as key binding partners of MeCP2. MeCP2-R270X did not interact with KPNA4, consistent with a requirement for an intact NLS in this interaction. However, this mutant retains binding to KPNA3, accounting for the normal localization of MeCP2-R270X to the nucleus. These data provide a mechanism for MeCP2 nuclear import and have implications for the design of therapeutics aimed at modulating the function of MeCP2 in RTT patients. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Tissot, Nicolas; Lepesant, Jean-Antoine; Bernard, Fred; Legent, Kevin; Bosveld, Floris; Martin, Charlotte; Faklaris, Orestis; Bellaïche, Yohanns; Coppey, Maïté; Guichet, Antoine
2017-01-01
Controlling nucleus localization is crucial for a variety of cellular functions. In the Drosophila oocyte, nuclear asymmetric positioning is essential for the reorganization of the microtubule (MT) network that controls the polarized transport of axis determinants. A combination of quantitative three-dimensional live imaging and laser ablation-mediated force analysis reveal that nuclear positioning is ensured with an unexpected level of robustness. We show that the nucleus is pushed to the oocyte antero-dorsal cortex by MTs and that its migration can proceed through distinct tracks. Centrosome-associated MTs favour one migratory route. In addition, the MT-associated protein Mud/NuMA that is asymmetrically localized in an Asp-dependent manner at the nuclear envelope hemisphere where MT nucleation is higher promotes a separate route. Our results demonstrate that centrosomes do not provide an obligatory driving force for nuclear movement, but together with Mud, contribute to the mechanisms that ensure the robustness of asymmetric nuclear positioning. PMID:28447612
Jaw1/LRMP has a role in maintaining nuclear shape via interaction with SUN proteins.
Kozono, Takuma; Tadahira, Kazuko; Okumura, Wataru; Itai, Nao; Tamura-Nakano, Miwa; Dohi, Taeko; Tonozuka, Takashi; Nishikawa, Atsushi
2018-06-06
Jaw1/LRMP is characterized as a type II integral membrane protein that is localized to endoplasmic reticulum (ER), however, its physiological functions have been poorly understood. An alignment of amino acid sequence of Jaw1 with KASH proteins, outer nuclear membrane proteins, revealed that Jaw1 has a partial homology to the KASH domain. Here, we show that the function of Jaw1 is to maintain nuclear shape in mouse melanoma cell line. The siRNA-mediated knockdown of Jaw1 caused a severe defect in nuclear shape, and the defect was rescued by ectopic expression of siRNA-resistant Jaw1. Since co-immunoprecipitation assay indicates that Jaw1 interacts with SUN proteins that are inner nuclear proteins and microtubules, this study suggests that Jaw1 has a role in maintaining nuclear shape via interactions with SUN proteins and microtubules.
Localization of 14-3-3 proteins in the nuclei of arabidopsis and maize.
Bihn, E A; Paul, A L; Wang, S W; Erdos, G W; Ferl, R J
1997-12-01
It has been demonstrated that 14-3-3 proteins are present in the nuclei of Arabidopsis thaliana and Zea mays cells using laser scanning confocal microscopy and immunocytochemistry with monoclonal antibodies against plant 14-3-3 proteins. Confirmation of nuclear localization provides insight into the range of functions normally attributed to 14-3-3 proteins, especially since the association of 14-3-3s with transcription factors is (thus far) a phenomenon unique to plants, and since 14-3-3 proteins do not possess a recognizable nuclear targeting sequence.
Molzan, Manuela; Ottmann, Christian
2013-03-01
Myeloid leukemia factor 1 (MLF1) is associated with the development of leukemic diseases such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, information on the physiological function of MLF1 is limited and mostly derived from studies identifying MLF1 interaction partners like CSN3, MLF1IP, MADM, Manp and the 14-3-3 proteins. The 14-3-3-binding site surrounding S34 is one of the only known functional features of the MLF1 sequence, along with one nuclear export sequence (NES) and two nuclear localization sequences (NLS). It was recently shown that the subcellular localization of mouse MLF1 is dependent on 14-3-3 proteins. Based on these findings, we investigated whether the subcellular localization of human MLF1 was also directly 14-3-3-dependent. Live cell imaging with GFP-fused human MLF1 was used to study the effects of mutations and deletions on its subcellular localization. Surprisingly, we found that the subcellular localization of full-length human MLF1 is 14-3-3-independent, and is probably regulated by other as-yet-unknown proteins.
Isegawa, Yuji; Miyamoto, Yoichi; Yasuda, Yoshinari; Semi, Katsunori; Tsujimura, Kenji; Fukunaga, Rikiro; Ohshima, Atsushi; Horiguchi, Yasuhiro; Yoneda, Yoshihiro; Sugimoto, Nakaba
2008-01-01
To elucidate the function of the U69 protein kinase of human herpesvirus 6 (HHV-6) in vivo, we first analyzed its subcellular localization in HHV-6-infected Molt 3 cells by using polyclonal antibodies against the U69 protein. Immunofluorescence studies showed that the U69 signal localized to the nucleus in a mesh-like pattern in both HHV-6-infected and HHV6-transfected cells. A computer program predicted two overlapping classic nuclear localization signals (NLSs) in the N-terminal region of the protein; this NLS motif is highly conserved in the N-terminal region of most of the herpesvirus protein kinases examined to date. An N-terminal deletion mutant form of the protein failed to enter the nucleus, whereas a fusion protein of green fluorescent protein (GFP) and/or glutathione S-transferase (GST) and the U69 N-terminal region was transported into the nucleus, demonstrating that the predicted N-terminal NLSs of the protein actually function as NLSs. The nuclear transport of the GST-GFP fusion protein containing the N-terminal NLS of U69 was inhibited by wheat germ agglutinin and by the Q69L Ran-GTP mutant, indicating that the U69 protein is transported into the nucleus from the cytoplasm via classic nuclear transport machinery. A cell-free import assay showed that the nuclear transport of the U69 protein was mediated by importin α/β in conjunction with the small GTPase Ran. When the import assay was performed with a low concentration of each importin-α subtype, NPI2/importin-α7 elicited more efficient transport activity than did Rch1/importin-α1 or Qip1/importin-α3. These results suggest a relationship between the localization of NPI2/importin-α7 and the cell tropism of HHV-6. PMID:18003734
Patel, Hansa; Truant, Ray; Rachubinski, Richard A; Capone, John P
2005-01-01
Peroxisome proliferator-activated nuclear hormone receptors (PPAR) are ligand-activated transcription factors that play pivotal roles in governing metabolic homeostasis and cell growth. PPARs are primarily in the nucleus but, under certain circumstances, can be found in the cytoplasm. We show here that PPAR(alpha) interacts with the centrosome-associated protein CAP350. CAP350 also interacts with PPAR(delta), PPAR(gamma) and liver-X-receptor alpha, but not with the 9-cis retinoic acid receptor, RXR(alpha). Immunofluorescence analysis indicated that PPAR(alpha) is diffusely distributed in the nucleus and excluded from the cytoplasm. However, in the presence of coexpressed CAP350, PPAR(alpha) colocalizes with CAP350 to discrete nuclear foci and to the centrosome, perinuclear region and intermediate filaments. In contrast, the subcellular distribution of RXR(alpha) or of thyroid hormone receptor alpha was not altered by coexpression of CAP350. An amino-terminal fragment of CAP350 was localized exclusively to nuclear foci and was sufficient to recruit PPAR(alpha) to these sites. Mutation of the single putative nuclear hormone receptor interacting signature motif LXXLL present in this fragment had no effect on its subnuclear localization but abrogated recruitment of PPAR(alpha) to nuclear foci. Surprisingly, mutation of the LXXLL motif in this CAP350 subfragment did not prevent its binding to PPAR(alpha) in vitro, suggesting that this motif serves some function other than PPAR(alpha) binding in recruiting PPAR(alpha) to nuclear spots. CAP350 inhibited PPAR(alpha)-mediated transactivation in an LXXLL-dependent manner, suggesting that CAP350 represses PPAR(alpha) function. Our findings implicate CAP350 in a dynamic process that recruits PPAR(alpha) to discrete nuclear and cytoplasmic compartments and suggest that altered intracellular compartmentalization represents a regulatory process that modulates PPAR function.
Murayama, Rie; Kimura-Asami, Mariko; Togo-Ohno, Marina; Yamasaki-Kato, Yumiko; Naruse, Taeko K; Yamamoto, Takeshi; Hayashi, Takeharu; Ai, Tomohiko; Spoonamore, Katherine G; Kovacs, Richard J; Vatta, Matteo; Iizuka, Mai; Saito, Masumi; Wani, Shotaro; Hiraoka, Yuichi; Kimura, Akinori; Kuroyanagi, Hidehito
2018-06-12
RBM20 is a major regulator of heart-specific alternative pre-mRNA splicing of TTN encoding a giant sarcomeric protein titin. Mutation in RBM20 is linked to autosomal-dominant familial dilated cardiomyopathy (DCM), yet most of the RBM20 missense mutations in familial and sporadic cases were mapped to an RSRSP stretch in an arginine/serine-rich region of which function remains unknown. In the present study, we identified an R634W missense mutation within the stretch and a G1031X nonsense mutation in cohorts of DCM patients. We demonstrate that the two serine residues in the RSRSP stretch are constitutively phosphorylated and mutations in the stretch disturb nuclear localization of RBM20. Rbm20 S637A knock-in mouse mimicking an S635A mutation reported in a familial case showed a remarkable effect on titin isoform expression like in a patient carrying the mutation. These results revealed the function of the RSRSP stretch as a critical part of a nuclear localization signal and offer the Rbm20 S637A mouse as a good model for in vivo study.
Chueh, Fu-Yu; Leong, King-Fu; Cronk, Robert J; Venkitachalam, Srividya; Pabich, Samantha; Yu, Chao-Lan
2011-07-01
STAT (signal transducer and activator of transcription) proteins play a critical role in cellular response to a wide variety of cytokines and growth factors by regulating specific nuclear genes. STAT-dependent gene transcription can be finely tuned through the association with co-factors in the nucleus. We showed previously that STAT5 (including 5a and 5b) specifically interacts with a mitochondrial enzyme PDC-E2 (E2 subunit of pyruvate dehydrogenase complex) in both leukemic T cells and cytokine-stimulated cells. However, the functional significance of this novel association remains largely unknown. Here we report that PDC-E2 may function as a co-activator in STAT5-dependent nuclear gene expression. Subcellular fractionation analysis revealed that a substantial amount of PDC-E2 was constitutively present in the nucleus of BaF3, an interleukin-3 (IL-3)-dependent cell line. IL-3-induced tyrosine-phosphorylated STAT5 associated with nuclear PDC-E2 in co-immunoprecipitation analysis. These findings were confirmed by confocal immunofluorescence microscopy showing constant nuclear localization of PDC-E2 and its co-localization with STAT5 after IL-3 stimulation. Similar to mitochondrial PDC-E2, nuclear PDC-E2 was lipoylated and associated with PDC-E1. Overexpression of PDC-E2 in BaF3 cells augmented IL-3-induced STAT5 activity as measured by reporter assay with consensus STAT5-binding sites. Consistent with the reporter data, PDC-E2 overexpression in BaF3 cells led to elevated mRNA levels of endogenous SOCS3 (suppressor of cytokine signaling 3) gene, a known STAT5 target. We further identified two functional STAT5-binding sites in the SOCS3 gene promoter important for its IL-3-inducibility. The observation that both cis-acting elements were essential to detect the stimulatory effect by PDC-E2 strongly supports the role of PDC-E2 in up-regulating the transactivating ability of STAT5. All together, our results reveal a novel function of PDC-E2 in the nucleus. It also raises the possibility of nuclear-mitochondrial crosstalk through the interaction between STAT5 and PDC-E2. Copyright © 2011 Elsevier Inc. All rights reserved.
Chueh, Fu-Yu; Leong, King-Fu; Cronk, Robert J.; Venkitachalam, Srividya; Pabich, Samantha; Yu, Chao-Lan
2011-01-01
STAT (signal transducer and activator of transcription) proteins play a critical role in cellular response to a wide variety of cytokines and growth factors by regulating specific nuclear genes. STAT-dependent gene transcription can be finely tuned through the association with cofactors in the nucleus. We showed previously that STAT5 (including 5a and 5b) specifically interacts with a mitochondrial enzyme PDC-E2 (E2 subunit of pyruvate dehydrogenase complex) in both leukemic T cells and cytokine-stimulated cells. However, the functional significance of this novel association remains largely unknown. Here we report that PDC-E2 may function as a co-activator in STAT5-dependent nuclear gene expression. Subcellular fractionation analysis revealed that a substantial amount of PDC-E2 was constitutively present in the nucleus of BaF3, an interleukin-3 (IL-3)-dependent cell line. IL-3-induced tyrosine-phosphorylated STAT5 associated with nuclear PDC-E2 in co-immunoprecipitation analysis. These findings were confirmed by confocal immunofluorescence microscopy showing constant nuclear localization of PDC-E2 and its co-localization with STAT5 after IL-3 stimulation. Similar to mitochondrial PDC-E2, nuclear PDC-E2 was lipoylated and associated with PDC-E1. Overexpression of PDC-E2 in BaF3 cells augmented IL-3-induced STAT5 activity as measured by reporter assay with consensus STAT5-binding sites. Consistent with the reporter data, PDC-E2 overexpression in BaF3 cells led to elevated mRNA levels of endogenous SOCS3 (suppressor of cytokine signaling 3) gene, a known STAT5 target. We further identified two functional STAT5-binding sites in the SOCS3 gene promoter important for its IL-3-inducibility. The observation that both cis-acting elements were essential to detect the stimulatory effect by PDC-E2 strongly supports the role of PDC-E2 in up-regulating the transactivating ability of STAT5. All together, our results reveal a novel function of PDC-E2 in the nucleus. It also raises the possibility of nuclear-mitochondrial crosstalk through the interaction between STAT5 and PDC-E2. PMID:21397011
Host and viral determinants for MxB restriction of HIV-1 infection.
Matreyek, Kenneth A; Wang, Weifeng; Serrao, Erik; Singh, Parmit Kumar; Levin, Henry L; Engelman, Alan
2014-10-25
Interferon-induced cellular proteins play important roles in the host response against viral infection. The Mx family of dynamin-like GTPases, which include MxA and MxB, target a wide variety of viruses. Despite considerable evidence demonstrating the breadth of antiviral activity of MxA, human MxB was only recently discovered to specifically inhibit lentiviruses. Here we assess both host and viral determinants that underlie MxB restriction of HIV-1 infection. Heterologous expression of MxB in human osteosarcoma cells potently inhibited HIV-1 infection (~12-fold), yet had little to no effect on divergent retroviruses. The anti-HIV effect manifested as a partial block in the formation of 2-long terminal repeat circle DNA and hence nuclear import, and we accordingly found evidence for an additional post-nuclear entry block. A large number of previously characterized capsid mutations, as well as mutations that abrogated integrase activity, counteracted MxB restriction. MxB expression suppressed integration into gene-enriched regions of chromosomes, similar to affects observed previously when cells were depleted for nuclear transport factors such as transportin 3. MxB activity did not require predicted GTPase active site residues or a series of unstructured loops within the stalk domain that confer functional oligomerization to related dynamin family proteins. In contrast, we observed an N-terminal stretch of residues in MxB to harbor key determinants. Protein localization conferred by a nuclear localization signal (NLS) within the N-terminal 25 residues, which was critical, was fully rescuable by a heterologous NLS. Consistent with this observation, a heterologous nuclear export sequence (NES) abolished full-length MxB activity. We additionally mapped sub-regions within amino acids 26-90 that contribute to MxB activity, finding sequences present within residues 27-50 particularly important. MxB inhibits HIV-1 by interfering with minimally two steps of infection, nuclear entry and post-nuclear trafficking and/or integration, without destabilizing the inherent catalytic activity of viral preintegration complexes. Putative MxB GTPase active site residues and stalk domain Loop 4 -- both previously shown to be necessary for MxA function -- were dispensable for MxB antiviral activity. Instead, we highlight subcellular localization and a yet-determined function(s) present in the unique MxB N-terminal region to be required for HIV-1 restriction.
Sundram, Vasudha; Ganju, Aditya; Hughes, Joshua E.; Khan, Sheema; Chauhan, Subhash C.; Jaggi, Meena
2014-01-01
Over 80% of colon cancer development and progression is a result of the dysregulation of β-catenin signaling pathway. Herein, for the first time, we demonstrate that a serine-threonine kinase, Protein Kinase D1 (PKD1), modulates the functions of β-catenin to suppress colon cancer growth. Analysis of normal and colon cancer tissues reveals downregulation of PKD1 expression in advanced stages of colon cancer and its co-localization with β-catenin in the colon crypts. This PKD1 downregulation corresponds with the aberrant expression and nuclear localization of β-catenin. In-vitro investigation of the PKD1-β-catenin interaction in colon cancer cells reveal that PKD1 overexpression suppresses cell proliferation and clonogenic potential and enhances cell-cell aggregation. We demonstrate that PKD1 directly interacts with β-catenin and attenuates β-catenin transcriptional activity by decreasing nuclear β-catenin levels. Additionally, we show that inhibition of nuclear β-catenin transcriptional activity is predominantly influenced by nucleus targeted PKD1. This subcellular modulation of β-catenin results in enhanced membrane localization of β-catenin and thereby increases cell-cell adhesion. Studies in a xenograft mouse model indicate that PKD1 overexpression delayed tumor appearance, enhanced necrosis and lowered tumor hypoxia. Overall, our results demonstrate a putative tumor-suppressor function of PKD1 in colon tumorigenesis via modulation of β-catenin functions in cells. PMID:25149539
Ichikawa-Tomikawa, Naoki; Sugimoto, Kotaro; Satohisa, Seiro; Nishiura, Keisuke; Chiba, Hideki
2011-01-01
Tight junctions are intercellular junctions localized at the most apical end of the lateral plasma membrane. They consist of four kinds of transmembrane proteins (occludin, claudins, junctional adhesion molecules, and tricellulin) and huge numbers of scaffolding proteins and contribute to the paracellular barrier and fence function. The mutation and deletion of these proteins impair the functions of tight junctions and cause various human diseases. In this paper, we provide an overview of recent studies on transmembrane proteins of tight junctions and highlight the functional significance of tight junctions, extracellular matrix, and nuclear receptors in epithelial differentiation. PMID:22162632
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalime, Erin N.; Pekosz, Andrew, E-mail: apekosz@jhsph.edu
The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 inmore » addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishino, Tasuku; Matsunaga, Ryota; Konishi, Hiroaki, E-mail: hkonishi@pu-hiroshima.ac.jp
2015-08-21
GAREM1 (Grb2-associated regulator of Erk/MAPK1) is an adaptor protein that is involved in the epidermal growth factor (EGF) pathway. The nuclear localization of GAREM1 depends on the nuclear localization sequence (NLS), which is located at the N-terminal CABIT (cysteine-containing, all in Themis) domain. Here, we identified 14-3-3ε as a GAREM-binding protein, and its binding site is closely located to the NLS. This 14-3-3 binding site was of the atypical type and independent of GAREM phosphorylation. Moreover, the binding of 14-3-3 had an effect on the nuclear localization of GAREM1. Unexpectedly, we observed that the CABIT domain had intramolecular association withmore » the C-terminal SAM (sterile alpha motif) domain. This association might be inhibited by binding of 14-3-3 at the CABIT domain. Our results demonstrate that the mechanism underlying the nuclear localization of GAREM1 depends on its NLS in the CABIT domain, which is controlled by the binding of 14-3-3 and the C-terminal SAM domain. We suggest that the interplay between 14-3-3, SAM domain and CABIT domain might be responsible for the distribution of GAREM1 in mammalian cells. - Highlights: • 14-3-3ε regulated the nuclear localization of GAREM1 as its binding partner. • The atypical 14-3-3 binding site of GAREM1 is located near the NLS in CABIT domain. • The CABIT domain had intramolecular association with the SAM domain in GAREM1. • Subcellular localization of GAREM1 is affected with its CABIT-SAM interaction.« less
Mechanism for G2 phase-specific nuclear export of the kinetochore protein CENP-F.
Loftus, Kyle M; Cui, Heying; Coutavas, Elias; King, David S; Ceravolo, Amanda; Pereiras, Dylan; Solmaz, Sozanne R
2017-08-03
Centromere protein F (CENP-F) is a component of the kinetochore and a regulator of cell cycle progression. CENP-F recruits the dynein transport machinery and orchestrates several cell cycle-specific transport events, including transport of the nucleus, mitochondria and chromosomes. A key regulatory step for several of these functions is likely the G2 phase-specific export of CENP-F from the nucleus to the cytosol, where the cytoplasmic dynein transport machinery resides; however, the molecular mechanism of this process is elusive. Here, we have identified 3 phosphorylation sites within the bipartite classical nuclear localization signal (cNLS) of CENP-F. These sites are specific for cyclin-dependent kinase 1 (Cdk1), which is active in G2 phase. Phosphomimetic mutations of these residues strongly diminish the interaction of the CENP-F cNLS with its nuclear transport receptor karyopherin α. These mutations also diminish nuclear localization of the CENP-F cNLS in cells. Notably, the cNLS is phosphorylated in the -1 position, which is important to orient the adjacent major motif for binding into its pocket on karyopherin α. We propose that localization of CENP-F is regulated by a cNLS, and a nuclear export pathway, resulting in nuclear localization during most of interphase. In G2 phase, the cNLS is weakened by phosphorylation through Cdk1, likely resulting in nuclear export of CENP-F via the still active nuclear export pathway. Once CENP-F resides in the cytosol, it can engage in pathways that are important for cell cycle progression, kinetochore assembly and the faithful segregation of chromosomes into daughter cells.
Nuclear pore proteins are involved in the biogenesis of functional tRNA.
Simos, G; Tekotte, H; Grosjean, H; Segref, A; Sharma, K; Tollervey, D; Hurt, E C
1996-05-01
Los1p and Pus1p, which are involved in tRNA biogenesis, were found in a genetic screen for components interacting with the nuclear pore protein Nsp1p. LOS1, PUS1 and NSP1 interact functionally, since the combination of mutations in the three genes causes synthetic lethality. Pus1p is an intranuclear protein which exhibits a nucleotide-specific and intron-dependent tRNA pseudouridine synthase activity. Los1p was shown previously to be required for efficient pre-tRNA splicing; we report here that Los1p localizes to the nuclear pores and is linked functionally to several components of the tRNA biogenesis machinery including Pus1p and Tfc4p. When the formation of functional tRNA was analyzed by an in vivo assay, the los1(-) pus1(-) double mutant, as well as several thermosensitive nucleoporin mutants including nsp1, nup116, nup133 and nup85, exhibited loss of suppressor tRNA activity even at permissive temperatures. These data suggest that nuclear pore proteins are required for the biogenesis of functional tRNA.
Chang, Ji Suk; Huypens, Peter; Zhang, Yubin; Black, Chelsea; Kralli, Anastasia; Gettys, Thomas W
2010-06-04
Peroxisome proliferator-activated receptor gamma co-activator-1alpha (PGC-1alpha) plays a central role in the regulation of cellular energy metabolism and metabolic adaptation to environmental and nutritional stimuli. We recently described a novel, biologically active splice variant of PGC-1alpha (NT-PGC-1alpha, amino acids 1-270) that retains the ability to interact with and transactivate nuclear hormone receptors through its N-terminal transactivation domain. Whereas PGC-1alpha is an unstable nuclear protein sensitive to ubiquitin-mediated targeting to the proteasome, NT-PGC-1alpha is relatively stable and predominantly cytoplasmic, suggesting that its ability to interact with and activate nuclear receptors and transcription factors is dependent upon regulated access to the nucleus. We provide evidence that NT-PGC-1alpha interacts with the nuclear exportin, CRM1, through a specific leucine-rich domain (nuclear export sequence) that regulates its export to the cytoplasm. The nuclear export of NT-PGC-1alpha is inhibited by protein kinase A-dependent phosphorylation of Ser-194, Ser-241, and Thr-256 on NT-PGC-1alpha, which effectively increases its nuclear concentration. Using site-directed mutagenesis to prevent or mimic phosphorylation at these sites, we show that the transcriptional activity of NT-PGC-1alpha is regulated in part through regulation of its subcellular localization. These findings suggest that the function of NT-PGC-1alpha as a transcriptional co-activator is regulated by protein kinase A-dependent inhibition of CRM1-mediated export from the nucleus.
Requirement of Hsp105 in CoCl{sub 2}-induced HIF-1α accumulation and transcriptional activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikami, Hiroki; Saito, Youhei, E-mail: ysaito@mb.kyoto-phu.ac.jp; Okamoto, Namiko
The mammalian stress protein Hsp105α protects cells from stress conditions. Several studies have indicated that Hsp105α is overexpressed in many types of solid tumors, which contain hypoxic microenvironments. However, the role of Hsp105α in hypoxic tumors remains largely unknown. We herein demonstrated the involvement of Hsp105α in HIF-1 functions induced by the hypoxia-mimetic agent CoCl{sub 2}. While Hsp105α is mainly localized in the cytoplasm under normal conditions, a treatment with CoCl{sub 2} induces the nuclear localization of Hsp105α, which correlated with HIF-1α expression levels. The overexpression of degradation-resistant HIF-1α enhances the nuclear localization of Hsp105α without the CoCl{sub 2} treatment.more » The CoCl{sub 2}-dependent transcriptional activation of HIF-1, which is measured using a reporter gene containing a HIF-responsive element, is reduced by the knockdown of Hsp105α. Furthermore, the CoCl{sub 2}-induced accumulation of HIF-1α is enhanced by heat shock, which results in the nuclear localization of Hsp105, and is suppressed by the knockdown of Hsp105. Hsp105 associates with HIF-1α in CoCl{sub 2}-treated cells. These results suggest that Hsp105α plays an important role in the functions of HIF-1 under hypoxic conditions, in which Hsp105α enhances the accumulation and transcriptional activity of HIF-1 through the HIF-1α-mediated nuclear localization of Hsp105α. - Highlights: • Hsp105α is required for the CoCl{sub 2}-induced transcriptional activation and accumulation of HIF-1. • Hsp105α localizes to the nucleus and interacts with HIF-1α in CoCl{sub 2}-treated cells. • Hsp105 enhances the CoCl{sub 2}-induced accumulation of HIF-1α under heat shock conditions.« less
Barboule, Nadia; Truchet, Isabelle; Valette, Annie
2005-04-01
Bcl-2 phosphorylation is a normal physiological process occurring at mitosis or during mitotic arrest induced by microtubule damaging agents. The consequences of Bcl-2 phosphorylation on its function are still controversial. To better understand the role of Bcl-2 phosphorylation in mitosis, we studied the subcellular localization of phosphorylated forms of Bcl-2. Immunofluorescence experiments performed in synchronized HeLa cells indicate for the first time that mitotic phosphorylated forms of Bcl-2 can be detected in nuclear structures in prophase cells together with nucleolin and Ki-67. In later mitotic stages, as previously described, phosphorylated forms of Bcl-2 are localized on mitotic chromosomes. In addition, we demonstrate that Bcl-2 in these structures is at least in part phosphorylated on the T56 residue. Then, coimmunoprecipitation experiments reveal that, in cells synchronized at the onset of mitosis, Bcl-2 is present in a complex with nucleolin, cdc2 kinase and PP1 phosphatase. Taken together, these data further support the idea that Bcl-2 could have a new function at mitosis.
Scharf, Andrea; Rockel, Thomas Dino; von Mikecz, Anna
2007-06-01
Proteasomes are ATP-driven, multisubunit proteolytic machines that degrade endogenous proteins into peptides and play a crucial role in cellular events such as the cell cycle, signal transduction, maintenance of proper protein folding and gene expression. Recent evidence indicates that the ubiquitin-proteasome system is an active component of the cell nucleus. A characteristic feature of the nucleus is its organization into distinct domains that have a unique composition of macromolecules and dynamically form as a response to the requirements of nuclear function. Here, we show by systematic application of different immunocytochemical procedures and comparison with signature proteins of nuclear domains that during interphase endogenous proteasomes are localized diffusely throughout the nucleoplasm, in speckles, in nuclear bodies, and in nucleoplasmic foci. Proteasomes do not occur in the nuclear envelope region or the nucleolus, unless nucleoplasmic invaginations expand into this nuclear body. Confirmedly, proteasomal proteolysis is detected in nucleoplasmic foci, but is absent from the nuclear envelope or nucleolus. The results underpin the idea that the ubiquitin-proteasome system is not only located, but also proteolytically active in distinct nuclear domains and thus may be directly involved in gene expression, and nuclear quality control.
Pai, Chi-Yun; Kuo, Tung-Sheng; Jaw, Thomas J.; Kurant, Estee; Chen, Cheng-Tse; Bessarab, Dmitri A.; Salzberg, Adi; Sun, Y. Henry
1998-01-01
The Extradenticle (Exd) protein in Drosophila acts as a cofactor to homeotic proteins. Its nuclear localization is regulated. We report the cloning of the Drosophila homothorax (hth) gene, a homolog of the mouse Meis1 proto-oncogene that has a homeobox related to that of exd. Comparison with Meis1 finds two regions of high homology: a novel MH domain and the homeodomain. In imaginal discs, hth expression coincides with nuclear Exd. hth and exd also have virtually identical, mutant clonal phenotypes in adults. These results suggest that hth and exd function in the same pathway. We show that hth acts upstream of exd and is required and sufficient for Exd protein nuclear localization. We also show that hth and exd are both negative regulators of eye development; their mutant clones caused ectopic eye formation. Targeted expression of hth, but not of exd, in the eye disc abolished eye development completely. We suggest that hth acts with exd to delimit the eye field and prevent inappropriate eye development. PMID:9450936
Lamins in the nuclear interior - life outside the lamina.
Naetar, Nana; Ferraioli, Simona; Foisner, Roland
2017-07-01
Nuclear lamins are components of the peripheral lamina that define the mechanical properties of nuclei and tether heterochromatin to the periphery. A-type lamins localize also to the nuclear interior, but the regulation and specific functions of this nucleoplasmic lamin pool are poorly understood. In this Commentary, we summarize known pathways that are potentially involved in the localization and dynamic behavior of intranuclear lamins, including their post-translational modifications and interactions with nucleoplasmic proteins, such as lamina-associated polypeptide 2α (LAP2α; encoded by TMPO ). In addition, new data suggest that lamins in the nuclear interior have an important role in chromatin regulation and gene expression through dynamic binding to both hetero- and euchromatic genomic regions and promoter subdomains, thereby affecting epigenetic pathways and chromatin accessibility. Nucleoplasmic lamins also have a role in spatial chromatin organization and may be involved in mechanosignaling. In view of this newly emerging concept, we propose that the previously reported cellular phenotypes in lamin-linked diseases are, at least in part, rooted in an impaired regulation and/or function of the nucleoplasmic lamin A/C pool. © 2017. Published by The Company of Biologists Ltd.
Alternative splicing of Staufen2 creates the nuclear export signal for CRM1 (Exportin 1).
Miki, Takashi; Yoneda, Yoshihiro
2004-11-12
Mammalian Staufen2 (Stau2), a brain-specific double-stranded RNA-binding protein, is involved in the localization of mRNA in neurons. To gain insights into the function of Stau2, the subcellular localization of Stau2 isoforms fused to the green fluorescence protein was examined. Fluorescence microscopic analysis showed that Stau2 functions as a nucleocytoplasmic shuttle protein. The nuclear export of the 62-kDa isoform of Stau2 (Stau2(62)) is mediated by the double-stranded RNA-binding domain 3 (RBD3) because a mutation to RBD3 led to nuclear accumulation. On the other hand, the shorter isoform of Stau2, Stau2(59), is exported from the nucleus by two distinct pathways, one of which is RBD3-mediated and the other of which is CRM1 (exportin 1)-dependent. The nuclear export signal recognized by CRM1 was found to be located in the N-terminal region of Stau2(59). These results suggest that Stau2 may carry a variety of RNAs out of the nucleus, using the two export pathways. The present study addresses the issue of why plural Stau2 isoforms are expressed in neurons.
Cytoplasmic and nuclear localization of cadherin in honey bee (Apis mellifera L.) gonads.
Florecki, Mônica M; Hartfelder, Klaus
2011-01-01
Cadherins are crucial molecules mediating cell-cell interactions between somatic and germline cells in insect and mammalian male and female gonads. We analysed the presence and localization of cadherins in ovaries of honeybee queens and in testes of drones. Transcripts representing two classical cadherins, E-cadherin (shotgun) and N-cadherin, as well as three protocadherins (Starry night, Fat and Fat-like) were detected in gonads of both sexes. Pan-cadherin antibodies, which most probably detect a honeybee N-cadherin, were used in immunolocalization analyses. In the germarium of ovarioles, cadherin-IR (cadherin immunoreactivity) was evidenced as homogeneously distributed in the cytoplasm and as nuclear foci, in both germline and somatic cells. It was also detected in polyfusomes and ring canals. In testiolar tubules, cadherin-IR showed a cytoplasmic and nuclear distributon alike in ovaries. The unexpected nuclear localization and cytoplasmic distribution in ovaries and testes were corroborated by immunogold electron microscopy, which revealed cadherin aggregates associated with electron-dense nuclear structures. With respect to cadherin localization, the honeybee differs from Drosophila, the model for gametogenesis in insects, raising the question as to how differences among solitary and social species may be built into and generated from the general architecture of polytrophic meroistic ovaries. It also indicates the possibility of divergent roles for cadherin in the functional architecture of insect gonads, in general, especially in taxa with high reproductive output.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Joel F.; Sykora, Landon J.; Barik Letostak, Tiasha
HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies implymore » that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).« less
Winteringham, Louise N; Endersby, Raelene; Kobelke, Simon; McCulloch, Ross K; Williams, James H; Stillitano, Justin; Cornwall, Scott M; Ingley, Evan; Klinken, S Peter
2006-12-15
Myeloid leukemia factor 1 (MLF1) is an oncoprotein associated with hemopoietic lineage commitment and acute myeloid leukemia. Here we show that Mlf1 associated with a novel binding partner, Mlf1-associated nuclear protein (Manp), a new heterogeneous nuclear ribonucleoprotein (hnRNP) family member, related to hnRNP-U. Manp localized exclusively in the nucleus and could redirect Mlf1 from the cytoplasm into the nucleus. The nuclear content of Mlf1 was also regulated by 14-3-3 binding to a canonical 14-3-3 binding motif within the N terminus of Mlf1. Significantly Mlf1 contains a functional nuclear export signal and localized primarily to the nuclei of hemopoietic cells. Mlf1 was capable of binding DNA, and microarray analysis revealed that it affected the expression of several genes, including transcription factors. In summary, this study reveals that Mlf1 translocates between nucleus and cytoplasm, associates with a novel hnRNP, and influences gene expression.
Meng, Fanchi; Na, Insung; Kurgan, Lukasz; Uversky, Vladimir N.
2015-01-01
The cell nucleus contains a number of membrane-less organelles or intra-nuclear compartments. These compartments are dynamic structures representing liquid-droplet phases which are only slightly denser than the bulk intra-nuclear fluid. They possess different functions, have diverse morphologies, and are typically composed of RNA (or, in some cases, DNA) and proteins. We analyzed 3005 mouse proteins localized in specific intra-nuclear organelles, such as nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinuclear compartment and compared them with ~29,863 non-nuclear proteins from mouse proteome. Our analysis revealed that intrinsic disorder is enriched in the majority of intra-nuclear compartments, except for the nuclear pore and lamina. These compartments are depleted in proteins that lack disordered domains and enriched in proteins that have multiple disordered domains. Moonlighting proteins found in multiple intra-nuclear compartments are more likely to have multiple disordered domains. Protein-protein interaction networks in the intra-nuclear compartments are denser and include more hubs compared to the non-nuclear proteins. Hubs in the intra-nuclear compartments (except for the nuclear pore) are enriched in disorder compared with non-nuclear hubs and non-nuclear proteins. Therefore, our work provides support to the idea of the functional importance of intrinsic disorder in the cell nucleus and shows that many proteins associated with sub-nuclear organelles in nuclei of mouse cells are enriched in disorder. This high level of disorder in the mouse nuclear proteins defines their ability to serve as very promiscuous binders, possessing both large quantities of potential disorder-based interaction sites and the ability of a single such site to be involved in a large number of interactions. PMID:26712748
Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Novák, Petr; Hnilicová, Jarmila; Venit, Tomáš; Hozák, Pavel
2012-01-01
Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the "cytoplasmic" myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. We have shown that the novel specific NLS brings to the cell nucleus not only the "nuclear" isoform of myosin I (NM1 protein) but also its "cytoplasmic" isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus.
Proteomic Analysis of the Arabidopsis Nucleolus Suggests Novel Nucleolar FunctionsD⃞
Pendle, Alison F.; Clark, Gillian P.; Boon, Reinier; Lewandowska, Dominika; Lam, Yun Wah; Andersen, Jens; Mann, Matthias; Lamond, Angus I.; Brown, John W. S.; Shaw, Peter J.
2005-01-01
The eukaryotic nucleolus is involved in ribosome biogenesis and a wide range of other RNA metabolism and cellular functions. An important step in the functional analysis of the nucleolus is to determine the complement of proteins of this nuclear compartment. Here, we describe the first proteomic analysis of plant (Arabidopsis thaliana) nucleoli, in which we have identified 217 proteins. This allows a direct comparison of the proteomes of an important nuclear structure between two widely divergent species: human and Arabidopsis. The comparison identified many common proteins, plant-specific proteins, proteins of unknown function found in both proteomes, and proteins that were nucleolar in plants but nonnucleolar in human. Seventy-two proteins were expressed as GFP fusions and 87% showed nucleolar or nucleolar-associated localization. In a striking and unexpected finding, we have identified six components of the postsplicing exon-junction complex (EJC) involved in mRNA export and nonsense-mediated decay (NMD)/mRNA surveillance. This association was confirmed by GFP-fusion protein localization. These results raise the possibility that in plants, nucleoli may have additional functions in mRNA export or surveillance. PMID:15496452
Nuclear medium effects in structure functions of nucleon at moderate Q2
NASA Astrophysics Data System (ADS)
Haider, H.; Zaidi, F.; Sajjad Athar, M.; Singh, S. K.; Ruiz Simo, I.
2015-11-01
Recent experiments performed on inclusive electron scattering from nuclear targets have measured the nucleon electromagnetic structure functions F1 (x ,Q2), F2 (x ,Q2) and FL (x ,Q2) in 12C, 27Al, 56Fe and 64Cu nuclei. The measurements have been done in the energy region of 1 GeV2
Silla, Toomas; Karadoulama, Evdoxia; Mąkosa, Dawid; Lubas, Michal; Jensen, Torben Heick
2018-05-15
Mammalian genomes are promiscuously transcribed, yielding protein-coding and non-coding products. Many transcripts are short lived due to their nuclear degradation by the ribonucleolytic RNA exosome. Here, we show that abolished nuclear exosome function causes the formation of distinct nuclear foci, containing polyadenylated (pA + ) RNA secluded from nucleocytoplasmic export. We asked whether exosome co-factors could serve such nuclear retention. Co-localization studies revealed the enrichment of pA + RNA foci with "pA-tail exosome targeting (PAXT) connection" components MTR4, ZFC3H1, and PABPN1 but no overlap with known nuclear structures such as Cajal bodies, speckles, paraspeckles, or nucleoli. Interestingly, ZFC3H1 is required for foci formation, and in its absence, selected pA + RNAs, including coding and non-coding transcripts, are exported to the cytoplasm in a process dependent on the mRNA export factor AlyREF. Our results establish ZFC3H1 as a central nuclear pA + RNA retention factor, counteracting nuclear export activity. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Xie, J; Briggs, J A; Morris, S W; Olson, M O; Kinney, M C; Briggs, R C
1997-10-01
The myeloid cell nuclear differentiation antigen (MNDA) is a nuclear protein expressed specifically in developing cells of the human myelomonocytic lineage, including the end-stage monocytes/macrophages and granulocytes. Nuclear localization, lineage- and stage-specific expression, association with chromatin, and regulation by interferon alpha indicate that this protein is involved in regulating gene expression uniquely associated with the differentiation process and/or function of the monocyte/macrophage. MNDA does not bind specific DNA sequences, but rather a set of nuclear proteins that includes nucleolin (C23). Both in vitro binding assays and co-immunoprecipitation were used to demonstrate that MNDA also binds protein B23 (nucleophosmin/NPM). Three reciprocal chromosome translocations found in certain cases of leukemia/lymphoma involve fusions with the NPM/B23 gene, t(5;17) NPM-RARalpha, t(2;5) NPM-ALK, and the t(3;5) NPM-MLF1. In the current study, MNDA was not able to bind the NPM-ALK chimera originating from the t(2;5) and containing residues 1-117 of NPM. However, MNDA did bind the NPM-MLF1 product of the t(3;5) that contains the N-terminal 175 residues of NPM. The additional 58 amino acids (amino acids 117-175) of the NPM sequence that are contained in the product of the NPM-MLF1 fusion gene relative to the product of the NPM-ALK fusion appear responsible for MNDA binding. This additional NPM sequence contains a nuclear localization signal and clusters of acidic residues believed to bind nuclear localization signals of other proteins. Whereas NPM and nucleolin are primarily localized within the nucleolus, MNDA is distributed throughout the nucleus including the nucleolus, suggesting that additional interactions define overall MNDA localization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanabe, Yuko; Fujita, Eriko; Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498
Highlights: {yields} We isolated protection of telomeres 1 (POT1) as a FOXP2-associated protein by a yeast two-hybrid. {yields} FOXP2 associated and co-localized with POT1 in the nuclei. {yields} FOXP2(R553H) also co-localized with POT1 in both the cytoplasm and nuclei. {yields} FOXP2(R553H) partially prevented the nuclear translocation of POT1. {yields} FOXP2(R553H) mutation may be associated with the pathogenesis of speech-language disorder. -- Abstract: FOXP2 is a forkhead box-containing transcription factor with several recognizable sequence motifs. However, little is known about the FOXP2-associated proteins except for C-terminal binding protein (CtBP). In the present study, we attempted to isolate the FOXP2-associated protein withmore » a yeast two-hybrid system using the C-terminal region, including the forkhead domain, as a bait probe, and identified protection of telomeres 1 (POT1) as a FOXP2-associated protein. Immunoprecipitation assay confirmed the association with FOXP2 and POT1. POT1 alone localized in the cytoplasm but co-localized with FOXP2 and the forkhead domain of FOXP2 in nuclei. However, both FOXP2 with mutated nuclear localization signals and (R553H) mutated forkhead, which is associated with speech-language disorder, prevented the nuclear translocation of POT1. These results suggest that FOXP2 is a binding partner for the nuclear translocation of POT1. As loss of POT1 function induces the cell arrest, the impaired nuclear translocation of POT1 in the developing neuronal cells may be associated with the pathogenesis of speech-language disorder with FOXP2(R553H) mutation.« less
Episomal HBV persistence within transcribed host nuclear chromatin compartments involves HBx.
Hensel, Kai O; Cantner, Franziska; Bangert, Felix; Wirth, Stefan; Postberg, Jan
2018-06-22
In hepatocyte nuclei, hepatitis B virus (HBV) genomes occur episomally as covalently closed circular DNA (cccDNA). The HBV X protein (HBx) is required to initiate and maintain HBV replication. The functional nuclear localization of cccDNA and HBx remains unexplored. To identify virus-host genome interactions and the underlying nuclear landscape for the first time, we combined circular chromosome conformation capture (4C) with RNA-seq and ChIP-seq. Moreover, we studied HBx-binding to HBV episomes. In HBV-positive HepaRG hepatocytes, we observed preferential association of HBV episomes and HBx with actively transcribed nuclear domains on the host genome correlating in size with constrained topological units of chromatin. Interestingly, HBx alone occupied transcribed chromatin domains. Silencing of native HBx caused reduced episomal HBV stability. As part of the HBV episome, HBx might stabilize HBV episomal nuclear localization. Our observations may contribute to the understanding of long-term episomal stability and the facilitation of viral persistence. The exact mechanism by which HBx contributes to HBV nuclear persistence warrants further investigations.
Tate, Jennifer J; Georis, Isabelle; Rai, Rajendra; Vierendeels, Fabienne; Dubois, Evelyne; Cooper, Terrance G
2015-05-29
The TorC1 protein kinase complex is a central component in a eukaryotic cell's response to varying nitrogen availability, with kinase activity being stimulated in nitrogen excess by increased intracellular leucine. This leucine-dependent TorC1 activation requires functional Gtr1/2 and Ego1/3 complexes. Rapamycin inhibition of TorC1 elicits nuclear localization of Gln3, a GATA-family transcription activator responsible for the expression of genes encoding proteins required to transport and degrade poor nitrogen sources, e.g., proline. In nitrogen-replete conditions, Gln3 is cytoplasmic and Gln3-mediated transcription minimal, whereas in nitrogen limiting or starvation conditions, or after rapamycin treatment, Gln3 is nuclear and transcription greatly increased. Increasing evidence supports the idea that TorC1 activation may not be as central to nitrogen-responsive intracellular Gln3 localization as envisioned previously. To test this idea directly, we determined whether Gtr1/2- and Ego1/3-dependent TorC1 activation also was required for cytoplasmic Gln3 sequestration and repressed GATA factor-mediated transcription by abolishing the Gtr-Ego complex proteins. We show that Gln3 is sequestered in the cytoplasm of gtr1Δ, gtr2Δ, ego1Δ, and ego3Δ strains either long term in logarithmically glutamine-grown cells or short term after refeeding glutamine to nitrogen-limited or -starved cells; GATA factor-dependent transcription also was minimal. However, in all but a gtr1Δ, nuclear Gln3 localization in response to nitrogen limitation or starvation was adversely affected. Our data demonstrate: (i) Gtr-Ego-dependent TorC1 activation is not required for cytoplasmic Gln3 sequestration in nitrogen-rich conditions; (ii) a novel Gtr-Ego-TorC1 activation-independent mechanism sequesters Gln3 in the cytoplasm; (iii) Gtr and Ego complex proteins participate in nuclear Gln3-Myc(13) localization, heretofore unrecognized functions for these proteins; and (iv) the importance of searching for new mechanisms associated with TorC1 activation and/or the regulation of Gln3 localization/function in response to changes in the cells' nitrogen environment. Copyright © 2015 Tate et al.
Tate, Jennifer J.; Georis, Isabelle; Rai, Rajendra; Vierendeels, Fabienne; Dubois, Evelyne; Cooper, Terrance G.
2015-01-01
The TorC1 protein kinase complex is a central component in a eukaryotic cell’s response to varying nitrogen availability, with kinase activity being stimulated in nitrogen excess by increased intracellular leucine. This leucine-dependent TorC1 activation requires functional Gtr1/2 and Ego1/3 complexes. Rapamycin inhibition of TorC1 elicits nuclear localization of Gln3, a GATA-family transcription activator responsible for the expression of genes encoding proteins required to transport and degrade poor nitrogen sources, e.g., proline. In nitrogen-replete conditions, Gln3 is cytoplasmic and Gln3-mediated transcription minimal, whereas in nitrogen limiting or starvation conditions, or after rapamycin treatment, Gln3 is nuclear and transcription greatly increased. Increasing evidence supports the idea that TorC1 activation may not be as central to nitrogen-responsive intracellular Gln3 localization as envisioned previously. To test this idea directly, we determined whether Gtr1/2- and Ego1/3-dependent TorC1 activation also was required for cytoplasmic Gln3 sequestration and repressed GATA factor-mediated transcription by abolishing the Gtr-Ego complex proteins. We show that Gln3 is sequestered in the cytoplasm of gtr1Δ, gtr2Δ, ego1Δ, and ego3Δ strains either long term in logarithmically glutamine-grown cells or short term after refeeding glutamine to nitrogen-limited or -starved cells; GATA factor−dependent transcription also was minimal. However, in all but a gtr1Δ, nuclear Gln3 localization in response to nitrogen limitation or starvation was adversely affected. Our data demonstrate: (i) Gtr-Ego-dependent TorC1 activation is not required for cytoplasmic Gln3 sequestration in nitrogen-rich conditions; (ii) a novel Gtr-Ego-TorC1 activation-independent mechanism sequesters Gln3 in the cytoplasm; (iii) Gtr and Ego complex proteins participate in nuclear Gln3-Myc13 localization, heretofore unrecognized functions for these proteins; and (iv) the importance of searching for new mechanisms associated with TorC1 activation and/or the regulation of Gln3 localization/function in response to changes in the cells’ nitrogen environment. PMID:26024867
Belacortu, Yaiza; Weiss, Ron; Kadener, Sebastian; Paricio, Nuria
2012-01-01
Background Cabut (Cbt) is a C2H2-class zinc finger transcription factor involved in embryonic dorsal closure, epithelial regeneration and other developmental processes in Drosophila melanogaster. Cbt orthologs have been identified in other Drosophila species and insects as well as in vertebrates. Indeed, Cbt is the Drosophila ortholog of the group of vertebrate proteins encoded by the TGF-ß-inducible early-response genes (TIEGs), which belong to Sp1-like/Krüppel-like family of transcription factors. Several functional domains involved in transcriptional control and subcellular localization have been identified in the vertebrate TIEGs. However, little is known of whether these domains and functions are also conserved in the Cbt protein. Methodology/Principal Findings To determine the transcriptional regulatory activity of the Drosophila Cbt protein, we performed Gal4-based luciferase assays in S2 cells and showed that Cbt is a transcriptional repressor and able to regulate its own expression. Truncated forms of Cbt were then generated to identify its functional domains. This analysis revealed a sequence similar to the mSin3A-interacting repressor domain found in vertebrate TIEGs, although located in a different part of the Cbt protein. Using β-Galactosidase and eGFP fusion proteins, we also showed that Cbt contains the bipartite nuclear localization signal (NLS) previously identified in TIEG proteins, although it is non-functional in insect cells. Instead, a monopartite NLS, located at the amino terminus of the protein and conserved across insects, is functional in Drosophila S2 and Spodoptera exigua Sec301 cells. Last but not least, genetic interaction and immunohistochemical assays suggested that Cbt nuclear import is mediated by Importin-α2. Conclusions/Significance Our results constitute the first characterization of the molecular mechanisms of Cbt-mediated transcriptional control as well as of Cbt nuclear import, and demonstrate the existence of similarities and differences in both aspects of Cbt function between the insect and the vertebrate TIEG proteins. PMID:22359651
Nuclear localization of Klotho in brain: an anti-aging protein
German, Dwight C.; Khobahy, Ida; Pastor, Johanne; Kuro-o, Makoto; Liu, Xinran
2011-01-01
Klotho is a putative age-suppressing gene whose over-expression in mice results in extension of life span. The klotho gene encodes a single-pass transmembrane protein whose extracellular domain is shed and released into blood, urine, and cerebrospinal fluid, potentially functioning as a humoral factor. The extracellular domain of Klotho has an activity that increases the expression of anti-oxidant enzymes and confers resistance to oxidative stress in cultured cells and in whole animals. The transmembrane form of the Klotho protein directly binds to multiple fibroblast growth factor receptors and modifies their ligand affinity and specificity. The purpose of the present study was to determine the precise cellular localization of Klotho in the mouse brain. Using light microscopic immunohistochemical methods, we found the highest levels of Klotho immunoreactivity in two brain regions: the choroid plexus, and cerebellar Purkinje cells. In the choroid plexus cells, Klotho was found not only on the plasma membrane but also in large amounts near the nuclear membrane. Likewise, in the Purkinje cell Klotho was found throughout the cell including dendrites, axon and soma with large amounts near the nuclear membrane. Using immunoelectron microscopy, we found Klotho in the cell membrane, but the highest concentration was localized in the peripheral portion of the nucleus and the nucleolus in both cell types. This new finding suggests that in addition to Klotho being secreted from cells in brain, it also has a nuclear function. PMID:22245317
DeGregorio, Nicole; Iyengar, Srinivasan S
2018-01-09
We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen-bonded systems is demonstrated here.
Venit, Tomáš; Dzijak, Rastislav; Kalendová, Alžběta; Kahle, Michal; Rohožková, Jana; Schmidt, Volker; Rülicke, Thomas; Rathkolb, Birgit; Hans, Wolfgang; Bohla, Alexander; Eickelberg, Oliver; Stoeger, Tobias; Wolf, Eckhard; Yildirim, Ali Önder; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Hozák, Pavel
2013-01-01
Background Nuclear myosin I (NM1) is a nuclear isoform of the well-known “cytoplasmic” Myosin 1c protein (Myo1c). Located on the 11th chromosome in mice, NM1 results from an alternative start of transcription of the Myo1c gene adding an extra 16 amino acids at the N-terminus. Previous studies revealed its roles in RNA Polymerase I and RNA Polymerase II transcription, chromatin remodeling, and chromosomal movements. Its nuclear localization signal is localized in the middle of the molecule and therefore directs both Myosin 1c isoforms to the nucleus. Methodology/Principal Findings In order to trace specific functions of the NM1 isoform, we generated mice lacking the NM1 start codon without affecting the cytoplasmic Myo1c protein. Mutant mice were analyzed in a comprehensive phenotypic screen in cooperation with the German Mouse Clinic. Strikingly, no obvious phenotype related to previously described functions has been observed. However, we found minor changes in bone mineral density and the number and size of red blood cells in knock-out mice, which are most probably not related to previously described functions of NM1 in the nucleus. In Myo1c/NM1 depleted U2OS cells, the level of Pol I transcription was restored by overexpression of shRNA-resistant mouse Myo1c. Moreover, we found Myo1c interacting with Pol II. The ratio between Myo1c and NM1 proteins were similar in the nucleus and deletion of NM1 did not cause any compensatory overexpression of Myo1c protein. Conclusion/Significance We observed that Myo1c can replace NM1 in its nuclear functions. Amount of both proteins is nearly equal and NM1 knock-out does not cause any compensatory overexpression of Myo1c. We therefore suggest that both isoforms can substitute each other in nuclear processes. PMID:23593477
Venit, Tomáš; Dzijak, Rastislav; Kalendová, Alžběta; Kahle, Michal; Rohožková, Jana; Schmidt, Volker; Rülicke, Thomas; Rathkolb, Birgit; Hans, Wolfgang; Bohla, Alexander; Eickelberg, Oliver; Stoeger, Tobias; Wolf, Eckhard; Yildirim, Ali Önder; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Hozák, Pavel
2013-01-01
Nuclear myosin I (NM1) is a nuclear isoform of the well-known "cytoplasmic" Myosin 1c protein (Myo1c). Located on the 11(th) chromosome in mice, NM1 results from an alternative start of transcription of the Myo1c gene adding an extra 16 amino acids at the N-terminus. Previous studies revealed its roles in RNA Polymerase I and RNA Polymerase II transcription, chromatin remodeling, and chromosomal movements. Its nuclear localization signal is localized in the middle of the molecule and therefore directs both Myosin 1c isoforms to the nucleus. In order to trace specific functions of the NM1 isoform, we generated mice lacking the NM1 start codon without affecting the cytoplasmic Myo1c protein. Mutant mice were analyzed in a comprehensive phenotypic screen in cooperation with the German Mouse Clinic. Strikingly, no obvious phenotype related to previously described functions has been observed. However, we found minor changes in bone mineral density and the number and size of red blood cells in knock-out mice, which are most probably not related to previously described functions of NM1 in the nucleus. In Myo1c/NM1 depleted U2OS cells, the level of Pol I transcription was restored by overexpression of shRNA-resistant mouse Myo1c. Moreover, we found Myo1c interacting with Pol II. The ratio between Myo1c and NM1 proteins were similar in the nucleus and deletion of NM1 did not cause any compensatory overexpression of Myo1c protein. We observed that Myo1c can replace NM1 in its nuclear functions. Amount of both proteins is nearly equal and NM1 knock-out does not cause any compensatory overexpression of Myo1c. We therefore suggest that both isoforms can substitute each other in nuclear processes.
Nuclear transport in Entamoeba histolytica: knowledge gap and therapeutic potential.
Gwairgi, Marina A; Ghildyal, Reena
2018-03-22
Entamoeba histolytica is the protozoan parasite that causes human amoebiasis. It is one of the leading parasitic disease burdens in tropical regions and developing countries, with spread to developed countries through migrants from and travellers to endemic regions. Understanding E. histolytica's invasion mechanisms requires an understanding of how it interacts with external cell components and how it engulfs and kills cells (phagocytosis). Recent research suggests that optimal phagocytosis requires signalling events from the cell surface to the nucleus via the cytoplasm, and the induction of several factors that are transported to the plasma membrane. Current research in other protozoans suggests the presence of proteins with nuclear localization signals, nuclear export signals and Ran proteins; however, there is limited literature on their functionality and their functional similarity to higher eukaryotes. Based on learnings from the development of antivirals, nuclear transport elements in E. histolytica may present viable, specific, therapeutic targets. In this review, we aim to summarize our limited knowledge of the eukaryotic nuclear transport mechanisms that are conserved and may function in E. histolytica.
Dissection of a nuclear localization signal.
Hodel, M R; Corbett, A H; Hodel, A E
2001-01-12
The regulated process of protein import into the nucleus of a eukaryotic cell is mediated by specific nuclear localization signals (NLSs) that are recognized by protein import receptors. This study seeks to decipher the energetic details of NLS recognition by the receptor importin alpha through quantitative analysis of variant NLSs. The relative importance of each residue in two monopartite NLS sequences was determined using an alanine scanning approach. These measurements yield an energetic definition of a monopartite NLS sequence where a required lysine residue is followed by two other basic residues in the sequence K(K/R)X(K/R). In addition, the energetic contributions of the second basic cluster in a bipartite NLS ( approximately 3 kcal/mol) as well as the energy of inhibition of the importin alpha importin beta-binding domain ( approximately 3 kcal/mol) were also measured. These data allow the generation of an energetic scale of nuclear localization sequences based on a peptide's affinity for the importin alpha-importin beta complex. On this scale, a functional NLS has a binding constant of approximately 10 nm, whereas a nonfunctional NLS has a 100-fold weaker affinity of 1 microm. Further correlation between the current in vitro data and in vivo function will provide the foundation for a comprehensive quantitative model of protein import.
Kirby, Thomas W.; Gassman, Natalie R.; Smith, Cassandra E.; ...
