Science.gov

Sample records for functional protein hinge

  1. Predicting Protein Hinge Motions and Allostery Using Rigidity Theory

    NASA Astrophysics Data System (ADS)

    Sljoka, Adnan; Bezginov, Alexandr

    2011-11-01

    Understanding how a 3D structure of a protein functions depends on predicting which regions are rigid, and which are flexible. One recent approach models molecules as a structure of fixed units (atoms with their bond angles as rigid units, bonds as hinges) plus biochemical constraints coming from the local geometry. This generates a `molecular graph' in the theory of combinatorial rigidity. The 6|V|-6 counting condition for 3-dimensional body-hinge structures (modulo molecular theorem), and a fast `pebble game' algorithm which tracks this count in the multigraph, have led to the development of the program FIRST, for rapid predictions of the flexibility of proteins. In this study we develop a novel protein hinge prediction algorithm via our extension of the pebble game algorithm (relevant regions detection algorithm). We have tested our hinge prediction algorithm on several proteins chosen from the dataset of manually annotated hinges available on the MOLMOV server. Many of our predictions are in very good agreement with this data set. Our algorithms can also predict `allosteric' interactions in proteins—where binding on one site of a molecule changes the shape or binding at a distance `active site' of the molecule. We also give some promising results which support the sliding piston-like movement of helices with respect to one another as a plausible mechanism by which GCPR receptors propagate conformational changes across membranes.

  2. Alternative S2 hinge regions of the myosin rod differentially affect muscle function, myofibril dimensions and myosin tail length

    PubMed Central

    Suggs, Jennifer A.; Cammarato, Anthony; Kronert, William A.; Nikkhoy, Massoud; Dambacher, Corey M.; Megighian, Aram; Bernstein, Sanford I.

    2007-01-01

    Muscle myosin heavy chain (MHC) rod domains intertwine to form alpha-helical coiled-coil dimers; these subsequently multimerize into thick filaments via electrostatic interactions. The subfragment 2/light meromyosin “hinge” region of the MHC rod, located in the C-terminal third of heavy meromyosin, may form a less stable coiled-coil than flanking regions. Partial “melting” of this region has been proposed to result in a helix to random-coil transition. A portion of the Drosophila melanogaster MHC hinge is encoded by mutually exclusive alternative exons 15a and 15b, the use of which correlates with fast (hinge A) or slow (hinge B) muscle physiological properties. To test the functional significance of alternative hinge regions, we constructed transgenic fly lines in which fast muscle isovariant hinge A was switched for slow muscle hinge B in the MHC isoforms of indirect flight and jump muscles. Substitution of the slow muscle hinge B impaired flight ability, increased sarcomere lengths by approximately 13% and resulted in minor disruption to indirect flight muscle sarcomeric structure compared with a transgenic control. With age, residual flight ability decreased rapidly and myofibrils developed peripheral defects. Computational analysis indicates that hinge B has a greater coiled-coil propensity and thus reduced flexibility compared to hinge A. Intriguingly, the MHC rod with hinge B was ~5 nm longer than myosin with hinge A, consistent with the more rigid coiled-coil conformation predicted for hinge B. Our study demonstrates that hinge B cannot functionally substitute for hinge A in fast muscle types, likely as a result of differences in the molecular structure of the rod, subtle changes in myofibril structure and decreased ability to maintain sarcomere structure in indirect flight muscle myofibrils. Thus alternative hinges are important in dictating the distinct functional properties of myosin isoforms and the muscles in which they are expressed. PMID

  3. Method for identification of rigid domains and hinge residues in proteins based on exhaustive enumeration.

    PubMed

    Sim, Jaehyun; Sim, Jun; Park, Eunsung; Lee, Julian

    2015-06-01

    Many proteins undergo large-scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non-overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter-domain bending motion. The performance of the algorithm is demonstrated on several proteins.

  4. Amino acid changes within the E protein hinge region that affect dengue virus type 2 infectivity and fusion

    SciTech Connect

    Butrapet, Siritorn; Childers, Thomas; Moss, Kelley J.; Erb, Steven M.; Luy, Betty E.; Calvert, Amanda E.; Blair, Carol D.; Roehrig, John T.; Huang, Claire Y.-H.

    2011-04-25

    Fifteen mutant dengue viruses were engineered and used to identify AAs in the molecular hinge of the envelope protein that are critical to viral infection. Substitutions at Q52, A54, or E133 reduced infectivity in mammalian cells and altered the pH threshold of fusion. Mutations at F193, G266, I270, or G281 affected viral replication in mammalian and mosquito cells, but only I270W had reduced fusion activity. T280Y affected the pH threshold for fusion and reduced replication in C6/36 cells. Three different mutations at L135 were lethal in mammalian cells. Among them, L135G abrogated fusion and reduced replication in C6/36 cells, but only slightly reduced the mosquito infection rate. Conversely, L135W replicated well in C6/36 cells, but had the lowest mosquito infection rate. Possible interactions between hinge residues 52 and 277, or among 53, 135, 170, 186, 265, and 276 required for hinge function were discovered by sequence analysis to identify compensatory mutations.

  5. Encephalomyocarditis virus Leader protein hinge domain is responsible for interactions with Ran GTPase

    SciTech Connect

    Bacot-Davis, Valjean R.; Palmenberg, Ann C.

    2013-08-15

    Encephalomyocarditis virus (EMCV), a Cardiovirus, initiates its polyprotein with a short 67 amino acid Leader (L) sequence. The protein acts as a unique pathogenicity factor, with anti-host activities which include the triggering of nuclear pore complex hyperphosphorylation and direct binding inhibition of the active cellular transport protein, Ran GTPase. Chemical modifications and protein mutagenesis now map the Ran binding domain to the L hinge-linker region, and in particular, to amino acids 35–40. Large deletions affecting this region were shown previously to diminish Ran binding. New point mutations, especially K35Q, D37A and W40A, preserve the intact L structure, abolish Ran binding and are deficient for nucleoporin (Nup) hyperphosphorylation. Ran itself morphs through multiple configurations, but reacts most effectively with L when in the GDP format, preferably with an empty nucleotide binding pocket. Therefore, L:Ran binding, mediated by the linker-hinge, is a required step in L-induced nuclear transport inhibition. - Highlights: • The hinge domain provides critical residues in Cardiovirus L:Ran complex formation. • Leader prefers to bind Ran in a nucleotide free, GDP-conformation. • L-induced Nup62 phosphorylation is reduced with Ran-deficient binding mutations.

  6. The Symmetrical Structure of Structural Maintenance of Chromosomes (SMC) and MukB Proteins: Long, Antiparallel Coiled Coils, Folded at a Flexible Hinge

    PubMed Central

    Melby, Thomas E.; Ciampaglio, Charles N.; Briscoe, Gina; Erickson, Harold P.

    1998-01-01

    Structural maintenance of chromosomes (SMC) proteins function in chromosome condensation and several other aspects of DNA processing. They are large proteins characterized by an NH2-terminal nucleotide triphosphate (NTP)-binding domain, two long segments of coiled coil separated by a hinge, and a COOH-terminal domain. Here, we have visualized by EM the SMC protein from Bacillus subtilis (BsSMC) and MukB from Escherichia coli, which we argue is a divergent SMC protein. Both BsSMC and MukB show two thin rods with globular domains at the ends emerging from the hinge. The hinge appears to be quite flexible: the arms can open up to 180°, separating the terminal domains by 100 nm, or close to near 0°, bringing the terminal globular domains together. A surprising observation is that the ∼300–amino acid–long coiled coils are in an antiparallel arrangement. Known coiled coils are almost all parallel, and the longest antiparallel coiled coils known previously are 35–45 amino acids long. This antiparallel arrangement produces a symmetrical molecule with both an NH2- and a COOH-terminal domain at each end. The SMC molecule therefore has two complete and identical functional domains at the ends of the long arms. The bifunctional symmetry and a possible scissoring action at the hinge should provide unique biomechanical properties to the SMC proteins. PMID:9744887

  7. Dynamics of the Peripheral Membrane Protein P2 from Human Myelin Measured by Neutron Scattering—A Comparison between Wild-Type Protein and a Hinge Mutant

    PubMed Central

    Laulumaa, Saara; Nieminen, Tuomo; Lehtimäki, Mari; Aggarwal, Shweta; Simons, Mikael; Koza, Michael M.; Vattulainen, Ilpo; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin protein P2 is a fatty acid-binding structural component of the myelin sheath in the peripheral nervous system, and its function is related to its membrane binding capacity. Here, the link between P2 protein dynamics and structure and function was studied using elastic incoherent neutron scattering (EINS). The P38G mutation, at the hinge between the β barrel and the α-helical lid, increased the lipid stacking capacity of human P2 in vitro, and the mutated protein was also functional in cultured cells. The P38G mutation did not change the overall structure of the protein. For a deeper insight into P2 structure-function relationships, information on protein dynamics in the 10 ps to 1 ns time scale was obtained using EINS. Values of mean square displacements mainly from protein H atoms were extracted for wild-type P2 and the P38G mutant and compared. Our results show that at physiological temperatures, the P38G mutant is more dynamic than the wild-type P2 protein, especially on a slow 1-ns time scale. Molecular dynamics simulations confirmed the enhanced dynamics of the mutant variant, especially within the portal region in the presence of bound fatty acid. The increased softness of the hinge mutant of human myelin P2 protein is likely related to an enhanced flexibility of the portal region of this fatty acid-binding protein, as well as to its interactions with the lipid bilayer surface requiring conformational adaptations. PMID:26068118

  8. A hinge migration mechanism unlocks the evolution of green-to-red photoconversion in GFP-like proteins.

    PubMed

    Kim, Hanseong; Zou, Taisong; Modi, Chintan; Dörner, Katerina; Grunkemeyer, Timothy J; Chen, Liqing; Fromme, Raimund; Matz, Mikhail V; Ozkan, S Banu; Wachter, Rebekka M

    2015-01-06

    In proteins, functional divergence involves mutations that modify structure and dynamics. Here we provide experimental evidence for an evolutionary mechanism driven solely by long-range dynamic motions without significant backbone adjustments, catalytic group rearrangements, or changes in subunit assembly. Crystallographic structures were determined for several reconstructed ancestral proteins belonging to a GFP class frequently employed in superresolution microscopy. Their chain flexibility was analyzed using molecular dynamics and perturbation response scanning. The green-to-red photoconvertible phenotype appears to have arisen from a common green ancestor by migration of a knob-like anchoring region away from the active site diagonally across the β barrel fold. The allosterically coupled mutational sites provide active site conformational mobility via epistasis. We propose that light-induced chromophore twisting is enhanced in a reverse-protonated subpopulation, activating internal acid-base chemistry and backbone cleavage to enlarge the chromophore. Dynamics-driven hinge migration may represent a more general platform for the evolution of novel enzyme activities.

  9. A hinge migration mechanism unlocks the evolution of green-to-red photoconversion in GFP-like proteins

    PubMed Central

    Kim, Hanseong; Zou, Taisong; Modi, Chintan; Dörner, Katerina; Grunkemeyer, Timothy J.; Chen, Liqing; Fromme, Raimund; Matz, Mikhail V.; Ozkan, S. Banu; Wachter, Rebekka M.

    2015-01-01

    Summary In proteins, functional divergence involves mutations that modify structure and dynamics. Here, we provide experimental evidence for an evolutionary mechanism driven solely by long-range dynamic motions without significant backbone adjustments, catalytic group rearrangements, or changes in subunit assembly. Crystallographic structures were determined for several reconstructed ancestral proteins belonging to a GFP class frequently employed in superresolution microscopy. Their chain flexibility was analyzed using molecular dynamics and perturbation response scanning. The green-tored photoconvertible phenotype appears to have arisen from a common green ancestor by migration of a knob-like anchoring region away from the active site diagonally across the beta-barrel fold. The allosterically coupled mutational sites provide active site conformational mobility via epistasis. We propose that light-induced chromophore twisting is enhanced in a reverse-protonated subpopulation, activating internal acid-base chemistry and backbone cleavage to enlarge the chromophore. Dynamics-driven hinge migration may represent a more general platform for the evolution of novel enzyme activities. PMID:25565105

  10. Hinge assembly

    DOEpatents

    Vandergriff, D.H.

    1999-08-31

    A hinge assembly is disclosed having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf. 8 figs.

  11. Hinge assembly

    DOEpatents

    Vandergriff, David Houston

    1999-01-01

    A hinge assembly having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf.

  12. A single proteolytic cleavage within the lower hinge of trastuzumab reduces immune effector function and in vivo efficacy

    PubMed Central

    2012-01-01

    Introduction Recent studies reported that human IgG antibodies are susceptible to specific proteolytic cleavage in their lower hinge region, and the hinge cleavage results in a loss of Fc-mediated effector functions. Trastuzumab is a humanized IgG1 therapeutic monoclonal antibody for the treatment of HER2-overexpressing breast cancers, and its mechanisms of action consist of inhibition of HER2 signaling and Fc-mediated antibody-dependent cellular cytotoxicity (ADCC). The objective of this study is to investigate the potential effect of proteinase hinge cleavage on the efficacy of trastuzumab using both a breast cancer cell culture method and an in vivo mouse xenograft tumor model. Methods Trastuzumab antibody was incubated with a panel of human matrix metalloproteinases, and proteolytic cleavage in the lower hinge region was detected using both western blotting and mass spectrometry. Single hinge cleaved trastuzumab (scIgG-T) was purified and evaluated for its ability to mediate ADCC and inhibition of breast cancer cell proliferation in vitro as well as anti-tumor efficacy in the mouse xenograft tumor model. Infiltrated immune cells were detected in tumor tissues by immunohistochemistry. Results scIgG-T retains HER2 antigen binding activity and inhibits HER2-mediated downstream signaling and cell proliferation in vitro when compared with the intact trastuzumab. However, scIgG-T lost Fc-mediated ADCC activity in vitro, and had significantly reduced anti-tumor efficacy in a mouse xenograft tumor model. Immunohistochemistry showed reduced immune cell infiltration in tumor tissues treated with scIgG-T when compared with those treated with the intact trastuzumab, which is consistent with the decreased ADCC mediated by scIgG-T in vitro. Conclusion Trastuzumab can be cleaved by matrix metalloproteinases within the lower hinge. scIgG-T exhibited a significantly reduced anti-tumor efficacy in vivo due to the weakened immune effector function such as ADCC. The results

  13. Targeting domain-III hinging of dengue envelope (DENV-2) protein by MD simulations, docking and free energy calculations.

    PubMed

    Dubey, Kshatresh Dutta; Tiwari, Gargi; Ojha, Rajendra Prasad

    2017-04-01

    The entry of the dengue virus is mediated by the conformational change in the envelope protein due to change in the endosomal pH. The structural study reveals that domain-III of the dengue envelope protein (DENV) shows the largest shift in its position during the entry of the virus. Therefore, targeting the hinge region of the domain-III may block the conformational changes in the DENV. In the present work, we have targeted the domain I/III hinge region using four known ligands used for the dengue envelope protein (serotype-2) and have intended to explore the specificity of one ligand R1 (5-(3-chlorophenyl)-N-(2-phenyl-2H-benzo[d][1,2,3]triazol-6-yl)furan-2-carboxamide) that succeeded the dengue inhibition by the molecular dynamics (MD) simulations in conjunction of the molecular docking and the binding free energy calculations. The residue interactions map shows Lys 296 of domain-III of the DENV-2, which might be responsible for binding small molecules between domain I/III interface, as an important residue conserved in all the dengue serotypes.

  14. Exploring the Structure-Function Loop Adaptability of a (β/α)(8)-Barrel Enzyme through Loop Swapping and Hinge Variability.

    PubMed

    Ochoa-Leyva, Adrián; Barona-Gómez, Francisco; Saab-Rincón, Gloria; Verdel-Aranda, Karina; Sánchez, Filiberto; Soberón, Xavier

    2011-08-05

    Evolution of proteins involves sequence changes that are frequently localized at loop regions, revealing their important role in natural evolution. However, the development of strategies to understand and imitate such events constitutes a challenge to design novel enzymes in the laboratory. In this study, we show how to adapt loop swapping as semiautonomous units of functional groups in an enzyme with the (β/α)(8)-barrel and how this functional adaptation can be measured in vivo. To mimic the natural mechanism providing loop variability in antibodies, we developed an overlap PCR strategy. This includes introduction of sequence diversity at two hinge residues, which connect the new loops with the rest of the protein scaffold, and we demonstrate that this is necessary for a successful exploration of functional sequence space. This design allowed us to explore the sequence requirements to functional adaptation of each loop replacement that may not be sampled otherwise. Libraries generated following this strategy were evaluated in terms of their folding competence and their functional proficiency, an observation that was formalized as a Structure-Function Loop Adaptability value. Molecular details about the function and structure of some variants were obtained by enzyme kinetics and circular dichroism. This strategy yields functional variants that retain the original activity at higher frequencies, suggesting a new strategy for protein engineering that incorporates a more divergent sequence exploration beyond that limited to point mutations. We discuss how this approach may provide insights into the mechanism of enzyme evolution and function.

  15. A structural-maintenance-of-chromosomes hinge domain-containing protein is required for RNA-directed DNA methylation.

    PubMed

    Kanno, Tatsuo; Bucher, Etienne; Daxinger, Lucia; Huettel, Bruno; Böhmdorfer, Gudrun; Gregor, Wolfgang; Kreil, David P; Matzke, Marjori; Matzke, Antonius J M

    2008-05-01

    RNA-directed DNA methylation (RdDM) is a process in which dicer-generated small RNAs guide de novo cytosine methylation at the homologous DNA region. To identify components of the RdDM machinery important for Arabidopsis thaliana development, we targeted an enhancer active in meristems for methylation, which resulted in silencing of a downstream GFP reporter gene. This silencing system also features secondary siRNAs, which trigger methylation that spreads beyond the targeted enhancer region. A screen for mutants defective in meristem silencing and enhancer methylation retrieved six dms complementation groups, which included the known factors DRD1 (ref. 3; a SNF2-like chromatin-remodeling protein) and Pol IVb subunits. Additionally, we identified a previously unknown gene DMS3 (At3g49250), encoding a protein similar to the hinge-domain region of structural maintenance of chromosomes (SMC) proteins. This finding implicates a putative chromosome architectural protein that can potentially link nucleic acids in facilitating an RNAi-mediated epigenetic modification involving secondary siRNAs and spreading of DNA methylation.

  16. Insights into differential modulation of receptor function by hinge region using novel agonistic lutropin receptor and inverse agonistic thyrotropin receptor antibodies.

    PubMed

    Majumdar, Ritankar; Railkar, Reema; Dighe, Rajan R

    2012-03-23

    We report two antibodies, scFv 13B1 and MAb PD1.37, against the hinge regions of LHR and TSHR, respectively, which have similar epitopes but different effects on receptor function. While neither of them affected hormone binding, with marginal effects on hormone response, scFv 13B1 stimulated LHR in a dose-dependent manner, whereas MAb PD1.37 acted as an inverse agonist of TSHR. Moreover, PD1.37 could decrease the basal activity of hinge region CAMs, but had varied effects on those present in ECLs, whereas 13B1 was refractory to any CAMs in LHR. Using truncation mutants and peptide phage display, we compared the differential roles of the hinge region cysteine box-2/3 as well as the exoloops in the activation of these two homologus receptors.

  17. Scaffold mining of kinase hinge binders in crystal structure database

    NASA Astrophysics Data System (ADS)

    Xing, Li; Rai, Brajesh; Lunney, Elizabeth A.

    2014-01-01

    Protein kinases are the second most prominent group of drug targets, after G-protein-coupled receptors. Despite their distinct inhibition mechanisms, the majority of kinase inhibitors engage the conserved hydrogen bond interactions with the backbone of hinge residues. We mined Pfizer internal crystal structure database (CSDb) comprising of several thousand of public as well as internal X-ray binary complexes to compile an inclusive list of hinge binding scaffolds. The minimum ring scaffolds with directly attached hetero-atoms and functional groups were extracted from the full compounds by applying a rule-based filtering procedure employing a comprehensive annotation of ATP-binding site of the human kinase complements. The results indicated large number of kinase inhibitors of diverse chemical structures are derived from a relatively small number of common scaffolds, which serve as the critical recognition elements for protein kinase interaction. Out of the nearly 4,000 kinase-inhibitor complexes in the CSDb we identified approximately 600 unique scaffolds. Hinge scaffolds are overwhelmingly flat with very little sp3 characteristics, and are less lipophilic than their corresponding parent compounds. Examples of the most common as well as the uncommon hinge scaffolds are presented. Although the most common scaffolds are found in complex with multiple kinase targets, a large number of them are uniquely bound to a specific kinase, suggesting certain scaffolds could be more promiscuous than the others. The compiled collection of hinge scaffolds along with their three-dimensional binding coordinates could serve as basis set for hinge hopping, a practice frequently employed to generate novel invention as well as to optimize existing leads in medicinal chemistry.

  18. Hybrid flexure hinges

    NASA Astrophysics Data System (ADS)

    Lin, Rongzhou; Zhang, Xianmin; Long, Xuejun; Fatikow, Sergej

    2013-08-01

    This paper designs and analyzes the hybrid flexure hinge composed of half a hyperbolic flexure hinge and half a corner-filleted flexure hinge. As it is transversely asymmetric, it has different performance when the fixed and free ends switch. Considering the diversion of rotation center from midpoint, closed-form equations are formulated to characterize both the active rotation and all other in-plane parasitic motion by the Castigliano's second theorem. The maximum stress is evaluated as well. These equations are verified by the finite element analysis and experimentation. The compliance precision ratios are proposed to indicate flexure hinges' ability of preserving the rotation center when they have the same displacement at the free end. The hybrid flexure hinges are compared with five kinds of common notch flexure hinges (circular, corner-filleted, elliptical, hyperbolic, and parabolic flexure hinges) quantitatively based on compliance, precision, compliance precision ratios, and the maximum stress. Conclusions are drawn regarding the performance of these six kinds of flexure hinges.

  19. Designing Great Hinge Questions

    ERIC Educational Resources Information Center

    Wiliam, Dylan

    2015-01-01

    According to author Dylan Wiliam, because lessons never go exactly as planned, teachers should build plan B into plan A. This involves designing a lesson with a "hinge" somewhere in the middle and using specific kinds of questions--what he calls hinge questions--to quickly assess students' understanding of a concept before moving on.…

  20. Damped leaf flexure hinge

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Chen, Guisheng; Zhang, Xianmin

    2015-05-01

    Flexure-based mechanism like compliant actuation system embeds complex dynamics that will reduce the control bandwidth and limits their dynamic positioning precision. This paper presents a theoretical model of a leaf flexure hinge with damping layers using strain energy method and Kelvin damping model. The modified loss factor of the damped leaf flexure hinge is derived, and the equivalent viscous damping coefficient of the damped leaf hinge is obtained, which could be used to improve the pseudo-rigid-model. The free vibration signals of the hinge in three different damping configurations are measured. The experimental modal analysis also is performed on the three kinds of damped leaf flexure hinges in order to evaluate their 1st order bending natural frequency and vibration-suppressing effects. The evaluation of modified loss factor model also is performed. The experimental results indicate that the constrained layer damping can enhance the structure damping of the hinge even if only single damping layer each side, the modified loss factor model can get good predicts of a damped leaf flexure hinge in the frequency range below 1st order natural frequency, and it is necessary that the dimensional parameters of the damping layers and basic layer of the hinge should be optimized for simplification at the mechanism's design stage.

  1. A Flexible Domain-Domain Hinge Promotes an Induced-fit Dominant Mechanism for the Loading of Guide-DNA into Argonaute Protein in Thermus thermophilus.

    PubMed

    Zhu, Lizhe; Jiang, Hanlun; Sheong, Fu Kit; Cui, Xuefeng; Gao, Xin; Wang, Yanli; Huang, Xuhui

    2016-03-17

    Argonaute proteins (Ago) are core components of the RNA Induced Silencing Complex (RISC) that load and utilize small guide nucleic acids to silence mRNAs or cleave foreign DNAs. Despite the essential role of Ago in gene regulation and defense against virus, the molecular mechanism of guide-strand loading into Ago remains unclear. We explore such a mechanism in the bacterium Thermus thermophilus Ago (TtAgo), via a computational approach combining molecular dynamics, bias-exchange metadynamics, and protein-DNA docking. We show that apo TtAgo adopts multiple closed states that are unable to accommodate guide-DNA. Conformations able to accommodate the guide are beyond the reach of thermal fluctuations from the closed states. These results suggest an induced-fit dominant mechanism for guide-strand loading in TtAgo, drastically different from the two-step mechanism for human Ago 2 (hAgo2) identified in our previous study. Such a difference between TtAgo and hAgo2 is found to mainly originate from the distinct rigidity of their L1-PAZ hinge. Further comparison among known Ago structures from various species indicates that the L1-PAZ hinge may be flexible in general for prokaryotic Ago's but rigid for eukaryotic Ago's.

  2. Hinge total knee replacement revisited

    PubMed Central

    Cameron, Hugh U.; Hu, Cungen; Vyamont, Didier

    1997-01-01

    Objective To determine if aseptic loosening is a major problem in hinge total knee replacement. Design A cohort study. Setting A university-affiliated institute, specializing in elective orthopedic surgery. Patients Fifty-eight patients, mainly those requiring revision, in whom the conditions were such that it was felt only a totally constrained implant was appropriate. In 7 patients the implant was press-fitted; in the remainder it was cemented. Five patients required fusion or revision, and 8 died less than 2 years after implantation, leaving 45 for review. Follow-up was 2 to 13 years. Intervention Total knee replacement with a Guepar II prosthesis. Main outcome measures Radiolucency determined by the Cameron system and clinical scoring using the Hospital for Special Surgery system. Results Of the cemented components, 91% of femoral stems were type IA (no lucency), 9% were type IB (partial lucency), with no type II or III lucency. Tibial lucency was 87% type IA and 13% type IB, with no type II or III lucency. Of the noncemented components, 58% of femoral components were type IA and 42% type IB. Tibial lucency was 71% type IA and 29% type IB. Lucency was mainly present in zones 1 and 2 adjacent to the knee. Clinical rating was 18% excellent, 20% good, 20% fair and 42% poor. Postoperative complications included infection (13%), aseptic loosening (7%), quadriceps lag (16%) and extensor mechanism problems (16%). Conclusions Aseptic loosening is an uncommon problem in hinge total knee replacement. The complication rate in cases of sufficient severity as to require a hinge replacement remains high. Current indications for a hinge prosthesis are anteroposterior instability with a very large flexion gap, complete absence of the collateral ligaments and complete absence of a functioning extensor mechanism. PMID:9267296

  3. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  4. Impaired Acid Catalysis by Mutation of a Protein Loop Hinge Residue in a YopH Mutant Revealed by Crystal Structures

    SciTech Connect

    Brandao, T.; Robinson, H; Johnson, S; Hengge, A

    2009-01-01

    Catalysis by the Yersinia protein-tyrosine phosphatase YopH is significantly impaired by the mutation of the conserved Trp354 residue to Phe. Though not a catalytic residue, this Trp is a hinge residue in a conserved flexible loop (the WPD-loop) that must close during catalysis. To learn why this seemingly conservative mutation reduces catalysis by 2 orders of magnitude, we have solved high-resolution crystal structures for the W354F YopH in the absence and in the presence of tungstate and vanadate. Oxyanion binding to the P-loop in W354F is analogous to that observed in the native enzyme. However, the WPD-loop in the presence of oxyanions assumes a half-closed conformation, in contrast to the fully closed state observed in structures of the native enzyme. This observation provides an explanation for the impaired general acid catalysis observed in kinetic experiments with Trp mutants. A 1.4 Angstroms structure of the W354F mutant obtained in the presence of vanadate reveals an unusual divanadate species with a cyclic [VO]2 core, which has precedent in small molecules but has not been previously reported in a protein crystal structure.

  5. GMI1, a structural-maintenance-of-chromosomes-hinge domain-containing protein, is involved in somatic homologous recombination in Arabidopsis.

    PubMed

    Böhmdorfer, Gudrun; Schleiffer, Alexander; Brunmeir, Reinhard; Ferscha, Stefan; Nizhynska, Viktoria; Kozák, Jaroslav; Angelis, Karel J; Kreil, David P; Schweizer, Dieter

    2011-08-01

    DNA double-strand breaks (DSBs) pose one of the most severe threats to genome integrity, potentially leading to cell death. After detection of a DSB, the DNA damage and repair response is initiated and the DSB is repaired by non-homologous end joining and/or homologous recombination. Many components of these processes are still unknown in Arabidopsis thaliana. In this work, we characterized γ-irradiation and mitomycin C induced 1 (GMI1), a member of the SMC-hinge domain-containing protein family. RT-PCR analysis and promoter-GUS fusion studies showed that γ-irradiation, the radio-mimetic drug bleocin, and the DNA cross-linking agent mitomycin C strongly enhance GMI1 expression particularly in meristematic tissues. The induction of GMI1 by γ-irradiation depends on the signalling kinase Ataxia telangiectasia-mutated (ATM) but not on ATM and Rad3-related (ATR). Epistasis analysis of single and double mutants demonstrated that ATM acts upstream of GMI1 while the atr gmi1-2 double mutant was more sensitive than the respective single mutants. Comet assay revealed a reduced rate of DNA double-strand break repair in gmi1 mutants during the early recovery phase after exposure to bleocin. Moreover, the rate of homologous recombination of a reporter construct was strongly reduced in gmi1 mutant plants upon exposure to bleocin or mitomycin C. GMI1 is the first member of its protein family known to be involved in DNA repair.

  6. Shape Memory Composite Hybrid Hinge

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen

    2012-01-01

    There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature

  7. Geometric Theory of Hinged Devices

    NASA Astrophysics Data System (ADS)

    Kovalev, M. D.

    1995-02-01

    This article contains results connected with engineering mechanics. Among them are: a theorem "on the nonuniqueness of a statically determinable truss", a classification of hinged mechanisms and their schemes, and an example of a hinged mechanism with variable number of degrees of freedom. The study of general geometric properties is based on the concept, introduced here, of an abstract hinged device in Rd. This concept formalizes a well-known approach in the theory of mechanisms. The formalization gives rise to a number of interesting mathematical questions.

  8. Flight measurements of hinged-plate wing-spoiler hinge moments. [dhc-6 Twin Otter series 100 aircraft

    NASA Technical Reports Server (NTRS)

    Fry, E. B.

    1983-01-01

    Hinge moment of hinged-plate wing spoilers were measured during flight of a twin turboprop airplane modified by the addition of upper and lower wing-surface spoilers. The spoiler-actuating hydraulic cylinders were instrumented to measure the forces required to extend the spoiler panels. Those measurements were converted to moment coefficient form, and are presented as a function of spoiler deployment angle. The hinge-moment data were collected at three flight conditions: with flaps extended at approach speed; with flaps retracted at a low speed; and with flaps retracted at a high speed (C sub L = 1.4, 1.0, and 0.5). In general, the magnitude of measured spoiler hinge moments were lower than predicted. Furthermore, for upper surface spoilers with flaps extended, the hinge moments increased in a discontinuous manner between spoiler deflection 10 and 10.

  9. Crystal structure of a BCL-W domain-swapped dimer: implications for the function of BCL-2 family proteins.

    PubMed

    Lee, Erinna F; Dewson, Grant; Smith, Brian J; Evangelista, Marco; Pettikiriarachchi, Anne; Dogovski, Con; Perugini, Matthew A; Colman, Peter M; Fairlie, W Douglas

    2011-10-12

    The prosurvival and proapoptotic proteins of the BCL-2 family share a similar three-dimensional fold despite their opposing functions. However, many biochemical studies highlight the requirement for conformational changes for the functioning of both types of proteins, although structural data to support such changes remain elusive. Here, we describe the X-ray structure of dimeric BCL-W that reveals a major conformational change involving helices α3 and α4 hinging away from the core of the protein. Biochemical and functional studies reveal that the α4-α5 hinge region is required for dimerization of BCL-W, and functioning of both pro- and antiapoptotic BCL-2 proteins. Hence, this structure reveals a conformational flexibility not seen in previous BCL-2 protein structures and provides insights into how these regulators of apoptosis can change conformation to exert their function.

  10. Proline-induced hinges in transmembrane helices: possible roles in ion channel gating.

    PubMed

    Tieleman, D P; Shrivastava, I H; Ulmschneider, M R; Sansom, M S

    2001-08-01

    A number of ion channels contain transmembrane (TM) alpha-helices that contain proline-induced molecular hinges. These TM helices include the channel-forming peptide alamethicin (Alm), the S6 helix from voltage-gated potassium (Kv) channels, and the D5 helix from voltage-gated chloride (CLC) channels. For both Alm and KvS6, experimental data implicate hinge-bending motions of the helix in an aspect of channel gating. We have compared the hinge-bending motions of these TM helices in bilayer-like environments by multi-nanosecond MD simulations in an attempt to describe motions of these helices that may underlie possible modes of channel gating. Alm is an alpha-helical channel-forming peptide, which contains a central kink associated with a Gly-x-x-Pro motif in its sequence. Simulations of Alm in a TM orientation for 10 ns in an octane slab indicate that the Gly-x-x-Pro motif acts as a molecular hinge. The S6 helix from Shaker Kv channels contains a Pro-Val-Pro motif. Modeling studies and recent experimental data suggest that the KvS6 helix may be kinked in the vicinity of this motif. Simulations (10 ns) of an isolated KvS6 helix in an octane slab and in a POPC bilayer reveal hinge-bending motions. A pattern-matching approach was used to search for possible hinge-bending motifs in the TM helices of other ion channel proteins. This uncovered a conserved Gly-x-Pro motif in TM helix D5 of CLC channels. MD simulations of a model of hCLC1-D5 spanning an octane slab suggest that this channel also contains a TM helix that undergoes hinge-bending motion. In conclusion, our simulations suggest a model in which hinge-bending motions of TM helices may play a functional role in the gating mechanisms of several different families of ion channels.

  11. Assessment of disulfide and hinge modifications in monoclonal antibodies.

    PubMed

    Moritz, Bernd; Stracke, Jan Olaf

    2016-12-16

    During the last years there was a substantial increase in the use of antibodies and related proteins as therapeutics. The emphasis of the pharmaceutical industry is on IgG1, IgG2, and IgG4 antibodies, which are therefore in the focus of this article. In order to ensure appropriate quality control of such biopharmaceuticals, deep understanding of their chemical degradation pathways and the resulting impact on potency, pharmacokinetics, and safety is required. Criticality of modifications may be specific for individual antibodies and has to be assessed for each molecule. However, some modifications of conserved structure elements occur in all or at least most IgGs. In these cases, criticality assessment may be applicable to related molecules or molecule formats. The relatively low dissociation energy of disulfide bonds and the high flexibility of the hinge region frequently lead to modifications and cleavages. Therefore, the hinge region and disulfide bonds require specific consideration during quality assessment of mAbs. In this review, available literature knowledge on underlying chemical reaction pathways of modifications, analytical methods for quantification and criticality are discussed. The hinge region is prone to cleavage and is involved in pathways that lead to thioether bond formation, cysteine racemization, and iso-Asp (Asp, aspartic acid) formation. Disulfide or sulfhydryl groups were found to be prone to reductive cleavage, trisulfide formation, cysteinylation, glutathionylation, disulfide bridging to further light chains, and disulfide scrambling. With regard to potency, disulfide cleavage, hinge cleavage, disulfide bridging to further light chains, and cysteinylation were found to influence antigen binding and fragment crystallizable (Fc) effector functionalities. Renal clearance of small fragments may be faster, whereas clearance of larger fragments appears to depend on their neonatal Fc receptor (FcRn) functionality, which in turn may be impeded by

  12. 14 CFR 25.657 - Hinges.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.657 Hinges. (a) For... material used as a bearing. (b) Hinges must have enough strength and rigidity for loads parallel to...

  13. 14 CFR 25.657 - Hinges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.657 Hinges. (a) For... material used as a bearing. (b) Hinges must have enough strength and rigidity for loads parallel to...

  14. [Protein phosphatases: structure and function].

    PubMed

    Bulanova, E G; Budagian, V M

    1994-01-01

    The process of protein and enzyme systems phosphorylation is necessary for cell growth, differentiation and preparation for division and mitosis. The conformation changes of protein as a result of phosphorylation lead to increased enzyme activity and enhanced affinity to substrates. A large group of enzymes--protein kinases--is responsible for phosphorylation process in cell, which are divided into tyrosine- and serine-threonine-kinases depending on their ability to phosphorylate appropriate amino acid residues. In this review has been considered the functional importance and structure of protein phosphatases--enzymes, which are functional antagonists of protein kinases.

  15. Ambulatory Function and Perception of Confidence in Persons with Stroke with a Custom-Made Hinged versus a Standard Ankle Foot Orthosis.

    PubMed

    Slijper, Angélique; Danielsson, Anna; Willén, Carin

    2012-01-01

    Objective. The aim was to compare walking with an individually designed dynamic hinged ankle foot orthosis (DAFO) and a standard carbon composite ankle foot orthosis (C-AFO). Methods. Twelve participants, mean age 56 years (range 26-72), with hemiparesis due to stroke were included in the study. During the six-minute walk test (6MW), walking velocity, the Physiological Cost Index (PCI), and the degree of experienced exertion were measured with a DAFO and C-AFO, respectively, followed by a Stairs Test velocity and perceived confidence was rated. Results. The mean differences in favor for the DAFO were in 6MW 24.3 m (95% confidence interval [CI] 4.90, 43.76), PCI -0.09 beats/m (95% CI -0.27, 0.95), velocity 0.04 m/s (95% CI -0.01, 0.097), and in the Stairs Test -11.8 s (95% CI -19.05, -4.48). All participants except one perceived the degree of experienced exertion lower and felt more confident when walking with the DAFO. Conclusions. Wearing a DAFO resulted in longer walking distance and faster stair climbing compared to walking with a C-AFO. Eleven of twelve participants felt more confident with the DAFO, which may be more important than speed and distance and the most important reason for prescribing an AFO.

  16. Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics

    SciTech Connect

    Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.; Braddock, Joan M.; Farman, Gerrie P.; Irving, Thomas C.; Swank, Douglas M.; Bernstein, Sanford I.; Maughan, David W.

    2009-07-01

    The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.

  17. Conformational diversity analysis reveals three functional mechanisms in proteins

    PubMed Central

    Fornasari, María Silvina

    2017-01-01

    Protein motions are a key feature to understand biological function. Recently, a large-scale analysis of protein conformational diversity showed a positively skewed distribution with a peak at 0.5 Å C-alpha root-mean-square-deviation (RMSD). To understand this distribution in terms of structure-function relationships, we studied a well curated and large dataset of ~5,000 proteins with experimentally determined conformational diversity. We searched for global behaviour patterns studying how structure-based features change among the available conformer population for each protein. This procedure allowed us to describe the RMSD distribution in terms of three main protein classes sharing given properties. The largest of these protein subsets (~60%), which we call “rigid” (average RMSD = 0.83 Å), has no disordered regions, shows low conformational diversity, the largest tunnels and smaller and buried cavities. The two additional subsets contain disordered regions, but with differential sequence composition and behaviour. Partially disordered proteins have on average 67% of their conformers with disordered regions, average RMSD = 1.1 Å, the highest number of hinges and the longest disordered regions. In contrast, malleable proteins have on average only 25% of disordered conformers and average RMSD = 1.3 Å, flexible cavities affected in size by the presence of disordered regions and show the highest diversity of cognate ligands. Proteins in each set are mostly non-homologous to each other, share no given fold class, nor functional similarity but do share features derived from their conformer population. These shared features could represent conformational mechanisms related with biological functions. PMID:28192432

  18. Structural Requirements for Function of Yeast GGAs in Vacuolar Protein Sorting, α-Factor Maturation, and Interactions with Clathrin

    PubMed Central

    Mullins, Chris; Bonifacino, Juan S.

    2001-01-01

    The GGAs (Golgi-localized, gamma-ear-containing, ARF-binding proteins) are a family of multidomain adaptor proteins involved in protein sorting at the trans-Golgi network of eukaryotic cells. Here we present results from a functional characterization of the two Saccharomyces cerevisiae GGAs, Gga1p and Gga2p. We show that deletion of both GGA genes causes defects in sorting of carboxypeptidase Y (CPY) and proteinase A to the vacuole, vacuolar morphology, and maturation of α-factor. A structure-function analysis reveals a requirement of the VHS, GAT, and hinge for function, while the GAE domain is less important. We identify putative clathrin-binding motifs in the hinge domain of both yeast GGAs. These motifs are shown to mediate clathrin binding in vitro. While mutation of these motifs alone does not block function of the GGAs in vivo, combining these mutations with truncations of the hinge and GAE domains diminishes function, suggesting functional cooperation between different clathrin-binding elements. Thus, these observations demonstrate that the yeast GGAs play important roles in the CPY pathway, vacuole biogenesis, and α-factor maturation and identify structural determinants that are critical for these functions. PMID:11689690

  19. Specialized interfaces of Smc5/6 control hinge stability and DNA association

    PubMed Central

    Alt, Aaron; Dang, Hung Q.; Wells, Owen S.; Polo, Luis M.; Smith, Matt A.; McGregor, Grant A.; Welte, Thomas; Lehmann, Alan R.; Pearl, Laurence H.; Murray, Johanne M.; Oliver, Antony W.

    2017-01-01

    The Structural Maintenance of Chromosomes (SMC) complexes: cohesin, condensin and Smc5/6 are involved in the organization of higher-order chromosome structure—which is essential for accurate chromosome duplication and segregation. Each complex is scaffolded by a specific SMC protein dimer (heterodimer in eukaryotes) held together via their hinge domains. Here we show that the Smc5/6-hinge, like those of cohesin and condensin, also forms a toroidal structure but with distinctive subunit interfaces absent from the other SMC complexes; an unusual ‘molecular latch' and a functional ‘hub'. Defined mutations in these interfaces cause severe phenotypic effects with sensitivity to DNA-damaging agents in fission yeast and reduced viability in human cells. We show that the Smc5/6-hinge complex binds preferentially to ssDNA and that this interaction is affected by both ‘latch' and ‘hub' mutations, suggesting a key role for these unique features in controlling DNA association by the Smc5/6 complex. PMID:28134253

  20. Functional domains in tetraspanin proteins.

    PubMed

    Stipp, Christopher S; Kolesnikova, Tatiana V; Hemler, Martin E

    2003-02-01

    Exciting new findings have emerged about the structure, function and biochemistry of tetraspanin proteins. Five distinct tetraspanin regions have now been delineated linking structural features to specific functions. Within the large extracellular loop of tetraspanins, there is a variable region that mediates specific interactions with other proteins, as well as a more highly conserved region that has been suggested to mediate homodimerization. Within the transmembrane region, the four tetraspanin transmembrane domains are probable sites of both intra- and inter-molecular interactions that are crucial during biosynthesis and assembly of the network of tetraspanin-linked membrane proteins known as the 'tetraspanin web'. In the intracellular juxtamembrane region, palmitoylation of cysteine residues also contributes to tetraspanin web assembly, and the C-terminal cytoplasmic tail region could provide specific functional links to cytoskeletal or signaling proteins.

  1. The controls at low hinge moments

    NASA Technical Reports Server (NTRS)

    Pris, M

    1932-01-01

    A very stable airplane remains very maneuverable when the hinge moments of the controls remain inferior to those obtained with the conventional forms and when the wing lift at high angles has been improved. From this point of view, elevators balanced by recoil of the hinge, and slotted wings present some interesting features.

  2. Multifunctional Deployment Hinges Rigidified by Ultraviolet

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Simburger, Edward J.; Matusmoto, James; Giants, Thomas W.; Garcia, Alexander; Perry, Alan; Rawal, Suraj; Marshall, Craig; Lin, John Kun Hung; Day, Jonathan Robert; Scarborough, Stephen Emerson

    2005-01-01

    Multifunctional hinges have been developed for deploying and electrically connecting panels comprising planar arrays of thin-film solar photovoltaic cells. In the original intended application of these hinges, the panels would be facets of a 32-sided (and approximately spherical) polyhedral microsatellite (see figure), denoted a PowerSphere, that would be delivered to orbit in a compact folded configuration, then deployed by expansion of gas in inflation bladders. Once deployment was complete, the hinges would be rigidified to provide structural connections that would hold the panels in their assigned relative positions without backlash. Such hinges could also be used on Earth for electrically connecting and structurally supporting solar panels that are similarly shipped in compact form and deployed at their destinations. As shown in section A-A in the figure, a hinge of this type is partly integrated with an inflation bladder and partly integrated with the frame of a solar panel. During assembly of the hinge, strip extensions from a flexible circuit harness on the bladder are connected to corresponding thin-film conductors on the solar panel by use of laser welding and wrap-around contacts. The main structural component of the hinge is a layer of glass fiber impregnated with an ultraviolet-curable resin. After deployment, exposure to ultraviolet light from the Sun cures the resin, thereby rigidifying the hinge.

  3. Deciphering the hidden informational content of protein sequences: foldability of proinsulin hinges on a flexible arm that is dispensable in the mature hormone.

    PubMed

    Liu, Ming; Hua, Qing-xin; Hu, Shi-Quan; Jia, Wenhua; Yang, Yanwu; Saith, Sunil Evan; Whittaker, Jonathan; Arvan, Peter; Weiss, Michael A

    2010-10-01

    Protein sequences encode both structure and foldability. Whereas the interrelationship of sequence and structure has been extensively investigated, the origins of folding efficiency are enigmatic. We demonstrate that the folding of proinsulin requires a flexible N-terminal hydrophobic residue that is dispensable for the structure, activity, and stability of the mature hormone. This residue (Phe(B1) in placental mammals) is variably positioned within crystal structures and exhibits (1)H NMR motional narrowing in solution. Despite such flexibility, its deletion impaired insulin chain combination and led in cell culture to formation of non-native disulfide isomers with impaired secretion of the variant proinsulin. Cellular folding and secretion were maintained by hydrophobic substitutions at B1 but markedly perturbed by polar or charged side chains. We propose that, during folding, a hydrophobic side chain at B1 anchors transient long-range interactions by a flexible N-terminal arm (residues B1-B8) to mediate kinetic or thermodynamic partitioning among disulfide intermediates. Evidence for the overall contribution of the arm to folding was obtained by alanine scanning mutagenesis. Together, our findings demonstrate that efficient folding of proinsulin requires N-terminal sequences that are dispensable in the native state. Such arm-dependent folding can be abrogated by mutations associated with β-cell dysfunction and neonatal diabetes mellitus.

  4. Design of membrane proteins: toward functional systems.

    PubMed

    Ghirlanda, Giovanna

    2009-12-01

    Over the years, membrane-soluble peptides have provided a convenient model system to investigate the folding and assembly of integral membrane proteins. Recent advances in experimental and computational methods are now being translated into the design of functional membrane proteins. Applications include artificial modulators of membrane protein function, inhibitors of protein-protein interactions, and redox membrane proteins.

  5. 14 CFR 23.657 - Hinges.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control... material used as a bearing. (b) For ball or roller bearing hinges, the approved rating of the bearing...

  6. 14 CFR 23.657 - Hinges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control... material used as a bearing. (b) For ball or roller bearing hinges, the approved rating of the bearing...

  7. 14 CFR 23.657 - Hinges.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control... material used as a bearing. (b) For ball or roller bearing hinges, the approved rating of the bearing...

  8. 14 CFR 23.657 - Hinges.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... factor of safety of not less than 6.67 with respect to the ultimate bearing strength of the softest material used as a bearing. (b) For ball or roller bearing hinges, the approved rating of the bearing...

  9. 14 CFR 25.657 - Hinges.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... safety of not less than 6.67 must be used with respect to the ultimate bearing strength of the softest material used as a bearing. (b) Hinges must have enough strength and rigidity for loads parallel to...

  10. 14 CFR 25.657 - Hinges.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... safety of not less than 6.67 must be used with respect to the ultimate bearing strength of the softest material used as a bearing. (b) Hinges must have enough strength and rigidity for loads parallel to...

  11. 14 CFR 23.657 - Hinges.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... factor of safety of not less than 6.67 with respect to the ultimate bearing strength of the softest material used as a bearing. (b) For ball or roller bearing hinges, the approved rating of the bearing...

  12. Phospholipid liposomes functionalized by protein

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Savostyanov, G. V.; Grishina, O. A.

    2015-03-01

    Finding new ways to deliver neurotrophic drugs to the brain in newborns is one of the contemporary problems of medicine and pharmaceutical industry. Modern researches in this field indicate the promising prospects of supramolecular transport systems for targeted drug delivery to the brain which can overcome the blood-brain barrier (BBB). Thus, the solution of this problem is actual not only for medicine, but also for society as a whole because it determines the health of future generations. Phospholipid liposomes due to combination of lipo- and hydrophilic properties are considered as the main future objects in medicine for drug delivery through the BBB as well as increasing their bioavailability and toxicity. Liposomes functionalized by various proteins were used as transport systems for ease of liposomes use. Designing of modification oligosaccharide of liposomes surface is promising in the last decade because it enables the delivery of liposomes to specific receptor of human cells by selecting ligand and it is widely used in pharmacology for the treatment of several diseases. The purpose of this work is creation of a coarse-grained model of bilayer of phospholipid liposomes, functionalized by specific to the structural elements of the BBB proteins, as well as prediction of the most favorable orientation and position of the molecules in the generated complex by methods of molecular docking for the formation of the structure. Investigation of activity of the ligand molecule to protein receptor of human cells by the methods of molecular dynamics was carried out.

  13. Graphite Composite Booms with Integral Hinges

    NASA Technical Reports Server (NTRS)

    Alexander, Wes; Carlos, Rene; Rossoni, Peter; Sturm, James

    2006-01-01

    A document discusses lightweight instrument booms under development for use aboard spacecraft. A boom of this type comprises a thin-walled graphite fiber/ matrix composite tube with an integral hinge that can be bent for stowage and later allowed to spring back to straighten the boom for deployment in outer space. The boom design takes advantage of both the stiffness of the composite in tubular geometry and the flexibility of thin sections of the composite. The hinge is formed by machining windows in the tube at diametrically opposite locations so that there remain two opposing cylindrical strips resembling measuring tapes. Essential to the design is a proprietary composite layup that renders the hinge tough yet flexible enough to be bendable as much as 90 in either of two opposite directions. When the boom is released for deployment, the torque exerted by the bent hinge suffices to overcome parasitic resistance from harnesses and other equipment, so that the two sections of the hinge snap to a straight, rigid condition in the same manner as that of measuring tapes. Issues addressed in development thus far include selection of materials, out-of-plane bending, edge cracking, and separation of plies.