2015-08-25
We have characterized the nuclear localization signal (NLS) of XRCC1 structurally using X-ray crystallography and functionally using fluorescence imaging. Crystallography and binding studies confirm the bipartite nature of the XRCC1 NLS interaction with Importin α (Impα) in which the major and minor binding motifs are separated by >20 residues, and resolve previous inconsistent determinations. Binding studies of peptides corresponding to the bipartite NLS, as well as its major and minor binding motifs, to both wild-type and mutated forms of Impα reveal pronounced cooperative binding behavior that is generated by the proximity effect of the tethered major and minor motifs ofmore » the NLS. The cooperativity stems from the increased local concentration of the second motif near its cognate binding site that is a consequence of the stepwise binding behavior of the bipartite NLS. We predict that the stepwise dissociation of the NLS from Impα facilitates unloading by providing a partially complexed intermediate that is available for competitive binding by Nup50 or the Importin β binding domain. This behavior gives a basis for meeting the intrinsically conflicting high affinity and high flux requirements of an efficient nuclear transport system.« less
Shackleford, Gregory M; Ganguly, Amit; MacArthur, Craig A
2001-01-01
Background Studies suggest that the related proteins nucleoplasmin and nucleophosmin (also called B23, NO38 or numatrin) are nuclear chaperones that mediate the assembly of nucleosomes and ribosomes, respectively, and that these activities are accomplished through the binding of basic proteins via their acidic domains. Recently discovered and less well characterized members of this family of acidic phosphoproteins include mouse nucleophosmin/nucleoplasmin 3 (Npm3) and Xenopus NO29. Here we report the cloning and initial characterization of the human ortholog of Npm3. Results Human genomic and cDNA clones of NPM3 were isolated and sequenced. NPM3 lies 5.5 kb upstream of FGF8 and thus maps to chromosome 10q24-26. In addition to amino acid similarities, NPM3 shares many physical characteristics with the nucleophosmin/nucleoplasmin family, including an acidic domain, multiple potential phosphorylation sites and a putative nuclear localization signal. Comparative analyses of 14 members of this family from various metazoans suggest that Xenopus NO29 is a candidate ortholog of human and mouse NPM3, and they further group both proteins closer with the nucleoplasmins than with the nucleophosmins. Northern blot analysis revealed that NPM3 was strongly expressed in all 16 human tissues examined, with especially robust expression in pancreas and testis; lung displayed the lowest level of expression. An analysis of subcellular fractions of NIH3T3 cells expressing epitope-tagged NPM3 revealed that NPM3 protein was localized solely in the nucleus. Conclusions Human NPM3 is an abundant and widely expressed protein with primarily nuclear localization. These biological activities, together with its physical relationship to the chaparones nucleoplasmin and nucleophosmin, are consistent with the proposed function of NPM3 as a molecular chaperone functioning in the nucleus. PMID:11722795
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meissner, Torsten B.; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215; Li, Amy
Highlights: Black-Right-Pointing-Pointer NLRC5 requires an intact NLS for its function as MHC class I transactivator. Black-Right-Pointing-Pointer Nuclear presence of NLRC5 is required for MHC class I induction. Black-Right-Pointing-Pointer Nucleotide-binding controls nuclear import and transactivation activity of NLRC5. -- Abstract: Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. A member of the NLR (nucleotide-binding domain, leucine-rich repeat) protein family, NLRC5, has recently been identified as a transcriptional regulator of MHC class I and related genes. While a 'master regulator' of MHC class II genes, CIITA, has long been known,more » NLRC5 specifically associates with and transactivates the proximal promoters of MHC class I genes. In this study, we analyzed the molecular requirements of NLRC5 nuclear import and transactivation activity. We show that NLRC5-mediated MHC class I gene induction requires an intact nuclear localization signal and nuclear distribution of NLRC5. In addition, we find that the nucleotide-binding domain (NBD) of NLRC5 is critical not only for nuclear translocation but also for the transactivation of MHC class I genes. Changing the cellular localization of NLRC5 is likely to immediately impact MHC class I expression as well as MHC class I-mediated antigen presentation. NLRC5 may thus provide a promising target for the modulation of MHC class I antigen presentation, especially in the setting of transplant medicine.« less
Zhu, Jun; Koken, Marcel H. M.; Quignon, Frédérique; Chelbi-Alix, Mounira K.; Degos, Laurent; Wang, Zhen Yi; Chen, Zhu; de Thé, Hugues
1997-01-01
Acute promyelocytic leukemia (APL) is associated with the t(15;17) translocation, which generates a PML/RARα fusion protein between PML, a growth suppressor localized on nuclear matrix-associated bodies, and RARα, a nuclear receptor for retinoic acid (RA). PML/RARα was proposed to block myeloid differentiation through inhibition of nuclear receptor response, as does a dominant negative RARα mutant. In addition, in APL cells, PML/RARα displaces PML and other nuclear body (NB) antigens onto nuclear microspeckles, likely resulting in the loss of PML and/or NB functions. RA leads to clinical remissions through induction of terminal differentiation, for which the respective contributions of RARα (or PML/RARα) activation, PML/RARα degradation, and restoration of NB antigens localization are poorly determined. Arsenic trioxide also leads to remissions in APL patients, presumably through induction of apoptosis. We demonstrate that in non-APL cells, arsenic recruits the nucleoplasmic form of several NB antigens onto NB, but induces the degradation of PML only, identifying a powerful tool to approach NB function. In APL cells, arsenic targets PML and PML/RARα onto NB and induces their degradation. Thus, RA and arsenic target RARα and PML, respectively, but both induce the degradation of the PML/RARα fusion protein, which should contribute to their therapeutic effects. The difference in the cellular events triggered by these two agents likely stems from RA-induced transcriptional activation and arsenic effects on NB proteins. PMID:9108090
NASA Astrophysics Data System (ADS)
Weatherford, Charles; Gebremedhin, Daniel
2016-03-01
A new and efficient way of evolving a solution to an ordinary differential equation is presented. A finite element method is used where we expand in a convenient local basis set of functions that enforce both function and first derivative continuity across the boundaries of each element. We also implement an adaptive step size choice for each element that is based on a Taylor series expansion. The method is applied to solve for the eigenpairs of the one-dimensional soft-coulomb potential and the hard-coulomb limit is studied. The method is then used to calculate a numerical solution of the Kohn-Sham differential equation within the local density approximation is presented and is applied to the helium atom. Supported by the National Nuclear Security Agency, the Nuclear Regulatory Commission, and the Defense Threat Reduction Agency.
Nalaskowski, Marcus M; Ehm, Patrick; Rehbach, Christoph; Nelson, Nina; Täger, Maike; Modest, Kathrin; Jücker, Manfred
2018-05-28
The inositol 5-phosphatase SHIP1 acts as negative regulator of intracellular signaling in myeloid cells and is a tumor suppressor in myeloid leukemogenesis. After relocalization from the cytoplasm to the plasma membrane SHIP1 terminates PI3-kinase mediated signaling processes. Furthermore, SHIP1 is also found in distinct puncta in the cell nucleus and nuclear SHIP1 has a pro-proliferative function. Here we report the identification of five nuclear export signals (NESs) which regulate together with the two known nuclear localization signals (NLSs) the nucleocytoplasmic shuttling of SHIP1. Mutation of NLSs reduced the nuclear import and mutation of NESs decreased the nuclear export of SHIP1 in the acute myeloid leukemia (AML) cell line UKE-1. Interestingly, four SHIP1 mutants (K210R, N508D, V684E, Q1153L) derived from AML patients showed a nuclear accumulation after expression in UKE-1 cells. In addition, overexpression of the AML patient-derived mutation N508D caused an increased proliferation rate of UKE-1 cells in comparison to wild type SHIP1. Furthermore, we identified serine and tyrosine phosphorylation as a molecular mechanism for the regulation of nucleocytoplasmic shuttling of SHIP1 where tyrosine phosphorylation of distinct residues i.e. Y864, Y914, Y1021 reduces nuclear localization, whereas serine phosphorylation at S933 enhances nuclear localization of SHIP1. In summary, our data further implicate nuclear SHIP1 in cellular signaling and suggest that enhanced accumulation of SHIP1 mutants in the nucleus may be a contributory factor of abnormally high proliferation of AML cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Ivanova, Iordanka A; Vespa, Alisa; Dagnino, Lina
2007-09-01
E2F1 is a transcription factor central for cell survival, proliferation, and repair following genomic insult. Depending on the cell type and conditions, E2F1 can induce apoptosis in transformed cells, behaving as a tumour suppressor, or impart growth advantages favouring tumour formation. The pleiotropic functions of E2F1 are a likely consequence of its ability to transcriptionally control a wide variety of target genes, and require tight regulation of its activity at multiple levels. Although sequestration of proteins to particular cellular compartments is a well-established regulatory mechanism, virtually nothing is known about its contribution to modulation of E2F1 target gene expression. We have examined the subcellular trafficking of E2F1 and, contrary to the widely held notion that this factor is constitutively nuclear, we now demonstrate that it is subjected to continuous nucleocytoplasmic shuttling. We have also defined two nuclear localization domains and a nuclear export region, which mediates CRM1-dependent transit out of the nucleus. The predominant subcellular location of E2F1 is likely determined by the balance between the activity of nuclear import and export domains, and can be modulated by differentiation stimuli in epidermal cells. Thus, we have identified a hitherto unrecognized mechanism to control E2F1 function through modulation of its subcellular localization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yuan-I; Hsu, Sheng-Chieh; Chau, Gar-Yang
2011-01-21
Research highlights: {yields} Verifying by direct methylation assay the substrate sites of PRMT1 in the hnRNP K protein. {yields} Identifying the preferred PMRT1 methylation regions in hnRNP K by kinetic analysis. {yields} Linking methylation in regulating nuclear localization of hnRNP K. -- Abstract: Protein arginine methylation plays crucial roles in numerous cellular processes. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multi-functional protein participating in a variety of cellular functions including transcription and RNA processing. HnRNP K is methylated at multiple sites in the glycine- and arginine-rich (RGG) motif. Using various RGG domain deletion mutants of hnRNP K as substrates,more » here we show by direct methylation assay that protein arginine methyltransferase 1 (PRMT1) methylated preferentially in a.a. 280-307 of the RGG motif. Kinetic analysis revealed that deletion of a.a. 280-307, but not a.a. 308-327, significantly inhibited rate of methylation. Importantly, nuclear localization of hnRNP K was significantly impaired in mutant hnRNP K lacking the PRMT1 methylation region or upon pharmacological inhibition of methylation. Together our results identify preferred PRMT1 methylation sequences of hnRNP K by direct methylation assay and implicate a role of arginine methylation in regulating intracellular distribution of hnRNP K.« less
Tanabe, Yuko; Fujita, Eriko; Momoi, Takashi
2011-07-08
FOXP2 is a forkhead box-containing transcription factor with several recognizable sequence motifs. However, little is known about the FOXP2-associated proteins except for C-terminal binding protein (CtBP). In the present study, we attempted to isolate the FOXP2-associated protein with a yeast two-hybrid system using the C-terminal region, including the forkhead domain, as a bait probe, and identified protection of telomeres 1 (POT1) as a FOXP2-associated protein. Immunoprecipitation assay confirmed the association with FOXP2 and POT1. POT1 alone localized in the cytoplasm but co-localized with FOXP2 and the forkhead domain of FOXP2 in nuclei. However, both FOXP2 with mutated nuclear localization signals and (R553H) mutated forkhead, which is associated with speech-language disorder, prevented the nuclear translocation of POT1. These results suggest that FOXP2 is a binding partner for the nuclear translocation of POT1. As loss of POT1 function induces the cell arrest, the impaired nuclear translocation of POT1 in the developing neuronal cells may be associated with the pathogenesis of speech-language disorder with FOXP2(R553H) mutation. Copyright © 2011 Elsevier Inc. All rights reserved.
Czypiorski, P; Altschmied, J; Rabanter, L L; Goy, C; Jakob, S; Haendeler, J
2014-01-01
Over the past few years it has become clear that mitochondria are not merely the powerhouses of cells. Proteome-analyses of mitochondria from different organisms and organs revealed that more than 1000 proteins are localized in and/or on mitochondria. This by far exceeds the number of proteins required for classical mitochondrial functions, e.g. the respiratory chain, the tricarboxylic acid cycle, fatty acid oxidation and apoptosis. This suggests that many of these proteins have other, as yet unknown functions. Several proteins with well-described nuclear functions, like the transcription factor FoxO3A or the Telomerase Reverse Transcriptase, have recently been shown to be localized also within the mitochondria. This mini-review will focus on the description of the functions of these two proteins in the nucleus and in the mitochondria - as two examples of many more proteins, which are yet to be uncovered. It will give insights into the role of these proteins within different organelles of the cell and will reveal that the functions of the proteins are probably not the same in the nucleus and the mitochondria. Therefore, these differences have to be considered when targeting proteins for therapeutic approaches.
PIAS1 interacts with FLASH and enhances its co-activation of c-Myb
2011-01-01
Background FLASH is a huge nuclear protein involved in various cellular functions such as apoptosis signalling, NF-κB activation, S-phase regulation, processing of histone pre-mRNAs, and co-regulation of transcription. Recently, we identified FLASH as a co-activator of the transcription factor c-Myb and found FLASH to be tightly associated with active transcription foci. As a huge multifunctional protein, FLASH is expected to have many interaction partners, some which may shed light on its function as a transcriptional regulator. Results To find additional FLASH-associated proteins, we performed a yeast two-hybrid (Y2H) screening with FLASH as bait and identified the SUMO E3 ligase PIAS1 as an interaction partner. The association appears to involve two distinct interaction surfaces in FLASH. We verified the interaction by Y2H-mating, GST pulldowns, co-IP and ChIP. FLASH and PIAS1 were found to co-localize in nuclear speckles. Functional assays revealed that PIAS1 enhances the intrinsic transcriptional activity of FLASH in a RING finger-dependent manner. Furthermore, PIAS1 also augments the specific activity of c-Myb, and cooperates with FLASH to further co-activate c-Myb. The three proteins, FLASH, PIAS1, and c-Myb, are all co-localized with active RNA polymerase II foci, resembling transcription factories. Conclusions We conclude that PIAS1 is a common partner for two cancer-related nuclear factors, c-Myb and FLASH. Our results point to a functional cooperation between FLASH and PIAS1 in the enhancement of c-Myb activity in active nuclear foci. PMID:21338522
DNAJC17 is localized in nuclear speckles and interacts with splicing machinery components.
Pascarella, A; Ferrandino, G; Credendino, S C; Moccia, C; D'Angelo, F; Miranda, B; D'Ambrosio, C; Bielli, P; Spadaro, O; Ceccarelli, M; Scaloni, A; Sette, C; De Felice, M; De Vita, G; Amendola, E
2018-05-17
DNAJC17 is a heat shock protein (HSP40) family member, identified in mouse as susceptibility gene for congenital hypothyroidism. DNAJC17 knockout mouse embryos die prior to implantation. In humans, germline homozygous mutations in DNAJC17 have been found in syndromic retinal dystrophy patients, while heterozygous mutations represent candidate pathogenic events for myeloproliferative disorders. Despite widespread expression and involvement in human diseases, DNAJC17 function is still poorly understood. Herein, we have investigated its function through high-throughput transcriptomic and proteomic approaches. DNAJC17-depleted cells transcriptome highlighted genes involved in general functional categories, mainly related to gene expression. Conversely, DNAJC17 interactome can be classified in very specific functional networks, with the most enriched one including proteins involved in splicing. Furthermore, several splicing-related interactors, were independently validated by co-immunoprecipitation and in vivo co-localization. Accordingly, co-localization of DNAJC17 with SC35, a marker of nuclear speckles, further supported its interaction with spliceosomal components. Lastly, DNAJC17 up-regulation enhanced splicing efficiency of minigene reporter in live cells, while its knockdown induced perturbations of splicing efficiency at whole genome level, as demonstrated by specific analysis of RNAseq data. In conclusion, our study strongly suggests a role of DNAJC17 in splicing-related processes and provides support to its recognized essential function in early development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.
2005-03-03
Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha}more » co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.« less
Nguyen, Minh M.; Dar, Javid A.; Ai, Junkui; Wang, Yujuan; Masoodi, Khalid Z.; Shun, Tongying; Shinde, Sunita; Camarco, Daniel P.; Hua, Yun; Huryn, Donna M.; Wilson, Gabriela Mustata; Lazo, John S.; Nelson, Joel B.; Wipf, Peter
2016-01-01
Abstract Patients with castration-resistant prostate cancer (CRPC) can be treated with abiraterone, a potent inhibitor of androgen synthesis, or enzalutamide, a second-generation androgen receptor (AR) antagonist, both targeting AR signaling. However, most patients relapse after several months of therapy and a majority of patients with relapsed CRPC tumors express the AR target gene prostate-specific antigen (PSA), suggesting that AR signaling is reactivated and can be targeted again to inhibit the relapsed tumors. Novel small molecules capable of inhibiting AR function may lead to urgently needed therapies for patients resistant to abiraterone, enzalutamide, and/or other previously approved antiandrogen therapies. Here, we describe a high-throughput high-content screening (HCS) campaign to identify small-molecule inhibitors of AR nuclear localization in the C4-2 CRPC cell line stably transfected with GFP-AR-GFP (2GFP-AR). The implementation of this HCS assay to screen a National Institutes of Health library of 219,055 compounds led to the discovery of 3 small molecules capable of inhibiting AR nuclear localization and function in C4-2 cells, demonstrating the feasibility of using this cell-based phenotypic assay to identify small molecules targeting the subcellular localization of AR. Furthermore, the three hit compounds provide opportunities to develop novel AR drugs with potential for therapeutic intervention in CRPC patients who have relapsed after treatment with antiandrogens, such as abiraterone and/or enzalutamide. PMID:27187604
Goodin, Michael M.; Austin, Jennifer; Tobias, Renée; Fujita, Miki; Morales, Christina; Jackson, Andrew O.
2001-01-01
We have characterized the interaction and nuclear localization of the nucleocapsid (N) protein and phosphoprotein (P) of sonchus yellow net nucleorhabdovirus. Expression studies with plant and yeast cells revealed that both N and P are capable of independent nuclear import. Site-specific mutagenesis and deletion analyses demonstrated that N contains a carboxy-terminal bipartite nuclear localization signal (NLS) located between amino acids 465 and 481 and that P contains a karyophillic region between amino acids 40 and 124. The N NLS was fully capable of functioning outside of the context of the N protein and was able to direct the nuclear import of a synthetic protein fusion consisting of green fluorescent protein fused to glutathione S-transferase (GST). Expression and mapping studies suggested that the karyophillic domain in P is located within the N-binding domain. Coexpression of N and P drastically affected their localization patterns relative to those of individually expressed proteins and resulted in a shift of both proteins to a subnuclear region. Yeast two-hybrid and GST pulldown experiments verified the N-P and P-P interactions, and deletion analyses have identified the N and P interacting domains. N NLS mutants were not transported to the nucleus by import-competent P, presumably because N binding masks the P NLS. Taken together, our results support a model for independent entry of N and P into the nucleus followed by associations that mediate subnuclear localization. PMID:11533202
Production of ABA responses requires both the nuclear and cytoplasmic functional involvement of PYR1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, EunJoo; Kim, Tae-Houn
Abscisic acid (ABA) enhances stress tolerant responses in plants against unfavorable environmental conditions. In Arabidopsis, ABA promotes interactions between PYR/PYL/RCARs and PP2C, thereby allowing SnRK2s to phosphorylate downstream components required for the regulation of gene expression or for gating ion channels. Because PYR1 is known to localize to nucleus and cytoplasm it is a question whether nuclear or cytoplasmic PYR1 confer different functions to the ABA signaling pathway, as has been previously shown for regulatory proteins. In order to answer this question, transgenic lines expressing nuclear PYR1 were generated in an ABA insensitive mutant background. Enforced nuclear expression of PYR1more » was examined by confocal microscopy and western blot analysis. Physiological analyses of the transgenic lines demonstrated that nuclear PYR1 is sufficient to generate ABA responses, such as, the inhibition of seed germination, root growth inhibition, the induction of gene expression, and stomatal closing movement. However, for the full recovery of ABA responses in the mutant background cytoplasmic PYR1 was required. The study suggests both nuclear and cytoplasmic PYR1 participate in the control of ABA signal transduction. - Highlights: • Nuclear and cytoplasmic functions of PYR1 were studied in the mutant which lacked majority of ABA responses. • Nuclear PYR1 reconstituted partially the ABA responses during seed germination, root growth, and guard cell movement. • Both the nuclear and cytoplasmic functions of PYR1 were required for the full generation of ABA responses.« less
ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating.
Rogers, Jason V; Arlow, Tim; Inkellis, Elizabeth R; Koo, Timothy S; Rose, Mark D
2013-12-01
During yeast mating, two haploid nuclei fuse membranes to form a single diploid nucleus. However, the known proteins required for nuclear fusion are unlikely to function as direct fusogens (i.e., they are unlikely to directly catalyze lipid bilayer fusion) based on their predicted structure and localization. Therefore we screened known fusogens from vesicle trafficking (soluble N-ethylmaleimide-sensitive factor attachment protein receptors [SNAREs]) and homotypic endoplasmic reticulum (ER) fusion (Sey1p) for additional roles in nuclear fusion. Here we demonstrate that the ER-localized SNAREs Sec20p, Ufe1p, Use1p, and Bos1p are required for efficient nuclear fusion. In contrast, Sey1p is required indirectly for nuclear fusion; sey1Δ zygotes accumulate ER at the zone of cell fusion, causing a block in nuclear congression. However, double mutants of Sey1p and Sec20p, Ufe1p, or Use1p, but not Bos1p, display extreme ER morphology defects, worse than either single mutant, suggesting that retrograde SNAREs fuse ER in the absence of Sey1p. Together these data demonstrate that SNAREs mediate nuclear fusion, ER fusion after cell fusion is necessary to complete nuclear congression, and there exists a SNARE-mediated, Sey1p-independent ER fusion pathway.
Nuclear pore proteins are involved in the biogenesis of functional tRNA.
Simos, G; Tekotte, H; Grosjean, H; Segref, A; Sharma, K; Tollervey, D; Hurt, E C
1996-01-01
Los1p and Pus1p, which are involved in tRNA biogenesis, were found in a genetic screen for components interacting with the nuclear pore protein Nsp1p. LOS1, PUS1 and NSP1 interact functionally, since the combination of mutations in the three genes causes synthetic lethality. Pus1p is an intranuclear protein which exhibits a nucleotide-specific and intron-dependent tRNA pseudouridine synthase activity. Los1p was shown previously to be required for efficient pre-tRNA splicing; we report here that Los1p localizes to the nuclear pores and is linked functionally to several components of the tRNA biogenesis machinery including Pus1p and Tfc4p. When the formation of functional tRNA was analyzed by an in vivo assay, the los1(-) pus1(-) double mutant, as well as several thermosensitive nucleoporin mutants including nsp1, nup116, nup133 and nup85, exhibited loss of suppressor tRNA activity even at permissive temperatures. These data suggest that nuclear pore proteins are required for the biogenesis of functional tRNA. Images PMID:8641292
Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage.
Karimian, Ansar; Ahmadi, Yasin; Yousefi, Bahman
2016-06-01
An appropriate control over cell cycle progression depends on many factors. Cyclin-dependent kinase (CDK) inhibitor p21 (also known as p21(WAF1/Cip1)) is one of these factors that promote cell cycle arrest in response to a variety of stimuli. The inhibitory effect of P21 on cell cycle progression correlates with its nuclear localization. P21 can be induced by both p53-dependent and p53-independent mechanisms. Some other important functions attributed to p21 include transcriptional regulation, modulation or inhibition of apoptosis. These functions are largely dependent on direct p21/protein interactions and also on p21 subcellular localizations. In addition, p21 can play a role in DNA repair by interacting with proliferating cell nuclear antigen (PCNA). In this review, we will focus on the multiple functions of p21 in cell cycle regulation, apoptosis and gene transcription after DNA damage and briefly discuss the pathways and factors that have critical roles in p21 expression and activity. Copyright © 2016 Elsevier B.V. All rights reserved.
Rajanala, Kalpana; Nandicoori, Vinay Kumar
2012-01-01
Nucleoporin Tpr is a component of the nuclear pore complex (NPC) that localizes exclusively to intranuclear filaments. Tpr functions as a scaffolding element in the nuclear phase of the NPC and plays a role in mitotic spindle checkpoint signalling. Export of intron-containing mRNA in Mason Pfizer Monkey Virus is regulated by direct interaction of cellular proteins with the cis-acting Constitutive Transport Element (CTE). In mammalian cells, the transport of Gag/Pol-CTE reporter construct is not very efficient, suggesting a regulatory mechanism to retain this unspliced RNA. Here we report that the knockdown of Tpr in mammalian cells leads to a drastic enhancement in the levels of Gag proteins (p24) in the cytoplasm, which is rescued by siRNA resistant Tpr. Tpr's role in the retention of unspliced RNA is independent of the functions of Sam68 and Tap/Nxf1 proteins, which are reported to promote CTE dependent export. Further, we investigated the possible role for nucleoporins that are known to function in nucleocytoplasmic transport in modulating unspliced RNA export. Results show that depletion of Nup153, a nucleoporin required for NPC anchoring of Tpr, plays a role in regulating the export, while depletion of other FG repeat-containing nucleoporins did not alter the unspliced RNA export. Results suggest that Tpr and Nup153 both regulate the export of unspliced RNA and they are most likely functioning through the same pathway. Importantly, we find that localization of Tpr to the NPC is necessary for Tpr mediated regulation of unspliced RNA export. Collectively, the data indicates that perinuclear localization of Tpr at the nucleopore complex is crucial for regulating intron containing mRNA export by directly or indirectly participating in the processing and degradation of aberrant mRNA transcripts. PMID:22253824
The Role of Ect2 Nuclear RhoGEF Activity in Ovarian Cancer Cell Transformation
Huff, Lauren P.; DeCristo, Molly J.; Trembath, Dimitri; Kuan, Pei Fen; Yim, Margaret; Liu, Jinsong; Cook, Danielle R.; Miller, C. Ryan; Der, Channing J.
2013-01-01
Ect2, a Rho guanine nucleotide exchange factor (RhoGEF), is atypical among RhoGEFs in its predominantly nuclear localization in interphase cells. One current model suggests that Ect2 mislocalization drives cellular transformation by promoting aberrant activation of cytoplasmic Rho family GTPase substrates. However, in ovarian cancers, where Ect2 is both amplified and overexpressed at the mRNA level, we observed that the protein is highly expressed and predominantly nuclear and that nuclear but not cytoplasmic Ect2 increases with advanced disease. Knockdown of Ect2 in ovarian cancer cell lines impaired their anchorage-independent growth without affecting their growth on plastic. Restoration of Ect2 expression rescued the anchorage-independent growth defect, but not if either the DH catalytic domain or the nuclear localization sequences of Ect2 were mutated. These results suggested a novel mechanism whereby Ect2 could drive transformation in ovarian cancer cells by acting as a RhoGEF specifically within the nucleus. Interestingly, Ect2 had an intrinsically distinct GTPase specificity profile in the nucleus versus the cytoplasm. Nuclear Ect2 bound preferentially to Rac1, while cytoplasmic Ect2 bound to RhoA but not Rac. Consistent with nuclear activation of endogenous Rac, Ect2 overexpression was sufficient to recruit Rac effectors to the nucleus, a process that required a functional Ect2 catalytic domain. Furthermore, expression of active nuclearly targeted Rac1 rescued the defect in transformed growth caused by Ect2 knockdown. Our work suggests a novel mechanism of Ect2-driven transformation, identifies subcellular localization as a regulator of GEF specificity, and implicates activation of nuclear Rac1 in cellular transformation. PMID:24386507
Interleukin 33 as a Mechanically Responsive Cytokine Secreted by Living Cells*
Kakkar, Rahul; Hei, Hillary; Dobner, Stephan; Lee, Richard T.
2012-01-01
Interleukin 33 (IL-33), a member of the Interleukin 1 cytokine family, is implicated in numerous human inflammatory diseases such as asthma, atherosclerosis, and rheumatoid arthritis. Despite its pathophysiologic importance, fundamental questions regarding the basic biology of IL-33 remain. Nuclear localization and lack of an export signal sequence are consistent with the view of IL-33 as a nuclear factor with the ability to repress RNA transcription. However, signaling via the transmembrane receptor ST2 and documented caspase-dependent inactivation have suggested IL-33 is liberated during cellular necrosis to effect paracrine signaling. We determined the subcellular localization of IL-33 and tracked its intracellular mobility and extracellular release. In contrast to published data, IL-33 localized simultaneously to nuclear euchromatin and membrane-bound cytoplasmic vesicles. Fluorescent pulse-chase fate-tracking documented dynamic nucleo-cytoplasmic flux, which was dependent on nuclear pore complex function. In murine fibroblasts in vitro and in vivo, mechanical strain induced IL-33 secretion in the absence of cellular necrosis. These data document IL-33 dynamic inter-organelle trafficking and release during biomechanical overload. As such we recharacterize IL-33 as both an inflammatory as well as mechanically responsive cytokine secreted by living cells. PMID:22215666
Carlow, Chevonne E; Faultless, J Trent; Lee, Christine; Siddiqua, Mahbuba; Edge, Alison; Nassuth, Annette
2017-09-01
The highly conserved CBF pathway is crucial in the regulation of plant responses to low temperatures. Extensive analysis of Arabidopsis CBF proteins revealed that their functions rely on several conserved amino acid domains although the exact function of each domain is disputed. The question was what functions similar domains have in CBFs from other, overwintering woody plants such as Vitis, which likely have a more involved regulation than the model plant Arabidopsis. A total of seven CBF genes were cloned and sequenced from V. riparia and the less frost tolerant V. vinifera. The deduced species-specific amino acid sequences differ in only a few amino acids, mostly in non-conserved regions. Amino acid sequence comparison and phylogenetic analysis showed two distinct groups of Vitis CBFs. One group contains CBF1, CBF2, CBF3 and CBF8 and the other group contains CBF4, CBF5 and CBF6. Transient transactivation assays showed that all Vitis CBFs except CBF5 activate via a CRT or DRE promoter element, whereby Vitis CBF3 and 4 prefer a CRT element. The hydrophobic domains in the C-terminal end of VrCBF6 were shown to be important for how well it activates. The putative nuclear localization domain of Vitis CBF1 was shown to be sufficient for nuclear localization, in contrast to previous reports for AtCBF1, and also important for transactivation. The latter highlights the value of careful analysis of domain functions instead of reliance on computer predictions and published data for other related proteins. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Yoshihara, Takeshi; Spalding, Edgar P; Iino, Moritoshi
2013-04-01
The present study identified a family of six A. thaliana genes that share five limited regions of sequence similarity with LAZY1, a gene in Oryza sativa (rice) shown to participate in the early gravity signaling for shoot gravitropism. A T-DNA insertion into the Arabidopsis gene (At5g14090) most similar to LAZY1 increased the inflorescence branch angle to 81° from the wild type value of 42°. RNA interference lines and molecular rescue experiments confirmed the linkage between the branch-angle phenotype and the gene consequently named AtLAZY1. Time-resolved gravitropism measurements of atlazy1 hypocotyls and primary inflorescence stems showed a significantly reduced bending rate during the first hour of response. The subcellular localization of AtLAZY1 protein was investigated to determine if the nuclear localization predicted from the gene sequence was observable and important to its function in shoot gravity responses. AtLAZY1 fused to green fluorescent protein largely rescued the branch-angle phenotype of atlazy1, and was observed by confocal microscopy at the cell periphery and within the nucleus. Mutation of the nuclear localization signal prevented detectable levels of AtLAZY1 in the nucleus without affecting the ability of the gene to rescue the atlazy1 branch-angle phenotype. These results indicate that AtLAZY1 functions in gravity signaling during shoot gravitropism, being a functional ortholog of rice LAZY1. The nuclear pool of the protein appears to be unnecessary for this function, which instead relies on a pool that appears to reside at the cell periphery. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.
Bajenova, Olga; Stolper, Eugenia; Gapon, Svetlana; Sundina, Natalia; Zimmer, Regis; Thomas, Peter
2003-11-15
Elevated concentrations of carcinoembryonic antigen (CEA) in the blood are associated with the development of hepatic metastases from colorectal cancers. Clearance of circulating CEA occurs through endocytosis by liver macrophages, Kupffer cells. Previously we identified heterogeneous nuclear ribonucleoproteins M4 (hnRNP M4) as a receptor (CEAR) for CEA. HnRNP M4 has two isoform proteins (p80, p76), the full-length hnRNP M4 (CEARL) and a truncated form (CEARS) with a deletion of 39 amino acids between RNA binding domains 1 and 2, generated by alternative splicing. The present study was undertaken to clarify any isoform-specific differences in terms of their function as CEA receptor and localization. We develop anti-CEAR isoform-specific antibodies and show that both CEAR splicing isoforms are expressed on the surface of Kupffer cells and can function as CEA receptor. Alternatively, in P388D1 macrophages CEARS protein has nuclear and CEARL has cytoplasmic localization. In MIP101 colon cancer and HeLa cells the CEARS protein is localized to the nucleus and CEARL to the cytoplasm. These findings imply that different functions are assigned to CEAR isoforms depending on the cell type. The search of 39 amino acids deleted region against the Prosite data base revealed the presence of N-myristylation signal PGGPGMITIP that may be involved in protein targeting to the plasma membrane. Overall, this report demonstrates that the cellular distribution, level of expression, and relative amount of CEARL and CEARS isoforms determine specificity for CEA binding and the expression of alternative spliced forms of CEAR is regulated in a tissue-specific manner.
Görner, Wolfram; Durchschlag, Erich; Martinez-Pastor, Maria Teresa; Estruch, Francisco; Ammerer, Gustav; Hamilton, Barbara; Ruis, Helmut; Schüller, Christoph
1998-01-01
Msn2p and the partially redundant factor Msn4p are key regulators of stress-responsive gene expression in Saccharomyces cerevisiae. They are required for the transcription of a number of genes coding for proteins with stress-protective functions. Both Msn2p and Msn4p are Cys2His2 zinc finger proteins and bind to the stress response element (STRE). In vivo footprinting studies show that the occupation of STREs is enhanced in stressed cells and dependent on the presence of Msn2p and Msn4p. Both factors accumulate in the nucleus under stress conditions, such as heat shock, osmotic stress, carbon-source starvation, and in the presence of ethanol or sorbate. Stress-induced nuclear localization was found to be rapid, reversible, and independent of protein synthesis. Nuclear localization of Msn2p and Msn4p was shown to be correlated inversely to cAMP levels and protein kinase A (PKA) activity. A region with significant homologies shared between Msn2p and Msn4p is sufficient to confer stress-regulated localization to a SV40–NLS–GFP fusion protein. Serine to alanine or aspartate substitutions in a conserved PKA consensus site abolished cAMP-driven nuclear export and cytoplasmic localization in unstressed cells. We propose stress and cAMP-regulated intracellular localization of Msn2p to be a key step in STRE-dependent transcription and in the general stress response. PMID:9472026
Cardoso, Maira Arruda; Fontenele, Marcio; Lim, Bomyi; Bisch, Paulo Mascarello; Shvartsman, Stanislav Y; Araujo, Helena Marcolla
2017-08-15
The evolutionarily conserved Toll signaling pathway controls innate immunity across phyla and embryonic patterning in insects. In the Drosophila embryo, Toll is required to establish gene expression domains along the dorsal-ventral axis. Pathway activation induces degradation of the IκB inhibitor Cactus, resulting in a ventral-to-dorsal nuclear gradient of the NFκB effector Dorsal. Here, we investigate how cactus modulates Toll signals through its effects on the Dorsal gradient and on Dorsal target genes. Quantitative analysis using a series of loss- and gain-of-function conditions shows that the ventral and lateral aspects of the Dorsal gradient can behave differently with respect to Cactus fluctuations. In lateral and dorsal embryo domains, loss of Cactus allows more Dorsal to translocate to the nucleus. Unexpectedly, cactus loss-of-function alleles decrease Dorsal nuclear localization ventrally, where Toll signals are high. Overexpression analysis suggests that this ability of Cactus to enhance Toll stems from the mobilization of a free Cactus pool induced by the Calpain A protease. These results indicate that Cactus acts to bolster Dorsal activation, in addition to its role as a NFκB inhibitor, ensuring a correct response to Toll signals. © 2017. Published by The Company of Biologists Ltd.
Schoen, Ingmar; Aires, Lina; Ries, Jonas; Vogel, Viola
2017-09-03
Recent advances in fluorescence microscopy have opened up new possibilities to investigate chromosomal and nuclear 3D organization on the nanoscale. We here discuss their potential for elucidating topographical details of the nuclear lamina. Single molecule localization microscopy (SMLM) in combination with immunostainings of lamina proteins readily reveals tube-like invaginations with a diameter of 100-500 nm. Although these invaginations have been established as a frequent and general feature of interphase nuclei across different cell types, their formation mechanism and function have remained largely elusive. We critically review the current state of research, propose possible connections to lamina associated domains (LADs), and revisit the discussion about the potential role of these invaginations for accelerating mRNA nuclear export. Illustrative studies using 3D super-resolution imaging are shown and will be instrumental to decipher the physiological role of these nanoscale invaginations.
Zaprazna, Kristina
2012-01-01
Activation-induced deaminase (AID) is an enzyme required for class switch recombination (CSR) and somatic hypermutation (SHM), processes that ensure antibody maturation and expression of different immunoglobulin isotypes. AID function is tightly regulated by tissue- and stage-specific expression, nuclear localization, and protein stability. Transcription factor YY1 is crucial for early B cell development, but its function at late B cell stages is unknown. Here, we show that YY1 conditional knockout in activated splenic B cells interferes with CSR. Knockout of YY1 did not affect B cell proliferation, transcription of the AID and IgM genes, or levels of various switch region germ line transcripts. However, we show that YY1 physically interacts with AID and controls the accumulation of nuclear AID, at least in part, by increasing nuclear AID stability. We show for the first time that YY1 plays a novel role in CSR and controls nuclear AID protein levels. PMID:22290437
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walpen, Thomas; Kalus, Ina; Schwaller, Juerg
Highlights: Black-Right-Pointing-Pointer Pim1{sup -/-} endothelial cell proliferation displays increased sensitivity to rapamycin. Black-Right-Pointing-Pointer mTOR inhibition by rapamycin enhances PIM1 cytosolic and nuclear protein levels. Black-Right-Pointing-Pointer Truncation of Pim1 beyond serine 276 results in nuclear localization of the kinase. Black-Right-Pointing-Pointer Nuclear PIM1 increases endothelial proliferation independent of rapamycin. -- Abstract: The PIM serine/threonine kinases and the mTOR/AKT pathway integrate growth factor signaling and promote cell proliferation and survival. They both share phosphorylation targets and have overlapping functions, which can partially substitute for each other. In cancer cells PIM kinases have been reported to produce resistance to mTOR inhibition by rapamycin. Tumormore » growth depends highly on blood vessel infiltration into the malignant tissue and therefore on endothelial cell proliferation. We therefore investigated how the PIM1 kinase modulates growth inhibitory effects of rapamycin in mouse aortic endothelial cells (MAEC). We found that proliferation of MAEC lacking Pim1 was significantly more sensitive to rapamycin inhibition, compared to wildtype cells. Inhibition of mTOR and AKT in normal MAEC resulted in significantly elevated PIM1 protein levels in the cytosol and in the nucleus. We observed that truncation of the C-terminal part of Pim1 beyond Ser 276 resulted in almost exclusive nuclear localization of the protein. Re-expression of this Pim1 deletion mutant significantly increased the proliferation of Pim1{sup -/-} cells when compared to expression of the wildtype Pim1 cDNA. Finally, overexpression of the nuclear localization mutant and the wildtype Pim1 resulted in complete resistance to growth inhibition by rapamycin. Thus, mTOR inhibition-induced nuclear accumulation of PIM1 or expression of a nuclear C-terminal PIM1 truncation mutant is sufficient to increase endothelial cell proliferation, suggesting that nuclear localization of PIM1 is important for resistance of MAEC to rapamycin-mediated inhibition of proliferation.« less
The actin binding cytoskeletal protein Moesin is involved in nuclear mRNA export.
Kristó, Ildikó; Bajusz, Csaba; Borsos, Barbara N; Pankotai, Tibor; Dopie, Joseph; Jankovics, Ferenc; Vartiainen, Maria K; Erdélyi, Miklós; Vilmos, Péter
2017-10-01
Current models imply that the evolutionarily conserved, actin-binding Ezrin-Radixin-Moesin (ERM) proteins perform their activities at the plasma membrane by anchoring membrane proteins to the cortical actin network. Here we show that beside its cytoplasmic functions, the single ERM protein of Drosophila, Moesin, has a novel role in the nucleus. The activation of transcription by heat shock or hormonal treatment increases the amount of nuclear Moesin, indicating biological function for the protein in the nucleus. The distribution of Moesin in the nucleus suggests a function in transcription and the depletion of mRNA export factors Nup98 or its interacting partner, Rae1, leads to the nuclear accumulation of Moesin, suggesting that the nuclear function of the protein is linked to mRNA export. Moesin localizes to mRNP particles through the interaction with the mRNA export factor PCID2 and knock down of Moesin leads to the accumulation of mRNA in the nucleus. Based on our results we propose that, beyond its well-known, manifold functions in the cytoplasm, the ERM protein of Drosophila is a new, functional component of the nucleus where it participates in mRNA export. Copyright © 2017 Elsevier B.V. All rights reserved.
Axonal localization and mitochondrial association of precursor microRNA 338
Vargas, Jose Norberto S.; Kar, Amar N.; Kowalak, Jeffrey A.; Gale, Jenna R.; Aschrafi, Armaz; Chen, Cai-Yun; Gioio, Anthony E.; Kaplan, Barry B.
2016-01-01
microRNAs (miRNAs) selectively localize to subcompartments of the neuron, such as dendrites, axons and presynaptic terminals, where they regulate the local protein synthesis of their putative target genes. In addition to mature miRNAs, precursor miRNAs (pre-miRNAs) have also been shown to localize to somatodendritic and axonal compartments. miRNA-338 (miR-338) regulates the local expression of several nuclear-encoded mitochondrial mRNAs within axons of sympathetic neurons. Previous work has shown that precursor miR-338 (pre-miR-338) introduced into the axon can be locally processed into mature miR-338, where it can regulate local ATP synthesis. However, the mechanisms underlying the localization of pre-miRNAs to the axonal compartment remain unknown. In this study, we investigated the axonal localization of pre-miR-338. Using proteomic and biochemical approaches, we provide evidence for the localization of pre-miR-338 to distal neuronal compartments and identify several constituents of the pre-miR-338 ribonucleoprotein complex. Furthermore, we found that pre-miR-338 is associated with the mitochondria in axons of superior cervical ganglion (SCG) neurons. The maintenance of mitochondrial function within axons requires the precise spatio-temporal synthesis of nuclear-encoded mRNAs, some of which are regulated by miR-338. Therefore, the association of pre-miR-338 with axonal mitochondria could serve as a reservoir of mature, biologically active miRNAs, which could coordinate the intra-axonal expression of multiple nuclear-encoded mitochondrial mRNAs. PMID:27229124
Variations in Nuclear Localization Strategies Among Pol X Family Enzymes.
Kirby, Thomas W; Pedersen, Lars C; Gabel, Scott A; Gassman, Natalie R; London, Robert E
2018-06-22
Despite the essential roles of pol X family enzymes in DNA repair, information about the structural basis of their nuclear import is limited. Recent studies revealed the unexpected presence of a functional NLS in DNA polymerase β, indicating the importance of active nuclear targeting, even for enzymes likely to leak into and out of the nucleus. The current studies further explore the active nuclear transport of these enzymes by identifying and structurally characterizing the functional NLS sequences in the three remaining human pol X enzymes: terminal deoxynucleotidyl transferase (TdT), DNA polymerase μ (pol μ), and DNA polymerase λ (pol λ). NLS identifications are based on Importin α (Impα) binding affinity determined by fluorescence polarization of fluorescein-labeled NLS peptides, X-ray crystallographic analysis of the Impα∆IBB•NLS complexes, and fluorescence-based subcellular localization studies. All three polymerases use NLS sequences located near their N-terminus; TdT and pol μ utilize monopartite NLS sequences, while pol λ utilizes a bipartite sequence, unique among the pol X family members. The pol μ NLS has relatively weak measured affinity for Impα, due in part to its proximity to the N-terminus that limits non-specific interactions of flanking residues preceding the NLS. However, this effect is partially mitigated by an N-terminal sequence unsupportive of Met1 removal by methionine aminopeptidase, leading to a 3-fold increase in affinity when the N-terminal methionine is present. Nuclear targeting is unique to each pol X family enzyme with variations dependent on the structure and unique functional role of each polymerase. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Zhang, Lei; Davies, Laura J; Elling, Axel A
2015-01-01
Root-knot nematodes are sedentary biotrophic endoparasites that maintain a complex interaction with their host plants. Nematode effector proteins are synthesized in the oesophageal glands of nematodes and secreted into plant tissue through a needle-like stylet. Effectors characterized to date have been shown to mediate processes essential for nematode pathogenesis. To gain an insight into their site of action and putative function, the subcellular localization of 13 previously isolated Meloidogyne incognita effectors was determined. Translational fusions were created between effectors and EGFP-GUS (enhanced green fluorescent protein-β-glucuronidase) reporter genes, which were transiently expressed in tobacco leaf cells. The majority of effectors localized to the cytoplasm, with one effector, 7H08, imported into the nuclei of plant cells. Deletion analysis revealed that the nuclear localization of 7H08 was mediated by two novel independent nuclear localization domains. As a result of the nuclear localization of the effector, 7H08 was tested for the ability to activate gene transcription. 7H08 was found to activate the expression of reporter genes in both yeast and plant systems. This is the first report of a plant-parasitic nematode effector with transcriptional activation activity. © 2014 BSPP AND JOHN WILEY & SONS LTD.
Smith, Kate M; Di Antonio, Veronica; Bellucci, Luca; Thomas, David R; Caporuscio, Fabiana; Ciccarese, Francesco; Ghassabian, Hanieh; Wagstaff, Kylie M; Forwood, Jade K; Jans, David A; Palù, Giorgio; Alvisi, Gualtiero
2018-08-01
Nuclear import involves the recognition by importin (IMP) superfamily members of nuclear localization signals (NLSs) within protein cargoes destined for the nucleus, the best understood being recognition of classical NLSs (cNLSs) by the IMPα/β1 heterodimer. Although the cNLS consensus [K-(K/R)-X-(K/R) for positions P2-P5] is generally accepted, recent studies indicated that the contribution made by different residues at the P4 position can vary. Here, we apply a combination of microscopy, molecular dynamics, crystallography, in vitro binding, and bioinformatics approaches to show that the nature of residues at P4 indeed modulates cNLS function in the context of a prototypical Simian Virus 40 large tumor antigen-derived cNLS (KKRK, P2-5). Indeed, all hydrophobic substitutions in place of R impaired binding to IMPα and nuclear targeting, with the largest effect exerted by a G residue at P4. Substitution of R with neutral hydrophobic residues caused the loss of electrostatic and van der Waals interactions between the P4 residue side chains and IMPα. Detailed bioinformatics analysis confirmed the importance of the P4 residue for cNLS function across the human proteome, with specific residues such as G being associated with low activity. Furthermore, we validate our findings for two additional cNLSs from human cytomegalovirus (HCMV) DNA polymerase catalytic subunit UL54 and processivity factor UL44, where a G residue at P4 results in a 2-3-fold decrease in NLS activity. Our results thus showed that the P4 residue makes a hitherto poorly appreciated contribution to nuclear import efficiency, which is essential to determining the precise nuclear levels of cargoes. Copyright © 2018 Elsevier B.V. All rights reserved.
Guo, Dongsheng; Sarkar, Joy; Ahmed, Mohamed R; Viswakarma, Navin; Jia, Yuzhi; Yu, Songtao; Sambasiva Rao, M; Reddy, Janardan K
2006-08-25
The constitutive androstane receptor (CAR) regulates transcription of phenobarbital-inducible genes that encode xenobiotic-metabolizing enzymes in liver. CAR is localized to the hepatocyte cytoplasm but to be functional, it translocates into the nucleus in the presence of phenobarbital-like CAR ligands. We now demonstrate that adenovirally driven EGFP-CAR, as expected, translocates into the nucleus of normal wild-type hepatocytes following phenobarbital treatment under both in vivo and in vitro conditions. Using this approach we investigated the role of transcription coactivators PBP and PRIP in the translocation of EGFP-CAR into the nucleus of PBP and PRIP liver conditional null mouse hepatocytes. We show that coactivator PBP is essential for nuclear translocation of CAR but not PRIP. Adenoviral expression of both PBP and EGFP-CAR restored phenobarbital-mediated nuclear translocation of exogenously expressed CAR in PBP null livers in vivo and in PBP null primary hepatocytes in vitro. CAR translocation into the nucleus of PRIP null livers resulted in the induction of CAR target genes such as CYP2B10, necessary for the conversion of acetaminophen to its hepatotoxic intermediate metabolite, N-acetyl-p-benzoquinone imine. As a consequence, PRIP-deficiency in liver did not protect from acetaminophen-induced hepatic necrosis, unlike that exerted by PBP deficiency. These results establish that transcription coactivator PBP plays a pivotal role in nuclear localization of CAR, that it is likely that PBP either enhances nuclear import or nuclear retention of CAR in hepatocytes, and that PRIP is redundant for CAR function.
Intersectin goes nuclear: secret life of an endocytic protein.
Alvisi, Gualtiero; Paolini, Lucia; Contarini, Andrea; Zambarda, Chiara; Di Antonio, Veronica; Colosini, Antonella; Mercandelli, Nicole; Timmoneri, Martina; Palù, Giorgio; Caimi, Luigi; Ricotta, Doris; Radeghieri, Annalisa
2018-04-27
Intersectin 1-short (ITSN1-s) is a 1220 amino acid ubiquitously expressed scaffold protein presenting a multidomain structure that allows to spatiotemporally regulate the functional interaction of a plethora of proteins. Besides its well-established role in endocytosis, ITSN1-s is involved in the regulation of cell signaling and is implicated in tumorigenesis processes, although the signaling pathways involved are still poorly understood. Here, we identify ITSN1-s as a nucleocytoplasmic trafficking protein. We show that, by binding to importin (IMP)α, a small fraction of ITSN1-s localizes in the cell nucleus at the steady state, where it preferentially associates with the nuclear envelope and interacts with lamin A/C. However, upon pharmacological ablation of chromosome region maintenance 1 (CRM-1)-dependent nuclear export pathway, the protein accumulates into the nucleus, thus revealing its moonlighting nature. Analysis of deletion mutants revealed that the coiled coil (CC) and Src homology (SH3) regions play the major role in its nucleocytoplasmic shuttling. While no evidence of nuclear localization signal (NLS) was detected in the CC region, a functional bipartite NLS was identified within the SH3D region of ITSN1-s (RKKNPGGWWEGELQARGKKRQIGW-1127), capable of conferring energy-dependent nuclear accumulation to reporter proteins and whose mutational ablation affects nuclear import of the whole SH3 region. Thus, ITSN1-s is an endocytic protein, which shuttles between the nucleus and the cytoplasm in a CRM-1- and IMPα-dependent fashion. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
TRX-1 Regulates SKN-1 Nuclear Localization Cell Non-autonomously in Caenorhabditis elegans
McCallum, Katie C.; Liu, Bin; Fierro-González, Juan Carlos; Swoboda, Peter; Arur, Swathi; Miranda-Vizuete, Antonio; Garsin, Danielle A.
2016-01-01
The Caenorhabditis elegans oxidative stress response transcription factor, SKN-1, is essential for the maintenance of redox homeostasis and is a functional ortholog of the Nrf family of transcription factors. The numerous levels of regulation that govern these transcription factors underscore their importance. Here, we add a thioredoxin, encoded by trx-1, to the expansive list of SKN-1 regulators. We report that loss of trx-1 promotes nuclear localization of intestinal SKN-1 in a redox-independent, cell non-autonomous fashion from the ASJ neurons. Furthermore, this regulation is not general to the thioredoxin family, as two other C. elegans thioredoxins, TRX-2 and TRX-3, do not play a role in this process. Moreover, TRX-1-dependent regulation requires signaling from the p38 MAPK-signaling pathway. However, while TRX-1 regulates SKN-1 nuclear localization, classical SKN-1 transcriptional activity associated with stress response remains largely unaffected. Interestingly, RNA-Seq analysis revealed that loss of trx-1 elicits a general, organism-wide down-regulation of several classes of genes; those encoding for collagens and lipid transport being most prevalent. Together, these results uncover a novel role for a thioredoxin in regulating intestinal SKN-1 nuclear localization in a cell non-autonomous manner, thereby contributing to the understanding of the processes involved in maintaining redox homeostasis throughout an organism. PMID:26920757
TRX-1 Regulates SKN-1 Nuclear Localization Cell Non-autonomously in Caenorhabditis elegans.
McCallum, Katie C; Liu, Bin; Fierro-González, Juan Carlos; Swoboda, Peter; Arur, Swathi; Miranda-Vizuete, Antonio; Garsin, Danielle A
2016-05-01
The Caenorhabditis elegans oxidative stress response transcription factor, SKN-1, is essential for the maintenance of redox homeostasis and is a functional ortholog of the Nrf family of transcription factors. The numerous levels of regulation that govern these transcription factors underscore their importance. Here, we add a thioredoxin, encoded by trx-1, to the expansive list of SKN-1 regulators. We report that loss of trx-1 promotes nuclear localization of intestinal SKN-1 in a redox-independent, cell non-autonomous fashion from the ASJ neurons. Furthermore, this regulation is not general to the thioredoxin family, as two other C. elegans thioredoxins, TRX-2 and TRX-3, do not play a role in this process. Moreover, TRX-1-dependent regulation requires signaling from the p38 MAPK-signaling pathway. However, while TRX-1 regulates SKN-1 nuclear localization, classical SKN-1 transcriptional activity associated with stress response remains largely unaffected. Interestingly, RNA-Seq analysis revealed that loss of trx-1 elicits a general, organism-wide down-regulation of several classes of genes; those encoding for collagens and lipid transport being most prevalent. Together, these results uncover a novel role for a thioredoxin in regulating intestinal SKN-1 nuclear localization in a cell non-autonomous manner, thereby contributing to the understanding of the processes involved in maintaining redox homeostasis throughout an organism. Copyright © 2016 by the Genetics Society of America.
Takeda, Naoya; Maekawa, Takaki; Hayashi, Makoto
2012-01-01
The common symbiosis pathway is at the core of symbiosis signaling between plants and soil microbes. In this pathway, calcium- and calmodulin-dependent protein kinase (CCaMK) plays a crucial role in integrating the signals both in arbuscular mycorrhizal symbiosis (AMS) and in root nodule symbiosis (RNS). However, the molecular mechanism by which CCaMK coordinates AMS and RNS is largely unknown. Here, we report that the gain-of-function (GOF) variants of CCaMK without the regulatory domains activate both AMS and RNS signaling pathways in the absence of symbiotic partners. This activation requires nuclear localization of CCaMK. Enforced nuclear localization of the GOF-CCaMK variants by fusion with a canonical nuclear localization signal enhances signaling activity of AMS and RNS. The GOF-CCaMK variant triggers formation of a structure similar to the prepenetration apparatus, which guides infection of arbuscular mycorrhizal fungi to host root cells. In addition, the GOF-CCaMK variants without the regulatory domains partly restore AMS but fail to support rhizobial infection in ccamk mutants. These data indicate that AMS, the more ancient type of symbiosis, can be mainly regulated by the kinase activity of CCaMK, whereas RNS, which evolved more recently, requires complex regulation performed by the regulatory domains of CCaMK. PMID:22337918
Ege, Nil; Dowbaj, Anna M; Jiang, Ming; Howell, Michael; Hooper, Steven; Foster, Charles; Jenkins, Robert P; Sahai, Erik
2018-06-08
The transcriptional regulator YAP1 is critical for the pathological activation of fibroblasts. In normal fibroblasts, YAP1 is located in the cytoplasm, while in activated cancer-associated fibroblasts, it is nuclear and promotes the expression of genes required for pro-tumorigenic functions. Here, we investigate the dynamics of YAP1 shuttling in normal and activated fibroblasts, using EYFP-YAP1, quantitative photobleaching methods, and mathematical modeling. Imaging of migrating fibroblasts reveals the tight temporal coupling of cell shape change and altered YAP1 localization. Both 14-3-3 and TEAD binding modulate YAP1 shuttling, but neither affects nuclear import. Instead, we find that YAP1 nuclear accumulation in activated fibroblasts results from Src and actomyosin-dependent suppression of phosphorylated YAP1 export. Finally, we show that nuclear-constrained YAP1, upon XPO1 depletion, remains sensitive to blockade of actomyosin function. Together, these data place nuclear export at the center of YAP1 regulation and indicate that the cytoskeleton can regulate YAP1 within the nucleus. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bala, Shashi; Kumar, Ajay; Soni, Shivani
2006-04-21
Emp, originally detected in erythroblastic islands, is expressed in numerous cell types and tissues suggesting a functionality not limited to hematopoiesis. To study the function of Emp in non-hematopoietic cells, an epitope-tagged recombinant human Emp was expressed in HEK cells. Preliminary studies revealed that Emp partitioned into both the nuclear and Triton X-100-insoluble cytoskeletal fractions in approximately a 4:1 ratio. In this study, we report investigations of Emp in the nucleus. Sequential extractions of interphase nuclei showed that recombinant Emp was present predominantly in the nuclear matrix. Immunofluorescence microscopy showed that Emp was present in typical nuclear speckles enriched withmore » the spliceosome assembly factor SC35 and partially co-localized with actin staining. Coimmunoprecipitation and GST-pull-down assays confirmed the apparent close association of Emp with nuclear actin. During mitosis, Emp was detected at the mitotic spindle/spindle poles, as well as in the contractile ring during cytokinesis. These results suggest that Emp undergoes dynamic rearrangements within the nuclear architecture that are correlated with cell division.« less
Bala, Shashi; Kumar, Ajay; Soni, Shivani; Sinha, Sudha; Hanspal, Manjit
2006-04-21
Emp, originally detected in erythroblastic islands, is expressed in numerous cell types and tissues suggesting a functionality not limited to hematopoiesis. To study the function of Emp in non-hematopoietic cells, an epitope-tagged recombinant human Emp was expressed in HEK cells. Preliminary studies revealed that Emp partitioned into both the nuclear and Triton X-100-insoluble cytoskeletal fractions in approximately a 4:1 ratio. In this study, we report investigations of Emp in the nucleus. Sequential extractions of interphase nuclei showed that recombinant Emp was present predominantly in the nuclear matrix. Immunofluorescence microscopy showed that Emp was present in typical nuclear speckles enriched with the spliceosome assembly factor SC35 and partially co-localized with actin staining. Coimmunoprecipitation and GST-pull-down assays confirmed the apparent close association of Emp with nuclear actin. During mitosis, Emp was detected at the mitotic spindle/spindle poles, as well as in the contractile ring during cytokinesis. These results suggest that Emp undergoes dynamic rearrangements within the nuclear architecture that are correlated with cell division.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eberhard, Jeremy; Onder, Zeynep; Moroianu, Junona, E-mail: moroianu@bc.edu
We previously discovered that nuclear import of high risk HPV16 E7 is mediated by a cNLS located within the zinc-binding domain via a pathway that is independent of karyopherins/importins (Angeline et al., 2003; Knapp et al., 2009). In this study we continued our characterization of the cNLS and nuclear import pathway of HPV16 E7. We find that an intact zinc-binding domain is essential for the cNLS function in mediating nuclear import of HPV16 E7. Mutagenesis of cysteine residues to alanine in each of the two CysXXCys motifs involved in zinc-binding changes the nuclear localization of the EGFP-16E7 and 2xEGFP-16E7 mutants.more » We further discover that a patch of hydrophobic residues, {sub 65}LRLCV{sub 69}, within the zinc-binding domain of HPV16 E7 mediates its nuclear import via hydrophobic interactions with the FG domain of the central channel nucleoporin Nup62. - Highlights: • An intact zinc-binding domain is essential for the nuclear localization of HPV16 E7. • Identification of a hydrophobic patch that is critical for the nuclear import of HPV16 E7. • HPV16 E7 interacts via its zinc-binding domain with the FG domain of Nup62.« less
The nuclear envelope as an integrator of nuclear and cytoplasmic architecture.
Crisp, Melissa; Burke, Brian
2008-06-18
Initially perceived as little more than a container for the genome, our view of the nuclear envelope (NE) and its role in defining global nuclear architecture has evolved significantly in recent years. The recognition that certain human diseases arise from defects in NE components has provided new insight into its structural and regulatory functions. In particular, NE defects associated with striated muscle disease have been shown to cause structural perturbations not just of the nucleus itself but also of the cytoplasm. It is now becoming increasingly apparent that these two compartments display co-dependent mechanical properties. The identification of cytoskeletal binding complexes that localize to the NE now reveals a molecular framework that can seamlessly integrate nuclear and cytoplasmic architecture.
2013-01-01
Background Co-Activator Arginine Methyltransferase 1(CARM1) is an Estrogen Receptor (ER) cofactor that remodels chromatin for gene regulation via methylation of Histone3. We investigated CARM1 levels and localization across breast cancer tumors in a cohort of patients of either European or African ancestry. Methods We analyzed CARM1 levels using tissue microarrays with over 800 histological samples from 549 female cancer patients from the US and Nigeria, Africa. We assessed associations between CARM1 expression localized to the nucleus and cytoplasm for 11 distinct variables, including; ER status, Progesterone Receptor status, molecular subtypes, ethnicity, HER2+ status, other clinical variables and survival. Results We found that levels of cytoplasmic CARM1 are distinct among tumor sub-types and increased levels are associated with ER-negative (ER-) status. Higher nuclear CARM1 levels are associated with HER2 receptor status. EGFR expression also correlates with localization of CARM1 into the cytoplasm. This suggests there are distinct functions of CARM1 among molecular tumor types. Our data reveals a basal-like subtype association with CARM1, possibly due to expression of Epidermal Growth Factor Receptor (EGFR). Lastly, increased cytoplasmic CARM1, relative to nuclear levels, appear to be associated with self-identified African ethnicity and this result is being further investigated using quantified genetic ancestry measures. Conclusions Although it is known to be an ER cofactor in breast cancer, CARM1 expression levels are independent of ER. CARM1 has distinct functions among molecular subtypes, as is indicative of its sub-cellular localization and it may function in subtype etiology. These sub-cellular localization patterns, indicate a novel role beyond its ER cofactor function in breast cancer. Differential localization among ethnic groups may be due to ancestry-specific polymorphisms which alter the gene product. PMID:23663560
Mochizuki, Ryota; Tsugama, Daisuke; Yamazaki, Michihiro; Fujino, Kaien; Masuda, Kiyoshi
2017-05-04
NMCP/CRWN (NUCLEAR MATRIX CONSTITUENT PROTEIN/CROWDED NUCLEI) is a major component of a protein fibrous meshwork (lamina-like structure) on the plant inner nuclear membrane. NMCP/CRWN contributes to regulating nuclear shape and nuclear functions. An NMCP/CRWN protein in Daucus carota (DcNMCP1) is localized to the nuclear periphery in interphase cells, and surrounds chromosomes in cells in metaphase and anaphase. The N-terminal region and the C-terminal region of DcNMCP1 are both necessary for localizing DcNMCP1 to the nuclear periphery. Here candidate interacting partners of the amino acid position 975-1053 of DcNMCP1 (T975-1053), which is present in the C-terminal region and contains a conserved sequence that plays a role in localizing DcNMCP1 to the nuclear periphery, are screened for. Arabidopsis thaliana nuclear proteins were subjected to far-Western blotting with GST-fused T975-1053 as a probe, and signals were detected at the positions corresponding to ∼70, ∼40, and ∼18 kDa. These ∼70, ∼40, and ∼18 kDa nuclear proteins were identified by mass spectrometry, and subjected to a yeast 2-hybrid (Y2H) analysis with T975-1053 as bait. In this analysis, the ∼40 kDa protein ARP7, which is a nuclear actin-related protein possibly involved in regulating chromatin structures, was confirmed to interact with T975-1053. Independently of the far-Western blotting, a Y2H screen was performed using T975-1053 as bait. Targeted Y2H assays confirmed that 3 proteins identified in the screen, MYB3, SINAT1, and BIM1, interact with T975-1053. These proteins might have roles in NMCP/CRWN protein-mediated biologic processes.
Apparatus for localizing disturbances in pressurized water reactors (PWR)
Sykora, Dalibor
1989-01-01
The invention according to CS-PS 177386, entitled ''Apparatus for increasing the efficiency and passivity of the functioning of a bubbling-vacuum system for localizing disturbances in nuclear power plants with a pressurized water reactor'', concerns an important area of nuclear power engineering that is being developed in the RGW member countries. The invention solves the problems of increasing the reliability and intensification during the operation of the above very important system for guaranteeing the safety of the standard nuclear power plants of Soviet design. The essence of the invention consists in the installation of a simple passively operating supplementary apparatus. Consequently, the following can be observed in the system: first an improvement and simultaneous increase in the reliability of its function during the critical transition period, which follows the filling of the second space with air from the first space; secondly, elimination of the hitherto unavoidable initiating role of the active sprinkler-condensation device present; thirdly, a more effective performance and subjection of the elements to disintegration of the water flowing from the bubbling condenser into the first space; and fourthly, an enhanced utilization of the heat-conducting ability of the water reservoir of the bubbling condenser. Representatives of the supplementary apparatus are autonomous and local secondary systems of the sprinkler-sprayer without an insert, which spray the water under the effect of gravity. 1 fig.
Gonyo, P; Bergom, C; Brandt, A C; Tsaih, S-W; Sun, Y; Bigley, T M; Lorimer, E L; Terhune, S S; Rui, H; Flister, M J; Long, R M; Williams, C L
2017-12-14
The chaperone protein and guanine nucleotide exchange factor SmgGDS (RAP1GDS1) is a key promoter of cancer cell proliferation and tumorigenesis. SmgGDS undergoes nucleocytoplasmic shuttling, suggesting that it has both cytoplasmic and nuclear functions that promote cancer. Previous studies indicate that SmgGDS binds cytoplasmic small GTPases and promotes their trafficking to the plasma membrane. In contrast, little is known about the functions of SmgGDS in the nucleus, or how these nuclear functions might benefit cancer cells. Here we show unique nuclear localization and regulation of gene transcription pathways by SmgGDS. Strikingly, SmgGDS depletion significantly reduces expression of over 600 gene products that are targets of the DREAM complex, which is a transcription factor complex that regulates expression of proteins controlling the cell cycle. The cell cycle regulators E2F1, MYC, MYBL2 (B-Myb) and FOXM1 are among the DREAM targets that are diminished by SmgGDS depletion. E2F1 is well known to promote G1 cell cycle progression, and the loss of E2F1 in SmgGDS-depleted cells provides an explanation for previous reports that SmgGDS depletion characteristically causes a G1 cell cycle arrest. We show that SmgGDS localizes in nucleoli, and that RNAi-mediated depletion of SmgGDS in cancer cells disrupts nucleolar morphology, signifying nucleolar stress. We show that nucleolar SmgGDS interacts with the RNA polymerase I transcription factor upstream binding factor (UBF). The RNAi-mediated depletion of UBF diminishes nucleolar localization of SmgGDS and promotes proteasome-mediated degradation of SmgGDS, indicating that nucleolar sequestration of SmgGDS by UBF stabilizes SmgGDS protein. The ability of SmgGDS to interact with UBF and localize in the nucleolus is diminished by expressing DiRas1 or DiRas2, which are small GTPases that bind SmgGDS and act as tumor suppressors. Taken together, our results support a novel nuclear role for SmgGDS in protecting malignant cells from nucleolar stress, thus promoting cell cycle progression and tumorigenesis.
NASA Astrophysics Data System (ADS)
Kamae, Tuneyoshi; Lee, Shiu-Hang; Makishima, Kazuo; Shibata, Shinpei; Shigeyama, Toshikazu
2018-03-01
Recent observations found that electrons are accelerated to ˜10 GeV and emit synchrotron hard X-rays in two magnetic white dwarfs (WDs), also known as cataclysmic variables (CVs). In nova outbursts of WDs, multi-GeV gamma-rays were detected, implying that protons are accelerated to 100 GeV or higher. In recent optical surveys, the WD density is found to be higher near the Sun than in the Galactic disk by a factor ˜2.5. The cosmic rays (CRs) produced by local CVs and novae will accumulate in the local bubble for 106-107 yr. On these findings, we search for CRs from historic CVs and novae in the observed CR spectra. We model the CR spectra at the heliopause as sums of Galactic and local components based on observational data as much as possible. The initial Galactic CR electron and proton spectra are deduced from the gamma-ray emissivity, the local electron spectrum from the hard X-ray spectra at the CVs, and the local proton spectrum from gamma-ray spectra at novae. These spectral shapes are then expressed in a simple set of polynomial functions of CR energy and regressively fitted until the high-energy (>100 GeV) CR spectra near Earth and the Voyager-1 spectra at the heliopause are reproduced. We then extend the modeling to nuclear CR spectra and find that one spectral shape fits all local nuclear CRs, and that the apparent hardening of the nuclear CR spectra is caused by the roll-down of local nuclear spectra around 100-200 GeV. All local CR spectra populate a limited energy band below 100-200 GeV and enhance gamma-ray emissivity below ˜10 GeV. Such an enhancement is observed in the inner Galaxy, suggesting the CR fluxes from CVs and novae are substantially higher there.
Jamwal, Gayatri; Singh, Gurjinder; Dar, Mohd Saleem; Singh, Paramjeet; Bano, Nasima; Syed, Sajad Hussain; Sandhu, Padmani; Akhter, Yusuf; Monga, Satdarshan P; Dar, Mohd Jamal
2018-06-01
IGF1R is a ubiquitous receptor tyrosine kinase that plays critical roles in cell proliferation, growth and survival. Clinical studies have demonstrated upregulation of IGF1R mediated signaling in a number of malignancies including colon, breast, and lung cancers. Overexpression of the IGF1R in these malignancies is associated with a poor prognosis and overall survival. IGF1R specific kinase inhibitors have failed in multiple clinical trials partly because of the complex nature of IGF1R signaling. Thus identifying new binding partners and allosteric sites on IGF1R are emerging areas of research. More recently, IGF1R has been shown to translocate into the nucleus and perform many functions. In this study, we generated a library of IGF1R deletion and point mutants to examine IGF1R subcellular localization and activation of downstream signaling pathways. We show that the nuclear localization of IGF1R is primarily defined by its cytoplasmic domain. We identified a cross-talk between IGF1R and Wnt/β-catenin signaling pathways and showed, for the first time, that IGF1R is associated with upregulation of TCF-mediated β-catenin transcriptional activity. Using loss-of-function mutants, deletion analysis and IGF1R specific inhibitor(s), we show that cytoplasmic and nuclear activities are two independent functions of IGF1R. Furthermore, we identified a unique loss-of-function mutation in IGF1R. This unique loss-of-function mutant retains only nuclear functions and sits in a pocket, outside ATP and substrate binding region, that is suited for designing allosteric inhibitors of IGF1R. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohsaki, Eriko; Ueda, Keiji, E-mail: kueda@virus.me
The Kaposi's sarcoma-associated herpesvirus (KSHV) genome is stably maintained in KSHV-infected PEL cell lines during cell division. We previously showed that accumulation of LANA in the nuclear matrix fraction could be important for the latent DNA replication, and that the functional significance of LANA should be its recruitment of ori-P to the nuclear matrix. Here, we investigated whether the forced localization of the LANA-DNA binding domain (DBD) to the nuclear matrix facilitated ori-P-containing plasmid replication. We demonstrated that chimeric proteins constructed by fusion of LANA DBD with the nuclear mitotic apparatus protein (NuMA), which is one of the components ofmore » the nuclear matrix, could bind with ori-P and enhance replication of an ori-P-containing plasmid, compared with that in the presence of DBD alone. These results further suggested that the ori-P recruitment to the nuclear matrix through the binding with DBD is important for latent viral DNA replication. - Highlights: •KSHV replication in latency depends on LANA localization to the nuclear matrix. •LANA DBD was fused with NuMA, a nuclear matrix protein, at the N- and C-terminus. •NuMA-DBD was in the nuclear matrix and supported the ori-P dependent replication. •LANA in the nuclear matrix should be important for the KSHV replication in latency.« less
Nucleon localization and fragment formation in nuclear fission
Zhang, C. L.; Schuetrumpf, B.; Nazarewicz, W.
2016-12-27
An electron localization measure was originally introduced to characterize chemical bond structures in molecules. Recently, a nucleon localization based on Hartree-Fock densities has been introduced to investigate α-cluster structures in light nuclei. Compared to the local nucleonic densities, the nucleon localization function has been shown to be an excellent indicator of shell effects and cluster correlations. In this work, using the spatial nucleon localization measure, we investigated the emergence of fragments in fissioning heavy nuclei using the self-consistent energy density functional method with a quantified energy density functional optimized for fission studies. We studied the particle densities and spatial nucleonmore » localization distributions along the fission pathways of 264Fm, 232Th, and 240Pu. We demonstrated that the fission fragments were formed fairly early in the evolution, well before scission. To illustrate the usefulness of the localization measure, we showed how the hyperdeformed state of 232Th could be understood in terms of a quasimolecular state made of 132Sn and 100Zr fragments. Compared to nucleonic distributions, the nucleon localization function more effectively quantifies nucleonic clustering: its characteristic oscillating pattern, traced back to shell effects, is a clear fingerprint of cluster/fragment configurations. This is of particular interest for studies of fragment formation and fragment identification in fissioning nuclei.« less
Nuclear speckles: molecular organization, biological function and role in disease
Galganski, Lukasz; Urbanek, Martyna O.
2017-01-01
Abstract The nucleoplasm is not homogenous; it consists of many types of nuclear bodies, also known as nuclear domains or nuclear subcompartments. These self-organizing structures gather machinery involved in various nuclear activities. Nuclear speckles (NSs) or splicing speckles, also called interchromatin granule clusters, were discovered as sites for splicing factor storage and modification. Further studies on transcription and mRNA maturation and export revealed a more general role for splicing speckles in RNA metabolism. Here, we discuss the functional implications of the localization of numerous proteins crucial for epigenetic regulation, chromatin organization, DNA repair and RNA modification to nuclear speckles. We highlight recent advances suggesting that NSs facilitate integrated regulation of gene expression. In addition, we consider the influence of abundant regulatory and signaling proteins, i.e. protein kinases and proteins involved in protein ubiquitination, phosphoinositide signaling and nucleoskeletal organization, on pre-mRNA synthesis and maturation. While many of these regulatory proteins act within NSs, direct evidence for mRNA metabolism events occurring in NSs is still lacking. NSs contribute to numerous human diseases, including cancers and viral infections. In addition, recent data have demonstrated close relationships between these structures and the development of neurological disorders. PMID:28977640
Bozler, Julianna; Nguyen, Huy Q; Rogers, Gregory C; Bosco, Giovanni
2014-12-30
Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology. Copyright © 2015 Bozler et al.
Bozler, Julianna; Nguyen, Huy Q.; Rogers, Gregory C.; Bosco, Giovanni
2014-01-01
Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology. PMID:25552604
Vélez-Aguilera, Griselda; de Dios Gómez-López, Juan; Jiménez-Gutiérrez, Guadalupe E; Vásquez-Limeta, Alejandra; Laredo-Cisneros, Marco S; Gómez, Pablo; Winder, Steve J; Cisneros, Bulmaro
2018-02-01
β-Dystroglycan (β-DG) is a plasma membrane protein that has ability to target to the nuclear envelope (NE) to maintain nuclear architecture. Nevertheless, mechanisms controlling β-DG nuclear localization and the physiological consequences of a failure of trafficking are largely unknown. We show that β-DG has a nuclear export pathway in myoblasts that depends on the recognition of a nuclear export signal located in its transmembrane domain, by CRM1. Remarkably, NES mutations forced β-DG nuclear accumulation resulting in mislocalization and decreased levels of emerin and lamin B1 and disruption of various nuclear processes in which emerin (centrosome-nucleus linkage and β-catenin transcriptional activity) and lamin B1 (cell cycle progression and nucleoli structure) are critically involved. In addition to nuclear export, the lifespan of nuclear β-DG is restricted by its nuclear proteasomal degradation. Collectively our data show that control of nuclear β-DG content by the combination of CRM1 nuclear export and nuclear proteasome pathways is physiologically relevant to preserve proper NE structure and activity. Copyright © 2017 Elsevier B.V. All rights reserved.
TorsinA dysfunction causes persistent neuronal nuclear pore defects.
Pappas, Samuel S; Liang, Chun-Chi; Kim, Sumin; Rivera, CheyAnne O; Dauer, William T
2018-02-01
A critical challenge to deciphering the pathophysiology of neurodevelopmental disease is identifying which of the myriad abnormalities that emerge during CNS maturation persist to contribute to long-term brain dysfunction. Childhood-onset dystonia caused by a loss-of-function mutation in the AAA+ protein torsinA exemplifies this challenge. Neurons lacking torsinA develop transient nuclear envelope (NE) malformations during CNS maturation, but no NE defects are described in mature torsinA null neurons. We find that during postnatal CNS maturation torsinA null neurons develop mislocalized and dysfunctional nuclear pore complexes (NPC) that lack NUP358, normally added late in NPC biogenesis. SUN1, a torsinA-related molecule implicated in interphase NPC biogenesis, also exhibits localization abnormalities. Whereas SUN1 and associated nuclear membrane abnormalities resolve in juvenile mice, NPC defects persist into adulthood. These findings support a role for torsinA function in NPC biogenesis during neuronal maturation and implicate altered NPC function in dystonia pathophysiology. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Bonitati, Joey; Slimmer, Ben; Li, Weichuan; Potel, Gregory; Nunes, Filomena
2017-09-01
The calculable form of the R-matrix method has been previously shown to be a useful tool in approximately solving the Schrodinger equation in nuclear scattering problems. We use this technique combined with the Gauss quadrature for the Lagrange-mesh method to efficiently solve for the wave functions of projectile nuclei in low energy collisions (1-100 MeV) involving an arbitrary number of channels. We include the local Woods-Saxon potential, the non-local potential of Perey and Buck, a Coulomb potential, and a coupling potential to computationally solve for the wave function of two nuclei at short distances. Object oriented programming is used to increase modularity, and parallel programming techniques are introduced to reduce computation time. We conclude that the R-matrix method is an effective method to predict the wave functions of nuclei in scattering problems involving both multiple channels and non-local potentials. Michigan State University iCER ACRES REU.
Neff, Norma F.; Ellis, Nathan A.; Ye, Tian Zhang; Noonan, James; Huang, Kelly; Sanz, Maureen; Proytcheva, Maria
1999-01-01
Bloom syndrome (BS) is a rare autosomal recessive disorder characterized by growth deficiency, immunodeficiency, genomic instability, and the early development of cancers of many types. BLM, the protein encoded by BLM, the gene mutated in BS, is localized in nuclear foci and absent from BS cells. BLM encodes a DNA helicase, and proteins from three missense alleles lack displacement activity. BLM transfected into BS cells reduces the frequency of sister chromatid exchanges and restores BLM in the nucleus. Missense alleles fail to reduce the sister chromatid exchanges in transfected BS cells or restore the normal nuclear pattern. BLM complements a phenotype of a Saccharomyces cerevisiae sgs1 top3 strain, and the missense alleles do not. This work demonstrates the importance of the enzymatic activity of BLM for its function and nuclear localization pattern. PMID:10069810
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Tammie Renee; Fernandez Alberti, Sebastian; Roitberg, Adrian
The efficiency of materials developed for solar energy and technological applications depends on the interplay between molecular architecture and light-induced electronic energy redistribution. The spatial localization of electronic excitations is very sensitive to molecular distortions. Vibrational nuclear motions can couple to electronic dynamics driving changes in localization. The electronic energy transfer among multiple chromophores arises from several distinct mechanisms that can give rise to experimentally measured signals. Atomistic simulations of coupled electron-vibrational dynamics can help uncover the nuclear motions directing energy flow. Through careful analysis of excited state wave function evolution and a useful fragmenting of multichromophore systems, through-bond transportmore » and exciton hopping (through-space) mechanisms can be distinguished. Such insights are crucial in the interpretation of fluorescence anisotropy measurements and can aid materials design. Finally, this Perspective highlights the interconnected vibrational and electronic motions at the foundation of nonadiabatic dynamics where nuclear motions, including torsional rotations and bond vibrations, drive electronic transitions.« less
ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating
Rogers, Jason V.; Arlow, Tim; Inkellis, Elizabeth R.; Koo, Timothy S.; Rose, Mark D.
2013-01-01
During yeast mating, two haploid nuclei fuse membranes to form a single diploid nucleus. However, the known proteins required for nuclear fusion are unlikely to function as direct fusogens (i.e., they are unlikely to directly catalyze lipid bilayer fusion) based on their predicted structure and localization. Therefore we screened known fusogens from vesicle trafficking (soluble N-ethylmaleimide–sensitive factor attachment protein receptors [SNAREs]) and homotypic endoplasmic reticulum (ER) fusion (Sey1p) for additional roles in nuclear fusion. Here we demonstrate that the ER-localized SNAREs Sec20p, Ufe1p, Use1p, and Bos1p are required for efficient nuclear fusion. In contrast, Sey1p is required indirectly for nuclear fusion; sey1Δ zygotes accumulate ER at the zone of cell fusion, causing a block in nuclear congression. However, double mutants of Sey1p and Sec20p, Ufe1p, or Use1p, but not Bos1p, display extreme ER morphology defects, worse than either single mutant, suggesting that retrograde SNAREs fuse ER in the absence of Sey1p. Together these data demonstrate that SNAREs mediate nuclear fusion, ER fusion after cell fusion is necessary to complete nuclear congression, and there exists a SNARE-mediated, Sey1p-independent ER fusion pathway. PMID:24152736
Oncogenic role of p21 in hepatocarcinogenesis suggests a new treatment strategy.
Ohkoshi, Shogo; Yano, Masahiko; Matsuda, Yasunobu
2015-11-14
A well-known tumor suppressor, p21, acts paradoxically by promoting tumor growth in some cellular conditions. These conflicting functions have been demonstrated in association with the HBx gene and in hepatocarcinogenesis. The molecular behavior of p21 depends on its subcellular localization. Nuclear p21 may inhibit cell proliferation and be proapoptotic, while cytoplasmic p21 may have oncogenic and anti-apoptotic functions. Because most typical tumor suppressive proteins also have different effects according to subcellular localization, elucidating the regulatory mechanisms underlying nucleo-cytoplasmic transport of these proteins would be significant and may lead to a new strategy for anti-hepatocellular carcinoma (HCC) therapy. Chromosome region maintenance 1 (CRM1) is a major nuclear export receptor involved in transport of tumor suppressors from nucleus to cytoplasm. Expression of CRM1 is enhanced in a variety of malignancies and in vitro studies have shown the efficacy of specific inhibition of CRM1 against cancer cell lines. Interestingly, interferon may keep p21 in the nucleus; this is one of the mechanisms of its anti-hepatocarcinogenic function. Here we review the oncogenic property of p21, which depends on its subcellular localization, and discuss the rationale underlying a new strategy for HCC treatment and prevention.
Oncogenic role of p21 in hepatocarcinogenesis suggests a new treatment strategy
Ohkoshi, Shogo; Yano, Masahiko; Matsuda, Yasunobu
2015-01-01
A well-known tumor suppressor, p21, acts paradoxically by promoting tumor growth in some cellular conditions. These conflicting functions have been demonstrated in association with the HBx gene and in hepatocarcinogenesis. The molecular behavior of p21 depends on its subcellular localization. Nuclear p21 may inhibit cell proliferation and be proapoptotic, while cytoplasmic p21 may have oncogenic and anti-apoptotic functions. Because most typical tumor suppressive proteins also have different effects according to subcellular localization, elucidating the regulatory mechanisms underlying nucleo-cytoplasmic transport of these proteins would be significant and may lead to a new strategy for anti-hepatocellular carcinoma (HCC) therapy. Chromosome region maintenance 1 (CRM1) is a major nuclear export receptor involved in transport of tumor suppressors from nucleus to cytoplasm. Expression of CRM1 is enhanced in a variety of malignancies and in vitro studies have shown the efficacy of specific inhibition of CRM1 against cancer cell lines. Interestingly, interferon may keep p21 in the nucleus; this is one of the mechanisms of its anti-hepatocarcinogenic function. Here we review the oncogenic property of p21, which depends on its subcellular localization, and discuss the rationale underlying a new strategy for HCC treatment and prevention. PMID:26576099
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoli; Wen, Zhifeng; Sun, Limei
2013-06-28
Highlights: •TRAF2 appears to interact with TRAF4 in breast cancer cell lines. •TRAF2 affects the localization and function of TRAF4 in breast cancer cell lines. •TRAF4 may play an important role in the activation of NF-κB via TRAF2. -- Abstract: Although numerous studies have shown that tumor necrosis factor receptor-associated factor 4 (TRAF4) plays an important role in the carcinogenesis of many tumor types, its exact molecular mechanism remains elusive. In this study, we examined the regulation function of TRAF2 to the cytoplasmic/nuclear distribution of TRAF4 in the breast cancer cell line. Using cell immunofluorescent staining, we found that TRAF2more » and TRAF4 were co-localized to the cytoplasm in MCF-7 cells. Co-immunoprecipitation showed that TRAF2 could interact with TRAF4 in MCF-10A, MCF-7 and MDA-MB-231 cell lines. Western blotting showed TRAF2 depletion by targeted siRNA in MDA-MB-231 cells led to reduced TRAF4 expression in the cytoplasm and augmented TRAF4 expression in the nucleus. Cytoplasmic expression of TRAF4 was augmented and nuclear expression was reduced when MCF-7 cells were transfected with hTRAF2pLPCX-HA-Flag/P874. MCF-7 cells expressing hTRAF2pLPCX-HA-Flag/P874 had enhanced cell proliferation rates. The nuclear expression of NF-κB significantly increased after TNF-α treatment. When hTRAF2pLPCX-HA-Flag/P874 and the siRNA-TRAF4 plasmid were cotransfected, the nuclear expression of NF-κB was significantly reduced compared with cells transfected with hTRAF2pLPCX-HA-Flag/P874 only. In conclusion, TRAF2 appears to interact with TRAF4 and affect the localization of TRAF4 in breast cancer cell lines. The overexpression of TRAF2 augmented the cytoplasmic expression of TRAF4 which promoted cell proliferation and inhibited cell apoptosis by activating NF-κB nuclear transcription. TRAF4 may play an important role in the activation of NF-κB via TRAF2.« less
Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Novák, Petr; Hnilicová, Jarmila; Venit, Tomáš; Hozák, Pavel
2012-01-01
Background Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the “cytoplasmic” myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. Methodology/Principal Findings We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. Conclusions/Significance We have shown that the novel specific NLS brings to the cell nucleus not only the “nuclear” isoform of myosin I (NM1 protein) but also its “cytoplasmic” isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus. PMID:22295092
Georis, Isabelle; Tate, Jennifer J.; Cooper, Terrance G.; Dubois, Evelyne
2011-01-01
Nitrogen availability regulates the transcription of genes required to degrade non-preferentially utilized nitrogen sources by governing the localization and function of transcription activators, Gln3 and Gat1. TorC1 inhibitor, rapamycin (Rap), and glutamine synthetase inhibitor, methionine sulfoximine (Msx), elicit responses grossly similar to those of limiting nitrogen, implicating both glutamine synthesis and TorC1 in the regulation of Gln3 and Gat1. To better understand this regulation, we compared Msx- versus Rap-elicited Gln3 and Gat1 localization, their DNA binding, nitrogen catabolite repression-sensitive gene expression, and the TorC1 pathway phosphatase requirements for these responses. Using this information we queried whether Rap and Msx inhibit sequential steps in a single, linear cascade connecting glutamine availability to Gln3 and Gat1 control as currently accepted or alternatively inhibit steps in two distinct parallel pathways. We find that Rap most strongly elicits nuclear Gat1 localization and expression of genes whose transcription is most Gat1-dependent. Msx, on the other hand, elicits nuclear Gln3 but not Gat1 localization and expression of genes that are most Gln3-dependent. Importantly, Rap-elicited nuclear Gln3 localization is absolutely Sit4-dependent, but that elicited by Msx is not. PP2A, although not always required for nuclear GATA factor localization, is highly required for GATA factor binding to nitrogen-responsive promoters and subsequent transcription irrespective of the gene GATA factor specificities. Collectively, our data support the existence of two different nitrogen-responsive regulatory pathways, one inhibited by Msx and the other by rapamycin. PMID:22039046
Georis, Isabelle; Tate, Jennifer J; Cooper, Terrance G; Dubois, Evelyne
2011-12-30
Nitrogen availability regulates the transcription of genes required to degrade non-preferentially utilized nitrogen sources by governing the localization and function of transcription activators, Gln3 and Gat1. TorC1 inhibitor, rapamycin (Rap), and glutamine synthetase inhibitor, methionine sulfoximine (Msx), elicit responses grossly similar to those of limiting nitrogen, implicating both glutamine synthesis and TorC1 in the regulation of Gln3 and Gat1. To better understand this regulation, we compared Msx- versus Rap-elicited Gln3 and Gat1 localization, their DNA binding, nitrogen catabolite repression-sensitive gene expression, and the TorC1 pathway phosphatase requirements for these responses. Using this information we queried whether Rap and Msx inhibit sequential steps in a single, linear cascade connecting glutamine availability to Gln3 and Gat1 control as currently accepted or alternatively inhibit steps in two distinct parallel pathways. We find that Rap most strongly elicits nuclear Gat1 localization and expression of genes whose transcription is most Gat1-dependent. Msx, on the other hand, elicits nuclear Gln3 but not Gat1 localization and expression of genes that are most Gln3-dependent. Importantly, Rap-elicited nuclear Gln3 localization is absolutely Sit4-dependent, but that elicited by Msx is not. PP2A, although not always required for nuclear GATA factor localization, is highly required for GATA factor binding to nitrogen-responsive promoters and subsequent transcription irrespective of the gene GATA factor specificities. Collectively, our data support the existence of two different nitrogen-responsive regulatory pathways, one inhibited by Msx and the other by rapamycin.
Small-Molecule Hormones: Molecular Mechanisms of Action
Budzińska, Monika
2013-01-01
Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30–60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes. PMID:23533406
Kim, Min-Kyung; Claiborn, Kathryn C; Levin, Henry L
2005-08-01
Tf1 is a long terminal repeat-containing retrotransposon of Schizosaccharomyces pombe that is studied to further our understanding of retrovirus propagation. One important application is to examine Tf1 as a model for how human immunodeficiency virus type 1 proteins enter the nucleus. The accumulation of Tf1 Gag in the nucleus requires an N-terminal nuclear localization signal (NLS) and the nuclear pore factor Nup124p. Here, we report that NLS activity is regulated by adjacent residues. Five mutant transposons were made, each with sequential tracts of four amino acids in Gag replaced by alanines. All five versions of Tf1 transposed with frequencies that were significantly lower than that of the wild type. Although all five made normal amounts of Gag, two of the mutations did not make cDNA, indicating that Gag contributed to reverse transcription. The localization of the Gag in the nucleus was significantly reduced by mutations A1, A2, and A3. These results identified residues in Gag that contribute to the function of the NLS. The Gags of A4 and A5 localized within the nucleus but exhibited severe defects in the formation of virus-like particles. Of particular interest was that the mutations in Gag-A4 and Gag-A5 caused their nuclear localization to become independent of Nup124p. These results suggested that Nup124p was only required for import of Tf1 Gag because of its extensive multimerization.
HIV-1 nucleocapsid protein localizes efficiently to the nucleus and nucleolus.
Yu, Kyung Lee; Lee, Sun Hee; Lee, Eun Soo; You, Ji Chang
2016-05-01
The HIV-1 nucleocapsid (NC) is an essential viral protein containing two highly conserved retroviral-type zinc finger (ZF) motifs, which functions in multiple stages of the HIV-1 life cycle. Although a number of functions for NC either in its mature form or as a domain of Gag have been revealed, little is known about the intracellular localization of NC and, moreover, its role in Gag protein trafficking. Here, we have investigated various forms of HIV-1 NC protein for its cellular localization and found that the NC has a strong nuclear and nucleolar localization activity. The linker region, composed of a stretch of basic amino acids between the two ZF motifs, was necessary and sufficient for the activity. Copyright © 2016 Elsevier Inc. All rights reserved.
Quantum effects of nuclear motion in three-particle diatomic ions
NASA Astrophysics Data System (ADS)
Baskerville, Adam L.; King, Andrew W.; Cox, Hazel
2016-10-01
A high-accuracy, nonrelativistic wave function is used to study nuclear motion in the ground state of three-particle {a1+a2+a3-} electronic and muonic molecular systems without assuming the Born-Oppenheimer approximation. Intracule densities and center-of-mass particle densities show that as the mass ratio mai/ma3 , i =1 ,2 , becomes smaller, the localization of the like-charged particles (nuclei) a1 and a2 decreases. A coordinate system is presented to calculate center-of-mass particle densities for systems where a1≠a2 . It is shown that the nuclear motion is strongly correlated and depends on the relative masses of the nuclei a1 and a2 rather than just their absolute mass. The heavier particle is always more localized and the lighter the partner mass, the greater the localization. It is shown, for systems with ma1
The Genomic Actions and Functional Implications of Nuclear PRLr in Human Breast Carcinoma
2011-03-01
Johnston CL, Cox HC, Gomm JJ, Coombes RC 1995 Fibroblast growth factor receptors ( FGFRs ) localize in different cellular compartments. A splice variant...has been observed (11). The Jak2/Stat5a pathway is widely shared with other transmembrane receptors such as epidermal growth factor receptor (EGFR...2005 Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res 65:338-348 13. Lin SY, Makino K, Xia W, Matin A
Functional characterization of Autographa californica multiple nucleopolyhedrovirus gp16 (ac130)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ming; Huang, Cui; Qian, Duo-Duo
2014-09-15
To investigate the function of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) gp16, multiple gp16-knockout and repair mutants were constructed and characterized. No obvious difference in productivity of budded virus, DNA synthesis, late gene expression and morphogenesis was observed between gp16-knockout and repair viruses, but gp16 deletion resulted in six hours of lengthening in ST{sub 50} to the third instar Spodoptera exigua larvae in bioassays. GP16 was fractionated mainly in the light membrane fraction, by subcellular fractionation. A GP16-EGFP fusion protein was predominantly localized close around the nuclear membrane in infected cells, being coincident with formation of the vesicles associated with themore » nuclear membrane, which hosted nucleocapsids released from the nucleus. These data suggest that gp16 is not required for viral replication, but may be involved in membrane trafficking associated with the envelopment/de-envelopment of budded viruses when they cross over the nuclear membrane and pass through cytoplasm. - Highlights: • gp16 knockout and repair mutants of AcMNPV were constructed and characterized. • AcMNPV gp16 is not essential to virus replication. • Deletion of gp16 resulted in time lengthening to kill S. exigua larvae. • GP16 was localized close around the nuclear membrane of infected cells. • GP16 was fractionated in the light membrane fraction in subcellular fractionation.« less
NASA Astrophysics Data System (ADS)
Sugawara, Shin-Etsu; Shiroyama, Hideaki
This paper shows a comparative analysis between France and Japan on the way of the local governments' involvement in nuclear safety governance through some interviews. In France, a law came into force that requires related local governments to establish "Commision Locale d'Information" (CLI), which means the local governments officially involve in nuclear regulatory activity. Meanwhile, in Japan, related local governments substantially involve in the operation of nuclear facilities through the "safety agreements" in spite of the lack of legal authority. As a result of comparative analysis, we can point out some institutional input from French cases as follows: to clarify the local governments' roles in the nuclear regulation system, to establish the official channels of communication among nuclear utilities, national regulatory authorities and local governments, and to stipulate explicitly the transparency as a purpose of safety regulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Li; Tanaka, Michiko; Kawaguchi, Yasushi
2004-11-10
Previous results indicated that the herpes simplex virus 1 (HSV-1) U{sub L}31 gene is necessary and sufficient for localization of the U{sub L}34 protein exclusively to the nuclear membrane of infected Hep2 cells. In the current studies, a bacterial artificial chromosome containing the entire HSV-1 strain F genome was used to construct a recombinant viral genome in which a gene encoding kanamycin resistance was inserted in place of 262 codons of the 306 codon U{sub L}31 open reading frame. The deletion virus produced virus titers approximately 10- to 50-fold lower in rabbit skin cells, more than 2000-fold lower in Veromore » cells, and more than 1500-fold lower in CV1 cells, compared to a virus bearing a restored U{sub L}31 gene. The replication of the U{sub L}31 deletion virus was restored on U{sub L}31-complementing cell lines derived either from rabbit skin cells or CV1 cells. Confocal microscopy indicated that the majority of U{sub L}34 protein localized aberrantly in the cytoplasm and nucleoplasm of Vero cells and CV1 cells, whereas U{sub L}34 protein localized at the nuclear membrane in rabbit skin cells, and U{sub L}31 complementing CV1 cells infected with the U{sub L}31 deletion virus. We conclude that rabbit skin cells encode a function that allows proper localization of U{sub L}34 protein to the nuclear membrane. We speculate that this function partially complements that of U{sub L}31 and may explain why U{sub L}31 is less critical for replication in rabbit skin cells as opposed to Vero and CV1 cells.« less
Free Radicals Generated by Ionizing Radiation Signal Nuclear Translocation of p53
NASA Technical Reports Server (NTRS)
Martinez, J. D.; Pennington, M. E.; Craven, M. T.; Warters, R. L.
1997-01-01
The p53 tumor suppressor is a transcription factor that regulates several pathways, which function collectively to maintain the integrity of the genome. Nuclear localization is critical for wild-type function. However, the signals that regulate subcellular localization of p53 have not been identified. Here, we examine the effect of ionizing radiation on the subcellular localization of p53 in two cell lines in which p63 is normally sequestered in the cytoplasm and found that ionizing radiation caused a biphasic translocation response. p53 entered the nucleus 1-2 hours postirradiation (early response), subsequently emerged from the nucleus, and then again entered the nucleus 12-24 hours after the cells had been irradiated (delayed response). These changes in subcellular localization could be completely blocked by the free radical scavenger, WR1065. By comparison, two DNA-damaging agents that do not generate free radicals, mitomycin C and doxorubicin, caused translocation only after 12-24 h of exposure to the drugs, and this effect could not be inhibited by WR1065. Hence, although all three DNA-damaging agents induced relocalization of p53 to the nucleus, only the translocation caused by radiation was sensitive to free radical scavenging. We suggest that the free radicals generated by ionizing radiation can signal p53 translocation to the nucleus.
Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization
Roux, Kyle J.; Crisp, Melissa L.; Liu, Qian; Kim, Daein; Kozlov, Serguei; Stewart, Colin L.; Burke, Brian
2009-01-01
Nucleocytoplasmic coupling is mediated by outer nuclear membrane (ONM) nesprin proteins and inner nuclear membrane Sun proteins. Interactions spanning the perinuclear space create nesprin–Sun complexes connecting the cytoskeleton to nuclear components. A search for proteins displaying a conserved C-terminal sequence present in nesprins 1–3 identified nesprin 4 (Nesp4), a new member of this family. Nesp4 is a kinesin-1-binding protein that displays Sun-dependent localization to the ONM. Expression of Nesp4 is associated with dramatic changes in cellular organization involving relocation of the centrosome and Golgi apparatus relative to the nucleus. These effects can be accounted for entirely by Nesp4's kinesin-binding function. The implication is that Nesp4 may contribute to microtubule-dependent nuclear positioning. PMID:19164528
Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization.
Roux, Kyle J; Crisp, Melissa L; Liu, Qian; Kim, Daein; Kozlov, Serguei; Stewart, Colin L; Burke, Brian
2009-02-17
Nucleocytoplasmic coupling is mediated by outer nuclear membrane (ONM) nesprin proteins and inner nuclear membrane Sun proteins. Interactions spanning the perinuclear space create nesprin-Sun complexes connecting the cytoskeleton to nuclear components. A search for proteins displaying a conserved C-terminal sequence present in nesprins 1-3 identified nesprin 4 (Nesp4), a new member of this family. Nesp4 is a kinesin-1-binding protein that displays Sun-dependent localization to the ONM. Expression of Nesp4 is associated with dramatic changes in cellular organization involving relocation of the centrosome and Golgi apparatus relative to the nucleus. These effects can be accounted for entirely by Nesp4's kinesin-binding function. The implication is that Nesp4 may contribute to microtubule-dependent nuclear positioning.
Qiang, Li; Banks, Alexander S; Accili, Domenico
2010-08-27
The activity of transcription factor FoxO1 is regulated by phosphorylation-dependent nuclear exclusion and deacetylation-dependent nuclear retention. It is unclear whether and how these two post-translational modifications affect each other. To answer this question, we expressed FoxO1 cDNAs with combined mutations of phosphorylation and acetylation sites in HEK-293 cells and analyzed their subcellular localization patterns. We show that mutations mimicking the acetylated state (KQ series) render FoxO1 more sensitive to Akt-mediated phosphorylation and nuclear exclusion and can reverse the constitutively nuclear localization of phosphorylation-defective FoxO1. Conversely, mutations mimicking the deacetylated state (KR series) promote FoxO1 nuclear retention. Oxidative stress and the Sirt1 activator resveratrol are thought to promote FoxO1 deacetylation and nuclear retention, thus increasing its activity. Accordingly, FoxO1 deacetylation was required for the effect of oxidative stress (induced by H(2)O(2)) to retain FoxO1 in the nucleus. H(2)O(2) also inhibited FoxO1 phosphorylation on Ser-253 and Thr-24, the key insulin-regulated sites, irrespective of its acetylation. In contrast, the effect of resveratrol was independent of FoxO1 acetylation and its phosphorylation on Ser-253 and Thr-24, suggesting that resveratrol acts on FoxO1 in a Sirt1- and Akt-independent manner. The dissociation of deacetylation from dephosphorylation in H(2)O(2)-treated cells indicates that the two modifications can occur independently of each other. It can be envisaged that FoxO1 exists in multiple nuclear forms with distinct activities depending on the balance of acetylation and phosphorylation.
Strebovsky, Julia; Walker, Patrick; Lang, Roland; Dalpke, Alexander H
2011-03-01
Suppressor of cytokine signaling (SOCS) proteins are inhibitors of cytoplasmic Janus kinases (Jak) and signal transducer and activator of transcription (STAT) signaling pathways. Previously the authors surprisingly observed that SOCS1 translocated into the nucleus, which was because of the presence of a nuclear localization sequence. This report now hypothesizes that SOCS1 mediates specific functions within the nuclear compartment because it is instantly transported into the nucleus, as shown by photoactivation and live cell imaging in human HEK293 cells. The NFκB component p65 is identified as an interaction partner for SOCS1 but not for other members of the SOCS family. SOCS1 bound to p65 only within the nucleus. By means of its SOCS box domain, SOCS1 operated as a ubiquitin ligase, leading to polyubiquitination and proteasomal degradation of nuclear p65. Thus, SOCS1 limited prolonged p65 signaling and terminated expression of NFκB inducible genes. Using mutants that lack either nuclear translocation or a functional SOCS box, this report identifies genes that are regulated in a manner dependent on the nuclear availability of SOCS1. Data show that beyond its receptor-proximal function in Jak/STAT signaling, SOCS1 also regulates the duration of NFκB signaling within the cell nucleus, thus exerting a heretofore unrecognized function.
Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka, E-mail: kinjo@sci.hokudai.ac.jp
2015-07-31
Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS{sup SV40}) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesismore » takes place. GFP-NLS{sup SV40} in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS{sup SV40} formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS{sup SV40} likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS{sup SV40} can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. - Highlights: • Nuclear localization signal-tagged GFP (GFP-NLS) showed clear nuclear localization. • The GFP-NLS dynamically localized not only in the nucleoplasm, but also to the nucleolus. • The nuclear localization of GFP-NLS results from transient oligomerization mediated via RNA binding. • Our NLS-tagging procedure is ideal for use in artificial sequestration of proteins in the nucleus.« less
SUMO and Nucleocytoplasmic Transport.
Ptak, Christopher; Wozniak, Richard W
2017-01-01
The transport of proteins between the nucleus and cytoplasm occurs through nuclear pore complexes and is facilitated by numerous transport factors. These transport processes are often regulated by post-translational modification or, reciprocally, transport can function to control post-translational modifications through regulated transport of key modifying enzymes. This interplay extends to relationships between nucleocytoplasmic transport and SUMO-dependent pathways. Examples of protein sumoylation inhibiting or stimulating nucleocytoplasmic transport have been documented, both through its effects on the physical properties of cargo molecules and by directly regulating the functions of components of the nuclear transport machinery. Conversely, the nuclear transport machinery regulates the localization of target proteins and enzymes controlling dynamics of sumoylation and desumoylation thereby affecting the sumoylation state of target proteins. These inter-relationships between SUMO and the nucleocytoplasmic transport machinery, and the varied ways in which they occur, are discussed.
Identification of novel nuclear localization signals of Drosophila myeloid leukemia factor.
Sugano, Wakana; Yamaguchi, Masamitsu
2007-01-01
Myeloid leukemia factor 1 (MLF1) was first identified as part of a leukemic fusion protein produced by a chromosomal translocation, and MLF family proteins are present in many animals. In mammalian cells, MLF1 has been described as mainly cytoplasmic, but in Drosophila, one of the dMLF isoforms (dMLFA) localized mainly in the nucleus while the other isoform (dMLFB), that appears to be produced by the alternative splicing, displays both nuclear and cytoplasmic localization. To investigate the difference in subcellular localization between MLF family members, we examined the subcellular localization of deletion mutants of dMLFA isoform. The analyses showed that the C-terminal 40 amino acid region of dMLFA is necessary and sufficient for nuclear localization. Based on amino acid sequences, we hypothesized that two nuclear localization signals (NLSs) are present within the region. Site-directed mutagenesis of critical residues within the two putative NLSs leads to loss of nuclear localization, suggesting that both NLS motifs are necessary for nuclear localization.
Burla, Romina; Carcuro, Mariateresa; Torre, Mattia La; Fratini, Federica; Crescenzi, Marco; D'Apice, Maria Rosaria; Spitalieri, Paola; Raffa, Grazia Daniela; Astrologo, Letizia; Lattanzi, Giovanna; Cundari, Enrico; Raimondo, Domenico; Biroccio, Annamaria; Gatti, Maurizio
2016-01-01
AKTIP is a shelterin-interacting protein required for replication of telomeric DNA. Here, we show that AKTIP biochemically interacts with A- and B-type lamins and affects lamin A, but not lamin C or B, expression. In interphase cells, AKTIP localizes at the nuclear rim and in discrete regions of the nucleoplasm just like lamins. Double immunostaining revealed that AKTIP partially co-localizes with lamin B1 and lamin A/C in interphase cells, and that proper AKTIP localization requires functional lamin A. In mitotic cells, AKTIP is enriched at the spindle poles and at the midbody of late telophase cells similar to lamin B1. AKTIP-depleted cells show senescence-associated markers and recapitulate several aspects of the progeroid phenotype. Collectively, our results indicate that AKTIP is a new player in lamin-related processes, including those that govern nuclear architecture, telomere homeostasis and cellular senescence. PMID:27512140
Kim, Mihwa; Morales, Liza D; Baek, Minwoo; Slaga, Thomas J; DiGiovanni, John; Kim, Dae Joon
2017-10-31
Understanding protein subcellular localization is important to determining the functional role of specific proteins. T-cell protein tyrosine phosphatase (TC-PTP) contains bipartite nuclear localization signals (NLSI and NLSII) in its C-terminus. We previously have demonstrated that the nuclear form of TC-PTP (TC45) is mainly localized to the cytoplasm in keratinocytes and it is translocated to the nucleus following UVB irradiation. Here, we report that TC45 is translocated by an AKT/14-3-3σ-mediated mechanism in response to UVB exposure, resulting in increased apoptosis and decreased keratinocyte proliferation. We demonstrate that UVB irradiation increased phosphorylation of AKT and induced nuclear translocation of 14-3-3σ and TC45. However, inhibition of AKT blocked nuclear translocation of TC45 and 14-3-3σ. Site-directed mutagenesis of 14-3-3σ binding sites within TC45 showed that a substitution at Threonine 179 (TC45/T179A) effectively blocked UVB-induced nuclear translocation of ectopic TC45 due to the disruption of the direct binding between TC45 and 14-3-3σ. Overexpression of TC45/T179A in keratinocytes resulted in a decrease of UVB-induced apoptosis which corresponded to an increase in nuclear phosphorylated STAT3, and cell proliferation was higher in TC45/T179A-overexpressing keratinocytes compared to control keratinocytes following UVB irradiation. Furthermore, deletion of TC45 NLSII blocked its UVB-induced nuclear translocation, indicating that both T179 and NLSII are required. Taken together, our findings suggest that AKT and 14-3-3σ cooperatively regulate TC45 nuclear translocation in a critical step of an early protective mechanism against UVB exposure that signals the deactivation of STAT3 in order to promote keratinocyte cell death and inhibit keratinocyte proliferation.
Umemoto, Tomoe; Fujiki, Yukio
2012-07-01
Peroxisome proliferator-activated receptors (PPARs) play important roles in diverse biological processes including metabolisms of sugars and lipids and differentiation of cells such as adipocytes. PPARs are transcription factors belonging to the ligand-dependent hormone receptor group. To function as transcription factors, PPARs translocate into nucleus where they associate with transcription apparatus. However, mechanisms underlying nuclear transport of PPARs remain enigmatic. We show here that PPARα and PPARγ dynamically shuttle between nucleus and cytoplasm, although they constitutively and predominantly appear in nucleus. With a series of truncation mutants, we identify that PPAR nuclear transport is mediated by at least two nuclear localization signals (NLSs) in DNA-binding domain (DBD)-hinge and activation function 1 (AF1) regions and their respective receptors including importinα/β, importin 7, and an unidentified receptor. PPARs also harbor two nuclear export signals in DBD and ligand-binding domain regions that are recognized by distinct export receptors, calreticulin and CRM1. Moreover, we show that nuclear-cytoplasmic shuttling of PPARs is regulated by respective PPAR ligands and Ca2+ concentration. Taken together, we suggest that the multiple pathways for the nuclear-cytoplasmic transport of PPARs regulate the biological functions of PPARs in response to external signals. © 2012 The Authors Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.
A Role for Myosin Va in Human Cytomegalovirus Nuclear Egress.
Wilkie, Adrian R; Sharma, Mayuri; Pesola, Jean M; Ericsson, Maria; Fernandez, Rosio; Coen, Donald M
2018-03-15
Herpesviruses replicate and package their genomes into capsids in replication compartments within the nuclear interior. Capsids then move to the inner nuclear membrane for envelopment and release into the cytoplasm in a process called nuclear egress. We previously found that nuclear F-actin is induced upon infection with the betaherpesvirus human cytomegalovirus (HCMV) and is important for nuclear egress and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Despite these and related findings, it has not been shown that any specific motor protein is involved in herpesvirus nuclear egress. In this study, we have investigated whether the host motor protein, myosin Va, could be fulfilling this role. Using immunofluorescence microscopy and coimmunoprecipitation, we observed associations between a nuclear population of myosin Va and the viral major capsid protein, with both concentrating at the periphery of replication compartments. Immunoelectron microscopy showed that nearly 40% of assembled nuclear capsids associate with myosin Va. We also found that myosin Va and major capsid protein colocalize with nuclear F-actin. Importantly, antagonism of myosin Va with RNA interference or a dominant negative mutant revealed that myosin Va is important for the efficient production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Our results lead us to suggest a working model whereby human cytomegalovirus capsids associate with myosin Va for movement from replication compartments to the nuclear periphery during nuclear egress. IMPORTANCE Little is known regarding how newly assembled and packaged herpesvirus capsids move from the nuclear interior to the periphery during nuclear egress. While it has been proposed that an actomyosin-based mechanism facilitates intranuclear movement of alphaherpesvirus capsids, a functional role for any specific myosin in nuclear egress has not been reported. Furthermore, the notion that an actomyosin-based mechanism facilitates intranuclear capsid movement is controversial. Here we show that human cytomegalovirus capsids associate with nuclear myosin Va and F-actin and that antagonism of myosin Va impairs capsid localization toward the nuclear rim and nuclear egress. Together with our previous results showing that nuclear F-actin is induced upon HCMV infection and is also important for these processes, our results lend support to the hypothesis that nascent human cytomegalovirus capsids migrate to the nuclear periphery via actomyosin-based movement. These results shed light on a poorly understood viral process and the cellular machinery involved. Copyright © 2018 American Society for Microbiology.
Sun, Min; Long, Juan; Yi, Yuxin; Xia, Wei
2017-10-28
Insulin-like growth factor-binding protein (IGFBP)-5 is a secreted protein that binds to IGFs and modulates IGF actions, as well as regulates cell proliferation, migration, and apoptosis independent of IGF. Proper cellular localization is critical for the effective function of most signaling molecules. In previous studies, we have shown that the nuclear IGFBP-5 comes from ER-cytosol retro-translocation. In this study, we further investigated the pathway mediating IGFBP-5 nuclear import after it retro-translocation. Importin-α5 was identified as an IGFBP-5-interacting protein with a yeast two-hybrid system, and its interaction with IGFBP-5 was further confirmed by GST pull down and co-immunoprecipitation. Binding affinity of IGFBP-5 and importins were determined by surface plasmon resonance (IGFBP-5/importin-β: K D =2.44e-7, IGFBP-5/importin-α5: K D =3.4e-7). Blocking the importin-α5/importin-β nuclear import pathway using SiRNA or dominant negative impotin-β dramatically inhibited IGFBP-5-EGFP nuclear import, though importin-α5 overexpress does not affect IGFBP-5 nuclear import. Furthermore, nuclear IGFBP-5 was quantified using luciferase report assay. When deleted the IGFBP-5 nuclear localization sequence (NLS), IGFBP-5 ΔNLS loss the ability to translocate into the nucleus and accumulation of IGFBP-5 ΔNLS was visualized in the cytosol. Altogether, our findings provide a substantially evidence showed that the IGFBP-5 nuclear import is mediated by importin-α/importin-β complex, and NLS is critical domain in IGFBP-5 nuclear translocation.
Nevarez, P Andrew; Qiu, Yongjian; Inoue, Hitoshi; Yoo, Chan Yul; Benfey, Philip N; Schnell, Danny J; Chen, Meng
2017-04-01
HEMERA (HMR) is a nuclear and plastidial dual-targeted protein. While it functions in the nucleus as a transcriptional coactivator in phytochrome signaling to regulate a distinct set of light-responsive, growth-relevant genes, in plastids it is known as pTAC12, which associates with the plastid-encoded RNA polymerase, and is essential for inducing the plastomic photosynthetic genes and initiating chloroplast biogenesis. However, the mechanism of targeting HMR to the nucleus and plastids is still poorly understood. Here, we show that HMR can be directly imported into chloroplasts through a transit peptide residing in the N-terminal 50 amino acids. Upon cleavage of the transit peptide and additional proteolytic processing, mature HMR, which begins from Lys-58, retains its biochemical properties in phytochrome signaling. Unexpectedly, expression of mature HMR failed to rescue not only the plastidial but also the nuclear defects of the hmr mutant. This is because the predicted nuclear localization signals of HMR are nonfunctional, and therefore mature HMR is unable to accumulate in either plastids or the nucleus. Surprisingly, fusing the transit peptide of the small subunit of Rubisco with mature HMR rescues both its plastidial and nuclear localization and functions. These results, combined with the observation that the nuclear form of HMR has the same reduced molecular mass as plastidial HMR, support a retrograde protein translocation mechanism in which HMR is targeted first to plastids, processed to the mature form, and then relocated to the nucleus. © 2017 American Society of Plant Biologists. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wada, Takeyoshi; Asahi, Toru; Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480
2016-08-26
The gene coding cereblon (CRBN) was originally identified in genetic linkage analysis of mild autosomal recessive nonsyndromic intellectual disability. CRBN has broad localization in both the cytoplasm and nucleus. However, the significance of nuclear CRBN remains unknown. In the present study, we aimed to elucidate the role of CRBN in the nucleus. First, we generated a series of CRBN deletion mutants and determined the regions responsible for the nuclear localization. Only CRBN protein lacking the N-terminal region was localized outside of the nucleus, suggesting that the N-terminal region is important for its nuclear localization. CRBN was also identified as amore » thalidomide-binding protein and component of the cullin-4-containing E3 ubiquitin ligase complex. Thalidomide has been reported to be involved in the regulation of the transcription factor Ikaros by CRBN-mediated degradation. To investigate the nuclear functions of CRBN, we performed co-immunoprecipitation experiments and evaluated the binding of CRBN to Ikaros. As a result, we found that CRBN was associated with Ikaros protein, and the N-terminal region of CRBN was required for Ikaros binding. In luciferase reporter gene experiments, CRBN modulated transcriptional activity of Ikaros. Furthermore, we found that CRBN modulated Ikaros-mediated transcriptional repression of the proenkephalin gene by binding to its promoter region. These results suggest that CRBN binds to Ikaros via its N-terminal region and regulates transcriptional activities of Ikaros and its downstream target, enkephalin. - Highlights: • We found that CRBN is a nucleocytoplasmic shutting protein and identified the key domain for nucleocytoplasmic shuttling. • CRBN associates with the transcription factor Ikaros via the N-terminal domain. • CRBN modulates Ikaros-mediated transcriptional regulation and its downstream target, enkephalin.« less
Turci, Marco; Romanelli, Maria Grazia; Lorenzi, Pamela; Righi, Paola; Bertazzoni, Umberto
2006-01-03
Human T-cell lymphotropic viruses (HTLV) types I and II are closely related oncogenic retroviruses that have been associated with lymphoproliferative and neurological disorders. The proviral genome encodes a trans-regulatory Tax protein that activates viral genes and upregulates various cellular genes involved in both cell growth and transformation. Tax proteins of HTLV-I (Tax-I) and HTLV-II (Tax-II) exhibit more than 77% aa homology and expression of either Tax-I or Tax-II is sufficient for immortalization of cultured T lymphocytes. Tax-I shuttles from the nucleus to the cytoplasm and accumulates within the nucleus, whereas Tax-II is found mainly in the cytoplasm. In the present study we have used recombinant vectors to analyze the size and structure of the nuclear localization domain within the Tax-II protein sequence. The Tax-II protein was expressed in HeLa cells either as the complete protein, or regions thereof, that were individually fused to the green fluorescent protein (GFP). Immunoblot analysis of the fused Tax-II products confirmed their expression and size. Fluorescence microscopy studies indicated that the complete Tax-II as well as N-truncated forms presented a punctuate cytoplasmic distribution and that a nuclear localization determinant is confined to within the first 60 aa of Tax-II. Accordingly, site directed mutagenesis and deletion of specific sequences within the first 60 aa showed that the nuclear determinant lies within the first 41 residues of Tax-II. These results point to a direct involvement of the amino-terminal residues of Tax-II protein in determining its nuclear functionality.