  14. An iterative approach of protein function prediction

    PubMed Central

    2011-01-01

    Background Current approaches of predicting protein functions from a protein-protein interaction (PPI) dataset are based on an assumption that the available functions of the proteins (a.k.a. annotated proteins) will determine the functions of the proteins whose functions are unknown yet at the moment (a.k.a. un-annotated proteins). Therefore, the protein function prediction is a mono-directed and one-off procedure, i.e. from annotated proteins to un-annotated proteins. However, the interactions between proteins are mutual rather than static and mono-directed, although functions of some proteins are unknown for some reasons at present. That means when we use the similarity-based approach to predict functions of un-annotated proteins, the un-annotated proteins, once their functions are predicted, will affect the similarities between proteins, which in turn will affect the prediction results. In other words, the function prediction is a dynamic and mutual procedure. This dynamic feature of protein interactions, however, was not considered in the existing prediction algorithms. Results In this paper, we propose a new prediction approach that predicts protein functions iteratively. This iterative approach incorporates the dynamic and mutual features of PPI interactions, as well as the local and global semantic influence of protein functions, into the prediction. To guarantee predicting functions iteratively, we propose a new protein similarity from protein functions. We adapt new evaluation metrics to evaluate the prediction quality of our algorithm and other similar algorithms. Experiments on real PPI datasets were conducted to evaluate the effectiveness of the proposed approach in predicting unknown protein functions. Conclusions The iterative approach is more likely to reflect the real biological nature between proteins when predicting functions. A proper definition of protein similarity from protein functions is the key to predicting functions iteratively. The

  15. Protein function annotation using protein domain family resources.

    PubMed

    Das, Sayoni; Orengo, Christine A

    2016-01-15

    As a result of the genome sequencing and structural genomics initiatives, we have a wealth of protein sequence and structural data. However, only about 1% of these proteins have experimental functional annotations. As a result, computational approaches that can predict protein functions are essential in bridging this widening annotation gap. This article reviews the current approaches of protein function prediction using structure and sequence based classification of protein domain family resources with a special focus on functional families in the CATH-Gene3D resource.

  16. Buckling of continuously supported hinged beams

    NASA Technical Reports Server (NTRS)

    Murthy, G. K. N.

    1975-01-01

    The effect on the buckling load of a hinge at the center of an infinite beam supported by a semiinfinite elastic continuum is analyzed using the complex Fourier transforms. An expression is obtained for the relationship between the surface deflection of the elastic continuum and the pressure distribution acting on the surface, and solutions are obtained for the assumed form of the pressure distribution below the beam. The analysis is applied to cases of uniform pressure over the width of the beam and a pressure distribution that occurs below a rigid stamp. The results show that the buckling loads for an infinite beam with a hinge at the center and supported by a semiinfinite elastic continuum are approximately one half of those for a beam without a hinge, and that this ratio is exactly one half for an infinite beam resting on a Winkler foundation.

  17. Magnetic Actuation of Self-Assembled DNA Hinges

    NASA Astrophysics Data System (ADS)

    Lauback, S.; Mattioli, K.; Armstrong, M.; Miller, C.; Pease, C.; Castro, C.; Sooryakumar, R.

    DNA nanotechnology offers a broad range of applications spanning from the creation of nanoscale devices, motors and nanoparticle templates to the development of precise drug delivery systems. Central to advancing this technology is the ability to actuate or reconfigure structures in real time, which is currently achieved primarily by DNA strand displacement yielding slow actuation times (about 1-10min). Here we exploit superparamagnetic beads to magnetically actuate DNA structures which also provides a system to measure forces associated with molecular interactions. DNA nanodevices are folded using DNA origami, whereby a long single-stranded DNA is folded into a precise compact geometry using hundreds of short oligonucleotides. Our DNA nanodevice is a nanohinge from which rod shaped DNA nanostructures are polymerized into micron-scale filaments forming handles for actuation. By functionalizing one arm of the hinge and the filament ends, the hinge can be attached to a surface while still allowing an arm to rotate and the filaments can be labeled with magnetic beads enabling the hinge to be actuated almost instantaneously by external magnetic fields. These results lay the groundwork to establish real-time manipulation and direct force application of DNA constructs.

  18. The E4 protein; structure, function and patterns of expression

    SciTech Connect

    Doorbar, John

    2013-10-15

    The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1{sup ∧}E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein′s flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1{sup ∧}E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1{sup ∧}E4 gene products generally become detectable at the onset of vegetative viral genome amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1{sup

  19. Functional assignment to JEV proteins using SVM

    PubMed Central

    Sahoo, Ganesh Chandra; Dikhit, Manas Ranjan; Das, Pradeep

    2008-01-01

    Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP). PMID:19052658

  20. Comparison of hinged and contoured rods for occipitocervical arthrodesis in adults: A clinical study

    PubMed Central

    Abode-Iyamah, Kingsley O; Dlouhy, Brian J; Lopez, Alejandro J; Menezes, Arnold H; Hitchon, Patrick W; Dahdaleh, Nader S

    2016-01-01

    Introduction: A rigid construct that employs an occipital plate and upper cervical screws and rods is the current standard treatment for craniovertebral junction (CVJ) instability. A rod is contoured to accommodate the occipitocervical angle. Fatigue failure has been associated these acute bends. Hinged rod systems have been developed to obviate intraoperative rod contouring. Object: The aim of this study is to determine the safety and efficacy of the hinged rod system in occipitocervical fusion. Materials and Methods: This study retrospectively evaluated 39 patients who underwent occipitocervical arthrodesis. Twenty patients were treated with hinged rods versus 19 with contoured rods. Clinical and radiographic data were compared and analyzed. Results: Preoperative and postoperative Nurick and Frankel scores were similar between both groups. The use of allograft, autograft or bone morphogenetic protein was similar in both groups. The average number of levels fused was 4.1 (±2.4) and 3.4 (±2) for hinged and contoured rods, respectively. The operative time, estimated blood loss, and length of stay were similar between both groups. The occiput to C2 angle was similarly maintained in both groups and all patients demonstrated no movement across the CVJ on flexion-extension X-rays during their last follow-up. The average follow-up for the hinged and contoured rod groups was 12.2 months and 15.9 months, respectively. Conclusion: Hinged rods provide a safe and effective alternative to contoured rods during occipitocervical arthrodesis. PMID:27630479

  1. Functional Foods Containing Whey Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey proteins, modified whey proteins, and whey components are useful as nutrients or supplements for health maintenance. Extrusion modified whey proteins can easily fit into new products such as beverages, confectionery items (e.g., candies), convenience foods, desserts, baked goods, sauces, and in...

  2. The E4 protein; structure, function and patterns of expression.

    PubMed

    Doorbar, John

    2013-10-01

    The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1^E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein's flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1^E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1^E4 gene products generally become detectable at the onset of vegetative viral genome amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1^E4, these kinases regulate one of

  3. A new protein structure representation for efficient protein function prediction.

    PubMed

    Maghawry, Huda A; Mostafa, Mostafa G M; Gharib, Tarek F

    2014-12-01

    One of the challenging problems in bioinformatics is the prediction of protein function. Protein function is the main key that can be used to classify different proteins. Protein function can be inferred experimentally with very small throughput or computationally with very high throughput. Computational methods are sequence based or structure based. Structure-based methods produce more accurate protein function prediction. In this article, we propose a new protein structure representation for efficient protein function prediction. The representation is based on three-dimensional patterns of protein residues. In the analysis, we used protein function based on enzyme activity through six mechanistically diverse enzyme superfamilies: amidohydrolase, crotonase, haloacid dehalogenase, isoprenoid synthase type I, and vicinal oxygen chelate. We applied three different classification methods, naïve Bayes, k-nearest neighbors, and random forest, to predict the enzyme superfamily of a given protein. The prediction accuracy using the proposed representation outperforms a recently introduced representation method that is based only on the distance patterns. The results show that the proposed representation achieved prediction accuracy up to 98%, with improvement of about 10% on average.

  4. Prediction of protein function from protein sequence and structure.

    PubMed

    Whisstock, James C; Lesk, Arthur M

    2003-08-01

    The sequence of a genome contains the plans of the possible life of an organism, but implementation of genetic information depends on the functions of the proteins and nucleic acids that it encodes. Many individual proteins of known sequence and structure present challenges to the understanding of their function. In particular, a number of genes responsible for diseases have been identified but their specific functions are unknown. Whole-genome sequencing projects are a major source of proteins of unknown function. Annotation of a genome involves assignment of functions to gene products, in most cases on the basis of amino-acid sequence alone. 3D structure can aid the assignment of function, motivating the challenge of structural genomics projects to make structural information available for novel uncharacterized proteins. Structure-based identification of homologues often succeeds where sequence-alone-based methods fail, because in many cases evolution retains the folding pattern long after sequence similarity becomes undetectable. Nevertheless, prediction of protein function from sequence and structure is a difficult problem, because homologous proteins often have different functions. Many methods of function prediction rely on identifying similarity in sequence and/or structure between a protein of unknown function and one or more well-understood proteins. Alternative methods include inferring conservation patterns in members of a functionally uncharacterized family for which many sequences and structures are known. However, these inferences are tenuous. Such methods provide reasonable guesses at function, but are far from foolproof. It is therefore fortunate that the development of whole-organism approaches and comparative genomics permits other approaches to function prediction when the data are available. These include the use of protein-protein interaction patterns, and correlations between occurrences of related proteins in different organisms, as

  5. 14 CFR 23.393 - Loads parallel to hinge line.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... supporting hinge brackets must be designed to withstand inertial loads acting parallel to the hinge line. (b) In the absence of more rational data, the inertial loads may be assumed to be equal to KW, where—...

  6. 14 CFR 23.393 - Loads parallel to hinge line.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... supporting hinge brackets must be designed to withstand inertial loads acting parallel to the hinge line. (b) In the absence of more rational data, the inertial loads may be assumed to be equal to KW, where—...

  7. 14 CFR 23.393 - Loads parallel to hinge line.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... supporting hinge brackets must be designed to withstand inertial loads acting parallel to the hinge line. (b) In the absence of more rational data, the inertial loads may be assumed to be equal to KW, where—...

  8. 14 CFR 23.393 - Loads parallel to hinge line.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... supporting hinge brackets must be designed to withstand inertial loads acting parallel to the hinge line. (b) In the absence of more rational data, the inertial loads may be assumed to be equal to KW, where—...

  9. 14 CFR 23.393 - Loads parallel to hinge line.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... supporting hinge brackets must be designed to withstand inertial loads acting parallel to the hinge line. (b) In the absence of more rational data, the inertial loads may be assumed to be equal to KW, where—...

  10. Protein Function Prediction: Problems and Pitfalls.

    PubMed

    Pearson, William R

    2015-09-03

    The characterization of new genomes based on their protein sets has been revolutionized by new sequencing technologies, but biologists seeking to exploit new sequence information are often frustrated by the challenges associated with accurately assigning biological functions to newly identified proteins. Here, we highlight some of the challenges in functional inference from sequence similarity. Investigators can improve the accuracy of function prediction by (1) being conservative about the evolutionary distance to a protein of known function; (2) considering the ambiguous meaning of "functional similarity," and (3) being aware of the limitations of annotations in functional databases. Protein function prediction does not offer "one-size-fits-all" solutions. Prediction strategies work better when the idiosyncrasies of function and functional annotation are better understood.

  11. Exploring Mouse Protein Function via Multiple Approaches

    PubMed Central

    Huang, Tao; Kong, Xiangyin; Zhang, Yunhua; Zhang, Ning

    2016-01-01

    Although the number of available protein sequences is growing exponentially, functional protein annotations lag far behind. Therefore, accurate identification of protein functions remains one of the major challenges in molecular biology. In this study, we presented a novel approach to predict mouse protein functions. The approach was a sequential combination of a similarity-based approach, an interaction-based approach and a pseudo amino acid composition-based approach. The method achieved an accuracy of about 0.8450 for the 1st-order predictions in the leave-one-out and ten-fold cross-validations. For the results yielded by the leave-one-out cross-validation, although the similarity-based approach alone achieved an accuracy of 0.8756, it was unable to predict the functions of proteins with no homologues. Comparatively, the pseudo amino acid composition-based approach alone reached an accuracy of 0.6786. Although the accuracy was lower than that of the previous approach, it could predict the functions of almost all proteins, even proteins with no homologues. Therefore, the combined method balanced the advantages and disadvantages of both approaches to achieve efficient performance. Furthermore, the results yielded by the ten-fold cross-validation indicate that the combined method is still effective and stable when there are no close homologs are available. However, the accuracy of the predicted functions can only be determined according to known protein functions based on current knowledge. Many protein functions remain unknown. By exploring the functions of proteins for which the 1st-order predicted functions are wrong but the 2nd-order predicted functions are correct, the 1st-order wrongly predicted functions were shown to be closely associated with the genes encoding the proteins. The so-called wrongly predicted functions could also potentially be correct upon future experimental verification. Therefore, the accuracy of the presented method may be much higher in

  12. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion.

    PubMed

    Dong, Jinlan; Bruening, Merlin L

    2015-01-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  13. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion

    NASA Astrophysics Data System (ADS)

    Dong, Jinlan; Bruening, Merlin L.

    2015-07-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO2 nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  14. Thin film solar cell inflatable ultraviolet rigidizable deployment hinge

    NASA Technical Reports Server (NTRS)

    Simburger, Edward J. (Inventor); Matsumoto, James H. (Inventor); Giants, Thomas W. (Inventor); Garcia, III, Alec (Inventor); Perry, Alan R. (Inventor); Rawal, Suraj (Inventor); Marshall, Craig H. (Inventor); Lin, John K. H. (Inventor); Day, Jonathan Robert (Inventor); Kerslake, Thomas W. (Inventor)

    2010-01-01

    A flexible inflatable hinge includes curable resin for rigidly positioning panels of solar cells about the hinge in which wrap around contacts and flex circuits are disposed for routing power from the solar cells to the power bus further used for grounding the hinge. An indium tin oxide and magnesium fluoride coating is used to prevent static discharge while being transparent to ultraviolet light that cures the embedded resin after deployment for rigidizing the inflatable hinge.

  15. Origins of Protein Functions in Cells

    NASA Technical Reports Server (NTRS)

    Seelig, Burchard; Pohorille, Andrzej

    2011-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis and in vitro evolution of very large libraries of random amino acid sequences. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions yet, important clues have been uncovered. In one example (Keefe and Szostak, 2001), novel ATP binding proteins were identified that appear to be unrelated in both sequence and structure to any known ATP binding proteins. One of these proteins was subsequently redesigned computationally to bind GTP through introducing several mutations that introduce targeted structural changes to the protein, improve its binding to guanine and prevent water from accessing the active center. This study facilitates further investigations of individual evolutionary steps that lead to a change of function in primordial proteins. In a second study (Seelig and Szostak, 2007), novel enzymes were generated that can join two pieces of RNA in a reaction for which no natural enzymes are known

  16. Year 2 Report: Protein Function Prediction Platform

    SciTech Connect

    Zhou, C E

    2012-04-27

    Upon completion of our second year of development in a 3-year development cycle, we have completed a prototype protein structure-function annotation and function prediction system: Protein Function Prediction (PFP) platform (v.0.5). We have met our milestones for Years 1 and 2 and are positioned to continue development in completion of our original statement of work, or a reasonable modification thereof, in service to DTRA Programs involved in diagnostics and medical countermeasures research and development. The PFP platform is a multi-scale computational modeling system for protein structure-function annotation and function prediction. As of this writing, PFP is the only existing fully automated, high-throughput, multi-scale modeling, whole-proteome annotation platform, and represents a significant advance in the field of genome annotation (Fig. 1). PFP modules perform protein functional annotations at the sequence, systems biology, protein structure, and atomistic levels of biological complexity (Fig. 2). Because these approaches provide orthogonal means of characterizing proteins and suggesting protein function, PFP processing maximizes the protein functional information that can currently be gained by computational means. Comprehensive annotation of pathogen genomes is essential for bio-defense applications in pathogen characterization, threat assessment, and medical countermeasure design and development in that it can short-cut the time and effort required to select and characterize protein biomarkers.

  17. Detection of Functional Modes in Protein Dynamics

    PubMed Central

    Hub, Jochen S.; de Groot, Bert L.

    2009-01-01

    Proteins frequently accomplish their biological function by collective atomic motions. Yet the identification of collective motions related to a specific protein function from, e.g., a molecular dynamics trajectory is often non-trivial. Here, we propose a novel technique termed “functional mode analysis” that aims to detect the collective motion that is directly related to a particular protein function. Based on an ensemble of structures, together with an arbitrary “functional quantity” that quantifies the functional state of the protein, the technique detects the collective motion that is maximally correlated to the functional quantity. The functional quantity could, e.g., correspond to a geometric, electrostatic, or chemical observable, or any other variable that is relevant to the function of the protein. In addition, the motion that displays the largest likelihood to induce a substantial change in the functional quantity is estimated from the given protein ensemble. Two different correlation measures are applied: first, the Pearson correlation coefficient that measures linear correlation only; and second, the mutual information that can assess any kind of interdependence. Detecting the maximally correlated motion allows one to derive a model for the functional state in terms of a single collective coordinate. The new approach is illustrated using a number of biomolecules, including a polyalanine-helix, T4 lysozyme, Trp-cage, and leucine-binding protein. PMID:19714202

  18. Characterization of flexure hinges for the French watt balance experiment

    NASA Astrophysics Data System (ADS)

    Pinot, Patrick; Genevès, Gérard

    2014-08-01

    In the French watt balance experiment, the translation and rotation functions must have no backlash, no friction, nor the need for lubricants. In addition errors in position and movement must be below 100 nm. Flexure hinges can meet all of these criteria. Different materials, profile shapes and machining techniques have been studied. The flexure pivots have been characterized using three techniques: 1) an optical microscope and, if necessary, a SEM to observe the surface inhomogeneities; 2) a mass comparator to determine the bending stiffness of unloaded pivots; 3) a loaded beam oscillating freely under vacuum to study the dynamic behavior of loaded pivots.

  19. Instability of modes in a partially hinged rectangular plate

    NASA Astrophysics Data System (ADS)

    Ferreira, Vanderley; Gazzola, Filippo; Moreira dos Santos, Ederson

    2016-12-01

    We consider a thin and narrow rectangular plate where the two short edges are hinged whereas the two long edges are free. This plate aims to represent the deck of a bridge, either a footbridge or a suspension bridge. We study a nonlocal evolution equation modeling the deformation of the plate and we prove existence, uniqueness and asymptotic behavior for the solutions for all initial data in suitable functional spaces. Then we prove results on the stability/instability of simple modes motivated by a phenomenon which is visible in actual bridges and we complement these theorems with some numerical experiments.

  20. Characterization and Functionality of Corn Germ Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the functional properties of protein extracted from wet-milled corn germ and identify potential applications of the recovered protein. Corn germ comprises 12% of the total weight of normal dent corn and about 29% of the corn protein (moisture-free and oil- free ...

  1. Flexibility and rigidity, requirements for the function of proteins and protein pigment complexes. Eleventh Keilin memorial lecture.

    PubMed

    Huber, R

    1987-12-01

    Proteins may be rigid or flexible to various degrees as required for optimum function. Flexibility at the level of amino acid side-chains occurs universally and is important for binding and catalysis. Flexibility of large parts of a protein which rearrange or move are particularly interesting and will be discussed here. We differentiate between certain categories of large-scale flexibility although the boundaries between them are diffuse: flexibility of peptide segments, domain motions and order-disorder transitions of spatially contigous regions. The domains may be flexibly linked to allow rather unrestricted motion or the motion may be constrained to certain modes. The polypeptide segments linking the domains show characteristic structural features. The various categories of flexibility will be illustrated with the following examples. (a) Small protein proteinase inhibitors which are rather rigid molecules which provide binding surfaces complementary to their cognate proteases, but also show limited segmental flexibility and adaptation. (b) Large plasma inhibitors which exhibit large conformational changes upon interaction with proteases probably for regulatory purposes. (c) Pancreatic serine proteases which employ a disorder-order transition of their activation domain as a means to regulate enzymic activity. (d) Immunoglobulins in which rather unrestricted and also hinged domain motions occur in different parts of the molecule probably to allow binding to antigens in different arrangements. (e) Citrate synthase which adopts open and closed forms by a hinged domain motion to bind substrates and release products and to perform the catalytic condensation reaction, respectively. (f) The bifunctional multienzyme complex riboflavin synthase in which two enzymes (alpha and beta) catalyse two consecutive enzymic reactions. The beta-subunits form a shell, in which the alpha-subunits are enclosed. Diffusional motion of the catalytic intermediates is therefore restricted

  2. Protein function prediction based on data fusion and functional interrelationship.

    PubMed

    Meng, Jun; Wekesa, Jael-Sanyanda; Shi, Guan-Li; Luan, Yu-Shi

    2016-04-01

    One of the challenging tasks of bioinformatics is to predict more accurate and confident protein functions from genomics and proteomics datasets. Computational approaches use a variety of high throughput experimental data, such as protein-protein interaction (PPI), protein sequences and phylogenetic profiles, to predict protein functions. This paper presents a method that uses transductive multi-label learning algorithm by integrating multiple data sources for classification. Multiple proteomics datasets are integrated to make inferences about functions of unknown proteins and use a directed bi-relational graph to assign labels to unannotated proteins. Our method, bi-relational graph based transductive multi-label function annotation (Bi-TMF) uses functional correlation and topological PPI network properties on both the training and testing datasets to predict protein functions through data fusion of the individual kernel result. The main purpose of our proposed method is to enhance the performance of classifier integration for protein function prediction algorithms. Experimental results demonstrate the effectiveness and efficiency of Bi-TMF on multi-sources datasets in yeast, human and mouse benchmarks. Bi-TMF outperforms other recently proposed methods.

  3. Atomic-level functional model of dengue virus Envelope protein infectivity

    PubMed Central

    Christian, Elizabeth A.; Kahle, Kristen M.; Mattia, Kimberly; Puffer, Bridget A.; Pfaff, Jennifer M.; Miller, Adam; Paes, Cheryl; Davidson, Edgar; Doranz, Benjamin J.

    2013-01-01

    A number of structures have been solved for the Envelope (E) protein from dengue virus and closely related flaviviruses, providing detailed pictures of the conformational states of the protein at different stages of infectivity. However, the key functional residues responsible for mediating the dynamic changes between these structures remain largely unknown. Using a comprehensive library of functional point mutations covering all 390 residues of the dengue virus E protein ectodomain, we identified residues that are critical for virus infectivity, but that do not affect E protein expression, folding, virion assembly, or budding. The locations and atomic interactions of these critical residues within different structures representing distinct fusogenic conformations help to explain how E protein (i) regulates fusion-loop exposure by shielding, tethering, and triggering its release; (ii) enables hinge movements between E domain interfaces during triggered structural transformations; and (iii) drives membrane fusion through late-stage zipper contacts with stem. These results provide structural targets for drug and vaccine development and integrate the findings from structural studies and isolated mutagenesis efforts into a cohesive model that explains how specific residues in this class II viral fusion protein enable virus infectivity. PMID:24158478

  4. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    SciTech Connect

    Ohno, Masae; Kunimoto, Masaaki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2009-12-18

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins are known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.

  5. J domain independent functions of J proteins.

    PubMed

    Ajit Tamadaddi, Chetana; Sahi, Chandan

    2016-07-01

    Heat shock proteins of 40 kDa (Hsp40s), also called J proteins, are obligate partners of Hsp70s. Via their highly conserved and functionally critical J domain, J proteins interact and modulate the activity of their Hsp70 partners. Mutations in the critical residues in the J domain often result in the null phenotype for the J protein in question. However, as more J proteins have been characterized, it is becoming increasingly clear that a significant number of J proteins do not "completely" rely on their J domains to carry out their cellular functions, as previously thought. In some cases, regions outside the highly conserved J domain have become more important making the J domain dispensable for some, if not for all functions of a J protein. This has profound effects on the evolution of such J proteins. Here we present selected examples of J proteins that perform J domain independent functions and discuss this in the context of evolution of J proteins with dispensable J domains and J-like proteins in eukaryotes.

  6. Functions of red cell surface proteins.

    PubMed

    Daniels, G

    2007-11-01

    The external membrane of the red cell contains numerous proteins that either cross the lipid bilayer one or more times or are anchored to it through a lipid tail. Many of these proteins express blood group activity. The functions of some of these proteins are known; in others their function can only be surmised from the protein structure or from limited experimental evidence. They are loosely divided into four categories based on their functions: membrane transporters; adhesion molecules and receptors; enzymes; and structural proteins that link the membrane with the membrane skeleton. Some of the proteins carry out more than one of these functions. Some proteins may complete their major functions during erythropoiesis or may only be important under adverse physiological conditions. Furthermore, some might be evolutionary relics and may no longer have significant functions. Polymorphisms or rare changes in red cell surface proteins are often responsible for blood groups. The biological significance of these polymorphisms or the selective pressures responsible for their stability within populations are mostly not known, although exploitation of the proteins by pathogenic micro-organisms has probably played a major role.

  7. Food Protein Functionality--A New Model.

    PubMed

    Foegeding, E Allen

    2015-12-01

    Proteins in foods serve dual roles as nutrients and structural building blocks. The concept of protein functionality has historically been restricted to nonnutritive functions--such as creating emulsions, foams, and gels--but this places sole emphasis on food quality considerations and potentially overlooks modifications that may also alter nutritional quality or allergenicity. A new model is proposed that addresses the function of proteins in foods based on the length scale(s) responsible for the function. Properties such as flavor binding, color, allergenicity, and digestibility are explained based on the structure of individual molecules; placing this functionality at the nano/molecular scale. At the next higher scale, applications in foods involving gelation, emulsification, and foam formation are based on how proteins form secondary structures that are seen at the nano and microlength scales, collectively called the mesoscale. The macroscale structure represents the arrangements of molecules and mesoscale structures in a food. Macroscale properties determine overall product appearance, stability, and texture. The historical approach of comparing among proteins based on forming and stabilizing specific mesoscale structures remains valid but emphasis should be on a common means for structure formation to allow for comparisons across investigations. For applications in food products, protein functionality should start with identification of functional needs across scales. Those needs are then evaluated relative to how processing and other ingredients could alter desired molecular scale properties, or proper formation of mesoscale structures. This allows for a comprehensive approach to achieving the desired function of proteins in foods.

  8. Sucrose Synthase: Expanding Protein Function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose synthase (SUS: EC 2.4.1.13), a key enzyme in plant sucrose catabolism, is uniquely able to mobilize sucrose into multiple pathways involved in metabolic, structural, and storage functions. Our research indicates that the biological function of SUS may extend beyond its catalytic activity. Th...

  9. Phylointeractomics reconstructs functional evolution of protein binding

    PubMed Central

    Kappei, Dennis; Scheibe, Marion; Paszkowski-Rogacz, Maciej; Bluhm, Alina; Gossmann, Toni Ingolf; Dietz, Sabrina; Dejung, Mario; Herlyn, Holger; Buchholz, Frank; Mann, Matthias; Butter, Falk

    2017-01-01

    Molecular phylogenomics investigates evolutionary relationships based on genomic data. However, despite genomic sequence conservation, changes in protein interactions can occur relatively rapidly and may cause strong functional diversification. To investigate such functional evolution, we here combine phylogenomics with interaction proteomics. We develop this concept by investigating the molecular evolution of the shelterin complex, which protects telomeres, across 16 vertebrate species from zebrafish to humans covering 450 million years of evolution. Our phylointeractomics screen discovers previously unknown telomere-associated proteins and reveals how homologous proteins undergo functional evolution. For instance, we show that TERF1 evolved as a telomere-binding protein in the common stem lineage of marsupial and placental mammals. Phylointeractomics is a versatile and scalable approach to investigate evolutionary changes in protein function and thus can provide experimental evidence for phylogenomic relationships. PMID:28176777

  10. Protein function from its emergence to diversity in contemporary proteins

    NASA Astrophysics Data System (ADS)

    Goncearenco, Alexander; Berezovsky, Igor N.

    2015-07-01

    The goal of this work is to learn from nature the rules that govern evolution and the design of protein function. The fundamental laws of physics lie in the foundation of the protein structure and all stages of the protein evolution, determining optimal sizes and shapes at different levels of structural hierarchy. We looked back into the very onset of the protein evolution with a goal to find elementary functions (EFs) that came from the prebiotic world and served as building blocks of the first enzymes. We defined the basic structural and functional units of biochemical reactions—elementary functional loops. The diversity of contemporary enzymes can be described via combinations of a limited number of elementary chemical reactions, many of which are performed by the descendants of primitive prebiotic peptides/proteins. By analyzing protein sequences we were able to identify EFs shared by seemingly unrelated protein superfamilies and folds and to unravel evolutionary relations between them. Binding and metabolic processing of the metal- and nucleotide-containing cofactors and ligands are among the most abundant ancient EFs that became indispensable in many natural enzymes. Highly designable folds provide structural scaffolds for many different biochemical reactions. We show that contemporary proteins are built from a limited number of EFs, making their analysis instrumental for establishing the rules for protein design. Evolutionary studies help us to accumulate the library of essential EFs and to establish intricate relations between different folds and functional superfamilies. Generalized sequence-structure descriptors of the EF will become useful in future design and engineering of desired enzymatic functions.

  11. Protein function from its emergence to diversity in contemporary proteins.

    PubMed

    Goncearenco, Alexander; Berezovsky, Igor N

    2015-06-09

    The goal of this work is to learn from nature the rules that govern evolution and the design of protein function. The fundamental laws of physics lie in the foundation of the protein structure and all stages of the protein evolution, determining optimal sizes and shapes at different levels of structural hierarchy. We looked back into the very onset of the protein evolution with a goal to find elementary functions (EFs) that came from the prebiotic world and served as building blocks of the first enzymes. We defined the basic structural and functional units of biochemical reactions-elementary functional loops. The diversity of contemporary enzymes can be described via combinations of a limited number of elementary chemical reactions, many of which are performed by the descendants of primitive prebiotic peptides/proteins. By analyzing protein sequences we were able to identify EFs shared by seemingly unrelated protein superfamilies and folds and to unravel evolutionary relations between them. Binding and metabolic processing of the metal- and nucleotide-containing cofactors and ligands are among the most abundant ancient EFs that became indispensable in many natural enzymes. Highly designable folds provide structural scaffolds for many different biochemical reactions. We show that contemporary proteins are built from a limited number of EFs, making their analysis instrumental for establishing the rules for protein design. Evolutionary studies help us to accumulate the library of essential EFs and to establish intricate relations between different folds and functional superfamilies. Generalized sequence-structure descriptors of the EF will become useful in future design and engineering of desired enzymatic functions.

  12. Predicting protein function by frequent functional association pattern mining in protein interaction networks.

    PubMed

    Cho, Young-Rae; Zhang, Aidong

    2010-01-01

    Predicting protein function from protein interaction networks has been challenging because of the complexity of functional relationships among proteins. Most previous function prediction methods depend on the neighborhood of or the connected paths to known proteins. However, their accuracy has been limited due to the functional inconsistency of interacting proteins. In this paper, we propose a novel approach for function prediction by identifying frequent patterns of functional associations in a protein interaction network. A set of functions that a protein performs is assigned into the corresponding node as a label. A functional association pattern is then represented as a labeled subgraph. Our frequent labeled subgraph mining algorithm efficiently searches the functional association patterns that occur frequently in the network. It iteratively increases the size of frequent patterns by one node at a time by selective joining, and simplifies the network by a priori pruning. Using the yeast protein interaction network, our algorithm found more than 1400 frequent functional association patterns. The function prediction is performed by matching the subgraph, including the unknown protein, with the frequent patterns analogous to it. By leave-one-out cross validation, we show that our approach has better performance than previous link-based methods in terms of prediction accuracy. The frequent functional association patterns generated in this study might become the foundations of advanced analysis for functional behaviors of proteins in a system level.

  13. Evidence on How a Conserved Glycine in the Hinge Region of HapR Regulates Its DNA Binding Ability: LESSONS FROM A NATURAL VARIANT.

    SciTech Connect

    M Dongre; N Singh; C Dureja; N Peddada; A Solanki; F Ashish; S Raychaudhuri

    2011-12-31

    HapR has been recognized as a quorum-sensing master regulator in Vibrio cholerae. Because it controls a plethora of disparate cellular events, the absence of a functional HapR affects the physiology of V. cholerae to a great extent. In the current study, we pursued an understanding of an observation of a natural protease-deficient non-O1, non-O139 variant V. cholerae strain V2. Intriguingly, a nonfunctional HapR (henceforth designated as HapRV2) harboring a substitution of glycine to aspartate at position 39 of the N-terminal hinge region has been identified. An in vitro gel shift assay clearly suggested the inability of HapRV2 to interact with various cognate promoters. Reinstatement of glycine at position 39 restores DNA binding ability of HapRV2 (HapRV2G), thereby rescuing the protease-negative phenotype of this strain. The elution profile of HapRV2 and HapRV2G proteins in size-exclusion chromatography and their circular dichroism spectra did not reflect any significant differences to explain the functional discrepancies between the two proteins. To gain insight into the structure-function relationship of these two proteins, we acquired small/wide angle x-ray scattering data from samples of the native and G39D mutant. Although Guinier analysis and indirect Fourier transformation of scattering indicated only a slight difference in the shape parameters, structure reconstruction using dummy amino acids concluded that although HapR adopts a 'Y' shape similar to its crystal structure, the G39D mutation in hinge drastically altered the DNA binding domains by bringing them in close proximity. This altered spatial orientation of the helix-turn-helix domains in this natural variant provides the first structural evidence on the functional role of the hinge region in quorum sensing-related DNA-binding regulatory proteins of Vibrio spp.

  14. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  15. Structural determinants of TRIM protein function.

    PubMed

    Esposito, Diego; Koliopoulos, Marios G; Rittinger, Katrin

    2017-02-08

    Tripartite motif (TRIM) proteins constitute one of the largest subfamilies of Really Interesting New Gene (RING) E3 ubiquitin ligases and contribute to the regulation of numerous cellular activities, including innate immune responses. The conserved TRIM harbours a RING domain that imparts E3 ligase activity to TRIM family proteins, whilst a variable C-terminal region can mediate recognition of substrate proteins. The knowledge of the structure of these multidomain proteins and the functional interplay between their constituent domains is paramount to understanding their cellular roles. To date, available structural information on TRIM proteins is still largely restricted to subdomains of many TRIMs in isolation. Nevertheless, applying a combination of structural, biophysical and biochemical approaches has recently allowed important progress to be made towards providing a better understanding of the molecular features that underlie the function of TRIM family proteins and has uncovered an unexpected diversity in the link between self-association and catalytic activity.

  16. A review on protein functionalized carbon nanotubes.

    PubMed

    Nagaraju, Kathyayini; Reddy, Roopa; Reddy, Narendra

    2015-12-18

    Carbon nanotubes (CNTs) have been widely recognized and used for controlled drug delivery and in various other fields due to their unique properties and distinct advantages. Both single-walled carbon nanotubes (SWCNTs) and multiwalled (MWCNTs) carbon nanotubes are used and/or studied for potential applications in medical, energy, textile, composite, and other areas. Since CNTs are chemically inert and are insoluble in water or other organic solvents, they are functionalized or modified to carry payloads or interact with biological molecules. CNTs have been preferably functionalized with proteins because CNTs are predominantly used for medical applications such as delivery of drugs, DNA and genes, and also for biosensing. Extensive studies have been conducted to understand the interactions, cytotoxicity, and potential applications of protein functionalized CNTs but contradicting results have been published on the cytotoxicity of the functionalized CNTs. This paper provides a brief review of CNTs functionalized with proteins, methods used to functionalize the CNTs, and their potential applications.

  17. Thermoelectric generator with hinged assembly for fins

    DOEpatents

    Purdy, David L.; Shapiro, Zalman M.; Hursen, Thomas F.; Maurer, Gerould W.

    1976-11-02

    A cylindrical casing has a central shielded capsule of radioisotope fuel. A plurality of thermonuclear modules are axially arranged with their hot junctions resiliently pressed toward the shield and with their cold junctions adjacent a transition member having fins radiating heat to the environment. For each module, the assembly of transition member and fins is hinged to the casing for swinging to permit access to and removal of such module. A ceramic plate having gold layers on opposite faces prevents diffusion bonding of the hot junction to the shield.

  18. Using the folding landscapes of proteins to understand protein function.

    PubMed

    Giri Rao, V V Hemanth; Gosavi, Shachi

    2016-02-01

    Proteins fold on a biologically-relevant timescale because of a funnel-shaped energy landscape. This landscape is sculpted through evolution by selecting amino-acid sequences that stabilize native interactions while suppressing stable non-native interactions that occur during folding. However, there is strong evolutionary selection for functional residues and these cannot be chosen to optimize folding. Their presence impacts the folding energy landscape in a variety of ways. Here, we survey the effects of functional residues on folding by providing several examples. We then review how such effects can be detected computationally and be used as assays for protein function. Overall, an understanding of how functional residues modulate folding should provide insights into the design of natural proteins and their homeostasis.

  19. Protein molecular function prediction by Bayesian phylogenomics.

    PubMed

    Engelhardt, Barbara E; Jordan, Michael I; Muratore, Kathryn E; Brenner, Steven E

    2005-10-01

    We present a statistical graphical model to infer specific molecular function for unannotated protein sequences using homology. Based on phylogenomic principles, SIFTER (Statistical Inference of Function Through Evolutionary Relationships) accurately predicts molecular function for members of a protein family given a reconciled phylogeny and available function annotations, even when the data are sparse or noisy. Our method produced specific and consistent molecular function predictions across 100 Pfam families in comparison to the Gene Ontology annotation database, BLAST, GOtcha, and Orthostrapper. We performed a more detailed exploration of functional predictions on the adenosine-5'-monophosphate/adenosine deaminase family and the lactate/malate dehydrogenase family, in the former case comparing the predictions against a gold standard set of published functional characterizations. Given function annotations for 3% of the proteins in the deaminase family, SIFTER achieves 96% accuracy in predicting molecular function for experimentally characterized proteins as reported in the literature. The accuracy of SIFTER on this dataset is a significant improvement over other currently available methods such as BLAST (75%), GeneQuiz (64%), GOtcha (89%), and Orthostrapper (11%). We also experimentally characterized the adenosine deaminase from Plasmodium falciparum, confirming SIFTER's prediction. The results illustrate the predictive power of exploiting a statistical model of function evolution in phylogenomic problems. A software implementation of SIFTER is available from the authors.

  20. Function and structure of inherently disordered proteins.

    PubMed

    Dunker, A Keith; Silman, Israel; Uversky, Vladimir N; Sussman, Joel L

    2008-12-01

    The application of bioinformatics methodologies to proteins inherently lacking 3D structure has brought increased attention to these macromolecules. Here topics concerning these proteins are discussed, including their prediction from amino acid sequence, their enrichment in eukaryotes compared to prokaryotes, their more rapid evolution compared to structured proteins, their organization into specific groups, their structural preferences, their half-lives in cells, their contributions to signaling diversity (via high contents of multiple-partner binding sites, post-translational modifications, and alternative splicing), their distinct functional repertoire compared to that of structured proteins, and their involvement in diseases.

  1. Functional Importance of Mobile Ribosomal Proteins.

    PubMed

    Chang, Kai-Chun; Wen, Jin-Der; Yang, Lee-Wei

    2015-01-01

    Although the dynamic motions and peptidyl transferase activity seem to be embedded in the rRNAs, the ribosome contains more than 50 ribosomal proteins (r-proteins), whose functions remain largely elusive. Also, the precise forms of some of these r-proteins, as being part of the ribosome, are not structurally solved due to their high flexibility, which hinders the efforts in their functional elucidation. Owing to recent advances in cryo-electron microscopy, single-molecule techniques, and theoretical modeling, much has been learned about the dynamics of these r-proteins. Surprisingly, allosteric regulations have been found in between spatially separated components as distant as those in the opposite sides of the ribosome. Here, we focus on the functional roles and intricate regulations of the mobile L1 and L12 stalks and L9 and S1 proteins. Conformational flexibility also enables versatile functions for r-proteins beyond translation. The arrangement of r-proteins may be under evolutionary pressure that fine-tunes mass distributions for optimal structural dynamics and catalytic activity of the ribosome.

  2. Control of protein function through optochemical translocation.

    PubMed

    Engelke, Hanna; Chou, Chungjung; Uprety, Rajendra; Jess, Phillip; Deiters, Alexander

    2014-10-17

    Controlled manipulation of proteins and their function is important in almost all biological disciplines. Here, we demonstrate control of protein activity with light. We present two different applications-light-triggered transcription and light-triggered protease cleavage-both based on the same concept of protein mislocation, followed by optochemically triggered translocation to an active cellular compartment. In our approach, we genetically encode a photocaged lysine into the nuclear localization signal (NLS) of the transcription factor SATB1. This blocks nuclear import of the protein until illumination induces caging group removal and release of the protein into the nucleus. In the first application, prepending this NLS to the transcription factor FOXO3 allows us to optochemically switch on its transcription activity. The second application uses the developed light-activated NLS to control nuclear import of TEV protease and subsequent cleavage of nuclear proteins containing TEV cleavage sites. The small size of the light-controlled NLS (only 20 amino acids) minimizes impact of its insertion on protein function and promises a general approach to a wide range of optochemical applications. Since the light-activated NLS is genetically encoded and optically triggered, it will prove useful to address a variety of problems requiring spatial and temporal control of protein function, for example, in stem-cell, developmental, and cancer biology.

  3. ATPase-dependent auto-phosphorylation of the open condensin hinge diminishes DNA binding

    PubMed Central

    Akai, Yuko; Kanai, Ryuta; Nakazawa, Norihiko; Ebe, Masahiro; Toyoshima, Chikashi; Yanagida, Mitsuhiro

    2014-01-01

    Condensin, which contains two structural maintenance of chromosome (SMC) subunits and three regulatory non-SMC subunits, is essential for many chromosomal functions, including mitotic chromosome condensation and segregation. The ATPase domain of the SMC subunit comprises two termini connected by a long helical domain that is interrupted by a central hinge. The role of the ATPase domain has remained elusive. Here we report that the condensin SMC subunit of the fission yeast Schizosaccharomyces pombe is phosphorylated in a manner that requires the presence of the intact SMC ATPase Walker motif. Principal phosphorylation sites reside in the conserved, glycine-rich stretch at the hinge interface surrounded by the highly basic DNA-binding patch. Phosphorylation reduces affinity for DNA. Consistently, phosphomimetic mutants produce severe mitotic phenotypes. Structural evidence suggests that prior opening (though slight) of the hinge is necessary for phosphorylation, which is implicated in condensin's dissociation from and its progression along DNA. PMID:25520186

  4. Protein conformational populations and functionally relevant substates.

    PubMed

    Ramanathan, Arvind; Savol, Andrej; Burger, Virginia; Chennubhotla, Chakra S; Agarwal, Pratul K

    2014-01-21

    Functioning proteins do not remain fixed in a unique structure, but instead they sample a range of conformations facilitated by motions within the protein. Even in the native state, a protein exists as a collection of interconverting conformations driven by thermodynamic fluctuations. Motions on the fast time scale allow a protein to sample conformations in the nearby area of its conformational landscape, while motions on slower time scales give it access to conformations in distal areas of the landscape. Emerging evidence indicates that protein landscapes contain conformational substates with dynamic and structural features that support the designated function of the protein. Nuclear magnetic resonance (NMR) experiments provide information about conformational ensembles of proteins. X-ray crystallography allows researchers to identify the most populated states along the landscape, and computational simulations give atom-level information about the conformational substates of different proteins. This ability to characterize and obtain quantitative information about the conformational substates and the populations of proteins within them is allowing researchers to better understand the relationship between protein structure and dynamics and the mechanisms of protein function. In this Account, we discuss recent developments and challenges in the characterization of functionally relevant conformational populations and substates of proteins. In some enzymes, the sampling of functionally relevant conformational substates is connected to promoting the overall mechanism of catalysis. For example, the conformational landscape of the enzyme dihydrofolate reductase has multiple substates, which facilitate the binding and the release of the cofactor and substrate and catalyze the hydride transfer. For the enzyme cyclophilin A, computational simulations reveal that the long time scale conformational fluctuations enable the enzyme to access conformational substates that allow

  5. Parasitizing of trematodes provokes warts on the hinge plate of the bivalve mollusk Macoma balthica Linnaeus, 1758 (Veneroida, Tellinidae).

    PubMed

    Gantsevich, M M; Strelkov, P P; Basova, L A; Malakhov, V V

    2016-01-01

    The hypothesis on non-random correlation between abnormalities in the structure of hinge plate and infection of mollusks Macoma balthica with trematodes of the family Gymnophallidae has been tested on the basis of material from the Barents Sea. Significant correlation between the presence of warts and infection was established upon intraand interpopulation comparison. The hypothesis states that parasitizing of trematodes in the extrapallial cavity of mollusks influences the mantle functioning and provokes abnormalities in the hinge plate structure.

  6. Nano-functionalization of protein microspheres

    NASA Astrophysics Data System (ADS)

    Yoon, Sungkwon; Nichols, William T.

    2014-08-01

    Protein microspheres are promising building blocks for the assembly of complex functional materials. Here we demonstrate a set of three techniques that add functionality to the surface of protein microspheres. In the first technique, a positive surface charge on the protein spheres is deposited by electrostatic adsorption. Negatively charged silica and gold nanoparticle colloids can then electrostatically bind reversibly to the microsphere surface. In the second technique, nanoparticles are covalently anchored to the protein shell using a simple one-pot process. The strong covalent bond between sulfur groups in cysteine in the protein shell irreversibly binds to the gold nanoparticles. In the third technique, surface morphology of the protein microsphere is tuned through hydrodynamic instability at the water-oil interface. This is accomplished through the degree of solubility of the oil phase in water. Taken together these three techniques form a platform to create nano-functionalized protein microspheres, which can then be used as building blocks for the assembly of more complex macroscopic materials.

  7. Evolution-Based Functional Decomposition of Proteins.

    PubMed

    Rivoire, Olivier; Reynolds, Kimberly A; Ranganathan, Rama

    2016-06-01

    The essential biological properties of proteins-folding, biochemical activities, and the capacity to adapt-arise from the global pattern of interactions between amino acid residues. The statistical coupling analysis (SCA) is an approach to defining this pattern that involves the study of amino acid coevolution in an ensemble of sequences comprising a protein family. This approach indicates a functional architecture within proteins in which the basic units are coupled networks of amino acids termed sectors. This evolution-based decomposition has potential for new understandings of the structural basis for protein function. To facilitate its usage, we present here the principles and practice of the SCA and introduce new methods for sector analysis in a python-based software package (pySCA). We show that the pattern of amino acid interactions within sectors is linked to the divergence of functional lineages in a multiple sequence alignment-a model for how sector properties might be differentially tuned in members of a protein family. This work provides new tools for studying proteins and for generally testing the concept of sectors as the principal units of function and adaptive variation.

  8. Physiological functions of MTA family of proteins.

    PubMed

    Sen, Nirmalya; Gui, Bin; Kumar, Rakesh

    2014-12-01

    Although the functional significance of the metastasic tumor antigen (MTA) family of chromatin remodeling proteins in the pathobiology of cancer is fairly well recognized, the physiological role of MTA proteins continues to be an understudied research area and is just beginning to be recognized. Similar to cancer cells, MTA1 also modulates the expression of target genes in normal cells either by acting as a corepressor or coactivator. In addition, physiological functions of MTA proteins are likely to be influenced by its differential expression, subcellular localization, and regulation by upstream modulators and extracellular signals. This review summarizes our current understanding of the physiological functions of the MTA proteins in model systems. In particular, we highlight recent advances of the role MTA proteins play in the brain, eye, circadian rhythm, mammary gland biology, spermatogenesis, liver, immunomodulation and inflammation, cellular radio-sensitivity, and hematopoiesis and differentiation. Based on the growth of knowledge regarding the exciting new facets of the MTA family of proteins in biology and medicine, we speculate that the next burst of findings in this field may reveal further molecular regulatory insights of non-redundant functions of MTA coregulators in the normal physiology as well as in pathological conditions outside cancer.

  9. An efficient perturbation method to predict the functionally key sites of glutamine binding protein.

    PubMed

    Lv, Dashuai; Wang, Cunxin; Li, Chunhua; Tan, Jianjun; Zhang, Xiaoyi

    2017-04-01

    Glutamine-Binding Protein (GlnBP) of Escherichia coli, an important member of the periplasmic binding protein family, is responsible for the first step in the active transport of glutamine across the cytoplasmic membrane. In this work, the functionally key regulation sites of GlnBP were identified by utilizing a perturbation method proposed by our group, in which the residues whose perturbations markedly change the binding free energy between GlnBP and glutamine are considered to be functionally key residues. The results show that besides the substrate binding sites, some other residues distant from the binding pocket, including the ones in the hinge regions between the two domains, the front- and back- door channels and the exposed region, are important for the function of glutamine binding and transport. The predicted results are well consistent with the theoretical and experimental data, which indicates that our method is an effective approach to identify the key residues important for both ligand binding and long-range allosteric signal transmission. This work can provide some insights into the function performance of GlnBP and the physical mechanism of its allosteric regulation.

  10. Mechanically Biased, Hinged Pairs of Piezoelectric Benders

    NASA Technical Reports Server (NTRS)

    Sager, Frank E.

    2005-01-01

    The upper part of the figure depicts an actuator that comprises two mechanically biased piezoelectric benders hinged together at their ends and equipped with tabs at their mid-length points for attachment to the relatively moving objects that are to be actuated. In the example of the figure, the attachment tabs are labeled to indicate that the actuator is used to drive a pump piston relative to a base plate. Actuators of this type could be used to drive low-power, small-volume pumps in consumer, medical, and aerospace applications, and to generate and measure linear displacements in such robotic applications as teleoperation and tactile feedback. Each bender is a bimorph a unitary plate that comprises an upper and a lower piezoelectric layer plus electrode layers. Benders may also be made of several layers arranged to produce the same effect at the lower operating voltages. As stated above, each bender is mechanically biased; it is fabricated to have a small permanent curvature (the bias curvature) in the absence of applied voltage. As on other bimorphs, the electrical connections on each bender are arranged so that an applied voltage of suitable polarity causes the upper layer to expand and the lower layer to contract. In this case, the net effect of applying the voltage is that the plate becomes more concave as viewed from below. Conversely, an applied voltage of the opposite polarity causes the plate to become less concave as viewed from below. The benders in a hinged pair are oriented with their bias curvatures concave inward, so that there is a bias distance between the attachment tabs. The two benders are connected electrically in parallel, with their connection polarities chosen so that an applied voltage of one polarity causes both benders to become more convex inward (more bent), while an applied voltage of the opposite polarity causes both benders to become less convex inward (less bent). An increase or decrease in bend is accompanied by an increase or

  11. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  12. Calreticulin: one protein, one gene, many functions.

    PubMed Central

    Michalak, M; Corbett, E F; Mesaeli, N; Nakamura, K; Opas, M

    1999-01-01

    The endoplasmic reticulum (ER) plays a critical role in the synthesis and chaperoning of membrane-associated and secreted proteins. The membrane is also an important site of Ca(2+) storage and release. Calreticulin is a unique ER luminal resident protein. The protein affects many cellular functions, both in the ER lumen and outside of the ER environment. In the ER lumen, calreticulin performs two major functions: chaperoning and regulation of Ca(2+) homoeostasis. Calreticulin is a highly versatile lectin-like chaperone, and it participates during the synthesis of a variety of molecules, including ion channels, surface receptors, integrins and transporters. The protein also affects intracellular Ca(2+) homoeostasis by modulation of ER Ca(2+) storage and transport. Studies on the cell biology of calreticulin revealed that the ER membrane is a very dynamic intracellular compartment affecting many aspects of cell physiology. PMID:10567207

  13. Investigating neuronal function with optically controllable proteins

    PubMed Central

    Zhou, Xin X.; Pan, Michael; Lin, Michael Z.

    2015-01-01

    In the nervous system, protein activities are highly regulated in space and time. This regulation allows for fine modulation of neuronal structure and function during development and adaptive responses. For example, neurite extension and synaptogenesis both involve localized and transient activation of cytoskeletal and signaling proteins, allowing changes in microarchitecture to occur rapidly and in a localized manner. To investigate the role of specific protein regulation events in these processes, methods to optically control the activity of specific proteins have been developed. In this review, we focus on how photosensory domains enable optical control over protein activity and have been used in neuroscience applications. These tools have demonstrated versatility in controlling various proteins and thereby cellular functions, and possess enormous potential for future applications in nervous systems. Just as optogenetic control of neuronal firing using opsins has changed how we investigate the function of cellular circuits in vivo, optical control may yet yield another revolution in how we study the circuitry of intracellular signaling in the brain. PMID:26257603

  14. Protein-protein interaction network-based detection of functionally similar proteins within species.

    PubMed

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent.

  15. Protein function prediction using neighbor relativity in protein-protein interaction network.

    PubMed

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network.

  16. Protein Nitration in Placenta – Functional Significance

    PubMed Central

    Webster, RP; Roberts, VHJ; Myatt, L

    2009-01-01

    Crucial roles of the placenta are disrupted in early and mid-trimester pregnancy loss, preeclampsia, eclampsia and intrauterine growth restriction. The pathophysiology of these disorders includes a relative hypoxia of the placenta, ischemia/reperfusion injury, an inflammatory response and oxidative stress. Reactive oxygen species including nitric oxide (NO), carbon monoxide and superoxide have been shown to participate in trophoblast invasion, regulation of placental vascular reactivity and other events. Superoxide, which regulates expression of redox sensitive genes, has been implicated in up-regulation of transcription factors, antioxidant production, angiogenesis, proliferation and matrix remodeling. When superoxide and nitric oxide are present in abundance, their interaction yields peroxynitrite a potent pro-oxidant, but also alters levels of nitric oxide, which in turn affect physiological functions. The peroxynitrite anion is extremely unstable thus evidence of its formation in vivo has been indirect via the occurrence of nitrated moieties including nitrated lipids and nitrotyrosine residues in proteins. Formation of 3-nitrotyrosine (protein nitration) is a “molecular fingerprint” of peroxynitrite formation. Protein nitration has been widely reported in a number of pathological states associated with inflammation but is reported to occur in normal physiology and is thought of as a prevalent, functionally relevant post-translational modification of proteins. Nitration of proteins can give either no effect, a gain or a loss of function. Nitration of a range of placental proteins is found in normal pregnancy but increased in pathologic pregnancies. Evidence is presented for nitration of placental signal transduction enzymes and transporters. The targets and extent of nitration of enzymes, receptors, transporters and structural proteins may markedly influence placental cellular function in both physiologic and pathologic settings. PMID:18851882

  17. Proteins with Novel Structure, Function and Dynamics

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2014-01-01

    Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.

  18. Modular protein domains: an engineering approach toward functional biomaterials.

    PubMed

    Lin, Charng-Yu; Liu, Julie C

    2016-08-01

    Protein domains and peptide sequences are a powerful tool for conferring specific functions to engineered biomaterials. Protein sequences with a wide variety of functionalities, including structure, bioactivity, protein-protein interactions, and stimuli responsiveness, have been identified, and advances in molecular biology continue to pinpoint new sequences. Protein domains can be combined to make recombinant proteins with multiple functionalities. The high fidelity of the protein translation machinery results in exquisite control over the sequence of recombinant proteins and the resulting properties of protein-based materials. In this review, we discuss protein domains and peptide sequences in the context of functional protein-based materials, composite materials, and their biological applications.

  19. Protein function prediction using domain families

    PubMed Central

    2013-01-01

    Here we assessed the use of domain families for predicting the functions of whole proteins. These 'functional families' (FunFams) were derived using a protocol that combines sequence clustering with supervised cluster evaluation, relying on available high-quality Gene Ontology (GO) annotation data in the latter step. In essence, the protocol groups domain sequences belonging to the same superfamily into families based on the GO annotations of their parent proteins. An initial test based on enzyme sequences confirmed that the FunFams resemble enzyme (domain) families much better than do families produced by sequence clustering alone. For the CAFA 2011 experiment, we further associated the FunFams with GO terms probabilistically. All target proteins were first submitted to domain superfamily assignment, followed by FunFam assignment and, eventually, function assignment. The latter included an integration step for multi-domain target proteins. The CAFA results put our domain-based approach among the top ten of 31 competing groups and 56 prediction methods, confirming that it outperforms simple pairwise whole-protein sequence comparisons. PMID:23514456

  20. The lipocalin protein family: structure and function.

    PubMed Central

    Flower, D R

    1996-01-01

    The lipocalin protein family is a large group of small extracellular proteins. The family demonstrates great diversity at the sequence level; however, most lipocalins share three characteristic conserved sequence motifs, the kernel lipocalins, while a group of more divergent family members, the outlier lipocalins, share only one. Belying this sequence dissimilarity, lipocalin crystal structures are highly conserved and comprise a single eight-stranded continuously hydrogen-bonded antiparallel beta-barrel, which encloses an internal ligand-binding site. Together with two other families of ligand-binding proteins, the fatty-acid-binding proteins (FABPs) and the avidins, the lipocalins form part of an overall structural superfamily: the calycins. Members of the lipocalin family are characterized by several common molecular-recognition properties: the ability to bind a range of small hydrophobic molecules, binding to specific cell-surface receptors and the formation of complexes with soluble macromolecules. The varied biological functions of the lipocalins are mediated by one or more of these properties. In the past, the lipocalins have been classified as transport proteins; however, it is now clear that the lipocalins exhibit great functional diversity, with roles in retinol transport, invertebrate cryptic coloration, olfaction and pheromone transport, and prostaglandin synthesis. The lipocalins have also been implicated in the regulation of cell homoeostasis and the modulation of the immune response, and, as carrier proteins, to act in the general clearance of endogenous and exogenous compounds. PMID:8761444

  1. Hierarchical Ensemble Methods for Protein Function Prediction

    PubMed Central

    2014-01-01

    Protein function prediction is a complex multiclass multilabel classification problem, characterized by multiple issues such as the incompleteness of the available annotations, the integration of multiple sources of high dimensional biomolecular data, the unbalance of several functional classes, and the difficulty of univocally determining negative examples. Moreover, the hierarchical relationships between functional classes that characterize both the Gene Ontology and FunCat taxonomies motivate the development of hierarchy-aware prediction methods that showed significantly better performances than hierarchical-unaware “flat” prediction methods. In this paper, we provide a comprehensive review of hierarchical methods for protein function prediction based on ensembles of learning machines. According to this general approach, a separate learning machine is trained to learn a specific functional term and then the resulting predictions are assembled in a “consensus” ensemble decision, taking into account the hierarchical relationships between classes. The main hierarchical ensemble methods proposed in the literature are discussed in the context of existing computational methods for protein function prediction, highlighting their characteristics, advantages, and limitations. Open problems of this exciting research area of computational biology are finally considered, outlining novel perspectives for future research. PMID:25937954

  2. Functional Classification of Immune Regulatory Proteins

    SciTech Connect

    Rubinstein, Rotem; Ramagopal, Udupi A.; Nathenson, Stanley G.; Almo, Steven C.; Fiser, Andras

    2013-05-01

    Members of the immunoglobulin superfamily (IgSF) control innate and adaptive immunity and are prime targets for the treatment of autoimmune diseases, infectious diseases, and malignancies. We describe a computational method, termed the Brotherhood algorithm, which utilizes intermediate sequence information to classify proteins into functionally related families. This approach identifies functional relationships within the IgSF and predicts additional receptor-ligand interactions. As a specific example, we examine the nectin/nectin-like family of cell adhesion and signaling proteins and propose receptor-ligand interactions within this family. We were guided by the Brotherhood approach and present the high-resolution structural characterization of a homophilic interaction involving the class-I MHC-restricted T-cell-associated molecule, which we now classify as a nectin-like family member. The Brotherhood algorithm is likely to have a significant impact on structural immunology by identifying those proteins and complexes for which structural characterization will be particularly informative.

  3. Modification of sorghum proteins for enhanced functionality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum is the third most widely produced crop in the United States (U.S.) and fifth in the world during fiscal year 2006/07(USDA-FAS, 2007). The use of sorghum in foods faces functional and nutritional constraints due, mainly, to the rigidity of the protein bodies. The disruption and modificatio...

  4. Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition*

    PubMed Central

    Uchiyama, Susumu; Kawahara, Kazuki; Hosokawa, Yuki; Fukakusa, Shunsuke; Oki, Hiroya; Nakamura, Shota; Kojima, Yukiko; Noda, Masanori; Takino, Rie; Miyahara, Yuya; Maruno, Takahiro; Kobayashi, Yuji; Ohkubo, Tadayasu; Fukui, Kiichi

    2015-01-01

    Eukaryotic structural maintenance of chromosome proteins (SMC) are major components of cohesin and condensins that regulate chromosome structure and dynamics during cell cycle. We here determine the crystal structure of human condensin SMC hinge heterodimer with ∼30 residues of coiled coils. The structure, in conjunction with the hydrogen exchange mass spectrometry analyses, revealed the structural basis for the specific heterodimer formation of eukaryotic SMC and that the coiled coils from two different hinges protrude in the same direction, providing a unique binding surface conducive for binding to single-stranded DNA. The characteristic hydrogen exchange profiles of peptides constituted regions especially across the hinge-hinge dimerization interface, further suggesting the structural alterations upon single-stranded DNA binding and the presence of a half-opened state of hinge heterodimer. This structural change potentially relates to the DNA loading mechanism of SMC, in which the hinge domain functions as an entrance gate as previously proposed for cohesin. Our results, however, indicated that this is not the case for condensins based on the fact that the coiled coils are still interacting with each other, even when DNA binding induces structural changes in the hinge region, suggesting the functional differences of SMC hinge domain between condensins and cohesin in DNA recognition. PMID:26491021

  5. Posttranslational Modification Assays on Functional Protein Microarrays.

    PubMed

    Neiswinger, Johnathan; Uzoma, Ijeoma; Cox, Eric; Rho, HeeSool; Jeong, Jun Seop; Zhu, Heng

    2016-10-03

    Protein microarray technology provides a straightforward yet powerful strategy for identifying substrates of posttranslational modifications (PTMs) and studying the specificity of the enzymes that catalyze these reactions. Protein microarray assays can be designed for individual enzymes or a mixture to establish connections between enzymes and substrates. Assays for four well-known PTMs-phosphorylation, acetylation, ubiquitylation, and SUMOylation-have been developed and are described here for use on functional protein microarrays. Phosphorylation and acetylation require a single enzyme and are easily adapted for use on an array. The ubiquitylation and SUMOylation cascades are very similar, and the combination of the E1, E2, and E3 enzymes plus ubiquitin or SUMO protein and ATP is sufficient for in vitro modification of many substrates.

  6. Genome-wide protein-protein interactions and protein function exploration in cyanobacteria.

    PubMed

    Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu

    2015-10-22

    Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and "interologs" in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria.

  7. Visualizing key hinges and a potential major source of compliance in the lever arm of myosin

    SciTech Connect

    Brown, J.H.; Robinson, H.; Senthil Kumar, V. S.; O'Neall-Hennessey, E.; Reshetnikova, L.; Nguyen-McCarty, M.; Szent-Gyorgyi, A. G.; Cohen, C.

    2011-01-04

    We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during the contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.

  8. Visualizing Key Hinges and a Potential Major Source of Compliance in the Lever Arm of Myosin

    SciTech Connect

    J Brown; V Senthil Kumar; E ONeall-Hennessey; L Reshetnikova; H Robinson; M Nguyen-McCarty; A Szent-Gyorgyi; C Cohen

    2011-12-31

    We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during the contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.

  9. Investigation on the contact behaviour of MEMS micromembrane with serpentine hinges

    NASA Astrophysics Data System (ADS)

    Pustan, M.; Birleanu, C.; Dudescu, C.; Rusu, F.

    2017-02-01

    This paper presents the study of micromembranes supported by serpentine hinges. Widely used in microelectromechanical systems as switches or optical micromirrors, these micromembranes are deflected to the substrate in order to close a circuit or to process a signal. The investigated micromembranes are electroplated from gold in different geometrical dimensions. Furthermore, the central plate of micromembrane is suspended by two or four serpentine hinges. The stiffness of micromembranes is given by the geometry of hinges. One of the failure causes of micromembranes, which are directly deflected to substrate, is the adhesion effect between the flexible plate and the substrate. The adhesive force depends on the mechanical restoring force given by the hinges stiffness. In the case of micromembranes for optical applications, one additional stress is provided by temperature. A temperature gradient applied on micromembranes changes the stiffness with influence on the adhesion force. The study of temperature effect on stiffness and adhesion force is performed using an atomic force microscope and a thermal controlled stage. Experimental results of stiffness as a function of temperature are compared to numerical data.

  10. Experimental and bioinformatic approaches for interrogating protein-protein interactions to determine protein function.

    PubMed

    Droit, Arnaud; Poirier, Guy G; Hunter, Joanna M

    2005-04-01

    An ambitious goal of proteomics is to elucidate the structure, interactions and functions of all proteins within cells and organisms. One strategy to determine protein function is to identify the protein-protein interactions. The increasing use of high-throughput and large-scale bioinformatics-based studies has generated a massive amount of data stored in a number of different databases. A challenge for bioinformatics is to explore this disparate data and to uncover biologically relevant interactions and pathways. In parallel, there is clearly a need for the development of approaches that can predict novel protein-protein interaction networks in silico. Here, we present an overview of different experimental and bioinformatic methods to elucidate protein-protein interactions.

  11. Folding funnels, binding funnels, and protein function.

    PubMed Central

    Tsai, C. J.; Kumar, S.; Ma, B.; Nussinov, R.

    1999-01-01

    Folding funnels have been the focus of considerable attention during the last few years. These have mostly been discussed in the general context of the theory of protein folding. Here we extend the utility of the concept of folding funnels, relating them to biological mechanisms and function. In particular, here we describe the shape of the funnels in light of protein synthesis and folding; flexibility, conformational diversity, and binding mechanisms; and the associated binding funnels, illustrating the multiple routes and the range of complexed conformers. Specifically, the walls of the folding funnels, their crevices, and bumps are related to the complexity of protein folding, and hence to sequential vs. nonsequential folding. Whereas the former is more frequently observed in eukaryotic proteins, where the rate of protein synthesis is slower, the latter is more frequent in prokaryotes, with faster translation rates. The bottoms of the funnels reflect the extent of the flexibility of the proteins. Rugged floors imply a range of conformational isomers, which may be close on the energy landscape. Rather than undergoing an induced fit binding mechanism, the conformational ensembles around the rugged bottoms argue that the conformers, which are most complementary to the ligand, will bind to it with the equilibrium shifting in their favor. Furthermore, depending on the extent of the ruggedness, or of the smoothness with only a few minima, we may infer nonspecific, broad range vs. specific binding. In particular, folding and binding are similar processes, with similar underlying principles. Hence, the shape of the folding funnel of the monomer enables making reasonable guesses regarding the shape of the corresponding binding funnel. Proteins having a broad range of binding, such as proteolytic enzymes or relatively nonspecific endonucleases, may be expected to have not only rugged floors in their folding funnels, but their binding funnels will also behave similarly

  12. Functional protein microarrays by electrohydrodynamic jet printing.

    PubMed

    Shigeta, Kazuyo; He, Ying; Sutanto, Erick; Kang, Somi; Le, An-Phong; Nuzzo, Ralph G; Alleyne, Andrew G; Ferreira, Placid M; Lu, Yi; Rogers, John A

    2012-11-20

    This paper reports the use of advanced forms of electrohydrodynamic jet (e-jet) printing for creating micro- and nanoscale patterns of proteins on various surfaces ranging from flat silica substrates to structured plasmonic crystals, suitable for micro/nanoarray analysis and other applications in both fluorescent and plasmonic detection modes. The approaches function well with diverse classes of proteins, including streptavidin, IgG, fibrinogen, and γ-globulin. Detailed study reveals that the printing process does not adversely alter the protein structure or function, as demonstrated in the specific case of streptavidin through measurements of its binding specificity to biotin-modified DNA. Multinozzle printing systems enable several types of proteins (up to four currently) to be patterned on a single substrate, in rapid fashion and with excellent control over spatial dimensions and registration. High-speed, pulsed operational modes allow large-area printing, with narrow statistical distributions of drop size and spacing in patterns that include millions of droplets. The process is also compatible with the structured surfaces of plasmonic crystal substrates to enable detection without fluorescence. These collective characteristics suggest potential utility of e-jet techniques in wide-ranging areas of biotechnology, where its compatibility with various biomaterials and substrates with different topographies and surface chemistries, and ability to form deposits that range from thick films to submonolayer coatings, derive from the remote, noncontacting physical material transfer mode of operation.

  13. Note: Bending compliances of generalized symmetric notch flexure hinges.

    PubMed

    Lobontiu, Nicolae

    2012-01-01

    The bending compliances of generalized notch flexure hinges with transverse or transverse-and-axial symmetry are studied in two particular reference frames. For an end-point reference frame, the cross compliance and the rotary compliance are proportional. When the reference frame is placed at the flexure's midpoint, the cross compliance is zero. The translatory and rotary compliances of only half the flexure hinge are sufficient to calculate the overall compliances of a transverse-symmetry flexure configuration. Similarly, the overall bending compliances of a flexure hinge with transverse-and-axial symmetry require prior calculation of the translatory and rotary compliances of a quarter flexure solely.

  14. [Moving Mirror Scanning System Based on the Flexible Hinge Support].

    PubMed

    Xie, Fei; Feng, Fei; Wang, Fu-bei; Wu, Qiong-shui; Zeng, Li-bo

    2015-08-01

    In order to improve moving mirror drive of Fourier transform infrared spectrometer, we design a dynamic scanning system based on flexible hinge support. Using the flexible hinge support way and the voice coil motor drive mode. Specifically, Using right Angle with high accuracy high stability type flexible hinge support mechanism support moving mirror, dynamic mirror can be moved forward and backward driven by voice coil motor reciprocating motion, DSP control system to control the moving mirror at a constant speed. The experimental results show that the designed of moving mirror scanning system has advantages of stability direction, speed stability, superior seismic performance.

  15. Heterogeneity in Retroviral Nucleocapsid Protein Function

    NASA Astrophysics Data System (ADS)

    Landes, Christy

    2009-03-01

    Time-resolved single-molecule fluorescence spectroscopy was used to study the human T-cell lymphotropic virus type 1 (HTLV-1) nucleocapsid protein (NC) chaperone activity as compared to that of the HIV-1 NC protein. HTLV-1 NC contains two zinc fingers with each having a CCHC binding motif similar to HIV-1 NC. HIV-1 NC is required for recognition and packaging of the viral RNA and is also a nucleic acid chaperone protein that facilitates nucleic acid restructuring during reverse transcription. Because of similarities in structures between the two retroviruses, we have used single-molecule fluorescence energy transfer to investigate the chaperoning activity of HTLV-1 NC protein. The results indicate that HTLV-1 NC protein induces structural changes by opening the transactivation response (TAR)-DNA hairpin to an even greater extent than HIV-1 NC. However, unlike HIV-1 NC, HTLV-1 NC does not chaperone the strand-transfer reaction involving TAR-DNA. These results suggest that despite its effective destabilization capability, HTLV-1 NC is not as effective at overall chaperone function as is its HIV-1 counterpart.

  16. The Amyloid Precursor Protein Controls PIKfyve Function.

    PubMed

    Balklava, Zita; Niehage, Christian; Currinn, Heather; Mellor, Laura; Guscott, Benjamin; Poulin, Gino; Hoflack, Bernard; Wassmer, Thomas

    2015-01-01

    While the Amyloid Precursor Protein (APP) plays a central role in Alzheimer's disease, its cellular function still remains largely unclear. It was our goal to establish APP function which will provide insights into APP's implication in Alzheimer's disease. Using our recently developed proteo-liposome assay we established the interactome of APP's intracellular domain (known as AICD), thereby identifying novel APP interactors that provide mechanistic insights into APP function. By combining biochemical, cell biological and genetic approaches we validated the functional significance of one of these novel interactors. Here we show that APP binds the PIKfyve complex, an essential kinase for the synthesis of the endosomal phosphoinositide phosphatidylinositol-3,5-bisphosphate. This signalling lipid plays a crucial role in endosomal homeostasis and receptor sorting. Loss of PIKfyve function by mutation causes profound neurodegeneration in mammals. Using C. elegans genetics we demonstrate that APP functionally cooperates with PIKfyve in vivo. This regulation is required for maintaining endosomal and neuronal function. Our findings establish an unexpected role for APP in the regulation of endosomal phosphoinositide metabolism with dramatic consequences for endosomal biology and important implications for our understanding of Alzheimer's disease.

  17. Functionalized nanoparticle probes for protein detection

    NASA Astrophysics Data System (ADS)

    Park, Do Hyun; Lee, Jae-Seung

    2015-05-01

    In this Review, we discuss representative studies of recent advances in the development of nanoparticle-based protein detection methods, with a focus on the properties and functionalization of nanoparticle probes, as well as their use in detection schemes. We have focused on functionalized nanoparticle probes because they offer a number of advantages over conventional assays and because their use for detecting protein targets for diagnostic purposed has been demonstrated. In this report, we discuss nanoparticle probes classified by material type (gold, silver, silica, semiconductor, carbon, and virus) and surface functionality (antibody, aptamer, and DNA), which play a critical role in enhancing the sensitivity, selectivity, and efficiency of the detection systems. In particular, the synergistic function of each component of the nanoparticle probe is emphasized in terms of specific chemical and physical properties. This research area is in its early stages with many milestones to reach before nanoparticle probes are successfully applied in the field; however, the substantial ongoing efforts of researchers underline the great promise offered by nanoparticlebased probes for future applications. [Figure not available: see fulltext.

  18. Functional characterization of the alphavirus TF protein.

    PubMed

    Snyder, Jonathan E; Kulcsar, Kirsten A; Schultz, Kimberly L W; Riley, Catherine P; Neary, Jacob T; Marr, Scott; Jose, Joyce; Griffin, Diane E; Kuhn, Richard J

    2013-08-01

    Alphavirus dogma has long dictated the production of a discrete set of structural proteins during infection of a cell: capsid, pE2, 6K, and E1. However, bioinformatic analyses of alphavirus genomes (A. E. Firth, B. Y. Chung, M. N. Fleeton, and J. F. Atkins, Virol. J. 5:108, 2008) suggested that a ribosomal frameshifting event occurs during translation of the alphavirus structural polyprotein. Specifically, a frameshift event is suggested to occur during translation of the 6K gene, yielding production of a novel protein, termed transframe (TF), comprised of a C-terminal extension of the 6K protein in the -1 open reading frame (ORF). Here, we validate the findings of Firth and colleagues with respect to the production of the TF protein and begin to characterize the function of TF. Using a mass spectrometry-based approach, we identified TF in purified preparations of both Sindbis and Chikungunya virus particles. We next constructed a panel of Sindbis virus mutants with mutations which alter the production, size, or sequence of TF. We demonstrate that TF is not absolutely required in culture, although disrupting TF production leads to a decrease in virus particle release in both mammalian and insect cells. In a mouse neuropathogenesis model, mortality was <15% in animals infected with the TF mutants, whereas mortality was 95% in animals infected with the wild-type virus. Using a variety of additional assays, we demonstrate that TF retains ion-channel activity analogous to that of 6K and that lack of production of TF does not affect genome replication, particle infectivity, or envelope protein transit to the cell surface. The TF protein therefore represents a previously uncharacterized factor important for alphavirus assembly.

  19. Adjustable hinge permits movement of knee in plaster cast

    NASA Technical Reports Server (NTRS)

    Maley, W. E.

    1967-01-01

    Metal knee hinge with an adjustable sleeve worn on the outside of a leg cast facilitates movement of the knee joint. This helps eliminate stiffness of the knee and eliminates bulkiness and adjustment difficulty.

  20. Lock 6 Detail of hinge stone with iron straps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lock 6 - Detail of hinge stone with iron straps and carved completion date (1830) located on ground at southeast corner of lock - Savannah & Ogeechee Barge Canal, Between Ogeechee & Savannah Rivers, Savannah, Chatham County, GA

  1. Breast-Feeding Success Hinges on Support for Mom, Baby

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_164574.html Breast-Feeding Success Hinges on Support for Mom, Baby Limiting ... Information and support can help new mothers overcome breast-feeding difficulties, a lactation expert says. A pregnant woman ...

  2. Principle of bio-inspired insect wing rotational hinge design

    NASA Astrophysics Data System (ADS)

    Fei, Fan

    A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is shown to be applicable to a wide range of wing designs with different sizes and shapes. With the selected hinge stiffness value, aspects of the rotational joint design is discussed and an integrated wing-hinge structure design using laminated carbon fiber and polymer film is presented. Manufacturing process of such composite structure is developed to achieve high accuracy and repeatability. The yielded hinge stiffness is verified by measurements. To validate the proposed model, flapping wing experiments were conducted. A flapping actuation set up is built using DC motor and a controller is implemented on a microcontroller to track desired wing stroke kinematic. Wing stroke and rotation kinematic were extracted using a high speed camera and the lift generation is evaluated. A total of 49 flapping experiments were presented, experimental data shows good correlation with the model's prediction. With the wing rotational hinge stiffness designed so that the rotational resonant frequency is twice as the stroke frequency, the resulting wing rotation generates near optimal lift. With further simulation, the proposed model shows low sensitivity to wing parameter variation. As a result, giving a design parameter of a flapping wing robot platform, the proposed principle can

  3. Protein promiscuity: drug resistance and native functions--HIV-1 case.

    PubMed

    Fernández, Ariel; Tawfik, Dan S; Berkhout, Ben; Sanders, Rogier; Kloczkowski, Andrzej; Sen, Taner; Jernigan, Bob

    2005-06-01

    of conformations that are useful for developing protein mechanisms; while these are typically small motions, for some proteins they can be quite large in scale. One of the major advantages of the approach is that only relatively small numbers of modes are important contributors to the overall motion -- so the approach provides a way to systematically map out a protein's motions. These models successfully represent the conformational fluctuations manifested in the crystallographic B-factors, and often suggest motions related to protein functional behaviors, such as those observed for reverse transcriptase, where two dominant hinges clearly relate to the processing steps -- one showing anti-correlation between the polymerase and ribonuclease H sites related to the translation and positioning of the nucleic acid chain, and another for opening and closing the polymerase site. Disordered proteins represent a more extreme case where the set of accessible conformations is much larger; thus they could offer up a broader range of possible binding forms. Whether evolution controls the functional motions for proteins remains little studied. Intriguingly, buried in the existing databases of protein-protein interactions may be information that can shed light on the extent of promiscuous binding among proteins themselves. Within these data there are cases where large numbers of diverse proteins have been shown to interact with a single protein; some of these could represent promiscuous protein-protein binding. Uncovering these promiscuous behaviors could be important for comprehending the details of how proteins can bind promiscuously to one another, and can exhibit even greater promiscuity in their binding to small molecules. The evolutionary routes, the dynamics of the target protein, and the many other aspects that need to be addressed while designing a drug that may dodge drug resistance, indicate the complexity and multi-disciplinary nature of the issue of drug resistance.

  4. Responsiveness of B cells is regulated by the hinge region of IgD.

    PubMed

    Übelhart, Rudolf; Hug, Eva; Bach, Martina P; Wossning, Thomas; Dühren-von Minden, Marcus; Horn, Anselm H C; Tsiantoulas, Dimitrios; Kometani, Kohei; Kurosaki, Tomohiro; Binder, Christoph J; Sticht, Heinrich; Nitschke, Lars; Reth, Michael; Jumaa, Hassan

    2015-05-01

    Mature B cells express immunoglobulin M (IgM)- and IgD-isotype B cell antigen receptors, but the importance of IgD for B cell function has been unclear. By using a cellular in vitro system and corresponding mouse models, we found that antigens with low valence activated IgM receptors but failed to trigger IgD signaling, whereas polyvalent antigens activated both receptor types. Investigations of the molecular mechanism showed that deletion of the IgD-specific hinge region rendered IgD responsive to monovalent antigen, whereas transferring the hinge to IgM resulted in responsiveness only to polyvalent antigen. Our data suggest that the increased IgD/IgM ratio on conventional B-2 cells is important for preferential immune responses to antigens in immune complexes, and that the increased IgM expression on B-1 cells is essential for B-1 cell homeostasis and function.

  5. Multiple functions of microsomal triglyceride transfer protein

    PubMed Central

    2012-01-01

    Microsomal triglyceride transfer protein (MTP) was first identified as a major cellular protein capable of transferring neutral lipids between membrane vesicles. Its role as an essential chaperone for the biosynthesis of apolipoprotein B (apoB)-containing triglyceride-rich lipoproteins was established after the realization that abetalipoproteinemia patients carry mutations in the MTTP gene resulting in the loss of its lipid transfer activity. Now it is known that it also plays a role in the biosynthesis of CD1, glycolipid presenting molecules, as well as in the regulation of cholesterol ester biosynthesis. In this review, we will provide a historical perspective about the identification, purification and characterization of MTP, describe methods used to measure its lipid transfer activity, and discuss tissue expression and function. Finally, we will review the role MTP plays in the assembly of apoB-lipoprotein, the regulation of cholesterol ester synthesis, biosynthesis of CD1 proteins and propagation of hepatitis C virus. We will also provide a brief overview about the clinical potentials of MTP inhibition. PMID:22353470

  6. CombFunc: predicting protein function using heterogeneous data sources.

    PubMed

    Wass, Mark N; Barton, Geraint; Sternberg, Michael J E

    2012-07-01

    Only a small fraction of known proteins have been functionally characterized, making protein function prediction essential to propose annotations for uncharacterized proteins. In recent years many function prediction methods have been developed using various sources of biological data from protein sequence and structure to gene expression data. Here we present the CombFunc web server, which makes Gene Ontology (GO)-based protein function predictions. CombFunc incorporates ConFunc, our existing function prediction method, with other approaches for function prediction that use protein sequence, gene expression and protein-protein interaction data. In benchmarking on a set of 1686 proteins CombFunc obtains precision and recall of 0.71 and 0.64 respectively for gene ontology molecular function terms. For biological process GO terms precision of 0.74 and recall of 0.41 is obtained. CombFunc is available at http://www.sbg.bio.ic.ac.uk/combfunc.

  7. Dietary proteins and functional gastrointestinal disorders.

    PubMed

    Boettcher, Erica; Crowe, Sheila E

    2013-05-01

    Food intolerance is a common complaint amongst patients with functional gastrointestinal (GI) disorders (FGIDs), including those with irritable bowel syndrome (IBS), functional dyspepsia, as well as gastroesophageal reflux disease. Although there has been a longstanding interest in the possible role of food allergy in IBS, there are limited data supporting the association. However, the prevalence of food allergy is sufficiently high that patients with FGID may also have food allergies or hypersensitivities. Food intolerances or sensitivities are reactions to foods, which are not due to immunological mechanisms. Lactose intolerance is common in the general population and can mimic symptoms of FGID or coexist with FGID. As discussed in other articles in this series, other carbohydrate intolerances may be responsible for symptom generation in patients with IBS and perhaps other FGIDs. There is a great interest in the role of a major dietary protein, gluten, in the production of symptoms that are very similar to those of patients with celiac disease without the enteropathy that characterizes celiac disease. Emerging research into a syndrome known as nonceliac gluten sensitivity suggests a heterogeneous condition with some features of celiac disease but often categorized as FGIDs, including IBS. This article summarizes the role of dietary proteins in the symptoms and pathophysiology of FGIDs.

  8. Protein tyrosine phosphatases: structure-function relationships.

    PubMed

    Tabernero, Lydia; Aricescu, A Radu; Jones, E Yvonne; Szedlacsek, Stefan E

    2008-03-01

    Structural analysis of protein tyrosine phosphatases (PTPs) has expanded considerably in the last several years, producing more than 200 structures in this class of enzymes (from 35 different proteins and their complexes with ligands). The small-medium size of the catalytic domain of approximately 280 residues plus a very compact fold makes it amenable to cloning and overexpression in bacterial systems thus facilitating crystallographic analysis. The low molecular weight PTPs being even smaller, approximately 150 residues, are also perfect targets for NMR analysis. The availability of different structures and complexes of PTPs with substrates and inhibitors has provided a wealth of information with profound effects in the way we understand their biological functions. Developments in mammalian expression technology recently led to the first crystal structure of a receptor-like PTP extracellular region. Altogether, the PTP structural work significantly advanced our knowledge regarding the architecture, regulation and substrate specificity of these enzymes. In this review, we compile the most prominent structural traits that characterize PTPs and their complexes with ligands. We discuss how the data can be used to design further functional experiments and as a basis for drug design given that many PTPs are now considered strategic therapeutic targets for human diseases such as diabetes and cancer.

  9. Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency

    NASA Astrophysics Data System (ADS)

    Kim, Young Eun; Kim, Yu-Na; Kim, Jung A.; Kim, Ho Min; Jung, Yongwon

    2015-05-01

    Supramolecular protein assemblies offer novel nanoscale architectures with molecular precision and unparalleled functional diversity. A key challenge, however, is to create precise nano-assemblies of functional proteins with both defined structures and a controlled number of protein-building blocks. Here we report a series of supramolecular green fluorescent protein oligomers that are assembled in precise polygonal geometries and prepared in a monodisperse population. Green fluorescent protein is engineered to be self-assembled in cells into oligomeric assemblies that are natively separated in a single-protein resolution by surface charge manipulation, affording monodisperse protein (nano)polygons from dimer to decamer. Several functional proteins are multivalently displayed on the oligomers with controlled orientations. Spatial arrangements of protein oligomers and displayed functional proteins are directly visualized by a transmission electron microscope. By employing our functional protein assemblies, we provide experimental insight into multivalent protein-protein interactions and tools to manipulate receptor clustering on live cell surfaces.

  10. Rosetta stone method for detecting protein function and protein-protein interactions from genome sequences

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Pellegrini, Matteo; Thompson, Michael J.; Yeates, Todd O.

    2002-10-15

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  11. Beneficial effects of soy protein consumption for renal function.

    PubMed

    Anderson, James W

    2008-01-01

    Alterations in dietary protein intake have an important role in prevention and management of several forms of kidney disease. Using soy protein instead of animal protein reduces development of kidney disease in animals. Reducing protein intake preserves kidney function in persons with early diabetic kidney disease. Our clinical observations led us to the soy-protein hypothesis that "substitution of soy protein for animal protein results in less hyperfiltration and glomerular hypertension with resulting protection from diabetic nephropathy." These components of soy protein may lead to the benefits: specific peptides, amino acids, and isoflavones. Substituting soy protein for animal protein usually decreases hyperfiltration in diabetic subjects and may reduce urine albumin excretion. Limited data are available on effects of soy peptides, isoflavones, and other soy components on renal function on renal function in diabetes. Further studies are required to discern the specific benefits of soy protein and its components on renal function in diabetic subjects.

  12. Characterization of the functional properties of carob germ proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins from the carob germ were identified as having gluten-like proteins in 1935. While some biochemical characterization of carob germ proteins and their functionality has been carried out, relatively little has been done when compared to proteins such as gluten. Carob germ proteins were separ...

  13. Evidence on how a conserved glycine in the hinge region of HapR regulates its DNA binding ability: lessons from a natural variant.

    PubMed

    Dongre, Mitesh; Singh, Naorem Santa; Dureja, Chetna; Peddada, Nagesh; Solanki, Ashish K; Ashish; Raychaudhuri, Saumya

    2011-04-29

    HapR has been recognized as a quorum-sensing master regulator in Vibrio cholerae. Because it controls a plethora of disparate cellular events, the absence of a functional HapR affects the physiology of V. cholerae to a great extent. In the current study, we pursued an understanding of an observation of a natural protease-deficient non-O1, non-O139 variant V. cholerae strain V2. Intriguingly, a nonfunctional HapR (henceforth designated as HapR(V2)) harboring a substitution of glycine to aspartate at position 39 of the N-terminal hinge region has been identified. An in vitro gel shift assay clearly suggested the inability of HapR(V2) to interact with various cognate promoters. Reinstatement of glycine at position 39 restores DNA binding ability of HapR(V2) (HapR(V2G)), thereby rescuing the protease-negative phenotype of this strain. The elution profile of HapR(V2) and HapR(V2G) proteins in size-exclusion chromatography and their circular dichroism spectra did not reflect any significant differences to explain the functional discrepancies between the two proteins. To gain insight into the structure-function relationship of these two proteins, we acquired small/wide angle x-ray scattering data from samples of the native and G39D mutant. Although Guinier analysis and indirect Fourier transformation of scattering indicated only a slight difference in the shape parameters, structure reconstruction using dummy amino acids concluded that although HapR adopts a "Y" shape similar to its crystal structure, the G39D mutation in hinge drastically altered the DNA binding domains by bringing them in close proximity. This altered spatial orientation of the helix-turn-helix domains in this natural variant provides the first structural evidence on the functional role of the hinge region in quorum sensing-related DNA-binding regulatory proteins of Vibrio spp.

  14. CombFunc: predicting protein function using heterogeneous data sources

    PubMed Central

    Wass, Mark N.; Barton, Geraint; Sternberg, Michael J. E.

    2012-01-01

    Only a small fraction of known proteins have been functionally characterized, making protein function prediction essential to propose annotations for uncharacterized proteins. In recent years many function prediction methods have been developed using various sources of biological data from protein sequence and structure to gene expression data. Here we present the CombFunc web server, which makes Gene Ontology (GO)-based protein function predictions. CombFunc incorporates ConFunc, our existing function prediction method, with other approaches for function prediction that use protein sequence, gene expression and protein–protein interaction data. In benchmarking on a set of 1686 proteins CombFunc obtains precision and recall of 0.71 and 0.64 respectively for gene ontology molecular function terms. For biological process GO terms precision of 0.74 and recall of 0.41 is obtained. CombFunc is available at http://www.sbg.bio.ic.ac.uk/combfunc. PMID:22641853

  15. Gas turbine combustor exit piece with hinged connections

    SciTech Connect

    Charron, Richard C.; Pankey, William W.

    2016-04-26

    An exit piece (66) with an inlet throat (67) that conducts a combustion gas flow (36A) in a path (82) from a combustor (63) to an annular chamber (68) that feeds the first blade section (37) of a gas turbine (26). The exit piece further includes an outlet portion (69) that forms a circumferential segment of the annular chamber. The outlet portion interconnects with adjacent outlet portions by hinges (78A, 78B, 80A, 80B). Each hinge may have a hinge axis (82A, 82B) parallel to a centerline (21) of the turbine. Respective gas flows (36A) are configured by an assembly (60) of the exit pieces to converge on the feed chamber (68) into a uniform helical flow that drives the first blade section with minimal circumferential variations in force.

  16. A generalized analytical compliance model for cartwheel flexure hinges

    NASA Astrophysics Data System (ADS)

    Wu, Jianwei; Cai, Shuai; Cui, Jiwen; Tan, Jiubin

    2015-10-01

    Normal cartwheel flexure hinge (NCFH) typically consists of two flexible springs crossing at their mid points. These have been used in compliant mechanism applications owing to the large motion range of such hinges. In this paper, a novel generalized cartwheel flexure hinge (GCFH) is proposed by modifying spring number and varying the angle between two springs on the basis of the NCFH. A 6 degrees of freedom (6-DOF) compliance model of the GCFH was derived. Validity of this model was demonstrated using finite element analysis simulation and experimental results on a GCFH with 3 pairs of springs and 70° angle. According to the model, influence of distribution and shape parameters of GCFH on performance was analyzed. Characteristics such as compliance, off-axis/axis compliance ratio, motion precision, and capacity of rotation were determined. Results show that the GCFH can achieve improved performance compared to NCFH with optimized GCFH parameters.

  17. Adaptive fiber optics collimator based on flexible hinges.

    PubMed

    Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu

    2014-08-20

    In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.

  18. How special is the biochemical function of native proteins?

    PubMed

    Skolnick, Jeffrey; Gao, Mu; Zhou, Hongyi

    2016-01-01

    Native proteins perform an amazing variety of biochemical functions, including enzymatic catalysis, and can engage in protein-protein and protein-DNA interactions that are essential for life. A key question is how special are these functional properties of proteins. Are they extremely rare, or are they an intrinsic feature? Comparison to the properties of compact conformations of artificially generated compact protein structures selected for thermodynamic stability but not any type of function, the artificial (ART) protein library, demonstrates that a remarkable number of the properties of native-like proteins are recapitulated. These include the complete set of small molecule ligand-binding pockets and most protein-protein interfaces. ART structures are predicted to be capable of weakly binding metabolites and cover a significant fraction of metabolic pathways, with the most enriched pathways including ancient ones such as glycolysis. Native-like active sites are also found in ART proteins. A small fraction of ART proteins are predicted to have strong protein-protein and protein-DNA interactions. Overall, it appears that biochemical function is an intrinsic feature of proteins which nature has significantly optimized during evolution. These studies raise questions as to the relative roles of specificity and promiscuity in the biochemical function and control of cells that need investigation.

  19. Design and test analysis of a solar array root hinge drive assembly

    NASA Astrophysics Data System (ADS)

    Ding, Xilun; Li, Xin

    2014-09-01

    A root hinge drive assembly is preferred in place of the classical viscous damper in a large solar array system. It has advantages including better deployment control and higher reliability. But the traditional single degree of freedom model should be improved. A multiple degrees of freedom dynamics model is presented for the solar arrays deployment to guide the drive assembly design. The established model includes the functions of the torsion springs, the synchronization mechanism and the lock-up impact. A numerical computation method is proposed to solve the dynamics coupling problem. Then considering the drive torque requirement calculated by the proposed model, a root hinge drive assembly is developed based on the reliability engineering design methods, and dual actuators are used as a redundancy design. Pseudo-efficiency is introduced and the major factors influencing the (pseudo-) efficiency of the gear mechanism designed with high reduction ratio are studied for further test data analysis. A ground prototype deployment test is conducted to verify the capacity of the drive assembly. The test device consists of a large-area solar array system and a root hinge drive assembly. The RHDA development time is about 43 s. The theoretical drive torque is compared with the test values which are obtained according to the current data and the reduction efficiency analysis, and the results show that the presented model and the calibration methods are proper enough.

  20. Modelling protein functional domains in signal transduction using Maude

    NASA Technical Reports Server (NTRS)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  1. Photo Control of Protein Function Using Photoactive Yellow Protein.

    PubMed

    Reis, Jakeb M; Woolley, G Andrew

    2016-01-01

    Photoswitchable proteins are becoming increasingly common tools for manipulating cellular processes with high spatial and temporal precision. Photoactive yellow protein (PYP) is a small, water-soluble protein that undergoes a blue light induced change in conformation. It can serve as a scaffold for designing new tools to manipulate biological processes, but with respect to other protein scaffolds it presents some technical challenges. Here, we present practical information on how to overcome these, including how to synthesize the PYP chromophore, how to express and purify PYP, and how to screen for desired activity.

  2. Integrated protein function prediction by mining function associations, sequences, and protein–protein and gene–gene interaction networks

    PubMed Central

    Cao, Renzhi; Cheng, Jianlin

    2016-01-01

    Motivations Protein function prediction is an important and challenging problem in bioinformatics and computational biology. Functionally relevant biological information such as protein sequences, gene expression, and protein–protein interactions has been used mostly separately for protein function prediction. One of the major challenges is how to effectively integrate multiple sources of both traditional and new information such as spatial gene–gene interaction networks generated from chromosomal conformation data together to improve protein function prediction. Results In this work, we developed three different probabilistic scores (MIS, SEQ, and NET score) to combine protein sequence, function associations, and protein–protein interaction and spatial gene–gene interaction networks for protein function prediction. The MIS score is mainly generated from homologous proteins found by PSI-BLAST search, and also association rules between Gene Ontology terms, which are learned by mining the Swiss-Prot database. The SEQ score is generated from protein sequences. The NET score is generated from protein–protein interaction and spatial gene–gene interaction networks. These three scores were combined in a new Statistical Multiple Integrative Scoring System (SMISS) to predict protein function. We tested SMISS on the data set of 2011 Critical Assessment of Function Annotation (CAFA). The method performed substantially better than three base-line methods and an advanced method based on protein profile–sequence comparison, profile–profile comparison, and domain co-occurrence networks according to the maximum F-measure. PMID:26370280

  3. Nonsymmetric Two-Body Score Function for Protein Fold Recognition:

    NASA Astrophysics Data System (ADS)

    Heo, Muyoung; Cheon, Mookyung; Chang, Iksoo

    The usual two-body score (energy) function to recognize native folds of proteins is Miyazawa-Jernigan (MJ) pairwise-contact function. The pairwise-contact parameters between two amino acids in MJ function are symmetric in a sense that a directional order of amino acids sequence along the backbone of a protein is ignored in constructing score parameters. Here we report that we succeeded in constructing a nonsymmetric two-body score function, capturing a directional order of amino acids sequence, by a perceptron learning and a protein threading. We considered pairs of two adjacent amino acids that are separated by two consecutive peptide bonds with the backbone directionality from the N-terminus to the C-terminus of a protein. We also considered the local environmental character, such as the secondary structures and the hydrophobicity (solvation), of amino acids in protein structures. The score is a corresponding propensity for a directional alignment of these two adjacent amino acids with their local environments. The resulting score function simultaneously recognized native folds of 1006 proteins covering all representative proteins with a homology less than 30% among them. The quality of this score function was validated by a threading test of new distinct 382 proteins with a homology less than 90% among them, and it entailed a high success ratio for recognizing native folds of 364 (95.3%) proteins. It showed a good feasibility of designing protein score functions for protein fold recognition by a perceptron learning and a protein threading.

  4. Computational approaches for rational design of proteins with novel functionalities

    PubMed Central

    Tiwari, Manish Kumar; Singh, Ranjitha; Singh, Raushan Kumar; Kim, In-Won; Lee, Jung-Kul

    2012-01-01

    Proteins are the most multifaceted macromolecules in living systems and have various important functions, including structural, catalytic, sensory, and regulatory functions. Rational design of enzymes is a great challenge to our understanding of protein structure and physical chemistry and has numerous potential applications. Protein design algorithms have been applied to design or engineer proteins that fold, fold faster, catalyze, catalyze faster, signal, and adopt preferred conformational states. The field of de novo protein design, although only a few decades old, is beginning to produce exciting results. Developments in this field are already having a significant impact on biotechnology and chemical biology. The application of powerful computational methods for functional protein designing has recently succeeded at engineering target activities. Here, we review recently reported de novo functional proteins that were developed using various protein design approaches, including rational design, computational optimization, and selection from combinatorial libraries, highlighting recent advances and successes. PMID:24688643

  5. Hinge specification for a square-faceted tetrahedral truss

    NASA Technical Reports Server (NTRS)

    Adams, L. R.

    1984-01-01

    A square-faceted tetrahedral truss is geometrically analyzed. Expressions are developed for single degree of freedom hinges which allow packaging of the structure into a configuration in which all members are parallel and closely packed in a square pattern. Deployment is sequential, thus providing control over the structure during deployment.

  6. 61. DETAIL OF HEAD, VANE STEM, VANE HINGE, AND WHEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. DETAIL OF HEAD, VANE STEM, VANE HINGE, AND WHEEL OF AN ELI WINDMILL ON THE GROUND AT THE STOLL RESIDENCE ABOUT 1-1/2 MILES WEST OF NEBRASKA CITY ON STEAM WAGON ROAD. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  7. Functional innovation from changes in protein domains and their combinations.

    PubMed

    Lees, Jonathan G; Dawson, Natalie L; Sillitoe, Ian; Orengo, Christine A

    2016-06-01

    Domains are the functional building blocks of proteins. In this work we discuss how domains can contribute to the evolution of new functions. Domains themselves can evolve through various mechanisms, altering their intrinsic function. Domains can also facilitate functional innovations by combining with other domains to make novel proteins. We discuss the mechanisms by which domain and domain combinations support functional innovations. We highlight interesting examples where changes in domain combination promote changes at the domain level.

  8. The functional importance of co-evolving residues in proteins.

    PubMed

    Sandler, Inga; Zigdon, Nitzan; Levy, Efrat; Aharoni, Amir

    2014-02-01

    Computational approaches for detecting co-evolution in proteins allow for the identification of protein-protein interaction networks in different organisms and the assignment of function to under-explored proteins. The detection of co-variation of amino acids within or between proteins, moreover, allows for the discovery of residue-residue contacts and highlights functional residues that can affect the binding affinity, catalytic activity, or substrate specificity of a protein. To explore the functional impact of co-evolutionary changes in proteins, a combined experimental and computational approach must be recruited. Here, we review recent studies that apply computational and experimental tools to obtain novel insight into the structure, function, and evolution of proteins. Specifically, we describe the application of co-evolutionary analysis for predicting high-resolution three-dimensional structures of proteins. In addition, we describe computational approaches followed by experimental analysis for identifying specificity-determining residues in proteins. Finally, we discuss studies addressing the importance of such residues in terms of the functional divergence of proteins, allowing proteins to evolve new functions while avoiding crosstalk with existing cellular pathways or forming reproductive barriers and hence promoting speciation.

  9. A Statistical Model of Protein Sequence Similarity and Function Similarity Reveals Overly-Specific Function Predictions

    PubMed Central

    Kolker, Eugene

    2009-01-01

    Background Predicting protein function from primary sequence is an important open problem in modern biology. Not only are there many thousands of proteins of unknown function, current approaches for predicting function must be improved upon. One problem in particular is overly-specific function predictions which we address here with a new statistical model of the relationship between protein sequence similarity and protein function similarity. Methodology Our statistical model is based on sets of proteins with experimentally validated functions and numeric measures of function specificity and function similarity derived from the Gene Ontology. The model predicts the similarity of function between two proteins given their amino acid sequence similarity measured by statistics from the BLAST sequence alignment algorithm. A novel aspect of our model is that it predicts the degree of function similarity shared between two proteins over a continuous range of sequence similarity, facilitating prediction of function with an appropriate level of specificity. Significance Our model shows nearly exact function similarity for proteins with high sequence similarity (bit score >244.7, e-value >1e−62, non-redundant NCBI protein database (NRDB)) and only small likelihood of specific function match for proteins with low sequence similarity (bit score <54.6, e-value <1e−05, NRDB). For sequence similarity ranges in between our annotation model shows an increasing relationship between function similarity and sequence similarity, but with considerable variability. We applied the model to a large set of proteins of unknown function, and predicted functions for thousands of these proteins ranging from general to very specific. We also applied the model to a data set of proteins with previously assigned, specific functions that were electronically based. We show that, on average, these prior function predictions are more specific (quite possibly overly-specific) compared to

  10. Chemical synthesis and biological function of lipidated proteins.

    PubMed

    Yang, Aimin; Zhao, Lei; Wu, Yao-Wen

    2015-01-01

    Lipidated proteins play a key role in many essential biological processes in eukaryotic cells, including signal transduction, membrane trafficking, immune response and pathology. The investigation of the function of lipidated proteins requires access to a reasonable amount of homogenous lipid-modified proteins with defined structures and functional groups. Chemical approaches have provided useful tools to perform such studies. In this review we summarize synthetic methods of lipidated peptides and developments in the chemoselective ligation for the production of lipidated proteins. We introduce the biology of lipidated proteins and highlight the application of synthetic lipidated proteins to tackle important biological questions.