Myosin-1C uses a novel phosphoinositide-dependent pathway for nuclear localization.
Nevzorov, Ilja; Sidorenko, Ekaterina; Wang, Weihuan; Zhao, Hongxia; Vartiainen, Maria K
2018-02-01
Accurate control of macromolecule transport between nucleus and cytoplasm underlines several essential biological processes, including gene expression. According to the canonical model, nuclear import of soluble proteins is based on nuclear localization signals and transport factors. We challenge this view by showing that nuclear localization of the actin-dependent motor protein Myosin-1C (Myo1C) resembles the diffusion-retention mechanism utilized by inner nuclear membrane proteins. We show that Myo1C constantly shuttles in and out of the nucleus and that its nuclear localization does not require soluble factors, but is dependent on phosphoinositide binding. Nuclear import of Myo1C is preceded by its interaction with the endoplasmic reticulum, and phosphoinositide binding is specifically required for nuclear import, but not nuclear retention, of Myo1C. Our results therefore demonstrate, for the first time, that membrane association and binding to nuclear partners is sufficient to drive nuclear localization of also soluble proteins, opening new perspectives to evolution of cellular protein sorting mechanisms. © 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
Rechter, Sabine; Scott, Gillian M.; Eickhoff, Jan; Zielke, Katrin; Auerochs, Sabrina; Müller, Regina; Stamminger, Thomas; Rawlinson, William D.; Marschall, Manfred
2009-01-01
Replication of human cytomegalovirus (HCMV) is subject to regulation by cellular protein kinases. Recently, we and others reported that inhibition of cyclin-dependent protein kinases (CDKs) or the viral CDK ortholog pUL97 can induce intranuclear speckled aggregation of the viral mRNA export factor, pUL69. Here we provide the first evidence for a direct regulatory role of CDKs on pUL69 functionality. Although replication of all HCMV strains was dependent on CDK activity, we found strain-specific differences in the amount of CDK inhibitor-induced pUL69 aggregate formation. In all cases analyzed, the inhibitor-induced pUL69 aggregates were clearly localized within viral replication centers but not subnuclear splicing, pore complex, or aggresome structures. The CDK9 and cyclin T1 proteins colocalized with these pUL69 aggregates, whereas other CDKs behaved differently. Phosphorylation analyses in vivo and in vitro demonstrated pUL69 was strongly phosphorylated in HCMV-infected fibroblasts and that CDKs represent a novel class of pUL69-phosphorylating kinases. Moreover, the analysis of CDK inhibitors in a pUL69-dependent nuclear mRNA export assay provided evidence for functional impairment of pUL69 under suppression of CDK activity. Thus, our data underline the crucial importance of CDKs for HCMV replication, and indicate a direct impact of CDK9-cyclin T1 on the nuclear localization and activity of the viral regulator pUL69. PMID:19179338
Automated Quantitative Nuclear Cardiology Methods
Motwani, Manish; Berman, Daniel S.; Germano, Guido; Slomka, Piotr J.
2016-01-01
Quantitative analysis of SPECT and PET has become a major part of nuclear cardiology practice. Current software tools can automatically segment the left ventricle, quantify function, establish myocardial perfusion maps and estimate global and local measures of stress/rest perfusion – all with minimal user input. State-of-the-art automated techniques have been shown to offer high diagnostic accuracy for detecting coronary artery disease, as well as predict prognostic outcomes. This chapter briefly reviews these techniques, highlights several challenges and discusses the latest developments. PMID:26590779
IRAK2 directs stimulus-dependent nuclear export of inflammatory mRNAs
Yu, Minjia; Qian, Wen; Wang, Han; Zhou, Gao; Chen, Xing; Yang, Hui; Hong, Lingzi; Zhao, Junjie; Qin, Luke; Fukuda, Koichi; Flotho, Annette; Gao, Ji; Dongre, Ashok; Carman, Julie A; Kang, Zizhen; Su, Bing; Kern, Timothy S; Smith, Jonathan D; Hamilton, Thomas A; Melchior, Frauke; Fox, Paul L
2017-01-01
Expression of inflammatory genes is determined in part by post-transcriptional regulation of mRNA metabolism but how stimulus- and transcript-dependent nuclear export influence is poorly understood. Here, we report a novel pathway in which LPS/TLR4 engagement promotes nuclear localization of IRAK2 to facilitate nuclear export of a specific subset of inflammation-related mRNAs for translation in murine macrophages. IRAK2 kinase activity is required for LPS-induced RanBP2-mediated IRAK2 sumoylation and subsequent nuclear translocation. Array analysis showed that an SRSF1-binding motif is enriched in mRNAs dependent on IRAK2 for nuclear export. Nuclear IRAK2 phosphorylates SRSF1 to reduce its binding to target mRNAs, which promotes the RNA binding of the nuclear export adaptor ALYREF and nuclear export receptor Nxf1 loading for the export of the mRNAs. In summary, LPS activates a nuclear function of IRAK2 that facilitates the assembly of nuclear export machinery to export selected inflammatory mRNAs to the cytoplasm for translation. PMID:28990926
IRAK2 directs stimulus-dependent nuclear export of inflammatory mRNAs.
Zhou, Hao; Bulek, Katarzyna; Li, Xiao; Herjan, Tomasz; Yu, Minjia; Qian, Wen; Wang, Han; Zhou, Gao; Chen, Xing; Yang, Hui; Hong, Lingzi; Zhao, Junjie; Qin, Luke; Fukuda, Koichi; Flotho, Annette; Gao, Ji; Dongre, Ashok; Carman, Julie A; Kang, Zizhen; Su, Bing; Kern, Timothy S; Smith, Jonathan D; Hamilton, Thomas A; Melchior, Frauke; Fox, Paul L; Li, Xiaoxia
2017-10-09
Expression of inflammatory genes is determined in part by post-transcriptional regulation of mRNA metabolism but how stimulus- and transcript-dependent nuclear export influence is poorly understood. Here, we report a novel pathway in which LPS/TLR4 engagement promotes nuclear localization of IRAK2 to facilitate nuclear export of a specific subset of inflammation-related mRNAs for translation in murine macrophages. IRAK2 kinase activity is required for LPS-induced RanBP2-mediated IRAK2 sumoylation and subsequent nuclear translocation. Array analysis showed that an SRSF1-binding motif is enriched in mRNAs dependent on IRAK2 for nuclear export. Nuclear IRAK2 phosphorylates SRSF1 to reduce its binding to target mRNAs, which promotes the RNA binding of the nuclear export adaptor ALYREF and nuclear export receptor Nxf1 loading for the export of the mRNAs. In summary, LPS activates a nuclear function of IRAK2 that facilitates the assembly of nuclear export machinery to export selected inflammatory mRNAs to the cytoplasm for translation.
Functional association of Sun1 with nuclear pore complexes
Liu, Qian; Pante, Nelly; Misteli, Tom; Elsagga, Mohamed; Crisp, Melissa; Hodzic, Didier; Burke, Brian; Roux, Kyle J.
2007-01-01
Sun1 and 2 are A-type lamin-binding proteins that, in association with nesprins, form a link between the inner nuclear membranes (INMs) and outer nuclear membranes of mammalian nuclear envelopes. Both immunofluorescence and immunoelectron microscopy reveal that Sun1 but not Sun2 is intimately associated with nuclear pore complexes (NPCs). Topological analyses indicate that Sun1 is a type II integral protein of the INM. Localization of Sun1 to the INM is defined by at least two discrete regions within its nucleoplasmic domain. However, association with NPCs is dependent on the synergy of both nucleoplasmic and lumenal domains. Cells that are either depleted of Sun1 by RNA interference or that overexpress dominant-negative Sun1 fragments exhibit clustering of NPCs. The implication is that Sun1 represents an important determinant of NPC distribution across the nuclear surface. PMID:17724119
Barbosa-Camacho, Angel A; Méndez-Hernández, Lucía E; Lara-Chacón, Bárbara; Peña-Gómez, Sonia G; Romero, Violeta; González-González, Rogelio; Guerra-Moreno, José A; Robledo-Rivera, Angélica Y; Sánchez-Olea, Roberto; Calera, Mónica R
2017-11-01
Gpn3 is required for RNA polymerase II (RNAPII) nuclear targeting. Here, we investigated the effect of a cancer-associated Q279* nonsense mutation in Gpn3 cellular function. Employing RNAi, we replaced endogenous Gpn3 by wt or Q279* RNAi-resistant Gpn3R in epithelial model cells. RNAPII nuclear accumulation and transcriptional activity were markedly decreased in cells expressing only Gpn3R Q279*. Wild-type Gpn3R localized to the cytoplasm but a fraction of Gpn3R Q279* entered the cell nucleus and inhibited Gpn1-EYFP nuclear export. This property and the transcriptional deficit in Gpn3R Q279*-expressing cells required a PDZ-binding motif generated by the Q279* mutation. We conclude that an acquired PDZ-binding motif in Gpn3 Q279* caused Gpn3 nuclear entry, and inhibited Gpn1 nuclear export and Gpn3-mediated RNAPII nuclear targeting. © 2017 Federation of European Biochemical Societies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehmood, Rashid; Yasuhara, Noriko; Oe, Souichi
The transition from undifferentiated pluripotent cells to terminally differentiated neurons is coordinated by a repertoire of transcription factors. NeuroD1 is a type II basic helix loop helix (bHLH) transcription factor that plays critical roles in neuronal differentiation and maintenance in the central nervous system. Its dimerization with E47, a type I bHLH transcription factor, leads to the transcriptional regulation of target genes. Mounting evidence suggests that regulating the localization of transcription factors contributes to the regulation of their activity during development as defects in their localization underlie a variety of developmental disorders. In this study, we attempted to understand themore » nuclear import mannerisms of NeuroD1 and E47. We found that the nuclear import of NeuroD1 and E47 is energy-dependent and involves the Ran-mediated pathway. Herein, we demonstrate that NeuroD1 and E47 can dimerize inside the cytoplasm before their nuclear import. Moreover, this dimerization promotes nuclear import as the nuclear accumulation of NeuroD1 was enhanced in the presence of E47 in an in vitro nuclear import assay, and NLS-deficient NeuroD1 was successfully imported into the nucleus upon E47 overexpression. NeuroD1 also had a similar effect on the nuclear accumulation of NLS-deficient E47. These findings suggest a novel role for dimerization that may promote, at least partially, the nuclear import of transcription factors allowing them to function efficiently in the nucleus.« less
Nuclear localization of Schizosaccharomyces pombe Mcm2/Cdc19p requires MCM complex assembly.
Pasion, S G; Forsburg, S L
1999-12-01
The minichromosome maintenance (MCM) proteins MCM2-MCM7 are conserved eukaryotic replication factors that assemble in a heterohexameric complex. In fission yeast, these proteins are nuclear throughout the cell cycle. In studying the mechanism that regulates assembly of the MCM complex, we analyzed the cis and trans elements required for nuclear localization of a single subunit, Mcm2p. Mutation of any single mcm gene leads to redistribution of wild-type MCM subunits to the cytoplasm, and this redistribution depends on an active nuclear export system. We identified the nuclear localization signal sequences of Mcm2p and showed that these are required for nuclear targeting of other MCM subunits. In turn, Mcm2p must associate with other MCM proteins for its proper localization; nuclear localization of MCM proteins thus requires assembly of MCM proteins in a complex. We suggest that coupling complex assembly to nuclear targeting and retention ensures that only intact heterohexameric MCM complexes remain nuclear.
Nuclear Localization of Schizosaccharomyces pombe Mcm2/Cdc19p Requires MCM Complex Assembly
Pasion, Sally G.; Forsburg, Susan L.
1999-01-01
The minichromosome maintenance (MCM) proteins MCM2–MCM7 are conserved eukaryotic replication factors that assemble in a heterohexameric complex. In fission yeast, these proteins are nuclear throughout the cell cycle. In studying the mechanism that regulates assembly of the MCM complex, we analyzed the cis and trans elements required for nuclear localization of a single subunit, Mcm2p. Mutation of any single mcm gene leads to redistribution of wild-type MCM subunits to the cytoplasm, and this redistribution depends on an active nuclear export system. We identified the nuclear localization signal sequences of Mcm2p and showed that these are required for nuclear targeting of other MCM subunits. In turn, Mcm2p must associate with other MCM proteins for its proper localization; nuclear localization of MCM proteins thus requires assembly of MCM proteins in a complex. We suggest that coupling complex assembly to nuclear targeting and retention ensures that only intact heterohexameric MCM complexes remain nuclear. PMID:10588642
Wünsch, Désirée; Hahlbrock, Angelina; Heiselmayer, Christina; Bäcker, Sandra; Heun, Patrick; Goesswein, Dorothee; Stöcker, Walter; Schirmeister, Tanja; Schneider, Günter; Krämer, Oliver H; Knauer, Shirley K; Stauber, Roland H
2015-05-01
Human Taspase1 is essential for development and cancer by processing critical regulators, such as the mixed-lineage leukemia protein. Likewise, its ortholog, trithorax, is cleaved by Drosophila Taspase1 (dTaspase1), implementing a functional coevolution. To uncover novel mechanism regulating protease function, we performed a functional analysis of dTaspase1 and its comparison to the human ortholog. dTaspase1 contains an essential nucleophile threonine(195), catalyzing cis cleavage into its α- and β-subunits. A cell-based assay combined with alanine scanning mutagenesis demonstrated that the target cleavage motif for dTaspase1 (Q(3)[F/I/L/M](2)D(1)↓G(1')X(2')X(3')) differs significantly from the human ortholog (Q(3)[F,I,L,V](2)D(1)↓G(1')x(2')D(3')D(4')), predicting an enlarged degradome containing 70 substrates for Drosophila. In contrast to human Taspase1, dTaspase1 shows no discrete localization to the nucleus/nucleolus due to the lack of the importin-α/nucleophosmin1 interaction domain (NoLS) conserved in all vertebrates. Consequently, dTaspase1 interacts with neither the Drosophila nucleoplasmin-like protein nor human nucleophosmin1. The impact of localization on the protease's degradome was confirmed by demonstrating that dTaspase1 did not efficiently process nuclear substrates, such as upstream stimulatory factor 2. However, genetic introduction of the NoLS into dTaspase1 restored its nucleolar localization, nucleophosmin1 interaction, and efficient cleavage of nuclear substrates. We report that evolutionary functional divergence separating vertebrates from invertebrates can be achieved for proteases by a transport/localization-regulated mechanism. © FASEB.
Grewe, Felix; Zhu, Andan; Mower, Jeffrey P.
2016-01-01
The mitochondrial nad1 gene of seed plants has a complex structure, including four introns in cis or trans configurations and a maturase gene (matR) hosted within the final intron. In the geranium family (Geraniaceae), however, sequencing of representative species revealed that three of the four introns, including one in a trans configuration and another that hosts matR, were lost from the nad1 gene in their common ancestor. Despite the loss of the host intron, matR has been retained as a freestanding gene in most genera of the family, indicating that this maturase has additional functions beyond the splicing of its host intron. In the common ancestor of Pelargonium, matR was transferred to the nuclear genome, where it was split into two unlinked genes that encode either its reverse transcriptase or maturase domain. Both nuclear genes are transcribed and contain predicted mitochondrial targeting signals, suggesting that they express functional proteins that are imported into mitochondria. The nuclear localization and split domain structure of matR in the Pelargonium nuclear genome offers a unique opportunity to assess the function of these two domains using transgenic approaches. PMID:27664178
Saporita, Anthony J.; Ai, Junkui; Wang, Zhou
2010-01-01
BACKGROUND Androgen receptor (AR) is the key molecule in androgen-refractory prostate cancer. Despite androgen ablative conditions, AR remains active and is necessary for the growth of androgen-refractory prostate cancer cells. Nuclear localization of AR is a prerequisite for its transcriptional activation. We examined AR localization in androgen-dependent and androgen-refractory prostate cancer cells. METHODS AND RESULTS We demonstrate increased nuclear localization of a GFP-tagged AR in the absence of hormone in androgen-refractory C4-2 cells compared to parental androgen-sensitive human prostate cancer LNCaP cells. Analysis of AR mutants impaired in ligand-binding indicates that the nuclear localization of AR in C4-2 cells is truly androgen-independent. The hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), inhibits basal PSA expression and disrupts the ligand-independent nuclear localization of AR at doses much lower than required to inhibit androgen-induced nuclear import. CONCLUSIONS Hsp90 is a key regulator of ligand-independent nuclear localization and activation of AR in androgen-refractory prostate cancer cells. PMID:17221841
Cunningham, Corey N; Schmidt, Casey A; Schramm, Nathaniel J; Gaylord, Michelle R; Resendes, Karen K
2014-01-15
TREX-2 is a five protein complex, conserved from yeast to humans, involved in linking mRNA transcription and export. The centrin 2 subunit of TREX-2 is also a component of the centrosome and is additionally involved in a distinctly different process of nuclear protein export. While centrin 2 is a known multifunctional protein, the roles of other human TREX-2 complex proteins other than mRNA export are not known. In this study, we found that human TREX-2 member PCID2 but not ENY2 is involved in some of the same cellular processes as those of centrin 2 apart from the classical TREX-2 function. PCID2 is present at the centrosome in a subset of HeLa cells and this localization is centrin 2 dependent. Furthermore, the presence of PCID2 at the centrosome is prevalent throughout the cell cycle as determined by co-staining with cyclins E, A and B. PCID2 but not ENY2 is also involved in protein export. Surprisingly, siRNA knockdown of PCID2 delayed the rate of nuclear protein export, a mechanism distinct from the effects of centrin 2, which when knocked down inhibits export. Finally we showed that co-depletion of centrin 2 and PCID2 leads to blocking rather than delaying nuclear protein export, indicating the dominance of the centrin 2 phenotype. Together these results represent the first discovery of specific novel functions for PCID2 other than mRNA export and suggest that components of the TREX-2 complex serve alternative shared roles in the regulation of nuclear transport and cell cycle progression. © 2013 Published by Elsevier Inc.
Rappa, Germana; Santos, Mark F; Green, Toni M; Karbanová, Jana; Hassler, Justin; Bai, Yongsheng; Barsky, Sanford H; Corbeil, Denis; Lorico, Aurelio
2017-02-28
Extracellular membrane vesicles (EVs) function as vehicles of intercellular communication, but how the biomaterials they carry reach the target site in recipient cells is an open question. We report that subdomains of Rab7+ late endosomes and nuclear envelope invaginations come together to create a sub-nuclear compartment, where biomaterials associated with CD9+ EVs are delivered. EV-derived biomaterials were also found in the nuclei of host cells. The inhibition of nuclear import and export pathways abrogated the nuclear localization of EV-derived biomaterials or led to their accumulation therein, respectively, suggesting that their translocation is dependent on nuclear pores. Nuclear envelope invagination-associated late endosomes were observed in ex vivo biopsies in both breast carcinoma and associated stromal cells. The transcriptome of stromal cells exposed to cancer cell-derived CD9+ EVs revealed that the regulation of eleven genes, notably those involved in inflammation, relies on the nuclear translocation of EV-derived biomaterials. Our findings uncover a new cellular pathway used by EVs to reach nuclear compartment.
Karyopherin alpha 1 regulates satellite cell proliferation and survival by modulating nuclear import
Choo, Hyo-Jung; Cutler, Alicia; Rother, Franziska; Bader, Michael; Pavlath, Grace K.
2016-01-01
Satellite cells are stem cells with an essential role in skeletal muscle repair. Precise regulation of gene expression is critical for proper satellite cell quiescence, proliferation, differentiation and self -renewal. Nuclear proteins required for gene expression are dependent on the nucleocytoplasmic transport machinery to access to nucleus, however little is known about regulation of nuclear transport in satellite cells. The best characterized nuclear import pathway is classical nuclear import which depends on a classical nuclear localization signal (cNLS) in a cargo protein and the heterodimeric import receptors, karyopherin alpha (KPNA) and beta (KPNB). Multiple KPNA1 paralogs exist and can differ in importing specific cNLS proteins required for cell differentiation and function. We show that transcripts for six Kpna paralogs underwent distinct changes in mouse satellite cells during muscle regeneration accompanied by changes in cNLS proteins in nuclei. Depletion of KPNA1, the most dramatically altered KPNA, caused satellite cells in uninjured muscle to prematurely activate, proliferate and undergo apoptosis leading to satellite cell exhaustion with age. Increased proliferation of satellite cells led to enhanced muscle regeneration at early stages of regeneration. In addition, we observed impaired nuclear localization of two key KPNA1 cargo proteins: p27, a cyclin-dependent kinase inhibitor associated with cell cycle control and lymphoid enhancer factor 1, a critical co-transcription factor for β-catenin. These results indicate that regulated nuclear import of proteins by KPNA1 is critical for satellite cell proliferation and survival and establish classical nuclear import as a novel regulatory mechanism for controlling satellite cell fate. PMID:27434733
Non-Born-Oppenheimer self-consistent field calculations with cubic scaling
NASA Astrophysics Data System (ADS)
Moncada, Félix; Posada, Edwin; Flores-Moreno, Roberto; Reyes, Andrés
2012-05-01
An efficient nuclear molecular orbital methodology is presented. This approach combines an auxiliary density functional theory for electrons (ADFT) and a localized Hartree product (LHP) representation for the nuclear wave function. A series of test calculations conducted on small molecules exposed that energy and geometry errors introduced by the use of ADFT and LHP approximations are small and comparable to those obtained by the use of electronic ADFT. In addition, sample calculations performed on (HF)n chains disclosed that the combined ADFT/LHP approach scales cubically with system size (n) as opposed to the quartic scaling of Hartree-Fock/LHP or DFT/LHP methods. Even for medium size molecules the improved scaling of the ADFT/LHP approach resulted in speedups of at least 5x with respect to Hartree-Fock/LHP calculations. The ADFT/LHP method opens up the possibility of studying nuclear quantum effects on large size systems that otherwise would be impractical.
Goto, Akira; Matsushita, Kazufumi; Gesellchen, Viola; Chamy, Laure El; Kuttenkeuler, David; Takeuchi, Osamu; Hoffmann, Jules A.; Akira, Shizuo; Boutros, Michael; Reichhart, Jean-Marc
2009-01-01
During a genome-wide RNAi screen, we isolated CG8580 as a gene involved in the innate immune response of Drosophila. CG8580, which we named Akirin, acts in parallel with the NF-κB transcription factor downstream of the Imd pathway and was required for defense against Gram-negative bacteria. Akirin is highly conserved and the human genome contains two homologues, one of which was able to rescue the loss of function phenotype in Drosophila cells. Akirins had a strict nuclear localization. Knockout of both Akirin homologues in mice revealed that one had an essential function downstream of Toll-like receptor, tumor necrosis factor and interleukin 1-β (IL-1β) signaling pathways leading to the production of IL-6. Thus, Akirin is a conserved nuclear factor required for innate immune responses. PMID:18066067
Cheng, Chi-Yuan; Han, Songi
2013-01-01
Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.
Ward, Diane McVey; Shiflett, Shelly L; Huynh, Dinh; Vaughn, Michael B; Prestwich, Glenn; Kaplan, Jerry
2003-06-01
The Chediak-Higashi Syndrome (CHS) and the orthologous murine disorder beige are characterized at the cellular level by the presence of giant lysosomes. The CHS1/Beige protein is a 3787 amino acid protein of unknown function. To determine functional domains of the CHS1/Beige protein, we generated truncated constructs of the gene/protein. These truncated proteins were transiently expressed in Cos-7 or HeLa cells and their effect on membrane trafficking was examined. Beige is apparently a cytosolic protein, as are most transiently expressed truncated Beige constructs. Expression of the Beige construct FM (amino acids 1-2037) in wild-type cells led to enlarged lysosomes. Similarly, expression of a 5.5-kb region (amino acids 2035-3787) of the carboxyl terminal of Beige (22B) also resulted in enlarged lysosomes. Expression of FM solely affected lysosome size, whereas expression of 22B led to alterations in lysosome size, changes in the Golgi and eventually cell death. The two constructs could be used to further dissect phenotypes resulting from loss of the Beige protein. CHS or beigej fibroblasts show an absence of nuclear staining using a monoclonal antibody directed against phosphatidylinositol 4,5 bisphosphate [PtdIns(4,5) P2]. Transformation of beige j fibroblasts with a YAC containing the full-length Beige gene resulted in the normalization of lysosome size and nuclear PtdIns(4,5)P2 staining. Expression of the carboxyl dominant negative construct 22B led to loss of nuclear PtdIns(4,5)P2 staining. Expression of the FM dominant negative clone did not alter nuclear PtdIns(4,5) P2 localization. These results suggest that the Beige protein interacts with at least two different partners and that the Beige protein affects cellular events, such as nuclear PtdIns(4,5)P2 localization, in addition to lysosome size.
Mang, Hyung-Gon; Qian, Weiqiang; Zhu, Ying; Qian, Jun; Kang, Hong-Gu; Klessig, Daniel F.; Hua, Jian
2012-01-01
Plant defense responses to pathogens are influenced by abiotic factors, including temperature. Elevated temperatures often inhibit the activities of disease resistance proteins and the defense responses they mediate. A mutant screen with an Arabidopsis thaliana temperature-sensitive autoimmune mutant bonzai1 revealed that the abscisic acid (ABA)–deficient mutant aba2 enhances resistance mediated by the resistance (R) gene SUPPRESSOR OF npr1-1 CONSTITUTIVE1 (SNC1) at high temperature. ABA deficiency promoted nuclear accumulation of SNC1, which was essential for it to function at low and high temperatures. Furthermore, the effect of ABA deficiency on SNC1 protein accumulation is independent of salicylic acid, whose effects are often antagonized by ABA. ABA deficiency also promotes the activity and nuclear localization of R protein RESISTANCE TO PSEUDOMONAS SYRINGAE4 at higher temperature, suggesting that the effect of ABA on R protein localization and nuclear activity is rather broad. By contrast, mutations that confer ABA insensitivity did not promote defense responses at high temperature, suggesting either tissue specificity of ABA signaling or a role of ABA in defense regulation independent of the core ABA signaling machinery. Taken together, this study reveals a new intersection between ABA and disease resistance through R protein localization and provides further evidence of antagonism between abiotic and biotic responses. PMID:22454454
Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins
Stephens, Andrew D.; Liu, Patrick Z.; Banigan, Edward J.; Almassalha, Luay M.; Backman, Vadim; Adam, Stephen A.; Goldman, Robert D.; Marko, John F.
2018-01-01
Nuclear shape and architecture influence gene localization, mechanotransduction, transcription, and cell function. Abnormal nuclear morphology and protrusions termed “blebs” are diagnostic markers for many human afflictions including heart disease, aging, progeria, and cancer. Nuclear blebs are associated with both lamin and chromatin alterations. A number of prior studies suggest that lamins dictate nuclear morphology, but the contributions of altered chromatin compaction remain unclear. We show that chromatin histone modification state dictates nuclear rigidity, and modulating it is sufficient to both induce and suppress nuclear blebs. Treatment of mammalian cells with histone deacetylase inhibitors to increase euchromatin or histone methyltransferase inhibitors to decrease heterochromatin results in a softer nucleus and nuclear blebbing, without perturbing lamins. Conversely, treatment with histone demethylase inhibitors increases heterochromatin and chromatin nuclear rigidity, which results in reduced nuclear blebbing in lamin B1 null nuclei. Notably, increased heterochromatin also rescues nuclear morphology in a model cell line for the accelerated aging disease Hutchinson–Gilford progeria syndrome caused by mutant lamin A, as well as cells from patients with the disease. Thus, chromatin histone modification state is a major determinant of nuclear blebbing and morphology via its contribution to nuclear rigidity. PMID:29142071
Gadd45a Is an RNA Binding Protein and Is Localized in Nuclear Speckles
Sytnikova, Yuliya A.; Kubarenko, Andriy V.; Schäfer, Andrea; Weber, Alexander N. R.; Niehrs, Christof
2011-01-01
Background The Gadd45 proteins play important roles in growth control, maintenance of genomic stability, DNA repair, and apoptosis. Recently, Gadd45 proteins have also been implicated in epigenetic gene regulation by promoting active DNA demethylation. Gadd45 proteins have sequence homology with the L7Ae/L30e/S12e RNA binding superfamily of ribosomal proteins, which raises the question if they may interact directly with nucleic acids. Principal Findings Here we show that Gadd45a binds RNA but not single- or double stranded DNA or methylated DNA in vitro. Sucrose density gradient centrifugation experiments demonstrate that Gadd45a is present in high molecular weight particles, which are RNase sensitive. Gadd45a displays RNase-sensitive colocalization in nuclear speckles with the RNA helicase p68 and the RNA binding protein SC35. A K45A point mutation defective in RNA binding was still active in DNA demethylation. This suggests that RNA binding is not absolutely essential for demethylation of an artificial substrate. A point mutation at G39 impared RNA binding, nuclear speckle localization and DNA demethylation, emphasizing its relevance for Gadd45a function. Significance The results implicate RNA in Gadd45a function and suggest that Gadd45a is associated with a ribonucleoprotein particle. PMID:21249130
The identification of FANCD2 DNA binding domains reveals nuclear localization sequences.
Niraj, Joshi; Caron, Marie-Christine; Drapeau, Karine; Bérubé, Stéphanie; Guitton-Sert, Laure; Coulombe, Yan; Couturier, Anthony M; Masson, Jean-Yves
2017-08-21
Fanconi anemia (FA) is a recessive genetic disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. The FA pathway consists of at least 21 FANC genes (FANCA-FANCV), and the encoded protein products interact in a common cellular pathway to gain resistance against DNA interstrand crosslinks. After DNA damage, FANCD2 is monoubiquitinated and accumulates on chromatin. FANCD2 plays a central role in the FA pathway, using yet unidentified DNA binding regions. By using synthetic peptide mapping and DNA binding screen by electromobility shift assays, we found that FANCD2 bears two major DNA binding domains predominantly consisting of evolutionary conserved lysine residues. Furthermore, one domain at the N-terminus of FANCD2 bears also nuclear localization sequences for the protein. Mutations in the bifunctional DNA binding/NLS domain lead to a reduction in FANCD2 monoubiquitination and increase in mitomycin C sensitivity. Such phenotypes are not fully rescued by fusion with an heterologous NLS, which enable separation of DNA binding and nuclear import functions within this domain that are necessary for FANCD2 functions. Collectively, our results enlighten the importance of DNA binding and NLS residues in FANCD2 to activate an efficient FA pathway. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin
The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1-17 and 18-36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNAmore » binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.« less
Levy, Amit
2015-01-01
Plant viruses' cell-to-cell movement requires the function of virally encoded movement proteins (MPs). The Tobamovirus, Tobacco mosaic virus (TMV) has served as the model virus to study the activities of single MPs. However, since TMV does not infect the model plant Arabidopsis thaliana I have used a related Tobamovirus, Turnip vein-clearing virus (TVCV). I recently showed that, despite belonging to the same genus, the behavior of the 2 viruses MPs differ significantly during infection. Most notably, MP(TVCV), but not MP(TMV), targets the nucleus and induces the formation of F actin-containing filaments that associate with chromatin. Mutational analyses showed that nuclear localization of MP(TVCV) was necessary for TVCV local and systemic infection in both Nicotiana benthamiana and Arabidopsis. In this addendum, I propose possible targets for the MP(TVCV) nuclear activity, and suggest viewing MPs as viral effector-like proteins, playing a role in the inhibition of plant defense.
Electronic Delocalization, Vibrational Dynamics and Energy Transfer in Organic Chromophores
Nelson, Tammie Renee; Fernandez Alberti, Sebastian; Roitberg, Adrian; ...
2017-06-12
The efficiency of materials developed for solar energy and technological applications depends on the interplay between molecular architecture and light-induced electronic energy redistribution. The spatial localization of electronic excitations is very sensitive to molecular distortions. Vibrational nuclear motions can couple to electronic dynamics driving changes in localization. The electronic energy transfer among multiple chromophores arises from several distinct mechanisms that can give rise to experimentally measured signals. Atomistic simulations of coupled electron-vibrational dynamics can help uncover the nuclear motions directing energy flow. Through careful analysis of excited state wave function evolution and a useful fragmenting of multichromophore systems, through-bond transportmore » and exciton hopping (through-space) mechanisms can be distinguished. Such insights are crucial in the interpretation of fluorescence anisotropy measurements and can aid materials design. Finally, this Perspective highlights the interconnected vibrational and electronic motions at the foundation of nonadiabatic dynamics where nuclear motions, including torsional rotations and bond vibrations, drive electronic transitions.« less
Analysis of a developmentally regulated nuclear localization signal in Xenopus
1992-01-01
The 289 residue nuclear oncoprotein encoded by the adenovirus 5 Ela gene contains two peptide sequences that behave as nuclear localization signals (NLS). One signal, located at the carboxy terminus, is like many other known NLSs in that it consists of a short stretch of basic residues (KRPRP) and is constitutively active in cells. The second signal resides within an internal 45 residue region of E1a that contains few basic residues or sequences that resemble other known NLSs. Moreover, this internal signal functions in injected Xenopus oocytes, but not in transfected Xenopus A6 cells, suggesting that it could be regulated developmentally (Slavicek et al. 1989. J. Virol. 63:4047). In this study, we show that the activity of this signal is sensitive to ATP depletion in vivo, efficiently directs the import of a 50 kD fusion protein and can compete with the E1a carboxy-terminal NLS for nuclear import. In addition, we have delineated the precise amino acid residues that comprise the second E1a NLS, and have assessed its utilization during Xenopus embryogenesis. Using amino acid deletion and substitution analyses, we show that the signal consists of the sequence FV(X)7-20MXSLXYM(X)4MF. By expressing in Xenopus embryos a truncated E1a protein that contains only the second NLS and by monitoring its cytoplasmic/nuclear distribution during development with indirect immunofluorescence, we find that the second NLS is utilized up to the early neurula stage. In addition, there appears to be a hierarchy among the embryonic germ layers as to when the second NLS becomes nonfunctional. For this reason, we refer to this NLS as the developmentally regulated nuclear localization signal (drNLS). The implications of these findings for early development are discussed. PMID:1387407
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qiang; Kamemura, Kazuo, E-mail: k_kamemura@nagahama-i-bio.ac.jp
2014-07-18
Highlights: • The majority of EWS localizes stably in the cytosol in 3T3-L1 preadipocytes. • Adipogenic stimuli induce the nuclear localization of EWS. • Adipogenesis promotes O-GlcNAcylation of EWS. • O-GlcNAcylation stimulates the recruitment of EWS to the nuclear periphery. - Abstract: Although the Ewing sarcoma (EWS) proto-oncoprotein is found in the nucleus and cytosol and is associated with the cell membrane, the regulatory mechanisms of its subcellular localization are still unclear. Here we found that adipogenic stimuli induce the nuclear localization of EWS in 3T3-L1 cells. Tyrosine phosphorylation in the C-terminal PY-nuclear localization signal of EWS was negative throughoutmore » adipogenesis. Instead, an adipogenesis-dependent increase in O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation of EWS was observed. Pharmacological inactivation of O-GlcNAcase in preadipocytes promoted perinuclear localization of EWS. Our findings suggest that the nuclear localization of EWS is partly regulated by the glycosylation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi
2016-03-18
Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remainsmore » unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.« less
Neuronal differentiation modulates the dystrophin Dp71d binding to the nuclear matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Munoz, Rafael; Villarreal-Silva, Marcela; Gonzalez-Ramirez, Ricardo
The function of dystrophin Dp71 in neuronal cells remains unknown. To approach this issue, we have selected the PC12 neuronal cell line. These cells express both a Dp71f cytoplasmic variant and a Dp71d nuclear isoform. In this study, we demonstrated by electron and confocal microscopy analyses of in situ nuclear matrices and Western blotting evaluation of cell extracts that Dp71d associates with the nuclear matrix. Interestingly, this binding is modulated during NGF-induced neuronal differentiation of PC12 cells with a twofold increment in the differentiated cells, compared to control cells. Also, distribution of Dp71d along the periphery of the nuclear matrixmore » observed in the undifferentiated cells is replaced by intense fluorescent foci localized in Center of the nucleoskeletal structure. In summary, we revealed that Dp71d is a dynamic component of nuclear matrix that might participate in the nuclear modeling occurring during neuronal differentiation.« less
Mitochondrial poly(ADP-ribose) polymerase: The Wizard of Oz at work.
Brunyanszki, Attila; Szczesny, Bartosz; Virág, László; Szabo, Csaba
2016-11-01
Among multiple members of the poly(ADP-ribose) polymerase (PARP) family, PARP1 accounts for the majority of PARP activity in mammalian cells. Although PARP1 is predominantly localized to the nucleus, and its nuclear regulatory roles are most commonly studied and are the best characterized, several lines of data demonstrate that PARP1 is also present in the mitochondria, and suggest that mitochondrial PARP (mtPARP) plays an important role in the regulation of various cellular functions in health and disease. The goal of the current article is to review the experimental evidence for the mitochondrial localization of PARP1 and its intra-mitochondrial functions, with focus on cellular bioenergetics, mitochondrial DNA repair and mitochondrial dysfunction. In addition, we also propose a working model for the interaction of mitochondrial and nuclear PARP during oxidant-induced cell death. MtPARP is similar to the Wizard of Oz in the sense that it is enigmatic, it has been elusive for a long time and it remains difficult to be interrogated. mtPARP - at least in some cell types - works incessantly "behind the curtains" as an orchestrator of many important cellular functions. Copyright © 2016 Elsevier Inc. All rights reserved.
Du, Zhiyou; Chen, Aizhong; Chen, Wenhu; Liao, Qiansheng; Zhang, Hengmu; Bao, Yiming; Roossinck, Marilyn J; Carr, John P
2014-05-01
The Cucumber Mosaic Virus (CMV) 2b protein is an RNA-silencing suppressor that plays roles in CMV accumulation and virulence. The 2b proteins of subgroup IA CMV strains partition between the nucleus and cytoplasm, but the biological significance of this is uncertain. We fused an additional nuclear localization signal (NLS) to the 2b protein of subgroup IA strain Fny-CMV to create 2b-NLS and tested its effects on subcellular distribution, silencing, and virulence. The additional NLS enhanced 2b protein nuclear and nucleolar accumulation, but nuclear and nucleolar enrichment correlated with markedly diminished silencing suppressor activity in patch assays and abolished 2b protein-mediated disruption of microRNA activity in transgenic Arabidopsis. Nucleus/nucleolus-localized 2b protein possesses at least some ability to inhibit antiviral silencing, but this was not sufficient to prevent recovery from disease in younger, developing leaves in Arabidopsis. However, enhanced nuclear and nucleolar accumulation of 2b increased virulence and accelerated symptom appearance in older leaves. Experiments with Arabidopsis lines carrying mutant Dicer-like alleles demonstrated that compromised suppressor activity explained the diminished ability of 2b-NLS to enhance virus accumulation. Remarkably, the increased virulence that 2b-NLS engendered was unrelated to effects on microRNA- or short interfering RNA-regulated host functions. Thus, although nucleus- and nucleolus-localized 2b protein is less efficient at silencing suppression than cytoplasm-localized 2b, it enhances CMV virulence. We propose that partitioning of the 2b protein between the cytoplasmic and nuclear/nucleolar compartments allows CMV to regulate the balance between virus accumulation and damage to the host, presumably to maximize the benefit for the virus. In this work, the main finding is that nucleus/nucleolus-localized 2b protein is strongly associated with CMV virulence, which is independent of its effect on small RNA pathways. Moreover, this work supports the contention that the silencing suppressor activity of CMV 2b protein is predominantly exerted by that portion of the 2b protein residing in the cytoplasm. Thus, we propose that partitioning of the 2b protein between the cytoplasmic and nuclear/nucleolar compartments allows CMV to regulate the balance between virus accumulation and damage to the host, presumably to maximize the benefit for the virus.
Stress-induced interaction between p38 MAPK and HSP70
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Xiaowei, E-mail: gongxw@fimmu.com; Luo, Tingting; Deng, Peng
2012-08-24
Highlights: Black-Right-Pointing-Pointer HSP70 interacts to p38 MAPK in vitro and in vivo. Black-Right-Pointing-Pointer HSP70 co-localizes with p38 MAPK in the nucleus upon stress. Black-Right-Pointing-Pointer HSP70 is involved in the nuclear phosphorylation of MK2 by p38 MAPK. -- Abstract: p38 MAPK, one of the four MAPK subfamilies in mammalian cells, is activated by environmental stresses and pro-inflammatory cytokines, playing fundamental roles in many biological processes. Despite all that is known on the structure and functions of p38, many questions still exist. The coupling of activation and nuclear translocation represents an important aspect of p38 signaling. In our effort in exploring themore » potential chaperone for p38 translocation, we performed an endogenous pull-down assay and identified HSP70 as a potential interacting protein of p38. We confirmed the interaction between p38 and HSP70 in vitro and in vivo, and identified their interaction domains. We also showed stress-induced nuclear co-localization of these two proteins. Our preliminary result indicated that HSP70 was related to the phosphorylation of MK2, a specific nuclear downstream target of p38, suggesting HSP70 is a potential chaperone for the nuclear translocation of p38.« less
Local nematic susceptibility in stressed BaFe2As2 from NMR electric field gradient measurements
NASA Astrophysics Data System (ADS)
Kissikov, T.; Sarkar, R.; Lawson, M.; Bush, B. T.; Timmons, E. I.; Tanatar, M. A.; Prozorov, R.; Bud'ko, S. L.; Canfield, P. C.; Fernandes, R. M.; Goh, W. F.; Pickett, W. E.; Curro, N. J.
2017-12-01
The electric field gradient (EFG) tensor at the 75As site couples to the orbital occupations of the As p orbitals and is a sensitive probe of local nematicity in BaFe2As2 . We use nuclear magnetic resonance to measure the nuclear quadrupolar splittings and find that the EFG asymmetry responds linearly to the presence of a strain field in the paramagnetic phase. We extract the nematic susceptibility from the slope of this linear response as a function of temperature and find that it diverges near the structural transition, in agreement with other measures of the bulk nematic susceptibility. Our work establishes an alternative method to extract the nematic susceptibility which, in contrast to transport methods, can be extended inside the superconducting state.
Local dynamic nuclear polarization using quantum point contacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wald, K.R.; Kouwenhoven, L.P.; McEuen, P.L.
1994-08-15
We have used quantum point contacts (QPCs) to locally create and probe dynamic nuclear polarization (DNP) in GaAs heterostructures in the quantum Hall regime. DNP is created via scattering between spin-polarized Landau level electrons and the Ga and As nuclear spins, and it leads to hysteresis in the dc transport characteristics. The nuclear origin of this hysteresis is demonstrated by nuclear magnetic resonance (NMR). Our results show that QPCs can be used to create and probe local nuclear spin populations, opening up new possibilities for mesoscopic NMR experiments.
NASA Astrophysics Data System (ADS)
Mentink-Vigier, Frédéric; Binet, Laurent; Vignoles, Gerard; Gourier, Didier; Vezin, Hervé
2010-11-01
The hyperfine interactions of the unpaired electron with eight surrounding G69a and G71a nuclei in Ti-doped β-Ga2O3 were analyzed by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopies. They are dominated by strong isotropic hyperfine couplings due to a direct Fermi contact interaction with Ga nuclei in octahedral sites of rutile-type chains oriented along b axis, revealing a large anisotropic spatial extension of the electron wave function. Titanium in β-Ga2O3 is thus best described as a diffuse (Ti4+-e-) pair rather than as a localized Ti3+ . Both electron and G69a nuclear spin Rabi oscillations could be observed by pulsed EPR and pulsed ENDOR, respectively. The electron spin decoherence time is about 1μs (at 4 K) and an upper bound of 520μs (at 8 K) is estimated for the nuclear decoherence time. Thus, β-Ga2O3:Ti appears to be a potential spin-bus system for quantum information processing with a large nuclear spin quantum register.
Mizushima, Taichi; Asai-Sato, Mikiko; Akimoto, Kazunori; Nagashima, Yoji; Taguri, Masataka; Sasaki, Kazunori; Nakaya, Masa-aki; Asano, Ryoko; Tokinaga, Aya; Kiyono, Tohru; Hirahara, Fumiki; Ohno, Shigeo; Miyagi, Etsuko
2016-03-01
Atypical protein kinase C λ/ι (aPKCλ/ι) is a regulator of epithelial cellular polarity. It is also overexpressed in several cancers and functions in cell proliferation and invasion. Therefore, we hypothesized that aPKCλ/ι may be involved in development and progression of cervical intraepithelial neoplasia (CIN), the precancerous disease of cervical cancer induced by human papillomavirus. To do this, we investigated the relationship between aPKCλ/ι expression and CIN. aPKCλ/ι expression level and subcellular localization were assessed in 192 CIN biopsy samples and 13 normal epithelial samples using immunohistochemistry. aPKCλ/ι overexpression (normal epithelium, 7.7%; CIN1, 41.7%; CIN2/3, 76.4%) and aPKCλ/ι nuclear localization (normal epithelium, 0.0%; CIN1, 36.9%; CIN2/3, 78.7%) were higher in CIN samples than normal samples (P<0.05), suggesting that CIN grade is related to aPKCλ/ι overexpression and nuclear localization. Then, 140 CIN cases were retrospectively analyzed for 4-yr cumulative disease progression and regression rates using the Cox proportional hazards model. CIN1 cases with aPKCλ/ι overexpression or aPKCλ/ι nuclear localization had a higher progression rate than CIN1 cases with normal aPKCλ/ι expression levels or cytoplasmic localization (62.5% vs. 9.7% and 63.1% vs. 9.4%, respectively; P<0.001). Multivariate analysis indicated that human papillomavirus types 16 and 18, aPKCλ/ι overexpression (hazard ratio=4.26; 95% confidence interval, 1.50-12.1; P=0.007), and aPKCλ/ι nuclear localization (hazard ratio=3.59; 95% confidence interval, 1.24-10.4; P=0.019) were independent risk factors for CIN1 progression. In conclusion, aPKCλ/ι could be useful for the therapeutic management of patients with CIN, particularly those with non-human papillomavirus 16/18 types.
Nuclear actions of insulin-like growth factor binding protein-3.
Baxter, Robert C
2015-09-10
In addition to its actions outside the cell, cellular uptake and nuclear import of insulin-like growth factor binding protein-3 (IGFBP-3) has been recognized for almost two decades, but knowledge of its nuclear actions has been slow to emerge. IGFBP-3 has a functional nuclear localization signal and interacts with the nuclear transport protein importin-β. Within the nucleus IGFBP-3 appears to have a role in transcriptional regulation. It can bind to the nuclear receptor, retinoid X receptor-α and several of its dimerization partners, including retinoic acid receptor, vitamin D receptor (VDR), and peroxisome proliferator-activated receptor-γ (PPARγ). These interactions modulate the functions of these receptors, for example inhibiting VDR-dependent transcription in osteoblasts and PPARγ-dependent transcription in adipocytes. Nuclear IGFBP-3 can be detected by immunohistochemistry in cancer and other tissues, and its presence in the nucleus has been shown in many cell culture studies to be necessary for its pro-apoptotic effect, which may also involve interaction with the nuclear receptor Nur77, and export from the nucleus. IGFBP-3 is p53-inducible and in response to DNA damage, forms a complex with the epidermal growth factor receptor (EGFR), translocating to the nucleus to interact with DNA-dependent protein kinase. Inhibition of EGFR kinase activity or downregulation of IGFBP-3 can inhibit DNA double strand-break repair by nonhomologous end joining. IGFBP-3 thus has the ability to influence many cell functions through its interactions with intranuclear pathways, but the importance of these interactions in vivo, and their potential to be targeted for therapeutic benefit, require further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.
Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Hotaru; Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp; Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto
2016-07-29
We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of themore » SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. -- Highlights: •Puromycin exhibits the O-propargyl-puromycin effect. •Puromycin induces SUMO redistribution upon proteasome inhibition. •Ubiquitin and RNF4 accumulate at PML-nuclear bodies with SUMO-2/3. •The ubiquitin family may function in nuclear sequestration of immature proteins.« less
Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation.
Münch, Christian; Harper, J Wade
2016-06-30
The mitochondrial matrix is unique in that it must integrate the folding and assembly of proteins derived from the nuclear and mitochondrial genomes. In Caenorhabditis elegans, the mitochondrial unfolded protein response (UPRmt) senses matrix protein misfolding and induces a program of nuclear gene expression, including mitochondrial chaperonins, to promote mitochondrial proteostasis. While misfolded mitochondrial-matrix-localized ornithine transcarbamylase induces chaperonin expression, our understanding of mammalian UPRmt is rudimentary, reflecting a lack of acute triggers for UPRmt activation. This limitation has prevented analysis of the cellular responses to matrix protein misfolding and the effects of UPRmt on mitochondrial translation to control protein folding loads. Here we combine pharmacological inhibitors of matrix-localized HSP90/TRAP1 (ref. 8) or LON protease, which promote chaperonin expression, with global transcriptional and proteomic analysis to reveal an extensive and acute response of human cells to UPRmt. This response encompasses widespread induction of nuclear genes, including matrix-localized proteins involved in folding, pre-RNA processing and translation. Functional studies revealed rapid but reversible translation inhibition in mitochondria occurring concurrently with defects in pre-RNA processing caused by transcriptional repression and LON-dependent turnover of the mitochondrial pre-RNA processing nuclease MRPP3 (ref. 10). This study reveals that acute mitochondrial protein folding stress activates both increased chaperone availability within the matrix and reduced matrix-localized protein synthesis through translational inhibition, and provides a framework for further dissection of mammalian UPRmt.
Jakobsson, Tomas; Osman, Waffa; Gustafsson, Jan-Åke; Zilliacus, Johanna; Wärnmark, Anette
2007-01-01
Similarities in physiological roles of LXR (liver X receptors) and co-repressor RIP140 (receptor-interacting protein 140) in regulating energy homoeostasis and lipid and glucose metabolism suggest that the effects of LXR could at least partly be mediated by recruitment of the co-repressor RIP140. In the present study, we have elucidated the molecular basis for regulation of LXR transcriptional activity by RIP140. LXR is evenly localized in the nucleus and neither the N-terminal domain nor the LBD (ligand-binding domain) is necessary for nuclear localization. Both LXR subtypes, LXRα and LXRβ, interact with RIP140 and co-localize in diffuse large nuclear domains. Interaction and co-localization are dependent on the LBD of the receptor. The C-terminal domain of RIP140 is sufficient for full repressive effect. None of the C-terminal NR (nuclear receptor)-boxes is required for the co-repressor activity, whereas the NR-box-like motif as well as additional elements in the C-terminal region are required for full repressive function. The C-terminal NR-box-like motif is necessary for interaction with LXRβ, whereas additional elements are needed for strong interaction with LXRα. In conclusion, our results suggest that co-repression of LXR activity by RIP140 involves an atypical binding mode of RIP140 and a repression element in the RIP140 C-terminus. PMID:17391100
Nava, Michele M; Fedele, Roberto; Raimondi, Manuela T
2016-08-01
Nuclear spreading plays a crucial role in stem cell fate determination. In previous works, we reported evidence of multipotency maintenance for mesenchymal stromal cells cultured on three-dimensional engineered niche substrates, fabricated via two-photon laser polymerization. We correlated maintenance of multipotency to a more roundish morphology of these cells with respect to those cultured on conventional flat substrates. To interpret these findings, here we present a multiphysics model coupling nuclear strains induced by cell adhesion to passive diffusion across the cell nucleus. Fully three-dimensional reconstructions of cultured cells were developed on the basis of confocal images: in particular, the level of nuclear spreading resulted significantly dependent on the cell localization within the niche architecture. We assumed that the cell diffusivity varies as a function of the local volumetric strain. The model predictions indicate that the higher the level of spreading of the cell, the higher the flux across the nucleus of small solutes such as transcription factors. Our results point toward nuclear spreading as a primary mechanism by which the stem cell translates its shape into a fate decision, i.e., by amplifying the diffusive flow of transcriptional activators into the nucleus.
Discrimination between NL1- and NL2-Mediated Nuclear Localization of the Glucocorticoid Receptor
Savory, Joanne G. A.; Hsu, Brian; Laquian, Ian R.; Giffin, Ward; Reich, Terry; Haché, Robert J. G.; Lefebvre, Yvonne A.
1999-01-01
Glucocorticoid receptor (GR) cycles between a free liganded form that is localized to the nucleus and a heat shock protein (hsp)-immunophilin-complexed, unliganded form that is usually localized to the cytoplasm but that can also be nuclear. In addition, rapid nucleocytoplasmic exchange or shuttling of the receptor underlies its localization. Nuclear import of liganded GR is mediated through a well-characterized sequence, NL1, adjacent to the receptor DNA binding domain and a second, uncharacterized motif, NL2, that overlaps with the ligand binding domain. In this study we report that rapid nuclear import (half-life [t1/2] of 4 to 6 min) of agonist- and antagonist-treated GR and the localization of unliganded, hsp-associated GRs to the nucleus in G0 are mediated through NL1 and correlate with the binding of GR to pendulin/importin α. By contrast, NL2-mediated nuclear transfer of GR occurred more slowly (t1/2 = 45 min to 1 h), was agonist specific, and appeared to be independent of binding to importin α. Together, these results suggest that NL2 mediates the nuclear import of GR through an alternative nuclear import pathway. Nuclear export of GR was inhibited by leptomycin B, suggesting that the transfer of GR to the cytoplasm is mediated through the CRM1-dependent pathway. Inhibition of GR nuclear export by leptomycin B enhanced the nuclear localization of both unliganded, wild-type GR and hormone-treated NL1− GR. These results highlight that the subcellular localization of both liganded and unliganded GRs is determined, at least in part, by a flexible equilibrium between the rates of nuclear import and export. PMID:9891038
Arachidonate 15-Lipoxygenase 2 as an Endogenous Inhibitor of Prostate Cancer Development
2006-03-01
dehydrogenase; NHP, normal human prostate epithelial cells; PCa, prostate cancer; NLS, nuclear localization signal; PPAR -, peroxisome proliferator...cloned, i.e., 15-LOX2sv-a/b/c, are mostly excluded from the nucleus. A potential bi-partite nuclear localization signal (NLS...only partially involved in the nuclear import of 15-LOX2. To elucidate the relationship between nuclear localization , enzymatic activity, and tumor
Nuclear Import of β-Dystroglycan Is Facilitated by Ezrin-Mediated Cytoskeleton Reorganization
Vásquez-Limeta, Alejandra; Wagstaff, Kylie M.; Ortega, Arturo; Crouch, Dorothy H.; Jans, David A.; Cisneros, Bulmaro
2014-01-01
The β-dystroglycan (β-DG) protein has the ability to target to multiple sites in eukaryotic cells, being a member of diverse protein assemblies including the transmembranal dystrophin-associated complex, and a nuclear envelope-localised complex that contains emerin and lamins A/C and B1. We noted that the importin α2/β1-recognised nuclear localization signal (NLS) of β-DG is also a binding site for the cytoskeletal-interacting protein ezrin, and set out to determine whether ezrin binding might modulate β-DG nuclear translocation for the first time. Unexpectedly, we found that ezrin enhances rather than inhibits β-DG nuclear translocation in C2C12 myoblasts. Both overexpression of a phosphomimetic activated ezrin variant (Ez-T567D) and activation of endogenous ezrin through stimulation of the Rho pathway resulted in both formation of actin-rich surface protrusions and significantly increased nuclear translocation of β-DG as shown by quantitative microscopy and subcellular fractionation/Western analysis. In contrast, overexpression of a nonphosphorylatable inactive ezrin variant (Ez-T567A) or inhibition of Rho signaling, decreased nuclear translocation of β-DG concomitant with a lack of cell surface protrusions. Further, a role for the actin cytoskeleton in ezrin enhancement of β-DG nuclear translocation was implicated by the observation that an ezrin variant lacking its actin-binding domain failed to enhance nuclear translocation of β-DG, while disruption of the actin cytoskeleton led to a reduction in β-DG nuclear localization. Finally, we show that ezrin-mediated cytoskeletal reorganization enhances nuclear translocation of the cytoplasmic but not the transmembranal fraction of β-DG. This is the first study showing that cytoskeleton reorganization can modulate nuclear translocation of β-DG, with the implication that β-DG can respond to cytoskeleton-driven changes in cell morphology by translocating from the cytoplasm to the nucleus to orchestrate nuclear processes in response to the functional requirements of the cell. PMID:24599031
Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization
Xu, Tao; Johnson, Cole A; Gestwicki, Jason E; Kumar, Anuj
2016-01-01
We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. one chimera consists of a FK506-binding protein (FKBp12) fused to a cellular ‘address’ (nuclear localization signal or nuclear export sequence). the second chimera consists of a target protein fused to a fluorescent protein and the FKBp12-rapamycin-binding (FrB) domain from FKBp-12-rapamycin associated protein 1 (Frap1, also known as mtor). rapamycin induces dimerization of the FKBp12- and FrB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment. PMID:21030958
Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization.
Xu, Tao; Johnson, Cole A; Gestwicki, Jason E; Kumar, Anuj
2010-11-01
We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. One chimera consists of a FK506-binding protein (FKBP12) fused to a cellular 'address' (nuclear localization signal or nuclear export sequence). The second chimera consists of a target protein fused to a fluorescent protein and the FKBP12-rapamycin-binding (FRB) domain from FKBP-12-rapamycin associated protein 1 (FRAP1, also known as mTor). Rapamycin induces dimerization of the FKBP12- and FRB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment.
Mouse CCDC79 (TERB1) is a meiosis-specific telomere associated protein.
Daniel, Katrin; Tränkner, Daniel; Wojtasz, Lukasz; Shibuya, Hiroki; Watanabe, Yoshinori; Alsheimer, Manfred; Tóth, Attila
2014-05-22
Telomeres have crucial meiosis-specific roles in the orderly reduction of chromosome numbers and in ensuring the integrity of the genome during meiosis. One such role is the attachment of telomeres to trans-nuclear envelope protein complexes that connect telomeres to motor proteins in the cytoplasm. These trans-nuclear envelope connections between telomeres and cytoplasmic motor proteins permit the active movement of telomeres and chromosomes during the first meiotic prophase. Movements of chromosomes/telomeres facilitate the meiotic recombination process, and allow high fidelity pairing of homologous chromosomes. Pairing of homologous chromosomes is a prerequisite for their correct segregation during the first meiotic division. Although inner-nuclear envelope proteins, such as SUN1 and potentially SUN2, are known to bind and recruit meiotic telomeres, these proteins are not meiosis-specific, therefore cannot solely account for telomere-nuclear envelope attachment and/or for other meiosis-specific characteristics of telomeres in mammals. We identify CCDC79, alternatively named TERB1, as a meiosis-specific protein that localizes to telomeres from leptotene to diplotene stages of the first meiotic prophase. CCDC79 and SUN1 associate with telomeres almost concurrently at the onset of prophase, indicating a possible role for CCDC79 in telomere-nuclear envelope interactions and/or telomere movements. Consistent with this scenario, CCDC79 is missing from most telomeres that fail to connect to SUN1 protein in spermatocytes lacking the meiosis-specific cohesin SMC1B. SMC1B-deficient spermatocytes display both reduced efficiency in telomere-nuclear envelope attachment and reduced stability of telomeres specifically during meiotic prophase. Importantly, CCDC79 associates with telomeres in SUN1-deficient spermatocytes, which strongly indicates that localization of CCDC79 to telomeres does not require telomere-nuclear envelope attachment. CCDC79 is a meiosis-specific telomere associated protein. Based on our findings we propose that CCDC79 plays a role in meiosis-specific telomere functions. In particular, we favour the possibility that CCDC79 is involved in telomere-nuclear envelope attachment and/or the stabilization of meiotic telomeres. These conclusions are consistent with the findings of an independently initiated study that analysed CCDC79/TERB1 functions.
Mouse CCDC79 (TERB1) is a meiosis-specific telomere associated protein
2014-01-01
Background Telomeres have crucial meiosis-specific roles in the orderly reduction of chromosome numbers and in ensuring the integrity of the genome during meiosis. One such role is the attachment of telomeres to trans-nuclear envelope protein complexes that connect telomeres to motor proteins in the cytoplasm. These trans-nuclear envelope connections between telomeres and cytoplasmic motor proteins permit the active movement of telomeres and chromosomes during the first meiotic prophase. Movements of chromosomes/telomeres facilitate the meiotic recombination process, and allow high fidelity pairing of homologous chromosomes. Pairing of homologous chromosomes is a prerequisite for their correct segregation during the first meiotic division. Although inner-nuclear envelope proteins, such as SUN1 and potentially SUN2, are known to bind and recruit meiotic telomeres, these proteins are not meiosis-specific, therefore cannot solely account for telomere-nuclear envelope attachment and/or for other meiosis-specific characteristics of telomeres in mammals. Results We identify CCDC79, alternatively named TERB1, as a meiosis-specific protein that localizes to telomeres from leptotene to diplotene stages of the first meiotic prophase. CCDC79 and SUN1 associate with telomeres almost concurrently at the onset of prophase, indicating a possible role for CCDC79 in telomere-nuclear envelope interactions and/or telomere movements. Consistent with this scenario, CCDC79 is missing from most telomeres that fail to connect to SUN1 protein in spermatocytes lacking the meiosis-specific cohesin SMC1B. SMC1B-deficient spermatocytes display both reduced efficiency in telomere-nuclear envelope attachment and reduced stability of telomeres specifically during meiotic prophase. Importantly, CCDC79 associates with telomeres in SUN1-deficient spermatocytes, which strongly indicates that localization of CCDC79 to telomeres does not require telomere-nuclear envelope attachment. Conclusion CCDC79 is a meiosis-specific telomere associated protein. Based on our findings we propose that CCDC79 plays a role in meiosis-specific telomere functions. In particular, we favour the possibility that CCDC79 is involved in telomere-nuclear envelope attachment and/or the stabilization of meiotic telomeres. These conclusions are consistent with the findings of an independently initiated study that analysed CCDC79/TERB1 functions. PMID:24885367
Brown, Nicola J M; Ramalho, Michal; Pedersen, Eva W; Moravcsik, Eva; Solomon, Ellen; Grimwade, David
2009-01-01
The promyelocytic leukemia gene (PML) encodes a protein which localizes to PML-nuclear bodies (NBs), sub-nuclear multi-protein structures, which have been implicated in diverse biological functions such as apoptosis, cell proliferation and senescence. However, the exact biochemical and molecular basis of PML function up until now has not been defined. Strikingly, over a decade ago, PML-NBs were found to be disrupted in acute promyelocytic leukemia (APL) in which PML is fused to the gene encoding retinoic acid receptor alpha (RARA) due to the t(15;17) chromosomal translocation, generating the PML-RARA chimeric protein. The treatment of APL patients with all-transretinoic acid (ATRA) and arsenic trioxide which target the PML-RARA oncoprotein results in clinical remission, associated with blast cell differentiation and reformation of the PML NBs, thus linking NB integrity with disease status. This review focuses on the current theories for molecular and biochemical functions of the PML-NBs, which would imply a role in the pathogenesis of APL, whilst also discussing the intriguing possibility that their disruption may not be in itself a significant oncogenic event.
Tate, Jennifer J.; Rai, Rajendra; Cooper, Terrance G.
2015-01-01
A leucine, leucyl-tRNA synthetase–dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors. This component is highly sensitive to the function of the rare glutamine tRNACUG, which cannot be replaced by the predominant glutamine tRNACAA. Our observations also demonstrate distinct mechanistic differences between the responses of Gln3 and Gat1 to rapamycin inhibition of TorC1 and nitrogen starvation. PMID:25527290
Burla, Romina; Carcuro, Mariateresa; Torre, Mattia La; Fratini, Federica; Crescenzi, Marco; D'Apice, Maria Rosaria; Spitalieri, Paola; Raffa, Grazia Daniela; Astrologo, Letizia; Lattanzi, Giovanna; Cundari, Enrico; Raimondo, Domenico; Biroccio, Annamaria; Gatti, Maurizio; Saggio, Isabella
2016-08-01
AKTIP is a shelterin-interacting protein required for replication of telomeric DNA. Here, we show that AKTIP biochemically interacts with A- and B-type lamins and affects lamin A, but not lamin C or B, expression. In interphase cells, AKTIP localizes at the nuclear rim and in discrete regions of the nucleoplasm just like lamins. Double immunostaining revealed that AKTIP partially co-localizes with lamin B1 and lamin A/C in interphase cells, and that proper AKTIP localization requires functional lamin A. In mitotic cells, AKTIP is enriched at the spindle poles and at the midbody of late telophase cells similar to lamin B1. AKTIP-depleted cells show senescence-associated markers and recapitulate several aspects of the progeroid phenotype. Collectively, our results indicate that AKTIP is a new player in lamin-related processes, including those that govern nuclear architecture, telomere homeostasis and cellular senescence. © 2016 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steen, Hakan; Lindholm, Dan; Minerva Institute for Medical Research, Biomedicum Helsinki, Helsinki
2008-02-08
Nuclear localized protein-1 (Nulp1) is a recently identified gene expressed in mouse and human tissues particularly during embryonic development. Nulp1 belongs to the family of basic helix-loop-helix (bHLH) proteins that are important in development. The precise function of Nulp1 in cells is however not known. We observed that overexpression of Nulp1 induces a large increase in cell death of human osteosarcoma Saos2 cells with DNA fragmentation. In mouse N2A neuroblastoma cells Nulp1 affected cell proliferation and sensitized cells towards death induced by staurosporine. Staining using a novel antibody localized Nulp1 mainly to the cell nucleus and to some extent tomore » the cytoplasm. Nulp1 binds the X-linked inhibitor of apoptosis protein (XIAP) and this interaction was increased during cell death. These results indicate that Nulp1 plays a role in cell death control and may influence tumor growth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oestberg, Sara, E-mail: sara.ostberg@imbim.uu.se; Toermaenen Persson, Heidi, E-mail: heidi.tormanen.persson@imbim.uu.se; Akusjaervi, Goeran, E-mail: goran.akusjarvi@imbim.uu.se
2012-11-25
The adenovirus L4-33K protein is a key regulator involved in the temporal shift from early to late pattern of mRNA expression from the adenovirus major late transcription unit. L4-33K is a virus-encoded alternative splicing factor, which enhances processing of 3 Prime splice sites with a weak sequence context. Here we show that L4-33K expressed from a plasmid is localized at the nuclear margin of uninfected cells. During an infection L4-33K is relocalized to the periphery of E2A-72K containing viral replication centers. We also show that serine 192 in the tiny RS repeat of the conserved carboxy-terminus of L4-33K, which ismore » critical for the splicing enhancer function of L4-33K, is necessary for the nuclear localization and redistribution of the protein to viral replication sites. Collectively, our results show a good correlation between the activity of L4-33K as a splicing enhancer protein and its localization to the periphery of viral replication centers.« less
Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S
1999-03-05
Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.
Requirements for Predictive Density Functional Theory Methods for Heavy Materials Equation of State
NASA Astrophysics Data System (ADS)
Mattsson, Ann E.; Wills, John M.
2012-02-01
The difficulties in experimentally determining the Equation of State of actinide and lanthanide materials has driven the development of many computational approaches with varying degree of empiricism and predictive power. While Density Functional Theory (DFT) based on the Schr"odinger Equation (possibly with relativistic corrections including the scalar relativistic approach) combined with local and semi-local functionals has proven to be a successful and predictive approach for many materials, it is not giving enough accuracy, or even is a complete failure, for the actinides. To remedy this failure both an improved fundamental description based on the Dirac Equation (DE) and improved functionals are needed. Based on results obtained using the appropriate fundamental approach of DFT based on the DE we discuss the performance of available semi-local functionals, the requirements for improved functionals for actinide/lanthanide materials, and the similarities in how functionals behave in transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DLocalMotif: a discriminative approach for discovering local motifs in protein sequences.
Mehdi, Ahmed M; Sehgal, Muhammad Shoaib B; Kobe, Bostjan; Bailey, Timothy L; Bodén, Mikael
2013-01-01
Local motifs are patterns of DNA or protein sequences that occur within a sequence interval relative to a biologically defined anchor or landmark. Current protein motif discovery methods do not adequately consider such constraints to identify biologically significant motifs that are only weakly over-represented but spatially confined. Using negatives, i.e. sequences known to not contain a local motif, can further increase the specificity of their discovery. This article introduces the method DLocalMotif that makes use of positional information and negative data for local motif discovery in protein sequences. DLocalMotif combines three scoring functions, measuring degrees of motif over-representation, entropy and spatial confinement, specifically designed to discriminatively exploit the availability of negative data. The method is shown to outperform current methods that use only a subset of these motif characteristics. We apply the method to several biological datasets. The analysis of peroxisomal targeting signals uncovers several novel motifs that occur immediately upstream of the dominant peroxisomal targeting signal-1 signal. The analysis of proline-tyrosine nuclear localization signals uncovers multiple novel motifs that overlap with C2H2 zinc finger domains. We also evaluate the method on classical nuclear localization signals and endoplasmic reticulum retention signals and find that DLocalMotif successfully recovers biologically relevant sequence properties. http://bioinf.scmb.uq.edu.au/dlocalmotif/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aratani, Satoko; Oishi, Takayuki; Fujita, Hidetoshi
RNA helicase A (RHA), an ATPase/helicase, regulates the gene expression at various steps including transcriptional activation and RNA processing. RHA is known to shuttle between the nucleus and cytoplasm. We identified the nuclear localization signal (NLS) of RHA and analyzed the nuclear import mechanisms. The NLS of RHA (RHA-NLS) consisting of 19 amino acid residues is highly conserved through species and does not have the consensus classical NLS. In vitro nuclear import assays revealed that the nuclear import of RHA was Ran-dependent and mediated with the classical importin-{alpha}/{beta}-dependent pathway. The binding assay indicated that the basic residues in RHA-NLS weremore » used for interaction with importin-{alpha}. Furthermore, the nuclear import of RHA-NLS was supported by importin-{alpha}1 and preferentially importin-{alpha}3. Our results indicate that the nuclear import of RHA is mediated by the importin-{alpha}3/importin-{beta}-dependent pathway and suggest that the specificity for importin may regulate the functions of cargo proteins.« less
Characterization of karyopherins in androgen receptor intracellular trafficking in the yeast model
Nguyen, Minh M; Harmon, Robert M; Wang, Zhou
2014-01-01
Background: Mechanisms regulating androgen receptor (AR) subcellular localization represent an essential component of AR signaling. Karyopherins are a family of nucleocytoplasmic trafficking factors. In this paper, we used the yeast model to study the effects of karyopherins on the subcellular localization of the AR. Methods: Yeast mutants deficient in different nuclear transport factors were transformed with various AR based, GFP tagged constructs and their localization was monitored using microscopy. Results: We showed that yeast can mediate androgen-induced AR nuclear localization and that in addition to the import factor, Importinα/β, this process required the import karyopherin Sxm1. We also showed that a previously identified nuclear export sequence (NESAR) in the ligand binding domain of AR does not appear to rely on karyopherins for cytoplasmic localization. Conclusions: These results suggest that while AR nuclear import relies on karyopherin activity, AR nuclear export and/or cytoplasmic localization may require other undefined mechanisms. PMID:25031696
Clément, Florencia; Martin, Ayelen; Venara, Marcela; de Luján Calcagno, Maria; Mathó, Cecilia; Maglio, Silvana; Lombardi, Mercedes García; Bergadá, Ignacio; Pennisi, Patricia A
2018-06-01
Nuclear localization of insulin-like growth factor receptor type 1 (IGF-1R) has been described as adverse prognostic factor in some cancers. We studied the expression and localization of IGF-1R in paediatric patients with gliomas, as well as its association with World Health Organization (WHO) grading and survival. We conducted a single cohort, prospective study of paediatric patients with gliomas. Samples were taken at the time of the initial surgery; IGF-1R expression and localization were characterized by immunohistochemistry (IHC), subcellular fractionation and western blotting. Tumours (47/53) showed positive staining for IGF-1R by IHC. IGF-1R nuclear labelling was observed in 10/47 cases. IGF-1R staining was mostly non-nuclear in low-grade tumours, while IGF-1R nuclear labelling was predominant in high-grade gliomas (p = 0.0001). Survival was significantly longer in patients with gliomas having non-nuclear IGF-1R localization than in patients with nuclear IGF-1R tumours (p = 0.016). In gliomas, IGF-1R nuclear localization was significantly associated with both high-grade tumours and increased risk of death. Based on a prospective design, we provide evidence of a potential usefulness of intracellular localization of IGF-1R as prognostic factor in paediatric patients with gliomas.
NASA Astrophysics Data System (ADS)
Ma, Wen-Long; Liu, Ren-Bao
2016-08-01
Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.
Evidence for nucleolar subcompartments in Dictyostelium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catalano, Andrew, E-mail: acatalano@ccny.cuny.edu; O’Day, Danton H., E-mail: danton.oday@utoronto.ca; Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5
2015-01-24
Highlights: • Two nucleolar subcompartments (NoSC1, NoSC2) were found in Dictyostelium. • Specific nucleolar proteins localize to different nucleolar subcompartments. • Specific proteins exit NoSC1 and NoSC2 differently upon Actinomycin D treatment. • KRKR appears to function as an NoSC2 nucleolar subcompartment localization signal. - Abstract: The nucleolus is a multifunctional nuclear compartment usually consisting of two to three subcompartments which represent stages of ribosomal biogenesis. It is linked to several human diseases including viral infections, cancer, and neurodegeneration. Dictyostelium is a model eukaryote for the study of fundamental biological processes as well as several human diseases however comparatively littlemore » is known about its nucleolus. Unlike most nucleoli it does not possess visible subcompartments at the ultrastructural level. Several recently identified nucleolar proteins in Dictyostelium leave the nucleolus after treatment with the rDNA transcription inhibitor actinomycin-D (AM-D). Different proteins exit in different ways, suggesting that previously unidentified nucleolar subcompartments may exist. The identification of nucleolar subcompartments would help to better understand the nucleolus in this model eukaryote. Here, we show that Dictyostelium nucleolar proteins nucleomorphin isoform NumA1 and Bud31 localize throughout the entire nucleolus while calcium-binding protein 4a localizes to only a portion, representing nucleolar subcompartment 1 (NoSC1). SWI/SNF complex member Snf12 localizes to a smaller area within NoSC1 representing a second nucleolar subcompartment, NoSC2. The nuclear/nucleolar localization signal KRKR from Snf12 localized GFP to NoSC2, and thus also appears to function as a nucleolar subcompartment localization signal. FhkA localizes to the nucleolar periphery displaying a similar pattern to that of Hsp32. Similarities between the redistribution patterns of Dictyostelium nucleolar proteins during nucleolar disruption as a result of either AM-D treatment or mitosis support these subcompartments. A model for the AM-D-induced redistribution patterns is proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, Yoshifumi; Kumagai, Naomichi; Hosoda, Nao
2014-03-14
Highlights: • So far, eRF3 has been thought to function exclusively in the cytoplasm. • eRF3 is a nucleo-cutoplasmic shuttling protein. • eRF3 has a leptomycin-sensitive nuclear export signal (NES). • Removal of NES by proteolytic cleavage allows eRF3 to translocate to the nucleus. • The processed eRF3 (p-eRF3) interacts with a nuclear tumor suppressor ARF. - Abstract: The eukaryotic releasing factor eRF3 is a multifunctional protein that plays pivotal roles in translation termination as well as the initiation of mRNA decay. eRF3 also functions in the regulation of apoptosis; eRF3 is cleaved at Ala73 by an as yet unidentifiedmore » protease into processed isoform of eRF3 (p-eRF3), which interacts with the inhibitors of apoptosis proteins (IAPs). The binding of p-eRF3 with IAPs leads to the release of active caspases from IAPs, which promotes apoptosis. Although full-length eRF3 is localized exclusively in the cytoplasm, p-eRF3 localizes in the nucleus as well as the cytoplasm. We here focused on the role of p-eRF3 in the nucleus. We identified leptomycin-sensitive nuclear export signal (NES) at amino acid residues 61–71 immediately upstream of the cleavage site Ala73. Thus, the proteolytic cleavage of eRF3 into p-eRF3 leads to release an amino-terminal fragment containing NES to allow the relocalization of eRF3 into the nucleus. Consistent with this, p-eRF3 more strongly interacted with the nuclear ARF tumor suppressor than full-length eRF3. These results suggest that while p-eRF3 interacts with IAPs to promote apoptosis in the cytoplasm, p-eRF3 also has some roles in regulating cell death in the nucleus.« less
Ouyang, Ping; Zhang, He; Fan, Zhaolan; Wei, Pei; Huang, Zhigang; Wang, Sen; Li, Tao
2016-11-05
NKX2.5 plays important roles in heart development. Being a transcription factor, NKX2.5 exerts its biological functions in nucleus. However, the sequence motif that localize NKX2.5 into nucleus is still not clear. Here, we found a R/K-rich sequence motif from Q187 to R197 (QNRRYKCKRQR) was required for exclusive nuclear localization of NKX2.5. Eight truncated plasmids (E109X, Q149X, Q170X, Q187X, Q198X, Y256X, Y259X, and C264X) which were associated with congenital heart disease (CHD) were constructed. Compared with the wild type NKX2.5, the proteins E109X, Q149X, Q170X, Q187X without intact homeodomain (HD) showed no transcriptional activity while Q198X, Y256X, Y259X and C264X with intact HD showed 50 to 66% transcriptional activity. E109X, Q149X, Q170X, Q187X without intact HD localized in the cytoplasm and nucleus simultaneously and Q198X, Y256X, Y259X and C264X with intact HD localized completely in nucleus. These results inferred the indispensability of 187QNRRYKCKRQR197 in exclusive nucleus localization. Additionally, this sequence motif was very conservative among human, mouse and rat, indicating this motif was important for NKX2.5 function. Thus, we concluded that R/K-rich sequence motif 187QNRRYKCKRQR197 played a central role for NKX2.5 nuclear localization. Our findings provided a clue to understand the mechanisms between the truncated NKX2.5 mutants and CHD. Copyright © 2016 Elsevier B.V. All rights reserved.
Yes-Associated Protein (YAP) Promotes the Nuclear Import of p73
NASA Astrophysics Data System (ADS)
Zhang, Heng; Wu, Shengnan
2011-01-01
p73 has been identified as a structural and functional homolog of the tumor suppressor p53. However, mechanisms that regulate the localization of p73 have not been fully clarified. The Yes-associated protein (YAP) is a transcriptional coactivator. As a transcriptional coactivator, YAP needs to bind transcription factors to stimulate gene expression. p73 is a reported YAP target transcription factors and YAP has been shown to positively regulate p73 in promoting apoptosis. Previous studies show that p73 interacts with YAP through its PPPY motif, and increases p73 transactivation of apoptotic genes. In this study, we focused on YAP's regulation of the localization of p73. After transient transfection into Rat pheochromocytoma (PC12) cells and Human embryonic kidney 293T cells with GFP-YAP and/or YFP-p73, and incubated for 24 hours expression. p73 was fused to YFP to allow the examination of its subcellular localization. When expressed alone, YFP-p73 was distributed throughout the cell. When coexpressed with YAP, nuclear accumulation of YFP-p73 became evident. We quantitated the effect of YAP on the redistribution of YFP-p73 by counting cells with nuclear-only YFP signal. We found that YAP can influence the subcellular distribution of p73. Altogether, coexpression with YAP affected the subcellular distribution of the p73 protein. Our studies attribute a central role to YAP in regulating p73 accumulation and YAP, at least in part, might promote the nuclear import of p73.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lengyel, Joy; Strain, Anna K.; Perkins, Keith D.
2006-09-01
It was previously shown that herpes simplex virus type 1 (HSV-1) is sensitive to leptomycin B (LMB), an inhibitor of nuclear export factor CRM1, and that a single methionine to threonine change at residue 50 (M50T) of viral immediate-early (IE) protein ICP27 can confer LMB resistance. In this work, we show that deletion of residues 21-63 from ICP27 can also confer LMB resistance. We further show that neither the M50T mutation nor the presence of LMB affects the nuclear shuttling activity of ICP27, suggesting that another function of ICP27 determines LMB resistance. A possible clue to this function emerged whenmore » it was discovered that LMB treatment of HSV-1-infected cells dramatically enhances the cytoplasmic accumulation of two other IE proteins, ICP0 and ICP4. This effect is completely dependent on ICP27 and is reversed in cells infected with LMB-resistant mutants. Moreover, LMB-resistant mutations in ICP27 enhance the nuclear localization of ICP0 and ICP4 even in the absence of LMB, and this effect can be discerned in transfected cells. Thus, the same amino (N)-terminal region of ICP27 that determines sensitivity to LMB also enhances ICP27's previously documented ability to promote the cytoplasmic accumulation of ICP4 and ICP0. We speculate that ICP27's effects on ICP4 and ICP0 may contribute to HSV-1 LMB sensitivity.« less
Shoya, Yuko; Kobayashi, Takeshi; Koda, Toshiaki; Ikuta, Kazuyoshi; Kakinuma, Mitsuaki; Kishi, Masahiko
1998-01-01
Borna disease virus (BDV) uses a unique strategy of replication and transcription which takes place in the nucleus, unlike other known, nonsegmented, negative-stranded RNA viruses of animal origin. In this process, viral constituents necessary for replication must be transported to the nucleus from the cytoplasm. We report here the evidence that BDV P protein, which may play an important role in viral replication and transcription, is transported into the nucleus in the absence of other viral constituents. This transportation is accomplished by its own nuclear localization signals (NLSs), which are present in both N-terminal (29PRPRKIPR36) and C-terminal (181PPRIYPQLPSAPT193) regions of the protein. These two NLSs can function independently and both have several Pro residues as key amino acids. PMID:9811710
Local nematic susceptibility in stressed BaFe 2 As 2 from NMR electric field gradient measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kissikov, T.; Sarkar, R.; Lawson, M.
The electric field gradient (EFG) tensor at the 75As site couples to the orbital occupations of the As p orbitals and is a sensitive probe of local nematicity in BaFe 2As 2. We use nuclear magnetic resonance to measure the nuclear quadrupolar splittings and find that the EFG asymmetry responds linearly to the presence of a strain field in the paramagnetic phase. We extract the nematic susceptibility from the slope of this linear response as a function of temperature and find that it diverges near the structural transition, in agreement with other measures of the bulk nematic susceptibility. In conclusion,more » our work establishes an alternative method to extract the nematic susceptibility which, in contrast to transport methods, can be extended inside the superconducting state.« less
Local nematic susceptibility in stressed BaFe 2 As 2 from NMR electric field gradient measurements
Kissikov, T.; Sarkar, R.; Lawson, M.; ...
2017-12-15
The electric field gradient (EFG) tensor at the 75As site couples to the orbital occupations of the As p orbitals and is a sensitive probe of local nematicity in BaFe 2As 2. We use nuclear magnetic resonance to measure the nuclear quadrupolar splittings and find that the EFG asymmetry responds linearly to the presence of a strain field in the paramagnetic phase. We extract the nematic susceptibility from the slope of this linear response as a function of temperature and find that it diverges near the structural transition, in agreement with other measures of the bulk nematic susceptibility. In conclusion,more » our work establishes an alternative method to extract the nematic susceptibility which, in contrast to transport methods, can be extended inside the superconducting state.« less
Zhang, Hua; Feng, Juan; Chen, Hongsheng; Li, Jiada; Luo, Hunjin; Feng, Yong
2015-12-01
To study the role of dysfunction of nuclear localization signals (NLS) of MITF protein in the pathogenesis of Waardenburg syndrome. Eukaryotic expression plasmid pCMV-MITF-Flag was used as a template to generate mutant plasmid pCMV-MITF△NLS-Flag by molecular cloning technique in order to design the mutagenic primers. The UACC903 cells were transfected transiently with MITF and MITF△NLS plasmids, and the luciferase activity assays were performed to determine their impact on the transcriptional activities of target gene tyrosinase (TYR). The oligonucleotide 5'-GAACGAAGAAGAAGATTT-3' was subcloned into pEGFP-N1 to generate recombinant eukaryotic expression plasmid pEGFP-N1-MITF-NLS. The NIH3T3 cells were transfected separately with MITF, MITF△NLS, pEGFP-N1 and pEGFP-N1-NLS plasmids, and their subcellular distribution was observed by immunoflorescence assays. Expression plasmids for the mutant MITF△NLS with loss of core NLS sequence and pEGFP-N1-NLS coupled with MITF△NLS were successfully generated. Compared with the wild-type MITF, MITF△NLS was not able to transactivate the transcriptional activities of promoter TYR and did not affect the normal function of MITF. MITF△NLS was only localized in the cytoplasm and pEGFP-N1 was found in both the cytoplasm and nucleus, whereas pEGFP-N1-NLS was mainly located in the nucleus. This study has confirmed the localization function of NLS sequence 213ERRRRF218 within the MITF protein. Mutant MITF with loss of NLS has failed to transactivate the transcriptional activities of target gene TYR, which can result in melanocyte defects and cause WS.
Aroca, Angeles; Schneider, Markus; Scheibe, Renate; Gotor, Cecilia; Romero, Luis C
2017-06-01
Hydrogen sulfide is an important signaling molecule comparable with nitric oxide and hydrogen peroxide in plants. The underlying mechanism of its action is unknown, although it has been proposed to be S-sulfhydration. This post-translational modification converts the thiol groups of cysteines within proteins to persulfides, resulting in functional changes of the proteins. In Arabidopsis thaliana, S-sulfhydrated proteins have been identified, including the cytosolic isoforms of glyceraldehyde-3-phosphate dehydrogenase GapC1 and GapC2. In this work, we studied the regulation of sulfide on the subcellular localization of these proteins using two different approaches. We generated GapC1-green fluorescent protein (GFP) and GapC2-GFP transgenic plants in both the wild type and the des1 mutant defective in the l-cysteine desulfhydrase DES1, responsible for the generation of sulfide in the cytosol. The GFP signal was detected in the cytoplasm and the nucleus of epidermal cells, although with reduced nuclear localization in des1 compared with the wild type, and exogenous sulfide treatment resulted in similar signals in nuclei in both backgrounds. The second approach consisted of the immunoblot analysis of the GapC endogenous proteins in enriched nuclear and cytosolic protein extracts, and similar results were obtained. A significant reduction in the total amount of GapC in des1 in comparison with the wild type was determined and exogenous sulfide significantly increased the protein levels in the nuclei in both plants, with a stronger response in the wild type. Moreover, the presence of an S-sulfhydrated cysteine residue on GapC1 was demonstrated by mass spectrometry. We conclude that sulfide enhances the nuclear localization of glyceraldehyde-3-phosphate dehydrogenase. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
An Essential Role for COPI in mRNA Localization to Mitochondria and Mitochondrial Function.
Zabezhinsky, Dmitry; Slobodin, Boris; Rapaport, Doron; Gerst, Jeffrey E
2016-04-19
Nuclear-encoded mRNAs encoding mitochondrial proteins (mMPs) can localize directly to the mitochondrial surface, yet how mMPs target mitochondria and whether RNA targeting contributes to protein import into mitochondria and cellular metabolism are unknown. Here, we show that the COPI vesicle coat complex is necessary for mMP localization to mitochondria and mitochondrial function. COPI inactivation leads to reduced mMP binding to COPI itself, resulting in the dissociation of mMPs from mitochondria, a reduction in mitochondrial membrane potential, a decrease in protein import in vivo and in vitro, and severe deficiencies in mitochondrial respiration. Using a model mMP (OXA1), we observed that COPI inactivation (or mutation of the potential COPI-interaction site) led to altered mRNA localization and impaired cellular respiration. Overall, COPI-mediated mMP targeting is critical for mitochondrial protein import and function, and transcript delivery to the mitochondria or endoplasmic reticulum is regulated by cis-acting RNA sequences and trans-acting proteins. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Panorchan, Porntula; Wirtz, Denis; Tseng, Yiider
2004-10-01
Lamin B1 filaments organize into a thin dense meshwork underlying the nucleoplasmic side of the nuclear envelope. Recent experiments in vivo suggest that lamin B1 plays a key structural role in the nuclear envelope, but the intrinsic mechanical properties of lamin B1 networks remain unknown. To assess the potential mechanical contribution of lamin B1 in maintaining the integrity and providing structural support to the nucleus, we measured the micromechanical properties and examined the ultrastructural distribution of lamin B1 networks in vitro using particle tracking methods and differential interference contrast (DIC) microscopy. We exploit various surface chemistries of the probe microspheres (carboxylated, polyethylene glycol-coated, and amine-modified) to differentiate lamin-rich from lamin-poor regions and to rigorously extract local viscoelastic moduli from the mean-squared displacements of noninteracting particles. Our results show that human lamin B1 can, even in the absence of auxiliary proteins, form stiff and yet extremely porous networks that are well suited to provide structural strength to the nuclear lamina. Combining DIC microscopy and particle tracking allows us to relate directly the local organization of a material to its local mechanical properties, a general methodology that can be extended to living cells.
Lipid droplets form from distinct regions of the cell in the fission yeast Schizosaccharomyces pombe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, Alex; del Rio, Zuania P.; Beaver, Rachael A.
Eukaryotic cells store cholesterol/sterol esters (SEs) and triacylglycerols (TAGs) in lipid droplets, which form from the contiguous endoplasmic reticulum (ER) network. However, it is not known if droplets preferentially form from certain regions of the ER over others. Here, we used fission yeast Schizosaccharomyces pombe cells where the nuclear and cortical/peripheral ER domains are distinguishable by light microscopy to show that SE-enriched lipid droplets form away from the nucleus at the cell tips, whereas TAG-enriched lipid droplets form around the nucleus. Sterols localize to the regions of the cells where droplets enriched in SEs are observed. TAG droplet formation aroundmore » the nucleus appears to be a strong function of diacylglycerol (DAG) homeostasis with Cpt1p, which coverts DAG into phosphatidylcholine and phosphatidylethanolamine localized exclusively to the nuclear ER. Also, Dgk1p, which converts DAG into phosphatidic acid localized strongly to the nuclear ER over the cortical/peripheral ER. We also show that TAG more readily translocates from the ER to lipid droplets than do SEs. Lastly, the results augment the standard lipid droplet formation model, which has SEs and TAGs flowing into the same nascent lipid droplet regardless of its biogenesis point in the cell.« less
Lipid droplets form from distinct regions of the cell in the fission yeast Schizosaccharomyces pombe
Meyers, Alex; del Rio, Zuania P.; Beaver, Rachael A.; ...
2016-04-29
Eukaryotic cells store cholesterol/sterol esters (SEs) and triacylglycerols (TAGs) in lipid droplets, which form from the contiguous endoplasmic reticulum (ER) network. However, it is not known if droplets preferentially form from certain regions of the ER over others. Here, we used fission yeast Schizosaccharomyces pombe cells where the nuclear and cortical/peripheral ER domains are distinguishable by light microscopy to show that SE-enriched lipid droplets form away from the nucleus at the cell tips, whereas TAG-enriched lipid droplets form around the nucleus. Sterols localize to the regions of the cells where droplets enriched in SEs are observed. TAG droplet formation aroundmore » the nucleus appears to be a strong function of diacylglycerol (DAG) homeostasis with Cpt1p, which coverts DAG into phosphatidylcholine and phosphatidylethanolamine localized exclusively to the nuclear ER. Also, Dgk1p, which converts DAG into phosphatidic acid localized strongly to the nuclear ER over the cortical/peripheral ER. We also show that TAG more readily translocates from the ER to lipid droplets than do SEs. Lastly, the results augment the standard lipid droplet formation model, which has SEs and TAGs flowing into the same nascent lipid droplet regardless of its biogenesis point in the cell.« less
Heterodimerization with Jun family members regulates c-Fos nucleocytoplasmic traffic.
Malnou, Cécile E; Salem, Tamara; Brockly, Frédérique; Wodrich, Harald; Piechaczyk, Marc; Jariel-Encontre, Isabelle
2007-10-19
c-Fos proto-oncoprotein forms AP-1 transcription complexes with heterodimerization partners such as c-Jun, JunB, and JunD. Thereby, it controls essential cell functions and exerts tumorigenic actions. The dynamics of c-Fos intracellular distribution is poorly understood. Hence, we have combined genetic, cell biology, and microscopic approaches to investigate this issue. In addition to a previously characterized basic nuclear localization signal (NLS) located within the central DNA-binding domain, we identified a second NLS within the c-Fos N-terminal region. This NLS is non-classic and its activity depends on transportin 1 in vivo. Under conditions of prominent nuclear localization, c-Fos can undergo nucleocytoplasmic shuttling through an active Crm-1 exportin-independent mechanism. Dimerization with the Jun proteins inhibits c-Fos nuclear exit. The strongest effect is observed with c-Jun probably in accordance with the relative stabilities of the different c-Fos:Jun dimers. Retrotransport inhibition is not caused by binding of dimers to DNA and, therefore, is not induced by indirect effects linked to activation of c-Fos target genes. Monomeric, but not dimeric, Jun proteins also shuttle actively. Thus, our work unveils a novel regulation operating on AP-1 by demonstrating that dimerization is crucial, not only for active transcription complex formation, but also for keeping them in the compartment where they exert their transcriptional function.
Neurospora Importin α Is Required for Normal Heterochromatic Formation and DNA Methylation
Klocko, Andrew D.; Rountree, Michael R.; Grisafi, Paula L.; Hays, Shan M.; Adhvaryu, Keyur K.; Selker, Eric U.
2015-01-01
Heterochromatin and associated gene silencing processes play roles in development, genome defense, and chromosome function. In many species, constitutive heterochromatin is decorated with histone H3 tri-methylated at lysine 9 (H3K9me3) and cytosine methylation. In Neurospora crassa, a five-protein complex, DCDC, catalyzes H3K9 methylation, which then directs DNA methylation. Here, we identify and characterize a gene important for DCDC function, dim-3 (defective in methylation-3), which encodes the nuclear import chaperone NUP-6 (Importin α). The critical mutation in dim-3 results in a substitution in an ARM repeat of NUP-6 and causes a substantial loss of H3K9me3 and DNA methylation. Surprisingly, nuclear transport of all known proteins involved in histone and DNA methylation, as well as a canonical transport substrate, appear normal in dim-3 strains. Interactions between DCDC members also appear normal, but the nup-6dim-3 allele causes the DCDC members DIM-5 and DIM-7 to mislocalize from heterochromatin and NUP-6dim-3 itself is mislocalized from the nuclear envelope, at least in conidia. GCN-5, a member of the SAGA histone acetyltransferase complex, also shows altered localization in dim-3, raising the possibility that NUP-6 is necessary to localize multiple chromatin complexes following nucleocytoplasmic transport. PMID:25793375
Oksayan, Sibil; Wiltzer, Linda; Rowe, Caitlin L.; Blondel, Danielle; Jans, David A.; Moseley, Gregory W.
2012-01-01
Regulated nucleocytoplasmic transport of proteins is central to cellular function and dysfunction during processes such as viral infection. Active protein trafficking into and out of the nucleus is dependent on the presence within cargo proteins of intrinsic specific modular signals for nuclear import (nuclear localization signals, NLSs) and export (nuclear export signals, NESs). Rabies virus (RabV) phospho (P) protein, which is largely responsible for antagonising the host anti-viral response, is expressed as five isoforms (P1–P5). The subcellular trafficking of these isoforms is thought to depend on a balance between the activities of a dominant N-terminal NES (N-NES) and a distinct C-terminal NLS (C-NLS). Specifically, the N-NES-containing isoforms P1 and P2 are cytoplasmic, whereas the shorter P3–P5 isoforms, which lack the N-NES, are believed to be nuclear through the activity of the C-NLS. Here, we show for the first time that RabV P contains an additional strong NLS in the N-terminal region (N-NLS), which, intriguingly, overlaps with the N-NES. This arrangement represents a novel nuclear trafficking module where the N-NLS is inactive in P1 but becomes activated in P3, concomitant with truncation of the N-NES, to become the principal targeting signal conferring nuclear accumulation. Understanding this unique switch arrangement of overlapping, co-regulated NES/NLS sequences is vital to delineating the critical role of RabV P protein in viral infection. PMID:22700958
Wierk, Jannika Katharina; Langbehn, Annette; Kamper, Maria; Richter, Stefanie; Burda, Paul-Christian; Heussler, Volker Theo; Deschermeier, Christina
2013-01-01
Mitogen-activated protein kinases (MAPKs) regulate key signaling events in eukaryotic cells. In the genomes of protozoan Plasmodium parasites, the causative agents of malaria, two genes encoding kinases with significant homology to other eukaryotic MAPKs have been identified (mapk1, mapk2). In this work, we show that both genes are transcribed during Plasmodium berghei liver stage development, and analyze expression and subcellular localization of the PbMAPK1 protein in liver stage parasites. Live cell imaging of transgenic parasites expressing GFP-tagged PbMAPK1 revealed a nuclear localization of PbMAPK1 in the early schizont stage mediated by nuclear localization signals in the C-terminal domain. In contrast, a distinct localization of PbMAPK1 in comma/ring-shaped structures in proximity to the parasite’s nuclei and the invaginating parasite membrane was observed during the cytomere stage of parasite development as well as in immature blood stage schizonts. The PbMAPK1 localization was found to be independent of integrity of a motif putatively involved in ATP binding, integrity of the putative activation motif and the presence of a predicted coiled-coil domain in the C-terminal domain. Although PbMAPK1 knock out parasites showed normal liver stage development, the kinase may still fulfill a dual function in both schizogony and merogony of liver stage parasites regulated by its dynamic and stage-dependent subcellular localization. PMID:23544094
Bertrand, Luc; Pearson, Angela
2008-05-01
UL24 is widely conserved among herpesviruses but its function during infection is poorly understood. Previously, we discovered a genetic link between UL24 and the herpes simplex virus 1-induced dispersal of the nucleolar protein nucleolin. Here, we report that in the absence of viral infection, transiently expressed UL24 accumulated in both the nucleus and the Golgi apparatus. In the majority of transfected cells, nuclear staining for UL24 was diffuse, but a minor staining pattern, whereby UL24 was present in nuclear foci corresponding to nucleoli, was also observed. Expression of UL24 correlated with the dispersal of nucleolin. This dispersal did not appear to be a consequence of a general disaggregation of nucleoli, as foci of fibrillarin staining persisted in cells expressing UL24. The conserved N-terminal region of UL24 was sufficient to cause this change in subcellular distribution of nucleolin. Interestingly, a bipartite nuclear localization signal predicted within the C terminus of UL24 was dispensable for nuclear localization. None of the five individual UL24 homology domains was required for nuclear or Golgi localization, but deletion of these domains resulted in the loss of nucleolin-dispersal activity. We determined that a nucleolar-targeting signal was contained within the first 60 aa of UL24. Our results show that the conserved N-terminal domain of UL24 is sufficient to specifically induce dispersal of nucleolin in the absence of other viral proteins or virus-induced cellular modifications. These results suggest that UL24 directly targets cellular factors that affect the composition of nucleoli.
Mukherjee, Ananda; Patterson, Amanda L; George, Jitu W; Carpenter, Tyler J; Madaj, Zachary B; Hostetter, Galen; Risinger, John I; Teixeira, Jose M
2018-06-13
Endometrial adenocarcinoma (EndoCA) is the most common gynecological cancer type in the US, and its incidence is increasing. The majority of patients are disease-free after surgical resection of stage I tumors, which is often followed by radiation therapy, but most patients with advanced disease recur and have a poor prognosis, largely because the tumors become refractory to cytotoxic chemotherapies. PTEN, a commonly mutated tumor suppressor in EndoCAs, is well known for its ability to inhibit the AKT/mTOR signaling pathway. Nuclear functions for PTEN have been proposed as well, but whether those affect EndoCA development, progression, or outcomes is not well understood. Using immunohistochemistry, nuclear PTEN expression was observed in approximately half of EndoCA patient tumors, independent of grade and cytoplasmic PTEN expression. Higher levels of the DNA damage response (DDR) marker, yH2AX, were observed by immunohistochemistry and immunofluorescence in human EndoCA tumor sections that were PTEN-negative, in murine EndoCA tissues that were genetically modified to be PTEN-null, and in Ishikawa EndoCA cells, which do not express endogenous PTEN. Over-expression of exogenous PTEN-WT or PTEN-NLS, a modified PTEN with an added nuclear localization signal, significantly improved both DDR and G2/M transition in Ishikawa cells treated with a DNA damaging agent. Whereas PARP inhibition with Olaparib was not as effective in Ishikawa cells expressing native or PTEN-NLS, inhibition with Talazoparib was not affected by PTEN overexpression. These results suggest that nuclear PTEN subcellular localization in human EndoCA could be diagnostic when considering DDR therapeutic intervention. Copyright ©2018, American Association for Cancer Research.
Nuclear thioredoxin-1 is required to suppress cisplatin-mediated apoptosis of MCF-7 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiao-Ping; Liu, Shou; Tang, Wen-Xin
2007-09-21
Different cell line with increased thioredoxin-1 (Trx-1) showed a decreased or increased sensitivity to cell killing by cisplatin. Recently, several studies found that the subcellular localization of Trx-1 is closely associated with its functions. In this study, we explored the association of the nuclear Trx-1 with the cisplatin-mediated apoptosis of breast cancer cells MCF-7. Firstly, we found that higher total Trx-1 accompanied by no change of nuclear Trx-1 can not influence apoptosis induced by cisplatin in MCF-7 cells transferred with Trx-1 cDNA. Secondly, higher nuclear Trx-1 accompanied by no change of total Trx-1 can protect cells from apoptosis induced bymore » cisplatin. Thirdly, high nuclear Trx-1 involves in the cisplatin-resistance in cisplatin-resistive cells. Meanwhile, we found that the mRNA level of p53 is closely correlated with the level of nuclear Trx-1. In summary, we concluded that the nuclear Trx-1 is required to resist apoptosis of MCF-7 cells induced by cisplatin, probably through up-regulating the anti-apoptotic gene, p53.« less
Chromatin Insulators: A Role in Nuclear Organization and Gene Expression
Yang, Jingping; Corces, Victor G.
2011-01-01
Chromatin insulators are DNA-protein complexes with broad functions in nuclear biology. Based on the ability of insulator proteins to interact with each other, it was originally thought that insulators form loops that could constitute functional domains of co-regulated gene expression. Nevertheless, data from genome-wide localization studies indicate that insulator proteins can be present in intergenic regions as well as at the 5′, introns or 3′ of genes, suggesting a broader role in chromosome biology. Cells have developed mechanisms to control insulator activity by recruiting specialized proteins or by covalent modification of core components. Recent results suggest that insulators mediate intra- and inter-chromosomal interactions to affect transcription, imprinting and recombination. It is possible that these interactions set up cell-specific blueprints of nuclear organization that may contribute to the establishment of different patterns of gene expression during cell differentiation. As a consequence, disruption of insulator activity could result in the development of cancer or other disease states. PMID:21704228
Cui, Hong; Ghosh, Santanu K; Jayaram, Makkuni
2009-04-20
The 2 micron plasmid of Saccharomyces cerevisiae uses the Kip1 motor, but not the functionally redundant Cin8 motor, for its precise nuclear localization and equal segregation. The timing and lifetime of Kip1p association with the plasmid partitioning locus STB are consistent with Kip1p being an authentic component of the plasmid partitioning complex. Kip1-STB association is not blocked by disassembling the mitotic spindle. Lack of Kip1p disrupts recruitment of the cohesin complex at STB and cohesion of replicated plasmid molecules. Colocalization of a 2 micron reporter plasmid with Kip1p in close proximity to the spindle pole body is reminiscent of that of a CEN reporter plasmid. Absence of Kip1p displaces the plasmid from this nuclear address, where it has the potential to tether to a chromosome or poach chromosome segregation factors. Exploiting Kip1p, which is subsidiary to Cin8p for chromosome segregation, to direct itself to a "partitioning center" represents yet another facet of the benign parasitism of the yeast plasmid.
Zimmermann, K; Herget, T; Salbaum, J M; Schubert, W; Hilbich, C; Cramer, M; Masters, C L; Multhaup, G; Kang, J; Lemaire, H G
1988-01-01
Cloning and sequence analysis revealed the putative amyloid A4 precursor (pre-A4) of Alzheimer's disease to have characteristics of a membrane-spanning glycoprotein. In addition to brain, pre-A4 mRNA was found in adult human muscle and other tissues. We demonstrate by in situ hybridization that pre-A4 mRNA is present in adult human muscle, in cultured human myoblasts and myotubes. Immunofluorescence with antipeptide antibodies shows the putative pre-A4 protein to be expressed in adult human muscle and associated with some but not all nuclear envelopes. Despite high levels of a single 3.5-kb pre-A4 mRNA species in cultured myoblasts and myotubes, the presence of putative pre-A4 protein could not be detected by immunofluorescence. This suggests that putative pre-A4 protein is stabilized and therefore functioning in the innervated muscle tissue but not in developing, i.e. non-innervated cultured muscle cells. The selective localization of the protein on distinct nuclear envelopes could reflect an interaction with motor endplates. Images PMID:2896589
FANCJ/BRIP1 recruitment and regulation of FANCD2 in DNA damage responses
Zhang, Fan; Fan, Qiang; Ren, Keqin; Auerbach, Arleen D.; Andreassen, Paul R.
2016-01-01
FANCJ/BRIP1 encodes a helicase that has been implicated in the maintenance of genomic stability. Here, to better understand FANCJ function in DNA damage responses, we have examined the regulation of its cellular localization. FANCJ nuclear foci assemble spontaneously during S phase and are induced by various stresses. FANCJ foci colocalize with the replication fork following treatment with hydroxyurea, but not spontaneously. Using FANCJ mutants, we find that FANCJ helicase activity and the capacity to bind BRCA1 are both involved in FANCJ recruitment. Given similarities to the recruitment of another Fanconi anemia protein, FANCD2, we tested for colocalization of FANCJ and FANCD2. Importantly, these proteins show substantial colocalization, and FANCJ promotes the assembly of FANCD2 nuclear foci. This process is linked to the proper localization of FANCJ itself since both FANCJ and FANCD2 nuclear foci are compromised by FANCJ mutants that abrogate its helicase activity or interaction with BRCA1. Our results suggest that FANCJ is recruited in response to replication stress and that FANCJ/BRIP1 may serve to link FANCD2 to BRCA1. PMID:20676667
Multicomponent density functional theory embedding formulation.
Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon
2016-07-28
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.
Multicomponent density functional theory embedding formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density ismore » separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.« less
NASA Astrophysics Data System (ADS)
Mattsson, Ann E.; Wills, John M.
2013-03-01
The inability to computationally describe the physics governing the properties of actinides and their alloys is the poster child of failure of existing Density Functional Theory exchange-correlation functionals. The intricate competition between localization and delocalization of the electrons, present in these materials, exposes the limitations of functionals only designed to properly describe one or the other situation. We will discuss the manifestation of this competition in real materials and propositions on how to construct a functional able to accurately describe properties of these materials. I addition we will discuss both the importance of using the Dirac equation to describe the relativistic effects in these materials, and the connection to the physics of transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
By moonlighting in the nucleus, villin regulates epithelial plasticity
Patnaik, Srinivas; George, Sudeep P.; Pham, Eric; Roy, Swati; Singh, Kanchan; Mariadason, John M.; Khurana, Seema
2016-01-01
Villin is a tissue-specific, actin-binding protein involved in the assembly and maintenance of microvilli in polarized epithelial cells. Conversely, villin is also linked with the loss of epithelial polarity and gain of the mesenchymal phenotype in migrating, invasive cells. In this study, we describe for the first time how villin can switch between these disparate functions to change tissue architecture by moonlighting in the nucleus. Our study reveals that the moonlighting function of villin in the nucleus may play an important role in tissue homeostasis and disease. Villin accumulates in the nucleus during wound repair, and altering the cellular microenvironment by inducing hypoxia increases the nuclear accumulation of villin. Nuclear villin is also associated with mouse models of tumorigenesis, and a systematic analysis of a large cohort of colorectal cancer specimens confirmed the nuclear distribution of villin in a subset of tumors. Our study demonstrates that nuclear villin regulates epithelial–mesenchymal transition (EMT). Altering the nuclear localization of villin affects the expression and activity of Slug, a key transcriptional regulator of EMT. In addition, we find that villin directly interacts with a transcriptional corepressor and ligand of the Slug promoter, ZBRK1. The outcome of this study underscores the role of nuclear villin and its binding partner ZBRK1 in the regulation of EMT and as potential new therapeutic targets to inhibit tumorigenesis. PMID:26658611
Keller, J.; Rousseau-Gueutin, M.; Martin, G.E.; Morice, J.; Boutte, J.; Coissac, E.; Ourari, M.; Aïnouche, M.; Salmon, A.; Cabello-Hurtado, F.
2017-01-01
Abstract The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of the essential rps16 gene, which was most likely replaced by the nuclear rps16 gene that encodes chloroplast and mitochondrion targeted RPS16 proteins. To study the evolutionary fate of the rps16 gene, we explored all available plant chloroplast, mitochondrial and nuclear genomes. Whereas no plant mitochondrial genomes carry an rps16 gene, many plants still have a functional nuclear and chloroplast rps16 gene. Ka/Ks ratios revealed that both chloroplast and nuclear rps16 copies were under purifying selection. However, due to the dual targeting of the nuclear rps16 gene product and the absence of a mitochondrial copy, the chloroplast gene may be lost. We also performed comparative analyses of lupine plastomes (SNPs, indels and repeat elements), identified the most variable regions and examined their phylogenetic utility. The markers identified here will help to reveal the evolutionary history of lupines, Genistoids and closely related clades. PMID:28338826
Carter, Emma J.; Barnes, David; Hoppe, Hans-Jürgen; Hughes, Jennifer; Cobbold, Stephen; Harper, James; Morreau, Hans; Surakhy, Mirvat; Hassan, A. Bassim
2016-01-01
Two important protein-protein interactions establish E-cadherin (Cdh1) in the adhesion complex; homophilic binding via the extra-cellular (EC1) domain and cytoplasmic tail binding to β-catenin. Here, we evaluate whether E-cadherin binding can inhibit β-catenin when there is loss of Adenomatous polyposis coli (APC) from the β-catenin destruction complex. Combined conditional loss of Cdh1 and Apc were generated in the intestine, intestinal adenoma and adenoma organoids. Combined intestinal disruption (Cdh1fl/flApcfl/flVil-CreERT2) resulted in lethality, breakdown of the intestinal barrier, increased Wnt target gene expression and increased nuclear β-catenin localization, suggesting that E-cadherin inhibits β-catenin. Combination with an intestinal stem cell Cre (Lgr5CreERT2) resulted in ApcΔ/Δ recombination and adenoma, but intact Cdh1fl/fl alleles. Cultured ApcΔ/ΔCdh1fl/fl adenoma cells infected with adenovirus-Cre induced Cdh1fl/fl recombination (Cdh1Δ/Δ), disruption of organoid morphology, nuclear β-catenin localization, and cells with an epithelial-mesenchymal phenotype. Complementation with adenovirus expressing wild-type Cdh1 (Cdh1-WT) rescued adhesion and β-catenin membrane localization, yet an EC1 specific double mutant defective in homophilic adhesion (Cdh1-MutW2A, S78W) did not. These data suggest that E-cadherin inhibits β-catenin in the context of disruption of the APC-destruction complex, and that this function is also EC1 domain dependent. Both binding functions of E-cadherin may be required for its tumour suppressor activity. PMID:27566565
Soulez, M; Saurin, A J; Freemont, P S; Knight, J C
1999-04-29
Chromosome translocation t(X;18)(p11.2;q11.2) is unique to synovial sarcomas and results in an 'in frame' fusion of the SYT gene with the SSX1 or closely-related SSX2 gene. Wild-type SYT and SSX proteins, and the SYT-SSX chimaeric proteins, can modulate transcription in gene reporter assays. To help elucidate the role of these proteins in cell function and neoplasia we have performed immunolabelling experiments to determine their subcellular localization in three cell types. Transient expression of epitope-tagged proteins produced distinctive nuclear staining patterns. The punctate staining of SYT and SYT-SSX proteins showed some similarities. We immunolabelled a series of endogenous nuclear antigens and excluded the SYT and SYT-SSX focal staining from association with these domains (e.g. sites of active transcription, snRNPs). In further experiments we immunolabelled the Polycomb group (PcG) proteins RING1 or BMI-1 and showed that SSX and SYT-SSX proteins, but not SYT, co-localized with these markers. Consistent with this we show that SSX and SYT-SSX associate with chromatin, and also associate with condensed chromatin at metaphase. Noteably, SSX produced a dense signal over the surface of metaphase chromosomes whereas SYT-SSX produced discrete focal staining. Our data indicate that SSX and SYT-SSX proteins are recruited to nuclear domains occupied by PcG complexes, and this provides us with a new insight into the possible function of wild-type SSX and the mechanism by which the aberrant SYT-SSX protein might disrupt fundamental mechanisms controlling cell division and cell fate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quaresma, Alexandre J.C.; Bressan, G.C.; Institute of Biology, University of Campinas - UNICAMP, 13083-970, Campinas, SP
Eukaryotic gene expression is regulated on different levels ranging from pre-mRNA processing to translation. One of the most characterized families of RNA-binding proteins is the group of hnRNPs: heterogenous nuclear ribonucleoproteins. Members of this protein family play important roles in gene expression control and mRNAs metabolism. In the cytoplasm, several hnRNPs proteins are involved in RNA-related processes and they can be frequently found in two specialized structures, known as GW-bodies (GWbs), previously known as processing bodies: PBs, and stress granules, which may be formed in response to specific stimuli. GWbs have been early reported to be involved in the mRNAmore » decay process, acting as a site of mRNA degradation. In a similar way, stress granules (SGs) have been described as cytoplasmic aggregates, which contain accumulated mRNAs in cells under stress conditions and present reduced or inhibited translation. Here, we characterized the hnRNP Q localization after different stress conditions. hnRNP Q is a predominantly nuclear protein that exhibits a modular organization and several RNA-related functions. Our data suggest that the nuclear localization of hnRNP Q might be modified after different treatments, such as: PMA, thapsigargin, arsenite and heat shock. Under different stress conditions, hnRNP Q can fully co-localize with the endoplasmatic reticulum specific chaperone, BiP. However, under stress, this protein only co-localizes partially with the proteins: GW182 - GWbs marker protein and TIA-1 stress granule component.« less
Quan, XinXin; Yu, Jennifer; Bussey, Howard; Stochaj, Ursula
2007-07-01
In the budding yeast Saccharomyces cerevisiae, four members of the importin-beta family of nuclear carriers, Xpo1p/Crm1p, Cse1p, Msn5p and Los1p, function as exporters of protein and tRNA. Under normal growth conditions GFP-tagged exporters are predominantly associated with nuclei. The presence of Snf1 kinase, a key regulator of cell growth and a metabolic sensor, controls the localization of GFP-exporters. Additional glucose-dependent, but Snf1-independent, mechanisms regulate carrier distribution and a switch from fermentable to non-fermentable carbon sources relocates all of the carriers, suggesting a link to the nutritional status of the cell. Moreover, stress controls the proper localization of GFP-exporters, which mislocalize upon exposure to heat, ethanol and starvation. Stress may activate the MAPK cell integrity cascade, and we tested the role of this pathway in exporter localization. Under non-stress conditions, the proper distribution of GFP-Cse1p and Xpo1p/Crm1p-GFP requires kinases of the cell integrity cascade. By contrast, Msn5p-GFP and Los1p-GFP rely on the MAPK module to relocate to the cytoplasm when cells are stressed with ethanol. Our results indicate that the association of nuclear exporters with nuclei is controlled by multiple mechanisms that are organized in a hierarchical fashion and linked to the physiological state of the cell.