  11. Function and regulation of Rnd proteins.

    PubMed

    Chardin, Pierre

    2006-01-01

    The Rnd proteins, which form a distinct sub-group of the Rho family of small GTP-binding proteins, have been shown to regulate the organization of the actin cytoskeleton in several tissues. In the brain, they participate in neurite extension, whereas in smooth muscle, they modulate contractility. Recent evidence has shown that Rnd3 (RhoE) is also involved in the regulation of cell-cycle progression and transformation, indicating that these proteins might have other, as yet unexplored roles.

  12. Functional Proteins from Short Peptides: Dayhoff's Hypothesis Turns 50.

    PubMed

    Romero Romero, M Luisa; Rabin, Avigayel; Tawfik, Dan S

    2016-12-23

    First and foremost: Margaret Dayhoff's 1966 hypothesis on the origin of proteins is now an accepted model for the emergence of large, globular, functional proteins from short, simple peptides. However, the fundamental question of how the first protein(s) emerged still stands. The tools and hypotheses pioneered by Dayhoff, and the over 65 million protein sequences and 12 000 structures known today, enable those who follow in her footsteps to address this question.

  13. Functional properties of select edible oilseed proteins.

    PubMed

    Sharma, Girdhari M; Su, Mengna; Joshi, Aditya U; Roux, Kenneth H; Sathe, Shridhar K

    2010-05-12

    Borate saline buffer (0.1 M, pH 8.45) solubilized proteins from almond, Brazil nut, cashew nut, hazelnut, macadamia, pine nut, pistachio, Spanish peanut, Virginia peanut, and soybean seeds were prepared from the corresponding defatted flour. The yield was in the range from 10.6% (macadamia) to 27.4% (almond). The protein content, on a dry weight basis, of the lyophilized preparations ranged from 69.23% (pine nut) to 94.80% (soybean). Isolated proteins from Brazil nut had the lightest and hazelnut the darkest color. Isolated proteins exhibited good solubility in aqueous media. Foaming capacity (<40% overrun) and stability (<1 h) of the isolated proteins were poor to fair. Almond proteins had the highest viscosity among the tested proteins. Oil-holding capacity of the isolated proteins ranged from 2.8 (macadamia) to 7 (soybean) g of oil/g of protein. Least gelation concentrations (% w/v) for almond, Brazil nut, cashew, hazelnut, macadamia, pine nut, pistachio, Spanish peanut, Virginia peanut, and soybean were, respectively, 6, 8, 8, 12, 20, 12, 10, 14, 14, and 16.

  14. Under-folded proteins: Conformational ensembles and their roles in protein folding, function, and pathogenesis.

    PubMed

    Uversky, Vladimir N

    2013-11-01

    For decades, protein function was intimately linked to the presence of a unique, aperiodic crystal-like structure in a functional protein. The two only places for conformational ensembles of under-folded (or partially folded) protein forms in this picture were either the end points of the protein denaturation processes or transiently populated folding intermediates. Recent years witnessed dramatic change in this perception and conformational ensembles, which the under-folded proteins are, have moved from the shadow. Accumulated to date data suggest that a protein can exist in at least three global forms-functional and folded, functional and intrinsically disordered (nonfolded), and nonfunctional and misfolded/aggregated. Under-folded protein states are crucial for each of these forms, serving as important folding intermediates of ordered proteins, or as functional states of intrinsically disordered proteins (IDPs) and IDP regions (IDPRs), or as pathology triggers of misfolded proteins. Based on these observations, conformational ensembles of under-folded proteins can be classified as transient (folding and misfolding intermediates) and permanent (IDPs and stable misfolded proteins). Permanently under-folded proteins can further be split into intentionally designed (IDPs and IDPRs) and unintentionally designed (misfolded proteins). Although intrinsic flexibility, dynamics, and pliability are crucial for all under-folded proteins, the different categories of under-foldedness are differently encoded in protein amino acid sequences.

  15. Structure and Function of Lipopolysaccharide Binding Protein

    NASA Astrophysics Data System (ADS)

    Schumann, Ralf R.; Leong, Steven R.; Flaggs, Gail W.; Gray, Patrick W.; Wright, Samuel D.; Mathison, John C.; Tobias, Peter S.; Ulevitch, Richard J.

    1990-09-01

    The primary structure of lipopolysaccharide binding protein (LBP), a trace plasma protein that binds to the lipid A moiety of bacterial lipopolysaccharides (LPSs), was deduced by sequencing cloned complementary DNA. LBP shares sequence identity with another LPS binding protein found in granulocytes, bactericidal/permeability-increasing protein, and with cholesterol ester transport protein of the plasma. LBP may control the response to LPS under physiologic conditions by forming high-affinity complexes with LPS that bind to monocytes and macrophages, which then secrete tumor necrosis factor. The identification of this pathway for LPS-induced monocyte stimulation may aid in the development of treatments for diseases in which Gram-negative sepsis or endotoxemia are involved.

  16. Protein function annotation by local binding site surface similarity.

    PubMed

    Spitzer, Russell; Cleves, Ann E; Varela, Rocco; Jain, Ajay N

    2014-04-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against ∼60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that predated query protein biochemical annotation for five out of the eight query proteins. A panel of 12 currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins.

  17. Recent approaches in physical modification of protein functionality.

    PubMed

    Mirmoghtadaie, Leila; Shojaee Aliabadi, Saeedeh; Hosseini, Seyede Marzieh

    2016-05-15

    Today, there is a growing demand for novel technologies, such as high hydrostatic pressure, irradiation, ultrasound, filtration, supercritical carbon dioxide, plasma technology, and electrical methods, which are not based on chemicals or heat treatment for modifying ingredient functionality and extending product shelf life. Proteins are essential components in many food processes, and provide various functions in food quality and stability. They can create interfacial films that stabilize emulsions and foams as well as interact to make networks that play key roles in gel and edible film production. These properties of protein are referred to as 'protein functionality', because they can be modified by different processing. The common protein modification (chemical, enzymatic and physical) methods have strong effects on the structure and functionality of food proteins. Furthermore, novel technologies can modify protein structure and functional properties that will be reviewed in this study.

  18. Method for printing functional protein microarrays

    NASA Technical Reports Server (NTRS)

    Delehanty, James B.; Ligler, Frances S.

    2003-01-01

    Piezoelectric dispensing of proteins from borosilicate glass capillaries is a popular method of protein biochip fabrication that offers the advantages of sample recovery and noncontact with the printing substrate. However, little regard has been given to the quantitative aspects of dispensing minute volumes (1 nL or less) at the low protein concentrations (20 micrograms/mL or less) typically used in microprinting. Specifically, loss of protein sample due to nonspecific adsorption to the glass surface of the dispensing capillaries can limit the amount of protein delivered to the substrate. We demonstrate the benefits of a low ionic strength buffer containing the carrier protein BSA that effectively minimizes the ionic strength-dependent phenomenon of nonspecific protein adsorption to borosilicate glass. Over the concentration range of 20-2.5 micrograms/mL, the dispensing of a reference IgG in 10 mM PBS including 0.1% BSA resulted in the deposition of 3.6- to 44-fold more IgG compared to the deposition of IgG in standard 150 mM PBS in the absence of BSA. Furthermore, when the IgG was dispensed with carrier protein, the resulting spots exhibited a more uniform morphology. In a direct immunoassay for cholera toxin, capture antibody spots dispensed in 10 mM PBS containing 0.1% BSA produced fluorescent signals that were 2.8- to 4.3-fold more intense than antibody spots that were dispensed in 150 mM PBS without BSA. Interestingly, no differences were observed in the specific activities of the capture antibodies as a result of printing in the different buffers. The implications of these results on the future development of protein biochips are discussed.

  19. Effect of the quality of the interaction data on predicting protein function from protein-protein interactions.

    PubMed

    Ni, Qing-Shan; Wang, Zheng-Zhi; Li, Gang-Guo; Wang, Guang-Yun; Zhao, Ying-Jie

    2009-03-01

    Protein function prediction is an important issue in the post-genomic era. When protein function is deduced from protein interaction data, the traditional methods treat each interaction sample equally, where the qualities of the interaction samples are seldom taken into account. In this paper, we investigate the effect of the quality of protein-protein interaction data on predicting protein function. Moreover, two improved methods, weight neighbour counting method (WNC) and weight chi-square method (WCHI), are proposed by considering the quality of interaction samples with the neighbour counting method (NC) and chi-square method (CHI). Experimental results have shown that the qualities of interaction samples affect the performances of protein function prediction methods seriously. It is also demonstrated that WNC and WCHI methods outperform NC and CHI methods in protein function prediction when example weights are chosen properly.

  20. Emergence of Complexity in Protein Functions and Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Pohorille, Andzej

    2009-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis of very large libraries of random amino acid sequences and subsequently subjecting them to in vitro evolution. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions, important clues have been uncovered. Considerable progress has been also achieved in understanding the origins of membrane proteins. We will address this issue in the example of ion channels - proteins that mediate transport of ions across cell walls. Remarkably, despite overall complexity of these proteins in contemporary cells, their structural motifs are quite simple, with -helices being most common. By combining results of experimental and computer simulation studies on synthetic models and simple, natural channels, I will show that, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during

  1. Structure and function of antifreeze proteins.

    PubMed Central

    Davies, Peter L; Baardsnes, Jason; Kuiper, Michael J; Walker, Virginia K

    2002-01-01

    High-resolution three-dimensional structures are now available for four of seven non-homologous fish and insect antifreeze proteins (AFPs). For each of these structures, the ice-binding site of the AFP has been defined by site-directed mutagenesis, and ice etching has indicated that the ice surface is bound by the AFP. A comparison of these extremely diverse ice-binding proteins shows that they have the following attributes in common. The binding sites are relatively flat and engage a substantial proportion of the protein's surface area in ice binding. They are also somewhat hydrophobic -- more so than that portion of the protein exposed to the solvent. Surface-surface complementarity appears to be the key to tight binding in which the contribution of hydrogen bonding seems to be secondary to van der Waals contacts. PMID:12171656

  2. Bio-basis function neural networks in protein data mining.

    PubMed

    Yang, Zheng Rong; Hamer, Rebecca

    2007-01-01

    Accurately identifying functional sites in proteins is one of the most important topics in bioinformatics and systems biology. In bioinformatics, identifying protease cleavage sites in protein sequences can aid drug/inhibitor design. In systems biology, post-translational protein-protein interaction activity is one of the major components for analyzing signaling pathway activities. Determining functional sites using laboratory experiments are normally time consuming and expensive. Computer programs have therefore been widely used for this kind of task. Mining protein sequence data using computer programs covers two major issues: 1) discovering how amino acid specificity affects functional sites and 2) discovering what amino acid specificity is. Both need a proper coding mechanism prior to using a proper machine learning algorithm. The development of the bio-basis function neural network (BBFNN) has made a new way for protein sequence data mining. The bio-basis function used in BBFNN is biologically sound in well coding biological information in protein sequences, i.e. well measuring the similarity between protein sequences. BBFNN has therefore been outperforming conventional neural networks in many subjects of protein sequence data mining from protease cleavage site prediction to disordered protein identification. This review focuses on the variants of BBFNN and their applications in mining protein sequence data.

  3. Regulation, Signaling, and Physiological Functions of G-Proteins.

    PubMed

    Syrovatkina, Viktoriya; Alegre, Kamela O; Dey, Raja; Huang, Xin-Yun

    2016-09-25

    Heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins) mainly relay the information from G-protein-coupled receptors (GPCRs) on the plasma membrane to the inside of cells to regulate various biochemical functions. Depending on the targeted cell types, tissues, and organs, these signals modulate diverse physiological functions. The basic schemes of heterotrimeric G-proteins have been outlined. In this review, we briefly summarize what is known about the regulation, signaling, and physiological functions of G-proteins. We then focus on a few less explored areas such as the regulation of G-proteins by non-GPCRs and the physiological functions of G-proteins that cannot be easily explained by the known G-protein signaling pathways. There are new signaling pathways and physiological functions for G-proteins to be discovered and further interrogated. With the advancements in structural and computational biological techniques, we are closer to having a better understanding of how G-proteins are regulated and of the specificity of G-protein interactions with their regulators.

  4. [Extranuclear functions of protein sumoylation in the central nervous system].

    PubMed

    Martin, Stéphane

    2009-01-01

    Post-translational protein modifications play essential roles in many aspects of cellular functions and therefore in the maintenance of cell integrity. These protein modifications are involved at all stages of neuronal communication within the central nervous system. Sumoylation is a reversible post-translational protein modification that consists in the covalent labelling of a small protein called SUMO to lysine residues of selected target proteins. Sumoylation is a well characterized regulator of nuclear functions and has recently emerged as a key factor for numerous extranuclear processes. Furthermore, sumoylation has recently been shown to modulate synaptic transmission and is also implicated in a wide range of neurodegenerative diseases.

  5. Internal symmetry in protein structures: prevalence, functional relevance and evolution.

    PubMed

    Balaji, Santhanam

    2015-06-01

    Symmetry has been found at various levels of biological organization in the protein structural universe. Numerous evolutionary studies have proposed connections between internal symmetry within protein tertiary structures, quaternary associations and protein functions. Recent computational methods, such as SymD and CE-Symm, facilitate a large-scale detection of internal symmetry in protein structures. Based on the results from these methods, about 20% of SCOP folds, superfamilies and families are estimated to have structures with internal symmetry (Figure 1d). All-β and membrane proteins fold classes contain a relatively high number of unique instances of internal symmetry. In addition to the axis of symmetry, anecdotal evidence suggests that, the region of connection or contact between symmetric units could coincide with functionally relevant sites within a fold. General principles that underlie protein internal symmetry and their connections to protein structural integrity and functions remain to be elucidated.

  6. Structure-based Methods for Computational Protein Functional Site Prediction

    PubMed Central

    Dukka, B KC

    2013-01-01

    Due to the advent of high throughput sequencing techniques and structural genomic projects, the number of gene and protein sequences has been ever increasing. Computational methods to annotate these genes and proteins are even more indispensable. Proteins are important macromolecules and study of the function of proteins is an important problem in structural bioinformatics. This paper discusses a number of methods to predict protein functional site especially focusing on protein ligand binding site prediction. Initially, a short overview is presented on recent advances in methods for selection of homologous sequences. Furthermore, a few recent structural based approaches and sequence-and-structure based approaches for protein functional sites are discussed in details. PMID:24688745

  7. Alkylation damage by lipid electrophiles targets functional protein systems.

    PubMed

    Codreanu, Simona G; Ullery, Jody C; Zhu, Jing; Tallman, Keri A; Beavers, William N; Porter, Ned A; Marnett, Lawrence J; Zhang, Bing; Liebler, Daniel C

    2014-03-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions.

  8. A large-scale evaluation of computational protein function prediction.

    PubMed

    Radivojac, Predrag; Clark, Wyatt T; Oron, Tal Ronnen; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kaßner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Boehm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas A; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo

    2013-03-01

    Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based critical assessment of protein function annotation (CAFA) experiment. Fifty-four methods representing the state of the art for protein function prediction were evaluated on a target set of 866 proteins from 11 organisms. Two findings stand out: (i) today's best protein function prediction algorithms substantially outperform widely used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is considerable need for improvement of currently available tools.

  9. A large-scale evaluation of computational protein function prediction

    PubMed Central

    Radivojac, Predrag; Clark, Wyatt T; Ronnen Oron, Tal; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kassner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Böhm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo

    2013-01-01

    Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based Critical Assessment of protein Function Annotation (CAFA) experiment. Fifty-four methods representing the state-of-the-art for protein function prediction were evaluated on a target set of 866 proteins from eleven organisms. Two findings stand out: (i) today’s best protein function prediction algorithms significantly outperformed widely-used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is significant need for improvement of currently available tools. PMID:23353650

  10. BLANNOTATOR: enhanced homology-based function prediction of bacterial proteins

    PubMed Central

    2012-01-01

    Background Automated function prediction has played a central role in determining the biological functions of bacterial proteins. Typically, protein function annotation relies on homology, and function is inferred from other proteins with similar sequences. This approach has become popular in bacterial genomics because it is one of the few methods that is practical for large datasets and because it does not require additional functional genomics experiments. However, the existing solutions produce erroneous predictions in many cases, especially when query sequences have low levels of identity with the annotated source protein. This problem has created a pressing need for improvements in homology-based annotation. Results We present an automated method for the functional annotation of bacterial protein sequences. Based on sequence similarity searches, BLANNOTATOR accurately annotates query sequences with one-line summary descriptions of protein function. It groups sequences identified by BLAST into subsets according to their annotation and bases its prediction on a set of sequences with consistent functional information. We show the results of BLANNOTATOR's performance in sets of bacterial proteins with known functions. We simulated the annotation process for 3090 SWISS-PROT proteins using a database in its state preceding the functional characterisation of the query protein. For this dataset, our method outperformed the five others that we tested, and the improved performance was maintained even in the absence of highly related sequence hits. We further demonstrate the value of our tool by analysing the putative proteome of Lactobacillus crispatus strain ST1. Conclusions BLANNOTATOR is an accurate method for bacterial protein function prediction. It is practical for genome-scale data and does not require pre-existing sequence clustering; thus, this method suits the needs of bacterial genome and metagenome researchers. The method and a web-server are available at

  11. Small-molecule control of protein function through Staudinger reduction

    NASA Astrophysics Data System (ADS)

    Luo, Ji; Liu, Qingyang; Morihiro, Kunihiko; Deiters, Alexander

    2016-11-01

    Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small-molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl transfer RNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small-molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (enhanced green fluorescent protein), protein translocation (nuclear localization sequence), DNA recombination (Cre) and gene editing (Cas9).

  12. Computational design of proteins with novel structure and functions

    NASA Astrophysics Data System (ADS)

    Wei, Yang; Lu-Hua, Lai

    2016-01-01

    Computational design of proteins is a relatively new field, where scientists search the enormous sequence space for sequences that can fold into desired structure and perform desired functions. With the computational approach, proteins can be designed, for example, as regulators of biological processes, novel enzymes, or as biotherapeutics. These approaches not only provide valuable information for understanding of sequence-structure-function relations in proteins, but also hold promise for applications to protein engineering and biomedical research. In this review, we briefly introduce the rationale for computational protein design, then summarize the recent progress in this field, including de novo protein design, enzyme design, and design of protein-protein interactions. Challenges and future prospects of this field are also discussed. Project supported by the National Basic Research Program of China (Grant No. 2015CB910300), the National High Technology Research and Development Program of China (Grant No. 2012AA020308), and the National Natural Science Foundation of China (Grant No. 11021463).

  13. De novo design of functional proteins: Toward artificial hydrogenases.

    PubMed

    Faiella, Marina; Roy, Anindya; Sommer, Dayn; Ghirlanda, Giovanna

    2013-11-01

    Over the last 25 years, de novo design has proven to be a valid approach to generate novel, well-folded proteins, and most recently, functional proteins. In response to societal needs, this approach is been used increasingly to design functional proteins developed with an eye toward sustainable fuel production. This review surveys recent examples of bioinspired de novo designed peptide based catalysts, focusing in particular on artificial hydrogenases.

  14. PUF proteins: Cellular functions and potential applications.

    PubMed

    Kiani, Seyed Jalal; Taheri, Tahereh; Rafati, Sima; Samimi-Rad, Katayoun

    2016-09-14

    RNA-binding proteins play critical roles in the regulation of gene expression. Among several families of RNA-binding proteins, PUF (Pumilio and FBF) proteins have been the subject of extensive investigations, as they can bind RNA in a sequence-specific manner and they are evolutionarily conserved among a wide range of organisms. The outstanding feature of these proteins is a highly conserved RNA-binding domain, which is known as the Pumilio-homology domain (PUM-HD) that mostly consists of eight tandem repeats. Each repeat recognizes an RNA base with a simple three-letter code that can be programmed in order to change the sequence-specificity of the protein. Using this tailored architecture, researchers have been able to change the specificity of the PUM-HD and target desired transcripts in the cell, even in subcellular compartments. The potential applications of this versatile tool in molecular cell biology seem unbounded and the use of these factors in pharmaceutics might be an interesting field of study in near future.

  15. Protein Carbonylation and Adipocyte Mitochondrial Function*

    PubMed Central

    Curtis, Jessica M.; Hahn, Wendy S.; Stone, Matthew D.; Inda, Jacob J.; Droullard, David J.; Kuzmicic, Jovan P.; Donoghue, Margaret A.; Long, Eric K.; Armien, Anibal G.; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J.; Bernlohr, David A.

    2012-01-01

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte. PMID:22822087

  16. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.

    PubMed

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-03-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  17. Timing Correlations in Proteins Predict Functional Modules and Dynamic Allostery.

    PubMed

    Lin, Milo M

    2016-04-20

    How protein structure encodes functionality is not fully understood. For example, long-range intraprotein communication can occur without measurable conformational change and is often not captured by existing structural correlation functions. It is shown here that important functional information is encoded in the timing of protein motions, rather than motion itself. I introduce the conditional activity function to quantify such timing correlations among the degrees of freedom within proteins. For three proteins, the conditional activities between side-chain dihedral angles were computed using the output of microseconds-long atomistic simulations. The new approach demonstrates that a sparse fraction of side-chain pairs are dynamically correlated over long distances (spanning protein lengths up to 7 nm), in sharp contrast to structural correlations, which are short-ranged (<1 nm). Regions of high self- and inter-side-chain dynamical correlations are found, corresponding to experimentally determined functional modules and allosteric connections, respectively.

  18. Utilization of alkyne bioconjugations to modulate protein function.

    PubMed

    Maza, Johnathan C; Howard, Christina A; Vipani, Megha A; Travis, Christopher R; Young, Douglas D

    2017-01-01

    The ability to introduce or modify protein function has widespread application to multiple scientific disciplines. The introduction of unique unnatural amino acids represents an excellent mechanism to incorporate new functionality; however, this approach is limited by ability of the translational machinery to recognize and incorporate the chemical moiety. To overcome this potential limitation, we aimed to exploit the functionality of existing unnatural amino acids to perform bioorthogonal reactions to introduce the desired protein modification, altering its function. Specifically, via the introduction of a terminal alkyne containing unnatural amino acid, we demonstrated chemically programmable protein modification through the Glaser-Hay coupling to other terminal alkynes, altering the function of a protein. In a proof-of-concept experiment, this approach has been utilized to modify the fluorescence spectrum of green fluorescent protein.

  19. A survey of computational intelligence techniques in protein function prediction.

    PubMed

    Tiwari, Arvind Kumar; Srivastava, Rajeev

    2014-01-01

    During the past, there was a massive growth of knowledge of unknown proteins with the advancement of high throughput microarray technologies. Protein function prediction is the most challenging problem in bioinformatics. In the past, the homology based approaches were used to predict the protein function, but they failed when a new protein was different from the previous one. Therefore, to alleviate the problems associated with homology based traditional approaches, numerous computational intelligence techniques have been proposed in the recent past. This paper presents a state-of-the-art comprehensive review of various computational intelligence techniques for protein function predictions using sequence, structure, protein-protein interaction network, and gene expression data used in wide areas of applications such as prediction of DNA and RNA binding sites, subcellular localization, enzyme functions, signal peptides, catalytic residues, nuclear/G-protein coupled receptors, membrane proteins, and pathway analysis from gene expression datasets. This paper also summarizes the result obtained by many researchers to solve these problems by using computational intelligence techniques with appropriate datasets to improve the prediction performance. The summary shows that ensemble classifiers and integration of multiple heterogeneous data are useful for protein function prediction.

  20. Functional assembly of a randomly cleaved protein.

    PubMed Central

    Shiba, K; Schimmel, P

    1992-01-01

    The sequence of a 939-amino acid polypeptide that is a member of the aminoacyl-tRNA synthetase class of enzymes has been aligned with sequences of 15 related proteins. This alignment guided the design of 18 fragment pairs that were tested for internal sequence complementarity by reconstitution of enzyme activity. Reconstitution was achieved with fragments that divide the protein at both nonconserved and conserved sequences, including locations proximal to or within elements believed to form critical elements of secondary structure. Structure assembly is sufficiently flexible to accommodate fusion of short segments of unrelated sequences at fragment junctions. Complementary chain packing interactions and chain flexibility appear to be widely distributed throughout the sequence and are sufficient to reconstruct large three-dimensional structures from an array of disconnected pieces. The results may have implications for the evolution and assembly of large proteins. Images PMID:1542687

  1. Bioinformatics pipeline for functional identification and characterization of proteins

    NASA Astrophysics Data System (ADS)

    Skarzyńska, Agnieszka; Pawełkowicz, Magdalena; Krzywkowski, Tomasz; Świerkula, Katarzyna; PlÄ der, Wojciech; Przybecki, Zbigniew

    2015-09-01

    The new sequencing methods, called Next Generation Sequencing gives an opportunity to possess a vast amount of data in short time. This data requires structural and functional annotation. Functional identification and characterization of predicted proteins could be done by in silico approches, thanks to a numerous computational tools available nowadays. However, there is a need to confirm the results of proteins function prediction using different programs and comparing the results or confirm experimentally. Here we present a bioinformatics pipeline for structural and functional annotation of proteins.

  2. Biases in the experimental annotations of protein function and their effect on our understanding of protein function space.

    PubMed

    Schnoes, Alexandra M; Ream, David C; Thorman, Alexander W; Babbitt, Patricia C; Friedberg, Iddo

    2013-01-01

    The ongoing functional annotation of proteins relies upon the work of curators to capture experimental findings from scientific literature and apply them to protein sequence and structure data. However, with the increasing use of high-throughput experimental assays, a small number of experimental studies dominate the functional protein annotations collected in databases. Here, we investigate just how prevalent is the "few articles - many proteins" phenomenon. We examine the experimentally validated annotation of proteins provided by several groups in the GO Consortium, and show that the distribution of proteins per published study is exponential, with 0.14% of articles providing the source of annotations for 25% of the proteins in the UniProt-GOA compilation. Since each of the dominant articles describes the use of an assay that can find only one function or a small group of functions, this leads to substantial biases in what we know about the function of many proteins. Mass-spectrometry, microscopy and RNAi experiments dominate high throughput experiments. Consequently, the functional information derived from these experiments is mostly of the subcellular location of proteins, and of the participation of proteins in embryonic developmental pathways. For some organisms, the information provided by different studies overlap by a large amount. We also show that the information provided by high throughput experiments is less specific than those provided by low throughput experiments. Given the experimental techniques available, certain biases in protein function annotation due to high-throughput experiments are unavoidable. Knowing that these biases exist and understanding their characteristics and extent is important for database curators, developers of function annotation programs, and anyone who uses protein function annotation data to plan experiments.

  3. A review of protein function prediction under machine learning perspective.

    PubMed

    Bernardes, Juliana S; Pedreira, Carlos E

    2013-08-01

    Protein function prediction is one of the most challenging problems in the post-genomic era. The number of newly identified proteins has been exponentially increasing with the advances of the high-throughput techniques. However, the functional characterization of these new proteins was not incremented in the same proportion. To fill this gap, a large number of computational methods have been proposed in the literature. Early approaches have explored homology relationships to associate known functions to the newly discovered proteins. Nevertheless, these approaches tend to fail when a new protein is considerably different (divergent) from previously known ones. Accordingly, more accurate approaches, that use expressive data representation and explore sophisticate computational techniques are required. Regarding these points, this review provides a comprehensible description of machine learning approaches that are currently applied to protein function prediction problems. We start by defining several problems enrolled in understanding protein function aspects, and describing how machine learning can be applied to these problems. We aim to expose, in a systematical framework, the role of these techniques in protein function inference, sometimes difficult to follow up due to the rapid evolvement of the field. With this purpose in mind, we highlight the most representative contributions, the recent advancements, and provide an insightful categorization and classification of machine learning methods in functional proteomics.

  4. Composition and functional properties of Lupinus campestris protein isolates.

    PubMed

    Rodríguez-Ambriz, S L; Martínez-Ayala, A L; Millán, F; Dávila-Ortíz, G

    2005-09-01

    Protein isolates from L. campestris and soybean seeds were prepared using isoelectric precipitation (PI) and micellization (MI) procedures. The amount of protein recovered was considerably higher with the isoelectric precipitation than with the micellization procedure (60% and 30%, respectively). Protein contents were higher than 90% in protein isolates. Antinutritional factors content (alkaloids, lectins, and tannins) were reduced to innocuous levels after protein isolate preparation. Minimum protein solubility for the precipitated lupin protein isolate (LPI) was at pH 4.0, and between pH 4 and 6 for the micellized lupin protein isolate (LMI), increasing at both extremes of the pH scale. Water absorption for the LMI was 1.3 ml/g of protein and its oil absorption 2.2 ml/g of protein. The LPI had 1.7 ml/g of protein in both water and oil absorption. Foaming capacity and stability was pH-dependent. Foaming capacity was higher at pH 2 and lower near the protein isoelectric points. Minimum protein concentration for gelation in LMI was 8% w/v at pH 4, while for LPI was 6% at pH 4 and 6. Amino acid composition in L. campestris flour and protein isolates was high in lysine and low in methionine. Most of the essential amino acids in lupin protein isolates were at acceptable levels compared to a reference pattern for infants and adults. The electrophoretic pattern of both protein isolates showed three bands with different mobilities, suggesting that the protein fractions belong to alpha-conglutin (11S-like protein), beta-conglutin (7S-like protein) and gamma-conglutin. It is proven that some of the functional properties of L. campestris protein isolates are similar to those soybean protein isolates recovered under equal conditions.

  5. Early Results of a New Rotating Hinge Knee Implant

    PubMed Central

    Neuhaus, Hans-Joachim; Miehlke, Rolf; Schuh, Reinhard; Kubista, Bernd

    2014-01-01

    Background. Indication for rotating hinge (RH) total knee arthroplasty (TKA) includes primary and revision cases, with contradictory results. The aim of this study was to report prospective early results of a new modular rotating hinge TKA (EnduRo). For this implant several new design features and a new bearing material (carbon-fiber reinforced poly-ether-ether-ketone) have been developed. Furthermore, we tried to establish a new classification of failure modes for revision TKA. Methods. 152 EnduRo rotating-hinge prostheses were implanted in two centers. In 90 patients a primary implantation has been performed and 62 patients were revision cases. Knee Society Score (KSS), Western Ontario and McMaster Osteoarthritis Index (WOMAC), Oxford Knee Score (OKS), and Range of motion (ROM) were assessed before surgery, 3 months postoperatively, 12 months postoperatively, and annually thereafter. We defined 3 types of complications: Type 1, infection; type 2, periprosthetic complications; type 3, implant failures. Results. KSS, WOMAC, OKS, and ROM revealed significant improvements between the preoperative and the follow-up investigations. There were 14 complications (9.2%) leading to revision surgery, predominantly type 2. Conclusion. Our study shows excellent clinical results of the EnduRo TKA. Furthermore, no premature material failure or unusual biological response to the new bearing material could be detected. PMID:25089279

  6. Influence of the Cardiac Myosin Hinge Region on Contractile Activity

    NASA Astrophysics Data System (ADS)

    Margossian, Sarkis S.; Krueger, John W.; Sellers, James R.; Cuda, Giovanni; Caulfield, James B.; Norton, Paul; Slayter, Henry S.

    1991-06-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myosin, and had no effect on ATPase activity of purified S1 and myofibrils. However, it completely suppressed the movement of actin filaments in in vitro motility assays and reduced active shortening of sarcomeres of skinned cardiac myocytes by half. Suppression of motion by the antihinge antibody may reflect a mechanical constraint imposed by the antibody upon the mobility of the S2 region of myosin. The results suggest that the steps in the mechanochemical energy transduction can be separately influenced through S2.

  7. Biomechanical Analysis of the Effects of Bilateral Hinged Knee Bracing.

    PubMed

    Lee, Hangil; Ha, Dokyeong; Kang, Yeoun-Seung; Park, Hyung-Soon

    2016-01-01

    This research analyzed the effect of bilateral hinged knee braces on a healthy knee from a biomechanical frame in vivo. This was accomplished by fitting a knee brace with two customized wireless force/torque (F/T) sensors that could readily record force and torque during live motion, while the kinetics at the knee were computed using the inverse dynamics of the motion capture and force plate data. Four tasks to test the brace's effects were drop vertical jumping, pivoting, stop vertical jumping, and cutting. The results showed that the hinges in the knee brace can absorb up to 18% of the force and 2.7% of the torque at the knee during various athletic motions. Thus, the hinges demonstrated minimal effect in reducing the mechanical load on the knee. There were limitations concerning the consistency of the motions performed by the subjects during the trials and the influence of the other portions of the brace to evaluate the overall effectiveness of the brace as a whole. Future works may incorporate a fatigue protocol and injured subjects to better determine the effects of the brace. There is still a need for more research on the biomechanical influence of knee braces to develop safer and more effective products.

  8. Biomechanical Analysis of the Effects of Bilateral Hinged Knee Bracing

    PubMed Central

    Lee, Hangil; Ha, Dokyeong; Kang, Yeoun-Seung; Park, Hyung-Soon

    2016-01-01

    This research analyzed the effect of bilateral hinged knee braces on a healthy knee from a biomechanical frame in vivo. This was accomplished by fitting a knee brace with two customized wireless force/torque (F/T) sensors that could readily record force and torque during live motion, while the kinetics at the knee were computed using the inverse dynamics of the motion capture and force plate data. Four tasks to test the brace’s effects were drop vertical jumping, pivoting, stop vertical jumping, and cutting. The results showed that the hinges in the knee brace can absorb up to 18% of the force and 2.7% of the torque at the knee during various athletic motions. Thus, the hinges demonstrated minimal effect in reducing the mechanical load on the knee. There were limitations concerning the consistency of the motions performed by the subjects during the trials and the influence of the other portions of the brace to evaluate the overall effectiveness of the brace as a whole. Future works may incorporate a fatigue protocol and injured subjects to better determine the effects of the brace. There is still a need for more research on the biomechanical influence of knee braces to develop safer and more effective products. PMID:27379233

  9. Functional constraints on adaptive evolution of protein ubiquitination sites

    PubMed Central

    Lu, Liang; Li, Yang; Liu, Zhongyang; Liang, Fengji; Guo, Feifei; Yang, Shuai; Wang, Dan; He, Yangzhige; Xiong, Jianghui; Li, Dong; He, Fuchu

    2017-01-01

    It is still unclear whether there exist functional constraints on the evolution of protein ubiquitination sites, because most previous studies regarded all protein ubiquitination sites as a whole or only focused on limited structural properties. We tried to clarify the relation between functional constraints and ubiquitination sites evolution. We investigated the evolutionary conservation of human ubiquitination sites in a broad evolutionary scale from G. gorilla to S. pombe, and we found that in organisms originated after the divergence of vertebrate, ubiquitination sites are more conserved than their flanking regions, while the opposite tendency is observed before this divergence time. By grouping the ubiquitination proteins into different functional categories, we confirm that many functional constraints like certain molecular functions, protein tissue expression specificity and protein connectivity in protein-protein interaction network enhance the evolutionary conservation of ubiquitination sites. Furthermore, by analyzing the gains of ubiquitination sites at different divergence time and their functional characters, we validate that the emergences of ubiquitination sites at different evolutionary time were also affected by the uncovered functional constraints. The above results suggest that functional constraints on the adaptive evolution of ubiquitination sites increase the opportunity for ubiquitination to synthetically regulate various cellular and developmental processes during evolution. PMID:28054638

  10. Canola Proteins for Human Consumption: Extraction, Profile, and Functional Properties

    PubMed Central

    Tan, Siong H; Mailer, Rodney J; Blanchard, Christopher L; Agboola, Samson O

    2011-01-01

    Canola protein isolate has been suggested as an alternative to other proteins for human food use due to a balanced amino acid profile and potential functional properties such as emulsifying, foaming, and gelling abilities. This is, therefore, a review of the studies on the utilization of canola protein in human food, comprising the extraction processes for protein isolates and fractions, the molecular character of the extracted proteins, as well as their food functional properties. A majority of studies were based on proteins extracted from the meal using alkaline solution, presumably due to its high nitrogen yield, followed by those utilizing salt extraction combined with ultrafiltration. Characteristics of canola and its predecessor rapeseed protein fractions such as nitrogen yield, molecular weight profile, isoelectric point, solubility, and thermal properties have been reported and were found to be largely related to the extraction methods. However, very little research has been carried out on the hydrophobicity and structure profiles of the protein extracts that are highly relevant to a proper understanding of food functional properties. Alkaline extracts were generally not very suitable as functional ingredients and contradictory results about many of the measured properties of canola proteins, especially their emulsification tendencies, have also been documented. Further research into improved extraction methods is recommended, as is a more systematic approach to the measurement of desired food functional properties for valid comparison between studies. PMID:21535703

  11. Protein function prediction using guilty by association from interaction networks.

    PubMed

    Piovesan, Damiano; Giollo, Manuel; Ferrari, Carlo; Tosatto, Silvio C E

    2015-12-01

    Protein function prediction from sequence using the Gene Ontology (GO) classification is useful in many biological problems. It has recently attracted increasing interest, thanks in part to the Critical Assessment of Function Annotation (CAFA) challenge. In this paper, we introduce Guilty by Association on STRING (GAS), a tool to predict protein function exploiting protein-protein interaction networks without sequence similarity. The assumption is that whenever a protein interacts with other proteins, it is part of the same biological process and located in the same cellular compartment. GAS retrieves interaction partners of a query protein from the STRING database and measures enrichment of the associated functional annotations to generate a sorted list of putative functions. A performance evaluation based on CAFA metrics and a fair comparison with optimized BLAST similarity searches is provided. The consensus of GAS and BLAST is shown to improve overall performance. The PPI approach is shown to outperform similarity searches for biological process and cellular compartment GO predictions. Moreover, an analysis of the best practices to exploit protein-protein interaction networks is also provided.

  12. A comparative protein function analysis databaseof different Leishmania strains

    PubMed Central

    Dikhit, Manas Ranjan; Nathasharma, Yangya Prasad; Patel, Lelin; Rana, Sindhu Prava; Sahoo, Ganesh Chandra; Das, Pradeep

    2011-01-01

    A complete understanding of different protein functional families and template information opens new avenues for novel drug development. Protein identification and analysis software performs a central role in the investigation of proteins and leads to the development of refined database for description of proteins of different Leishmania strains. There are certain databases for different strains that lack template information and functional family annotation. Rajendra Memorial Research Institute of Medical Sciences (RMRIMS) has developed a web-based unique database to provide information about functional families of different proteins and its template information in different Leishmania species. Based on the template information users can model the tertiary structure of protein. The database facilitates significant relationship between template information and possible protein functional families assigned to different proteins by SVMProt. This database is designed to provide comprehensive descriptions of certain important proteins found in four different species of Leishmania i.e. L. donovani, L. infantum, L. major and L. braziliensis. A specific characterization information table provides information related to species and specific functional families. This database aims to be a resource for scientists working on proteomics. The database is freely available at http://biomedinformri.org/calp/. PMID:21464840

  13. Roles for text mining in protein function prediction.

    PubMed

    Verspoor, Karin M

    2014-01-01

    The Human Genome Project has provided science with a hugely valuable resource: the blueprints for life; the specification of all of the genes that make up a human. While the genes have all been identified and deciphered, it is proteins that are the workhorses of the human body: they are essential to virtually all cell functions and are the primary mechanism through which biological function is carried out. Hence in order to fully understand what happens at a molecular level in biological organisms, and eventually to enable development of treatments for diseases where some aspect of a biological system goes awry, we must understand the functions of proteins. However, experimental characterization of protein function cannot scale to the vast amount of DNA sequence data now available. Computational protein function prediction has therefore emerged as a problem at the forefront of modern biology (Radivojac et al., Nat Methods 10(13):221-227, 2013).Within the varied approaches to computational protein function prediction that have been explored, there are several that make use of biomedical literature mining. These methods take advantage of information in the published literature to associate specific proteins with specific protein functions. In this chapter, we introduce two main strategies for doing this: association of function terms, represented as Gene Ontology terms (Ashburner et al., Nat Genet 25(1):25-29, 2000), to proteins based on information in published articles, and a paradigm called LEAP-FS (Literature-Enhanced Automated Prediction of Functional Sites) in which literature mining is used to validate the predictions of an orthogonal computational protein function prediction method.

  14. The Structure and Function of Non-Collagenous Bone Proteins

    NASA Technical Reports Server (NTRS)

    Hook, Magnus; McQuillan, David J.

    1997-01-01

    The research done under the cooperative research agreement for the project titled 'The structure and function of non-collagenous bone proteins' represented the first phase of an ongoing program to define the structural and functional relationships of the principal noncollagenous proteins in bone. An ultimate goal of this research is to enable design and execution of useful pharmacological compounds that will have a beneficial effect in treatment of osteoporosis, both land-based and induced by long-duration space travel. The goals of the now complete first phase were as follows: 1. Establish and/or develop powerful recombinant protein expression systems; 2. Develop and refine isolation and purification of recombinant proteins; 3. Express wild-type non-collagenous bone proteins; 4. Express site-specific mutant proteins and domains of wild-type proteins to enhance likelihood of crystal formation for subsequent solution of structure.

  15. Protein Structure and Function Prediction Using I-TASSER.

    PubMed

    Yang, Jianyi; Zhang, Yang

    2015-12-17

    I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely available as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets.

  16. Collective Dynamics Differentiates Functional Divergence in Protein Evolution

    PubMed Central

    Glembo, Tyler J.; Farrell, Daniel W.; Gerek, Z. Nevin; Thorpe, M. F.; Ozkan, S. Banu

    2012-01-01

    Protein evolution is most commonly studied by analyzing related protein sequences and generating ancestral sequences through Bayesian and Maximum Likelihood methods, and/or by resurrecting ancestral proteins in the lab and performing ligand binding studies to determine function. Structural and dynamic evolution have largely been left out of molecular evolution studies. Here we incorporate both structure and dynamics to elucidate the molecular principles behind the divergence in the evolutionary path of the steroid receptor proteins. We determine the likely structure of three evolutionarily diverged ancestral steroid receptor proteins using the Zipping and Assembly Method with FRODA (ZAMF). Our predictions are within ∼2.7 Å all-atom RMSD of the respective crystal structures of the ancestral steroid receptors. Beyond static structure prediction, a particular feature of ZAMF is that it generates protein dynamics information. We investigate the differences in conformational dynamics of diverged proteins by obtaining the most collective motion through essential dynamics. Strikingly, our analysis shows that evolutionarily diverged proteins of the same family do not share the same dynamic subspace, while those sharing the same function are simultaneously clustered together and distant from those, that have functionally diverged. Dynamic analysis also enables those mutations that most affect dynamics to be identified. It correctly predicts all mutations (functional and permissive) necessary to evolve new function and ∼60% of permissive mutations necessary to recover ancestral function. PMID:22479170

  17. Mammalian protein glycosylation--structure versus function.

    PubMed

    Defaus, S; Gupta, P; Andreu, D; Gutiérrez-Gallego, R

    2014-06-21

    Carbohydrates fulfil many common as well as extremely important functions in nature. They show a variety of molecular displays--e.g., free mono-, oligo-, and polysaccharides, glycolipids, proteoglycans, glycoproteins, etc.--with particular roles and localizations in living organisms. Structure-specific peculiarities are so many and diverse that it becomes virtually impossible to cover them all from an analytical perspective. Hence this manuscript, focused on mammalian glycosylation, rather than a complete list of analytical descriptors or recognized functions for carbohydrate structures, comprehensively reviews three central issues in current glycoscience, namely (i) structural analysis of glycoprotein glycans, covering both classical and novel approaches for teasing out the structural puzzle as well as potential pitfalls of these processes; (ii) an overview of functions attributed to carbohydrates, covering from monosaccharide to complex, well-defined epitopes and full glycans, including post-glycosylational modifications, and (iii) recent technical advances allowing structural identification of glycoprotein glycans with simultaneous assignation of biological functions.

  18. Maintenance of native-like protein dynamics may not be required for engineering functional proteins.

    PubMed

    Gobeil, Sophie M C; Clouthier, Christopher M; Park, Jaeok; Gagné, Donald; Berghuis, Albert M; Doucet, Nicolas; Pelletier, Joelle N

    2014-10-23

    Proteins are dynamic systems, and understanding dynamics is critical for fully understanding protein function. Therefore, the question of whether laboratory engineering has an impact on protein dynamics is of general interest. Here, we demonstrate that two homologous, naturally evolved enzymes with high degrees of structural and functional conservation also exhibit conserved dynamics. Their similar set of slow timescale dynamics is highly restricted, consistent with evolutionary conservation of a functionally important feature. However, we also show that dynamics of a laboratory-engineered chimeric enzyme obtained by recombination of the two homologs exhibits striking difference on the millisecond timescale, despite function and high-resolution crystal structure (1.05 Å) being conserved. The laboratory-engineered chimera is thus functionally tolerant to modified dynamics on the timescale of catalytic turnover. Tolerance to dynamic variation implies that maintenance of native-like protein dynamics may not be required when engineering functional proteins.

  19. Understanding the folding-function tradeoff in proteins.

    PubMed

    Gosavi, Shachi

    2013-01-01

    When an amino-acid sequence cannot be optimized for both folding and function, folding can get compromised in favor of function. To understand this tradeoff better, we devise a novel method for extracting the "function-less" folding-motif of a protein fold from a set of structurally similar but functionally diverse proteins. We then obtain the β-trefoil folding-motif, and study its folding using structure-based models and molecular dynamics simulations. CompariA protein sequence serves two purpson with the folding of wild-type β-trefoil proteins shows that function affects folding in two ways: In the slower folding interleukin-1β, binding sites make the fold more complex, increase contact order and slow folding. In the faster folding hisactophilin, residues which could have been part of the folding-motif are used for function. This reduces the density of native contacts in functional regions and increases folding rate. The folding-motif helps identify subtle structural deviations which perturb folding. These may then be used for functional annotation. Further, the folding-motif could potentially be used as a first step in the sequence design of function-less scaffold proteins. Desired function can then be engineered into these scaffolds.

  20. Text Mining Improves Prediction of Protein Functional Sites

    PubMed Central

    Cohn, Judith D.; Ravikumar, Komandur E.

    2012-01-01

    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions. PMID:22393388

  1. Design of protein function leaps by directed domain interface evolution

    PubMed Central

    Huang, Jin; Koide, Akiko; Makabe, Koki; Koide, Shohei

    2008-01-01

    Most natural proteins performing sophisticated tasks contain multiple domains where an active site is located at the domain interface. Comparative structural analyses suggest that major leaps in protein function occur through gene recombination events that connect two or more protein domains to generate a new active site, frequently occurring at the newly created domain interface. However, such functional leaps by combination of unrelated domains have not been directly demonstrated. Here we show that highly specific and complex protein functions can be generated by joining a low-affinity peptide-binding domain with a functionally inert second domain and subsequently optimizing the domain interface. These directed evolution processes dramatically enhanced both affinity and specificity to a level unattainable with a single domain, corresponding to >500-fold and >2,000-fold increases of affinity and specificity, respectively. An x-ray crystal structure revealed that the resulting “affinity clamp” had clamshell architecture as designed, with large additional binding surface contributed by the second domain. The affinity clamps having a single-nanomolar dissociation constant outperformed a monoclonal antibody in immunochemical applications. This work establishes evolutionary paths from isolated domains with primitive function to multidomain proteins with sophisticated function and introduces a new protein-engineering concept that allows for the generation of highly functional affinity reagents to a predefined target. The prevalence and variety of natural interaction domains suggest that numerous new functions can be designed by using directed domain interface evolution. PMID:18445649

  2. Casein kinase 1 controls the activation threshold of an α-arrestin by multisite phosphorylation of the interdomain hinge

    PubMed Central

    Herrador, Antonio; Livas, Daniela; Soletto, Lucía; Becuwe, Michel; Léon, Sébastien; Vincent, Olivier

    2015-01-01

    α-Arrestins play a key role as trafficking adaptors in both yeast and mammals. The yeast Rim8/Art9 α-arrestin mediates the recruitment of endosomal sorting complex required for transport (ESCRT) to the seven-transmembrane protein Rim21 in the ambient pH signaling RIM pathway. ESCRT is believed to function as a signaling platform that enables the proteolytic activation of the Rim101 transcription factor upon external alkalization. Here we provide evidence that the pH signal promotes the stable association of Rim8 with Rim21 at the plasma membrane. We show that Rim8 is phosphorylated in a pH-independent but Rim21-dependent manner by the plasma membrane–associated casein kinase 1 (CK1). We further show that this process involves a cascade of phosphorylation events within the hinge region connecting the arrestin domains. Strikingly, loss of casein kinase 1 activity causes constitutive activation of the RIM pathway, and, accordingly, pH signaling is activated in a phosphodeficient Rim8 mutant and impaired in the corresponding phosphomimetic mutant. Our results indicate that Rim8 phosphorylation prevents its accumulation at the plasma membrane at acidic pH and thereby inhibits RIM signaling. These findings support a model in which CK1-mediated phosphorylation of Rim8 contributes to setting a signaling threshold required to inhibit the RIM pathway at acidic pH. PMID:25851600

  3. Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

    PubMed

    Merabet, Samir; Litim-Mecheri, Isma; Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-10-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.

  4. Protein carbonylation and muscle function in COPD and other conditions.

    PubMed

    Barreiro, Esther

    2014-01-01

    Skeletal muscle, the most abundant tissue in mammals, is essential for any activity in life. Muscle dysfunction is a common systemic manifestation in highly prevalent conditions such as chronic obstructive pulmonary disease (COPD), cancer cachexia, and sepsis. It has a significant impact on exercise tolerance, thus worsening the patients' quality of life and survival. Among several factors, oxidative stress is a major player in the etiology of skeletal muscle dysfunction associated with those conditions. Whereas low levels of oxidants are absolutely required for normal cell adaptation, high levels of reactive oxygen species (ROS) alter the function and structure of molecules such as proteins, DNA, and lipids. Specifically, protein carbonylation, a common variety of protein oxidation, was shown to alter the function of key enzymes and structural proteins involved in muscle contractile performance. Moreover, increased levels of ROS may also activate proteolytic systems, thus leading to enhanced protein breakdown in several models. In the current review, the specific modifications induced by carbonylation in protein structure and function in muscles have been described. Furthermore, the potential role of ROS in the activation of proteolytic systems in skeletal muscles is also discussed. The review summarizes the effects of protein carbonylation on muscles in several models and conditions such as COPD, disuse muscle atrophy, cancer cachexia, sepsis, and aging. Future research should focus on the elucidation of the specific protein sites modified by ROS in these muscles using redox proteomics analyses and on the assessment of the consequent alterations in protein function and stability.

  5. Architecture and Function of Mechanosensitive Membrane Protein Lattices

    NASA Astrophysics Data System (ADS)

    Kahraman, Osman; Koch, Peter D.; Klug, William S.; Haselwandter, Christoph A.

    2016-01-01

    Experiments have revealed that membrane proteins can form two-dimensional clusters with regular translational and orientational protein arrangements, which may allow cells to modulate protein function. However, the physical mechanisms yielding supramolecular organization and collective function of membrane proteins remain largely unknown. Here we show that bilayer-mediated elastic interactions between membrane proteins can yield regular and distinctive lattice architectures of protein clusters, and may provide a link between lattice architecture and lattice function. Using the mechanosensitive channel of large conductance (MscL) as a model system, we obtain relations between the shape of MscL and the supramolecular architecture of MscL lattices. We predict that the tetrameric and pentameric MscL symmetries observed in previous structural studies yield distinct lattice architectures of MscL clusters and that, in turn, these distinct MscL lattice architectures yield distinct lattice activation barriers. Our results suggest general physical mechanisms linking protein symmetry, the lattice architecture of membrane protein clusters, and the collective function of membrane protein lattices.

  6. Targeting functional motifs of a protein family

    NASA Astrophysics Data System (ADS)

    Bhadola, Pradeep; Deo, Nivedita

    2016-10-01

    The structural organization of a protein family is investigated by devising a method based on the random matrix theory (RMT), which uses the physiochemical properties of the amino acid with multiple sequence alignment. A graphical method to represent protein sequences using physiochemical properties is devised that gives a fast, easy, and informative way of comparing the evolutionary distances between protein sequences. A correlation matrix associated with each property is calculated, where the noise reduction and information filtering is done using RMT involving an ensemble of Wishart matrices. The analysis of the eigenvalue statistics of the correlation matrix for the β -lactamase family shows the universal features as observed in the Gaussian orthogonal ensemble (GOE). The property-based approach captures the short- as well as the long-range correlation (approximately following GOE) between the eigenvalues, whereas the previous approach (treating amino acids as characters) gives the usual short-range correlations, while the long-range correlations are the same as that of an uncorrelated series. The distribution of the eigenvector components for the eigenvalues outside the bulk (RMT bound) deviates significantly from RMT observations and contains important information about the system. The information content of each eigenvector of the correlation matrix is quantified by introducing an entropic estimate, which shows that for the β -lactamase family the smallest eigenvectors (low eigenmodes) are highly localized as well as informative. These small eigenvectors when processed gives clusters involving positions that have well-defined biological and structural importance matching with experiments. The approach is crucial for the recognition of structural motifs as shown in β -lactamase (and other families) and selectively identifies the important positions for targets to deactivate (activate) the enzymatic actions.

  7. Targeting functional motifs of a protein family.

    PubMed

    Bhadola, Pradeep; Deo, Nivedita

    2016-10-01

    The structural organization of a protein family is investigated by devising a method based on the random matrix theory (RMT), which uses the physiochemical properties of the amino acid with multiple sequence alignment. A graphical method to represent protein sequences using physiochemical properties is devised that gives a fast, easy, and informative way of comparing the evolutionary distances between protein sequences. A correlation matrix associated with each property is calculated, where the noise reduction and information filtering is done using RMT involving an ensemble of Wishart matrices. The analysis of the eigenvalue statistics of the correlation matrix for the β-lactamase family shows the universal features as observed in the Gaussian orthogonal ensemble (GOE). The property-based approach captures the short- as well as the long-range correlation (approximately following GOE) between the eigenvalues, whereas the previous approach (treating amino acids as characters) gives the usual short-range correlations, while the long-range correlations are the same as that of an uncorrelated series. The distribution of the eigenvector components for the eigenvalues outside the bulk (RMT bound) deviates significantly from RMT observations and contains important information about the system. The information content of each eigenvector of the correlation matrix is quantified by introducing an entropic estimate, which shows that for the β-lactamase family the smallest eigenvectors (low eigenmodes) are highly localized as well as informative. These small eigenvectors when processed gives clusters involving positions that have well-defined biological and structural importance matching with experiments. The approach is crucial for the recognition of structural motifs as shown in β-lactamase (and other families) and selectively identifies the important positions for targets to deactivate (activate) the enzymatic actions.

  8. Accuracy of functional surfaces on comparatively modeled protein structures

    PubMed Central

    Zhao, Jieling; Dundas, Joe; Kachalo, Sema; Ouyang, Zheng; Liang, Jie

    2012-01-01

    Identification and characterization of protein functional surfaces are important for predicting protein function, understanding enzyme mechanism, and docking small compounds to proteins. As the rapid speed of accumulation of protein sequence information far exceeds that of structures, constructing accurate models of protein functional surfaces and identify their key elements become increasingly important. A promising approach is to build comparative models from sequences using known structural templates such as those obtained from structural genome projects. Here we assess how well this approach works in modeling binding surfaces. By systematically building three-dimensional comparative models of proteins using Modeller, we determine how well functional surfaces can be accurately reproduced. We use an alpha shape based pocket algorithm to compute all pockets on the modeled structures, and conduct a large-scale computation of similarity measurements (pocket RMSD and fraction of functional atoms captured) for 26,590 modeled enzyme protein structures. Overall, we find that when the sequence fragment of the binding surfaces has more than 45% identity to that of the tempalte protein, the modeled surfaces have on average an RMSD of 0.5 Å, and contain 48% or more of the binding surface atoms, with nearly all of the important atoms in the signatures of binding pockets captured. PMID:21541664

  9. Self-Assembled Materials Made from Functional Recombinant Proteins.

    PubMed

    Jang, Yeongseon; Champion, Julie A

    2016-10-18

    Proteins are potent molecules that can be used as therapeutics, sensors, and biocatalysts with many advantages over small-molecule counterparts due to the specificity of their activity based on their amino acid sequence and folded three-dimensional structure. However, they also have significant limitations in their stability, localization, and recovery when used in soluble form. These opportunities and challenges have motivated the creation of materials from such functional proteins in order to protect and present them in a way that enhances their function. We have designed functional recombinant fusion proteins capable of self-assembling into materials with unique structures that maintain or improve the functionality of the protein. Fusion of either a functional protein or an assembly domain to a leucine zipper domain makes the materials design strategy modular, based on the high affinity between leucine zippers. The self-assembly domains, including elastin-like polypeptides (ELPs) and defined-sequence random coil polypeptides, can be fused with a leucine zipper motif in order to promote assembly of the fusion proteins into larger structures upon specific stimuli such as temperature and ionic strength. Fusion of other functional domains with the counterpart leucine zipper motif endows the self-assembled materials with protein-specific functions such as fluorescence or catalytic activity. In this Account, we describe several examples of materials assembled from functional fusion proteins as well as the structural characterization, functionality, and understanding of the assembly mechanism. The first example is zipper fusion proteins containing ELPs that assemble into particles when introduced to a model extracellular matrix and subsequently disassemble over time to release the functional protein for drug delivery applications. Under different conditions, the same fusion proteins can self-assemble into hollow vesicles. The vesicles display a functional protein on

  10. Role of the hinge region of glucocorticoid receptor for HEXIM1-mediated transcriptional repression

    SciTech Connect

    Yoshikawa, Noritada; Shimizu, Noriaki; Sano, Motoaki; Ohnuma, Kei; Iwata, Satoshi; Hosono, Osamu; Fukuda, Keiichi; Morimoto, Chikao

    2008-06-20

    We previously reported that HEXIM1 (hexamethylene bisacetamide-inducible protein 1), which suppresses transcription elongation via sequestration of positive transcription elongation factor b (P-TEFb) using 7SK RNA as a scaffold, directly associates with glucocorticoid receptor (GR) to suppress glucocorticoid-inducible gene activation. Here, we revealed that the hinge region of GR is essential for its interaction with HEXIM1, and that oxosteroid receptors including GR show sequence homology in their hinge region and interact with HEXIM1, whereas the other members of nuclear receptors do not. We also showed that HEXIM1 suppresses GR-mediated transcription in two ways: sequestration of P-TEFb by HEXIM1 and direct interaction between GR and HEXIM1. In contrast, peroxisome proliferator-activated receptor {gamma}-dependent gene expression is negatively modulated by HEXIM1 solely via sequestration of P-TEFb. We, therefore, conclude that HEXIM1 may act as a gene-selective transcriptional regulator via direct interaction with certain transcriptional regulators including GR and contribute to fine-tuning of, for example, glucocorticoid-mediated biological responses.

  11. Gene Ontology Function prediction in Mollicutes using Protein-Protein Association Networks

    PubMed Central

    2011-01-01

    Background Many complex systems can be represented and analysed as networks. The recent availability of large-scale datasets, has made it possible to elucidate some of the organisational principles and rules that govern their function, robustness and evolution. However, one of the main limitations in using protein-protein interactions for function prediction is the availability of interaction data, especially for Mollicutes. If we could harness predicted interactions, such as those from a Protein-Protein Association Networks (PPAN), combining several protein-protein network function-inference methods with semantic similarity calculations, the use of protein-protein interactions for functional inference in this species would become more potentially useful. Results In this work we show that using PPAN data combined with other approximations, such as functional module detection, orthology exploitation methods and Gene Ontology (GO)-based information measures helps to predict protein function in Mycoplasma genitalium. Conclusions To our knowledge, the proposed method is the first that combines functional module detection among species, exploiting an orthology procedure and using information theory-based GO semantic similarity in PPAN of the Mycoplasma species. The results of an evaluation show a higher recall than previously reported methods that focused on only one organism network. PMID:21486441

  12. Transposable element fragments in protein-coding regions and their contributions to human functional proteins.

    PubMed

    Wu, Ming; Li, Li; Sun, Zhirong

    2007-10-15

    Transposable elements (TEs) and their contributions to protein-coding regions are of particular interest. Here we searched for TE fragments in Homo sapiens at both the transcript and protein levels. We found evidence in support of TE exonization and its association with alternative splicing. Despite recent findings that long evolutionary times are required to incorporate TE into proteins, we found many functional proteins with translated TE cassettes derived from young TEs. Analyses of two Bcl-family proteins and Alu-encoded segments suggest the coding and functional potential of TE sequences.

  13. Are non-functional, unfolded proteins ('junk proteins') common in the genome?

    PubMed

    Lovell, Simon C

    2003-11-20

    It has recently been shown that many proteins are unfolded in their functional state. In addition, a large number of stretches of protein sequences are predicted to be unfolded. It has been argued that the high frequency of occurrence of these predicted unfolded sequences indicates that the majority of these sequences must also be functional. These sequences tend to be of low complexity. It is well established that certain types of low-complexity sequences are genetically unstable, and are prone to expand in the genome. It is possible, therefore, that in addition to these well-characterised functional unfolded proteins, there are a large number of unfolded proteins that are non-functional. Analogous to 'junk DNA' these protein sequences may arise due to physical characteristics of DNA. Their high frequency may reflect, therefore, the high probability of expansion in the genome. Such 'junk proteins' would not be advantageous, and may be mildly deleterious to the cell.

  14. Elastic properties of protein functionalized nanoporous polymer films

    SciTech Connect

    Charles T. Black; Wang, Haoyu; Akcora, Pinar

    2015-12-16

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that protein functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.

  15. Cellular strategies for regulating functional and nonfunctional protein aggregation.

    PubMed

    Gsponer, Jörg; Babu, M Madan

    2012-11-29

    Growing evidence suggests that aggregation-prone proteins are both harmful and functional for a cell. How do cellular systems balance the detrimental and beneficial effect of protein aggregation? We reveal that aggregation-prone proteins are subject to differential transcriptional, translational, and degradation control compared to nonaggregation-prone proteins, which leads to their decreased synthesis, low abundance, and high turnover. Genetic modulators that enhance the aggregation phenotype are enriched in genes that influence expression homeostasis. Moreover, genes encoding aggregation-prone proteins are more likely to be harmful when overexpressed. The trends are evolutionarily conserved and suggest a strategy whereby cellular mechanisms specifically modulate the availability of aggregation-prone proteins to (1) keep concentrations below the critical ones required for aggregation and (2) shift the equilibrium between the monomeric and oligomeric/aggregate form, as explained by Le Chatelier's principle. This strategy may prevent formation of undesirable aggregates and keep functional assemblies/aggregates under control.

  16. Biochemical functional predictions for protein structures of unknown or uncertain function.

    PubMed

    Mills, Caitlyn L; Beuning, Penny J; Ondrechen, Mary Jo

    2015-01-01

    With the exponential growth in the determination of protein sequences and structures via genome sequencing and structural genomics efforts, there is a growing need for reliable computational methods to determine the biochemical function of these proteins. This paper reviews the efforts to address the challenge of annotating the function at the molecular level of uncharacterized proteins. While sequence- and three-dimensional-structure-based methods for protein function prediction have been reviewed previously, the recent trends in local structure-based methods have received less attention. These local structure-based methods are the primary focus of this review. Computational methods have been developed to predict the residues important for catalysis and the local spatial arrangements of these residues can be used to identify protein function. In addition, the combination of different types of methods can help obtain more information and better predictions of function for proteins of unknown function. Global initiatives, including the Enzyme Function Initiative (EFI), COMputational BRidges to EXperiments (COMBREX), and the Critical Assessment of Function Annotation (CAFA), are evaluating and testing the different approaches to predicting the function of proteins of unknown function. These initiatives and global collaborations will increase the capability and reliability of methods to predict biochemical function computationally and will add substantial value to the current volume of structural genomics data by reducing the number of absent or inaccurate functional annotations.

  17. Biochemical functional predictions for protein structures of unknown or uncertain function

    PubMed Central

    Mills, Caitlyn L.; Beuning, Penny J.; Ondrechen, Mary Jo

    2015-01-01

    With the exponential growth in the determination of protein sequences and structures via genome sequencing and structural genomics efforts, there is a growing need for reliable computational methods to determine the biochemical function of these proteins. This paper reviews the efforts to address the challenge of annotating the function at the molecular level of uncharacterized proteins. While sequence- and three-dimensional-structure-based methods for protein function prediction have been reviewed previously, the recent trends in local structure-based methods have received less attention. These local structure-based methods are the primary focus of this review. Computational methods have been developed to predict the residues important for catalysis and the local spatial arrangements of these residues can be used to identify protein function. In addition, the combination of different types of methods can help obtain more information and better predictions of function for proteins of unknown function. Global initiatives, including the Enzyme Function Initiative (EFI), COMputational BRidges to EXperiments (COMBREX), and the Critical Assessment of Function Annotation (CAFA), are evaluating and testing the different approaches to predicting the function of proteins of unknown function. These initiatives and global collaborations will increase the capability and reliability of methods to predict biochemical function computationally and will add substantial value to the current volume of structural genomics data by reducing the number of absent or inaccurate functional annotations. PMID:25848497

  18. A functional protein retention and release multilayer with high stability

    NASA Astrophysics Data System (ADS)

    Nie, Kun; An, Qi; Zhang, Yihe

    2016-04-01

    Effective and robust interfacial protein retention lies at the heart of the fabrication of protein-based functional interfaces, which is potentially applicable in catalysis, medical therapy, antifouling, and smart devices, but remains challenging due to the sensitive nature of proteins. This study reports a general protein retention strategy to spatial-temporally confine various types of proteins at interfacial regions. The proteins were preserved in mesoporous silica nanoparticles embedded in covalently woven multilayers. It is worth noting that the protein retention strategy effectively preserves the catalytic capabilities of the proteins, and the multilayer structure is robust enough to withstand the bubbling catalytic reactions and could be repeatedly used due to conservation of proteins. The spatiotemporal retention of proteins could be adjusted by varying the number of capping layers. Furthermore, we demonstrate that the protein-loaded interfacial layers could not only be used to construct catalytic-active interfaces, but also be integrated as the power-generating unit to propel a macroscopic floating device.Effective and robust interfacial protein retention lies at the heart of the fabrication of protein-based functional interfaces, which is potentially applicable in catalysis, medical therapy, antifouling, and smart devices, but remains challenging due to the sensitive nature of proteins. This study reports a general protein retention strategy to spatial-temporally confine various types of proteins at interfacial regions. The proteins were preserved in mesoporous silica nanoparticles embedded in covalently woven multilayers. It is worth noting that the protein retention strategy effectively preserves the catalytic capabilities of the proteins, and the multilayer structure is robust enough to withstand the bubbling catalytic reactions and could be repeatedly used due to conservation of proteins. The spatiotemporal retention of proteins could be adjusted by

  19. Evolution: A Guide to Perturb Protein Function and Networks

    PubMed Central

    Lichtarge, Olivier; Wilkins, Angela

    2010-01-01

    Summary Protein interactions give rise to networks that control cell fate in health and disease; selective means to probe these interactions are therefore of wide interest. We discuss here Evolutionary Tracing (ET), a comparative method to identify protein functional sites and to guide experiments that selectively block, recode, or mimic their amino acid determinants. These studies suggest, in principle, a scalable approach to perturb individual links in protein networks. PMID:20444593

  20. Classifying proteins into functional groups based on all-versus-all BLAST of 10 million proteins.

    PubMed

    Kolker, Natali; Higdon, Roger; Broomall, William; Stanberry, Larissa; Welch, Dean; Lu, Wei; Haynes, Winston; Barga, Roger; Kolker, Eugene

    2011-01-01

    To address the monumental challenge of assigning function to millions of sequenced proteins, we completed the first of a kind all-versus-all sequence alignments using BLAST for 9.9 million proteins in the UniRef100 database. Microsoft Windows Azure produced over 3 billion filtered records in 6 days using 475 eight-core virtual machines. Protein classification into functional groups was then performed using Hive and custom jars implemented on top of Apache Hadoop utilizing the MapReduce paradigm. First, using the Clusters of Orthologous Genes (COG) database, a length normalized bit score (LNBS) was determined to be the best similarity measure for classification of proteins. LNBS achieved sensitivity and specificity of 98% each. Second, out of 5.1 million bacterial proteins, about two-thirds were assigned to significantly extended COG groups, encompassing 30 times more assigned proteins. Third, the remaining proteins were classified into protein functional groups using an innovative implementation of a single-linkage algorithm on an in-house Hadoop compute cluster. This implementation significantly reduces the run time for nonindexed queries and optimizes efficient clustering on a large scale. The performance was also verified on Amazon Elastic MapReduce. This clustering assigned nearly 2 million proteins to approximately half a million different functional groups. A similar approach was applied to classify 2.8 million eukaryotic sequences resulting in over 1 million proteins being assign to existing KOG groups and the remainder clustered into 100,000 functional groups.

  1. FunPred-1: protein function prediction from a protein interaction network using neighborhood analysis.

    PubMed

    Saha, Sovan; Chatterjee, Piyali; Basu, Subhadip; Kundu, Mahantapas; Nasipuri, Mita

    2014-12-01

    Proteins are responsible for all biological activities in living organisms. Thanks to genome sequencing projects, large amounts of DNA and protein sequence data are now available, but the biological functions of many proteins are still not annotated in most cases. The unknown function of such non-annotated proteins may be inferred or deduced from their neighbors in a protein interaction network. In this paper, we propose two new methods to predict protein functions based on network neighborhood properties. FunPred 1.1 uses a combination of three simple-yet-effective scoring techniques: the neighborhood ratio, the protein path connectivity and the relative functional similarity. FunPred 1.2 applies a heuristic approach using the edge clustering coefficient to reduce the search space by identifying densely connected neighborhood regions. The overall accuracy achieved in FunPred 1.2 over 8 functional groups involving hetero-interactions in 650 yeast proteins is around 87%, which is higher than the accuracy with FunPred 1.1. It is also higher than the accuracy of many of the state-of-the-art protein function prediction methods described in the literature. The test datasets and the complete source code of the developed software are now freely available at http://code.google.com/p/cmaterbioinfo/ .

  2. Tactile Teaching: Exploring Protein Structure/Function Using Physical Models

    ERIC Educational Resources Information Center

    Herman, Tim; Morris, Jennifer; Colton, Shannon; Batiza, Ann; Patrick, Michael; Franzen, Margaret; Goodsell, David S.

    2006-01-01

    The technology now exists to construct physical models of proteins based on atomic coordinates of solved structures. We review here our recent experiences in using physical models to teach concepts of protein structure and function at both the high school and the undergraduate levels. At the high school level, physical models are used in a…

  3. The HMG-1 box protein family: classification and functional relationships.

    PubMed Central

    Baxevanis, A D; Landsman, D

    1995-01-01

    The abundant and highly-conserved nucleoproteins comprising the high mobility group-1/2 (HMG-1/2) family contains two homologous basic domains of about 75 amino acids. These basic domains, termed HMG-1 boxes, are highly structured and facilitate HMG-DNA interactions. Many proteins that regulate various cellular functions involving DNA binding and whose target DNA sequences share common structural characteristics have been identified as having an HMG-1 box; these proteins include the RNA polymerase I transcription factor UBF, the mammalian testis-determining factor SRY and the mitochondrial transcription factors ABF2 and mtTF1, among others. The sequences of 121 HMG-1 boxes have been compiled and aligned in accordance with thermodynamic results from homology model building (threading) experiments, basing the alignment on structure rather than by using traditional sequence homology methods. The classification of a representative subset of these proteins was then determined using standard least-squares distance methods. The proteins segregate into two groups, the first consisting of HMG-1/2 proteins and the second consisting of proteins containing the HMG-1 box but which are not canonical HMG proteins. The proteins in the second group further segregate based on their function, their ability to bind specific sequences of DNA, or their ability to recognize discrete non-B-DNA structures. The HMG-1 box provides an excellent example of how a specific protein motif, with slight alteration, can be used to recognize DNA in a variety of functional contexts. Images PMID:7784217

  4. Functional synergy of actin filament cross-linking proteins.

    PubMed

    Tseng, Yiider; Schafer, Benjamin W; Almo, Steven C; Wirtz, Denis

    2002-07-12

    The organization of filamentous actin (F-actin) in resilient networks is coordinated by various F-actin cross-linking proteins. The relative tolerance of cells to null mutations of genes that code for a single actin cross-linking protein suggests that the functions of those proteins are highly redundant. This apparent functional redundancy may, however, reflect the limited resolution of available assays in assessing the mechanical role of F-actin cross-linking/bundling proteins. Using reconstituted F-actin networks and rheological methods, we demonstrate how alpha-actinin and fascin, two F-actin cross-linking/bundling proteins that co-localize along stress fibers and in lamellipodia, could synergistically enhance the resilience of F-actin networks in vitro. These two proteins can generate microfilament arrays that "yield" at a strain amplitude that is much larger than each one of the proteins separately. F-actin/alpha-actinin/fascin networks display strain-induced hardening, whereby the network "stiffens" under shear deformations, a phenomenon that is non-existent in F-actin/fascin networks and much weaker in F-actin/alpha-actinin networks. Strain-hardening is further enhanced at high rates of deformation and high concentrations of actin cross-linking proteins. A simplified model suggests that the optimum results of the competition between the increased stiffness of bundles and their decreased density of cross-links. Our studies support a re-evaluation of the notion of functional redundancy among cytoskeletal regulatory proteins.

  5. Discovering Conformational Sub-States Relevant to Protein Function

    PubMed Central

    Ramanathan, Arvind; Savol, Andrej J.; Langmead, Christopher J.; Agarwal, Pratul K.; Chennubhotla, Chakra S.

    2011-01-01

    Background Internal motions enable proteins to explore a range of conformations, even in the vicinity of native state. The role of conformational fluctuations in the designated function of a protein is widely debated. Emerging evidence suggests that sub-groups within the range of conformations (or sub-states) contain properties that may be functionally relevant. However, low populations in these sub-states and the transient nature of conformational transitions between these sub-states present significant challenges for their identification and characterization. Methods and Findings To overcome these challenges we have developed a new computational technique, quasi-anharmonic analysis (QAA). QAA utilizes higher-order statistics of protein motions to identify sub-states in the conformational landscape. Further, the focus on anharmonicity allows identification of conformational fluctuations that enable transitions between sub-states. QAA applied to equilibrium simulations of human ubiquitin and T4 lysozyme reveals functionally relevant sub-states and protein motions involved in molecular recognition. In combination with a reaction pathway sampling method, QAA characterizes conformational sub-states associated with cis/trans peptidyl-prolyl isomerization catalyzed by the enzyme cyclophilin A. In these three proteins, QAA allows identification of conformational sub-states, with critical structural and dynamical features relevant to protein function. Conclusions Overall, QAA provides a novel framework to intuitively understand the biophysical basis of conformational diversity and its relevance to protein function. PMID:21297978

  6. Versatile multi-functionalization of protein nanofibrils for biosensor applications.

    PubMed

    Sasso, L; Suei, S; Domigan, L; Healy, J; Nock, V; Williams, M A K; Gerrard, J A

    2014-01-01

    Protein nanofibrils offer advantages over other nanostructures due to the ease in their self-assembly and the versatility of surface chemistry available. Yet, an efficient and general methodology for their post-assembly functionalization remains a significant challenge. We introduce a generic approach, based on biotinylation and thiolation, for the multi-functionalization of protein nanofibrils self-assembled from whey proteins. Biochemical characterization shows the effects of the functionalization onto the nanofibrils' surface, giving insights into the changes in surface chemistry of the nanostructures. We show how these methods can be used to decorate whey protein nanofibrils with several components such as fluorescent quantum dots, enzymes, and metal nanoparticles. A multi-functionalization approach is used, as a proof of principle, for the development of a glucose biosensor platform, where the protein nanofibrils act as nanoscaffolds for glucose oxidase. Biotinylation is used for enzyme attachment and thiolation for nanoscaffold anchoring onto a gold electrode surface. Characterization via cyclic voltammetry shows an increase in glucose-oxidase mediated current response due to thiol-metal interactions with the gold electrode. The presented approach for protein nanofibril multi-functionalization is novel and has the potential of being applied to other protein nanostructures with similar surface chemistry.

  7. Assessment of protein set coherence using functional annotations

    PubMed Central

    Chagoyen, Monica; Carazo, Jose M; Pascual-Montano, Alberto

    2008-01-01

    Background Analysis of large-scale experimental datasets frequently produces one or more sets of proteins that are subsequently mined for functional interpretation and validation. To this end, a number of computational methods have been devised that rely on the analysis of functional annotations. Although current methods provide valuable information (e.g. significantly enriched annotations, pairwise functional similarities), they do not specifically measure the degree of homogeneity of a protein set. Results In this work we present a method that scores the degree of functional homogeneity, or coherence, of a set of proteins on the basis of the global similarity of their functional annotations. The method uses statistical hypothesis testing to assess the significance of the set in the context of the functional space of a reference set. As such, it can be used as a first step in the validation of sets expected to be homogeneous prior to further functional interpretation. Conclusion We evaluate our method by analysing known biologically relevant sets as well as random ones. The known relevant sets comprise macromolecular complexes, cellular components and pathways described for Saccharomyces cerevisiae, which are mostly significantly coherent. Finally, we illustrate the usefulness of our approach for validating 'functional modules' obtained from computational analysis of protein-protein interaction networks. Matlab code and supplementary data are available at PMID:18937846

  8. Pathways and functions of the Werner syndrome protein.

    PubMed

    Lee, Jae Wan; Harrigan, Jeanine; Opresko, Patricia L; Bohr, Vilhelm A

    2005-01-01

    Mutations in human WRN (also known as RECQ3) gene give rise to a rare autosomal recessive genetic disorder, Werner syndrome (WS). WS is a premature aging disease characterized by predisposition to cancer and early onset of symptoms related to normal aging including osteoporosis, ocular cataracts, graying and loss of hair, diabetes mellitus, arteriosclerosis, and atherosclerosis. This review focuses on the functional role of Werner protein (WRN) in guarding the genetic stability of cells, particularly by playing an integral role in the base excision repair, and at the telomere ends. Furthermore, in-depth biochemical investigations have significantly advanced our understanding of WRN protein regarding its binding partners and the site of protein-protein interaction. The mapping analysis of protein interaction sites in WRN for most of its binding partners have revealed a common site of protein-protein interaction in the RecQ conserved (RQC) region of WRN.

  9. CATH FunFHMMer web server: protein functional annotations using functional family assignments.

    PubMed

    Das, Sayoni; Sillitoe, Ian; Lee, David; Lees, Jonathan G; Dawson, Natalie L; Ward, John; Orengo, Christine A

    2015-07-01

    The widening function annotation gap in protein databases and the increasing number and diversity of the proteins being sequenced presents new challenges to protein function prediction methods. Multidomain proteins complicate the protein sequence-structure-function relationship further as new combinations of domains can expand the functional repertoire, creating new proteins and functions. Here, we present the FunFHMMer web server, which provides Gene Ontology (GO) annotations for query protein sequences based on the functional classification of the domain-based CATH-Gene3D resource. Our server also provides valuable information for the prediction of functional sites. The predictive power of FunFHMMer has been validated on a set of 95 proteins where FunFHMMer performs better than BLAST, Pfam and CDD. Recent validation by an independent international competition ranks FunFHMMer as one of the top function prediction methods in predicting GO annotations for both the Biological Process and Molecular Function Ontology. The FunFHMMer web server is available at http://www.cathdb.info/search/by_funfhmmer.

  10. Function of platelet 47K protein phosphorylation

    SciTech Connect

    Imaoka, T.

    1987-05-01

    To provide insight into the biochemical pathway of platelet activation, they purified both unphosphorylated and phosphorylated P47 to homogeneity from human platelets. This study represents the first demonstration of a change of physiological action of P47 in response to phosphorylation in platelet activation. SVI labelled unphosphorylated P47 had an ability to bind with platelet membrane fraction in the presence of phosphatidylserine. Effect of diacylglycerol was inhibitory in this PS dependent P47 binding with membrane. Unphosphorylated P47 had an inhibitory activity in platelet actin polymerization. Molar ratio to inhibit actin polymerization was 1:8 (P47:actin). These activities were Ca independent. Purified TSP-labelled P47 lost the binding ability with membrane, also the inhibitory activity in actin polymerization. Therefore, they propose the hypothesis that unphosphorylated P47 may loosely bind with the inside of plasma membrane of platelet and inhibit actin polymerization as a modulator, when stimulated, protein Kinase C rapidly phosphorylate P47 and induce the activation of cytoskeletal network and subsequently release reaction.

  11. Using experimental evolution to probe molecular mechanisms of protein function.

    PubMed

    Fischer, Marlies; Kang, Mandeep; Brindle, Nicholas Pj

    2016-02-01

    Directed evolution is a powerful tool for engineering protein function. The process of directed evolution involves iterative rounds of sequence diversification followed by assaying activity of variants and selection. The range of sequence variants and linked activities generated in the course of an evolution are a rich information source for investigating relationships between sequence and function. Key residue positions determining protein function, combinatorial contributors to activity and even potential functional mechanisms have been revealed in directed evolutions. The recent application of high throughput sequencing substantially increases the information that can be retrieved from directed evolution experiments. Combined with computational analysis this additional sequence information has allowed high-resolution analysis of individual residue contributions to activity. These developments promise to significantly enhance the depth of insight that experimental evolution provides into mechanisms of protein function.

  12. Dissecting protein function: an efficient protocol for identifying separation-of-function mutations that encode structurally stable proteins.

    PubMed

    Lubin, Johnathan W; Rao, Timsi; Mandell, Edward K; Wuttke, Deborah S; Lundblad, Victoria

    2013-03-01

    Mutations that confer the loss of a single biochemical property (separation-of-function mutations) can often uncover a previously unknown role for a protein in a particular biological process. However, most mutations are identified based on loss-of-function phenotypes, which cannot differentiate between separation-of-function alleles vs. mutations that encode unstable/unfolded proteins. An alternative approach is to use overexpression dominant-negative (ODN) phenotypes to identify mutant proteins that disrupt function in an otherwise wild-type strain when overexpressed. This is based on the assumption that such mutant proteins retain an overall structure that is comparable to that of the wild-type protein and are able to compete with the endogenous protein (Herskowitz 1987). To test this, the in vivo phenotypes of mutations in the Est3 telomerase subunit from Saccharomyces cerevisiae were compared with the in vitro secondary structure of these mutant proteins as analyzed by circular-dichroism spectroscopy, which demonstrates that ODN is a more sensitive assessment of protein stability than the commonly used method of monitoring protein levels from extracts. Reverse mutagenesis of EST3, which targeted different categories of amino acids, also showed that mutating highly conserved charged residues to the oppositely charged amino acid had an increased likelihood of generating a severely defective est3(-) mutation, which nevertheless encoded a structurally stable protein. These results suggest that charge-swap mutagenesis directed at a limited subset of highly conserved charged residues, combined with ODN screening to eliminate partially unfolded proteins, may provide a widely applicable and efficient strategy for generating separation-of-function mutations.

  13. Topology of Protein Interaction Network Shapes Protein Abundances and Strengths of Their Functional and Nonspecific Interactions

    SciTech Connect

    Maslov, S.; Heo, M.; Shakhnovich, E.

    2011-03-08

    How do living cells achieve sufficient abundances of functional protein complexes while minimizing promiscuous nonfunctional interactions? Here we study this problem using a first-principle model of the cell whose phenotypic traits are directly determined from its genome through biophysical properties of protein structures and binding interactions in a crowded cellular environment. The model cell includes three independent prototypical pathways, whose topologies of protein-protein interaction (PPI) subnetworks are different, but whose contributions to the cell fitness are equal. Model cells evolve through genotypic mutations and phenotypic protein copy number variations. We found a strong relationship between evolved physical-chemical properties of protein interactions and their abundances due to a 'frustration' effect: Strengthening of functional interactions brings about hydrophobic interfaces, which make proteins prone to promiscuous binding. The balancing act is achieved by lowering concentrations of hub proteins while raising solubilities and abundances of functional monomers. On the basis of these principles we generated and analyzed a possible realization of the proteome-wide PPI network in yeast. In this simulation we found that high-throughput affinity capture-mass spectroscopy experiments can detect functional interactions with high fidelity only for high-abundance proteins while missing most interactions for low-abundance proteins.

  14. Surfactant-associated proteins: structure, function and clinical implications.

    PubMed

    Ketko, Anastasia K; Donn, Steven M

    2014-01-01

    Surfactant replacement therapy is now the standard of care for infants with respiratory distress syndrome. As the understanding of surfactant structure and function has evolved, surfactant-associated proteins are now understood to be essential components of pulmonary surfactant. Their structural and functional diversity detail the complexity of their contributions to normal pulmonary physiology, and deficiency states result in significant pathology. Engineering synthetic surfactant protein constructs has been a major research focus for replacement therapies. This review highlights what is known about surfactant proteins and how this knowledge is pivotal for future advancements in treating respiratory distress syndrome as well as other pulmonary diseases characterized by surfactant deficiency or inactivation.

  15. Functional Domain Motions in Proteins on the 1 100 ns Timescale: Comparison of Neutron Spin-Echo Spectroscopy of Phosphoglycerate Kinase with Molecular-Dynamics Simulation

    SciTech Connect

    Smolin, Nikolai; Biehl, R; Kneller, Gerald; Richter, Dieter O; Smith, Jeremy C

    2011-01-01

    Protein function often requires large-scale domain motion. An exciting new development in the experimental characterization of domain motions in proteins is the application of neutron spin-echo spectroscopy (NSE). NSE directly probes coherent (i.e., pair correlated) scattering on the 1 100 ns timescale. Here, we report on all-atom molecular-dynamics (MD) simulation of a protein, phosphoglycerate kinase, from which we calculate small-angle neutron scattering (SANS) and NSE scattering properties. The simulation-derived and experimental-solution SANS results are in excellent agreement. The contributions of translational and rotational whole-molecule diffusion to the simulation-derived NSE and potential problems in their estimation are examined. Principal component analysis identifies types of domain motion that dominate the internal motion's contribution to the NSE signal, with the largest being classic hinge bending. The associated free-energy profiles are quasiharmonic and the frictional properties correspond to highly overdamped motion. The amplitudes of the motions derived by MD are smaller than those derived from the experimental analysis, and possible reasons for this difference are discussed. The MD results confirm that a significant component of the NSE arises from internal dynamics. They also demonstrate that the combination of NSE with MD is potentially useful for determining the forms, potentials of mean force, and time dependence of functional domain motions in proteins.

  16. Predicting protein functions from redundancies in large-scale protein interaction networks

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj Pratim; Liang, Shoudan

    2003-01-01

    Interpreting data from large-scale protein interaction experiments has been a challenging task because of the widespread presence of random false positives. Here, we present a network-based statistical algorithm that overcomes this difficulty and allows us to derive functions of unannotated proteins from large-scale interaction data. Our algorithm uses the insight that if two proteins share significantly larger number of common interaction partners than random, they have close functional associations. Analysis of publicly available data from Saccharomyces cerevisiae reveals >2,800 reliable functional associations, 29% of which involve at least one unannotated protein. By further analyzing these associations, we derive tentative functions for 81 unannotated proteins with high certainty. Our method is not overly sensitive to the false positives present in the data. Even after adding 50% randomly generated interactions to the measured data set, we are able to recover almost all (approximately 89%) of the original associations.

  17. Carotenoid-binding proteins; accessories to carotenoid function.

    PubMed

    Pilbrow, Jodi; Garama, Daniel; Carne, Alan

    2012-01-01

    Understanding of the widespread biological importance of carotenoids is increasing. Accompanying this is the developing recognition that the interaction of carotenoids with other molecules, such as proteins, is also essential. Here the significance of carotenoid-protein interactions with respect to biological function is reviewed for three well characterised carotenoprotein complexes; crustacyanin, the orange carotenoid protein and glutathione-S-transferase P1. In addition a preliminary report is made on the recent partial purification of an echinenone-binding protein extracted from a New Zealand sea urchin, Evechinus chloroticus.

  18. Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response.

    PubMed

    Tong, Kit I; Padmanabhan, Balasundaram; Kobayashi, Akira; Shang, Chengwei; Hirotsu, Yosuke; Yokoyama, Shigeyuki; Yamamoto, Masayuki

    2007-11-01

    Nrf2 is the regulator of the oxidative/electrophilic stress response. Its turnover is maintained by Keap1-mediated proteasomal degradation via a two-site substrate recognition mechanism in which two Nrf2-Keap1 binding sites form a hinge and latch. The E3 ligase adaptor Keap1 recognizes Nrf2 through its conserved ETGE and DLG motifs. In this study, we examined how the ETGE and DLG motifs bind to Keap1 in a very similar fashion but with different binding affinities by comparing the crystal complex of a Keap1-DC domain-DLG peptide with that of a Keap1-DC domain-ETGE peptide. We found that these two motifs interact with the same basic surface of either Keap1-DC domain of the Keap1 homodimer. The DLG motif works to correctly position the lysines within the Nrf2 Neh2 domain for efficient ubiquitination. Together with the results from calorimetric and functional studies, we conclude that different electrostatic potentials primarily define the ETGE and DLG motifs as a hinge and latch that senses the oxidative/electrophilic stress.

  19. Sampling Protein Form and Function with the Atomic Force Microscope*

    PubMed Central

    Baclayon, Marian; Roos, Wouter H.; Wuite, Gijs J. L.

    2010-01-01

    To study the structure, function, and interactions of proteins, a plethora of techniques is available. Many techniques sample such parameters in non-physiological environments (e.g. in air, ice, or vacuum). Atomic force microscopy (AFM), however, is a powerful biophysical technique that can probe these parameters under physiological buffer conditions. With the atomic force microscope operating under such conditions, it is possible to obtain images of biological structures without requiring labeling and to follow dynamic processes in real time. Furthermore, by operating in force spectroscopy mode, it can probe intramolecular interactions and binding strengths. In structural biology, it has proven its ability to image proteins and protein conformational changes at submolecular resolution, and in proteomics, it is developing as a tool to map surface proteomes and to study protein function by force spectroscopy methods. The power of AFM to combine studies of protein form and protein function enables bridging various research fields to come to a comprehensive, molecular level picture of biological processes. We review the use of AFM imaging and force spectroscopy techniques and discuss the major advances of these experiments in further understanding form and function of proteins at the nanoscale in physiologically relevant environments. PMID:20562411

  20. Influence of dietary protein on renal function in dogs.

    PubMed

    Bovée, K C

    1991-11-01

    Two previously published studies in dogs with reduced renal function are reviewed. In the first study, renal function and biochemical responses to dietary changes were studied in four dogs with stable chronic renal failure. The objective was to determine if dogs with moderate stable failure adjust to diets with varied protein and electrolyte content. These dogs were found to have the capacity to adapt to a wide range of dietary protein and electrolyte intake. The only exception was found in dogs fed a reduced-protein diet, which failed to appropriately adjust renal tubular excretion of sodium and phosphate. The only advantage of reduced dietary protein in this study was a reduction in blood urea nitrogen (BUN). Disadvantages of reduced-protein diets were reduced glomerular filtration rate (GFR) and renal plasma flow. In the second study, the hypothesis that large amounts of dietary protein sustain renal hyperfunction and produce progressive glomerulosclerosis in dogs as previously reported in rats was tested. Results failed to find a pattern of deterioration of renal function over 4 y. Light microscopic changes and electron microscopy also failed to find glomerular injury similar to that reported in rodents. These results do not support the hypothesis that feeding a high protein diet had a significant adverse effect on renal function or morphology.

  1. How optimization of potential functions affects protein folding.

    PubMed Central

    Hao, M H; Scheraga, H A

    1996-01-01

    The relationship between the optimization of the potential function and the foldability of theoretical protein models is studied based on investigations of a 27-mer cubic-lattice protein model and a more realistic lattice model for the protein crambin. In both the simple and the more complicated systems, optimization of the energy parameters achieves significant improvements in the statistical-mechanical characteristics of the systems and leads to foldable protein models in simulation experiments. The foldability of the protein models is characterized by their statistical-mechanical properties--e.g., by the density of states and by Monte Carlo folding simulations of the models. With optimized energy parameters, a high level of consistency exists among different interactions in the native structures of the protein models, as revealed by a correlation function between the optimized energy parameters and the native structure of the model proteins. The results of this work are relevant to the design of a general potential function for folding proteins by theoretical simulations. PMID:8643516

  2. Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins.

    PubMed

    Maeda, Yusuke; Kinoshita, Taroh

    2011-10-01

    Glycosylphosphatidylinositol (GPI) is a glycolipid that is covalently attached to proteins as a post-translational modification. Such modification leads to the anchoring of the protein to the outer leaflet of the plasma membrane. Proteins that are decorated with GPIs have unique properties in terms of their physical nature. In particular, these proteins tend to accumulate in lipid rafts, which are critical for the functions and trafficking of GPI-anchored proteins (GPI-APs). Recent studies mainly using mutant cells revealed that various structural remodeling reactions occur to GPIs present in GPI-APs as they are transported from the endoplasmic reticulum to the cell surface. This review examines the recent progress describing the mechanisms of structural remodeling of mammalian GPI-anchors, such as inositol deacylation, glycan remodeling and fatty acid remodeling, with particular focus on their trafficking and functions, as well as the pathogenesis involving GPI-APs and their deficiency.

  3. The APOBEC Protein Family: United by Structure, Divergent in Function.

    PubMed

    Salter, Jason D; Bennett, Ryan P; Smith, Harold C

    2016-07-01

    The APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of proteins have diverse and important functions in human health and disease. These proteins have an intrinsic ability to bind to both RNA and single-stranded (ss) DNA. Both function and tissue-specific expression varies widely for each APOBEC protein. We are beginning to understand that the activity of APOBEC proteins is regulated through genetic alterations, changes in their transcription and mRNA processing, and through their interactions with other macromolecules in the cell. Loss of cellular control of APOBEC activities leads to DNA hypermutation and promiscuous RNA editing associated with the development of cancer or viral drug resistance, underscoring the importance of understanding how APOBEC proteins are regulated.

  4. Structure and Function of Nematode RNA-Binding Proteins

    PubMed Central

    Kaymak, Ebru; Wee, L.M.; Ryder, Sean P.

    2010-01-01

    RNA-binding proteins are critical effectors of gene expression. They guide mRNA localization, translation, and stability, and potentially play a role in regulating mRNA synthesis. The structural basis for RNA recognition by RNA-binding proteins is the key to understanding how they target specific transcripts for regulation. Compared to other metazoans, nematode genomes contain a significant expansion in several RNA-binding protein families, including Pumilio-FBF (PUF), TTP-like zinc finger (TZF), and argonaute-like (AGO) proteins. Genetic data suggest that individual members of each family have distinct functions, presumably due to sequence variations that alter RNA binding specificity or protein interaction partners. In this review, we highlight example structures and identify the variable regions that likely contribute to functional divergence in nematodes. PMID:20418095

  5. The APSES family proteins in fungi: Characterizations, evolution and functions.

    PubMed

    Zhao, Yong; Su, Hao; Zhou, Jing; Feng, Huihua; Zhang, Ke-Qin; Yang, Jinkui

    2015-08-01

    The APSES protein family belongs to transcriptional factors of the basic helix-loop-helix (bHLH) class, the originally described members (APSES: Asm1p, Phd1p, Sok2p, Efg1p and StuAp) are used to designate this group of proteins, and they have been identified as key regulators of fungal development and other biological processes. APSES proteins share a highly conserved DNA-binding domain (APSES domain) of about 100 amino acids, whose central domain is predicted to form a typical bHLH structure. Besides APSES domain, several APSES proteins also contain additional domains, such as KilA-N and ankyrin repeats. In recent years, an increasing number of APSES proteins have been identified from diverse fungi, and they involve in numerous biological processes, such as sporulation, cellular differentiation, mycelial growth, secondary metabolism and virulence. Most fungi, including Aspergillus fumigatus, Aspergillus nidulans, Candida albicans, Fusarium graminearum, and Neurospora crassa, contain five APSES proteins. However, Cryptococcus neoformans only contains two APSES proteins, and Saccharomyces cerevisiae contains six APSES proteins. The phylogenetic analysis showed the APSES domains from different fungi were grouped into four clades (A, B, C and D), which is consistent with the result of homologous alignment of APSES domains using DNAman. The roles of APSES proteins in clade C have been studied in detail, while little is known about the roles of other APSES proteins in clades A, B and D. In this review, the biochemical properties and functional domains of APSES proteins are predicted and compared, and the phylogenetic relationship among APSES proteins from various fungi are analyzed based on the APSES domains. Moreover, the functions of APSES proteins in different fungi are summarized and discussed.

  6. Acyl-CoA binding proteins: multiplicity and function.

    PubMed

    Gossett, R E; Frolov, A A; Roths, J B; Behnke, W D; Kier, A B; Schroeder, F

    1996-09-01

    The physiological role of long-chain fatty acyl-CoA is thought to be primarily in intermediary metabolism of fatty acids. However, recent data show that nM to microM levels of these lipophilic molecules are potent regulators of cell functions in vitro. Although long-chain fatty acyl-CoA are present at several hundred microM concentration in the cell, very little long-chain fatty acyl-CoA actually exists as free or unbound molecules, but rather is bound with high affinity to membrane lipids and/or proteins. Recently, there is growing awareness that cytosol contains nonenzymatic proteins also capable of binding long-chain fatty acyl-CoA with high affinity. Although the identity of the cytosolic long-chain fatty acyl-CoA binding protein(s) has been the subject of some controversy, there is growing evidence that several diverse nonenzymatic cytosolic proteins will bind long-chain fatty acyl-CoA. Not only does acyl-CoA binding protein specifically bind medium and long-chain fatty acyl-CoA (LCFA-CoA), but ubiquitous proteins with multiple ligand specificities such as the fatty acid binding proteins and sterol carrier protein-2 also bind LCFA-CoA with high affinity. The potential of these acyl-CoA binding proteins to influence the level of free LCFA-CoA and thereby the amount of LCFA-CoA bound to regulatory sites in proteins and enzymes is only now being examined in detail. The purpose of this article is to explore the identity, nature, function, and pathobiology of these fascinating newly discovered long-chain fatty acyl-CoA binding proteins. The relative contributions of these three different protein families to LCFA-CoA utilization and/or regulation of cellular activities are the focus of new directions in this field.

  7. Elastic properties of protein functionalized nanoporous polymer films

    DOE PAGES

    Charles T. Black; Wang, Haoyu; Akcora, Pinar

    2015-12-16

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that proteinmore » functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.« less

  8. Determining protein function and interaction from genome analysis

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Thompson, Michael J.; Pellegrini, Matteo; Yeates, Todd O.

    2004-08-03

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  9. Predicting Protein Function via Semantic Integration of Multiple Networks.

    PubMed

    Yu, Guoxian; Fu, Guangyuan; Wang, Jun; Zhu, Hailong

    2016-01-01

    Determining the biological functions of proteins is one of the key challenges in the post-genomic era. The rapidly accumulated large volumes of proteomic and genomic data drives to develop computational models for automatically predicting protein function in large scale. Recent approaches focus on integrating multiple heterogeneous data sources and they often get better results than methods that use single data source alone. In this paper, we investigate how to integrate multiple biological data sources with the biological knowledge, i.e., Gene Ontology (GO), for protein function prediction. We propose a method, called SimNet, to Semantically integrate multiple functional association Networks derived from heterogenous data sources. SimNet firstly utilizes GO annotations of proteins to capture the semantic similarity between proteins and introduces a semantic kernel based on the similarity. Next, SimNet constructs a composite network, obtained as a weighted summation of individual networks, and aligns the network with the kernel to get the weights assigned to individual networks. Then, it applies a network-based classifier on the composite network to predict protein function. Experiment results on heterogenous proteomic data sources of Yeast, Human, Mouse, and Fly show that, SimNet not only achieves better (or comparable) results than other related competitive approaches, but also takes much less time. The Matlab codes of SimNet are available at https://sites.google.com/site/guoxian85/simnet.

  10. Protein Conformational Populations and Functionally Relevant Sub-states

    SciTech Connect

    Agarwal, Pratul K; Burger, Virginia; Savol, Andrej; Ramanathan, Arvind; Chennubhotla, Chakra

    2013-01-01

    Functioning proteins do not remain fixed in a unique structure, but instead they sample a range of conformations facilitated by motions within the protein. Even in the native state, a protein exists as a collection of interconverting conformations driven by thermodynamic fluctuations. Motions on the fast time scale allow a protein to sample conformations in the nearby area of its conformational landscape, while motions on slower time scales give it access to conformations in distal areas of the landscape. Emerging evidence indicates that protein landscapes contain conformational substates with dynamic and structural features that support the designated function of the protein. Nuclear magnetic resonance (NMR) experiments provide information about conformational ensembles of proteins. X-ray crystallography allows researchers to identify the most populated states along the landscape, and computational simulations give atom-level information about the conformational substates of different proteins. This ability to characterize and obtain quantitative information about the conformational substates and the populations of proteins within them is allowing researchers to better understand the relationship between protein structure and dynamics and the mechanisms of protein function. In this Account, we discuss recent developments and challenges in the characterization of functionally relevant conformational populations and substates of proteins. In some enzymes, the sampling of functionally relevant conformational substates is connected to promoting the overall mechanism of catalysis. For example, the conformational landscape of the enzyme dihydrofolate reductase has multiple substates, which facilitate the binding and the release of the cofactor and substrate and catalyze the hydride transfer. For the enzyme cyclophilin A, computational simulations reveal that the long time scale conformational fluctuations enable the enzyme to access conformational substates that allow

  11. The Protein Information Resource: an integrated public resource of functional annotation of proteins

    PubMed Central

    Wu, Cathy H.; Huang, Hongzhan; Arminski, Leslie; Castro-Alvear, Jorge; Chen, Yongxing; Hu, Zhang-Zhi; Ledley, Robert S.; Lewis, Kali C.; Mewes, Hans-Werner; Orcutt, Bruce C.; Suzek, Baris E.; Tsugita, Akira; Vinayaka, C. R.; Yeh, Lai-Su L.; Zhang, Jian; Barker, Winona C.