Tunneling induced electron transfer between separated protons
NASA Astrophysics Data System (ADS)
Vindel-Zandbergen, Patricia; Meier, Christoph; Sola, Ignacio R.
2018-04-01
We study electron transfer between two separated protons using local control theory. In this symmetric system one can favour a slow transfer by biasing the algorithm, achieving high efficiencies for fixed nuclei. The solution can be parametrized using a sequence of a pump followed by a dump pulse that lead to tunneling-induced electron transfer. Finally, we study the effect of the nuclear kinetic energy on the efficiency. Even in the absence of relative motion between the protons, the spreading of the nuclear wave function is enough to reduce the yield of electronic transfer to less than one half.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreck, Ilona; Al-Rawi, Marco; Mingot, Jose-Manuel
2011-04-22
Highlights: {yields} HSP70, Ku70 and 80 as well as importin 8 are novel interactors of c-Jun. {yields} Nuclear accumulation of c-Jun does not require its functions as a transcription factor. {yields} Nuclear accumulation of c-Jun does not require the interaction with its kinase JNK. {yields} Nuclear accumulation of JNK is regulated by interaction with c-Jun. -- Abstract: In order to activate gene expression, transcription factors such as c-Jun have to reside in the nucleus. The abundance of c-Jun in the nucleus correlates with the activity of its target genes. As a consequence of excessive c-Jun activation, cells undergo apoptosis ormore » changes in differentiation whereas decreased c-Jun function can reduce proliferation. In the present study we addressed how nuclear accumulation of the transcription factor c-Jun is regulated. First, we analyzed which functions of c-Jun are required for efficient nuclear accumulation. Mutants of c-Jun deficient in dimerization or DNA-binding show no defect in nuclear transport. Furthermore, c-Jun import into the nucleus of living cells occurred when the c-Jun phosphorylation sites were mutated as well in cells that lack the major c-Jun kinase, JNK, suggesting that c-Jun transport into the nucleus does not require JNK signaling. Conversely, however, binding of c-Jun seemed to enhance nuclear accumulation of JNK. In order to identify proteins that might be relevant for the nuclear translocation of c-Jun we searched for novel binding partners by a proteomic approach. In addition to the heat shock protein HSP70 and the DNA damage repair factors Ku70 and 80, we isolated human importin 8 as a novel interactor of c-Jun. Interaction of Imp 8 with c-Jun in human cells was confirmed by co-immunoprecipitation experiments. Nuclear accumulation of c-Jun does not require its functions as a transcription factor or the interaction with its kinase JNK. Interestingly, nuclear accumulation of JNK is regulated by interaction with c-Jun. Unraveling the mechanisms of c-Jun and JNK transport to the nucleus and its regulation will improve our understanding of their role in biological and pathophysiological processes.« less
USDA-ARS?s Scientific Manuscript database
Cytoplasmic male sterility (CMS), a maternally inherited trait and characterized as an inability to produce functional pollen , is an important biological system for economically producing hybrid seed to enhance crop yield and studying cytoplasmic and nuclear gene interactions. In cultivated tetrapl...
Samrat, Subodh Kumar; Ha, Binh L; Zheng, Yi; Gu, Haidong
2018-01-15
Infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) is an immediate early protein containing a RING-type E3 ubiquitin ligase. It targets several host factors for proteasomal degradation and subsequently activates viral expression. ICP0 has a nuclear localization sequence and functions in the nucleus early during infection. However, later in infection, ICP0 is found solely in the cytoplasm. The molecular mechanism and biological function of the ICP0 nuclear-to-cytoplasmic translocation are not well understood. In this study, we sought to characterize elements important for this translocation. We found that (i) in human embryonic lung fibroblast (HEL) cells, ICP0 C-terminal residues 741 to 775 were necessary but not sufficient for the nuclear-to-cytoplasmic translocation; (ii) the loss of ICP0 E3 ubiquitin ligase activity, which led to defective viral replication in nonpermissive cells, also caused mutant ICP0 to be retained in the nucleus of HEL cells; (iii) in permissive U2OS cells, however, ICP0 lacking E3 ligase activity was translocated to the cytoplasm at a pace faster than that of wild-type ICP0, suggesting that nuclear retention of ICP0 occurs in an ICP0 E3 ligase-dependent manner; and (iv) the ICP0 C terminus and late viral proteins cooperate in order to overcome nuclear retention and stimulate ICP0 cytoplasmic translocation. Taken together, less ICP0 nuclear retention may contribute to the permissiveness of U2OS cells to HSV-1 in the absence of functional ICP0. IMPORTANCE A distinct characteristic for eukaryotes is the compartmentalization of cell metabolic pathways, which allows greater efficiency and specificity of cellular functions. ICP0 of HSV-1 is a multifunctional viral protein that travels through different compartments as infection progresses. Its main regulatory functions are carried out in the nucleus, but it is translocated to the cytoplasm late during HSV-1 infection. To understand the biological significance of cytoplasmic ICP0 in HSV-1 infection, we investigated the potential players involved in this nuclear-to-cytoplasmic translocation. We found that there is a nuclear retention force in an ICP0 E3 ubiquitin ligase-dependent manner. In addition, we identified the C terminus of ICP0 as a cis element cooperating with late viral proteins to overcome the nuclear retention and stimulate the nuclear-to-cytoplasmic translocation of ICP0. Copyright © 2018 American Society for Microbiology.
Properties of Localized Protons in Neutron Star Matter at Finite Temperatures
NASA Astrophysics Data System (ADS)
Szmaglinski, A.; Kubis, S.; Wójcik, W.
2014-02-01
We study properties of the proton component of neutron star matter for realistic nuclear models. Vanishing of the nuclear symmetry energy implies proton-neutron separation in dense nuclear matter. Protons which form admixture tend to be localized in potential wells. Here, we extend the description of proton localization to finite temperatures. It appears that the protons are still localized at temperatures typical for hot neutron stars. That fact has important astrophysical consequences. Moreover, the temperature inclusion leads to unexpected results for the behavior of the proton localized state.
Kolmann, Stephen J; Jordan, Meredith J T
2010-02-07
One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.
NASA Astrophysics Data System (ADS)
Kolmann, Stephen J.; Jordan, Meredith J. T.
2010-02-01
One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in energy at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.
Revealing the cellular localization of STAT1 during the cell cycle by super-resolution imaging
Gao, Jing; Wang, Feng; Liu, Yanhou; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda
2015-01-01
Signal transducers and activators of transcription (STATs) can transduce cytokine signals and regulate gene expression. The cellular localization and nuclear trafficking of STAT1, a representative of the STAT family with multiple transcriptional functions, is tightly related with transcription process, which usually happens in the interphase of the cell cycle. However, these priority questions regarding STAT1 distribution and localization at the different cell-cycle stages remain unclear. By using direct stochastic optical reconstruction microscopy (dSTORM), we found that the nuclear expression level of STAT1 increased gradually as the cell cycle carried out, especially after EGF stimulation. Furthermore, STAT1 formed clusters in the whole cell during the cell cycle, with the size and the number of clusters also increasing significantly from G1 to G2 phase, suggesting that transcription and other cell-cycle related activities can promote STAT1 to form more and larger clusters for fast response to signals. Our work reveals that the cellular localization and clustering distribution of STAT1 are associated with the cell cycle, and further provides an insight into the mechanism of cell-cycle regulated STAT1 signal transduction. PMID:25762114
NASA Astrophysics Data System (ADS)
Fischer, Mark William Frederick
1998-08-01
The study of protein structure and function is incomplete without an understanding of protein dynamics. We use nuclear magnetic resonance (NMR) relaxation studies to probe pico and nano second dynamics in E. coli flavodoxin, measuring both 15N and 13C/sp/prime relaxation. Observing poor correlation between the generalized order parameters, S2, for the N-NH and C'-Cα vectors in this nearly spherical molecule, we conclude that local or semi-local anisotropic motions are present. A new experiment is introduced from which the cross correlation, Rcc, between the carbonyl chemical shift anisotropy relaxation and the C'- Cα dipole-dipole relaxation is obtained. Theoretical modeling of the behavior of S2 N- NH,/ S2C/sp/prime-C/sb[α], and Rcc under specific anisotropic motions allows the construction of motional restriction maps. Analyzing our experimental data in terms of these motional maps allows for the identification of local motions which might otherwise have gone undetected and, more importantly, allows for the nature of the motions to be characterized. This is demonstrated for several helices of flavodoxin which appear to be executing concerted limited rotations about their helical axes.
Hou, Qiang; Hou, Shaohua; Chen, Qing; Jia, Hong; Xin, Ting; Jiang, Yitong; Guo, Xiaoyu; Zhu, Hongfei
2018-02-15
The open reading frame 2 (ORF2) of Porcine circovirus type 2 (PCV2) encodes the major Capsid (Cap) protein, which self-assembles into virus-like particle (VLP) of similar morphology to the PCV2 virion and accumulates in the nucleus through the N-terminal arginine-rich nuclear localization signal (NLS). In this study, PCV2 Cap protein and its derivates were expressed via the baculovirus expression system, and the cellular localization of the recombinant proteins were investigated using anti-Cap mAb by imaging flow cytometry. Analysis of subcellular localization of Cap protein and its variants demonstrated that NLS mediated Cap protein nuclear export as well as nuclear import, and a phosphorylation site (S17) was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the NLS domain to regulate Cap protein nuclear export. Phosphorylation of NLS regulating the PCV2 Cap protein nuclear export was also demonstrated in PK15 cells by fluorescence microscopy. Moreover, the influence of Rep and Rep' protein on Cap protein subcellular localization was investigated in PK15 cells. Phosphorylation of NLS regulating Cap protein nuclear export provides more detailed knowledge of the PCV2 viral life cycle. Copyright © 2018 Elsevier B.V. All rights reserved.
Local electronic effects and irradiation resistance in high-entropy alloys
Egami, Takeshi; Stocks, George Malcolm; Nicholson, Don; ...
2015-08-14
High-entropy alloys are multicomponent solid solutions in which various elements with different chemistries and sizes occupy the same crystallographic lattice sites. Thus, none of the atoms perfectly fit the lattice site, giving rise to considerable local lattice distortions and atomic-level stresses. These characteristics can be beneficial for performance under both radiation and in a high-temperature environment, making them attractive candidates as nuclear materials. We discuss electronic origin of the atomic-level stresses based upon first-principles calculations using a density functional theory approach.
Inhibiting cancer cell hallmark features through nuclear export inhibition.
Sun, Qingxiang; Chen, Xueqin; Zhou, Qiao; Burstein, Ezra; Yang, Shengyong; Jia, Da
2016-01-01
Treating cancer through inhibition of nuclear export is one of the best examples of basic research translation into clinical application. Nuclear export factor chromosomal region maintenance 1 (CRM1; Xpo1 and exportin-1) controls cellular localization and function of numerous proteins that are critical for the development of many cancer hallmarks. The diverse actions of CRM1 are likely to explain the broad ranging anti-cancer potency of CRM1 inhibitors observed in pre-clinical studies and/or clinical trials (phase I-III) on both advanced-stage solid and hematological tumors. In this review, we compare and contrast the mechanisms of action of different CRM1 inhibitors, and discuss the potential benefit of unexplored non-covalent CRM1 inhibitors. This emerging field has uncovered that nuclear export inhibition is well poised as an attractive target towards low-toxicity broad-spectrum potent anti-cancer therapy.
NASA Astrophysics Data System (ADS)
Joubert-Doriol, Loïc; Izmaylov, Artur F.
2018-03-01
A new methodology of simulating nonadiabatic dynamics using frozen-width Gaussian wavepackets within the moving crude adiabatic representation with the on-the-fly evaluation of electronic structure is presented. The main feature of the new approach is the elimination of any global or local model representation of electronic potential energy surfaces; instead, the electron-nuclear interaction is treated explicitly using the Gaussian integration. As a result, the new scheme does not introduce any uncontrolled approximations. The employed variational principle ensures the energy conservation and leaves the number of electronic and nuclear basis functions as the only parameter determining the accuracy. To assess performance of the approach, a model with two electronic and two nuclear spacial degrees of freedom containing conical intersections between potential energy surfaces has been considered. Dynamical features associated with nonadiabatic transitions and nontrivial geometric (or Berry) phases were successfully reproduced within a limited basis expansion.
Functional Conservation of the Transportin Nuclear Import Pathway in Divergent Organisms
Siomi, Mikiko C.; Fromont, Micheline; Rain, Jean-Christophe; Wan, Lili; Wang, Fan; Legrain, Pierre; Dreyfuss, Gideon
1998-01-01
Human transportin1 (hTRN1) is the nuclear import receptor for a group of pre-mRNA/mRNA-binding proteins (heterogeneous nuclear ribonucleoproteins [hnRNP]) represented by hnRNP A1, which shuttle continuously between the nucleus and the cytoplasm. hTRN1 interacts with the M9 region of hnRNP A1, a 38-amino-acid domain rich in Gly, Ser, and Asn, and mediates the nuclear import of M9-bearing proteins in vitro. Saccharomyces cerevisiae transportin (yTRN; also known as YBR017c or Kap104p) has been identified and cloned. To understanding the nuclear import mediated by yTRN, we searched with a yeast two-hybrid system for proteins that interact with it. In an exhaustive screen of the S. cerevisiae genome, the most frequently selected open reading frame was the nuclear mRNA-binding protein, Nab2p. We delineated a ca.-50-amino-acid region in Nab2p, termed NAB35, which specifically binds yTRN and is similar to the M9 motif. NAB35 also interacts with hTRN1 and functions as a nuclear localization signal in mammalian cells. Interestingly, yTRN can also mediate the import of NAB35-bearing proteins into mammalian nuclei in vitro. We also report on additional substrates for TRN as well as sequences of Drosophila melanogaster, Xenopus laevis, and Schizosaccharomyces pombe TRNs. Together, these findings demonstrate that both the M9 signal and the nuclear import machinery utilized by the transportin pathway are conserved in evolution. PMID:9632798
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiriyama, Takao; Hirano, Makito; Asai, Hirohide
Triple A syndrome is an autosomal recessive neurological disease, mimicking motor neuron disease, and is caused by mutant ALADIN, a nuclear-pore complex component. We recently discovered that the pathogenesis involved impaired nuclear import of DNA repair proteins, including DNA ligase I and the cerebellar ataxia causative protein aprataxin. Such impairment was overcome by fusing classical nuclear localization signal (NLS) and 137-aa downstream sequence of XRCC1, designated stretched NLS (stNLS). We report here that the minimum essential sequence of stNLS (mstNLS) is residues 239-276, downsized by more than 100 aa. mstNLS enabled efficient nuclear import of DNA repair proteins in patientmore » fibroblasts, functioned under oxidative stress, and reduced oxidative-stress-induced cell death, more effectively than stNLS. The stress-tolerability of mstNLS was also exerted in control fibroblasts and neuroblastoma cells. These findings may help develop treatments for currently intractable triple A syndrome and other oxidative-stress-related neurological diseases, and contribute to nuclear compartmentalization study.« less
Boisvert, Maude; Bouchard-Lévesque, Véronique; Fernandes, Sandra
2014-01-01
ABSTRACT Nuclear targeting of capsid proteins (VPs) is important for genome delivery and precedes assembly in the replication cycle of porcine parvovirus (PPV). Clusters of basic amino acids, corresponding to potential nuclear localization signals (NLS), were found only in the unique region of VP1 (VP1up, for VP1 unique part). Of the five identified basic regions (BR), three were important for nuclear localization of VP1up: BR1 was a classic Pat7 NLS, and the combination of BR4 and BR5 was a classic bipartite NLS. These NLS were essential for viral replication. VP2, the major capsid protein, lacked these NLS and contained no region with more than two basic amino acids in proximity. However, three regions of basic clusters were identified in the folded protein, assembled into a trimeric structure. Mutagenesis experiments showed that only one of these three regions was involved in VP2 transport to the nucleus. This structural NLS, termed the nuclear localization motif (NLM), is located inside the assembled capsid and thus can be used to transport trimers to the nucleus in late steps of infection but not for virions in initial infection steps. The two NLS of VP1up are located in the N-terminal part of the protein, externalized from the capsid during endosomal transit, exposing them for nuclear targeting during early steps of infection. Globally, the determinants of nuclear transport of structural proteins of PPV were different from those of closely related parvoviruses. IMPORTANCE Most DNA viruses use the nucleus for their replication cycle. Thus, structural proteins need to be targeted to this cellular compartment at two distinct steps of the infection: in early steps to deliver viral genomes to the nucleus and in late steps to assemble new viruses. Nuclear targeting of proteins depends on the recognition of a stretch of basic amino acids by cellular transport proteins. This study reports the identification of two classic nuclear localization signals in the minor capsid protein (VP1) of porcine parvovirus. The major protein (VP2) nuclear localization was shown to depend on a complex structural motif. This motif can be used as a strategy by the virus to avoid transport of incorrectly folded proteins and to selectively import assembled trimers into the nucleus. Structural nuclear localization motifs can also be important for nuclear proteins without a classic basic amino acid stretch, including multimeric cellular proteins. PMID:25078698
Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4
Haas, Gabrielle; Azevedo, Jacinthe; Moissiard, Guillaume; Geldreich, Angèle; Himber, Christophe; Bureau, Marina; Fukuhara, Toshiyuki; Keller, Mario; Voinnet, Olivier
2008-01-01
Replication of Cauliflower mosaic virus (CaMV), a plant double-stranded DNA virus, requires the viral translational transactivator protein P6. Although P6 is known to form cytoplasmic inclusion bodies (viroplasms) so far considered essential for virus biology, a fraction of the protein is also present in the nucleus. Here, we report that monomeric P6 is imported into the nucleus through two importin-α-dependent nuclear localization signals, and show that this process is mandatory for CaMV infectivity and is independent of translational transactivation and viroplasm formation. One nuclear function of P6 is to suppress RNA silencing, a gene regulation mechanism with antiviral roles, commonly counteracted by dedicated viral suppressor proteins (viral silencing suppressors; VSRs). Transgenic P6 expression in Arabidopsis is genetically equivalent to inactivating the nuclear protein DRB4 that facilitates the activity of the major plant antiviral silencing factor DCL4. We further show that a fraction of P6 immunoprecipitates with DRB4 in CaMV-infected cells. This study identifies both genetic and physical interactions between a VSR to a host RNA silencing component, and highlights the importance of subcellular compartmentalization in VSR function. PMID:18615098
Poly(A) polymerase contains multiple functional domains.
Raabe, T; Murthy, K G; Manley, J L
1994-01-01
Poly(A) polymerase (PAP) contains regions of similarity with several known protein domains. Through site-directed mutagenesis, we provide evidence that PAP contains a functional ribonucleoprotein-type RNA binding domain (RBD) that is responsible for primer binding, making it the only known polymerase to contain such a domain. The RBD is adjacent to, and probably overlaps with, an apparent catalytic region responsible for polymerization. Despite the presence of sequence similarities, this catalytic domain appears to be distinct from the conserved polymerase module found in a large number of RNA-dependent polymerases. PAP contains two nuclear localization signals (NLSs) in its C terminus, each by itself similar to the consensus bipartite NLS found in many nuclear proteins. Mutagenesis experiments indicate that both signals, which are separated by nearly 140 residues, play important roles in directing PAP exclusively to the nucleus. Surprisingly, basic amino acids in the N-terminal-most NLS are also essential for AAUAAA-dependent polyadenylation but not for nonspecific poly(A) synthesis, suggesting that this region of PAP is involved in interactions both with nuclear targeting proteins and with nuclear polyadenylation factors. The serine/threonine-rich C terminus is multiply phosphorylated, including at sites affected by mutations in either NLS. Images PMID:8164653
Monomeric cocoa catechins enhance β-cell function by increasing mitochondrial respiration.
Rowley, Thomas J; Bitner, Benjamin F; Ray, Jason D; Lathen, Daniel R; Smithson, Andrew T; Dallon, Blake W; Plowman, Chase J; Bikman, Benjamin T; Hansen, Jason M; Dorenkott, Melanie R; Goodrich, Katheryn M; Ye, Liyun; O'Keefe, Sean F; Neilson, Andrew P; Tessem, Jeffery S
2017-11-01
A hallmark of type 2 diabetes (T2D) is β-cell dysfunction and the eventual loss of functional β-cell mass. Therefore, mechanisms that improve or preserve β-cell function could be used to improve the quality of life of individuals with T2D. Studies have shown that monomeric, oligomeric and polymeric cocoa flavanols have different effects on obesity, insulin resistance and glucose tolerance. We hypothesized that these cocoa flavanols may have beneficial effects on β-cell function. INS-1 832/13-derived β-cells and primary rat islets cultured with a monomeric catechin-rich cocoa flavanol fraction demonstrated enhanced glucose-stimulated insulin secretion, while cells cultured with total cocoa extract and with oligomeric or polymeric procyanidin-rich fraction demonstrated no improvement. The increased glucose-stimulated insulin secretion in the presence of the monomeric catechin-rich fraction corresponded with enhanced mitochondrial respiration, suggesting improvements in β-cell fuel utilization. Mitochondrial complex III, IV and V components are up-regulated after culture with the monomer-rich fraction, corresponding with increased cellular ATP production. The monomer-rich fraction improved cellular redox state and increased glutathione concentration, which corresponds with nuclear factor, erythroid 2 like 2 (Nrf2) nuclear localization and expression of Nrf2 target genes including nuclear respiratory factor 1 (Nrf1) and GA binding protein transcription factor alpha subunit (GABPA), essential genes for increasing mitochondrial function. We propose a model by which monomeric cocoa catechins improve the cellular redox state, resulting in Nrf2 nuclear migration and up-regulation of genes critical for mitochondrial respiration, glucose-stimulated insulin secretion and ultimately improved β-cell function. These results suggest a mechanism by which monomeric cocoa catechins exert their effects as an effective complementary strategy to benefit T2D patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Yu; Yu, Hongshi; Pask, Andrew J; Shaw, Geoff; Renfree, Marilyn B
2017-01-01
Sex determination and sexual differentiation pathways are highly conserved between marsupials and eutherians. There are 2 different pathways of prostaglandin D2 (PGD2) synthesis: prostaglandin D synthase (PTGDS) and haematopoietic prostaglandin D synthase (HPGDS). PGD2 regulates the subcellular localization of SOX9 during gonadal sexual differentiation. To investigate the function of PGD2 in the tammar gonad, we cultured undifferentiated male gonads in the presence of the HPGDS inhibitor HQL-79 and female gonads with exogenous PGD2 to mimic activation of the PTGDS-PGD2 pathway. Tammar PTGDS and HPGDS have only 50% similarity with mouse and human orthologues, but functional domains are conserved. The expression of SOX9 was unchanged by the treatments in cultured gonads, but its subcellular localization was markedly affected. SOX9 remained cytoplasmic in the Sertoli cells of testes treated with HQL-79. Treated testes developed a thickened ovary-like surface epithelium. In contrast, SOX9 became nuclear in the granulosa cells of developing ovaries treated with PGD2 and the surface epithelium was thin, as in testes. These results demonstrate that PGD2 regulates the subcellular localization of SOX9 and subsequent gonadal development in the developing marsupial gonads, as it does in mice, and that it must have been an ancestral mechanism. © 2017 S. Karger AG, Basel.
Properties of field functionals and characterization of local functionals
NASA Astrophysics Data System (ADS)
Brouder, Christian; Dang, Nguyen Viet; Laurent-Gengoux, Camille; Rejzner, Kasia
2018-02-01
Functionals (i.e., functions of functions) are widely used in quantum field theory and solid-state physics. In this paper, functionals are given a rigorous mathematical framework and their main properties are described. The choice of the proper space of test functions (smooth functions) and of the relevant concept of differential (Bastiani differential) are discussed. The relation between the multiple derivatives of a functional and the corresponding distributions is described in detail. It is proved that, in a neighborhood of every test function, the support of a smooth functional is uniformly compactly supported and the order of the corresponding distribution is uniformly bounded. Relying on a recent work by Dabrowski, several spaces of functionals are furnished with a complete and nuclear topology. In view of physical applications, it is shown that most formal manipulations can be given a rigorous meaning. A new concept of local functionals is proposed and two characterizations of them are given: the first one uses the additivity (or Hammerstein) property, the second one is a variant of Peetre's theorem. Finally, the first step of a cohomological approach to quantum field theory is carried out by proving a global Poincaré lemma and defining multi-vector fields and graded functionals within our framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojas, Joselyn; Teran-Angel, Guillermo; Barbosa, Luisa
Foxp3 is considered to be the master regulator for the development and function of regulatory T cells (Treg). Recently Foxp3, has been detected in extra lymphoid tissue, and in hepatocytes and has been associated with hepatocellular carcinoma (HCC), although its role has not been defined. Since it is expected that there is a relationship between protein localization, activity and cellular function, the aim of this study was to explore the subcellular localization of Foxp3 in resting and stimulated human hepatocytes. Foxp3 expression was measured by flow cytometry, subcellular fractioning, and immunofluorescence, and this data was used to track the shuttlingmore » of Foxp3 in different subcellular compartments in hepatocytes (HepG2 cell line), stimulated by using the PKC activators (PMA), core and preS1/2 antigen from hepatitis B virus (HBV). Our data shows that besides the nuclear location, mitochondrial translocation was detected after stimulation with PMA and at to a lesser extent, with preS1/2. In addition, Foxp3 is localizes at outer mitochondrial membrane. These results suggest a non-canonical role of Foxp3 in the mitochondrial compartment in human hepatocytes, and opens a new field about their role in liver damages during HBV infection. - Highlights: • The expression and subcellular distribution of Foxp3, is modulated by PMA and preS1/2. • PMA and preS1/2 increase Foxp3 expression on HepG2. • PMA and preS1/2 induce foxp3 enrichment at mitochondrial, microsomal and nuclear compartments. • Results suggest a non-canonical function of Foxp3 or a mitochondrial transcriptional activity.« less
NASA Astrophysics Data System (ADS)
Farnan, I.; Trachenko, K.
2003-04-01
29Si nuclear magnetic resonance (NMR) is a one of the most useful probes of the local structure of silicates. One of the results of recent studies of naturally radiation damaged zircons is that there is an evolution of the local structure in both crystalline and amorphous fractions of partially metamict zircon as a function of accumulated α-dose. We have examined the evolution of this local structure within the framework of several models of damage accumulation. The total number of displaced atoms produced per α-decay as function of accumulated dose, as measured by NMR, is not consistent with the idea of multiple overlap events being responsible for the evolution of the total damaged fraction. However, increased connectivity in the damaged region as the number of α-events increases is correlated to the degree of cascade overlap. The results of large scale atomistic (MD) simulations of heavy nuclei recoils at realistic energies (70keV) are consistent with the NMR quantification and also with TEM estimates of the diameters of damaged regions. The local heterogeneity (density and bonding) in the damaged area in the simulations is consistent with the existence of connected silicate tetrahedra. Detailed experiments on the annealing of damaged zircons at 500 and 600^oC have been performed. These show that a significant energetic barrier to the recrystallisation exists at these temperatures once a small fraction of damaged material has been recrystallised. This correlates well with the degree of cascade overlap. Indicating that the more connected SiO_4 tetrahedra present this barrier. A sample with very little cascade overlap can be annealed to ˜97% crystallinity at these temperatures.
Baculovirus LEF-11 nuclear localization signal is important for viral DNA replication.
Chen, Tingting; Dong, Zhanqi; Hu, Nan; Hu, Zhigang; Dong, Feifan; Jiang, Yaming; Li, Jun; Chen, Peng; Lu, Cheng; Pan, Minhui
2017-06-15
Baculovirus LEF-11 is a small nuclear protein that is involved in viral late gene transcription and DNA replication. However, the characteristics of its nuclear localization signal and its impact on viral DNA replication are unknown. In the present study, systemic bioinformatics analysis showed that the baculovirus LEF-11 contains monopartite and bipartite classical nuclear localization signal sequences (cNLSs), which were also detected in a few alphabaculovirus species. Localization of representative LEF-11 proteins of four baculovirus genera indicated that the nuclear localization characteristics of baculovirus LEF-11 coincided with the predicted results. Moreover, Bombyx mori nucleopolyhedrovirus (BmNPV) LEF-11 could be transported into the nucleus during viral infection in the absence of a cNLSs. Further investigations demonstrated that the NLS of BmNPV LEF-11 is important for viral DNA replication. The findings of the present study indicate that the characteristics of the baculovirus LEF-11 protein and the NLS is essential to virus DNA replication and nuclear transport mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arai, Rumi; En, Atsuki; Ukekawa, Ryo
2016-05-13
5-Bromodeoxyuridine (BrdU), a thymidine analogue, induces cellular senescence in mammalian cells. BrdU induces cellular senescence probably through the regulation of chromatin because BrdU destabilizes or disrupts nucleosome positioning and decondenses heterochromatin. Since heterochromatin is tethered to the nuclear periphery through the interaction with the nuclear envelope proteins, we examined the localization of the several nuclear envelope proteins such as lamins, lamin-interacting proteins, nuclear pore complex proteins, and nuclear transport proteins in senescent cells. We have shown here that lamin B receptor (LBR) showed a change in localization in both BrdU-induced and replicative senescent cells.
Kim, Dae Won; Jeon, Su Jeong; Hwang, Sung Min; Hong, Jong Chan; Bahk, Jeong Dong
2016-09-01
Eukaryotic C3H-type zinc finger proteins (Znfs) comprise a large family of regulatory proteins involved in many aspects of plant stress response, growth and development. However, compared to mammalian, only a few plant Znfs have been functionally characterized. Here, T-DNA inserted gds1 (growth, development and splicing 1) mutant, displayed abnormal growth throughout the lifecycle owing to the reduction of cell size and number. Inverse PCR analysis revealed that the abnormal growth was caused by the disruption of At3g47120, which encodes a C3H42 protein belonging to the C-X7-C-X5-C-X3-H class of the Znf family. GDS1 was ubiquitously transcribed, but shows high levels of expression in young seedling and unexpanded new leaves. In gds1, the transcripts of many growth- and development-related genes were down-regulated, and the auxin response was dramatically reduced. A fluorescence-based assay revealed that the GDS1 protein was localized to the nucleus, prominently in the speckle compartments. Its arginine/serine dipeptide-rich-like (RS-like) domain was essential for nuclear localization. In addition, the SR1, SRm102 and U1-70K components of the U1 spliceosome interacted with GDS1 in the nuclear speckle compartments. Taken together, these suggest that GDS1, a nuclear-speckle-associated Znf, might play a significant role in splicing during plant growth and development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Lutz, David; Wolters-Eisfeld, Gerrit; Joshi, Gunjan; Djogo, Nevena; Jakovcevski, Igor; Schachner, Melitta; Kleene, Ralf
2012-01-01
The functions of the cell adhesion molecule L1 in the developing and adult nervous system are triggered by homophilic and heterophilic interactions that stimulate signal transductions that activate cellular responses. Here, we show that stimulation of signaling by function-triggering L1 antibodies or L1-Fc leads to serine protease-dependent cleavage of full-length L1 at the plasma membrane and generation of a sumoylated transmembrane 70-kDa fragment comprising the intracellular and transmembrane domains and part of the extracellular domain. The 70-kDa transmembrane fragment is transported from the plasma membrane to a late endosomal compartment, released from endosomal membranes into the cytoplasm, and transferred from there into the nucleus by a pathway that depends on importin and chromatin-modifying protein 1. Mutation of the sumoylation site at Lys1172 or of the nuclear localization signal at Lys1147 abolished L1-stimulated generation or nuclear import of the 70-kDa fragment, respectively. Nuclear import of the 70-kDa fragment may activate cellular responses in parallel or in association with phosphorylation-dependent signaling pathways. Alterations in the levels of the 70-kDa fragment during development and in the adult after spinal cord injury or in a mouse model of Alzheimer disease suggest that this fragment is functionally implicated in development, regeneration, neurodegeneration, tumorigenesis, and possibly synaptic plasticity in the mature nervous system. PMID:22431726
Tamura, Kentaro; Fukao, Yoichiro; Hatsugai, Noriyuki; Katagiri, Fumiaki; Hara-Nishimura, Ikuko
2017-05-04
The nuclear pore complex (NPC) comprises more than 30 nucleoporins (Nups). NPC mediates macromolecular trafficking between the nucleoplasm and the cytoplasm, but specific roles of individual Nups are poorly understood in higher plants. Here, we show that the novel nucleoporin unique to angiosperm plants (designated as Nup82) functions in a salicylic acid-dependent defense in a redundant manner with Nup136, which is a component of the nuclear basket in the NPC. Arabidopsis thaliana Nup82 had a similar amino acid sequence to the N-terminal half of Nup136 and a Nup82-GFP fusion was localized on the nuclear envelope. Immunoprecipitation and bimolecular fluorescence complementation analyses revealed that Nup82 interacts with the NPC components Nup136 and RAE1. The double knockout mutant nup82 nup136 showed severe growth defects, while the single knockout mutant nup82 did not, suggesting that Nup82 functions redundantly with Nup136. nup82 nup136 impaired benzothiadiazole (an analog of salicylic acid)-induced resistance to the virulent bacteria Pseudomonas syringae pv. tomato DC3000. Furthermore, transcriptome analysis of nup82 nup136 indicates that deficiency of Nup82 and Nup136 causes noticeable downregulation of immune-related genes. These results suggest that Nup82 and Nup136 are redundantly involved in transcriptional regulation of salicylic acid-responsive genes through nuclear transport of signaling molecules.
Roth, Charlotte; Lüdke, Daniel; Klenke, Melanie; Quathamer, Annalena; Valerius, Oliver; Braus, Gerhard H; Wiermer, Marcel
2017-12-01
Importin-α proteins mediate the translocation of nuclear localization signal (NLS)-containing proteins from the cytoplasm into the nucleus through nuclear pore complexes (NPCs). Genetically, Arabidopsis IMPORTIN-α3/MOS6 (MODIFIER OF SNC1, 6) is required for basal plant immunity and constitutive disease resistance activated in autoimmune mutant snc1 (suppressor of npr1-1, constitutive 1), suggesting that MOS6 plays a role in the nuclear import of proteins involved in plant defense signaling. Here, we sought to identify and characterize defense-regulatory cargo proteins and interaction partners of MOS6. We conducted both in silico database analyses and affinity purification of functional epitope-tagged MOS6 from pathogen-challenged stable transgenic plants coupled with mass spectrometry. We show that among the 13 candidate MOS6 interactors we selected for further functional characterization, the TIR-NBS-type protein TN13 is required for resistance against Pseudomonas syringae pv. tomato (Pst) DC3000 lacking the type-III effector proteins AvrPto and AvrPtoB. When expressed transiently in N. benthamiana leaves, TN13 co-immunoprecipitates with MOS6, but not with its closest homolog IMPORTIN-α6, and localizes to the endoplasmic reticulum (ER), consistent with a predicted N-terminal transmembrane domain in TN13. Our work uncovered the truncated NLR protein TN13 as a component of plant innate immunity that selectively binds to MOS6/IMPORTIN-α3 in planta. We speculate that the release of TN13 from the ER membrane in response to pathogen stimulus, and its subsequent nuclear translocation, is important for plant defense signal transduction. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Mamon, L A; Ginanova, V R; Kliver, S F; Yakimova, A O; Atsapkina, A A; Golubkova, E V
2017-04-01
The mutual relationship between mRNA and the cytoskeleton can be seen from two points of view. On the one hand, the cytoskeleton is necessary for mRNA trafficking and anchoring to subcellular domains. On the other hand, cytoskeletal growth and rearrangement require the translation of mRNAs that are connected to the cytoskeleton. β-actin mRNA localization may influence dynamic changes in the actin cytoskeleton. In the cytoplasm, long-lived mRNAs exist in the form of RNP (ribonucleoprotein) complexes, where they interact with RNA-binding proteins, including NXF (Nuclear eXport Factor). Dm NXF1 is an evolutionarily conserved protein in Drosophila melanogaster that has orthologs in different animals. The universal function of nxf1 genes is the nuclear export of different mRNAs in various organisms. In this mini-review, we briefly discuss the evidence demonstrating that Dm NXF1 fulfils not only universal but also specialized cytoplasmic functions. This protein is detected not only in the nucleus but also in the cytoplasm. It is a component of neuronal granules. Dm NXF1 marks nuclear division spindles during early embryogenesis and the dense body on one side of the elongated spermatid nuclei. The characteristic features of sbr mutants (sbr 10 and sbr 5 ) are impairment of chromosome segregation and spindle formation anomalies during female meiosis. sbr 12 mutant sterile males with immobile spermatozoa exhibit disturbances in the axoneme, mitochondrial derivatives and cytokinesis. These data allow us to propose that the Dm NXF1 proteins transport certain mRNAs in neurites and interact with localized mRNAs that are necessary for dynamic changes of the cytoskeleton. © 2017 Wiley Periodicals, Inc.
Cheng, Behling; Al-Shammari, Fatema H; Ghader, Isra'a A; Sequeira, Fatima; Thakkar, Jitendra; Mathew, Thazhumpal C
2017-07-01
Adrenal gland reportedly expresses many nuclear receptors that are known to heterodimerize with retinoid-X-receptor (RXR) for functions, but the information regarding the glandular RXR is not adequate. Studies of rat adrenal homogenate by Western blotting revealed three RXR proteins: RXRα (55kDa), RXRβ (47kDa) and RXR (56kDa). RXRγ was not detectable. After fractionation, RXRα was almost exclusively localized in the nuclear fraction. In comparison, substantial portions of RXRβ and RXR were found in both nuclear and post-nuclear particle fractions, suggesting genomic and non-genomic functions. Cells immunostained for RXRα were primarily localized in zona fasciculata (ZF) and medulla, although some stained cells were found in zona glomerulosa (ZG) and zona reticularis (ZR). In contrast, cells immunostained for RXRβ were concentrated principally in ZG, although some stained cells were seen in ZR, ZF, and medulla (in descending order, qualitatively). Analysis of adrenal lipid extracts by LC/MS did not detect 9-cis-retinoic acid (a potent RXR-ligand) but identified all-trans retinoic acid. Since C20 and C22 polyunsaturated fatty acids (PUFAs) can also activate RXR, subcellular availabilities of unesterified fatty acids were investigated by GC/MS. As results, arachidonic acid (C20:4), adrenic acid (C22:4), docosapentaenoic acid (C22:5), and cervonic acid (C22:6) were detected in the lipids extracted from each subcellular fraction. Thus, the RXR-agonizing PUFAs are available in all the main subcellular compartments considerably. The present findings not only shed light on the adrenal network of RXRs but also provide baseline information for further investigations of RXR heterodimers in the regulation of adrenal steroidogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gürlebeck, Doreen; Szurek, Boris; Bonas, Ulla
2005-04-01
The effector protein AvrBs3 from the bacterial phytopathogen Xanthomonas campestris pv. vesicatoria is translocated into the plant cell where it specifically induces hypertrophy symptoms or the hypersensitive reaction. Activity of AvrBs3 depends on nuclear localization signals (NLSs) and an acidic activation domain, suggesting a role in regulation of plant transcription. Here, we show that AvrBs3 dimerizes in the plant cell prior to its nuclear import. AvrBs3 deletion derivatives were tested in the yeast two-hybrid system revealing that the repeat region, which confers specific recognition in resistant plants and is crucial for virulence function, is also essential for the self-interaction. GST pull-down assays showed that the AvrBs3-AvrBs3 interaction occurs independent of plant proteins. Coexpression of two different inactive mutant AvrBs3 derivatives in Bs3-resistant pepper plants resulted in 'trans-complementation', i.e., the induction of a hypersensitive reaction. This clearly indicates that AvrBs3-dimerization occurs in planta. Interestingly, 'trans-complementation' was not observed in susceptible plants suggesting that wild-type homodimers are needed for the AvrBs3 virulence function in plants. Furthermore, a green fluorescent protein (GFP) fusion of AvrBs3 deleted in the NLSs (AvrBs3DeltaNLS-GFP), normally localized in the cytoplasm, was imported into the nucleus upon coexpression with wild-type AvrBs3 in Nicotiana benthamiana. Thus, AvrBs3 dimerization takes place in the cytoplasm of the plant cell prior to nuclear import. Given the fact that dimerization is a common feature of transcriptional regulators, our data are consistent with the idea that AvrBs3 manipulates expression of plant genes involved in the establishment of compatible and incompatible interactions.
Hsu, Hong-Ming; Lee, Yu; Indra, Dharmu; Wei, Shu-Yi; Liu, Hsing-Wei; Chang, Lung-Chun; Chen, Chinpan; Ong, Shiou-Jeng
2012-01-01
In Trichomonas vaginalis, a novel nuclear localization signal spanning the folded R2R3 DNA-binding domain of a Myb2 protein was previously identified. To study whether a similar signal is used for nuclear translocation by other Myb proteins, nuclear translocation of Myb3 was examined in this report. When overexpressed, hemagglutinin-tagged Myb3 was localized to nuclei of transfected cells, with a cellular distribution similar to that of endogenous Myb3. Fusion to a bacterial tetracycline repressor, R2R3, of Myb3 that spans amino acids (aa) 48 to 156 was insufficient for nuclear translocation of the fusion protein, unless its C terminus was extended to aa 167. The conserved isoleucine in helix 2 of R2R3, which is important for Myb2's structural integrity in maintaining DNA-binding activity and nuclear translocation, was also vital for the former activity of Myb3, but less crucial for the latter. Sequential nuclear influx and efflux of Myb3, which require further extension of the nuclear localization signal to aa 180, were immediately induced after iron repletion. Sequence elements that regulate nuclear translocation with cytoplasmic retention, nuclear influx, and nuclear efflux were identified within the C-terminal tail. These results suggest that the R2R3 DNA-binding domain also serves as a common module for the nuclear translocation of both Myb2 and Myb3, but there are intrinsic differences between the two nuclear localization signals. PMID:23042127
Tsuji, Takahiro; Sheehy, Noreen; Gautier, Virginie W; Hayakawa, Hitoshi; Sawa, Hirofumi; Hall, William W
2007-05-04
HTLV-1 is the etiologic agent of the adult T cell leukemialymphoma (ATLL). The viral regulatory protein Tax plays a central role in leukemogenesis as a transcriptional transactivator of both viral and cellular gene expression, and this requires Tax activity in both the cytoplasm and the nucleus. In the present study, we have investigated the mechanisms involved in the nuclear localization of Tax. Employing a GFP fusion expression system and a range of Tax mutants, we could confirm that the N-terminal 60 amino acids, and specifically residues within the zinc finger motif in this region, are important for nuclear localization. Using an in vitro nuclear import assay, it could be demonstrated that the transportation of Tax to the nucleus required neither energy nor carrier proteins. Specific and direct binding between Tax and p62, a nucleoporin with which the importin beta family of proteins have been known to interact was also observed. The nuclear import activity of wild type Tax and its mutants and their binding affinity for p62 were also clearly correlated, suggesting that the entry of Tax into the nucleus involves a direct interaction with nucleoporins within the nuclear pore complex (NPC). The nuclear export of Tax was also shown to be carrier independent. It could be also demonstrated that Tax it self may have a carrier function and that the NF-kappaB subunit p65 could be imported into the nucleus by Tax. These studies suggest that Tax could alter the nucleocytoplasmic distribution of cellular proteins, and this could contribute to the deregulation of cellular processes observed in HTLV-1 infection.
Drosophila histone locus bodies form by hierarchical recruitment of components
White, Anne E.; Burch, Brandon D.; Yang, Xiao-cui; Gasdaska, Pamela Y.; Dominski, Zbigniew; Marzluff, William F.
2011-01-01
Nuclear bodies are protein- and RNA-containing structures that participate in a wide range of processes critical to genome function. Molecular self-organization is thought to drive nuclear body formation, but whether this occurs stochastically or via an ordered, hierarchical process is not fully understood. We addressed this question using RNAi and proteomic approaches in Drosophila melanogaster to identify and characterize novel components of the histone locus body (HLB), a nuclear body involved in the expression of replication-dependent histone genes. We identified the transcription elongation factor suppressor of Ty 6 (Spt6) and a homologue of mammalian nuclear protein of the ataxia telangiectasia–mutated locus that is encoded by the homeotic gene multisex combs (mxc) as novel HLB components. By combining genetic manipulation in both cell culture and embryos with cytological observations of Mxc, Spt6, and the known HLB components, FLICE-associated huge protein, Mute, U7 small nuclear ribonucleoprotein, and MPM-2 phosphoepitope, we demonstrated sequential recruitment and hierarchical dependency for localization of factors to HLBs during development, suggesting that ordered assembly can play a role in nuclear body formation. PMID:21576393
1990-01-01
The yeast RNA1 gene is required for RNA processing and nuclear transport of RNA. The rna1-1 mutation of this locus causes defects in pre-tRNA splicing, processing of the primary pre-rRNA transcript, production of mRNA and export of RNA from the nucleus to the cytosol. To understand how this gene product can pleiotropically affect these processes, we sought to determine the intracellular location of the RNA1 protein. As determined by indirect immunofluorescence localization and organelle fractionation, the RNA1 antigen is found exclusively or primarily in the cytoplasm. Only a tiny fraction of the endogenous protein could be localized to and functional in the nucleus. Furthermore, the RNA1 antigen does not localize differently under stress conditions. These findings suggest that the RNA1 protein is not directly involved in RNA processing but may modify nuclear proteins or otherwise transmit a signal from the cytosol to the nucleus or play a role in maintaining the integrity of the nucleus. PMID:2116418
McCarney, Evan R; Armstrong, Brandon D; Kausik, Ravinath; Han, Songi
2008-09-16
We present a unique analysis tool for the selective detection of local water inside soft molecular assemblies (hydrophobic cores, vesicular bilayers, and micellar structures) suspended in bulk water. Through the use of dynamic nuclear polarization (DNP), the (1)H NMR signal of water is amplified, as it interacts with stable radicals that possess approximately 658 times higher spin polarization. We utilized stable nitroxide radicals covalently attached along the hydrophobic tail of stearic acid molecules that incorporate themselves into surfactant-based micelle or vesicle structures. Here, we present a study of local water content and fluid viscosity inside oleate micelles and vesicles and Triton X-100 micelles to serve as model systems for soft molecular assemblies. This approach is unique because the amplification of the NMR signal is performed in bulk solution and under ambient conditions with site-specific spin labels that only detect the water that is directly interacting with the localized spin labels. Continuous wave (cw) electron spin resonance (ESR) analysis provides rotational dynamics of the spin-labeled molecular chain segments and local polarity parameters that can be related to hydration properties, whereas we show that DNP-enhanced (1)H NMR analysis of fluid samples directly provides translational water dynamics and permeability of the local environment probed by the spin label. Our technique therefore has the potential to become a powerful analysis tool, complementary to cw ESR, to study hydration characteristics of surfactant assemblies, lipid bilayers, or protein aggregates, where water dynamics is a key parameter of their structure and function. In this study, we find that there is significant penetration of water inside the oleate micelles with a higher average local water viscosity (approximately 1.8 cP) than in bulk water, and Triton X-100 micelles and oleate vesicle bilayers mostly exclude water while allowing for considerable surfactant chain motion and measurable water permeation through the soft structure.
Implications of Atmospheric Test Fallout Data for Nuclear Winter.
NASA Astrophysics Data System (ADS)
Baker, George Harold, III
1987-09-01
Atmospheric test fallout data have been used to determine admissable dust particle size distributions for nuclear winter studies. The research was originally motivated by extreme differences noted in the magnitude and longevity of dust effects predicted by particle size distributions routinely used in fallout predictions versus those used for nuclear winter studies. Three different sets of historical data have been analyzed: (1) Stratospheric burden of Strontium -90 and Tungsten-185, 1954-1967 (92 contributing events); (2) Continental U.S. Strontium-90 fallout through 1958 (75 contributing events); (3) Local Fallout from selected Nevada tests (16 events). The contribution of dust to possible long term climate effects following a nuclear exchange depends strongly on the particle size distribution. The distribution affects both the atmospheric residence time and optical depth. One dimensional models of stratospheric/tropospheric fallout removal were developed and used to identify optimum particle distributions. Results indicate that particle distributions which properly predict bulk stratospheric activity transfer tend to be somewhat smaller than number size distributions used in initial nuclear winter studies. In addition, both ^{90}Sr and ^ {185}W fallout behavior is better predicted by the lognormal distribution function than the prevalent power law hybrid function. It is shown that the power law behavior of particle samples may well be an aberration of gravitational cloud stratification. Results support the possible existence of two independent particle size distributions in clouds generated by surface or near surface bursts. One distribution governs late time stratospheric fallout, the other governs early time fallout. A bimodal lognormal distribution is proposed to describe the cloud particle population. The distribution predicts higher initial sunlight attenuation and lower late time attenuation than the power law hybrid function used in initial nuclear winter studies.
Lombardi, Maria L; Zwerger, Monika; Lammerding, Jan
2011-09-14
In most eukaryotic cells, the nucleus is the largest organelle and is typically 2 to 10 times stiffer than the surrounding cytoskeleton; consequently, the physical properties of the nucleus contribute significantly to the overall biomechanical behavior of cells under physiological and pathological conditions. For example, in migrating neutrophils and invading cancer cells, nuclear stiffness can pose a major obstacle during extravasation or passage through narrow spaces within tissues.(1) On the other hand, the nucleus of cells in mechanically active tissue such as muscle requires sufficient structural support to withstand repetitive mechanical stress. Importantly, the nucleus is tightly integrated into the cellular architecture; it is physically connected to the surrounding cytoskeleton, which is a critical requirement for the intracellular movement and positioning of the nucleus, for example, in polarized cells, synaptic nuclei at neuromuscular junctions, or in migrating cells.(2) Not surprisingly, mutations in nuclear envelope proteins such as lamins and nesprins, which play a critical role in determining nuclear stiffness and nucleo-cytoskeletal coupling, have been shown recently to result in a number of human diseases, including Emery-Dreifuss muscular dystrophy, limb-girdle muscular dystrophy, and dilated cardiomyopathy.(3) To investigate the biophysical function of diverse nuclear envelope proteins and the effect of specific mutations, we have developed experimental methods to study the physical properties of the nucleus in single, living cells subjected to global or localized mechanical perturbation. Measuring induced nuclear deformations in response to precisely applied substrate strain application yields important information on the deformability of the nucleus and allows quantitative comparison between different mutations or cell lines deficient for specific nuclear envelope proteins. Localized cytoskeletal strain application with a microneedle is used to complement this assay and can yield additional information on intracellular force transmission between the nucleus and the cytoskeleton. Studying nuclear mechanics in intact living cells preserves the normal intracellular architecture and avoids potential artifacts that can arise when working with isolated nuclei. Furthermore, substrate strain application presents a good model for the physiological stress experienced by cells in muscle or other tissues (e.g., vascular smooth muscle cells exposed to vessel strain). Lastly, while these tools have been developed primarily to study nuclear mechanics, they can also be applied to investigate the function of cytoskeletal proteins and mechanotransduction signaling.
Bryan, Anthony C; Zhang, Jin; Guo, Jianjun; Ranjan, Priya; Singan, Vasanth; Barry, Kerrie; Schmutz, Jeremy; Weighill, Deborah; Jacobson, Daniel; Jawdy, Sara; Tuskan, Gerald A; Chen, Jin-Gui; Muchero, Wellington
2018-06-08
Polyglutamine (polyQ) stretches have been reported to occur in proteins across many organisms including animals, fungi and plants. Expansion of these repeats has attracted much attention due their associations with numerous human diseases including Huntington's and other neurological maladies. This suggests that the relative length of polyQ stretches is an important modulator of their function. Here, we report the identification of a Populus C-terminus binding protein (CtBP) ANGUSTIFOLIA ( PtAN1 ) which contains a polyQ stretch whose functional relevance had not been established. Analysis of 917 resequenced Populus trichocarpa genotypes revealed three allelic variants at this locus encoding 11-, 13- and 15-glutamine residues. Transient expression assays using Populus leaf mesophyll protoplasts revealed that the 11Q variant exhibited strong nuclear localization whereas the 15Q variant was only found in the cytosol, with the 13Q variant exhibiting localization in both subcellular compartments. We assessed functional implications by evaluating expression changes of putative PtAN1 targets in response to overexpression of the three allelic variants and observed allele-specific differences in expression levels of putative targets. Our results provide evidence that variation in polyQ length modulates PtAN1 function by altering subcellular localization. Copyright © 2018, G3: Genes, Genomes, Genetics.
Alefantis, Timothy; Flaig, Katherine E; Wigdahl, Brian; Jain, Pooja
2007-05-01
Human T cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 transcriptional transactivator protein Tax plays an integral role in virus replication and disease progression. Traditionally, Tax is described as a nuclear protein where it performs its primary role as a transcriptional transactivator. However, recent studies have clearly shown that Tax can also be localized to the cytoplasm where it has been shown to interact with a number of host transcription factors most notably NF-kappaB, constitutive expression of which is directly related to the T cell transforming properties of Tax in ATL patients. The presence of a functional nuclear export signal (NES) within Tax and the secretion of full-length Tax have also been demonstrated previously. Additionally, release of Tax from HTLV-1-infected cells and the presence of cell-free Tax was demonstrated in the CSF of HAM/TSP patients suggesting that the progression to HAM/TSP might be mediated by the ability of Tax to function as an extracellular cytokine. Therefore, in both ATL and HAM/TSP Tax nuclear export and nucleocytoplasmic shuttling may play a critical role, the mechanism of which remains unknown. In this study, we have demonstrated that the calcium binding protein calreticulin interacts with Tax by co-immunoprecipitation. This interaction was found to localize to a region at or near the nuclear membrane. In addition, differential expression of calreticulin was demonstrated in various cell types that correlated with their ability to retain cytoplasmic Tax, particularly in astrocytes. Finally, a comparison of a number of HTLV-1-infected T cell lines to non-infected T cells revealed higher expression of calreticulin in infected cells implicating a direct role for this protein in HTLV-1 infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myre, Michael A.; O'Day, Danton H.
2005-06-24
Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD ({sup 171}EDVSRFIKGKLLQKQQKIYKDLERF{sup 195}) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patchesmore » at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues {sup 48}KKSYQDPEIIAHSRPRK{sup 64} that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to {sup 48}EF{sup 49} abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the {sup 48}EF{sup 49} construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium.« less
Principles of protein targeting to the nucleolus.
Martin, Robert M; Ter-Avetisyan, Gohar; Herce, Henry D; Ludwig, Anne K; Lättig-Tünnemann, Gisela; Cardoso, M Cristina
2015-01-01
The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of rRNA synthesis and assembly of ribosomes. Nucleolar proteins dynamically localize and accumulate in this nuclear compartment relative to the surrounding nucleoplasm. In this study, we have assessed the molecular requirements that are necessary and sufficient for the localization and accumulation of peptides and proteins inside the nucleoli of living cells. The data showed that positively charged peptide entities composed of arginines alone and with an isoelectric point at and above 12.6 are necessary and sufficient for mediating significant nucleolar accumulation. A threshold of 6 arginines is necessary for peptides to accumulate in nucleoli, but already 4 arginines are sufficient when fused within 15 amino acid residues of a nuclear localization signal of a protein. Using a pH sensitive dye, we found that the nucleolar compartment is particularly acidic when compared to the surrounding nucleoplasm and, hence, provides the ideal electrochemical environment to bind poly-arginine containing proteins. In fact, we found that oligo-arginine peptides and GFP fusions bind RNA in vitro. Consistent with RNA being the main binding partner for arginines in the nucleolus, we found that the same principles apply to cells from insects to man, indicating that this mechanism is highly conserved throughout evolution.
Nuclear Localization of the ERK MAP Kinase Mediated by Drosophila αPS2βPS Integrin and Importin-7
James, Brian P.; Bunch, Thomas A.; Krishnamoorthy, Srinivasan; Perkins, Lizabeth A.