    2002-01-01

    The Protein Information Resource (PIR) serves as an integrated public resource of functional annotation of protein data to support genomic/proteomic research and scientific discovery. The PIR, in collaboration with the Munich Information Center for Protein Sequences (MIPS) and the Japan International Protein Information Database (JIPID), produces the PIR-International Protein Sequence Database (PSD), the major annotated protein sequence database in the public domain, containing about 250 000 proteins. To improve protein annotation and the coverage of experimentally validated data, a bibliography submission system is developed for scientists to submit, categorize and retrieve literature information. Comprehensive protein information is available from iProClass, which includes family classification at the superfamily, domain and motif levels, structural and functional features of proteins, as well as cross-references to over 40 biological databases. To provide timely and comprehensive protein data with source attribution, we have introduced a non-redundant reference protein database, PIR-NREF. The database consists of about 800 000 proteins collected from PIR-PSD, SWISS-PROT, TrEMBL, GenPept, RefSeq and PDB, with composite protein names and literature data. To promote database interoperability, we provide XML data distribution and open database schema, and adopt common ontologies. The PIR web site (http://pir.georgetown.edu/) features data mining and sequence analysis tools for information retrieval and functional identification of proteins based on both sequence and annotation information. The PIR databases and other files are also available by FTP (ftp://nbrfa.georgetown.edu/pir_databases). PMID:11752247

  12. ESG: extended similarity group method for automated protein function prediction

    PubMed Central

    Chitale, Meghana; Hawkins, Troy; Park, Changsoon; Kihara, Daisuke

    2009-01-01

    Motivation: Importance of accurate automatic protein function prediction is ever increasing in the face of a large number of newly sequenced genomes and proteomics data that are awaiting biological interpretation. Conventional methods have focused on high sequence similarity-based annotation transfer which relies on the concept of homology. However, many cases have been reported that simple transfer of function from top hits of a homology search causes erroneous annotation. New methods are required to handle the sequence similarity in a more robust way to combine together signals from strongly and weakly similar proteins for effectively predicting function for unknown proteins with high reliability. Results: We present the extended similarity group (ESG) method, which performs iterative sequence database searches and annotates a query sequence with Gene Ontology terms. Each annotation is assigned with probability based on its relative similarity score with the multiple-level neighbors in the protein similarity graph. We will depict how the statistical framework of ESG improves the prediction accuracy by iteratively taking into account the neighborhood of query protein in the sequence similarity space. ESG outperforms conventional PSI-BLAST and the protein function prediction (PFP) algorithm. It is found that the iterative search is effective in capturing multiple-domains in a query protein, enabling accurately predicting several functions which originate from different domains. Availability: ESG web server is available for automated protein function prediction at http://dragon.bio.purdue.edu/ESG/ Contact: cspark@cau.ac.kr; dkihara@purdue.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19435743

  13. Structure and function of WD40 domain proteins.

    PubMed

    Xu, Chao; Min, Jinrong

    2011-03-01

    The WD40 domain exhibits a β-propeller architecture, often comprising seven blades. The WD40 domain is one of the most abundant domains and also among the top interacting domains in eukaryotic genomes. In this review, we will discuss the identification, definition and architecture of the WD40 domains. WD40 domain proteins are involved in a large variety of cellular processes, in which WD40 domains function as a protein-protein or protein-DNA interaction platform. WD40 domain mediates molecular recognition events mainly through the smaller top surface, but also through the bottom surface and sides. So far, no WD40 domain has been found to display enzymatic activity. We will also discuss the different binding modes exhibited by the large versatile family of WD40 domain proteins. In the last part of this review, we will discuss how post-translational modifications are recognized by WD40 domain proteins.

  14. Integration of latex protein sequence data provides comprehensive functional overview of latex proteins.

    PubMed

    Cho, Won Kyong; Jo, Yeonhwa; Chu, Hyosub; Park, Sang-Ho; Kim, Kook-Hyung

    2014-03-01

    The laticiferous system is one of the most important conduit systems in higher plants, which produces a milky-like sap known as latex. Latex contains diverse secondary metabolites with various ecological functions. To obtain a comprehensive overview of the latex proteome, we integrated available latex proteins sequences and constructed a comprehensive dataset composed of 1,208 non-redundant latex proteins from 20 various latex-bearing plants. The results of functional analyses revealed that latex proteins are involved in various biological processes, including transcription, translation, protein degradation and the plant response to environmental stimuli. The results of the comparative analysis showed that the functions of the latex proteins are similar to those of phloem, suggesting the functional conservation of plant vascular proteins. The presence of latex proteins in mitochondria and plastids suggests the production of diverse secondary metabolites. Furthermore, using a BLAST search, we identified 854 homologous latex proteins in eight plant species, including three latex-bearing plants, such as papaya, caster bean and cassava, suggesting that latex proteins were newly evolved in vascular plants. Taken together, this study is the largest and most comprehensive in silico analysis of the latex proteome. The results obtained here provide useful resources and information for characterizing the evolution of the latex proteome.

  15. Investigations of the contribution of a putative glycine hinge to ryanodine receptor channel gating.

    PubMed

    Euden, Joanne; Mason, Sammy A; Viero, Cedric; Thomas, N Lowri; Williams, Alan J

    2013-06-07

    Ryanodine receptor channels (RyR) are key components of striated muscle excitation-contraction coupling, and alterations in their function underlie both inherited and acquired disease. A full understanding of the disease process will require a detailed knowledge of the mechanisms and structures involved in RyR function. Unfortunately, high-resolution structural data, such as exist for K(+)-selective channels, are not available for RyR. In the absence of these data, we have used modeling to identify similarities in the structural elements of K(+) channel pore-forming regions and postulated equivalent regions of RyR. This has identified a sequence of residues in the cytosolic cavity-lining transmembrane helix of RyR (G(4864)LIIDA(4869) in RyR2) analogous to the glycine hinge motif present in many K(+) channels. Gating in these K(+) channels can be disrupted by substitution of residues for the hinge glycine. We investigated the involvement of glycine 4864 in RyR2 gating by monitoring properties of recombinant human RyR2 channels in which this glycine is replaced by residues that alter gating in K(+) channels. Our data demonstrate that introducing alanine at position 4864 produces no significant change in RyR2 function. In contrast, function is altered when glycine 4864 is replaced by either valine or proline, the former preventing channel opening and the latter modifying both ion translocation and gating. Our studies reveal novel information on the structural basis of RyR gating, identifying both similarities with, and differences from, K(+) channels. Glycine 4864 is not absolutely required for channel gating, but some flexibility at this point in the cavity-lining transmembrane helix is necessary for normal RyR function.

  16. Structural and functional properties of hemp seed protein products.

    PubMed

    Malomo, Sunday A; He, Rong; Aluko, Rotimi E

    2014-08-01

    The effects of pH and protein concentration on some structural and functional properties of hemp seed protein isolate (HPI, 84.15% protein content) and defatted hemp seed protein meal (HPM, 44.32% protein content) were determined. The HPI had minimum protein solubility (PS) at pH 4.0, which increased as pH was decreased or increased. In contrast, the HPM had minimum PS at pH 3.0, which increased at higher pH values. Gel electrophoresis showed that some of the high molecular weight proteins (>45 kDa) present in HPM were not well extracted by the alkali and were absent or present in low ratio in the HPI polypeptide profile. The amino acid composition showed that the isolation process increased the Arg/Lys ratio of HPI (5.52%) when compared to HPM (3.35%). Intrinsic fluorescence and circular dichroism data indicate that the HPI proteins had a well-defined structure at pH 3.0, which was lost as pH value increased. The differences in structural conformation of HPI at different pH values were reflected as better foaming capacity at pH 3.0 when compared to pH 5.0, 7.0, and 9.0. At 10 and 25 mg/mL protein concentrations, emulsions formed by the HPM had smaller oil droplet sizes (higher quality), when compared to the HPI-formed emulsions. In contrast at 50 mg/mL protein concentration, the HPI-formed emulsions had smaller oil droplet sizes (except at pH 3.0). We conclude that the functional properties of hemp seed protein products are dependent on structural conformations as well as protein concentration and pH.

  17. Distinguishing between biochemical and cellular function: Are there peptide signatures for cellular function of proteins?

    PubMed

    Jain, Shruti; Bhattacharyya, Kausik; Bakshi, Rachit; Narang, Ankita; Brahmachari, Vani

    2017-04-01

    The genome annotation and identification of gene function depends on conserved biochemical activity. However, in the cell, proteins with the same biochemical function can participate in different cellular pathways and cannot complement one another. Similarly, two proteins of very different biochemical functions are put in the same class of cellular function; for example, the classification of a gene as an oncogene or a tumour suppressor gene is not related to its biochemical function, but is related to its cellular function. We have taken an approach to identify peptide signatures for cellular function in proteins with known biochemical function. ATPases as a test case, we classified ATPases (2360 proteins) and kinases (517 proteins) from the human genome into different cellular function categories such as transcriptional, replicative, and chromatin remodelling proteins. Using publicly available tool, MEME, we identify peptide signatures shared among the members of a given category but not between cellular functional categories; for example, no motif sharing is seen between chromatin remodelling and transporter ATPases, similarly between receptor Serine/Threonine Kinase and Receptor Tyrosine Kinase. There are motifs shared within each category with significant E value and high occurrence. This concept of signature for cellular function was applied to developmental regulators, the polycomb and trithorax proteins which led to the prediction of the role of INO80, a chromatin remodelling protein, in development. This has been experimentally validated earlier for its role in homeotic gene regulation and its interaction with regulatory complexes like the Polycomb and Trithorax complex. Proteins 2017; 85:682-693. © 2016 Wiley Periodicals, Inc.

  18. Evolutionary Trace Annotation of Protein Function in the Structural Proteome

    PubMed Central

    Erdin, Serkan; Ward, R. Matthew; Venner, Eric

    2010-01-01

    By design, structural genomics (SG) solves many structures that cannot be assigned function based on homology to known proteins. Alternative function annotation methods are therefore needed and this study focuses on function prediction with three-dimensional (3D) templates: small structural motifs built of just a few functionally critical residues. Although experimentally proven functional residues are scarce, we show here that Evolutionary Trace (ET) rankings of residue importance are sufficient to build 3D templates, match them, and then assign Gene Ontology (GO) functions in enzymes and non-enzymes alike. In a high specificity mode, this Evolutionary Trace Annotation (ETA) method covered half (53%) of the 2384 annotated SG protein controls. Three-quarters (76%) of predictions were both correct and complete. The positive predictive value for all GO depths (all-depth PPV) was 84%, and it rose to 94% over GO depths 1– 3 (depth 3 PPV). In a high sensitivity mode coverage rose significantly (84%) while accuracy fell moderately: 68% of predictions were both correct and complete, all-depth PPV was 75%, and depth 3 PPV was 86%. These data concur with prior mutational experiments showing that ET rank information identifies key functional determinants in proteins. In practice, ETA predicted functions in 42% of 3461 un-annotated SG proteins. In 529 cases—including 280 non-enzymes and 21 for metal ion ligands—the expected accuracy is 84% at any GO depth and 94% down to GO depth 3, while for the remaining 931 the expected accuracies are 60% and 71%, respectively. Thus local structural comparisons of evolutionarily important residues can help decipher protein functions to known reliability levels and without prior assumption on functional mechanisms. ETA is available at http://mammoth.bcm.tmc.edu/eta. PMID:20036248

  19. Roles for scalloped and vestigial in regulating cell affinity and interactions between the wing blade and the wing hinge.

    PubMed

    Liu, X; Grammont, M; Irvine, K D

    2000-12-15

    The scalloped and vestigial genes are both required for the formation of the Drosophila wing, and recent studies have indicated that they can function as a heterodimeric complex to regulate the expression of downstream target genes. We have analyzed the consequences of complete loss of scalloped function, ectopic expression of scalloped, and ectopic expression of vestigial on the development of the Drosophila wing imaginal disc. Clones of cells mutant for a strong allele of scalloped fail to proliferate within the wing pouch, but grow normally in the wing hinge and notum. Cells overexpressing scalloped fail to proliferate in both notal and wing-blade regions of the disc, and this overexpression induces apoptotic cell death. Clones of cells overexpressing vestigial grow smaller or larger than control clones, depending upon their distance from the dorsal-ventral compartment boundary. These studies highlight the importance of correct scalloped and vestigial expression levels to normal wing development. Our studies of vestigial-overexpressing clones also reveal two further aspects of wing development. First, in the hinge region vestigial exerts both a local inhibition and a long-range induction of wingless expression. These and other observations imply that vestigial-expressing cells in the wing blade organize the development of surrounding wing-hinge cells. Second, clones of cells overexpressing vestigial exhibit altered cell affinities. Our analysis of these clones, together with studies of scalloped mutant clones, implies that scalloped- and vestigial-dependent cell adhesion contributes to separation of the wing blade from the wing hinge and to a gradient of cell affinities along the dorsal-ventral axis of the wing.

  20. Proteins: sequence to structure and function--current status.

    PubMed

    Shenoy, Sandhya R; Jayaram, B

    2010-11-01

    In an era that has been dominated by Structural Biology for the last 30-40 years, a dramatic change of focus towards sequence analysis has spurred the advent of the genome projects and the resultant diverging sequence/structure deficit. The central challenge of Computational Structural Biology is therefore to rationalize the mass of sequence information into biochemical and biophysical knowledge and to decipher the structural, functional and evolutionary clues encoded in the language of biological sequences. In investigating the meaning of sequences, two distinct analytical themes have emerged: in the first approach, pattern recognition techniques are used to detect similarity between sequences and hence to infer related structures and functions; in the second ab initio prediction methods are used to deduce 3D structure, and ultimately to infer function, directly from the linear sequence. In this article, we attempt to provide a critical assessment of what one may and may not expect from the biological sequences and to identify major issues yet to be resolved. The presentation is organized under several subtitles like protein sequences, pattern recognition techniques, protein tertiary structure prediction, membrane protein bioinformatics, human proteome, protein-protein interactions, metabolic networks, potential drug targets based on simple sequence properties, disordered proteins, the sequence-structure relationship and chemical logic of protein sequences.

  1. Cellular functions of gamma-secretase-related proteins.

    PubMed

    Haffner, Christof; Haass, Christian

    2006-01-01

    Amyloid-beta peptide (Abeta) is generated by gamma-secretase, a membrane protein complex with an unusual aspartyl protease activity consisting of the four components presenilin, nicastrin, APH-1 and PEN-2. Presenilin is considered the catalytic subunit of this complex since it represents the prototype of the new family of intramembrane-cleaving GxGD-type aspartyl proteases. Recently, five novel members of this family and a nicastrin-like protein were identified. Whereas one of the GxGD-type proteins was shown to be identical with signal peptide peptidase (SPP), the function of the others, now called SPP-like proteins (SPPLs), is not known. We therefore analyzed SPPL2b and SPPL3 and demonstrated that they localize to different subcellular compartments suggesting nonredundant functions. This was supported by different phenotypes obtained in knockdown studies in zebrafish embryos. In addition, these phenotypes could be phenocopied by ectopic expression of putative active site mutants, providing strong evidence for a proteolytic function of SPPL2b and SPPL3. We also identified and characterized the nicastrin-like protein nicalin which, together with the 130-kDa protein NOMO (Nodal modulator), forms a membrane protein complex different from gamma-secretase. We found that during zebrafish embryogenesis this complex is involved in the patterning of the axial mesendoderm, a process controlled by the Nodal signaling pathway.

  2. Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

    PubMed Central

    2015-01-01

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding. PMID:24901212

  3. Gene3D: modelling protein structure, function and evolution.

    PubMed

    Yeats, Corin; Maibaum, Michael; Marsden, Russell; Dibley, Mark; Lee, David; Addou, Sarah; Orengo, Christine A

    2006-01-01

    The Gene3D release 4 database and web portal (http://cathwww.biochem.ucl.ac.uk:8080/Gene3D) provide a combined structural, functional and evolutionary view of the protein world. It is focussed on providing structural annotation for protein sequences without structural representatives--including the complete proteome sets of over 240 different species. The protein sequences have also been clustered into whole-chain families so as to aid functional prediction. The structural annotation is generated using HMM models based on the CATH domain families; CATH is a repository for manually deduced protein domains. Amongst the changes from the last publication are: the addition of over 100 genomes and the UniProt sequence database, domain data from Pfam, metabolic pathway and functional data from COGs, KEGG and GO, and protein-protein interaction data from MINT and BIND. The website has been rebuilt to allow more sophisticated querying and the data returned is presented in a clearer format with greater functionality. Furthermore, all data can be downloaded in a simple XML format, allowing users to carry out complex investigations at their own computers.

  4. Metrnl: a secreted protein with new emerging functions

    PubMed Central

    Zheng, Si-li; Li, Zhi-yong; Song, Jie; Liu, Jian-min; Miao, Chao-yu

    2016-01-01

    Secreted proteins play critical roles in physiological and pathological processes and can be used as biomarkers and therapies for aging and disease. Metrnl is a novel secreted protein homologous to the neurotrophin Metrn. But this protein, unlike Metrn that is mainly expressed in the brain, shows a relatively wider distribution in the body with high levels of expression in white adipose tissue and barrier tissues. This protein plays important roles in neural development, white adipose browning and insulin sensitization. Based on its expression and distinct functions, this protein is also called Cometin, Subfatin and Interleukin 39, which refer to its neurotrophic effect, adipokine function and the possible action as a cytokine, respectively. The spectrum of Metrnl functions remains to be determined, and the mechanisms of Metrnl action need to be elucidated. In this review, we focus on the discovery, structural characteristics, expression pattern and physiological functions of Metrnl, which will assist in developing this protein as a new therapeutic target or agent. PMID:27063217

  5. Computational approaches for inferring the functions of intrinsically disordered proteins

    PubMed Central

    Varadi, Mihaly; Vranken, Wim; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Intrinsically disordered proteins (IDPs) are ubiquitously involved in cellular processes and often implicated in human pathological conditions. The critical biological roles of these proteins, despite not adopting a well-defined fold, encouraged structural biologists to revisit their views on the protein structure-function paradigm. Unfortunately, investigating the characteristics and describing the structural behavior of IDPs is far from trivial, and inferring the function(s) of a disordered protein region remains a major challenge. Computational methods have proven particularly relevant for studying IDPs: on the sequence level their dependence on distinct characteristics determined by the local amino acid context makes sequence-based prediction algorithms viable and reliable tools for large scale analyses, while on the structure level the in silico integration of fundamentally different experimental data types is essential to describe the behavior of a flexible protein chain. Here, we offer an overview of the latest developments and computational techniques that aim to uncover how protein function is connected to intrinsic disorder. PMID:26301226

  6. Biomechanical evaluation of wrist-driven flexor hinge orthosis in persons with spinal cord injury.

    PubMed

    Kang, Yeoun-Seung; Park, Yoon-Ghil; Lee, Bum-Suk; Park, Hyung-Soon

    2013-01-01

    The wrist-driven flexor hinge orthosis (WDFHO) is a device used to restore hand function in persons with tetraplegic spinal cord injury by furnishing three-point prehension. We assessed the effectiveness and biomechanical properties of the WDFHO in 24 persons with cervical 6 or 7 tetraplegia who have severely impaired hand function. This study introduces a mechanical operating model to assess the efficiency of the WDFHO. Experimental results showed that pinch force increased significantly (p < 0.001) after using the WDFHO and was found to positively correlate with the strength of wrist extensor muscles (r = 0.41, p < 0.001). However, when the strength of the wrist extensors acting on the WDFHO was greater, the reciprocal wrist and finger motion that generates three-point prehension was less effective (r = 0.79, p < 0.001). Reliable and valid biomechanical evaluation of the WDFHO could improve our understanding of its biomechanics.

  7. A generalized hinged-magnetodisc model of Jupiter's nightside current sheet

    NASA Technical Reports Server (NTRS)

    Khurana, Krishan K.

    1992-01-01

    A nonaxial hinged magnetodisk model of Jupiter's nightside current sheet is presented. The model organizes the current sheet crossings equally successfully for all three of the spacecraft that have visited the nightside of Jupiter. The model assumes that the hinging is caused by the action of the solar wind forcing on the magnetotail of Jupiter. It is found necessary to include both the hinging of the current sheet and the propagation delay to obtain good fits to the observations.

  8. Structure and functional annotation of hypothetical proteins having putative Rubisco activase function from Vitis vinifera.

    PubMed

    Kumar, Suresh

    2015-01-01

    Rubisco is a very large, complex and one of the most abundant proteins in the world and comprises up to 50% of all soluble protein in plants. The activity of Rubisco, the enzyme that catalyzes CO2 assimilation in photosynthesis, is regulated by Rubisco activase (Rca). In the present study, we searched for hypothetical protein of Vitis vinifera which has putative Rubisco activase function. The Arabidopsis and tobacco Rubisco activase protein sequences were used as seed sequences to search against Vitis vinifera in UniprotKB database. The selected hypothetical proteins of Vitis vinifera were subjected to sequence, structural and functional annotation. Subcellular localization predictions suggested it to be cytoplasmic protein. Homology modelling was used to define the three-dimensional (3D) structure of selected hypothetical proteins of Vitis vinifera. Template search revealed that all the hypothetical proteins share more than 80% sequence identity with structure of green-type Rubisco activase from tobacco, indicating proteins are evolutionary conserved. The homology modelling was generated using SWISS-MODEL. Several quality assessment and validation parameters computed indicated that homology models are reliable. Further, functional annotation through PFAM, CATH, SUPERFAMILY, CDART suggested that selected hypothetical proteins of Vitis vinifera contain ATPase family associated with various cellular activities (AAA) and belong to the AAA+ super family of ring-shaped P-loop containing nucleoside triphosphate hydrolases. This study will lead to research in the optimization of the functionality of Rubisco which has large implication in the improvement of plant productivity and resource use efficiency.

  9. Structural Basis of Protein Kinase C Isoform Function

    PubMed Central

    STEINBERG, SUSAN F.

    2010-01-01

    Protein kinase C (PKC) isoforms comprise a family of lipid-activated enzymes that have been implicated in a wide range of cellular functions. PKCs are modular enzymes comprised of a regulatory domain (that contains the membrane-targeting motifs that respond to lipid cofactors, and in the case of some PKCs calcium) and a relatively conserved catalytic domain that binds ATP and substrates. These enzymes are coexpressed and respond to similar stimulatory agonists in many cell types. However, there is growing evidence that individual PKC isoforms subserve unique (and in some cases opposing) functions in cells, at least in part as a result of isoform-specific subcellular compartmentalization patterns, protein-protein interactions, and posttranslational modifications that influence catalytic function. This review focuses on the structural basis for differences in lipid cofactor responsiveness for individual PKC isoforms, the regulatory phosphorylations that control the normal maturation, activation, signaling function, and downregulation of these enzymes, and the intra-/intermolecular interactions that control PKC isoform activation and subcellular targeting in cells. A detailed understanding of the unique molecular features that underlie isoform-specific posttranslational modification patterns, protein-protein interactions, and subcellular targeting (i.e., that impart functional specificity) should provide the basis for the design of novel PKC isoform-specific activator or inhibitor compounds that can achieve therapeutically useful changes in PKC signaling in cells. PMID:18923184

  10. The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function

    PubMed Central

    Scott, Emily E.; Wolf, C. Roland; Otyepka, Michal; Humphreys, Sara C.; Reed, James R.; Henderson, Colin J.; McLaughlin, Lesley A.; Paloncýová, Markéta; Navrátilová, Veronika; Berka, Karel; Anzenbacher, Pavel; Dahal, Upendra P.; Barnaba, Carlo; Brozik, James A.; Jones, Jeffrey P.; Estrada, D. Fernando; Laurence, Jennifer S.; Park, Ji Won

    2016-01-01

    This symposium summary, sponsored by the ASPET, was held at Experimental Biology 2015 on March 29, 2015, in Boston, Massachusetts. The symposium focused on: 1) the interactions of cytochrome P450s (P450s) with their redox partners; and 2) the role of the lipid membrane in their orientation and stabilization. Two presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b5. First, solution nuclear magnetic resonance was used to compare the protein interactions that facilitated either the hydroxylase or lyase activities of CYP17A1. The lyase interaction was stimulated by the presence of b5 and 17α-hydroxypregnenolone, whereas the hydroxylase reaction was predominant in the absence of b5. The role of b5 was also shown in vivo by selective hepatic knockout of b5 from mice expressing CYP3A4 and CYP2D6; the lack of b5 caused a decrease in the clearance of several substrates. The role of the membrane on P450 orientation was examined using computational methods, showing that the proximal region of the P450 molecule faced the aqueous phase. The distal region, containing the substrate-access channel, was associated with the membrane. The interaction of NADPH-P450 reductase (CPR) with the membrane was also described, showing the ability of CPR to “helicopter” above the membrane. Finally, the endoplasmic reticulum (ER) was shown to be heterogeneous, having ordered membrane regions containing cholesterol and more disordered regions. Interestingly, two closely related P450s, CYP1A1 and CYP1A2, resided in different regions of the ER. The structural characteristics of their localization were examined. These studies emphasize the importance of P450 protein organization to their function. PMID:26851242

  11. A General Method for Insertion of Functional Proteins within Proteins via Combinatorial Selection of Permissive Junctions.

    PubMed

    Peng, Yingjie; Zeng, Wenwen; Ye, Hui; Han, Kyung Ho; Dharmarajan, Venkatasubramanian; Novick, Scott; Wilson, Ian A; Griffin, Patrick R; Friedman, Jeffrey M; Lerner, Richard A

    2015-08-20

    A major goal of modern protein chemistry is to create new proteins with different functions. One approach is to amalgamate secondary and tertiary structures from different proteins. This is difficult for several reasons, not the least of which is the fact that the junctions between secondary and tertiary structures are not degenerate and usually affect the function and folding of the entire complex. Here, we offer a solution to this problem by coupling a large combinatorial library of about 10(7) different N- and C-terminal junctions to a powerful system that selects for function. Using this approach, the entire Leptin and follicle-stimulating hormone (FSH) were inserted into an antibody. Complexes with full retention of function in vivo and in vitro, although rare, were found easily by using an autocrine selection system to search for hormonal activity. Such large diversity systems, when coupled to robust selection systems, should enable construction of novel therapeutic proteins.

  12. Static deformation modeling and analysis of flexure hinges made of a shape memory alloy

    NASA Astrophysics Data System (ADS)

    Du, Zhijiang; Yang, Miao; Dong, Wei; Zhang, Dan

    2016-11-01

    The flexure hinge is a key element in compliant mechanisms to achieve continuous motion; however the motion range of a flexure hinge is severely restricted by the material’s allowable strain. Due to the superelasticity effect, shape memory alloys (SMAs) can undergo much larger strain than other metals; this means that they are excellent candidates for the fabrication of flexure hinges with a large motion range. In this paper, a simple static deformation modeling approach is proposed for a flexure hinge made of a SMA. The superelastic behavior of the SMA is described by Brinson’s constitutive model. The flexure hinge is considered as a non-prismatic cantilever beam associated with geometrical and material nonlinearities. Govern equations of the flexure hinge are derived and solved numerically by applying the nonlinear bending theory of the Euler-Bernoulli beam. Experimental tests show that the proposed modeling approach can predict the deformation of the flexure hinge precisely; the maximum relative error is less than 6.5%. Based on the static deformation model, the motion capacity, the stiffness characteristic and the rotational error of the flexure hinge are also investigated. The results reveal that the flexure hinge made of a SMA has great potential to construct compliant mechanisms with a large motion range.

  13. TIA-1 Is a Functional Prion-Like Protein.

    PubMed

    Rayman, Joseph B; Kandel, Eric R

    2016-12-21

    Prions are self-propagating protein conformations that are traditionally regarded as agents of neurodegenerative disease in animals. However, it has become evident that prion-like aggregation of endogenous proteins can also occur under normal physiological conditions (e.g., during memory storage or activation of the immune response). In this review, we focus on the functional prion-related protein TIA-1, an RNA-binding protein that is involved in multiple aspects of RNA metabolism but is best understood in terms of its role in stress granule assembly during the cellular stress response. We propose that stress granule formation provides a useful conceptual framework with which to address the positive role of TIA-1 prion-like aggregation. Elucidating the function of TIA-1 prion-like aggregation will advance our understanding of how prion-based molecular switches are used in normal physiological settings.

  14. Versatile multi-functionalization of protein nanofibrils for biosensor applications

    NASA Astrophysics Data System (ADS)

    Sasso, L.; Suei, S.; Domigan, L.; Healy, J.; Nock, V.; Williams, M. A. K.; Gerrard, J. A.

    2014-01-01

    Protein nanofibrils offer advantages over other nanostructures due to the ease in their self-assembly and the versatility of surface chemistry available. Yet, an efficient and general methodology for their post-assembly functionalization remains a significant challenge. We introduce a generic approach, based on biotinylation and thiolation, for the multi-functionalization of protein nanofibrils self-assembled from whey proteins. Biochemical characterization shows the effects of the functionalization onto the nanofibrils' surface, giving insights into the changes in surface chemistry of the nanostructures. We show how these methods can be used to decorate whey protein nanofibrils with several components such as fluorescent quantum dots, enzymes, and metal nanoparticles. A multi-functionalization approach is used, as a proof of principle, for the development of a glucose biosensor platform, where the protein nanofibrils act as nanoscaffolds for glucose oxidase. Biotinylation is used for enzyme attachment and thiolation for nanoscaffold anchoring onto a gold electrode surface. Characterization via cyclic voltammetry shows an increase in glucose-oxidase mediated current response due to thiol-metal interactions with the gold electrode. The presented approach for protein nanofibril multi-functionalization is novel and has the potential of being applied to other protein nanostructures with similar surface chemistry.Protein nanofibrils offer advantages over other nanostructures due to the ease in their self-assembly and the versatility of surface chemistry available. Yet, an efficient and general methodology for their post-assembly functionalization remains a significant challenge. We introduce a generic approach, based on biotinylation and thiolation, for the multi-functionalization of protein nanofibrils self-assembled from whey proteins. Biochemical characterization shows the effects of the functionalization onto the nanofibrils' surface, giving insights into the

  15. Yellow Mealworm Protein for Food Purposes - Extraction and Functional Properties.

    PubMed

    Zhao, Xue; Vázquez-Gutiérrez, José Luis; Johansson, Daniel P; Landberg, Rikard; Langton, Maud

    2016-01-01

    A protocol for extraction of yellow mealworm larvae proteins was established, conditions were evaluated and the resulting protein extract was characterised. The freeze-dried yellow mealworm larvae contained around 33% fat, 51% crude protein and 43% true protein on a dry matter basis. The true protein content of the protein extract was about 75%, with an extraction rate of 70% under optimised extraction conditions using 0.25 M NaOH, a NaOH solution:ethanol defatted worm ratio of 15:1 mL/g, 40°C for 1 h and extraction twice. The protein extract was a good source of essential amino acids. The lowest protein solubility in distilled water solution was found between pH 4 and 5, and increased with either increasing or decreasing pH. Lower solubility was observed in 0.5 M NaCl solution compared with distilled water. The rheological tests indicated that temperature, sample concentration, addition of salt and enzyme, incubation time and pH alterations influenced the elastic modulus of yellow mealworm protein extract (YMPE). These results demonstrate that the functional properties of YMPE can be modified for different food applications.

  16. Yellow Mealworm Protein for Food Purposes - Extraction and Functional Properties

    PubMed Central

    Zhao, Xue; Vázquez-Gutiérrez, José Luis; Johansson, Daniel P.; Landberg, Rikard; Langton, Maud

    2016-01-01

    A protocol for extraction of yellow mealworm larvae proteins was established, conditions were evaluated and the resulting protein extract was characterised. The freeze-dried yellow mealworm larvae contained around 33% fat, 51% crude protein and 43% true protein on a dry matter basis. The true protein content of the protein extract was about 75%, with an extraction rate of 70% under optimised extraction conditions using 0.25 M NaOH, a NaOH solution:ethanol defatted worm ratio of 15:1 mL/g, 40°C for 1 h and extraction twice. The protein extract was a good source of essential amino acids. The lowest protein solubility in distilled water solution was found between pH 4 and 5, and increased with either increasing or decreasing pH. Lower solubility was observed in 0.5 M NaCl solution compared with distilled water. The rheological tests indicated that temperature, sample concentration, addition of salt and enzyme, incubation time and pH alterations influenced the elastic modulus of yellow mealworm protein extract (YMPE). These results demonstrate that the functional properties of YMPE can be modified for different food applications. PMID:26840533

  17. The SARS coronavirus nucleocapsid protein--forms and functions.

    PubMed

    Chang, Chung-ke; Hou, Ming-Hon; Chang, Chi-Fon; Hsiao, Chwan-Deng; Huang, Tai-huang

    2014-03-01

    The nucleocapsid phosphoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV N protein) packages the viral genome into a helical ribonucleocapsid (RNP) and plays a fundamental role during viral self-assembly. It is a protein with multifarious activities. In this article we will review our current understanding of the N protein structure and its interaction with nucleic acid. Highlights of the progresses include uncovering the modular organization, determining the structures of the structural domains, realizing the roles of protein disorder in protein-protein and protein-nucleic acid interactions, and visualizing the ribonucleoprotein (RNP) structure inside the virions. It was also demonstrated that N-protein binds to nucleic acid at multiple sites with a coupled-allostery manner. We propose a SARS-CoV RNP model that conforms to existing data and bears resemblance to the existing RNP structures of RNA viruses. The model highlights the critical role of modular organization and intrinsic disorder of the N protein in the formation and functions of the dynamic RNP capsid in RNA viruses. This paper forms part of a symposium in Antiviral Research on "From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses."

  18. Optimizing high performance computing workflow for protein functional annotation.

    PubMed

    Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene

    2014-09-10

    Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data.

  19. Structure and function of contractile proteins in muscle fibres.

    PubMed

    Barden, J A; Bennetts, B H; dos Remedios, C G; Hambly, B D; Miki, M; Phillips, L

    1988-01-01

    The structural unit of muscle has long been defined as the myofibril, a supramolecular assembly of a dozen or more proteins of which two, actin and myosin, comprise more than 75%. In the past 40 years since Albert Szent-Gyorgyi first described the contractile response from the complex of actin and myosin, knowledge of the structure and function of these contractile proteins has been substantially refined. This paper describes these new discoveries and identifies the problems which remain to be elucidated.

  20. [Study of molecular function of proteins in human immunodeficiency virus].

    PubMed

    Fujita, Mikako

    2013-01-01

    Human immunodeficiency virus (HIV) has no more than nine genes expressing approximately twenty proteins. When T lymphocytes and macrophages in a body are infected with HIV, these proteins work in turn at specific time and location, causing acquired immunodeficiency syndrome (AIDS), a disease yet to be overcome. Since the elucidation of molecular mechanism of HIV proteins should lead to remedy of AIDS, the author has been engaged in the study of HIV protein in the past decade. Described herein are viral protein X (Vpx), uniquely found in HIV-2, and its homologous protein Vpr found both in HIV-1 and -2. We found that Vpx enhances genome nuclear import in T lymphocytes, and is critical for reverse transcription of viral RNA in macrophages. This finding on the function in macrophages corrected long-term misleading belief. Furthermore, functional region mapping of Vpx was performed. In 2011, the protein SAMHD1 was identified as the host restriction factor counteracted by Vpx, by foreign researchers. After that, our independent study demonstrated the presence of SAMHD1-independent functions of Vpx in T cells, in addition to its SAMHD1-dependent functions in macrophages. Another topic of this review is Gag protein. Recently, it has reported by overseas researchers that PI(4,5)P2 (one of phosphoinositide) regulates Pr55(Gag) localization and assembly. In this study, we determined the binding affinity between N-terminal MA domain of Pr55(Gag) and various phosphoinositide derivatives using surface plasmon resonance. The results suggested that both negatively charged inositol phosphates and hydrophobic acyl chain are required for the MA binding.

  1. Specific protein homeostatic functions of small heat-shock proteins increase lifespan.

    PubMed

    Vos, Michel J; Carra, Serena; Kanon, Bart; Bosveld, Floris; Klauke, Karin; Sibon, Ody C M; Kampinga, Harm H

    2016-04-01

    During aging, oxidized, misfolded, and aggregated proteins accumulate in cells, while the capacity to deal with protein damage declines severely. To cope with the toxicity of damaged proteins, cells rely on protein quality control networks, in particular proteins belonging to the family of heat-shock proteins (HSPs). As safeguards of the cellular proteome, HSPs assist in protein folding and prevent accumulation of damaged, misfolded proteins. Here, we compared the capacity of all Drosophila melanogaster small HSP family members for their ability to assist in refolding stress-denatured substrates and/or to prevent aggregation of disease-associated misfolded proteins. We identified CG14207 as a novel and potent small HSP member that exclusively assisted in HSP70-dependent refolding of stress-denatured proteins. Furthermore, we report that HSP67BC, which has no role in protein refolding, was the most effective small HSP preventing toxic protein aggregation in an HSP70-independent manner. Importantly, overexpression of both CG14207 and HSP67BC in Drosophila leads to a mild increase in lifespan, demonstrating that increased levels of functionally diverse small HSPs can promote longevity in vivo.

  2. Twenty years of protein interaction studies for biological function deciphering.

    PubMed

    Legrain, Pierre; Rain, Jean-Christophe

    2014-07-31

    Intensive methodological developments and technology innovation have been devoted to protein-protein interaction studies over 20years. Genetic indirect assays and sophisticated large scale biochemical analyses have jointly contributed to the elucidation of protein-protein interactions, still with a lot of drawbacks despite heavy investment in human resources and technologies. With the most recent developments in mass spectrometry and computational tools for studying protein content of complex samples, the initial goal of deciphering molecular bases of biological functions is now within reach. Here, we described the various steps of this process and gave examples of key milestones in this scientific story line. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.

  3. Organizing protein-DNA hybrids as nanostructures with programmed functionalities.

    PubMed

    Teller, Carsten; Willner, Itamar

    2010-12-01

    The structural and functional information encoded in the base sequence of nucleic acids provides a means to organize hybrid protein-DNA nanostructures with pre-designed, programmed functionality. This review discusses the activation of enzyme cascades in supramolecular DNA-protein hybrid structures, the bioelectrocatalytic activation of redox enzymes on DNA scaffolds, and the programmed positioning of enzymes on 1D, 2D and 3D DNA nanostructures. These systems provide starting points towards the design of interconnected enzyme networks. Substantial progress in the tailoring of functional protein-DNA nanostructures has been accomplished in recent years, and advances in this field warrant a comprehensive discussion. The application of these systems for the control of biocatalytic transformations, for amplified biosensing, and for the synthesis of metallic nanostructures are addressed, and future prospects for these systems are highlighted.

  4. Exceptional overproduction of a functional human membrane protein.

    PubMed

    Nyblom, Maria; Oberg, Fredrik; Lindkvist-Petersson, Karin; Hallgren, Karin; Findlay, Heather; Wikström, Jennie; Karlsson, Anders; Hansson, Orjan; Booth, Paula J; Bill, Roslyn M; Neutze, Richard; Hedfalk, Kristina

    2007-11-01

    Eukaryotic--especially human--membrane protein overproduction remains a major challenge in biochemistry. Heterologously overproduced and purified proteins provide a starting point for further biochemical, biophysical and structural studies, and the lack of sufficient quantities of functional membrane proteins is frequently a bottleneck hindering this. Here, we report exceptionally high production levels of a correctly folded and crystallisable recombinant human integral membrane protein in its active form; human aquaporin 1 (hAQP1) has been heterologously produced in the membranes of the methylotrophic yeast Pichia pastoris. After solubilisation and a two step purification procedure, at least 90 mg hAQP1 per liter of culture is obtained. Water channel activity of this purified hAQP1 was verified by reconstitution into proteoliposomes and performing stopped-flow vesicle shrinkage measurements. Mass spectrometry confirmed the identity of hAQP1 in crude membrane preparations, and also from purified protein reconstituted into proteoliposomes. Furthermore, crystallisation screens yielded diffraction quality crystals of untagged recombinant hAQP1. This study illustrates the power of the yeast P. pastoris as a host to produce exceptionally high yields of a functionally active, human integral membrane protein for subsequent functional and structural characterization.

  5. Diversity and functions of protein glycosylation in insects.

    PubMed

    Walski, Tomasz; De Schutter, Kristof; Van Damme, Els J M; Smagghe, Guy

    2017-04-01

    The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes.

  6. Functional conservation of an ancestral Pellino protein in helminth species

    PubMed Central

    Cluxton, Christopher D.; Caffrey, Brian E.; Kinsella, Gemma K.; Moynagh, Paul N.; Fares, Mario A.; Fallon, Padraic G.

    2015-01-01

    The immune system of H. sapiens has innate signaling pathways that arose in ancestral species. This is exemplified by the discovery of the Toll-like receptor (TLR) pathway using free-living model organisms such as Drosophila melanogaster. The TLR pathway is ubiquitous and controls sensitivity to pathogen-associated molecular patterns (PAMPs) in eukaryotes. There is, however, a marked absence of this pathway from the plathyhelminthes, with the exception of the Pellino protein family, which is present in a number of species from this phylum. Helminth Pellino proteins are conserved having high similarity, both at the sequence and predicted structural protein level, with that of human Pellino proteins. Pellino from a model helminth, Schistosoma mansoni Pellino (SmPellino), was shown to bind and poly-ubiquitinate human IRAK-1, displaying E3 ligase activity consistent with its human counterparts. When transfected into human cells SmPellino is functional, interacting with signaling proteins and modulating mammalian signaling pathways. Strict conservation of a protein family in species lacking its niche signalling pathway is rare and provides a platform to examine the ancestral functions of Pellino proteins that may translate into novel mechanisms of immune regulation in humans. PMID:26120048

  7. RACK1, A multifaceted scaffolding protein: Structure and function

    PubMed Central

    2011-01-01

    The Receptor for Activated C Kinase 1 (RACK1) is a member of the tryptophan-aspartate repeat (WD-repeat) family of proteins and shares significant homology to the β subunit of G-proteins (Gβ). RACK1 adopts a seven-bladed β-propeller structure which facilitates protein binding. RACK1 has a significant role to play in shuttling proteins around the cell, anchoring proteins at particular locations and in stabilising protein activity. It interacts with the ribosomal machinery, with several cell surface receptors and with proteins in the nucleus. As a result, RACK1 is a key mediator of various pathways and contributes to numerous aspects of cellular function. Here, we discuss RACK1 gene and structure and its role in specific signaling pathways, and address how posttranslational modifications facilitate subcellular location and translocation of RACK1. This review condenses several recent studies suggesting a role for RACK1 in physiological processes such as development, cell migration, central nervous system (CN) function and circadian rhythm as well as reviewing the role of RACK1 in disease. PMID:21978545

  8. Functionality of alternative protein in gluten-free product development.

    PubMed

    Deora, Navneet Singh; Deswal, Aastha; Mishra, Hari Niwas

    2015-07-01

    Celiac disease is an immune-mediated disease triggered in genetically susceptible individuals by ingested gluten from wheat, rye, barley, and other closely related cereal grains. The current treatment for celiac disease is life-long adherence to a strict gluten-exclusion diet. The replacement of gluten presents a significant technological challenge, as it is an essential structure-building protein, which is necessary for formulating high-quality baked goods. A major limitation in the production of gluten-free products is the lack of protein functionality in non-wheat cereals. Additionally, commercial gluten-free mixes usually contain only carbohydrates, which may significantly limit the amount of protein in the diet. In the recent past, various approaches are attempted to incorporate protein-based ingredients and to modify the functional properties for gluten-free product development. This review aims to the highlight functionality of the alternative protein-based ingredients, which can be utilized for gluten-free product development both functionally as well as nutritionally.

  9. SM30 protein function during sea urchin larval spicule formation.

    PubMed

    Wilt, Fred; Killian, Christopher E; Croker, Lindsay; Hamilton, Patricia

    2013-08-01

    A central issue in better understanding the process of biomineralization is to elucidate the function of occluded matrix proteins present in mineralized tissues. A potent approach to addressing this issue utilizes specific inhibitors of expression of known genes. Application of antisense oligonucleotides that specifically suppress translation of a given mRNA are capable of causing aberrant biomineralization, thereby revealing, at least in part, a likely function of the protein and gene under investigation. We have applied this approach to study the possible function(s) of the SM30 family of proteins, which are found in spicules, teeth, spines, and tests of Strongylocentrotus purpuratus as well as other euechinoid sea urchins. It is possible using the anti-SM30 morpholino-oligonucleotides (MO's) to reduce the level of these proteins to very low levels, yet the development of skeletal spicules in the embryo shows little or no aberration. This surprising result requires re-thinking about the role of these, and possibly other occluded matrix proteins.

  10. Structural and functional analysis of fatty acid-binding proteins

    PubMed Central

    Storch, Judith; McDermott, Lindsay

    2009-01-01

    The mammalian FA-binding proteins (FABPs) bind long-chain FA with high affinity. The large number of FABP types is suggestive of distinct functions in specific tissues. Multiple experimental approaches have shown that individual FABPs possess both unique and overlapping functions, some of which are based on specific elements in the protein structure. Although FA binding affinities for all FABPs tend to correlate directly with FA hydrophobicity, structure-function studies indicate that subtle three-dimensional changes that occur upon ligand binding may promote specific protein-protein or protein-membrane interactions that ultimately determine the function of each FABP. The conformational changes are focused in the FABP helical/portal domain, a region that was identified by in vitro studies to be vital for the FA transport properties of the FABPs. Thus, the FABPs modulate intracellular lipid homeostasis by regulating FA transport in the nuclear and extra-nuclear compartments of the cell; in so doing, they also impact systemic energy homeostasis. PMID:19017610

  11. Refined molecular hinge between allosteric and catalytic domain determines allosteric regulation and stability of fungal chorismate mutase.

    PubMed

    Helmstaedt, Kerstin; Heinrich, Gabriele; Lipscomb, William N; Braus, Gerhard H

    2002-05-14

    The yeast chorismate mutase is regulated by tyrosine as feedback inhibitor and tryptophan as crosspathway activator. The monomer consists of a catalytic and a regulatory domain covalently linked by the loop L220s (212-226), which functions as a molecular hinge. Two monomers form the active dimeric enzyme stabilized by hydrophobic interactions in the vicinity of loop L220s. The role of loop L220s and its environment for enzyme regulation, dimerization, and stability was analyzed. Substitution of yeast loop L220s in place of the homologous loop from the corresponding and similarly regulated Aspergillus enzyme (and the reverse substitution) changed tyrosine inhibition to activation. Yeast loop L220s substituted into the Aspergillus enzyme resulted in a tryptophan-inhibitable enzyme. Monomeric yeast chorismate mutases could be generated by substituting two hydrophobic residues in and near the hinge region. The resulting Thr-212-->Asp-Phe-28-->Asp enzyme was as stable as wild type, but lost allosteric regulation and showed reduced catalytic activity. These results underline the crucial role of this molecular hinge for inhibition, activation, quaternary structure, and stability of yeast chorismate mutase.

  12. A novel alignment mechanism employing orthogonal connected multi-layered flexible hinges for both leveling and centering

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Wang, Hongxi; Gao, Renjing; Hu, Ping; Yang, Yintang

    2012-06-01

    To eliminate the effects of motion coupling for measuring cylindrical work pieces, a novel alignment mechanism integrating functions of both leveling and centering is designed and fabricated by introducing multi-layered orthogonal connected flexible hinges as the key supporting and joining elements. Different from traditional leveling mechanisms with many separate parts fabricated together, all of the flexible hinges were integrated in one three-dimensioned machining part without assembling process, and thus synchronously simplifying the structure and reducing assembly errors. Based on the screw theory, the mathematic model of the proposed alignment mechanism is established for any resolution requirements depending on screw characteristics. A millimeter-sized device is fabricated with the alignment precision of 1.0 μm for centering within the range of ±1 mm and 1 in. for leveling within ±1°. The experiment results are in very close agreement to those obtained by simulation, which validate the feasibility of introducing multi-layered orthogonal flexible hinges in the centering and leveling mechanisms.

  13. A novel alignment mechanism employing orthogonal connected multi-layered flexible hinges for both leveling and centering.

    PubMed

    Zhao, Jian; Wang, Hongxi; Gao, Renjing; Hu, Ping; Yang, Yintang

    2012-06-01

    To eliminate the effects of motion coupling for measuring cylindrical work pieces, a novel alignment mechanism integrating functions of both leveling and centering is designed and fabricated by introducing multi-layered orthogonal connected flexible hinges as the key supporting and joining elements. Different from traditional leveling mechanisms with many separate parts fabricated together, all of the flexible hinges were integrated in one three-dimensioned machining part without assembling process, and thus synchronously simplifying the structure and reducing assembly errors. Based on the screw theory, the mathematic model of the proposed alignment mechanism is established for any resolution requirements depending on screw characteristics. A millimeter-sized device is fabricated with the alignment precision of 1.0 μm for centering within the range of ±1 mm and 1 in. for leveling within ±1°. The experiment results are in very close agreement to those obtained by simulation, which validate the feasibility of introducing multi-layered orthogonal flexible hinges in the centering and leveling mechanisms.

  14. Protein-protein interactions in intracellular Ca2+-release channel function.

    PubMed Central

    MacKrill, J J

    1999-01-01

    Release of Ca2+ ions from intracellular stores can occur via two classes of Ca2+-release channel (CRC) protein, the inositol 1,4, 5-trisphosphate receptors (InsP3Rs) and the ryanodine receptors (RyRs). Multiple isoforms and subtypes of each CRC class display distinct but overlapping distributions within mammalian tissues. InsP3Rs and RyRs interact with a plethora of accessory proteins which modulate the activity of their intrinsic channels. Although many aspects of CRC structure and function have been reviewed in recent years, the properties of proteins with which they interact has not been comprehensively surveyed, despite extensive current research on the roles of these modulators. The aim of this article is to review the regulation of CRC activity by accessory proteins and, wherever possible, to outline the structural details of such interactions. The CRCs are large transmembrane proteins, with the bulk of their structure located cytoplasmically. Intra- and inter-complex protein-protein interactions between these cytoplasmic domains also regulate CRC function. Some accessory proteins modulate channel activity of all CRC subtypes characterized, whereas other have class- or even isoform-specific effects. Certain accessory proteins exert both direct and indirect forms of regulation on CRCs, occasionally with opposing effects. Others are themselves modulated by changes in Ca2+ concentration, thereby participating in feedback mechanisms acting on InsP3R and RyR activity. CRCs are therefore capable of integrating numerous signalling events within a cell by virtue of such protein-protein interactions. Consequently, the functional properties of InsP3Rs and RyRs within particular cells and subcellular domains are 'customized' by the accessory proteins present. PMID:9895277

  15. Optimizing an emperical scoring function for transmembrane protein structure determination.

    SciTech Connect

    Young, Malin M.; Sale, Kenneth L.; Gray, Genetha Anne; Kolda, Tamara Gibson

    2003-10-01

    We examine the problem of transmembrane protein structure determination. Like many other questions that arise in biological research, this problem cannot be addressed by traditional laboratory experimentation alone. An approach that integrates experiment and computation is required. We investigate a procedure which states the transmembrane protein structure determination problem as a bound constrained optimization problem using a special empirical scoring function, called Bundler, as the objective function. In this paper, we describe the optimization problem and some of its mathematical properties. We compare and contrast results obtained using two different derivative free optimization algorithms.