2007-01-01
The control of gene expression by the mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase (ERK) requires its translocation into the nucleus. In Drosophila S2 cells nuclear accumulation of diphospho-ERK (dpERK) is greatly reduced by interfering double-stranded RNA against Drosophila importin-7 (DIM-7) or by the expression of integrin mutants, either during active cell spreading or after stimulation by insulin. In both cases, total ERK phosphorylation (on Westerns) is not significantly affected, and ERK accumulates in a perinuclear ring. Tyrosine phosphorylation of DIM-7 is reduced in cells expressing integrin mutants, indicating a mechanistic link between these components. DIM-7 and integrins localize to the same actin-containing peripheral regions in spreading cells, but DIM-7 is not concentrated in paxillin-positive focal contacts or stable focal adhesions. The Corkscrew (SHP-2) tyrosine phosphatase binds DIM-7, and Corkscrew is required for the cortical localization of DIM-7. These data suggest a model in which ERK phosphorylation must be spatially coupled to integrin-mediated DIM-7 activation to make a complex that can be imported efficiently. Moreover, dpERK nuclear import can be restored in DIM-7–deficient cells by Xenopus Importin-7, demonstrating that ERK import is an evolutionarily conserved function of this protein. PMID:17699602
1994-01-01
The tumor suppressing capacity of the retinoblastoma protein (p110RB) is dependent on interactions made with cellular proteins through its carboxy-terminal domains. How the p110RB amino-terminal region contributes to this activity is unclear, though evidence now indicates it is important for both growth suppression and regulation of the full- length protein. We have used the yeast two-hybrid system to screen for cellular proteins which bind to the first 300 amino acids of p110RB. The only gene isolated from this screen encodes a novel 84-kD nuclear matrix protein that localizes to subnuclear regions associated with RNA processing. This protein, p84, requires a structurally defined domain in the amino terminus of p110RB for binding. Furthermore, both in vivo and in vitro experiments demonstrate that p84 binds preferentially to the functionally active, hypophosphorylated form of p110RB. Thus, the amino terminus of p110RB may function in part to facilitate the binding of growth promoting factors at subnuclear regions actively involved in RNA metabolism. PMID:7525595
Florecki, Mônica M.; Hartfelder, Klaus
2012-01-01
As key factors in intercellular adhesion processes, cadherins play important roles in a plethora of developmental processes, including gametogenesis. In a previous study on cadherin localization in the gonads of honey bees, performed with heterologous pan-cadherin antibodies, we detected these proteins as (i) associated with cell membranes, (ii) as homogeneously distributed throughout the cytoplasm, and (iii) as nuclear foci in both somatic and germline cells, raising the possibility of alternative functions. To further investigate such unusual intracellular cadherin localization we produced specific antibodies against the N- and C-terminal domains of honey bee N- and E-cadherin. A 160 kDa protein was recognized by the E-cadherin antibodies as well as one of approximately 300 kDa from those raised against N-cadherin. In gonad preparations, both proteins were detected as dispersed throughout the cytoplasm and as nuclear foci in both germline and somatic cells of queen and worker ovarioles, as well as in the testioles of drones. This leads us to infer that cadherins may indeed be involved in certain signaling pathways and/or transcriptional regulation during gametogenesis. In late oogenesis stages, immunolabeling for both proteins was observed at the cell cortex, in conformity with a role in cell adhesion. In testioles, E-cadherin was seen in co-localization with fusomes, indicating a possible role in cyst organization. Taken together, the distribution of N- and E-cadherins in honey bee gonads is suggestive of alternative roles for cadherins in gametogenesis of both sexes. PMID:26466735
Florecki, Mônica M; Hartfelder, Klaus
2012-11-22
As key factors in intercellular adhesion processes, cadherins play important roles in a plethora of developmental processes, including gametogenesis. In a previous study on cadherin localization in the gonads of honey bees, performed with heterologous pan-cadherin antibodies, we detected these proteins as (i) associated with cell membranes, (ii) as homogeneously distributed throughout the cytoplasm, and (iii) as nuclear foci in both somatic and germline cells, raising the possibility of alternative functions. To further investigate such unusual intracellular cadherin localization we produced specific antibodies against the N- and C-terminal domains of honey bee N- and E-cadherin. A 160 kDa protein was recognized by the E-cadherin antibodies as well as one of approximately 300 kDa from those raised against N-cadherin. In gonad preparations, both proteins were detected as dispersed throughout the cytoplasm and as nuclear foci in both germline and somatic cells of queen and worker ovarioles, as well as in the testioles of drones. This leads us to infer that cadherins may indeed be involved in certain signaling pathways and/or transcriptional regulation during gametogenesis. In late oogenesis stages, immunolabeling for both proteins was observed at the cell cortex, in conformity with a role in cell adhesion. In testioles, E-cadherin was seen in co-localization with fusomes, indicating a possible role in cyst organization. Taken together, the distribution of N- and E-cadherins in honey bee gonads is suggestive of alternative roles for cadherins in gametogenesis of both sexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanza, Daniel C.F.; Trindade, Daniel M.; Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP
2008-06-10
FEZ1 (Fasciculation and elongation protein zeta 1) is an ortholog of the Caenorhabditis elegans protein UNC-76, involved in neuronal development and axon outgrowth, in that worm. Mammalian FEZ1 has already been reported to cooperate with PKC-zeta in the differentiation and polarization of PC12 neuronal cells. Furthermore, FEZ1 is associated with kinesin 1 and JIP1 to form a cargo-complex responsible for microtubule based transport of mitochondria along axons. FEZ1 can also be classified as a hub protein, since it was reported to interact with over 40 different proteins in yeast two-hybrid screens, including at least nine nuclear proteins. Here, we transientlymore » over-expressed GFP-FEZ1full in human HEK293 and HeLa cells in order to study the sub-cellular localization of GFP-FEZ1. We observed that over 40% of transiently transfected cells at 3 days post-transfection develop multi-lobulated nuclei, which are also called flower-like nuclei. We further demonstrated that GFP-FEZ1 localizes either to the cytoplasm or the nuclear fraction, and that the appearance of the flower-like nuclei depends on intact microtubule function. Finally, we show that FEZ1 co-localizes with both, {alpha}- and especially with {gamma}-tubulin, which localizes as a centrosome like structure at the center of the multiple lobules. In summary, our data suggest that FEZ1 has an important centrosomal function and supply new mechanistic insights to the formation of flower-like nuclei, which are a phenotypical hallmark of human leukemia cells.« less
A Role for Caenorhabditis elegans Importin IMA-2 in Germ Line and Embryonic Mitosis
Geles, Kenneth G.; Johnson, Jeffrey J.; Jong, Sena; Adam, Stephen A.
2002-01-01
The importin α family of nuclear-cytoplasmic transport factors mediates the nuclear localization of proteins containing classical nuclear localization signals. Metazoan animals express multiple importin α proteins, suggesting their possible roles in cell differentiation and development. Adult Caenorhabditis elegans hermaphrodites express three importin α proteins, IMA-1, IMA-2, and IMA-3, each with a distinct expression and localization pattern. IMA-2 was expressed exclusively in germ line cells from the early embryonic through adult stages. The protein has a dynamic pattern of localization dependent on the stage of the cell cycle. In interphase germ cells and embryonic cells, IMA-2 is cytoplasmic and nuclear envelope associated, whereas in developing oocytes, the protein is cytoplasmic and intranuclear. During mitosis in germ line cells and embryos, IMA-2 surrounded the condensed chromosomes but was not directly associated with the mitotic spindle. The timing of IMA-2 nuclear localization suggested that the protein surrounded the chromosomes after fenestration of the nuclear envelope in prometaphase. Depletion of IMA-2 by RNA-mediated gene interference (RNAi) resulted in embryonic lethality and a terminal aneuploid phenotype. ima-2(RNAi) embryos have severe defects in nuclear envelope formation, accumulating nucleoporins and lamin in the cytoplasm. We conclude that IMA-2 is required for proper chromosome dynamics in germ line and early embryonic mitosis and is involved in nuclear envelope assembly at the conclusion of mitosis. PMID:12221121
Human SUV3 helicase regulates growth rate of the HeLa cells and can localize in the nucleoli.
Szewczyk, Maciej; Fedoryszak-Kuśka, Natalia; Tkaczuk, Katarzyna; Dobrucki, Jurek; Waligórska, Agnieszka; Stępień, Piotr P
2017-01-01
The human SUV3 helicase (SUV3, hSUV3, SUPV3L1) is a DNA/RNA unwinding enzyme belonging to the class of DexH-box helicases. It localizes predominantly in the mitochondria, where it forms an RNA-degrading complex called mitochondrial degradosome with exonuclease PNP (polynucleotide phosphorylase). Association of this complex with the polyA polymerase can modulate mitochondrial polyA tails. Silencing of the SUV3 gene was shown to inhibit the cell cycle and to induce apoptosis in human cell lines. However, since small amounts of the SUV3 helicase were found in the cell nuclei, it was not clear whether the observed phenotypes of SUV3 depletion were of mitochondrial or nuclear origin. In order to answer this question we have designed gene constructs able to inhibit the SUV3 activity exclusively in the cell nuclei. The results indicate that the observed growth rate impairment upon SUV3 depletion is due to its nuclear function(s). Unexpectedly, overexpression of the nuclear-targeted wild-type copies of the SUV3 gene resulted in a higher growth rate. In addition, we demonstrate that the SUV3 helicase can be found in the HeLa cell nucleoli, but it is not detectable in the DNA-repair foci. Our results indicate that the nucleolar-associated human SUV3 protein is an important factor in regulation of the cell cycle.
Decreased expression of peroxisome proliferator activated receptor gamma in cftr-/- mice.
Ollero, Mario; Junaidi, Omer; Zaman, Munir M; Tzameli, Iphigenia; Ferrando, Adolfo A; Andersson, Charlotte; Blanco, Paola G; Bialecki, Eldad; Freedman, Steven D
2004-08-01
Some of the pathological manifestations of cystic fibrosis are in accordance with an impaired expression and/or activity of PPARgamma. We hypothesized that PPARgamma expression is altered in tissues lacking the normal cystic fibrosis transmembrane regulator protein (CFTR). PPARgamma mRNA levels were measured in colonic mucosa, ileal mucosa, adipose tissue, lung, and liver from wild-type and cftr-/- mice by quantitative RT-PCR. PPARgamma expression was decreased twofold in CFTR-regulated tissues (colon, ileum, and lung) from cftr-/- mice compared to wild-type littermates. In contrast, no differences were found in fat and liver. Immunohistochemical analysis of PPARgamma in ileum and colon revealed a predominantly nuclear localization in wild-type mucosal epithelial cells while tissues from cftr-/- mice showed a more diffuse, lower intensity labeling. A significant decrease in PPARgamma expression was confirmed in nuclear extracts of colon mucosa by Western blot analysis. In addition, binding of the PPARgamma/RXR heterodimer to an oligonucletotide containing a peroxisome proliferator responsive element (PPRE) was also decreased in colonic mucosa extracts from cftr-/- mice. Treatment of cftr-/- mice with the PPARgamma ligand rosiglitazone restored both the nuclear localization and binding to DNA, but did not increase RNA levels. We conclude that PPARgamma expression in cftr-/- mice is downregulated at the RNA and protein levels and its function diminished. These changes may be related to the loss of function of CFTR and may be relevant to the pathogenesis of metabolic abnormalities associated with cystic fibrosis in humans. Copyright 2004 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Joshi, Tenzing H. Y.; Quiter, Brian J.; Maltz, Jonathan S.; Bandstra, Mark S.; Haefner, Andrew; Eikmeier, Nicole; Wagner, Eric; Luke, Tanushree; Malchow, Russell; McCall, Karen
2017-07-01
The Airborne Radiological Enhanced-sensor System (ARES) includes a prototype helicopter-borne CsI(Na) detector array that has been developed as part of the DHS Domestic Nuclear Detection Office Advanced Technology Demonstration. The detector system geometry comprises two pairs of 23-detector arrays designed to function as active masks, providing additional angular resolution of measured gamma rays in the roll dimension. Experimental measurements, using five radioisotopes (137Cs, 60Co, 241Am, 131I, and 99mTc), were performed to map the detector response in both roll and pitch dimensions. This paper describes the acquisition and analysis of these characterization measurements, calculation of the angular response of the ARES system, and how this response function is used to improve aerial detection and localization of radiological and nuclear threat sources.
Inverse Analysis of Irradiated NuclearMaterial Gamma Spectra via Nonlinear Optimization
NASA Astrophysics Data System (ADS)
Dean, Garrett James
Nuclear forensics is the collection of technical methods used to identify the provenance of nuclear material interdicted outside of regulatory control. Techniques employed in nuclear forensics include optical microscopy, gas chromatography, mass spectrometry, and alpha, beta, and gamma spectrometry. This dissertation focuses on the application of inverse analysis to gamma spectroscopy to estimate the history of pulse irradiated nuclear material. Previous work in this area has (1) utilized destructive analysis techniques to supplement the nondestructive gamma measurements, and (2) been applied to samples composed of spent nuclear fuel with long irradiation and cooling times. Previous analyses have employed local nonlinear solvers, simple empirical models of gamma spectral features, and simple detector models of gamma spectral features. The algorithm described in this dissertation uses a forward model of the irradiation and measurement process within a global nonlinear optimizer to estimate the unknown irradiation history of pulse irradiated nuclear material. The forward model includes a detector response function for photopeaks only. The algorithm uses a novel hybrid global and local search algorithm to quickly estimate the irradiation parameters, including neutron fluence, cooling time and original composition. Sequential, time correlated series of measurements are used to reduce the uncertainty in the estimated irradiation parameters. This algorithm allows for in situ measurements of interdicted irradiated material. The increase in analysis speed comes with a decrease in information that can be determined, but the sample fluence, cooling time, and composition can be determined within minutes of a measurement. Furthermore, pulse irradiated nuclear material has a characteristic feature that irradiation time and flux cannot be independently estimated. The algorithm has been tested against pulse irradiated samples of pure special nuclear material with cooling times of four minutes to seven hours. The algorithm described is capable of determining the cooling time and fluence the sample was exposed to within 10% as well as roughly estimating the relative concentrations of nuclides present in the original composition.
Simpson-Holley, Martha; Colgrove, Robert C; Nalepa, Grzegorz; Harper, J Wade; Knipe, David M
2005-10-01
Herpes simplex virus 1 (HSV-1) replicates in the nucleus of host cells and radically alters nuclear architecture as part of its replication process. Replication compartments (RCs) form, and host chromatin is marginalized. Chromatin is later dispersed, and RCs spread past it to reach the nuclear edge. Using a lamin A-green fluorescent protein fusion, we provide direct evidence that the nuclear lamina is disrupted during HSV-1 infection and that the UL31 and UL34 proteins are required for this. We show nuclear expansion from 8 h to 24 h postinfection and place chromatin rearrangement and disruption of the lamina in the context of this global change in nuclear architecture. We show HSV-1-induced disruption of the localization of Cdc14B, a cellular protein and component of a putative nucleoskeleton. We also show that UL31 and UL34 are required for nuclear expansion. Studies with inhibitors of globular actin (G-actin) indicate that G-actin plays an essential role in nuclear expansion and chromatin dispersal but not in lamina alterations induced by HSV-1 infection. From analyses of HSV infections under various conditions, we conclude that nuclear expansion and chromatin dispersal are dispensable for optimal replication, while lamina rearrangement is associated with efficient replication.
Yamada, Kana; Noguchi, Chisato; Kamitori, Kazuyo; Dong, Youyi; Hirata, Yuko; Hossain, Mohammad A; Tsukamoto, Ikuko; Tokuda, Masaaki; Yamaguchi, Fuminori
2012-02-01
Oxidative stress modulates the osteoclast differentiation via redox systems, and thioredoxin 1 (Trx) promotes the osteoclast formation by regulating the activity of transcription factors. The function of Trx is known to be regulated by its binding partner, thioredoxin-interacting protein (TXNIP). We previously reported that the expression of TXNIP gene is strongly induced by a rare sugar D-allose. In this study, we tested the hypothesis that D-allose could inhibit the osteoclast differentiation by regulating the Trx function. We used a murine Raw264 cell line that differentiates to the osteoclast by the receptor activator of nuclear factor-κB ligand (RANKL) treatment. The effect of sugars was evaluated by tartrate-resistant acid phosphatase staining. The expression and localization of TXNIP and Trx protein were examined by Western blotting and immunohistochemisty. The activity of the nuclear factor-κB, nuclear factor of activated T cells, and activator protein 1 transcription factors was measured by the luciferase reporter assay. The addition of D-allose (25 mmol/L) inhibited the osteoclast differentiation down to 9.53% ± 1.27% of a receptor activator of nuclear factor-κB ligand-only treatment. During the osteoclast differentiation, a significant increase of TNXIP was observed by D-allose treatment. The immunohistochemical analysis showed that both Trx and TXNIP existed in the nucleus in preosteoclasts and osteoclasts. Overexpression of TXNIP by plasmid transfection also inhibited the osteoclast formation, indicating the functional importance of TXNIP for the osteoclast differentiation. Transcriptional activity of the activator protein 1, nuclear factor-κB, and nuclear factor of activated T cells, known to be modulated by Trx, were inhibited by D-allose. In conclusion, our data indicate that D-allose is a strong inhibitor of the osteoclast differentiation, and this effect could be caused by TXNIP induction and a resulting inhibition of the Trx function. Copyright © 2012 Elsevier Inc. All rights reserved.
Nuclear import of human MLH1, PMS2, and MutLalpha: redundancy is the key.
Leong, Vivian; Lorenowicz, Jessica; Kozij, Natalie; Guarné, Alba
2009-08-01
DNA mismatch repair maintains genomic stability by correcting errors that have escaped polymerase proofreading. Defects on mismatch repair genes lead to an increased mutation rate, microsatellite instability and predisposition to human non-polyposis colorectal cancer (HNPCC). Human MutLalpha is a heterodimer formed by the interaction of MLH1 and PMS2 that coordinates a series of key events in mismatch repair. It has been proposed that nuclear import of MutLalpha may be the first regulatory step on the activation of the mismatch repair pathway. Using confocal microscopy and mismatch repair deficient cells, we have identified the sequence determinants that drive nuclear import of human MLH1, PMS2, and MutLalpha. Transient transfection of the individual proteins reveals that MLH1 has a bipartite and PMS2 has a single monopartite nuclear localization signal. Although dimerization is not required for nuclear localization, the MutLalpha heterodimer is imported more efficiently than the MLH1 or PMS2 monomers. Interestingly, the bipartite localization signal of MLH1 can direct import of MutLalpha even when PMS2 encompasses a mutated localization signal. Hence we conclude that the presence of redundant nuclear localization signals guarantees nuclear transport of MutLalpha and, consequently, efficient mismatch repair.
Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein.
Massiah, M A; Starich, M R; Paschall, C; Summers, M F; Christensen, A M; Sundquist, W I
1994-11-25
The HIV-1 matrix protein forms an icosahedral shell associated with the inner membrane of the mature virus. Genetic analyses have indicated that the protein performs important functions throughout the viral life-cycle, including anchoring the transmembrane envelope protein on the surface of the virus, assisting in viral penetration, transporting the proviral integration complex across the nuclear envelope, and localizing the assembling virion to the cell membrane. We now report the three-dimensional structure of recombinant HIV-1 matrix protein, determined at high resolution by nuclear magnetic resonance (NMR) methods. The HIV-1 matrix protein is the first retroviral matrix protein to be characterized structurally and only the fourth HIV-1 protein of known structure. NMR signal assignments required recently developed triple-resonance (1H, 13C, 15N) NMR methodologies because signals for 91% of 132 assigned H alpha protons and 74% of the 129 assignable backbone amide protons resonate within chemical shift ranges of 0.8 p.p.m. and 1 p.p.m., respectively. A total of 636 nuclear Overhauser effect-derived distance restraints were employed for distance geometry-based structure calculations, affording an average of 13.0 NMR-derived distance restraints per residue for the experimentally constrained amino acids. An ensemble of 25 refined distance geometry structures with penalties (sum of the squares of the distance violations) of 0.32 A2 or less and individual distance violations under 0.06 A was generated; best-fit superposition of ordered backbone heavy atoms relative to mean atom positions afforded root-mean-square deviations of 0.50 (+/- 0.08) A. The folded HIV-1 matrix protein structure is composed of five alpha-helices, a short 3(10) helical stretch, and a three-strand mixed beta-sheet. Helices I to III and the 3(10) helix pack about a central helix (IV) to form a compact globular domain that is capped by the beta-sheet. The C-terminal helix (helix V) projects away from the beta-sheet to expose carboxyl-terminal residues essential for early steps in the HIV-1 infectious cycle. Basic residues implicated in membrane binding and nuclear localization functions cluster about an extruded cationic loop that connects beta-strands 1 and 2. The structure suggests that both membrane binding and nuclear localization may be mediated by complex tertiary structures rather than simple linear determinants.
Nuclear γ-tubulin associates with nucleoli and interacts with tumor suppressor protein C53.
Hořejší, Barbora; Vinopal, Stanislav; Sládková, Vladimíra; Dráberová, Eduarda; Sulimenko, Vadym; Sulimenko, Tetyana; Vosecká, Věra; Philimonenko, Anatoly; Hozák, Pavel; Katsetos, Christos D; Dráber, Pavel
2012-01-01
γ-Tubulin is assumed to be a typical cytosolic protein necessary for nucleation of microtubules from microtubule organizing centers. Using immunolocalization and cell fractionation techniques in combination with siRNAi and expression of FLAG-tagged constructs, we have obtained evidence that γ-tubulin is also present in nucleoli of mammalian interphase cells of diverse cellular origins. Immunoelectron microscopy has revealed γ-tubulin localization outside fibrillar centers where transcription of ribosomal DNA takes place. γ-Tubulin was associated with nucleolar remnants after nuclear envelope breakdown and could be translocated to nucleoli during mitosis. Pretreatment of cells with leptomycin B did not affect the distribution of nuclear γ-tubulin, making it unlikely that rapid active transport via nuclear pores participates in the transport of γ-tubulin into the nucleus. This finding was confirmed by heterokaryon assay and time-lapse imaging of photoconvertible protein Dendra2 tagged to γ-tubulin. Immunoprecipitation from nuclear extracts combined with mass spectrometry revealed an association of γ-tubulin with tumor suppressor protein C53 located at multiple subcellular compartments including nucleoli. The notion of an interaction between γ-tubulin and C53 was corroborated by pull-down and co-immunoprecipitation experiments. Overexpression of γ-tubulin antagonized the inhibitory effect of C53 on DNA damage G(2) /M checkpoint activation. The combined results indicate that aside from its known role in microtubule nucleation, γ-tubulin may also have nuclear-specific function(s). Copyright © 2011 Wiley Periodicals, Inc.
Keller, J; Rousseau-Gueutin, M; Martin, G E; Morice, J; Boutte, J; Coissac, E; Ourari, M; Aïnouche, M; Salmon, A; Cabello-Hurtado, F; Aïnouche, A
2017-08-01
The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of the essential rps16 gene, which was most likely replaced by the nuclear rps16 gene that encodes chloroplast and mitochondrion targeted RPS16 proteins. To study the evolutionary fate of the rps16 gene, we explored all available plant chloroplast, mitochondrial and nuclear genomes. Whereas no plant mitochondrial genomes carry an rps16 gene, many plants still have a functional nuclear and chloroplast rps16 gene. Ka/Ks ratios revealed that both chloroplast and nuclear rps16 copies were under purifying selection. However, due to the dual targeting of the nuclear rps16 gene product and the absence of a mitochondrial copy, the chloroplast gene may be lost. We also performed comparative analyses of lupine plastomes (SNPs, indels and repeat elements), identified the most variable regions and examined their phylogenetic utility. The markers identified here will help to reveal the evolutionary history of lupines, Genistoids and closely related clades. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Garcia-Higuera, I; Kuang, Y; Denham, J; D'Andrea, A D
2000-11-01
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with 8 complementation groups. Four of the FA genes have been cloned, and at least 3 of the encoded proteins, FANCA, FANCC, and FANCG/XRCC9, interact in a multisubunit protein complex. The FANCG protein binds directly to the amino terminal nuclear localization sequence (NLS) of FANCA, suggesting that FANCG plays a role in regulating FANCA nuclear accumulation. In the current study the functional consequences of FANCG/FANCA binding were examined. Correction of an FA-G cell line with the FANCG complementary DNA (cDNA) resulted in FANCA/FANCG binding, prolongation of the cellular half-life of FANCA, and an increase in the nuclear accumulation of the FA protein complex. Similar results were obtained upon correction of an FA-A cell line, with a reciprocal increase in the half-life of FANCG. Patient-derived mutant forms of FANCA, containing an intact NLS sequence but point mutations in the carboxy-terminal leucine zipper region, bound FANCG in the cytoplasm. The mutant forms failed to translocate to the nucleus of transduced cells, thereby suggesting a model of coordinated binding and nuclear translocation. These results demonstrate that the FANCA/FANCG interaction is required to maintain the cellular levels of both proteins. Moreover, at least one function of FANCG and FANCA is to regulate the nuclear accumulation of the FA protein complex. Failure to accumulate the nuclear FA protein complex results in the characteristic spectrum of clinical and cellular abnormalities observed in FA.
Baarlink, Christian; Grosse, Robert
2014-01-01
Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, R. Navarro; Schunck, N.; Lasseri, R. -D.
Here, we describe the new version 3.00 of the code hfbtho that solves the nuclear Hartree–Fock (HF) or Hartree–Fock–Bogolyubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the full Gogny force in both particle–hole and particle–particle channels, (ii) the calculation of the nuclear collective inertia at the perturbative cranking approximation, (iii) the calculation of fission fragment charge, mass and deformations based on the determination of the neck, (iv) the regularization of zero-range pairing forces, (v) the calculation of localization functions, (vi) a MPI interface for large-scalemore » mass table calculations.« less
Intracellular localization of gold nanoparticles with targeted delivery in MT-4 lymphocytes
NASA Astrophysics Data System (ADS)
Singh, Lavanya; Parboosing, Raveen; Kruger, Hendrik G.; Maguire, Glenn E. M.; Govender, Thavendran
2016-12-01
The clinical utility of important therapeutic agents is often limited by the poor permeability of biological membranes. Cell penetrating peptides are usually employed to circumvent this challenge. This approach, coupled with gold nanoparticles, are a promising vehicle for drug delivery due to its good biocompatibility profile, negligable toxicity and possibility for multi-functionalization. Here we report the functionalization and intracellular tracking of gold nanoparticles decorated with a TAT cell penetrating peptide and a fluorescein tag in a simple, two step process. Fluorescence microscopy has confirmed the localization of the functionalized nanoparticles to be inside the cells, specifically within, or in close proximity to the nuclei of MT-4 lymphocytes; a HIV-relevant cell line in which this has not been previously demonstrated. The results of this study demonstrate that TAT has been efficiently conjugated to gold nanoparticles to facilitate both cellular and targeted nuclear entry.
Andreini, Claudia; Cavallaro, Gabriele; Rosato, Antonio; Valasatava, Yana
2013-11-25
We developed a new software tool, MetalS(2), for the structural alignment of Minimal Functional Sites (MFSs) in metal-binding biological macromolecules. MFSs are 3D templates that describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. On our example data sets, MetalS(2) unveiled structural similarities that other programs for protein structure comparison do not consistently point out and overall identified a larger number of structurally similar MFSs. MetalS(2) supports the comparison of MFSs harboring different metals and/or with different nuclearity and is available both as a stand-alone program and a Web tool ( http://metalweb.cerm.unifi.it/tools/metals2/).
A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim
Rose, Annkatrin; Meier, Iris
2001-01-01
Ran is a small signaling GTPase that is involved in nucleocytoplasmic transport. Two additional functions of animal Ran in the formation of spindle asters and the reassembly of the nuclear envelope in mitotic cells have been recently reported. In contrast to Ras or Rho, Ran is not associated with membranes. Instead, the spatial sequestering of its accessory proteins, the Ran GTPase-activating protein RanGAP and the nucleotide exchange factor RCC1, appears to define the local concentration of RanGTP vs. RanGDP involved in signaling. Mammalian RanGAP is bound to the nuclear pore by a mechanism involving the attachment of small ubiquitin-related modifier protein (SUMO) to its C terminus and the subsequent binding of the SUMOylated domain to the nucleoporin Nup358. Here we show that plant RanGAP utilizes a different mechanism for nuclear envelope association, involving a novel targeting domain that appears to be unique to plants. The N-terminal WPP domain is highly conserved among plant RanGAPs and the small, plant-specific nuclear envelope-associated protein MAF1, but not present in yeast or animal RanGAP. Confocal laser scanning microscopy of green fluorescent protein (GFP) fusion proteins showed that it is necessary for RanGAP targeting and sufficient to target the heterologous protein GFP to the plant nuclear rim. The highly conserved tryptophan and proline residues of the WPP motif are necessary for its function. The 110-aa WPP domain is the first nuclear-envelope targeting domain identified in plants. Its fundamental difference to its mammalian counterpart implies that different mechanisms have evolved in plants and animals to anchor RanGAP at the nuclear surface. PMID:11752475
Snyers, Luc; Erhart, Renate; Laffer, Sylvia; Pusch, Oliver; Weipoltshammer, Klara; Schöfer, Christian
2018-01-01
The human LEM-domain protein family is involved in fundamental aspects of nuclear biology. The LEM-domain interacts with the barrier-to-autointegration factor (BAF), which itself binds DNA. LEM-domain proteins LAP2, emerin and MAN1 are proteins of the inner nuclear membrane; they have important functions: maintaining the integrity of the nuclear lamina and regulating gene expression at the nuclear periphery. LEM4/ANKLE-2 has been proposed to participate in nuclear envelope reassembly after mitosis and to mediate dephosphorylation of BAF through binding to phosphatase PP2A. Here, we used CRISPR/Cas9 to create several cell lines deficient in LEM4/ANKLE-2. By using time-lapse video microscopy, we show that absence of this protein severely compromises the post mitotic re-association of the nuclear proteins BAF, LAP2α and LaminA to chromosomes. These defects give rise to a strong mechanical instability of the nuclear envelope in telophase and to a chromosomal instability leading to increased number of hyperploid cells. Reintroducing LEM4/ANKLE-2 in the cells by transfection could efficiently restore the telophase association of BAF and LAP2α to the chromosomes. This rescue phenotype was abolished for N- or C-terminally truncated mutants that had lost the capacity to bind PP2A. We demonstrate also that, in addition to binding to PP2A, LEM4/ANKLE-2 binds BAF through its LEM-domain, providing further evidence for a generic function of this domain as a principal interactor of BAF. Copyright © 2017 Elsevier GmbH. All rights reserved.
Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo.
Gandhi, Shashank; Piacentino, Michael L; Vieceli, Felipe M; Bronner, Marianne E
2017-12-01
The advent of CRISPR/Cas9 has made genome editing possible in virtually any organism, including those not previously amenable to genetic manipulations. Here, we present an optimization of CRISPR/Cas9 for application to early avian embryos with improved efficiency via a three-fold strategy. First, we employed Cas9 protein flanked with two nuclear localization signal sequences for improved nuclear localization. Second, we used a modified guide RNA (gRNA) scaffold that obviates premature termination of transcription and unstable Cas9-gRNA interactions. Third, we used a chick-specific U6 promoter that yields 4-fold higher gRNA expression than the previously utilized human U6. For rapid screening of gRNAs for in vivo applications, we also generated a chicken fibroblast cell line that constitutively expresses Cas9. As proof of principle, we performed electroporation-based loss-of-function studies in the early chick embryo to knock out Pax7 and Sox10, key transcription factors with known functions in neural crest development. The results show that CRISPR/Cas9-mediated deletion causes loss of their respective proteins and transcripts, as well as predicted downstream targets. Taken together, the results reveal the utility of this optimized CRISPR/Cas9 method for targeted gene knockout in chicken embryos in a manner that is reproducible, robust and specific. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Tingli; Ye, Wenwu; Ru, Yanyan; Yang, Xinyu; Gu, Biao; Tao, Kai; Lu, Shan; Dong, Suomeng; Zheng, Xiaobo; Shan, Weixing; Wang, Yuanchao; Dou, Daolong
2011-01-01
Phytophthora sojae encodes hundreds of putative host cytoplasmic effectors with conserved FLAK motifs following signal peptides, termed crinkling- and necrosis-inducing proteins (CRN) or Crinkler. Their functions and mechanisms in pathogenesis are mostly unknown. Here, we identify a group of five P. sojae-specific CRN-like genes with high levels of sequence similarity, of which three are putative pseudogenes. Functional analysis shows that the two functional genes encode proteins with predicted nuclear localization signals that induce contrasting responses when expressed in Nicotiana benthamiana and soybean (Glycine max). PsCRN63 induces cell death, while PsCRN115 suppresses cell death elicited by the P. sojae necrosis-inducing protein (PsojNIP) or PsCRN63. Expression of CRN fragments with deleted signal peptides and FLAK motifs demonstrates that the carboxyl-terminal portions of PsCRN63 or PsCRN115 are sufficient for their activities. However, the predicted nuclear localization signal is required for PsCRN63 to induce cell death but not for PsCRN115 to suppress cell death. Furthermore, silencing of the PsCRN63 and PsCRN115 genes in P. sojae stable transformants leads to a reduction of virulence on soybean. Intriguingly, the silenced transformants lose the ability to suppress host cell death and callose deposition on inoculated plants. These results suggest a role for CRN effectors in the suppression of host defense responses.
Ott, Melanie; Tascher, Georg; Hassdenteufel, Sarah; Zimmermann, Richard; Haas, Jürgen; Bailer, Susanne M
2011-12-01
Release of herpes simplex virus type 1 (HSV-1) nucleocapsids from the host nucleus relies on the nuclear egress complex consisting of the two essential proteins pUL34 and pUL31. The cytoplasmically exposed N-terminal region of pUL34 interacts with pUL31, while a hydrophobic region followed by a short luminal part mediates membrane association. Based on its domain organization, pUL34 was postulated to be a tail-anchor (TA) protein. We performed a coupled in vitro transcription/translation assay to show that membrane insertion of pUL34 occurs post-translationally. Transient transfection and localization experiments in mammalian cells were combined with HSV-1 bacterial artificial chromosome mutagenesis to reveal the functional properties of the essential pUL34 TA. Our data show that a minimal tail length of 15 residues is sufficient for nuclear envelope targeting and pUL34 function. Permutations of the pUL34 TA with orthologous regions of human cytomegalovirus pUL50 or Epstein-Barr virus pBFRF1 as well as the heterologous HSV-1 TA proteins pUL56 or pUS9 or the cellular TA proteins Bcl-2 and Vamp2 revealed that nuclear egress tolerates TAs varying in sequence and hydrophobicity, while a non-α-helical membrane anchor failed to complement the pUL34 function. In conclusion, this study provides the first mechanistic insights into the particular role of the TA of pUL34 in membrane curving and capsid egress from the host nucleus.
Shepherd, Danielle L; Hathaway, Quincy A; Nichols, Cody E; Durr, Andrya J; Pinti, Mark V; Hughes, Kristen M; Kunovac, Amina; Stine, Seth M; Hollander, John M
2018-06-01
>99% of the mitochondrial proteome is nuclear-encoded. The mitochondrion relies on a coordinated multi-complex process for nuclear genome-encoded mitochondrial protein import. Mitochondrial heat shock protein 70 (mtHsp70) is a key component of this process and a central constituent of the protein import motor. Type 2 diabetes mellitus (T2DM) disrupts mitochondrial proteomic signature which is associated with decreased protein import efficiency. The goal of this study was to manipulate the mitochondrial protein import process through targeted restoration of mtHsp70, in an effort to restore proteomic signature and mitochondrial function in the T2DM heart. A novel line of cardiac-specific mtHsp70 transgenic mice on the db/db background were generated and cardiac mitochondrial subpopulations were isolated with proteomic evaluation and mitochondrial function assessed. MicroRNA and epigenetic regulation of the mtHsp70 gene during T2DM were also evaluated. MtHsp70 overexpression restored cardiac function and nuclear-encoded mitochondrial protein import, contributing to a beneficial impact on proteome signature and enhanced mitochondrial function during T2DM. Further, transcriptional repression at the mtHsp70 genomic locus through increased localization of H3K27me3 during T2DM insult was observed. Our results suggest that restoration of a key protein import constituent, mtHsp70, provides therapeutic benefit through attenuation of mitochondrial and contractile dysfunction in T2DM. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cui, Hong; Ghosh, Santanu K.
2009-01-01
The 2 micron plasmid of Saccharomyces cerevisiae uses the Kip1 motor, but not the functionally redundant Cin8 motor, for its precise nuclear localization and equal segregation. The timing and lifetime of Kip1p association with the plasmid partitioning locus STB are consistent with Kip1p being an authentic component of the plasmid partitioning complex. Kip1–STB association is not blocked by disassembling the mitotic spindle. Lack of Kip1p disrupts recruitment of the cohesin complex at STB and cohesion of replicated plasmid molecules. Colocalization of a 2 micron reporter plasmid with Kip1p in close proximity to the spindle pole body is reminiscent of that of a CEN reporter plasmid. Absence of Kip1p displaces the plasmid from this nuclear address, where it has the potential to tether to a chromosome or poach chromosome segregation factors. Exploiting Kip1p, which is subsidiary to Cin8p for chromosome segregation, to direct itself to a “partitioning center” represents yet another facet of the benign parasitism of the yeast plasmid. PMID:19364922
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weger, Stefan; Hammer, Eva; Goetz, Anne
2007-05-25
Through yeast two-hybrid analysis and coimmunoprecipitation studies, we have identified a novel cellular AAV-2 Rep78/Rep68 interaction partner located predominantly in the cytoplasm. In public databases, it has been assigned as KCTD5, because of a region of high similarity to the cytoplasmic tetramerization domain of voltage-gated potassium channels. Whereas Rep/KCTD5 interaction relied on the region surrounding the Rep nuclear localization signal, nuclear accumulation of Rep was not required. Wildtype Rep78/Rep68 proteins induced the translocation of large portions of KCTD5 into the nucleus pointing to functional interactions both in the cytoplasm and the nucleus. In line with an anticipated functional interference inmore » the cytoplasm, KCTD5 overexpression completely abrogated Rep68-mediated posttranscriptional activation of a HIV-LTR driven luciferase reporter gene. Our study expands the panel of already identified nuclear Rep interaction partners to a cytoplasmic protein, which raises the awareness that important steps in the AAV life cycle may be regulated in this compartment.« less
Nonlocalized clustering: a new concept in nuclear cluster structure physics.
Zhou, Bo; Funaki, Y; Horiuchi, H; Ren, Zhongzhou; Röpke, G; Schuck, P; Tohsaki, A; Xu, Chang; Yamada, T
2013-06-28
We investigate the α+^{16}O cluster structure in the inversion-doublet band (Kπ=0(1)±}) states of 20Ne with an angular-momentum-projected version of the Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function, which was successful "in its original form" for the description of, e.g., the famous Hoyle state. In contrast with the traditional view on clusters as localized objects, especially in inversion doublets, we find that these single THSR wave functions, which are based on the concept of nonlocalized clustering, can well describe the Kπ=0(1)- band and the Kπ=0(1)+ band. For instance, they have 99.98% and 99.87% squared overlaps for 1- and 3- states (99.29%, 98.79%, and 97.75% for 0+, 2+, and 4+ states), respectively, with the corresponding exact solution of the α+16O resonating group method. These astounding results shed a completely new light on the physics of low energy nuclear cluster states in nuclei: The clusters are nonlocalized and move around in the whole nuclear volume, only avoiding mutual overlap due to the Pauli blocking effect.
The Nuclear Pore-Associated TREX-2 Complex Employs Mediator to Regulate Gene Expression
Schneider, Maren; Hellerschmied, Doris; Schubert, Tobias; Amlacher, Stefan; Vinayachandran, Vinesh; Reja, Rohit; Pugh, B. Franklin; Clausen, Tim; Köhler, Alwin
2015-01-01
Summary Nuclear pore complexes (NPCs) influence gene expression besides their established function in nuclear transport. The TREX-2 complex localizes to the NPC basket and affects gene-NPC interactions, transcription, and mRNA export. How TREX-2 regulates the gene expression machinery is unknown. Here, we show that TREX-2 interacts with the Mediator complex, an essential regulator of RNA Polymerase (Pol) II. Structural and biochemical studies identify a conserved region on TREX-2, which directly binds the Mediator Med31/Med7N submodule. TREX-2 regulates assembly of Mediator with the Cdk8 kinase and is required for recruitment and site-specific phosphorylation of Pol II. Transcriptome and phenotypic profiling confirm that TREX-2 and Med31 are functionally interdependent at specific genes. TREX-2 additionally uses its Mediator-interacting surface to regulate mRNA export suggesting a mechanism for coupling transcription initiation and early steps of mRNA processing. Our data provide mechanistic insight into how an NPC-associated adaptor complex accesses the core transcription machinery. PMID:26317468
Hearst, Scoty M; Gilder, Andrew S; Negi, Sandeep S; Davis, Misty D; George, Eric M; Whittom, Angela A; Toyota, Cory G; Husedzinovic, Alma; Gruss, Oliver J; Hebert, Michael D
2009-06-01
Cajal bodies (CBs) are nuclear structures that are thought to have diverse functions, including small nuclear ribonucleoprotein (snRNP) biogenesis. The phosphorylation status of coilin, the CB marker protein, might impact CB formation. We hypothesize that primary cells, which lack CBs, contain different phosphoisoforms of coilin compared with that found in transformed cells, which have CBs. Localization, self-association and fluorescence recovery after photobleaching (FRAP) studies on coilin phosphomutants all suggest this modification impacts the function of coilin and may thus contribute towards CB formation. Two-dimensional gel electrophoresis demonstrates that coilin is hyperphosphorylated in primary cells compared with transformed cells. mRNA levels of the nuclear phosphatase PPM1G are significantly reduced in primary cells and expression of PPM1G in primary cells induces CBs. Additionally, PPM1G can dephosphorylate coilin in vitro. Surprisingly, however, expression of green fluorescent protein alone is sufficient to form CBs in primary cells. Taken together, our data support a model whereby coilin is the target of an uncharacterized signal transduction cascade that responds to the increased transcription and snRNP demands found in transformed cells.
Winokur, S T; Shiang, R
1998-11-01
The TCOF1 gene product, treacle, responsible for the craniofacial disorder Treacher Collins syndrome, has been predicted to be a member of a class of nucleolar phosphoproteins based on its primary amino acid sequence. Treacle is a low complexity protein with ten repeating units of acidic and basic residues, each of which contains a large number of putative casein kinase 2 and protein kinase C phosphorylation sites. In addition, the C-terminus of treacle contains multiple putative nuclear localization signals. The overall structure of treacle, as well as sequence similarity to several nucleolar phosphoproteins, predicts that treacle is a member of this class of proteins. Using green fluorescent protein fusion constructs with the full-length and deleted domains of the murine homolog of treacle, we demonstrate that the cellular localization of treacle is nucleolar. This localization is mediated by the last 41 residues of the C-terminus (residues 1262-1302). At least two functional nuclear localization signals have been identified in the protein, one between residues 1176 and 1270 and the second within the last 32 residues of the protein (1271-1302). The nucleolar localization signal is disrupted by two constructs that split the C-terminal region between residues 1270 and 1271. This study provides the first direct analysis of treacle and demonstrates that the protein involved in TCOF1 is a nucleolar protein.
LINER galaxy properties and the local environment
NASA Astrophysics Data System (ADS)
Coldwell, Georgina V.; Alonso, Sol; Duplancic, Fernanda; Mesa, Valeria
2018-05-01
We analyse the properties of a sample of 5560 low-ionization nuclear emission-line region (LINER) galaxies selected from SDSS-DR12 at low red shift, for a complete range of local density environments. The host LINER galaxies were studied and compared with a well-defined control sample of 5553 non-LINER galaxies matched in red shift, luminosity, morphology and local density. By studying the distributions of galaxy colours and the stellar age population, we find that LINERs are redder and older than the control sample over a wide range of densities. In addition, LINERs are older than the control sample, at a given galaxy colour, indicating that some external process could have accelerated the evolution of the stellar population. The analysis of the host properties shows that the control sample exhibits a strong relation between colours, ages and the local density, while more than 90 per cent of the LINERs are redder and older than the mean values, independently of the neighbourhood density. Furthermore, a detailed study in three local density ranges shows that, while control sample galaxies are redder and older as a function of stellar mass and density, LINER galaxies mismatch the known morphology-density relation of galaxies without low-ionization features. The results support the contribution of hot and old stars to the low-ionization emission although the contribution of nuclear activity is not discarded.
Paciorkowski, Alex R; Weisenberg, Judy; Kelley, Joshua B; Spencer, Adam; Tuttle, Emily; Ghoneim, Dalia; Thio, Liu Lin; Christian, Susan L; Dobyns, William B; Paschal, Bryce M
2014-05-01
Nuclear import receptors of the KPNA family recognize the nuclear localization signal in proteins and together with importin-β mediate translocation into the nucleus. Accordingly, KPNA family members have a highly conserved architecture with domains that contact the nuclear localization signal and bind to importin-β. Here, we describe autosomal recessive mutations in KPNA7 found by whole exome sequencing in a sibling pair with severe developmental disability, infantile spasms, subsequent intractable epilepsy consistent with Lennox-Gastaut syndrome, partial agenesis of the corpus callosum, and cerebellar vermis hypoplasia. The mutations mapped to exon 7 in KPNA7 result in two amino-acid substitutions, Pro339Ala and Glu344Gln. On the basis of the crystal structure of the paralog KPNA2 bound to a bipartite nuclear localization signal from the retinoblastoma protein, the amino-acid substitutions in the affected subjects were predicted to occur within the seventh armadillo repeat that forms one of the two nuclear localization signal-binding sites in KPNA family members. Glu344 is conserved in all seven KPNA proteins, and we found that the Glu354Gln mutation in KPNA2 is sufficient to reduce binding to the retinoblastoma nuclear localization signal to approximately one-half that of wild-type protein. Our data show that compound heterozygous mutations in KPNA7 are associated with a human neurodevelopmental disease, and provide the first example of a human disease associated with mutation of a nuclear transport receptor.
Paciorkowski, Alex R; Weisenberg, Judy; Kelley, Joshua B; Spencer, Adam; Tuttle, Emily; Ghoneim, Dalia; Thio, Liu Lin; Christian, Susan L; Dobyns, William B; Paschal, Bryce M
2014-01-01
Nuclear import receptors of the KPNA family recognize the nuclear localization signal in proteins and together with importin-β mediate translocation into the nucleus. Accordingly, KPNA family members have a highly conserved architecture with domains that contact the nuclear localization signal and bind to importin-β. Here, we describe autosomal recessive mutations in KPNA7 found by whole exome sequencing in a sibling pair with severe developmental disability, infantile spasms, subsequent intractable epilepsy consistent with Lennox–Gastaut syndrome, partial agenesis of the corpus callosum, and cerebellar vermis hypoplasia. The mutations mapped to exon 7 in KPNA7 result in two amino-acid substitutions, Pro339Ala and Glu344Gln. On the basis of the crystal structure of the paralog KPNA2 bound to a bipartite nuclear localization signal from the retinoblastoma protein, the amino-acid substitutions in the affected subjects were predicted to occur within the seventh armadillo repeat that forms one of the two nuclear localization signal-binding sites in KPNA family members. Glu344 is conserved in all seven KPNA proteins, and we found that the Glu354Gln mutation in KPNA2 is sufficient to reduce binding to the retinoblastoma nuclear localization signal to approximately one-half that of wild-type protein. Our data show that compound heterozygous mutations in KPNA7 are associated with a human neurodevelopmental disease, and provide the first example of a human disease associated with mutation of a nuclear transport receptor. PMID:24045845
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolston, Caroline M.; Al-Attar, Ahmad; Storr, Sarah J.
2011-04-01
Purpose: Early-stage invasive breast cancer patients have commonly undergone breast-conserving surgery and radiotherapy. In a large majority of these patients, the treatment is effective; however, a proportion will develop local recurrence. Deregulated redox systems provide cancer cells protection from increased oxidative stress, such as that induced by ionizing radiation. Therefore, the expression of redox proteins was examined in tumor specimens from this defined cohort to determine whether such expression could predict response. Methods and Materials: The nuclear and cytoplasmic expression of nine redox proteins (glutathione, glutathione reductase, glutaredoxin, glutathione peroxidase 1, 3, and 4, and glutathione S-transferase-{theta}, -{pi}, and -{alpha})more » was assessed using conventional immunohistochemistry on a tissue microarray of 224 tumors. Results: A high cytoplasmic expression of glutathione S-transferase-{theta} significantly correlated with a greater risk of local recurrence (p = .008) and, when combined with a low nuclear expression (p = .009), became an independent predictive factor (p = .002) for local recurrence. High cytoplasmic expression of glutathione S-transferase-{theta} also correlated with a worse overall survival (p = .009). Low nuclear and cytoplasmic expression of glutathione peroxidase 3 (p = .002) correlated with a greater risk of local recurrence and was an independent predictive factor (p = .005). These proteins did not correlate with tumor grade, suggesting their function might be specific to the regulation of oxidative stress rather than alterations of tumor phenotype. Only nuclear (p = .005) and cytoplasmic (p = .001) expression of glutathione peroxidase 4 correlated with the tumor grade. Conclusions: Our results support the use of redox protein expression, namely glutathione S-transferase-{theta} and glutathione peroxidase 3, to predict the response to radiotherapy in early-stage breast cancer patients. If incorporated into routine diagnostic tests, they have the potential to aid clinicians in their stratification of patients into more tailored treatment regimens. Future targeted therapies to these systems might improve the efficacy of reactive oxygen species-inducing therapies, such as radiotherapy.« less
Beard, Richard S; Reynolds, Jason J; Bearden, Shawn E
2012-01-01
Elevated plasma homocysteine (Hcy) is an independent risk factor for vascular disease and stroke in part by causing generalized endothelial dysfunction. A receptor that is sensitive to Hcy and its intracellular signaling systems has not been identified. β-catenin is a pleiotropic regulator of transcription and cell function. Using a brain microvascular endothelial cell line (bEnd.3), we tested the hypothesis that Hcy causes receptor-dependent nuclear translocation of β-catenin. Hcy increased phosphorylation of Y731 on vascular endothelial cadherin (VE-cadherin), a site involved in coupling β-catenin to VE-cadherin. This was blocked by inhibition of either metabotropic glutamate receptor 5 (mGluR5) or ionotropic glutamate receptor (NMDAr) and by shRNA knockdown of mGluR5. Expression of these receptors was confirmed by flow cytometry, immunohistochemistry, and western blotting. Directed pharmacology with specific agonists elucidated a signaling cascade where Hcy activates mGluR5 which activates NMDAr with subsequent PKC activation and uncoupling of the VE-cadherin/β-catenin complex. Moreover, Hcy caused a shift in localization of β-catenin from membrane-bound VE-cadherin to the cell nucleus, where it bound DNA, including a regulatory region of the gene for claudin-5, leading to reduced expression of claudin-5. Nuclear localization, DNA binding of β-catenin, and reduced claudin-5 expression were blocked by inhibition of mGluR5. Knockdown of mGluR5 expression with shRNA also rescued claudin-5 expression from the effects of Hcy treatment. These data uniquely identify mGluR5 as a master switch that drives β-catenin nuclear localization in vascular endothelium and regulates cell-cell coupling in response to elevated Hcy levels. These studies dissect a pharmacological opportunity for developing new therapeutic strategies in HHcy. Copyright © 2012 Elsevier Inc. All rights reserved.
Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling.
Putker, Marrit; Vos, Harmjan R; van Dorenmalen, Kim; de Ruiter, Hesther; Duran, Ana G; Snel, Berend; Burgering, Boudewijn M T; Vermeulen, Michiel; Dansen, Tobias B
2015-01-01
Reduction-oxidation (redox) signaling, the translation of an oxidative intracellular environment into a cellular response, is mediated by the reversible oxidation of specific cysteine thiols. The latter can result in disulfide formation between protein hetero- or homodimers that alter protein function until the local cellular redox environment has returned to the basal state. We have previously shown that this mechanism promotes the nuclear localization and activity of the Forkhead Box O4 (FOXO4) transcription factor. In this study, we sought to investigate whether redox signaling differentially controls the human FOXO3 and FOXO4 paralogs. We present evidence that FOXO3 and FOXO4 have acquired paralog-specific cysteines throughout vertebrate evolution. Using a proteome-wide screen, we identified previously unknown redox-dependent FOXO3 interaction partners. The nuclear import receptors Importin-7 (IPO7) and Importin-8 (IPO8) form a disulfide-dependent heterodimer with FOXO3, which is required for its reactive oxygen species-induced nuclear translocation. FOXO4 does not interact with IPO7 or IPO8. IPO7 and IPO8 control the nuclear import of FOXO3, but not FOXO4, in a redox-sensitive and disulfide-dependent manner. Our findings suggest that evolutionary acquisition of cysteines has contributed to regulatory divergence of FOXO paralogs, and that phylogenetic analysis can aid in the identification of cysteines involved in redox signaling.
Design of Conditionally Active STATs: Insights into STAT Activation and Gene Regulatory Function
Milocco, Lawrence H.; Haslam, Jennifer A.; Rosen, Jonathan; Seidel, H. Martin
1999-01-01
The STAT (signal transducer and activator of transcription) signaling pathway is activated by a large number of cytokines and growth factors. We sought to design a conditionally active STAT that could not only provide insight into basic questions about STAT function but also serve as a powerful tool to determine the precise biological role of STATs. To this end, we have developed a conditionally active STAT by fusing STATs with the ligand-binding domain of the estrogen receptor (ER). We have demonstrated that the resulting STAT-ER chimeras are estrogen-inducible transcription factors that retain the functional and biochemical characteristics of the cognate wild-type STATs. In addition, these tools have allowed us to evaluate separately the contribution of tyrosine phosphorylation and dimerization to STAT function. We have for the first time provided experimental data supporting the model that the only apparent role of STAT tyrosine phosphorylation is to drive dimerization, as dimerization alone is sufficient to unmask a latent STAT nuclear localization sequence and induce nuclear translocation, sequence-specific DNA binding, and transcriptional activity. PMID:10082558
Batra, Jyoti; Tripathi, Shashank; Kumar, Amrita; Katz, Jacqueline M; Cox, Nancy J; Lal, Renu B; Sambhara, Suryaprakash; Lal, Sunil K
2016-01-11
A unique feature of influenza A virus (IAV) life cycle is replication of the viral genome in the host cell nucleus. The nuclear import of IAV genome is an indispensable step in establishing virus infection. IAV nucleoprotein (NP) is known to mediate the nuclear import of viral genome via its nuclear localization signals. Here, we demonstrate that cellular heat shock protein 40 (Hsp40/DnaJB1) facilitates the nuclear import of incoming IAV viral ribonucleoproteins (vRNPs) and is important for efficient IAV replication. Hsp40 was found to interact with NP component of IAV RNPs during early stages of infection. This interaction is mediated by the J domain of Hsp40 and N-terminal region of NP. Drug or RNAi mediated inhibition of Hsp40 resulted in reduced nuclear import of IAV RNPs, diminished viral polymerase function and attenuates overall viral replication. Hsp40 was also found to be required for efficient association between NP and importin alpha, which is crucial for IAV RNP nuclear translocation. These studies demonstrate an important role for cellular chaperone Hsp40/DnaJB1 in influenza A virus life cycle by assisting nuclear trafficking of viral ribonucleoproteins.
Batra, Jyoti; Tripathi, Shashank; Kumar, Amrita; Katz, Jacqueline M.; Cox, Nancy J.; Lal, Renu B.; Sambhara, Suryaprakash; Lal, Sunil K.
2016-01-01
A unique feature of influenza A virus (IAV) life cycle is replication of the viral genome in the host cell nucleus. The nuclear import of IAV genome is an indispensable step in establishing virus infection. IAV nucleoprotein (NP) is known to mediate the nuclear import of viral genome via its nuclear localization signals. Here, we demonstrate that cellular heat shock protein 40 (Hsp40/DnaJB1) facilitates the nuclear import of incoming IAV viral ribonucleoproteins (vRNPs) and is important for efficient IAV replication. Hsp40 was found to interact with NP component of IAV RNPs during early stages of infection. This interaction is mediated by the J domain of Hsp40 and N-terminal region of NP. Drug or RNAi mediated inhibition of Hsp40 resulted in reduced nuclear import of IAV RNPs, diminished viral polymerase function and attenuates overall viral replication. Hsp40 was also found to be required for efficient association between NP and importin alpha, which is crucial for IAV RNP nuclear translocation. These studies demonstrate an important role for cellular chaperone Hsp40/DnaJB1 in influenza A virus life cycle by assisting nuclear trafficking of viral ribonucleoproteins. PMID:26750153
Rhoads, Shannon N; Monahan, Zachary T; Yee, Debra S; Leung, Andrew Y; Newcombe, Cameron G; O'Meally, Robert N; Cole, Robert N; Shewmaker, Frank P
2018-06-13
FUS is an abundant, predominantly nuclear protein involved in RNA processing. Under various conditions, FUS functionally associates with RNA and other macromolecules to form distinct, reversible phase-separated liquid structures. Persistence of the phase-separated state and increased cytoplasmic localization are both hypothesized to predispose FUS to irreversible aggregation, which is a pathological hallmark of subtypes of amyotrophic lateral sclerosis and frontotemporal dementia. We previously showed that phosphorylation of FUS's prion-like domain suppressed phase separation and toxic aggregation, proportionally to the number of added phosphates. However, phosphorylation of FUS's prion-like domain was previously reported to promote its cytoplasmic localization, potentially favoring pathological behavior. Here, we used mass spectrometry and human cell models to further identify phosphorylation sites within FUS's prion-like domain, specifically following DNA-damaging stress. In total, 28 putative sites have been identified, about half of which are DNA-dependent protein kinase (DNA-PK) consensus sites. Custom antibodies were developed to confirm the phosphorylation of two of these sites (Ser26 and Ser30). Both sites were usually phosphorylated in a sub-population of cellular FUS following a variety of DNA-damaging stresses, but not necessarily equally or simultaneously. Importantly, we found DNA-PK-dependent multi-phosphorylation of FUS's prion-like domain does not cause cytoplasmic localization.
SNIP1: a new activator of HSE signaling pathway.
Li, Qiang; An, Jian; Liu, Xianghua; Zhang, Mingjun; Ling, Yichen; Wang, Chenji; Zhao, Jing; Yu, Long
2012-03-01
In the last 10 years, more and more attention has been focused on SNIP1 (Smad nuclear interacting protein 1), which functions as a transcriptional coactivator. We report here that through quantitative real-time PCR analysis in 18 different human tissues, SNIP1 was found to be expressed ubiquitously. When overexpressed in HeLa cells, SNIP1-EGFP fused protein exhibited a nuclear localization with a characteristic subnuclear distribution in speckles or formed larger discrete nuclear bodies in some cells. Reporter gene assay showed that overexpression of SNIP1 in HEK 293 cells or H1299 cells strongly activated the HSE signaling pathway. Moreover, SNIP1 could selectively regulate the transcription of HSP70A1A and HSP27. Taken together, our findings suggest that SNIP1 might also be a positive regulator of HSE signaling pathway.
Mills, Ian G; Gaughan, Luke; Robson, Craig; Ross, Theodora; McCracken, Stuart; Kelly, John; Neal, David E
2005-07-18
Internalization of activated receptors regulates signaling, and endocytic adaptor proteins are well-characterized in clathrin-mediated uptake. One of these adaptor proteins, huntingtin interacting protein 1 (HIP1), induces cellular transformation and is overexpressed in some prostate cancers. We have discovered that HIP1 associates with the androgen receptor through a central coiled coil domain and is recruited to DNA response elements upon androgen stimulation. HIP1 is a novel androgen receptor regulator, significantly repressing transcription when knocked down using a silencing RNA approach and activating transcription when overexpressed. We have also identified a functional nuclear localization signal at the COOH terminus of HIP1, which contributes to the nuclear translocation of the protein. In conclusion, we have discovered that HIP1 is a nucleocytoplasmic protein capable of associating with membranes and DNA response elements and regulating transcription.
Balasundaram, David; Benedik, Michael J.; Morphew, Mary; Dang, Van-Dinh; Levin, Henry L.