  16. SitesIdentify: a protein functional site prediction tool

    PubMed Central

    2009-01-01

    Background The rate of protein structures being deposited in the Protein Data Bank surpasses the capacity to experimentally characterise them and therefore computational methods to analyse these structures have become increasingly important. Identifying the region of the protein most likely to be involved in function is useful in order to gain information about its potential role. There are many available approaches to predict functional site, but many are not made available via a publicly-accessible application. Results Here we present a functional site prediction tool (SitesIdentify), based on combining sequence conservation information with geometry-based cleft identification, that is freely available via a web-server. We have shown that SitesIdentify compares favourably to other functional site prediction tools in a comparison of seven methods on a non-redundant set of 237 enzymes with annotated active sites. Conclusion SitesIdentify is able to produce comparable accuracy in predicting functional sites to its closest available counterpart, but in addition achieves improved accuracy for proteins with few characterised homologues. SitesIdentify is available via a webserver at http://www.manchester.ac.uk/bioinformatics/sitesidentify/ PMID:19922660

  17. Comparison of functional properties of 34% and 80% whey protein and milk serum protein concentrates.

    PubMed

    Luck, P J; Vardhanabhuti, B; Yong, Y H; Laundon, T; Barbano, D M; Foegeding, E A

    2013-09-01

    This study compared the functional properties of serum protein concentrate (SPC) with whey protein concentrate (WPC) made from the same milk and with commercial WPC. The experimental SPC and WPC were produced at 34% or 80% protein from the same lot of milk. Protein contents of WPC and SPC were comparable; however, fat content was much lower in SPC compared with WPC and commercial WPC. The effect of drying methods (freeze vs. spray drying) was studied for 34% WPC and SPC. Few differences due to drying method were found in turbidity and gelation; however, drying method made a large difference in foam formation for WPC but not SPC. Between pH 3 and 7, SPC was found to have lower turbidity than WPC; however, protein solubility was similar between SPC and WPC. Foaming and gelation properties of SPC were better than those of WPC. Differences in functional properties may be explained by differences in composition and extent of denaturation or aggregation.

  18. Bactericidal/permeability increasing protein: a multifaceted protein with functions beyond LPS neutralization.

    PubMed

    Balakrishnan, Arjun; Marathe, Sandhya A; Joglekar, Madhura; Chakravortty, Dipshikha

    2013-01-01

    Bactericidal permeability increasing protein (BPI), a 55-60 kDa protein, first reported in 1975, has gone a long way as a protein with multifunctional roles. Its classical role in neutralizing endotoxin (LPS) raised high hopes among septic shock patients. Today, BPI is not just a LPS-neutralizing protein, but a protein with diverse functions. These functions can be as varied as inhibition of endothelial cell growth and inhibition of dendritic cell maturation, or as an anti-angiogenic, chemoattractant or opsonization agent. Though the literature available is extremely limited, it is fascinating to look into how BPI is gaining major importance as a signalling molecule. In this review, we briefly summarize the recent research focused on the multiple roles of BPI and its use as a therapeutic.

  19. Specific in vivo knockdown of protein function by intrabodies

    PubMed Central

    Marschall, Andrea LJ; Dübel, Stefan; Böldicke, Thomas

    2015-01-01

    Intracellular antibodies (intrabodies) are recombinant antibody fragments that bind to target proteins expressed inside of the same living cell producing the antibodies. The molecules are commonly used to study the function of the target proteins (i.e., their antigens). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals, and complements knockdown techniques such as RNAi, miRNA and small molecule inhibitors, by-passing various limitations and disadvantages of these methods. The advantages of intrabodies include very high specificity for the target, the possibility to knock down several protein isoforms by one intrabody and targeting of specific splice variants or even post-translational modifications. Different types of intrabodies must be designed to target proteins at different locations, typically either in the cytoplasm, in the nucleus or in the endoplasmic reticulum (ER). Most straightforward is the use of intrabodies retained in the ER (ER intrabodies) to knock down the function of proteins passing the ER, which disturbs the function of members of the membrane or plasma proteomes. More effort is needed to functionally knock down cytoplasmic or nuclear proteins because in this case antibodies need to provide an inhibitory effect and must be able to fold in the reducing milieu of the cytoplasm. In this review, we present a broad overview of intrabody technology, as well as applications both of ER and cytoplasmic intrabodies, which have yielded valuable insights in the biology of many targets relevant for drug development, including α-synuclein, TAU, BCR-ABL, ErbB-2, EGFR, HIV gp120, CCR5, IL-2, IL-6, β-amyloid protein and p75NTR. Strategies for the generation of intrabodies and various designs of their applications are also reviewed. PMID:26252565

  20. Using computational biophysics to understand protein evolution and function

    NASA Astrophysics Data System (ADS)

    Ytreberg, F. Marty

    2010-10-01

    Understanding how proteins evolve and function is vital for human health (e.g., developing better drugs, predicting the outbreak of disease, etc.). In spite of its importance, little is known about the underlying molecular mechanisms behind these biological processes. Computational biophysics has emerged as a useful tool in this area due to its unique ability to obtain a detailed, atomistic view of proteins and how they interact. I will give two examples from our studies where computational biophysics has provided valuable insight: (i) Protein evolution in viruses. Our results suggest that the amino acid changes that occur during high temperature evolution of a virus decrease the binding free energy of the capsid, i.e., these changes increase capsid stability. (ii) Determining realistic structural ensembles for intrinsically disordered proteins. Most methods for determining protein structure rely on the protein folding into a single conformation, and thus are not suitable for disordered proteins. I will describe a new approach that combines experiment and simulation to generate structures for disordered proteins.

  1. A structurally variable hinged tetrahedron framework from DNA origami.

    PubMed

    Smith, David M; Schüller, Verena; Forthmann, Carsten; Schreiber, Robert; Tinnefeld, Philip; Liedl, Tim

    2011-01-01

    Nanometer-sized polyhedral wire-frame objects hold a wide range of potential applications both as structural scaffolds as well as a basis for synthetic nanocontainers. The utilization of DNA as basic building blocks for such structures allows the exploitation of bottom-up self-assembly in order to achieve molecular programmability through the pairing of complementary bases. In this work, we report on a hollow but rigid tetrahedron framework of 75 nm strut length constructed with the DNA origami method. Flexible hinges at each of their four joints provide a means for structural variability of the object. Through the opening of gaps along the struts, four variants can be created as confirmed by both gel electrophoresis and direct imaging techniques. The intrinsic site addressability provided by this technique allows the unique targeted attachment of dye and/or linker molecules at any point on the structure's surface, which we prove through the superresolution fluorescence microscopy technique DNA PAINT.

  2. Structural and Functional Characterization of the VQ Protein Family and VQ Protein Variants from Soybean

    PubMed Central

    Zhou, Yuan; Yang, Yan; Zhou, Xinjian; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2016-01-01

    Proteins containing the FxxxVQxhTG or VQ motif interact with WRKY transcription factors. Although VQ proteins have been reported in several plants, knowledge about their structures, functions and evolution is still very limited. Here, we report structural and functional analysis of the VQ protein family from soybean. Like Arabidopsis homologues, soybean VQ proteins bind only Group I and IIc WRKY proteins and a substantial number of their genes are responsive to stress-associated phytohormones. Overexpression of some soybean VQ genes in Arabidopsis had strong effects on plant growth, development, disease resistance and heat tolerance. Phylogenetic analysis, sequence alignment and site-directed mutagenesis revealed that the region immediately upstream of the FxxxVQxhTG motif also affects binding to WRKY proteins. Consistent with a larger WRKY-binding VQ domain, soybean VQ22 protein from cultivated soybean contains a 4-amino acid deletion in the region preceding its VQ motif that completely abolishes its binding to WRKY proteins. By contrast, the 4-amino acid deletion is absent in the VQ22 protein from wild soybean species (Glycine soja). Overexpression of wild soybean VQ22 in cultivated soybean inhibited growth, particularly after cold treatment. Thus, the mutation of soybean VQ22 is associated with advantageous phenotypes and may have been positively selected during evolution. PMID:27708406

  3. Purification of IFT particle proteins and preparation of recombinant proteins for structural and functional analysis.

    PubMed

    Behal, Robert H; Betleja, Ewelina; Cole, Douglas G

    2009-01-01

    Intraflagellar transport (IFT) is characterized by a robust bidirectional movement of large proteinaceous particles along the length of eukaryotic cilia and flagella. Essential for the assembly and function of the organelle, IFT is believed to transport a large array of ciliary components in and out of the organelle. Biochemical analysis of the proteins involved with this transport has been largely dependent on the ability to isolate suitable quantities of intact cilia or flagella. One model organism, Chlamydomonas reinhardtii, has proven to be especially well-suited for such endeavors. Indeed, many of the IFT particle proteins were initially identified through biochemical analysis of green algae. This chapter describes some of the most effective methods for the purification of IFT particle proteins from Chlamydomonas flagella. This chapter also describes complementary approaches where recombinant IFT proteins are generated with affinity tags that allow rapid and specific purification. The recombinant proteins can be used to analyze protein-protein interactions and can be directly delivered to mutant cells to analyze functional domains. Although the techniques described here are focused entirely on Chlamydomonas IFT proteins, the approaches, especially regarding recombinant proteins, should be applicable to the study of IFT machinery in other model organisms.

  4. A combinatorial scoring function for protein-RNA docking.

    PubMed

    Zhang, Zhao; Lu, Lin; Zhang, Yue; Hua Li, Chun; Wang, Cun Xin; Zhang, Xiao Yi; Tan, Jian Jun

    2017-04-01

    Protein-RNA docking is still an open question. One of the main challenges is to develop an effective scoring function that can discriminate near-native structures from the incorrect ones. To solve the problem, we have constructed a knowledge-based residue-nucleotide pairwise potential with secondary structure information considered for nonribosomal protein-RNA docking. Here we developed a weighted combined scoring function RpveScore that consists of the pairwise potential and six physics-based energy terms. The weights were optimized using the multiple linear regression method by fitting the scoring function to L_rmsd for the bound docking decoys from Benchmark II. The scoring functions were tested on 35 unbound docking cases. The results show that the scoring function RpveScore including all terms performs best. Also RpveScore was compared with the statistical mechanics-based method derived potential ITScore-PR, and the united atom-based statistical potentials QUASI-RNP and DARS-RNP. The success rate of RpveScore is 71.6% for the top 1000 structures and the number of cases where a near-native structure is ranked in top 30 is 25 out of 35 cases. For 32 systems (91.4%), RpveScore can find the binding mode in top 5 that has no lower than 50% native interface residues on protein and nucleotides on RNA. Additionally, it was found that the long-range electrostatic attractive energy plays an important role in distinguishing near-native structures from the incorrect ones. This work can be helpful for the development of protein-RNA docking methods and for the understanding of protein-RNA interactions. RpveScore program is available to the public at http://life.bjut.edu.cn/kxyj/kycg/2017116/14845362285362368_1.html Proteins 2017; 85:741-752. © 2016 Wiley Periodicals, Inc.

  5. Deciphering fine molecular details of proteins' structure and function with a Protein Surface Topography (PST) method.

    PubMed

    Koromyslova, Anna D; Chugunov, Anton O; Efremov, Roman G

    2014-04-28

    Molecular surfaces are the key players in biomolecular recognition and interactions. Nowadays, it is trivial to visualize a molecular surface and surface-distributed properties in three-dimensional space. However, such a representation trends to be biased and ambiguous in case of thorough analysis. We present a new method to create 2D spherical projection maps of entire protein surfaces and manipulate with them--protein surface topography (PST). It permits visualization and thoughtful analysis of surface properties. PST helps to easily portray conformational transitions, analyze proteins' properties and their dynamic behavior, improve docking performance, and reveal common patterns and dissimilarities in molecular surfaces of related bioactive peptides. This paper describes basic usage of PST with an example of small G-proteins conformational transitions, mapping of caspase-1 intersubunit interface, and intrinsic "complementarity" in the conotoxin-acetylcholine binding protein complex. We suggest that PST is a beneficial approach for structure-function studies of bioactive peptides and small proteins.

  6. Functional and Structural Analysis of the Conserved EFhd2 Protein

    PubMed Central

    Acosta, Yancy Ferrer; Rodríguez Cruz, Eva N.; Vaquer, Ana del C.; Vega, Irving E.

    2013-01-01

    EFhd2 is a novel protein conserved from C. elegans to H. sapiens. This novel protein was originally identified in cells of the immune and central nervous systems. However, it is most abundant in the central nervous system, where it has been found associated with pathological forms of the microtubule-associated protein tau. The physiological or pathological roles of EFhd2 are poorly understood. In this study, a functional and structural analysis was carried to characterize the molecular requirements for EFhd2’s calcium binding activity. The results showed that mutations of a conserved aspartate on either EF-hand motif disrupted the calcium binding activity, indicating that these motifs work in pair as a functional calcium binding domain. Furthermore, characterization of an identified single-nucleotide polymorphisms (SNP) that introduced a missense mutation indicates the importance of a conserved phenylalanine on EFhd2 calcium binding activity. Structural analysis revealed that EFhd2 is predominantly composed of alpha helix and random coil structures and that this novel protein is thermostable. EFhd2’s thermo stability depends on its N-terminus. In the absence of the N-terminus, calcium binding restored EFhd2’s thermal stability. Overall, these studies contribute to our understanding on EFhd2 functional and structural properties, and introduce it into the family of canonical EF-hand domain containing proteins. PMID:22973849

  7. Identification of giant Mimivirus protein functions using RNA interference.

    PubMed

    Sobhy, Haitham; Scola, Bernard La; Pagnier, Isabelle; Raoult, Didier; Colson, Philippe

    2015-01-01

    Genomic analysis of giant viruses, such as Mimivirus, has revealed that more than half of the putative genes have no known functions (ORFans). We knocked down Mimivirus genes using short interfering RNA as a proof of concept to determine the functions of giant virus ORFans. As fibers are easy to observe, we targeted a gene encoding a protein absent in a Mimivirus mutant devoid of fibers as well as three genes encoding products identified in a protein concentrate of fibers, including one ORFan and one gene of unknown function. We found that knocking down these four genes was associated with depletion or modification of the fibers. Our strategy of silencing ORFan genes in giant viruses opens a way to identify its complete gene repertoire and may clarify the role of these genes, differentiating between junk DNA and truly used genes. Using this strategy, we were able to annotate four proteins in Mimivirus and 30 homologous proteins in other giant viruses. In addition, we were able to annotate >500 proteins from cellular organisms and 100 from metagenomic databases.

  8. Architecture and function of IFT complex proteins in ciliogenesis.

    PubMed

    Taschner, Michael; Bhogaraju, Sagar; Lorentzen, Esben

    2012-02-01

    Cilia and flagella (interchangeable terms) are evolutionarily conserved organelles found on many different types of eukaryotic cells where they fulfill important functions in motility, sensory reception and signaling. The process of Intraflagellar Transport (IFT) is of central importance for both the assembly and maintenance of cilia, as it delivers building blocks from their site of synthesis in the cell body to the ciliary assembly site at the tip of the cilium. A key player in this process is the multi-subunit IFT-complex, which acts as an adapter between the motor proteins required for movement and the ciliary cargo proteins. Since the discovery of IFT more than 15 years ago, considerable effort has gone into the purification and characterization of the IFT complex proteins. Even though this has led to very interesting findings and has greatly improved our knowledge of the IFT process, we still know very little about the overall architecture of the IFT complex and the specific functions of the various subunits. In this review we will give an update on the knowledge of the structure and function of individual IFT proteins, and the way these proteins interact to form the complex that facilitates IFT.

  9. From protein structure to function via single crystal optical spectroscopy

    PubMed Central

    Ronda, Luca; Bruno, Stefano; Bettati, Stefano; Storici, Paola; Mozzarelli, Andrea

    2015-01-01

    The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic “artifacts,” including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5′-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms. PMID:25988179

  10. Identification of giant Mimivirus protein functions using RNA interference

    PubMed Central

    Sobhy, Haitham; Scola, Bernard La; Pagnier, Isabelle; Raoult, Didier; Colson, Philippe

    2015-01-01

    Genomic analysis of giant viruses, such as Mimivirus, has revealed that more than half of the putative genes have no known functions (ORFans). We knocked down Mimivirus genes using short interfering RNA as a proof of concept to determine the functions of giant virus ORFans. As fibers are easy to observe, we targeted a gene encoding a protein absent in a Mimivirus mutant devoid of fibers as well as three genes encoding products identified in a protein concentrate of fibers, including one ORFan and one gene of unknown function. We found that knocking down these four genes was associated with depletion or modification of the fibers. Our strategy of silencing ORFan genes in giant viruses opens a way to identify its complete gene repertoire and may clarify the role of these genes, differentiating between junk DNA and truly used genes. Using this strategy, we were able to annotate four proteins in Mimivirus and 30 homologous proteins in other giant viruses. In addition, we were able to annotate >500 proteins from cellular organisms and 100 from metagenomic databases. PMID:25972846

  11. Protein engineering of Cas9 for enhanced function.

    PubMed

    Oakes, Benjamin L; Nadler, Dana C; Savage, David F

    2014-01-01

    CRISPR/Cas systems act to protect the cell from invading nucleic acids in many bacteria and archaea. The bacterial immune protein Cas9 is a component of one of these CRISPR/Cas systems and has recently been adapted as a tool for genome editing. Cas9 is easily targeted to bind and cleave a DNA sequence via a complementary RNA; this straightforward programmability has gained Cas9 rapid acceptance in the field of genetic engineering. While this technology has developed quickly, a number of challenges regarding Cas9 specificity, efficiency, fusion protein function, and spatiotemporal control within the cell remain. In this work, we develop a platform for constructing novel proteins to address these open questions. We demonstrate methods to either screen or select active Cas9 mutants and use the screening technique to isolate functional Cas9 variants with a heterologous PDZ domain inserted within the protein. As a proof of concept, these methods lay the groundwork for the future construction of diverse Cas9 proteins. Straightforward and accessible techniques for genetic editing are helping to elucidate biology in new and exciting ways; a platform to engineer new functionalities into Cas9 will help forge the next generation of genome-modifying tools.

  12. Proteins of the corneal stroma: importance in visual function.

    PubMed

    Xuan, Meng; Wang, Shurong; Liu, Xin; He, Yuxi; Li, Ying; Zhang, Yan

    2016-04-01

    The human cornea, consisting of five layers, is the transparent tissue that refracts and transmits light to the lens and retina, providing about two thirds of the refractive power of the eye. The stroma layer comprises nearly 90 % of the thickness of the cornea and thus plays a pivotal role in normal visual function. The bulk of this layer is constituted by proteins in the extracellular martrix secreted by the corneal epithelial, stroma, and endothelial cells. Clinical research has shown that corneal stroma diseases are common and involve conditions such as infections, injuries, and genetic defects, which cause severe visual disturbances or even blindness. To improve our understanding of the basic molecular mechanisms involved in the physiological and pathological activities of the corneal stroma, its proteins have been brought into the limelight to determine their crucial and irreplaceable roles. The data presented in a previous study have demonstrated the presence of 1679 proteins in the stroma, and this data set has subsequently been perfected by utilizing a highly sensitive isobaric peptide-labeling approach. According to their manifestations, these proteins can be classified as a gel-like organic material composed of proteoglycans, enzymes, and hemocyanin-binding proteins and a network of filaments composed of collagen, elastin, keratin, vimentin, and interconnected filaments comprising fibronectin and laminin. The aim of this review is to describe some corneal stroma proteins by highlighting their major functions and valuable applications in ophthalmologic research toward the better characterization and treatment of eye diseases.

  13. Human milk proteins: an interactomics and updated functional overview.

    PubMed

    D'Alessandro, Angelo; Scaloni, Andrea; Zolla, Lello

    2010-07-02

    Milk and milk fractions are characterized by a wide array of proteins, whose concentration spans across several orders of magnitude. By exploiting a combined approach based on functional gene ontology enrichment (FatiGO/Babelomics), hierarchical clustering, and pathway and network analyses, we merged data from literature dealing with protein-oriented studies on human milk. A total of 285 entries defined a nonredundant list upon comparison with the Ingenuity Knowledge Base from the Ingenuity Pathway Analysis software. Results were compared with an inventory of bovine milk proteins gathered from dedicated proteomic studies. A protein core of 106 proteins was found, with most of the entries associated to three main biological functions, namely nutrient transport/lipid metabolism, concretization of the immune system response and cellular proliferation processes. Our analyses confirm and emphasize that the biological role of the human milk proteins is not only limited to the provision of external nutrients and defense molecules against pathogens to the suckling but also to the direct stimulation of the growth of neonate tissues/organs and to the development of a proper independent immune system, both through the induction of a number of molecular cascades associated with cell proliferation/differentiation. The latter aspects were previously investigated by single-molecule dedicated studies, missing the holistic view that results from our analysis.

  14. Regulation of thrombosis and vascular function by protein methionine oxidation.

    PubMed

    Gu, Sean X; Stevens, Jeff W; Lentz, Steven R

    2015-06-18

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis.

  15. Lipid transfer proteins: classification, nomenclature, structure, and function.

    PubMed

    Salminen, Tiina A; Blomqvist, Kristina; Edqvist, Johan

    2016-11-01

    The non-specific lipid transfer proteins (LTPs) constitute a large protein family found in all land plants. They are small proteins characterized by a tunnel-like hydrophobic cavity, which makes them suitable for binding and transporting various lipids. The LTPs are abundantly expressed in most tissues. In general, they are synthesized with an N-terminal signal peptide that localizes the protein to spaces exterior to the plasma membrane. The in vivo functions of LTPs are still disputed, although evidence has accumulated for a role in the synthesis of lipid barrier polymers, such as cuticular waxes, suberin, and sporopollenin. There are also reports suggesting that LTPs are involved in signaling during pathogen attacks. LTPs are considered as key proteins for the plant's survival and colonization of land. In this review, we aim to present an overview of the current status of LTP research and also to discuss potential future applications of these proteins. We update the knowledge on 3D structures and lipid binding and review the most recent data from functional investigations, such as from knockout or overexpressing experiments. We also propose and argument for a novel system for the classification and naming of the LTPs.

  16. Cellular Strategies for Regulating Functional and Nonfunctional Protein Aggregation

    PubMed Central

    Gsponer, Jörg; Babu, M. Madan

    2012-01-01

    Summary Growing evidence suggests that aggregation-prone proteins are both harmful and functional for a cell. How do cellular systems balance the detrimental and beneficial effect of protein aggregation? We reveal that aggregation-prone proteins are subject to differential transcriptional, translational, and degradation control compared to nonaggregation-prone proteins, which leads to their decreased synthesis, low abundance, and high turnover. Genetic modulators that enhance the aggregation phenotype are enriched in genes that influence expression homeostasis. Moreover, genes encoding aggregation-prone proteins are more likely to be harmful when overexpressed. The trends are evolutionarily conserved and suggest a strategy whereby cellular mechanisms specifically modulate the availability of aggregation-prone proteins to (1) keep concentrations below the critical ones required for aggregation and (2) shift the equilibrium between the monomeric and oligomeric/aggregate form, as explained by Le Chatelier’s principle. This strategy may prevent formation of undesirable aggregates and keep functional assemblies/aggregates under control. PMID:23168257

  17. Functional Constraint Profiling of a Viral Protein Reveals Discordance of Evolutionary Conservation and Functionality

    PubMed Central

    Wu, Nicholas C.; Olson, C. Anders; Du, Yushen; Le, Shuai; Tran, Kevin; Remenyi, Roland; Gong, Danyang; Al-Mawsawi, Laith Q.; Qi, Hangfei; Wu, Ting-Ting; Sun, Ren

    2015-01-01

    Viruses often encode proteins with multiple functions due to their compact genomes. Existing approaches to identify functional residues largely rely on sequence conservation analysis. Inferring functional residues from sequence conservation can produce false positives, in which the conserved residues are functionally silent, or false negatives, where functional residues are not identified since they are species-specific and therefore non-conserved. Furthermore, the tedious process of constructing and analyzing individual mutations limits the number of residues that can be examined in a single study. Here, we developed a systematic approach to identify the functional residues of a viral protein by coupling experimental fitness profiling with protein stability prediction using the influenza virus polymerase PA subunit as the target protein. We identified a significant number of functional residues that were influenza type-specific and were evolutionarily non-conserved among different influenza types. Our results indicate that type-specific functional residues are prevalent and may not otherwise be identified by sequence conservation analysis alone. More importantly, this technique can be adapted to any viral (and potentially non-viral) protein where structural information is available. PMID:26132554

  18. Quantitative assessment of protein function prediction from metagenomics shotgun sequences.

    PubMed

    Harrington, E D; Singh, A H; Doerks, T; Letunic, I; von Mering, C; Jensen, L J; Raes, J; Bork, P

    2007-08-28

    To assess the potential of protein function prediction in environmental genomics data, we analyzed shotgun sequences from four diverse and complex habitats. Using homology searches as well as customized gene neighborhood methods that incorporate intergenic and evolutionary distances, we inferred specific functions for 76% of the 1.4 million predicted ORFs in these samples (83% when nonspecific functions are considered). Surprisingly, these fractions are only slightly smaller than the corresponding ones in completely sequenced genomes (83% and 86%, respectively, by using the same methodology) and considerably higher than previously thought. For as many as 75,448 ORFs (5% of the total), only neighborhood methods can assign functions, illustrated here by a previously undescribed gene associated with the well characterized heme biosynthesis operon and a potential transcription factor that might regulate a coupling between fatty acid biosynthesis and degradation. Our results further suggest that, although functions can be inferred for most proteins on earth, many functions remain to be discovered in numerous small, rare protein families.

  19. Controlling multi-function of biomaterials interfaces based on multiple and competing adsorption of functional proteins.

    PubMed

    Guan, Zhen-Yu; Huang, Chao-Wei; Huang, Mei-Ching; Wu, Chih-Yu; Liu, Hui-Yu; Ding, Shih-Torng; Chen, Hsien-Yeh

    2017-01-01

    Multifunctional biomaterial surfaces can be created by controlling the competing adsorption of multiple proteins. To demonstrate this concept, bone morphogenetic protein 2 (BMP-2) and fibronectin were adsorbed to the hydrophobic surface of polychloro-para-xylylene. The resulting adsorption properties on the surface depended on the dimensional and steric characteristics of the selected protein molecule, the degree of denaturation of the adsorbed proteins, the associated adsorption of interphase water molecules within the protein layers, and the aggregation of proteins in a planar direction with respect to the adsorbent surface. Additionally, a defined surface composition was formed by the competing adsorption of multiple proteins, and this surface composition was directly linked to the composition of the protein mixture in the solution phase. Although the mechanism of this complex competing adsorption process is not fully understood, the adsorbed proteins were irreversibly adsorbed and were unaffected by the further adsorption of homologous or heterologous proteins. Moreover, synergistic biological activities, including cell osteogenesis and proliferation independently and specifically induced by BMP-2 or fibronectin, were observed on the modified surface, and these biological activities were positively correlated with the surface composition of the multiple adsorbed proteins. These results provide insights and important design parameters for prospective biomaterials and biointerfaces for (multi)functional modifications. The ability to control protein/interface properties will be beneficial for the processing of biomaterials for clinical applications and industrial products.

  20. Emerging functions of the unfolded protein response in immunity

    PubMed Central

    Janssens, Sophie; Pulendran, Bali; Lambrecht, Bart N.

    2015-01-01

    The unfolded protein response (UPR) has traditionally been viewed as an adaptive response triggered upon accumulation of unfolded proteins in the endoplasmic reticulum (ER), aimed at restoring ER function. The UPR can also be an anticipatory response that is activated well before the disruption of protein homeostasis. UPR signaling intersects at many levels with the innate and adaptive immune response. In some immune cell types like dendritic cells and B cells, particular UPR sensors appear constitutively active in the absence of traditional UPR gene program induction, necessary for antigen presentation and immunoglobulin synthesis. The UPR also influences Toll-like receptor signaling and NF-κB activation, and some pathogens subvert the UPR. This review summarizes these emerging non-canonical functions of the UPR in immunity. PMID:25232821

  1. Comprehensive functional analysis of large lists of genes and proteins.

    PubMed

    Mlecnik, Bernhard; Galon, Jérôme; Bindea, Gabriela

    2017-03-22

    The interpretation of high dimensional datasets resulting from genomic and proteomic experiments in a timely and efficient manner is challenging. ClueGO software is a Cytoscape App that extracts representative functional biological information for large lists of genes or proteins. The functional enrichment analysis is based on the latest publicly available data from multiple annotation and ontology resources that can be automatically accessed through ClueGO. Predefined settings for the selection of the terms are provided to facilitate the analysis. Results are visualized as networks in which Gene Ontology (GO) terms and pathways are grouped based on their biological role. Many species are now supported by ClueGO and additional organisms are added on demand. ClueGO can be used together with the CluePedia App to enable the visualization of protein-protein interactions within or between pathways.

  2. Functionality of Gliadin Proteins in Wheat Flour Tortillas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gliadins are monomeric proteins that are encoded by the genes at the locus Gli 1 and Gli 2 present on the short arm of homeologous wheat chromosomes 1 and 6, respectively. Studies have suggested that gliadins may play an important role in determining the functional properties of wheat flour. The mai...

  3. CBS domains: structure, function, and pathology in human proteins.

    PubMed

    Ignoul, Sofie; Eggermont, Jan

    2005-12-01

    The cystathionine-beta-synthase (CBS) domain is an evolutionarily conserved protein domain that is present in the proteome of archaebacteria, prokaryotes, and eukaryotes. CBS domains usually come in tandem repeats and are found in cytosolic and membrane proteins performing different functions (metabolic enzymes, kinases, and channels). Crystallographic studies of bacterial CBS domains have shown that two CBS domains form an intramolecular dimeric structure (CBS pair). Several human hereditary diseases (homocystinuria, retinitis pigmentosa, hypertrophic cardiomyopathy, myotonia congenital, etc.) can be caused by mutations in CBS domains of, respectively, cystathionine-beta-synthase, inosine 5'-monophosphate dehydrogenase, AMP kinase, and chloride channels. Despite their clinical relevance, it remains to be established what the precise function of CBS domains is and how they affect the structural and/or functional properties of an enzyme, kinase, or channel. Depending on the protein in which they occur, CBS domains have been proposed to affect multimerization and sorting of proteins, channel gating, and ligand binding. However, recent experiments revealing that CBS domains can bind adenosine-containing ligands such ATP, AMP, or S-adenosylmethionine have led to the hypothesis that CBS domains function as sensors of intracellular metabolites.

  4. Fundamental Characteristics of AAA+ Protein Family Structure and Function

    PubMed Central

    2016-01-01

    Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins. PMID:27703410

  5. Structure Function Studies of Vaccinia Virus Host Range Protein K1 Reveal a Novel Functional Surface for Ankyrin Repeat Proteins

    SciTech Connect

    Li, Yongchao; Meng, Xiangzhi; Xiang, Yan; Deng, Junpeng

    2010-06-15

    Poxvirus host tropism at the cellular level is regulated by virus-encoded host range proteins acting downstream of virus entry. The functioning mechanisms of most host range proteins are unclear, but many contain multiple ankyrin (ANK) repeats, a motif that is known for ligand interaction through a concave surface. We report here the crystal structure of one of the ANK repeat-containing host range proteins, the vaccinia virus K1 protein. The structure, at a resolution of 2.3 {angstrom}, showed that K1 consists entirely of ANK repeats, including seven complete ones and two incomplete ones, one each at the N and C terminus. Interestingly, Phe82 and Ser83, which were previously shown to be critical for K1's function, are solvent exposed and located on a convex surface, opposite the consensus ANK interaction surface. The importance of this convex surface was further supported by our additional mutagenesis studies. We found that K1's host range function was negatively affected by substitution of either Asn51 or Cys47 and completely abolished by substitution of both residues. Cys47 and Asn51 are also exposed on the convex surface, spatially adjacent to Phe82 and Ser83. Altogether, our data showed that K1 residues on a continuous convex ANK repeat surface are critical for the host range function, suggesting that K1 functions through ligand interaction and does so with a novel ANK interaction surface.

  6. A putative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting.

    PubMed

    Rothman, J H; Raymond, C K; Gilbert, T; O'Hara, P J; Stevens, T H

    1990-06-15

    Members of the Mx protein family promote interferon-inducible resistance to viral infection in mammals and act by unknown mechanisms. We identified an Mx-like protein in yeast and present genetic evidence for its cellular function. This protein, the VPS1 product, is essential for vacuolar protein sorting, normal organization of intracellular membranes, and growth at high temperature, implying that Mx-like proteins are engaged in fundamental cellular processes in eukaryotes. Vps1p contains a tripartite GTP binding motif, which suggests that binding to GTP is essential to its role in protein sorting. Vps1p-specific antibody labels punctate cytoplasmic structures that condense to larger structures in a Golgi-accumulating sec7 mutant; thus, Vps1p may associate with an intermediate organelle of the secretory pathway.

  7. Radar Interferometry Detection of Hinge Line Migration on Rutford Ice Stream and Carlson Inlet, Antarctica

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1997-01-01

    Satellite synthetic-aperture radar (SAR) Interferometry is employed to map the hinge line, or limit of tidal flexing, of Rutford Ice Stream and Carlson Inlet, Antarctica, and detect its migration between 1992 and 1996. The hinge line is mapped using a model fit from an elastic beam theory.

  8. Domain mobility in proteins: functional and evolutionary implications.

    PubMed

    Basu, Malay Kumar; Poliakov, Eugenia; Rogozin, Igor B

    2009-05-01

    A substantial fraction of eukaryotic proteins contains multiple domains, some of which show a tendency to occur in diverse domain architectures and can be considered mobile (or 'promiscuous'). These promiscuous domains are typically involved in protein-protein interactions and play crucial roles in interaction networks, particularly those contributing to signal transduction. They also play a major role in creating diversity of protein domain architecture in the proteome. It is now apparent that promiscuity is a volatile and relatively fast-changing feature in evolution, and that only a few domains retain their promiscuity status throughout evolution. Many such domains attained their promiscuity status independently in different lineages. Only recently, we have begun to understand the diversity of protein domain architectures and the role the promiscuous domains play in evolution of this diversity. However, many of the biological mechanisms of protein domain mobility remain shrouded in mystery. In this review, we discuss our present understanding of protein domain promiscuity, its evolution and its role in cellular function.

  9. Epicutaneous exposure to proteins and skin immune function.

    PubMed

    Kimber, Ian; Griffiths, Christopher E M; Basketter, David A; McFadden, John P; Dearman, Rebecca J

    2014-01-01

    The skin has a sophisticated and highly orchestrated immune system. The ability of proteins encountered at skin surfaces to access that immune system remains controversial, however. In this article the question considered is whether proteins encountered epicutaneously (on the skin) at abraded or tape-stripped skin surfaces, but also at sites where the skin is intact, can engage with the cutaneous immune system to provoke and regulate responses. The available evidence suggests that epicutaneous exposure to foreign proteins is able to elicit immune and allergic responses, and that encounter with protein via this route may favour the development of selective Th2 responses and allergic sensitisation. It is also clear that proteins can modify immunological function when delivered topically and that intact skin may provide an effective route of exposure for active immunotherapy of allergic disease. An appreciation that epicutaneously applied proteins can interact with the skin immune system, even when delivered at intact skin sites, opens up important opportunities for immunotherapy, local immune modulation and the treatment of inflammatory skin diseases. It also indicates that this route of exposure must be considered as part of the safety assessment and risk management of protein-induced allergic sensitisation.

  10. Redox proteomics identification of oxidatively modified myocardial proteins in human heart failure: implications for protein function.

    PubMed

    Brioschi, Maura; Polvani, Gianluca; Fratto, Pasquale; Parolari, Alessandro; Agostoni, Piergiuseppe; Tremoli, Elena; Banfi, Cristina

    2012-01-01

    Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF). The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14) and non-failing human hearts (n = 13) were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS), the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01). We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK), whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF.

  11. Redox Proteomics Identification of Oxidatively Modified Myocardial Proteins in Human Heart Failure: Implications for Protein Function

    PubMed Central

    Brioschi, Maura; Polvani, Gianluca; Fratto, Pasquale; Parolari, Alessandro; Agostoni, Piergiuseppe; Tremoli, Elena; Banfi, Cristina

    2012-01-01

    Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF). The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14) and non-failing human hearts (n = 13) were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS), the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01). We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK), whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF. PMID:22606238

  12. A three-way approach for protein function classification

    PubMed Central

    2017-01-01

    The knowledge of protein functions plays an essential role in understanding biological cells and has a significant impact on human life in areas such as personalized medicine, better crops and improved therapeutic interventions. Due to expense and inherent difficulty of biological experiments, intelligent methods are generally relied upon for automatic assignment of functions to proteins. The technological advancements in the field of biology are improving our understanding of biological processes and are regularly resulting in new features and characteristics that better describe the role of proteins. It is inevitable to neglect and overlook these anticipated features in designing more effective classification techniques. A key issue in this context, that is not being sufficiently addressed, is how to build effective classification models and approaches for protein function prediction by incorporating and taking advantage from the ever evolving biological information. In this article, we propose a three-way decision making approach which provides provisions for seeking and incorporating future information. We considered probabilistic rough sets based models such as Game-Theoretic Rough Sets (GTRS) and Information-Theoretic Rough Sets (ITRS) for inducing three-way decisions. An architecture of protein functions classification with probabilistic rough sets based three-way decisions is proposed and explained. Experiments are carried out on Saccharomyces cerevisiae species dataset obtained from Uniprot database with the corresponding functional classes extracted from the Gene Ontology (GO) database. The results indicate that as the level of biological information increases, the number of deferred cases are reduced while maintaining similar level of accuracy. PMID:28234929

  13. cncRNAs: Bi-functional RNAs with protein coding and non-coding functions.

    PubMed

    Kumari, Pooja; Sampath, Karuna

    2015-12-01

    For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as 'cncRNAs', have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions.

  14. Optimization of functionalization conditions for protein analysis by AFM

    NASA Astrophysics Data System (ADS)

    Arroyo-Hernández, María; Daza, Rafael; Pérez-Rigueiro, Jose; Elices, Manuel; Nieto-Márquez, Jorge; Guinea, Gustavo V.

    2014-10-01

    Activated vapor silanization (AVS) is used to functionalize silicon surfaces through deposition of amine-containing thin films. AVS combines vapor silanization and chemical vapor deposition techniques and allows the properties of the functionalized layers (thickness, amine concentration and topography) to be controlled by tuning the deposition conditions. An accurate characterization is performed to correlate the deposition conditions and functional-film properties. In particular, it is shown that smooth surfaces with a sufficient surface density of amine groups may be obtained with this technique. These surfaces are suitable for the study of proteins with atomic force microscopy.

  15. Modulation of Sertoli cell secretory function by rat round spermatid protein(s).

    PubMed

    Onoda, M; Djakiew, D

    1990-10-01

    The influence of rat round spermatid protein(s) (RSP) on protein synthesis and secretory function of Sertoli cells was used in the bicameral chamber system. Round spermatids (RS) were purified from 90-day-old rats by centrifugal elutriation. RS were incubated in a supplement-enriched culture medium that lacked exogenous proteins. The RS-conditioned media were dialysed and lyophilized to obtain RSP. Most de novo protein synthesized under basal conditions by Sertoli cells (18-day-old) was secreted into the apical chamber (apical/basal ratio: 3.42). Follicle-stimulating hormone (FSH, 100 ng/ml) stimulated total protein secretion from Sertoli cells by a factor of 1.54. The RSP (100 micrograms/ml) stimulated total protein secretion from Sertoli cells by a factor of 2.33. The enhancement of total Sertoli cell protein secretion by FSH and RSP additively increased by a factor of 2.82. The combined effect of FSH and RSP on total protein secretion from Sertoli cells was dose dependent and saturated at approximately 200 micrograms/ml of RSP. Polarity of total protein secretion from Sertoli cells (apical/basal ratio: 3.42) was stimulated by RSP predominantly in the apical direction (apical/basal ratio: 8.48). The modulation of radiolabeled Sertoli cell secretory proteins (ceruloplasmin, CP; sulfated glycoprotein-2, SGP-2; testins and transferrin, Tf) by cold (non-labeled) RSP was investigated by immunoprecipitation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The secretion of CP, SGP-2 and Tf was stimulated in a dose-dependent manner by the addition of RSP up to a saturating concentration of between 200 and 300 micrograms/ml, whereas the secretion of Sertoli cell testins did not reach saturation at 300 micrograms/ml RSP. These results indicate that FSH and RSP independently modulate Sertoli cell protein secretion, and that Sertoli cell secretory proteins may differentially respond to RSP stimulation.

  16. Parametric analysis and temperature effect of deployable hinged shells using shape memory polymers

    NASA Astrophysics Data System (ADS)

    Tao, Ran; Yang, Qing-Sheng; He, Xiao-Qiao; Liew, Kim-Meow

    2016-11-01

    Shape memory polymers (SMPs) are a class of intelligent materials, which are defined by their capacity to store a temporary shape and recover an original shape. In this work, the shape memory effect of SMP deployable hinged shell is simulated by using compiled user defined material subroutine (UMAT) subroutine of ABAQUS. Variations of bending moment and strain energy of the hinged shells with different temperatures and structural parameters in the loading process are given. The effects of the parameters and temperature on the nonlinear deformation process are emphasized. The entire thermodynamic cycle of SMP deployable hinged shell includes loading at high temperature, load carrying with cooling, unloading at low temperature and recovering the original shape with heating. The results show that the complicated thermo-mechanical deformation and shape memory effect of SMP deployable hinge are influenced by the structural parameters and temperature. The design ability of SMP smart hinged structures in practical application is prospected.

  17. Influence of processing on functionality of milk and dairy proteins.

    PubMed

    Augustin, Mary Ann; Udabage, Punsandani

    2007-01-01

    The inherent physical functionality of dairy ingredients makes them useful in a range of food applications. These functionalities include their solubility, water binding, viscosity, gelation, heat stability, renneting, foaming, and emulsifying properties. The suitability of dairy ingredients for an application can be further tailored by altering the structure of the proteins using appropriate processes. The processes discussed include physical modification (heat treatment, acidification, addition of mineral slats, homogenization, and shear), enzymatic modification (renneting, hydrolysis, and transglutamination), and chemical modification (use of chemical agents and the Maillard reaction). Emerging food processes (high pressure and ultrasound) are also discussed. The challenges for using dairy ingredients for the delivery of nutrients and bioactive components, while maintaining physical functionality, are also highlighted. There is a need for continued research into the fundamental aspects of milk proteins and their responses to various stresses for further differentiation of milk products and for the delivery of ingredients with consistent quality for target applications.

  18. Senescence Marker Protein 30: Functional and Structural Insights to its Unknown Physiological Function

    PubMed Central

    Scott, Stephanie H.; Bahnson, Brian J.

    2011-01-01

    Senescence marker protein 30 (SMP30) is a multifunctional protein involved in cellular Ca2+ homeostasis and the biosynthesis of ascorbate in non-primate mammals. The primary structure of the protein is highly conserved among vertebrates, suggesting the existence of a significant physiological function common to all mammals, including primates. Enzymatic activities of SMP30 include aldonolactone and organophosphate hydrolysis. Protective effects against apoptosis and oxidative stress have been reported. X-ray crystallography revealed that SMP30 is a six-bladed β-propeller with structural similarity to paraoxonase 1, another protein with lactonase and organophosphate hydrolase activities. SMP30 has recently been tied to several physiological conditions including osteoporosis, liver fibrosis, diabetes, and cancer. This review aims to describe the recent advances made toward understanding the connection between molecular structure, enzymatic activity and physiological function of this highly conserved, multifaceted protein. PMID:22844387

  19. Expressed Protein Ligation: A Resourceful Tool to Study Protein Structure and Function

    PubMed Central

    Berrade, Luis; Camarero, Julio A.

    2013-01-01

    This review outlines the use of expressed protein ligation (EPL) to study protein structure, function and stability. EPL is a chemoselective ligation method that allows the selective ligation of unprotected polypeptides from synthetic and recombinant origin for the production of semi-synthetic protein samples of well-defined and homogeneous chemical composition. This method has been extensively used for the site-specific introduction of biophysical probes, unnatural amino acids, and increasingly complex post-translational modifications. Since it was introduced 10 years ago, EPL applications have grown increasingly more sophisticated in order to address even more complex biological questions. In this review we highlight how this powerful technology combined with standard biochemical analysis techniques has been used to improve our ability to understand protein structure and function. PMID:19685006

  20. Multivesicular Bodies in Neurons: Distribution, Protein Content, and Trafficking Functions

    PubMed Central

    VON BARTHELD, CHRISTOPHER S.; ALTICK, AMY L.

    2011-01-01

    Summary Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of “geometrically simpler” cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer’s, Huntington’s, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons. PMID:21216273

  1. Computational design of receptor and sensor proteins with novel functions

    NASA Astrophysics Data System (ADS)

    Looger, Loren L.; Dwyer, Mary A.; Smith, James J.; Hellinga, Homme W.

    2003-05-01

    The formation of complexes between proteins and ligands is fundamental to biological processes at the molecular level. Manipulation of molecular recognition between ligands and proteins is therefore important for basic biological studies and has many biotechnological applications, including the construction of enzymes, biosensors, genetic circuits, signal transduction pathways and chiral separations. The systematic manipulation of binding sites remains a major challenge. Computational design offers enormous generality for engineering protein structure and function. Here we present a structure-based computational method that can drastically redesign protein ligand-binding specificities. This method was used to construct soluble receptors that bind trinitrotoluene, L-lactate or serotonin with high selectivity and affinity. These engineered receptors can function as biosensors for their new ligands; we also incorporated them into synthetic bacterial signal transduction pathways, regulating gene expression in response to extracellular trinitrotoluene or L-lactate. The use of various ligands and proteins shows that a high degree of control over biomolecular recognition has been established computationally. The biological and biosensing activities of the designed receptors illustrate potential applications of computational design.

  2. [Histidine triad protein superfamily--biological function and enzymatic activity].

    PubMed

    Krakowiak, Agnieszka; Fryc, Izabela

    2012-01-01

    The HIT superfamily consists of proteins that share the histidine triad motif, His-X-His-X-His-X-X (where X is a hydrophobic amino acid), which constitutes enzymatic catalytic center. These enzymes act as nucleotidylyl hydrolase or transferase, and the mutation of the second histidine in the triad abolishes their activity. HIT proteins were found ubiquitous in all organisms and they were classified into 5 branches, which are represented by human proteins: HINT1, FHIT, Aprataxin, GALT and DCPS. Because HINT1 orthologs, which belong to the evolutionally oldest family branch, were found from prokaryotes to eukaryotes, it is clear that HIT motif was conserved during the evolution what means that the enzymatic activity is necessary for functions of these proteins. However, in few cases, e.g. HINT1 and FHIT, the connection between the biological function and the enzymatic activity is still obscure. In this review, the relations between biology and activity for 7 HIT proteins, which were found in human, are highlighted.

  3. Muscarinic receptor family interacting proteins: role in receptor function.

    PubMed

    Borroto-Escuela, Dasiel O; Correia, Patrícia A; Romero-Fernandez, Wilber; Narvaez, Manuel; Fuxe, Kjell; Ciruela, Francisco; Garriga, Pere

    2011-02-15

    G protein-coupled receptors constitute one of the most important families of membrane receptors through which cells respond to extracellular stimuli. Receptors of this superfamily likely function as signal transduction complexes. The identification and analysis of their components provide new insights into a better understanding of these receptors' function and regulation. We used tandem-affinity purification and mass spectrometry as a systematic approach to characterize multiprotein complexes in the acetylcholine muscarinic receptor subfamily. To overcome the limitations associated with membrane protein receptor solubilization with detergents, we developed a strategy in which receptors are co-expressed with a cytoplasmic minigene construct, encoding the third intracellular loop and the C-terminal tail tagged to the tandem-affinity-cassette of each receptor subtype. Numerous protein complexes were identified, including many new interactions in various signalling pathways. Systematic identification data set together with protein interactions reported in the literature revealed a high degree of connectivity. These allow the proposal, for the first time, of an outline of the muscarinic interactome as a network of protein complexes and a context for a more reasoned and informed approach to drug discovery and muscarinic receptor subtype specificities.

  4. Prediction of functional residues in water channels and related proteins.

    PubMed Central

    Froger, A.; Tallur, B.; Thomas, D.; Delamarche, C.

    1998-01-01

    In this paper, we present an updated classification of the ubiquitous MIP (Major Intrinsic Protein) family proteins, including 153 fully or partially sequenced members available in public databases. Presently, about 30 of these proteins have been functionally characterized, exhibiting essentially two distinct types of channel properties: (1) specific water transport by the aquaporins, and (2) small neutral solutes transport, such as glycerol by the glycerol facilitators. Sequence alignments were used to predict amino acids and motifs discriminant in channel specificity. The protein sequences were also analyzed using statistical tools (comparisons of means and correspondence analysis). Five key positions were clearly identified where the residues are specific for each functional subgroup and exhibit high dissimilar physico-chemical properties. Moreover, we have found that the putative channels for small neutral solutes clearly differ from the aquaporins by the amino acid content and the length of predicted loop regions, suggesting a substrate filter function for these loops. From these results, we propose a signature pattern for water transport. PMID:9655351

  5. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry.

    PubMed

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application.