1999-01-01
The long terminal repeat (LTR)-containing retrotransposon Tf1 propagates within the fission yeast Schizosaccharomyces pombe as the result of several mechanisms that are typical of both retrotransposons and retroviruses. To identify host factors that contribute to the transposition process, we mutagenized cultures of S. pombe and screened them for strains that were unable to support Tf1 transposition. One such strain contained a mutation in a gene we named nup124. The product of this gene contains 11 FXFG repeats and is a component of the nuclear pore complex. In addition to the reduced levels of Tf1 transposition, the nup124-1 allele caused a significant reduction in the nuclear localization of Tf1 Gag. Surprisingly, the mutation in nup124-1 did not cause any reduction in the growth rate, the nuclear localization of specific nuclear localization signal-containing proteins, or the cytoplasmic localization of poly(A) mRNA. A two-hybrid analysis and an in vitro precipitation assay both identified an interaction between Tf1 Gag and the N terminus of Nup124p. These results provide evidence for an unusual mechanism of nuclear import that relies on a direct interaction between a nuclear pore factor and Tf1 Gag. PMID:10409764
Balasundaram, D; Benedik, M J; Morphew, M; Dang, V D; Levin, H L
1999-08-01
The long terminal repeat (LTR)-containing retrotransposon Tf1 propagates within the fission yeast Schizosaccharomyces pombe as the result of several mechanisms that are typical of both retrotransposons and retroviruses. To identify host factors that contribute to the transposition process, we mutagenized cultures of S. pombe and screened them for strains that were unable to support Tf1 transposition. One such strain contained a mutation in a gene we named nup124. The product of this gene contains 11 FXFG repeats and is a component of the nuclear pore complex. In addition to the reduced levels of Tf1 transposition, the nup124-1 allele caused a significant reduction in the nuclear localization of Tf1 Gag. Surprisingly, the mutation in nup124-1 did not cause any reduction in the growth rate, the nuclear localization of specific nuclear localization signal-containing proteins, or the cytoplasmic localization of poly(A) mRNA. A two-hybrid analysis and an in vitro precipitation assay both identified an interaction between Tf1 Gag and the N terminus of Nup124p. These results provide evidence for an unusual mechanism of nuclear import that relies on a direct interaction between a nuclear pore factor and Tf1 Gag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalewski, Markus, E-mail: mkowalew@uci.edu; Mukamel, Shaul, E-mail: smukamel@uci.edu
2015-07-28
Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.
Demmerle, Justin; Koch, Adam J.; Holaska, James M.
2016-01-01
The spatial organization of chromatin is critical in establishing cell-type dependent gene expression programs. The inner nuclear membrane protein emerin has been implicated in regulating global chromatin architecture. We show emerin associates with genomic loci of muscle differentiation promoting factors in murine myogenic progenitors, including Myf5 and MyoD. Prior to their transcriptional activation Myf5 and MyoD loci localized to the nuclear lamina in proliferating progenitors and moved to the nucleoplasm upon transcriptional activation during differentiation. The Pax7 locus, which is transcribed in proliferating progenitors, localized to the nucleoplasm and Pax7 moved to the nuclear lamina upon repression during differentiation. Localization of Myf5, MyoD, and Pax7 to the nuclear lamina and proper temporal expression of these genes required emerin and HDAC3. Interestingly, activation of HDAC3 catalytic activity rescued both Myf5 localization to the nuclear lamina and its expression. Collectively, these data support a model whereby emerin facilitates repressive chromatin formation at the nuclear lamina by activating the catalytic activity of HDAC3 to regulate the coordinated spatiotemporal expression of myogenic differentiation genes. PMID:24062260
Crystal structure of importin-α3 bound to the nuclear localization signal of Ran-binding protein 3.
Koyama, Masako; Matsuura, Yoshiyuki
2017-09-23
Ran-binding protein 3 (RanBP3) is a primarily nuclear Ran-binding protein that functions as an accessory factor in the Ran GTPase system. RanBP3 associates with Ran-specific nucleotide exchange factor RCC1 and enhances its catalytic activity towards Ran. RanBP3 also promotes CRM1-mediated nuclear export as well as CRM1-independent nuclear export of β-catenin, Smad2, and Smad3. Nuclear import of RanBP3 is dependent on the nuclear import adaptor protein importin-α and, RanBP3 is imported more efficiently by importin-α3 than by other members of the importin-α family. Protein kinase signaling pathways control nucleocytoplasmic transport through phosphorylation of RanBP3 at Ser58, immediately C-terminal to the nuclear localization signal (NLS) in the N-terminal region of RanBP3. Here we report the crystal structure of human importin-α3 bound to an N-terminal fragment of human RanBP3 containing the NLS sequence that is necessary and sufficient for nuclear import. The structure reveals that RanBP3 binds to importin-α3 residues that are strictly conserved in all seven isoforms of human importin-α at the major NLS-binding site, indicating that the region of importin-α outside the NLS-binding site, possibly the autoinhibotory importin-β1-binding domain, may be the key determinant for the preferential binding of RanBP3 to importin-α3. Computational docking simulation indicates that phosphorylation of RanBP3 at Ser58 could potentially stabilize the association of RanBP3 with importin-α through interactions between the phosphate moiety of phospho-Ser58 of RanBP3 and a cluster of basic residues (Arg96 and Lys97 in importin-α3) on armadillo repeat 1 of importin-α. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Hongxia; Stone, Sophia L.
2013-01-01
To mitigate the effects of environmental stress the abscisic acid (ABA)-responsive transcription factor ABI5 is required to delay growth of germinated seedlings. In the absence of stress, KEEP ON GOING (KEG) E3 is required to maintain low levels of ABI5. However, the mechanism underlying KEG-dependent turnover of ABI5 is not known. In addition, localization studies place KEG at the trans-Golgi network, whereas ABI5 is nuclear. Here we show that KEG interacts directly with ABI5 via its conserved C3 region. Interactions between KEG and ABI5 were observed in the cytoplasm and trans-Golgi network only when the RING domain of KEG was inactivated or when ABI5 was stabilized via mutations. Deletion of the C-terminal region of ABI5 or substituting lysine 344 for alanine (K344A) prohibited protein turnover. Furthermore, ABI5 is observed in the cytoplasm of Arabidopsis thaliana root cells when the K344A mutation is combined with the deletion of a nuclear localization signal. Other lysine mutations (K353A, K364A, and K376A) in conjunction with the nuclear localization signal deletion did not result in cytoplasmic accumulation of ABI5. Loss of lysine 344 did not affect the ability of ABI5 to promote ABA responses, which demonstrates that the mutant transcription factor is still functional. Based on the results, a model is suggested where KEG targets ABI5 for degradation in the cytoplasm, thus reducing nuclear accumulation of the transcription factor in the absence of ABA. PMID:23720747
Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khunchai, Sasiprapa; Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok; Junking, Mutita
Highlights: Black-Right-Pointing-Pointer For the first time how DENV NS5 increases RANTES production. Black-Right-Pointing-Pointer DENV NS5 physically interacts with human Daxx. Black-Right-Pointing-Pointer Nuclear localization of NS5 is required for Daxx interaction and RANTES production. -- Abstract: Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called 'cytokine storm', is observed in the patients with DHF/DSS. A complex interaction between DENV proteinsmore » and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.« less
Nuclear transport of the Neurospora crassa NIT-2 transcription factor is mediated by importin-α.
Bernardes, Natália E; Takeda, Agnes A S; Dreyer, Thiago R; Cupertino, Fernanda B; Virgilio, Stela; Pante, Nelly; Bertolini, Maria Célia; Fontes, Marcos R M
2017-12-06
The Neurospora crassa NIT-2 transcription factor belongs to the GATA transcription factor family and plays a fundamental role in the regulation of nitrogen metabolism. Because NIT-2 acts by accessing DNA inside the nucleus, understanding the nuclear import process of NIT-2 is necessary to characterize its function. Thus, in the present study, NIT-2 nuclear transport was investigated using a combination of biochemical, cellular, and biophysical methods. A complemented strain that produced an sfGFP-NIT-2 fusion protein was constructed, and nuclear localization assessments were made under conditions that favored protein translocation to the nucleus. Nuclear translocation was also investigated using HeLa cells, which showed that the putative NIT-2 nuclear localization sequence (NLS; 915 TISSKRQRRHSKS 927 ) was recognized by importin-α and that subsequent transport occurred via the classical import pathway. The interaction between the N. crassa importin-α (NcImpα) and the NIT-2 NLS was quantified with calorimetric assays, leading to the observation that the peptide bound to two sites with different affinities, which is typical of a monopartite NLS sequence. The crystal structure of the NcImpα/NIT-2 NLS complex was solved and revealed that the NIT-2 peptide binds to NcImpα with the major NLS-binding site playing a primary role. This result contrasts other recent studies that suggested a major role for the minor NLS-binding site in importin-α from the α2 family, indicating that both sites can be used for different cargo proteins according to specific metabolic requirements. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Ogata, Fernando Toshio; Batista, Wagner Luiz; Sartori, Adriano; Gesteira, Tarsis Ferreira; Masutani, Hiroshi; Arai, Roberto Jun; Yodoi, Junji; Stern, Arnold; Monteiro, Hugo Pequeno
2013-01-01
Thioredoxin (TRX-1) is a multifunctional protein that controls the redox status of other proteins. TRX-1 can be found in the extracellular milieu, cytoplasm and nucleus, and it has distinct functions in each environment. Previously, we studied the intracellular localization of TRX-1 and its relationship with the activation of the p21Ras-ERK1/2 MAP Kinases signaling pathway. In situations where this pathway was activated by stress conditions evoked by a nitrosothiol, S-nitroso-N-acetylpenicillamine (SNAP), TRX-1 accumulated in the nuclear compartment due to nitrosylation of p21Ras and activation of downstream ERK1/2 MAP kinases. Presently, we demonstrate that ERK1/2 MAP Kinases activation and spatial distribution within cells trigger TRX-1 nuclear translocation through down-regulation of the physiological inhibitor of TRX-1, Thioredoxin Interacting Protein (TXNIP). Once activated by the oxidants, SNAP and H₂O₂, the ERK1/2 MAP kinases migrate to the nucleus. This is correlated with down-regulation of TXNIP. In the presence of the MEK inhibitors (PD98059 or UO126), or in cells transfected with the Protein Enriched in Astrocytes (PEA-15), a cytoplasmic anchor of ERK1/2 MAP kinases, TRX-1 nuclear migration and TXNIP down-regulation are no longer observed in cells exposed to oxidants. On the other hand, over-expression of TXNIP abolishes nuclear migration of TRX-1 under nitrosative/oxidative stress conditions, whereas gene silencing of TXNIP facilitates nuclear migration even in the absence of stress conditions. Studies based on the TXNIP promoter support this regulation. In conclusion, changes in TRX-1 compartmentalization under nitrosative/oxidative stress conditions are dependent on the expression levels of TXNIP, which are regulated by cellular compartmentalization and activation of the ERK1/2 MAP kinases.
Drosophila Importin-α2 Is Involved in Synapse, Axon and Muscle Development
Mosca, Timothy J.; Schwarz, Thomas L.
2010-01-01
Nuclear import is required for communication between the cytoplasm and the nucleus and to enact lasting changes in gene transcription following stimuli. Binding to an Importin-α molecule in the cytoplasm is often required to mediate nuclear entry of a signaling protein. As multiple isoforms of Importin-α exist, some may be responsible for the entry of distinct cargoes rather than general nuclear import. Indeed, in neuronal systems, Importin-α isoforms can mediate very specific processes such as axonal tiling and communication of an injury signal. To study nuclear import during development, we examined the expression and function of Importin-α2 in Drosophila melanogaster. We found that Importin-α2 was expressed in the nervous system where it was required for normal active zone density at the NMJ and axonal commissure formation in the central nervous system. Other aspects of synaptic morphology at the NMJ and the localization of other synaptic markers appeared normal in importin-α2 mutants. Importin-α2 also functioned in development of the body wall musculature. Mutants in importin-α2 exhibited errors in muscle patterning and organization that could be alleviated by restoring muscle expression of Importin-α2. Thus, Importin-α2 is needed for some processes in the development of both the nervous system and the larval musculature. PMID:21151903
Johnson, A W
1997-01-01
XRN1 encodes an abundant cytoplasmic exoribonuclease, Xrn1p, responsible for mRNA turnover in yeast. A screen for bypass suppressors of the inviability of xrn1 ski2 double mutants identified dominant alleles of RAT1, encoding an exoribonuclease homologous with Xrn1p. These RAT1 alleles restored XRN1-like functions, including cytoplasmic RNA turnover, wild-type sensitivity to the microtubule-destabilizing drug benomyl, and sporulation. The mutations were localized to a region of the RAT1 gene encoding a putative bipartite nuclear localization sequence (NLS). Fusions to green fluorescent protein were used to demonstrate that wild-type Rat1p is localized to the nucleus and that the mutant alleles result in mislocalization of Rat1p to the cytoplasm. Conversely, targeting Xrn1p to the nucleus by the addition of the simian virus 40 large-T-antigen NLS resulted in complementation of the temperature sensitivity of a rat1-1 strain. These results indicate that Xrn1p and Rat1p are functionally interchangeable exoribonucleases that function in and are restricted to the cytoplasm and nucleus, respectively. It is likely that the higher eukaryotic homologs of these proteins will function similarly in the cytoplasm and nucleus. PMID:9315672
Grow-ING, Age-ING and Die-ING: ING proteins link cancer, senescence and apoptosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Michael; Berardi, Philip; Gong Wei
The INhibitor of Growth (ING) family of plant homeodomain (PHD) proteins induce apoptosis and regulate gene expression through stress-inducible binding of phospholipids with subsequent nuclear and nucleolar localization. Relocalization occurs concomitantly with interaction with a subset of nuclear proteins, including PCNA, p53 and several regulators of acetylation such as the p300/CBP and PCAF histone acetyltransferases (HATs), as well as the histone deacetylases HDAC1 and hSir2. These interactions alter the localized state of chromatin compaction, subsequently affecting the expression of subsets of genes, including those associated with the stress response (Hsp70), apoptosis (Bax, MDM2) and cell cycle regulation (p21{sup WAF1}, cyclinmore » B) in a cell- and tissue-specific manner. The expression levels and subcellular localization of ING proteins are altered in a significant number of human cancer types, while the expression of ING isoforms changes during cellular aging, suggesting that ING proteins may play a role in linking cellular transformation and replicative senescence. The variety of functions attributed to ING proteins suggest that this tumor suppressor serves to link the disparate processes of cell cycle regulation, cell suicide and cellular aging through epigenetic regulation of gene expression. This review examines recent findings in the ING field with a focus on the functions of protein-protein interactions involving ING family members and the mechanisms by which these interactions facilitate the various roles that ING proteins play in tumorigenesis, apoptosis and senescence.« less
Correll, Robert N; Makarewich, Catherine A; Zhang, Hongyu; Zhang, Chen; Sargent, Michelle A; York, Allen J; Berretta, Remus M; Chen, Xiongwen; Houser, Steven R; Molkentin, Jeffery D
2017-06-01
L-type Ca2+ channels (LTCCs) in adult cardiomyocytes are localized to t-tubules where they initiate excitation-contraction coupling. Our recent work has shown that a subpopulation of LTCCs found at the surface sarcolemma in caveolae of adult feline cardiomyocytes can also generate a Ca2+ microdomain that activates nuclear factor of activated T-cells signaling and cardiac hypertrophy, although the relevance of this paradigm to hypertrophy regulation in vivo has not been examined. Here we generated heart-specific transgenic mice with a putative caveolae-targeted LTCC activator protein that was ineffective in initiating or enhancing cardiac hypertrophy in vivo. We also generated transgenic mice with cardiac-specific overexpression of a putative caveolae-targeted inhibitor of LTCCs, and while this protein inhibited caveolae-localized LTCCs without effects on global Ca2+ handling, it similarly had no effect on cardiac hypertrophy in vivo. Cardiac hypertrophy was elicited by pressure overload for 2 or 12 weeks or with neurohumoral agonist infusion. Caveolae-specific LTCC activator or inhibitor transgenic mice showed no greater change in nuclear factor of activated T-cells activity after 2 weeks of pressure overload stimulation compared with control mice. Our results indicate that LTCCs in the caveolae microdomain do not affect cardiac function and are not necessary for the regulation of hypertrophic signaling in the adult mouse heart. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Custos controls β-catenin to regulate head development during vertebrate embryogenesis.
Komiya, Yuko; Mandrekar, Noopur; Sato, Akira; Dawid, Igor B; Habas, Raymond
2014-09-09
Precise control of the canonical Wnt pathway is crucial in embryogenesis and all stages of life, and dysregulation of this pathway is implicated in many human diseases including cancers and birth defect disorders. A key aspect of canonical Wnt signaling is the cytoplasmic to nuclear translocation of β-catenin, a process that remains incompletely understood. Here we report the identification of a previously undescribed component of the canonical Wnt signaling pathway termed Custos, originally isolated as a Dishevelled-interacting protein. Custos contains casein kinase phosphorylation sites and nuclear localization sequences. In Xenopus, custos mRNA is expressed maternally and then widely throughout embryogenesis. Depletion or overexpression of Custos produced defective anterior head structures by inhibiting the formation of the Spemann-Mangold organizer. In addition, Custos expression blocked secondary axis induction by positive signaling components of the canonical Wnt pathway and inhibited β-catenin/TCF-dependent transcription. Custos binds to β-catenin in a Wnt responsive manner without affecting its stability, but rather modulates the cytoplasmic to nuclear translocation of β-catenin. This effect on nuclear import appears to be the mechanism by which Custos inhibits canonical Wnt signaling. The function of Custos is conserved as loss-of-function and gain-of-function studies in zebrafish also demonstrate a role for Custos in anterior head development. Our studies suggest a role for Custos in fine-tuning canonical Wnt signal transduction during embryogenesis, adding an additional layer of regulatory control in the Wnt-β-catenin signal transduction cascade.
Drakouli, Sotiria; Lyberopoulou, Aggeliki; Papathanassiou, Maria; Mylonis, Ilias; Georgatsou, Eleni
2017-08-01
Scaffold attachment factor B1 (SAFB1) is an integral component of the nuclear matrix of vertebrate cells. It binds to DNA on scaffold/matrix attachment region elements, as well as to RNA and a multitude of different proteins, affecting basic cellular activities such as transcription, splicing and DNA damage repair. In the present study, we show that enhancer of rudimentary homologue (ERH) is a new molecular partner of SAFB1 and its 70% homologous paralogue, scaffold attachment factor B2 (SAFB2). ERH interacts directly in the nucleus with the C-terminal Arg-Gly-rich region of SAFB1/2 and co-localizes with it in the insoluble nuclear fraction. ERH, a small ubiquitous protein with striking homology among species and a unique structure, has also been implicated in fundamental cellular mechanisms. Our functional analyses suggest that the SAFB/ERH interaction does not affect SAFB1/2 function in transcription (e.g. as oestrogen receptor α co-repressors), although it reverses the inhibition exerted by SAFB1/2 on the splicing kinase SR protein kinase 1 (SRPK1), which also binds on the C-terminus of SAFB1/2. Accordingly, ERH silencing decreases lamin B receptor and SR protein phosphorylation, which are major SRPK1 substrates, further substantiating the role of SAFB1 and SAFB2 in the co-ordination of nuclear function. © 2017 Federation of European Biochemical Societies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paterson, Carolyn P.; Ayalew, Lisanework E.; Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5E3 S7N 5B4 Canada
The L1 region of bovine adenovirus (BAdV)-3 encodes a non-structural protein designated 52K. Anti-52K serum detected a protein of 40 kDa, which localized to the nucleus but not to the nucleolus in BAdV-3-infected or transfected cells. Analysis of mutant 52K proteins suggested that three basic residues ({sup 105}RKR{sup 107}) of the identified domain (amino acids {sup 102}GMPRKRVLT{sup 110}) are essential for nuclear localization of 52K. The nuclear import of a GST-52K fusion protein utilizes the classical importin {alpha}/{beta}-dependent nuclear transport pathway. The 52K protein is preferentially bound to the cellular nuclear import receptor importin {alpha}3. Although deletion of amino acidmore » 102-110 is sufficient to abrogate the nuclear localization of 52K, amino acid 90-133 are required for interaction with importin-{alpha}3 and localizing a cytoplasmic protein to the nucleus. These results suggest that 52K contains a bipartite NLS, which preferentially utilize an importin {alpha}3 nuclear import receptor-mediated pathway to transport 52K to the nucleus.« less
p27 Nuclear localization and growth arrest caused by perlecan knockdown in human endothelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, Katsuya; Oka, Kiyomasa; Matsumoto, Kunio
2010-02-12
Perlecan, a secreted heparan sulfate proteoglycan, is a major component of the vascular basement membrane and participates in angiogenesis. Here, we used small interference RNA-mediated knockdown of perlecan expression to investigate the regulatory function of perlecan in the growth of human vascular endothelial cells. Basic fibroblast growth factor (bFGF)-induced ERK phosphorylation and cyclin D1 expression were unchanged by perlecan deficiency in endothelial cells; however, perlecan deficiency inhibited the Rb protein phosphorylation and DNA synthesis induced by bFGF. By contrast to cytoplasmic localization of the cyclin-dependent kinase inhibitor p27 in control endothelial cells, p27 was localized in the nucleus and itsmore » expression increased in perlecan-deficient cells, which suggests that p27 mediates inhibition of Rb phosphorylation. In addition to the well-characterized function of perlecan as a co-receptor for heparin-binding growth factors such as bFGF, our results suggest that perlecan plays an indispensible role in endothelial cell proliferation and acts through a mechanism that involves subcellular localization of p27.« less
Initial Investigation of preclinical integrated SPECT and MR imaging.
Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan
2010-02-01
Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source.
Initial Investigation of Preclinical Integrated SPECT and MR Imaging
Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan
2014-01-01
Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source. PMID:20082527
Identification of a functional nuclear export signal in the green fluorescent protein asFP499
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mustafa, Huseyin; Strasser, Bernd; Rauth, Sabine
2006-04-21
The green fluorescent protein (GFP) asFP499 from Anemonia sulcata is a distant homologue of the GFP from Aequorea victoria. We cloned the asFP499 gene into a mammalian expression vector and showed that this protein was expressed in the human lymphoblast cell line Ramos RA1 and in the embryonic kidney 293T cell line (HEK 293T). In HEK 293T cells, asFP499 was localized mainly in the cytoplasm, suggesting that the protein was excluded from the nucleus. We identified {sub 194}LRMEKLNI{sub 201} as a candidate nuclear export signal in asFP499 and mutated the isoleucine at position 201 to an alanine. Unlike the wildtypemore » form, the mutant protein was distributed throughout the cytoplasm and nucleus. This is First report of a GFP that contains a functional NES.« less
Ohayon, Delphine; De Chiara, Alessia; Chapuis, Nicolas; Candalh, Céline; Mocek, Julie; Ribeil, Jean-Antoine; Haddaoui, Lamya; Ifrah, Norbert; Hermine, Olivier; Bouillaud, Frédéric; Frachet, Philippe; Bouscary, Didier; Witko-Sarsat, Véronique
2016-10-19
Cytosolic proliferating cell nuclear antigen (PCNA), a scaffolding protein involved in DNA replication, has been described as a key element in survival of mature neutrophil granulocytes, which are non-proliferating cells. Herein, we demonstrated an active export of PCNA involved in cell survival and chemotherapy resistance. Notably, daunorubicin-resistant HL-60 cells (HL-60R) have a prominent cytosolic PCNA localization due to increased nuclear export compared to daunorubicin-sensitive HL-60 cells (HL-60S). By interacting with nicotinamide phosphoribosyltransferase (NAMPT), a protein involved in NAD biosynthesis, PCNA coordinates glycolysis and survival, especially in HL-60R cells. These cells showed a dramatic increase in intracellular NAD+ concentration as well as glycolysis including increased expression and activity of hexokinase 1 and increased lactate production. Furthermore, this functional activity of cytoplasmic PCNA was also demonstrated in patients with acute myeloid leukemia (AML). Our data uncover a novel pathway of nuclear export of PCNA that drives cell survival by increasing metabolism flux.
Ohayon, Delphine; De Chiara, Alessia; Chapuis, Nicolas; Candalh, Céline; Mocek, Julie; Ribeil, Jean-Antoine; Haddaoui, Lamya; Ifrah, Norbert; Hermine, Olivier; Bouillaud, Frédéric; Frachet, Philippe; Bouscary, Didier; Witko-Sarsat, Véronique
2016-01-01
Cytosolic proliferating cell nuclear antigen (PCNA), a scaffolding protein involved in DNA replication, has been described as a key element in survival of mature neutrophil granulocytes, which are non-proliferating cells. Herein, we demonstrated an active export of PCNA involved in cell survival and chemotherapy resistance. Notably, daunorubicin-resistant HL-60 cells (HL-60R) have a prominent cytosolic PCNA localization due to increased nuclear export compared to daunorubicin-sensitive HL-60 cells (HL-60S). By interacting with nicotinamide phosphoribosyltransferase (NAMPT), a protein involved in NAD biosynthesis, PCNA coordinates glycolysis and survival, especially in HL-60R cells. These cells showed a dramatic increase in intracellular NAD+ concentration as well as glycolysis including increased expression and activity of hexokinase 1 and increased lactate production. Furthermore, this functional activity of cytoplasmic PCNA was also demonstrated in patients with acute myeloid leukemia (AML). Our data uncover a novel pathway of nuclear export of PCNA that drives cell survival by increasing metabolism flux. PMID:27759041
Forging the link between nuclear reactions and nuclear structure.
Mahzoon, M H; Charity, R J; Dickhoff, W H; Dussan, H; Waldecker, S J
2014-04-25
A comprehensive description of all single-particle properties associated with the nucleus Ca40 is generated by employing a nonlocal dispersive optical potential capable of simultaneously reproducing all relevant data above and below the Fermi energy. The introduction of nonlocality in the absorptive potentials yields equivalent elastic differential cross sections as compared to local versions but changes the absorption profile as a function of angular momentum suggesting important consequences for the analysis of nuclear reactions. Below the Fermi energy, nonlocality is essential to allow for an accurate representation of particle number and the nuclear charge density. Spectral properties implied by (e, e'p) and (p, 2p) reactions are correctly incorporated, including the energy distribution of about 10% high-momentum nucleons, as experimentally determined by data from Jefferson Lab. These high-momentum nucleons provide a substantial contribution to the energy of the ground state, indicating a residual attractive contribution from higher-body interactions for Ca40 of about 0.64 MeV/A.
Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition.
Matsumoto, Hotaru; Saitoh, Hisato
2016-07-29
We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. Copyright © 2016 Elsevier Inc. All rights reserved.
Shimizu, Noriaki; Itoh, Nobuo; Utiyama, Hiroyasu; Wahl, Geoffrey M.
1998-01-01
Acentric, autonomously replicating extrachromosomal structures called double-minute chromosomes (DMs) frequently mediate oncogene amplification in human tumors. We show that DMs can be removed from the nucleus by a novel micronucleation mechanism that is initiated by budding of the nuclear membrane during S phase. DMs containing c-myc oncogenes in a colon cancer cell line localized to and replicated at the nuclear periphery. Replication inhibitors increased micronucleation; cell synchronization and bromodeoxyuridine–pulse labeling demonstrated de novo formation of buds and micronuclei during S phase. The frequencies of S-phase nuclear budding and micronucleation were increased dramatically in normal human cells by inactivating p53, suggesting that an S-phase function of p53 minimizes the probability of producing the broken chromosome fragments that induce budding and micronucleation. These data have implications for understanding the behavior of acentric DNA in interphase nuclei and for developing chemotherapeutic strategies based on this new mechanism for DM elimination. PMID:9508765
Quantum Drude friction for time-dependent density functional theory
NASA Astrophysics Data System (ADS)
Neuhauser, Daniel; Lopata, Kenneth
2008-10-01
Friction is a desired property in quantum dynamics as it allows for localization, prevents backscattering, and is essential in the description of multistage transfer. Practical approaches for friction generally involve memory functionals or interactions with system baths. Here, we start by requiring that a friction term will always reduce the energy of the system; we show that this is automatically true once the Hamiltonian is augmented by a term of the form ∫a(q ;n0)[∂j(q,t)/∂t]ṡJ(q)dq, which includes the current operator times the derivative of its expectation value with respect to time, times a local coefficient; the local coefficient will be fitted to experiment, to more sophisticated theories of electron-electron interaction and interaction with nuclear vibrations and the nuclear background, or alternately, will be artificially constructed to prevent backscattering of energy. We relate this term to previous results and to optimal control studies, and generalize it to further operators, i.e., any operator of the form ∫a(q ;n0)[∂c(q,t)/∂t]ṡC(q)dq (or a discrete sum) will yield friction. Simulations of a small jellium cluster, both in the linear and highly nonlinear excitation regime, demonstrate that the friction always reduces energy. The energy damping is essentially double exponential; the long-time decay is almost an order of magnitude slower than the rapid short-time decay. The friction term stabilizes the propagation (split-operator propagator here), therefore increasing the time-step needed for convergence, i.e., reducing the overall computational cost. The local friction also allows the simulation of a metal cluster in a uniform jellium as the energy loss in the excitation due to the underlying corrugation is accounted for by the friction. We also relate the friction to models of coupling to damped harmonic oscillators, which can be used for a more sophisticated description of the coupling, and to memory functionals. Our results open the way to very simple finite grid description of scattering and multistage conductance using time-dependent density functional theory away from the linear regime, just as absorbing potentials and self-energies are useful for noninteracting systems and leads.
An integrated mechanism of cardiomyocyte nuclear Ca(2+) signaling.
Ibarra, Cristián; Vicencio, Jose Miguel; Varas-Godoy, Manuel; Jaimovich, Enrique; Rothermel, Beverly A; Uhlén, Per; Hill, Joseph A; Lavandero, Sergio
2014-10-01
In cardiomyocytes, Ca(2+) plays a central role in governing both contraction and signaling events that regulate gene expression. Current evidence indicates that discrimination between these two critical functions is achieved by segregating Ca(2+) within subcellular microdomains: transcription is regulated by Ca(2+) release within nuclear microdomains, and excitation-contraction coupling is regulated by cytosolic Ca(2+). Accordingly, a variety of agonists that control cardiomyocyte gene expression, such as endothelin-1, angiotensin-II or insulin-like growth factor-1, share the feature of triggering nuclear Ca(2+) signals. However, signaling pathways coupling surface receptor activation to nuclear Ca(2+) release, and the phenotypic responses to such signals, differ between agonists. According to earlier hypotheses, the selective control of nuclear Ca(2+) signals by activation of plasma membrane receptors relies on the strategic localization of inositol trisphosphate receptors at the nuclear envelope. There, they mediate Ca(2+) release from perinuclear Ca(2+) stores upon binding of inositol trisphosphate generated in the cytosol, which diffuses into the nucleus. More recently, identification of such receptors at nuclear membranes or perinuclear sarcolemmal invaginations has uncovered novel mechanisms whereby agonists control nuclear Ca(2+) release. In this review, we discuss mechanisms for the selective control of nuclear Ca(2+) signals with special focus on emerging models of agonist receptor activation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kayman-Kurekci, Gulsum; Talim, Beril; Korkusuz, Petek; Sayar, Nilufer; Sarioglu, Turkan; Oncel, Ibrahim; Sharafi, Parisa; Gundesli, Hulya; Balci-Hayta, Burcu; Purali, Nuhan; Serdaroglu-Oflazer, Piraye; Topaloglu, Haluk; Dincer, Pervin
2014-07-01
We performed genome-wide homozygosity mapping and mapped a novel myopathic phenotype to chromosomal region 1q25 in a consanguineous family with three affected individuals manifesting proximal and distal weakness and atrophy, rigid spine and contractures of the proximal and distal interphalangeal hand joints. Additionally, cardiomyopathy and respiratory involvement were noted. DNA sequencing of torsinA-interacting protein 1 (TOR1AIP1) gene encoding lamina-associated polypeptide 1B (LAP1B), showed a homozygous c.186delG mutation that causes a frameshift resulting in a premature stop codon (p.E62fsTer25). We observed that expression of LAP1B was absent in the patient skeletal muscle fibres. Ultrastructural examination showed intact sarcomeric organization but alterations of the nuclear envelope including nuclear fragmentation, chromatin bleb formation and naked chromatin. LAP1B is a type-2 integral membrane protein localized in the inner nuclear membrane that binds to both A- and B-type lamins, and is involved in the regulation of torsinA ATPase. Interestingly, luminal domain-like LAP1 (LULL1)-an endoplasmic reticulum-localized partner of torsinA-was overexpressed in the patient's muscle in the absence of LAP1B. Therefore, the findings suggest that LAP1 and LULL1 might have a compensatory effect on each other. This study expands the spectrum of genes associated with nuclear envelopathies and highlights the critical function for LAP1B in striated muscle. Copyright © 2014 Elsevier B.V. All rights reserved.
Bubak, Andrew N; Como, Christina N; Blackmon, Anna M; Frietze, Seth; Mescher, Teresa; Jones, Dallas; Cohrs, Randall J; Paucek, Petr; Baird, Nicholas L; Nagel, Maria A
2018-05-19
Varicella zoster virus (VZV) can present as a myelopathy with spinal astrocyte infection. Recent studies support a role for the neurokinin-1 receptor (NK-1R) in virus infections, as well as for cytoskeletal alterations that may promote viral spread. Thus, we examined the role of NK-1R in VZV-infected primary human spinal astrocytes (HA-sps) to shed light on the pathogenesis of VZV myelopathy. Mock- and VZV-infected HA-sps were examined for substance P (subP) production, NK-1R localization, morphological changes and viral spread in the presence or absence of NK-1R antagonists, aprepitant and rolapitant. VZV infection of HA-sps induced nuclear localization of full-length and truncated NK-1R in the absence of the endogenous ligand, subP, and was associated with extensive lamellipodia formation and viral spread that was inhibited by NK-1R antagonists. We have identified a novel, subP-independent, proviral function of nuclear NK-1R associated with lamellipodia formation and viral spread that is distinct from subP-induced NK-1R cell membrane/cytoplasmic localization without lamellipodia formation. These results suggest that binding of a putative viral ligand to NK-1R produces a dramatically different NK-1R downstream effect than binding of subP. Finally, NK-1R antagonists aprepitant and rolapitant provide promising alternatives to nucleoside analogs in treating VZV infections, including myelopathy.
Hoischen, Christian; Monajembashi, Shamci; Weisshart, Klaus; Hemmerich, Peter
2018-01-01
The promyelocytic leukemia ( pml ) gene product PML is a tumor suppressor localized mainly in the nucleus of mammalian cells. In the cell nucleus, PML seeds the formation of macromolecular multiprotein complexes, known as PML nuclear bodies (PML NBs). While PML NBs have been implicated in many cellular functions including cell cycle regulation, survival and apoptosis their role as signaling hubs along major genome maintenance pathways emerged more clearly. However, despite extensive research over the past decades, the precise biochemical function of PML in these pathways is still elusive. It remains a big challenge to unify all the different previously suggested cellular functions of PML NBs into one mechanistic model. With the advent of genetically encoded fluorescent proteins it became possible to trace protein function in living specimens. In parallel, a variety of fluorescence fluctuation microscopy (FFM) approaches have been developed which allow precise determination of the biophysical and interaction properties of cellular factors at the single molecule level in living cells. In this report, we summarize the current knowledge on PML nuclear bodies and describe several fluorescence imaging, manipulation, FFM, and super-resolution techniques suitable to analyze PML body assembly and function. These include fluorescence redistribution after photobleaching, fluorescence resonance energy transfer, fluorescence correlation spectroscopy, raster image correlation spectroscopy, ultraviolet laser microbeam-induced DNA damage, erythrocyte-mediated force application, and super-resolution microscopy approaches. Since most if not all of the microscopic equipment to perform these techniques may be available in an institutional or nearby facility, we hope to encourage more researches to exploit sophisticated imaging tools for their research in cancer biology.
Elvenes, Julianne; Sjøttem, Eva; Holm, Turid; Bjørkøy, Geir; Johansen, Terje
2010-12-01
The transcription factor Pax6 is crucial for the embryogenesis of multiple organs, including the eyes, parts of the brain and the pancreas. Mutations in one allele of PAX6 lead to eye diseases including Peter's anomaly and aniridia. Here, we use fluorescence recovery after photobleaching to show that Pax6 and also other Pax family proteins display a strikingly low nuclear mobility compared to other transcriptional regulators. For Pax6, the slow mobility is largely due to the presence of two DNA-binding domains, but protein-protein interactions also contribute. Consistently, the subnuclear localization of Pax6 suggests that it interacts preferentially with chromatin-rich territories. Some aniridia-causing missense mutations in Pax6 have impaired DNA-binding affinity. Interestingly, when these mutants were analyzed by FRAP, they displayed a pronounced increased mobility compared to wild-type Pax6. Hence, our results support the conclusion that disease mutations result in proteins with impaired function because of altered DNA- and protein-interaction capabilities.
Bullido, R; Gómez-Puertas, P; Albo, C; Portela, A
2000-01-01
A systematic analysis was carried out to identify the amino acid signals that regulate the nucleo-cytoplasmic transport of the influenza A virus nucleoprotein (NP). The analysis involved determining the intracellular localization of eight deleted recombinant NP proteins and 14 chimeric proteins containing the green fluorescent protein fused to different NP fragments. In addition, the subcellular distribution of NP derivatives that contained specific substitutions at serine-3, which is the major phosphorylation site of the A/Victoria/3/75 NP, were analysed. From the results obtained, it is concluded that the NP contains three signals involved in nuclear accumulation and two regions that cause cytoplasmic accumulation of the fusion proteins. One of the karyophilic signals was located at the N terminus of the protein, and the data obtained suggest that the functionality of this signal can be modified by phosphorylation at serine-3. These findings are discussed in the context of the transport of influenza virus ribonucleoprotein complexes into and out of the nucleus.
Ren, Xiao-Xin; Wang, Hai-Bo; Li, Chuan; Jiang, Jin-Feng; Xiong, Si-Dong; Jin, Xia; Wu, Li; Wang, Jian-Hua
2016-02-26
HIV-1 depends on host-cell-encoded factors to complete its life cycle. A comprehensive understanding of how HIV-1 manipulates host machineries during viral infection can facilitate the identification of host targets for antiviral drugs or gene therapy. The cellular protein Naf1 (HIV-1 Nef-associated factor 1) is a CRM1-dependent nucleo-cytoplasmic shuttling protein, and has been identified to regulate multiple receptor-mediated signal pathways in inflammation. The cytoplasm-located Naf1 can inhibit NF-κB activation through binding to A20, and the loss of Naf1 controlled NF-κB activation is associated with multiple autoimmune diseases. However, the effect of Naf1 on HIV-1 mRNA expression has not been characterized. In this study we found that the nucleus-located Naf1 could promote nuclear export of unspliced HIV-1 gag mRNA. We demonstrated that the association between Naf1 and CRM1 was required for this function as the inhibition or knockdown of CRM1 expression significantly impaired Naf1-promoted HIV-1 production. The mutation of Naf1 nuclear export signals (NESs) that account for CRM1 recruitment for nuclear export decreased Naf1 function. Additionally, the mutation of the nuclear localization signal (NLS) of Naf1 diminished its ability to promote HIV-1 production, demonstrating that the shuttling property of Naf1 is required for this function. Our results reveal a novel role of Naf1 in enhancing HIV-1 production, and provide a potential therapeutic target for controlling HIV-1 infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Cohesive Relations for Surface Atoms in the Iron-Technetium Binary System
Taylor, Christopher D.
2011-01-01
Iron-technetium alloys are of relevance to the development of waste forms for disposition of radioactive technetium-99 obtained from spent nuclear fuel. Corrosion of candidate waste forms is a function of the local cohesive energy () of surface atoms. A theoretical model for calculating is developed. Density functional theory was used to construct a modified embedded atom (MEAM) potential for iron-technetium. Materials properties determined for the iron-technetium system were in good agreement with the literature. To explore the relationship between local structure and corrosion, MEAM simulations were performed on representative iron-technetium alloys and intermetallics. Technetium-rich phases have lower , suggesting thatmore » these phases will be more noble than iron-rich ones. Quantitative estimates of based on numbers of nearest neighbors alone can lead to errors up to 0.5 eV. Consequently, atomistic corrosion simulations for alloy systems should utilize physics-based models that consider not only neighbor counts, but also local compositions and atomic arrangements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaiboullina, Svetlana F., E-mail: sv.khaiboullina@gmail.com; Morzunov, Sergey P.; Boichuk, Sergei V.
2013-09-01
Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirusmore » triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji
2014-01-17
Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains amore » highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.« less
Paterno, Gary D; Ding, Zhihu; Lew, Yuan-Y; Nash, Gord W; Mercer, F Corinne; Gillespie, Laura L
2002-07-24
mi-er1 (previously called er1) is a fibroblast growth factor-inducible early response gene activated during mesoderm induction in Xenopus embryos and encoding a nuclear protein that functions as a transcriptional activator. The human orthologue of mi-er1 was shown to be upregulated in breast carcinoma cell lines and breast tumours when compared to normal breast cells. In this report, we investigate the structure of the human mi-er1 (hmi-er1) gene and characterize the alternatively spliced transcripts and protein isoforms. hmi-er1 is a single copy gene located at 1p31.2 and spanning 63 kb. It contains 17 exons and includes one skipped exon, a facultative intron and three polyadenylation signals to produce 12 transcripts encoding six distinct proteins. hmi-er1 transcripts were expressed at very low levels in most human adult tissues and the mRNA isoform pattern varied with the tissue. The 12 transcripts encode proteins containing a common internal sequence with variable N- and C-termini. Three distinct N- and two distinct C-termini were identified, giving rise to six protein isoforms. The two C-termini differ significantly in size and sequence and arise from alternate use of a facultative intron to produce hMI-ER1alpha and hMI-ER1beta. In all tissues except testis, transcripts encoding the beta isoform were predominant. hMI-ER1alpha lacks the predicted nuclear localization signal and transfection assays revealed that, unlike hMI-ER1beta, it is not a nuclear protein, but remains in the cytoplasm. Our results demonstrate that alternate use of a facultative intron regulates the subcellular localization of hMI-ER1 proteins and this may have important implications for hMI-ER1 function.
Kannouche, Patricia; Broughton, Bernard C.; Volker, Marcel; Hanaoka, Fumio; Mullenders, Leon H.F.; Lehmann, Alan R.
2001-01-01
DNA polymerase η carries out translesion synthesis past UV photoproducts and is deficient in xeroderma pigmentosum (XP) variants. We report that polη is mostly localized uniformly in the nucleus but is associated with replication foci during S phase. Following treatment of cells with UV irradiation or carcinogens, it accumulates at replication foci stalled at DNA damage. The C-terminal third of polη is not required for polymerase activity. However, the C-terminal 70 aa are needed for nuclear localization and a further 50 aa for relocalization into foci. Polη truncations lacking these domains fail to correct the defects in XP-variant cells. Furthermore, we have identified mutations in two XP variant patients that leave the polymerase motifs intact but cause loss of the localization domains. PMID:11157773
Microsomal receptor for steroid hormones: functional implications for nuclear activity.
Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J
1988-01-01
Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of microsomal binding sites extracted. These observations suggest three possible roles for the microsomal receptor-like proteins: (a) modulation of estrogen access to nuclear binding sites; (b) formation of functional complexes which diffuse to other extranuclear sites to alter non-genomic cellular processes; (c) regulation of nuclear concentration of estrogen-receptor complexes by virtue of producing microsomal acceptor sites for uptake of free or loosely associated nuclear complexes, previously thought to exist in the cytoplasm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Żurek-Biesiada, Dominika; Szczurek, Aleksander T.; Prakash, Kirti
Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant{sup ®} DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei ofmore » fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10{sup 6} signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100 nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy. - Highlights: • Super-resolution imaging of nuclear DNA with Vybrant Violet and blue excitation. • 90nm resolution images of DNA structures in optically thick eukaryotic nuclei. • Enhanced resolution confirms the existence of DNA-free regions inside the nucleus. • Optimized imaging conditions enable multicolor super-resolution imaging.« less
The snoRNA domain of vertebrate telomerase RNA functions to localize the RNA within the nucleus.
Lukowiak, A A; Narayanan, A; Li, Z H; Terns, R M; Terns, M P
2001-01-01
Telomerase RNA is an essential component of the ribonucleoprotein enzyme involved in telomere length maintenance, a process implicated in cellular senescence and cancer. Vertebrate telomerase RNAs contain a box H/ACA snoRNA motif that is not required for telomerase activity in vitro but is essential in vivo. Using the Xenopus oocyte system, we have found that the box H/ACA motif functions in the subcellular localization of telomerase RNA. We have characterized the transport and biogenesis of telomerase RNA by injecting labeled wild-type and variant RNAs into Xenopus oocytes and assaying nucleocytoplasmic distribution, intranuclear localization, modification, and protein binding. Although yeast telomerase RNA shares characteristics of spliceosomal snRNAs, we show that human telomerase RNA is not associated with Sm proteins or efficiently imported into the nucleus. In contrast, the transport properties of vertebrate telomerase RNA resemble those of snoRNAs; telomerase RNA is retained in the nucleus and targeted to nucleoli. Furthermore, both nuclear retention and nucleolar localization depend on the box H/ACA motif. Our findings suggest that the H/ACA motif confers functional localization of vertebrate telomerase RNAs to the nucleus, the compartment where telomeres are synthesized. We have also found that telomerase RNA localizes to Cajal bodies, intranuclear structures where it is thought that assembly of various cellular RNPs takes place. Our results identify the Cajal body as a potential site of telomerase RNP biogenesis. PMID:11780638
Lee, Shauna A; Roques, Céline; Magwood, Alissa C; Masson, Jean-Yves; Baker, Mark D
2009-02-01
The BRCA2 tumor suppressor is important in maintaining genomic stability. BRCA2 is proposed to control the availability, cellular localization and DNA binding activity of the central homologous recombination protein, RAD51, with loss of BRCA2 resulting in defective homologous recombination. Nevertheless, the roles of BRCA2 in regulating RAD51 and how other proteins implicated in RAD51 regulation, such as RAD52 and RAD54 function relative to BRCA2 is not known. In this study, we tested whether defective homologous recombination in Brca2-depleted mouse hybridoma cells could be rectified by expression of mouse Rad51 or the Rad51-interacting mouse proteins, Rad52 and Rad54. In the Brca2-depleted cells, defective homologous recombination can be restored by over-expression of wild-type mouse Rad51, but not mouse Rad52 or Rad54. Correction of the homologous recombination defect requires Rad51 ATPase activity. A sizeable fraction ( approximately 50%) of over-expressed wild-type Rad51 is nuclear localized. The restoration of homologous recombination in the presence of a low (i.e., non-functional) level of Brca2 by wild-type Rad51 over-expression is unexpected. We suggest that Rad51 may access the nuclear compartment in a Brca2-independent manner and when Rad51 is over-expressed, the normal requirement for Brca2 control over Rad51 function in homologous recombination is dispensable. Our studies support loss of Rad51 function as a critical underlying factor in the homologous recombination defect in the Brca2-depleted cells.
PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex.
Surapureddi, Sailesh; Viswakarma, Navin; Yu, Songtao; Guo, Dongsheng; Rao, M Sambasiva; Reddy, Janardan K
2006-05-05
Ciprofibrate, a potent peroxisome proliferator, induces pleiotropic responses in liver by activating peroxisome proliferator-activated receptor alpha (PPARalpha), a nuclear receptor. Transcriptional regulation by liganded nuclear receptors involves the participation of coregulators that form multiprotein complexes possibly to achieve cell and gene specific transcription. SDS-PAGE and matrix-assisted laser desorption/ionization reflection time-of-flight mass spectrometric analyses of ciprofibrate-binding proteins from liver nuclear extracts obtained using ciprofibrate-Sepharose affinity matrix resulted in the identification of a new high molecular weight nuclear receptor coactivator, which we designated PRIC320. The full-length human cDNA encoding this protein has an open-reading frame that codes for a 320kDa protein containing 2882 amino acids. PRIC320 contains five LXXLL signature motifs that mediate interaction with nuclear receptors. PRIC320 binds avidly to nuclear receptors PPARalpha, CAR, ERalpha, and RXR, but only minimally with PPARgamma. PRIC320 also interacts with transcription cofactors CBP, PRIP, and PBP. Immunoprecipitation-immunoblotting as well as cellular localization studies confirmed the interaction between PPARalpha and PRIC320. PRIC320 acts as a transcription coactivator by stimulating PPARalpha-mediated transcription. We conclude that ciprofibrate, a PPARalpha ligand, binds a multiprotein complex and PRIC320 cloned from this complex functions as a nuclear receptor coactivator.
Flather, Dylan; Semler, Bert L.
2015-01-01
The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review. PMID:26150805
Vargas, Walter A; Sanz-Martín, José M; Rech, Gabriel E; Armijos-Jaramillo, Vinicio D; Rivera, Lina P; Echeverria, María Mercedes; Díaz-Mínguez, José M; Thon, Michael R; Sukno, Serenella A
2016-02-01
Plant pathogens have the capacity to manipulate the host immune system through the secretion of effectors. We identified 27 putative effector proteins encoded in the genome of the maize anthracnose pathogen Colletotrichum graminicola that are likely to target the host's nucleus, as they simultaneously contain sequence signatures for secretion and nuclear localization. We functionally characterized one protein, identified as CgEP1. This protein is synthesized during the early stages of disease development and is necessary for anthracnose development in maize leaves, stems, and roots. Genetic, molecular, and biochemical studies confirmed that this effector targets the host's nucleus and defines a novel class of double-stranded DNA-binding protein. We show that CgEP1 arose from a gene duplication in an ancestor of a lineage of monocot-infecting Colletotrichum spp. and has undergone an intense evolution process, with evidence for episodes of positive selection. We detected CgEP1 homologs in several species of a grass-infecting lineage of Colletotrichum spp., suggesting that its function may be conserved across a large number of anthracnose pathogens. Our results demonstrate that effectors targeted to the host nucleus may be key elements for disease development and aid in the understanding of the genetic basis of anthracnose development in maize plants.
Antiviral Defense Involves AGO4 in an Arabidopsis-Potexvirus Interaction.
Brosseau, Chantal; El Oirdi, Mohamed; Adurogbangba, Ayooluwa; Ma, Xiaofang; Moffett, Peter
2016-11-01
In plants, RNA silencing regulates gene expression through the action of Dicer-like (DCL) and Argonaute (AGO) proteins via micro RNAs and RNA-dependent DNA methylation (RdDM). In addition, RNA silencing functions as an antiviral defense mechanism by targeting virus-derived double-stranded RNA. Plants encode multiple AGO proteins with specialized functions, including AGO4-like proteins that affect RdDM and AGO2, AGO5, and AGO1, which have antiviral activities. Here, we show that AGO4 is also required for defense against the potexvirus Plantago asiatica mosaic virus (PlAMV), most likely independent of RdDM components such as DCL3, Pol IV, and Pol V. Transient assays showed that AGO4 has direct antiviral activity on PlAMV and, unlike RdDM, this activity does not require nuclear localization of AGO4. Furthermore, although PlAMV infection causes a decrease in AGO4 expression, PlAMV causes a change in AGO4 localization from a largely nuclear to a largely cytoplasmic distribution. These results indicate an important role for AGO4 in targeting plant RNA viruses as well as demonstrating novel mechanisms of regulation of and by AGO4, independent of its canonical role in regulating gene expression by RdDM.
Pediatric Epilepsy: Neurology, Functional Imaging, and Neurosurgery.
Mountz, James M; Patterson, Christina M; Tamber, Mandeep S
2017-03-01
In this chapter we provide a comprehensive review of the current role that functional imaging can have in the care of the pediatric epilepsy patient from the perspective of the epilepsy neurologist and the epilepsy neurosurgeon. In the neurology section, the diagnosis and classification of epilepsy adapted by the International League Against Epilepsy as well as the etiology and incidence of the disease is presented. The neuroimaging section describes how advanced nuclear medicine imaging methods can be synergized to provide a maximum opportunity to localize an epileptogenic focus. This section described the value of FDG-PET and regional cerebral blood flow SPECT in the identification of an epileptogenic focus. The imaging section also emphasizes the importance on developing a dedicated epilepsy management team, comprised of an epilepsy imaging specialist, epilepsy neurologist and epilepsy neurosurgeon, to provide the maximum benefit to each child with epilepsy. An emphasis is placed on preparation for ictal SPECT injection procedures, including the critical role of an automated injector well as the use of state-of-the-art dedicated nuclear medicine imaging and analysis protocols to correctly localize the epileptogenic focus location. In the final section, surgical options, approaches and expected outcomes for the different classes of epilepsy is presented. Copyright © 2017 Elsevier Inc. All rights reserved.
Plant U13 orthologues and orphan snoRNAs identified by RNomics of RNA from Arabidopsis nucleoli
Kim, Sang Hyon; Spensley, Mark; Choi, Seung Kook; Calixto, Cristiane P. G.; Pendle, Ali F.; Koroleva, Olga; Shaw, Peter J.; Brown, John W. S.
2010-01-01
Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs whose main function in eukaryotes is to guide the modification of nucleotides in ribosomal and spliceosomal small nuclear RNAs, respectively. Full-length sequences of Arabidopsis snoRNAs and scaRNAs have been obtained from cDNA libraries of capped and uncapped small RNAs using RNA from isolated nucleoli from Arabidopsis cell cultures. We have identified 31 novel snoRNA genes (9 box C/D and 22 box H/ACA) and 15 new variants of previously described snoRNAs. Three related capped snoRNAs with a distinct gene organization and structure were identified as orthologues of animal U13snoRNAs. In addition, eight of the novel genes had no complementarity to rRNAs or snRNAs and are therefore putative orphan snoRNAs potentially reflecting wider functions for these RNAs. The nucleolar localization of a number of the snoRNAs and the localization to nuclear bodies of two putative scaRNAs was confirmed by in situ hybridization. The majority of the novel snoRNA genes were found in new gene clusters or as part of previously described clusters. These results expand the repertoire of Arabidopsis snoRNAs to 188 snoRNA genes with 294 gene variants. PMID:20081206
Dang, Van-Dinh; Levin, Henry L.
2000-01-01
Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein. PMID:11003674
Dang, V D; Levin, H L
2000-10-01
Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein.
Aguilar, Areli; Wagstaff, Kylie M; Suárez-Sánchez, Rocío; Zinker, Samuel; Jans, David A; Cisneros, Bulmaro
2015-05-01
Although α-dystrobrevin (DB) is assembled into the dystrophin-associated protein complex, which is central to cytoskeletal organization, it has also been found in the nucleus. Here we delineate the nuclear import pathway responsible for nuclear targeting of α-DB for the first time, together with the importance of nuclear α-DB in determining nuclear morphology. We map key residues of the nuclear localization signal of α-DB within the zinc finger domain (ZZ) using various truncated versions of the protein, and site-directed mutagenesis. Pulldown, immunoprecipitation, and AlphaScreen assays showed that the importin (IMP) α2/β1 heterodimer interacts with high affinity with the ZZ domain of α-DB. In vitro nuclear import assays using antibodies to specific importins, as well as in vivo studies using siRNA or a dominant negative importin construct, confirmed the key role of IMPα2/β1 in α-DB nuclear translocation. Knockdown of α-DB expression perturbed cell cycle progression in C2C12 myoblasts, with decreased accumulation of cells in S phase and, significantly, altered localization of lamins A/C, B1, and B2 with accompanying gross nuclear morphology defects. Because α-DB interacts specifically with lamin B1 in vivo and in vitro, nuclear α-DB would appear to play a key role in nuclear shape maintenance through association with the nuclear lamina. © FASEB.
Kang, Sung-Hwan; Qu, Feng; Morris, T Jack
2015-12-02
The N-terminal 25 amino acids (AAs) of turnip crinkle virus (TCV) capsid protein (CP) are recognized by the resistance protein HRT to trigger a hypersensitive response (HR) and systemic resistance to TCV infection. This same region of TCV CP also contains a motif that interacts with the transcription factor TIP, as well as a nuclear localization signal (NLS). However, it is not yet known whether nuclear localization of TCV CP is needed for the induction of HRT-mediated HR and resistance. Here we present new evidence suggesting a tight correlation between nuclear inclusions formed by CP and the manifestation of HR. We show that a fraction of TCV CP localized to cell nuclei to form discrete inclusion-like structures, and a mutated CP (R6A) known to abolish HR failed to form nuclear inclusions. Notably, TIP-CP interaction augments the inclusion-forming activity of CP by tethering inclusions to the nuclear membrane. This TIP-mediated augmentation is also critical for HR resistance, as another CP mutant (R8A) known to elicit a less restrictive HR, though still self-associated into nuclear inclusions, failed to direct inclusions to the nuclear membrane due to its inability to interact with TIP. Finally, exclusion of CP from cell nuclei abolished induction of HR. Together, these results uncovered a strong correlation between nuclear localization and nuclear inclusion formation by TCV CP and induction of HR, and suggest that CP nuclear inclusions could be the key trigger of the HRT-dependent, yet TIP-reinforced, resistance to TCV. Copyright © 2015 Elsevier B.V. All rights reserved.
Piwi Nuclear Localization and Its Regulatory Mechanism in Drosophila Ovarian Somatic Cells.
Yashiro, Ryu; Murota, Yukiko; Nishida, Kazumichi M; Yamashiro, Haruna; Fujii, Kaede; Ogai, Asuka; Yamanaka, Soichiro; Negishi, Lumi; Siomi, Haruhiko; Siomi, Mikiko C
2018-06-19
In Drosophila ovarian somatic cells (OSCs), Piwi represses transposons transcriptionally to maintain genome integrity. Piwi nuclear localization requires the N terminus and PIWI-interacting RNA (piRNA) loading of Piwi. However, the underlying mechanism remains unknown. Here, we show that Importinα (Impα) plays a pivotal role in Piwi nuclear localization and that Piwi has a bipartite nuclear localization signal (NLS). Impα2 and Impα3 are highly expressed in OSCs, whereas Impα1 is the least expressed. Loss of Impα2 or Impα3 forces Piwi to be cytoplasmic, which is rectified by overexpression of any Impα members. Extension of Piwi-NLS with an additional Piwi-NLS leads Piwi to be imported to the nucleus in a piRNA-independent manner, whereas replacement of Piwi-NLS with SV40-NLS fails. Limited proteolysis analysis suggests that piRNA loading onto Piwi triggers conformational change, exposing the N terminus to the environment. These results suggest that Piwi autoregulates its nuclear localization by exposing the NLS to Impα upon piRNA loading. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.