  6. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry

    PubMed Central

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application. PMID:26761849

  7. The N and C Termini of ZO-1 Are Surrounded by Distinct Proteins and Functional Protein Networks*

    PubMed Central

    Van Itallie, Christina M.; Aponte, Angel; Tietgens, Amber Jean; Gucek, Marjan; Fredriksson, Karin; Anderson, James Melvin

    2013-01-01

    The proteins and functional protein networks of the tight junction remain incompletely defined. Among the currently known proteins are barrier-forming proteins like occludin and the claudin family; scaffolding proteins like ZO-1; and some cytoskeletal, signaling, and cell polarity proteins. To define a more complete list of proteins and infer their functional implications, we identified the proteins that are within molecular dimensions of ZO-1 by fusing biotin ligase to either its N or C terminus, expressing these fusion proteins in Madin-Darby canine kidney epithelial cells, and purifying and identifying the resulting biotinylated proteins by mass spectrometry. Of a predicted proteome of ∼9000, we identified more than 400 proteins tagged by biotin ligase fused to ZO-1, with both identical and distinct proteins near the N- and C-terminal ends. Those proximal to the N terminus were enriched in transmembrane tight junction proteins, and those proximal to the C terminus were enriched in cytoskeletal proteins. We also identified many unexpected but easily rationalized proteins and verified partial colocalization of three of these proteins with ZO-1 as examples. In addition, functional networks of interacting proteins were tagged, such as the basolateral but not apical polarity network. These results provide a rich inventory of proteins and potential novel insights into functions and protein networks that should catalyze further understanding of tight junction biology. Unexpectedly, the technique demonstrates high spatial resolution, which could be generally applied to defining other subcellular protein compartmentalization. PMID:23553632

  8. Eliciting the Functional Taxonomy from protein annotations and taxa

    PubMed Central

    Falda, Marco; Lavezzo, Enrico; Fontana, Paolo; Bianco, Luca; Berselli, Michele; Formentin, Elide; Toppo, Stefano

    2016-01-01

    The advances of omics technologies have triggered the production of an enormous volume of data coming from thousands of species. Meanwhile, joint international efforts like the Gene Ontology (GO) consortium have worked to provide functional information for a vast amount of proteins. With these data available, we have developed FunTaxIS, a tool that is the first attempt to infer functional taxonomy (i.e. how functions are distributed over taxa) combining functional and taxonomic information. FunTaxIS is able to define a taxon specific functional space by exploiting annotation frequencies in order to establish if a function can or cannot be used to annotate a certain species. The tool generates constraints between GO terms and taxa and then propagates these relations over the taxonomic tree and the GO graph. Since these constraints nearly cover the whole taxonomy, it is possible to obtain the mapping of a function over the taxonomy. FunTaxIS can be used to make functional comparative analyses among taxa, to detect improper associations between taxa and functions, and to discover how functional knowledge is either distributed or missing. A benchmark test set based on six different model species has been devised to get useful insights on the generated taxonomic rules. PMID:27534507

  9. Eliciting the Functional Taxonomy from protein annotations and taxa.

    PubMed

    Falda, Marco; Lavezzo, Enrico; Fontana, Paolo; Bianco, Luca; Berselli, Michele; Formentin, Elide; Toppo, Stefano

    2016-08-18

    The advances of omics technologies have triggered the production of an enormous volume of data coming from thousands of species. Meanwhile, joint international efforts like the Gene Ontology (GO) consortium have worked to provide functional information for a vast amount of proteins. With these data available, we have developed FunTaxIS, a tool that is the first attempt to infer functional taxonomy (i.e. how functions are distributed over taxa) combining functional and taxonomic information. FunTaxIS is able to define a taxon specific functional space by exploiting annotation frequencies in order to establish if a function can or cannot be used to annotate a certain species. The tool generates constraints between GO terms and taxa and then propagates these relations over the taxonomic tree and the GO graph. Since these constraints nearly cover the whole taxonomy, it is possible to obtain the mapping of a function over the taxonomy. FunTaxIS can be used to make functional comparative analyses among taxa, to detect improper associations between taxa and functions, and to discover how functional knowledge is either distributed or missing. A benchmark test set based on six different model species has been devised to get useful insights on the generated taxonomic rules.

  10. Discovery and functional evaluation of ciliary proteins in Tetrahymena thermophila

    PubMed Central

    Gaertig, Jacek; Wloga, Dorota; Vasudevan, Krishna Kumar; Guha, Mayukh; Dentler, William

    2015-01-01

    The ciliate Tetrahymena thermophila is an excellent model system for the discovery and functional studies of ciliary proteins. The power of the model is based on the ease with which cilia can be purified in large quantities for fractionation and proteomic identification, and the ability to knock out any gene by homologous DNA recombination. Here, we include methods used by our laboratories for isolation and fractionation of cilia, in vivo tagging and localization of ciliary proteins and the evaluation of ciliary mutants. PMID:23522474

  11. Membrane Proteins in Four Acts: Function Precedes Structure Determination

    PubMed Central

    Cramer, W. A.; Zakharov, S. D.; Hasan, S. Saif; Zhang, H.; Baniulis, D.; Zhalnina, M. V.; Soriano, G. M.; Sharma, O.; Rochet, J. C.; Ryan, C.; Whitelegge., J.; Kurisu, G.; Yamashita, E.

    2011-01-01

    Studies on four membrane protein systems, which combine information derived from crystal structures and biophysical studies have emphasized, as a precursor to crystallization, demonstration of functional activity. These assays have relied on sensitive spectrophotometric, electrophysiological, and microbiological assays of activity to select purification procedures that lead to functional complexes and with greater likelihood to successful crystallization: (I), Hetero-oligomeric proteins involved in electron transport/ proton translocation). (1) Crystal structures of the eight subunit heterooligomeric trans-membrane dimeric cytochrome b6f complex were obtained from cyanobacteria using a protocol that allowed an analysis of the structure and function of internal lipids at specific intra-membrane, intra-protein sites. Proteolysis and monomerization that inactivated the complex and prevented crystallization was minimized through the use of filamentous cyanobacterial strains that seem to have a different set of membrane-active proteases. (2) An NADPH-quinone oxido-reductase isolated from cyanobacteria contains an expanded set of seventeen monotopic and polytopic hetero-subunits. (II) β-barrel outer membrane proteins (OMPs). High resolution structures of the vitamin B12 binding protein, BtuB, solved in meso and in surfo, provide the best example of the differences in such structures that were anticipated in the first application of the lipid cubic phase to membrane proteins (1). A structure of the complex of BtuB with the colicin E3 and E2 receptor binding domain established a “fishing pole” model for outer membrane receptor function in cellular import of nuclease colicins. (III) A modified faster purification procedure contributed to significantly improved resolution (1.83 Å) of the universal porin, OmpF, the first membrane protein for which meaningful 3D crystals have been obtained (2). A crystal structure of the N-terminal translocation domain of colicin E3

  12. Functional domains of the fatty acid transport proteins: studies using protein chimeras.

    PubMed

    DiRusso, Concetta C; Darwis, Dina; Obermeyer, Thomas; Black, Paul N

    2008-03-01

    Fatty acid transport proteins (FATP) function in fatty acid trafficking pathways, several of which have been shown to participate in the transport of exogenous fatty acids into the cell. Members of this protein family also function as acyl CoA synthetases with specificity towards very long chain fatty acids or bile acids. These proteins have two identifying sequence motifs: The ATP/AMP motif, an approximately 100 amino acid segment required for ATP binding and common to members of the adenylate-forming super family of proteins, and the FATP/VLACS motif that consists of approximately 50 amino acid residues and is restricted to members of the FATP family. This latter motif has been implicated in fatty acid transport in the yeast FATP orthologue Fat1p. In the present studies using a yeast strain containing deletions in FAT1 (encoding Fat1p) and FAA1 (encoding the major acyl CoA synthetase (Acsl) Faa1p) as an experimental platform, the phenotypic and functional properties of specific murine FATP1-FATP4 and FATP6-FATP4 protein chimeras were evaluated in order to define elements within these proteins that further distinguish the fatty acid transport and activation functions. As expected from previous work FATP1 and FATP4 were functional in the fatty acid transport pathway, while and FATP6 was not. All three isoforms were able to activate the very long chain fatty acids arachidonate (C(20:4)) and lignocerate (C(24:0)), but with distinguishing activities between saturated and highly unsaturated ligands. A 73 amino acid segment common to FATP1 and FATP4 and between the ATP/AMP and FATP/VLACS motifs was identified by studying the chimeras, which is hypothesized to contribute to the transport function.

  13. Prebiotic Alternatives to Proteins: Structure and Function of Hyperbranched Polyesters

    NASA Astrophysics Data System (ADS)

    Mamajanov, Irena; Callahan, Michael P.; Dworkin, Jason P.; Cody, George D.

    2015-06-01

    Proteins are responsible multiple biological functions, such as ligand binding, catalysis, and ion channeling. This functionality is enabled by proteins' three-dimensional structures that require long polypeptides. Since plausibly prebiotic synthesis of functional polypeptides has proven challenging in the laboratory, we propose that these functions may have been initially performed by alternative macromolecular constructs, namely hyperbranched polymers (HBPs), during early stages of chemical evolution. HBPs can be straightforwardly synthesized in one-pot processes, possess globular structures determined by their architecture as opposed to folding in proteins, and have documented ligand binding and catalytic properties. Our initial study focuses on glycerol-citric acid HBPs synthesized via moderate heating in the dry state. The polymerization products consisted of a mixture of isomeric structures of varying molar mass as evidenced by NMR, mass spectrometry and size-exclusion chromatography. Addition of divalent cations during polymerization resulted in increased incorporation of citric acid into the HBPs and the possible formation of cation-oligomer complexes. The chelating properties of citric acid govern the makeup of the resulting polymer, turning the polymerization system into a rudimentary smart material.

  14. Functions of BET proteins in erythroid gene expression.

    PubMed

    Stonestrom, Aaron J; Hsu, Sarah C; Jahn, Kristen S; Huang, Peng; Keller, Cheryl A; Giardine, Belinda M; Kadauke, Stephan; Campbell, Amy E; Evans, Perry; Hardison, Ross C; Blobel, Gerd A

    2015-04-30

    Inhibitors of bromodomain and extraterminal motif proteins (BETs) are being evaluated for the treatment of cancer and other diseases, yet much remains to be learned about how BET proteins function during normal physiology. We used genomic and genetic approaches to examine BET function in a hematopoietic maturation system driven by GATA1, an acetylated transcription factor previously shown to interact with BETs. We found that BRD2, BRD3, and BRD4 were variably recruited to GATA1-regulated genes, with BRD3 binding the greatest number of GATA1-occupied sites. Pharmacologic BET inhibition impaired GATA1-mediated transcriptional activation, but not repression, genome-wide. Mechanistically, BETs promoted chromatin occupancy of GATA1 and subsequently supported transcriptional activation. Using a combination of CRISPR-Cas9-mediated genomic engineering and shRNA approaches, we observed that depletion of either BRD2 or BRD4 alone blunted erythroid gene activation. Surprisingly, depletion of BRD3 only affected erythroid transcription in the context of BRD2 deficiency. Consistent with functional overlap among BET proteins, forced BRD3 expression substantially rescued defects caused by BRD2 deficiency. These results suggest that pharmacologic BET inhibition should be interpreted in the context of distinct steps in transcriptional activation and overlapping functions among BET family members.

  15. Protein function prediction using local 3D templates.

    PubMed

    Laskowski, Roman A; Watson, James D; Thornton, Janet M

    2005-08-19

    The prediction of a protein's function from its 3D structure is becoming more and more important as the worldwide structural genomics initiatives gather pace and continue to solve 3D structures, many of which are of proteins of unknown function. Here, we present a methodology for predicting function from structure that shows great promise. It is based on 3D templates that are defined as specific 3D conformations of small numbers of residues. We use four types of template, covering enzyme active sites, ligand-binding residues, DNA-binding residues and reverse templates. The latter are templates generated from the target structure itself and scanned against a representative subset of all known protein structures. Together, the templates provide a fairly thorough coverage of the known structures and ensure that if there is a match to a known structure it is unlikely to be missed. A new scoring scheme provides a highly sensitive means of discriminating between true positive and false positive template matches. In all, the methodology provides a powerful new tool for function prediction to complement those already in use.

  16. TMEM16 proteins: unknown structure and confusing functions

    PubMed Central

    Picollo, Alessandra; Malvezzi, Mattia; Accardi, Alessio

    2014-01-01

    The TMEM16 family of membrane proteins, also known as anoctamins, play key roles in a variety of physiological functions that range from ion transport, to phospholipid scrambling and to regulating other ion channels. The first two family members to be functionally characterized, TMEM16A (ANO1) and TMEM16B (ANO2), form Ca2+-activated Cl− channels (CaCCs) and are important for transepithelial ion transport, olfaction, phototransduction, smooth muscle contraction, nociception, cell proliferation and control of neuronal excitability. The role(s) of other family members, such as TMEM16C (ANO3), TMEM16D (ANO4), TMEM16F (ANO6), TMEM16G (ANO7), and TMEM16J (ANO9), remain poorly understood and controversial. These homologues were reported to be phospholipid scramblases, ion channels, to have both functions or to be regulatory subunits of other channels. Mutations in TMEM16F cause Scott syndrome, a bleeding disorder caused by impaired Ca2+-dependent externalization of phosphatidylserine in activated platelets, suggesting that this homologue might be a scramblase. However, overexpression of TMEM16F has also been associated with a remarkable number of different ion channel types, raising the possibility that this protein might be involved in both ion and lipid transport. The recent identification of an ancestral TMEM16 homologue with intrinsic channel and scramblase activities supports this hypothesis. Thus, the TMEM16 family might have diverged in two or three different subclasses, channels, scramblases and dual function channel/scramblases. The structural bases and functional implication of such a functional diversity within a single protein family remain to be elucidated and the links between TMEM16 functions and human physiology and pathologies need to be investigated. PMID:25451786

  17. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center

    SciTech Connect

    Kim, Sung-Hou; Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

    2007-09-02

    Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

  18. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center.

    PubMed

    Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

    2007-09-01

    Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

  19. Hinged blade model dynamics for a horizontal axis wind turbine

    NASA Astrophysics Data System (ADS)

    Kendall, David Arthur

    This dissertation describes fundamental extensions to the hinge-spring model used to simulate the first mode of blade vibration in wind turbine dynamics. Complete equations of motion are developed while allowing for both bending of the blade perpendicular to its chord and overall motion of the rotor in azimuth and yaw. The model examines the relationship between the natural rotation frequency of the rotor o and the fundamental natural bending frequency of the blades without including the bending frequency of the tower. In the case of no yaw motion, perturbation analysis and iteration lead to analytical solutions for the bending and azimuth equations of motion that involve as little simplification of these equations as possible. The natural bending frequency is "stiffened" by the rotor rotation and is expressed as a multiple of the rotor rotation, o* o. While the bending frequency is used in models using the hinged blade, the solutions found in this work contain more detail than can be found in prior investigations. These analytical solutions reveal that the harmonics with frequencies No*o (o * + 1)o and (o* - 1)o are involved with the coupling between bending motion and azimuth motion with N = 1, 2, 3,.... Subsequent derivation of the power output for the condition of a relatively large amplitude of blade vibration predicts a noticeable contribution to power generation for the o* o response, which is verified in the data. Glauret's momentum transfer theory as extended by Wilson and Lissaman [1974] and de Vries [1979] is modified to allow for blade bending, variations of wind speed with time and position, and variations in wind direction with time. No vertical wind is considered. It is concluded that: (1) the bending frequency and linear combinations with the rotor rotation frequency provide an important contribution under at least some of the expected operating conditions of the turbine, (2) the dynamic mass imbalance produced by the effects of blade bending is not

  20. Protein function in precision medicine: deep understanding with machine learning.

    PubMed

    Rost, Burkhard; Radivojac, Predrag; Bromberg, Yana

    2016-08-01

    Precision medicine and personalized health efforts propose leveraging complex molecular, medical and family history, along with other types of personal data toward better life. We argue that this ambitious objective will require advanced and specialized machine learning solutions. Simply skimming some low-hanging results off the data wealth might have limited potential. Instead, we need to better understand all parts of the system to define medically relevant causes and effects: how do particular sequence variants affect particular proteins and pathways? How do these effects, in turn, cause the health or disease-related phenotype? Toward this end, deeper understanding will not simply diffuse from deeper machine learning, but from more explicit focus on understanding protein function, context-specific protein interaction networks, and impact of variation on both.

  1. A genetic system to study Plasmodium falciparum protein function.

    PubMed

    Birnbaum, Jakob; Flemming, Sven; Reichard, Nick; Soares, Alexandra Blancke; Mesén-Ramírez, Paolo; Jonscher, Ernst; Bergmann, Bärbel; Spielmann, Tobias

    2017-03-13

    Current systems to study essential genes in the human malaria parasite Plasmodium falciparum are often inefficient and time intensive, and they depend on the genetic modification of the target locus, a process hindered by the low frequency of integration of episomal DNA into the genome. Here, we introduce a method, termed selection-linked integration (SLI), to rapidly select for genomic integration. SLI allowed us to functionally analyze targets at the gene and protein levels, thus permitting mislocalization of native proteins, a strategy known as knock sideways, floxing to induce diCre-based excision of genes and knocking in altered gene copies. We demonstrated the power and robustness of this approach by validating it for more than 12 targets, including eight essential ones. We also localized and inducibly inactivated Kelch13, the protein associated with artemisinin resistance. We expect this system to be widely applicable for P. falciparum and other organisms with limited genetic tractability.

  2. Defining the boundaries: structure and function of LOB domain proteins.

    PubMed

    Majer, Christine; Hochholdinger, Frank

    2011-01-01

    The plant-specific LBD (Lateral Organ Boundaries Domain) gene family is essential in the regulation of plant lateral organ development and is involved in the regulation of anthocyanin and nitrogen metabolism. LBD proteins contain a characteristic LOB domain composed of a C-motif required for DNA-binding, a conserved glycine residue, and a leucine-zipper-like sequence required for protein-protein interactions. Recently, several LBD genes associated with mutant phenotypes related to almost all aspects of plant development, including embryo, root, leaf, and inflorescence development have been functionally characterized. These novel insights contribute to a better understanding of the molecular definition of boundaries between organs or boundaries between organs and meristems and the regulation of these processes by environmental cues and phytohormones.

  3. Finding sequence motifs in groups of functionally related proteins.

    PubMed

    Smith, H O; Annau, T M; Chandrasegaran, S

    1990-01-01

    We have developed a method for rapidly finding patterns of conserved amino acid residues (motifs) in groups of functionally related proteins. All 3-amino acid patterns in a group of proteins of the type aa1 d1 aa2 d2 aa3, where d1 and d2 are distances that can be varied in a range up to 24 residues, are accumulated into an array. Segments of the proteins containing those patterns that occur most frequently are aligned on each other by a scoring method that obtains an average relatedness value for all the amino acids in each column of the aligned sequence block based on the Dayhoff relatedness odds matrix. The automated method successfully finds and displays nearly all of the sequence motifs that have been previously reported to occur in 33 reverse transcriptases, 18 DNA integrases, and 30 DNA methyltransferases.

  4. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins.

    PubMed Central

    Gillooly, D J; Simonsen, A; Stenmark, H

    2001-01-01

    PtdIns3P is a phosphoinositide 3-kinase product that has been strongly implicated in regulating membrane trafficking in both mammalian and yeast cells. PtdIns3P has been shown to be specifically located on membranes associated with the endocytic pathway. Proteins that contain FYVE zinc-finger domains are recruited to PtdIns3P-containing membranes. Structural information is now available concerning the interaction between FYVE domains and PtdIns3P. A number of proteins have been identified which contain a FYVE domain, and in this review we discuss the functions of PtdIns3P and its FYVE-domain-containing effector proteins in membrane trafficking, cytoskeletal regulation and receptor signalling. PMID:11284710

  5. The evolution of function in strictosidine synthase-like proteins.

    PubMed

    Hicks, Michael A; Barber, Alan E; Giddings, Lesley-Ann; Caldwell, Jenna; O'Connor, Sarah E; Babbitt, Patricia C

    2011-11-01

    The exponential growth of sequence data provides abundant information for the discovery of new enzyme reactions. Correctly annotating the functions of highly diverse proteins can be difficult, however, hindering use of this information. Global analysis of large superfamilies of related proteins is a powerful strategy for understanding the evolution of reactions by identifying catalytic commonalities and differences in reaction and substrate specificity, even when only a few members have been biochemically or structurally characterized. A comparison of >2500 sequences sharing the six-bladed β-propeller fold establishes sequence, structural, and functional links among the three subgroups of the functionally diverse N6P superfamily: the arylesterase-like and senescence marker protein-30/gluconolactonase/luciferin-regenerating enzyme-like (SGL) subgroups, representing enzymes that catalyze lactonase and related hydrolytic reactions, and the so-called strictosidine synthase-like (SSL) subgroup. Metal-coordinating residues were identified as broadly conserved in the active sites of all three subgroups except for a few proteins from the SSL subgroup, which have been experimentally determined to catalyze the quite different strictosidine synthase (SS) reaction, a metal-independent condensation reaction. Despite these differences, comparison of conserved catalytic features of the arylesterase-like and SGL enzymes with the SSs identified similar structural and mechanistic attributes between the hydrolytic reactions catalyzed by the former and the condensation reaction catalyzed by SS. The results also suggest that despite their annotations, the great majority of these >500 SSL sequences do not catalyze the SS reaction; rather, they likely catalyze hydrolytic reactions typical of the other two subgroups instead. This prediction was confirmed experimentally for one of these proteins.

  6. Graphlet kernels for prediction of functional residues in protein structures.

    PubMed

    Vacic, Vladimir; Iakoucheva, Lilia M; Lonardi, Stefano; Radivojac, Predrag

    2010-01-01

    We introduce a novel graph-based kernel method for annotating functional residues in protein structures. A structure is first modeled as a protein contact graph, where nodes correspond to residues and edges connect spatially neighboring residues. Each vertex in the graph is then represented as a vector of counts of labeled non-isomorphic subgraphs (graphlets), centered on the vertex of interest. A similarity measure between two vertices is expressed as the inner product of their respective count vectors and is used in a supervised learning framework to classify protein residues. We evaluated our method on two function prediction problems: identification of catalytic residues in proteins, which is a well-studied problem suitable for benchmarking, and a much less explored problem of predicting phosphorylation sites in protein structures. The performance of the graphlet kernel approach was then compared against two alternative methods, a sequence-based predictor and our implementation of the FEATURE framework. On both tasks, the graphlet kernel performed favorably; however, the margin of difference was considerably higher on the problem of phosphorylation site prediction. While there is data that phosphorylation sites are preferentially positioned in intrinsically disordered regions, we provide evidence that for the sites that are located in structured regions, neither the surface accessibility alone nor the averaged measures calculated from the residue microenvironments utilized by FEATURE were sufficient to achieve high accuracy. The key benefit of the graphlet representation is its ability to capture neighborhood similarities in protein structures via enumerating the patterns of local connectivity in the corresponding labeled graphs.

  7. Analysis of Amyloid Precursor Protein Function in Drosophila melanogaster

    PubMed Central

    Cassar, Marlène; Kretzschmar, Doris

    2016-01-01

    The Amyloid precursor protein (APP) has mainly been investigated in connection with its role in Alzheimer’s Disease (AD) due to its cleavage resulting in the production of the Aβ peptides that accumulate in the plaques characteristic for this disease. However, APP is an evolutionary conserved protein that is not only found in humans but also in many other species, including Drosophila, suggesting an important physiological function. Besides Aβ, several other fragments are produced by the cleavage of APP; large secreted fragments derived from the N-terminus and a small intracellular C-terminal fragment. Although these fragments have received much less attention than Aβ, a picture about their function is finally emerging. In contrast to mammals, which express three APP family members, Drosophila expresses only one APP protein called APP-like or APPL. Therefore APPL functions can be studied in flies without the complication that other APP family members may have redundant functions. Flies lacking APPL are viable but show defects in neuronal outgrowth in the central and peripheral nervous system (PNS) in addition to synaptic changes. Furthermore, APPL has been connected with axonal transport functions. In the adult nervous system, APPL, and more specifically its secreted fragments, can protect neurons from degeneration. APPL cleavage also prevents glial death. Lastly, APPL was found to be involved in behavioral deficits and in regulating sleep/activity patterns. This review, will describe the role of APPL in neuronal development and maintenance and briefly touch on its emerging function in circadian rhythms while an accompanying review will focus on its role in learning and memory formation. PMID:27507933

  8. THE GRADED LEVATOR HINGE PROCEDURE FOR THE CORRECTION OF UPPER EYELID RETRACTION (AN AMERICAN OPHTHALMOLOGICAL SOCIETY THESIS)

    PubMed Central

    Schaefer, Daniel P.

    2007-01-01

    patients, and the thyroid-related orbitopathy subgroup. The graded levator hinge procedure in combination with a Müllerectomy and/or lateral canthoplasty when indicated led to a statistically significant reduction in palpebral fissure height, asymmetry between the eyes in the total set of patients, the unilateral set of patients, and the thyroid-related orbitopathy subset, but not in the bilaterally operated subset of patients, which were already relatively symmetric preoperatively. Postoperatively 90.6 % of all eyelids were within 1 mm of the desired postoperative level (25% were equal, 68.8% were within 0.5 mm, and 6.2% greater than 1 mm from the desired level). Conclusions The graded levator hinge procedure, alone or in combination with a Müllerectomy and/or lateral canthoplasty, is a safe and highly effective surgical approach for the treatment of various causes of upper eyelid retraction. Through consideration of the various anatomical and pathophysiological causes of eyelid retraction, excellent functional and cosmetic results are achieved with a graded procedure tapered to the needs of each individual. PMID:18427627

  9. Critical importance of RAB proteins for synaptic function.

    PubMed

    Mignogna, Maria Lidia; D'Adamo, Patrizia

    2017-02-01

    Neurons are highly polarized cells that exhibit one of the more complex morphology and function. Neuronal intracellular trafficking plays a key role in dictating the directionality and specificity of vesicle formation, transport and fusion, allowing the transmission of information in sophisticate cellular network. Thus, the integrity of protein trafficking and spatial organization is especially important in neuronal cells. RAB proteins, small monomeric GTPases belonging to the RAS superfamily, spatially and temporally orchestrate specific vesicular trafficking steps. In this review we summarise the known roles of RAB GTPases involved in the maintenance of neuronal vesicular trafficking in the central nervous system. In particular, we discriminate the axonal pre-synaptic trafficking and dendritic post-synaptic trafficking, to better underlie how a correct orchestration of vesicle movement is necessary to maintain neuronal polarity and then, to permit an accurate architecture and functionality of synaptic activity.

  10. Copper and the Prion Protein: Methods, Structures, Function, and Disease

    NASA Astrophysics Data System (ADS)

    Millhauser, Glenn L.

    2007-05-01

    The transmissible spongiform encephalopathies (TSEs) arise from conversion of the membrane-bound prion protein from PrPC to PrPSc. Examples of the TSEs include mad cow disease, chronic wasting disease in deer and elk, scrapie in goats and sheep, and kuru and Creutzfeldt-Jakob disease in humans. Although the precise function of PrPC in healthy tissues is not known, recent research demonstrates that it binds Cu(II) in an unusual and highly conserved region of the protein termed the octarepeat domain. This review describes recent connections between copper and PrPC, with an emphasis on the electron paramagnetic resonance elucidation of the specific copper-binding sites, insights into PrPC function, and emerging connections between copper and prion disease.

  11. Production of functional proteins: balance of shear stress and gravity

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

    2007-01-01

    The present invention provides a method for production of functional proteins including hormones by renal cells in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-a-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

  12. Production of functional proteins: balance of shear stress and gravity

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

    2004-01-01

    The present invention provides a method for production of functional proteins including hormones by renal cells in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-a-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

  13. Production of functional proteins: balance of shear stress and gravity

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

    2011-01-01

    A method for the production of functional proteins including hormones by renal cells in a three dimensional culturing process responsive to shear stress uses a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-.alpha.-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D.sub.3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating an in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

  14. Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates.

    PubMed

    Hall, Felicia G; Jones, Owen G; O'Haire, Marguerite E; Liceaga, Andrea M

    2017-06-01

    Recently, the benefits of entomophagy have been widely discussed. Due to western cultures' reluctance, entomophagy practices are leaning more towards incorporating insects into food products. In this study, whole crickets (Gryllodes sigillatus) were hydrolyzed with alcalase at 0.5, 1.5, and 3.0% (w/w) for 30, 60, and 90min. Degree of hydrolysis (DH), amino acid composition, solubility, emulsion and foaming properties were evaluated. Hydrolysis produced peptides with 26-52% DH compared to the control containing no enzyme (5% DH). Protein solubility of hydrolysates improved (p<0.05) over a range of pH's, exhibiting >30% soluble protein at pH 3 and 7 and 50-90% at alkaline pH, compared with the control. Emulsion activity index ranged from 7 to 32m(2)/g, while foamability ranged from 100 to 155% for all hydrolysates. These improved functional properties demonstrate the potential to develop cricket protein hydrolysates as a source of functional alternative protein in food ingredient formulations.

  15. PROSNET: INTEGRATING HOMOLOGY WITH MOLECULAR NETWORKS FOR PROTEIN FUNCTION PREDICTION

    PubMed Central

    Wang, Sheng; Qu, Meng

    2016-01-01

    Automated annotation of protein function has become a critical task in the post-genomic era. Network-based approaches and homology-based approaches have been widely used and recently tested in large-scale community-wide assessment experiments. It is natural to integrate network data with homology information to further improve the predictive performance. However, integrating these two heterogeneous, high-dimensional and noisy datasets is non-trivial. In this work, we introduce a novel protein function prediction algorithm ProSNet. An integrated heterogeneous network is first built to include molecular networks of multiple species and link together homologous proteins across multiple species. Based on this integrated network, a dimensionality reduction algorithm is introduced to obtain compact low-dimensional vectors to encode proteins in the network. Finally, we develop machine learning classification algorithms that take the vectors as input and make predictions by transferring annotations both within each species and across different species. Extensive experiments on five major species demonstrate that our integration of homology with molecular networks substantially improves the predictive performance over existing approaches. PMID:27896959

  16. Functionalized periodic mesoporous organosilicas for selective adsorption of proteins

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Liu, Xiaoyan; Chen, Tong; Xu, Zhigang; Yan, Wenfu; Zhang, Haixia

    2012-07-01

    The periodic mesoporous organosilicas (PMO) with an organobridged (sbnd CH2sbnd ) was synthesized and functionalized with amino or carboxylic groups by post-synthesis methods. The functionalized PMO by changing the hydrophilic/hydrophobic property and the net charge could be used to selectively adsorb and purify proteins with different shapes and different isoelectric points (pI). The experimental result showed that Bovine serum albumin (BSA) was adsorbed quicker than hemoglobin (Hb) on the materials, and lysozyme (Lys) could not be adsorbed on these PMO materials at all. The adsorption capacity of amino groups modified PMO (PMO-(NH2)2) for BSA was 44.67 mg/g and 300.0 mg/gfor Hb on carboxylic groups modified PMO (PMO-(COOH)2). The adsorption behavior of proteins was affected strongly by the interaction among different constituents in the mixture of proteins. In addition, it is found that the adsorption rate of (PMO-(NH2)2 for adsorption of proteins was much slower than PMO-(COOH)2.

  17. Structural and functional characterization of synapse-associated protein-97

    NASA Astrophysics Data System (ADS)

    Wang, Lei

    Synapse-associated protein-97 (SAP97) as a scaffold protein plays an important role in regulating neural signal transmission in the central nervous system by coupling with activated membrane receptors, ion channels, and downstream signaling proteins. SAP97 consists of six functional domains: L27, PDZ1, PDZ2, PDZ3, SH3, and GK. Each of these domains mediates the interactions of SAP97 with other proteins. Understanding the molecular mechanism of these interactions in neural signal transmission is a goal of this study. Here high-resolution nuclear magnetic resonance spectroscopy and fluorescence anisotropy are employed towards the goal of the structural and functional characterization of SAP97; specifically, we (a) characterize the binding of the PDZ domains of SAP97 with the C-terminus of NR2B, and determine the structure of the PDZ1-NR2B; (b) characterize the binding of the PDZ domains with the C-terminus of stargazin and multiple mutants, and identify the perturbed amino acids in PDZ2 upon the binding of stargazin; (c) characterize the binding specificity carried by the beta2/beta3 loop of the PDZ3 domain. These results provide insight into the molecular mechanism for the binding specificities of the PDZ domains of SAP97, thereby furthering the development of drugs that target these domains to treat neurological diseases.

  18. Functional and technological properties of camel milk proteins: a review.

    PubMed

    Hailu, Yonas; Hansen, Egon Bech; Seifu, Eyassu; Eshetu, Mitiku; Ipsen, Richard; Kappeler, Stefan

    2016-11-01

    This review summarises current knowledge on camel milk proteins, with focus on significant peculiarities in protein composition and molecular properties. Camel milk is traditionally consumed as a fresh or naturally fermented product. Within the last couple of years, an increasing quantity is being processed in dairy plants, and a number of consumer products have been marketed. A better understanding of the technological and functional properties, as required for product improvement, has been gained in the past years. Absence of the whey protein β-LG and a low proportion of к-casein cause differences in relation to dairy processing. In addition to the technological properties, there are also implications for human nutrition and camel milk proteins are of interest for applications in infant foods, for food preservation and in functional foods. Proposed health benefits include inhibition of the angiotensin converting enzyme, antimicrobial and antioxidant properties as well as an antidiabetogenic effect. Detailed investigations on foaming, gelation and solubility as well as technological consequences of processing should be investigated further for the improvement of camel milk utilisation in the near future.

  19. Modulation of lipoprotein receptor functions by intracellular adaptor proteins.

    PubMed

    Stolt, Peggy C; Bock, Hans H

    2006-10-01

    Members of the low density lipoprotein (LDL) receptor gene family are critically involved in a wide range of physiological processes including lipid and vitamin homeostasis, cellular migration, neurodevelopment, and synaptic plasticity, to name a few. Lipoprotein receptors exert these diverse biological functions by acting as cellular uptake receptors or by inducing intracellular signaling cascades. It was discovered that a short sequence in the intracellular region of all lipoprotein receptors, Asn-Pro-X-Tyr (NPXY) is important for mediating either endocytosis or signal transduction events, and that this motif serves as a binding site for phosphotyrosine-binding (PTB) domain containing scaffold proteins. These molecular adaptors connect the transmembrane receptors with the endocytosis machinery and regulate cellular trafficking, or function as assembly sites for dynamic multi-protein signaling complexes. Whereas the LDL receptor represents the archetype of an endocytic lipoprotein receptor, the structurally closely related apolipoprotein E receptor 2 (apoER2) and very low density lipoprotein (VLDL) receptor activate a kinase-dependent intracellular signaling cascade after binding to the neuronal signaling molecule Reelin. This review focuses on two related PTB domain containing adaptor proteins that mediate these divergent lipoprotein receptor responses, ARH (autosomal recessive hypercholesterolemia protein) and Dab1 (disabled-1), and discusses the structural and molecular basis of this different behaviour.

  20. Interaction networks: from protein functions to drug discovery. A review.

    PubMed

    Chautard, E; Thierry-Mieg, N; Ricard-Blum, S

    2009-06-01

    Most genes, proteins and other components carry out their functions within a complex network of interactions and a single molecule can affect a wide range of other cell components. A global, integrative, approach has been developed for several years, including protein-protein interaction networks (interactomes). In this review, we describe the high-throughput methods used to identify new interactions and to build large interaction datasets. The minimum information required for reporting a molecular interaction experiment (MIMIx) has been defined as a standard for storing data in publicly available interaction databases. Several examples of interaction networks from molecular machines (proteasome) or organelles (phagosome, mitochondrion) to whole organisms (viruses, bacteria, yeast, fly, and worm) are given and attempts to cover the entire human interaction network are discussed. The methods used to perform the topological analysis of interaction networks and to extract biological information from them are presented. These investigations have provided clues on protein functions, signalling and metabolic pathways, and physiological processes, unraveled the molecular basis of some diseases (cancer, infectious diseases), and will be very useful to identify new therapeutic targets and for drug discovery. A major challenge is now to integrate data from different sources (interactome, transcriptome, phenome, localization) to switch from static to dynamic interaction networks. The merging of a viral interactome and the human interactome has been used to simulate viral infection, paving the way for future studies aiming at providing molecular basis of human diseases.

  1. Heated Proteins are Still Active in a Functionalized Nanoporous Support

    SciTech Connect

    Chen, Baowei; Qi, Wen N.; Li, Xiaolin; Lei, Chenghong; Liu, Jun

    2013-07-08

    We report that even under the heated condition, the conformation and activity of a protein can be hoarded in a functionalized nanoporous support via non-covalent interaction, although the hoarded protein was not exhibiting the full protein activity, the protein released subsequently still maintained its native conformation and activity. Glucose oxidase (GOX) was spontaneously and largely entrapped in aminopropyl-functionalized mesoporous silica (NH2-FMS) at 20 oC via a dominant electrostatic interaction. Although FMS-GOX displayed 45% activity of the free enzyme in solution, the GOX released from FMS exhibited its 100% activity prior to the entrapment. Surprisingly, the released GOX from FMS still maintained 89% of its initial activity prior to the entrapment after FMS-GOX was incubated at 60 oC for 1 h prior to release, while the free GOX in solution lost nearly all activity under the same incubation. Intrinsic fluorescence emission of GOX and native electrophoresis demonstrated that the heating resulted in significant conformational changes and oligomeric structures of the free GOX, but FMS efficiently maintained the thermal stability of GOX therein and resisted the thermal denaturation and oligomeric aggregation.

  2. Renal function, protein binding and pharmacological response to diazoxide.

    PubMed Central

    Pearson, R M; Breckenridge, A M

    1976-01-01

    1 The effect of rapid (10s) injections of diazoxide was studied in ten hypertensive patients with varying degrees of impairment of renal function. 2 There was a significant correlation between the patient's plasma urea concentration and reduction in mean arterial blood pressure. Diazoxide was also shown to be less highly protein bound in patients with renal failure. 3 It is suggested that the explanation for the increased hypotensive effect of diazoxide observed in patients with reduced renal function is related to higher unbound drug concentrations. PMID:973937

  3. Carotenoid Antenna Binding and Function in Retinal Proteins

    DTIC Science & Technology

    2012-08-13

    REPORT Carotenoid antenna binding and function in retinal proteins 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Xanthorhodopsin, a proton pump from the...eubacterium Salinibacter ruber, is a unique dual chromophore system that contains, in addition to retinal, the carotenoid salinixanthin as a light... carotenoid ring near the retinal ring. Substitution of the small glycine with bulky tryptophan in this site eliminates binding. The second factor is the 4

  4. Spatio-temporal coordination among functional residues in protein

    PubMed Central

    Dutta, Sutapa; Ghosh, Mahua; Chakrabarti, J.

    2017-01-01

    The microscopic basis of communication among the functional sites in bio-macromolecules is a fundamental challenge in uncovering their functions. We study the communication through temporal cross-correlation among the binding sites. We illustrate via Molecular Dynamics simulations the properties of the temporal cross-correlation between the dihedrals of a small protein, ubiquitin which participates in protein degradation in eukaryotes. We show that the dihedral angles of the residues possess non-trivial temporal cross-correlations with asymmetry with respect to exchange of the dihedrals, having peaks at low frequencies with time scales in nano-seconds and an algebraic tail with a universal exponent for large frequencies. We show the existence of path for temporally correlated degrees of freedom among the functional residues. We explain the qualitative features of the cross-correlations through a general mathematical model. The generality of our analysis suggests that temporal cross-correlation functions may provide convenient theoretical framework to understand bio-molecular functions on microscopic basis. PMID:28091537

  5. The LIM protein LIMD1 influences osteoblast differentiation and function

    SciTech Connect

    Luderer, Hilary F.; Bai Shuting; Longmore, Gregory D.

    2008-09-10

    The balance between bone resorption and bone formation involves the coordinated activities of osteoblasts and osteoclasts. Communication between these two cell types is essential for maintenance of normal bone homeostasis; however, the mechanisms regulating this cross talk are not completely understood. Many factors that mediate differentiation and function of both osteoblasts and osteoclasts have been identified. The LIM protein Limd1 has been implicated in the regulation of stress osteoclastogenesis through an interaction with the p62/sequestosome protein. Here we show that Limd1 also influences osteoblast progenitor numbers, differentiation, and function. Limd1{sup -/-} calvarial osteoblasts display increased mineralization and accelerated differentiation. While no significant differences in osteoblast number or function were detected in vivo, bone marrow stromal cells isolated from Limd1{sup -/-} mice contain significantly more osteoblast progenitors compared to wild type controls when cultured ex vivo. Furthermore, we observed a significant increase in nuclear {beta}-catenin staining in differentiating Limd1{sup -/-} calvarial osteoblasts suggesting that Limd1 is a negative regulator of canonical Wnt signaling in osteoblasts. These results demonstrate that Limd1 influences not only stress osteoclastogenesis but also osteoblast function and osteoblast progenitor commitment. Together, these data identify Limd1 as a novel regulator of both bone osetoclast and bone osteoblast development and function.

  6. Spatio-temporal coordination among functional residues in protein

    NASA Astrophysics Data System (ADS)

    Dutta, Sutapa; Ghosh, Mahua; Chakrabarti, J.

    2017-01-01

    The microscopic basis of communication among the functional sites in bio-macromolecules is a fundamental challenge in uncovering their functions. We study the communication through temporal cross-correlation among the binding sites. We illustrate via Molecular Dynamics simulations the properties of the temporal cross-correlation between the dihedrals of a small protein, ubiquitin which participates in protein degradation in eukaryotes. We show that the dihedral angles of the residues possess non-trivial temporal cross-correlations with asymmetry with respect to exchange of the dihedrals, having peaks at low frequencies with time scales in nano-seconds and an algebraic tail with a universal exponent for large frequencies. We show the existence of path for temporally correlated degrees of freedom among the functional residues. We explain the qualitative features of the cross-correlations through a general mathematical model. The generality of our analysis suggests that temporal cross-correlation functions may provide convenient theoretical framework to understand bio-molecular functions on microscopic basis.

  7. Spatio-temporal coordination among functional residues in protein.

    PubMed

    Dutta, Sutapa; Ghosh, Mahua; Chakrabarti, J

    2017-01-16

    The microscopic basis of communication among the functional sites in bio-macromolecules is a fundamental challenge in uncovering their functions. We study the communication through temporal cross-correlation among the binding sites. We illustrate via Molecular Dynamics simulations the properties of the temporal cross-correlation between the dihedrals of a small protein, ubiquitin which participates in protein degradation in eukaryotes. We show that the dihedral angles of the residues possess non-trivial temporal cross-correlations with asymmetry with respect to exchange of the dihedrals, having peaks at low frequencies with time scales in nano-seconds and an algebraic tail with a universal exponent for large frequencies. We show the existence of path for temporally correlated degrees of freedom among the functional residues. We explain the qualitative features of the cross-correlations through a general mathematical model. The generality of our analysis suggests that temporal cross-correlation functions may provide convenient theoretical framework to understand bio-molecular functions on microscopic basis.

  8. High Precision Prediction of Functional Sites in Protein Structures

    PubMed Central

    Buturovic, Ljubomir; Wong, Mike; Tang, Grace W.; Altman, Russ B.; Petkovic, Dragutin

    2014-01-01

    We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the practical application of computational methods is the precision, or positive predictive value. Precision measures the level of confidence the user should have in a particular computed functional assignment. Low precision annotations lead to futile laboratory investigations and waste scarce research resources. In this paper we describe an advanced version of the protein function annotation system FEATURE, which achieved 99% precision and average recall of 95% across 20 representative functional sites. The system uses a Support Vector Machine classifier operating on the microenvironment of physicochemical features around an amino acid. We also compared performance of our method with state-of-the-art sequence-level annotator Pfam in terms of precision, recall and localization. To our knowledge, no other functional site annotator has been rigorously evaluated against these key criteria. The software and predictive models are incorporated into the WebFEATURE service at http://feature.stanford.edu/wf4.0-beta. PMID:24632601

  9. Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses

    PubMed Central

    Alves, Murilo S.; Dadalto, Silvana P.; Gonçalves, Amanda B.; de Souza, Gilza B.; Barros, Vanessa A.; Fietto, Luciano G.

    2014-01-01

    Responses to biotic stress in plants lead to dramatic reprogramming of gene expression, favoring stress responses at the expense of normal cellular functions. Transcription factors are master regulators of gene expression at the transcriptional level, and controlling the activity of these factors alters the transcriptome of the plant, leading to metabolic and phenotypic changes in response to stress. The functional analysis of interactions between transcription factors and other proteins is very important for elucidating the role of these transcriptional regulators in different signaling cascades. In this review, we present an overview of protein-protein interactions for the six major families of transcription factors involved in plant defense: basic leucine zipper containing domain proteins (bZIP), amino-acid sequence WRKYGQK (WRKY), myelocytomatosis related proteins (MYC), myeloblastosis related proteins (MYB), APETALA2/ ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS (AP2/EREBP) and no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF), and cup-shaped cotyledon (CUC) (NAC). We describe the interaction partners of these transcription factors as molecular responses during pathogen attack and the key components of signal transduction pathways that take place during plant defense responses. These interactions determine the activation or repression of response pathways and are crucial to understanding the regulatory networks that modulate plant defense responses. PMID:28250372

  10. A Structurally Variable Hinged Tetrahedron Framework from DNA Origami

    PubMed Central

    Smith, David M.; Schüller, Verena; Forthmann, Carsten; Schreiber, Robert; Tinnefeld, Philip; Liedl, Tim

    2011-01-01

    Nanometer-sized polyhedral wire-frame objects hold a wide range of potential applications both as structural scaffolds as well as a basis for synthetic nanocontainers. The utilization of DNA as basic building blocks for such structures allows the exploitation of bottom-up self-assembly in order to achieve molecular programmability through the pairing of complementary bases. In this work, we report on a hollow but rigid tetrahedron framework of 75 nm strut length constructed with the DNA origami method. Flexible hinges at each of their four joints provide a means for structural variability of the object. Through the opening of gaps along the struts, four variants can be created as confirmed by both gel electrophoresis and direct imaging techniques. The intrinsic site addressability provided by this technique allows the unique targeted attachment of dye and/or linker molecules at any point on the structure's surface, which we prove through the superresolution fluorescence microscopy technique DNA PAINT. PMID:21941629

  11. Control of protein adsorption on functionalized electrospun fibers.

    PubMed

    Grafahrend, Dirk; Calvet, Julia Lleixa; Klinkhammer, Kristina; Salber, Jochen; Dalton, Paul D; Möller, Martin; Klee, Doris

    2008-10-15

    Electrospun fibers that are protein resistant and functionalized with bioactive signals were produced by solution electrospinning amphiphilic block copolymers. Poly (ethylene glycol)-block-poly(D,L-lactide) (PEG-b-PDLLA) was synthesized in two steps, with a PEG segment of 10 kDa, while the PDLLA block ranged from 20 to 60 kDa. Depending on the PEG and PDLLA segment ratio, as well as solvent selection, the hydrophilicity and protein adsorption could be altered on the electrospun mesh. Furthermore, an alpha-acetal PEG-b-PDLLA was synthesized that allowed the conjugation of active molecules, resulting in surface functionalization of the electrospun fiber. Electrospun material with varying morphologies and diameter were electrospun from 10, 20, and 30 wt.% solutions. Sessile drop measurements showed a reduction in the contact angle from 120 degrees for pure poly(D,L-lactide) with increasing PEG/PDLLA ratio. All electrospun block PEG-b-PDLLA fibers had hydrophilic properties, with contact angles below 45 degrees . The fibers were collected onto six-arm star-poly(ethylene glycol) (star-PEG) coated silicon wafers and incubated with fluorescently labeled proteins. All PEG-b-PDLLA fibers showed no detectable adsorption of bovine serum albumin (BSA) independent of their composition while a dependence between hydrophobic block length was observed for streptavidin adsorption. Fibers of block copolymers with PDLLA blocks smaller than 39 kDa showed no adsorption of BSA or streptavidin, indicating good non-fouling properties. Fibers were surface functionalized with N(epsilon)-(+)-biotinyl-L-lysine (biocytin) or RGD peptide by attaching the molecule to the PEG block during synthesis. Protein adsorption measurements, and the controlled interaction of biocytin with fluorescently labeled streptavidin, showed that the electrospun fibers were both resistant to protein adsorption and are functionalized. Fibroblast adhesion was contrasting between the unfunctionalized and RGD

  12. Identification of Mitral Annulus Hinge Point Based on Local Context Feature and Additive SVM Classifier.

    PubMed

    Zhang, Jianming; Liu, Yangchun; Xu, Wei

    2015-01-01

    The position of the hinge point of mitral annulus (MA) is important for segmentation, modeling and multimodalities registration of cardiac structures. The main difficulties in identifying the hinge point of MA are the inherent noisy, low resolution of echocardiography, and so on. This work aims to automatically detect the hinge point of MA by combining local context feature with additive support vector machines (SVM) classifier. The innovations are as follows: (1) designing a local context feature for MA in cardiac ultrasound image; (2) applying the additive kernel SVM classifier to identify the candidates of the hinge point of MA; (3) designing a weighted density field of candidates which represents the blocks of candidates; and (4) estimating an adaptive threshold on the weighted density field to get the position of the hinge point of MA and exclude the error from SVM classifier. The proposed algorithm is tested on echocardiographic four-chamber image sequence of 10 pediatric patients. Compared with the manual selected hinge points of MA which are selected by professional doctors, the mean error is in 0.96 ± 1.04 mm. Additive SVM classifier can fast and accurately identify the MA hinge point.

  13. DND protein functions as a translation repressor during zebrafish embryogenesis.

    PubMed

    Kobayashi, Manami; Tani-Matsuhana, Saori; Ohkawa, Yasuka; Sakamoto, Hiroshi; Inoue, Kunio

    2017-03-04

    Germline and somatic cell distinction is regulated through a combination of microRNA and germ cell-specific RNA-binding proteins in zebrafish. An RNA-binding protein, DND, has been reported to relieve the miR-430-mediated repression of some germ plasm mRNAs such as nanos3 and tdrd7 in primordial germ cells (PGCs). Here, we showed that miR-430-mediated repression is not counteracted by the overexpression of DND protein in somatic cells. Using a λN-box B tethering assay in the embryo, we found that tethering of DND to reporter mRNA results in translation repression without affecting mRNA stability. Translation repression by DND was not dependent on another germline-specific translation repressor, Nanos3, in zebrafish embryos. Moreover, our data suggested that DND represses translation of nanog and dnd mRNAs, whereas an RNA-binding protein DAZ-like (DAZL) promotes dnd mRNA translation. Thus, our study showed that DND protein functions as a translation repressor of specific mRNAs to control PGC development in zebrafish.

  14. The Structure and Function of Non-Collagenous Bone Proteins

    NASA Technical Reports Server (NTRS)

    Hook, Magnus

    1997-01-01

    The long-term goal for this program is to determine the structural and functional relationships of bone proteins and proteins that interact with bone. This information will used to design useful pharmacological compounds that will have a beneficial effect in osteoporotic patients and in the osteoporotic-like effects experienced on long duration space missions. The first phase of this program, funded under a cooperative research agreement with NASA through the Texas Medical Center, aimed to develop powerful recombinant expression systems and purification methods for production of large amounts of target proteins. Proteins expressed in sufficient'amount and purity would be characterized by a variety of structural methods, and made available for crystallization studies. In order to increase the likelihood of crystallization and subsequent high resolution solution of structures, we undertook to develop expression of normal and mutant forms of proteins by bacterial and mammalian cells. In addition to the main goals of this program, we would also be able to provide reagents for other related studies, including development of anti-fibrotic and anti-metastatic therapeutics.

  15. Maximizing the functional lifetime of protein a resins.

    PubMed

    Zhang, Jennifer; Siva, Sethu; Caple, Ryan; Ghose, Sanchayita; Gronke, Rob

    2017-02-20

    Protein A chromatography is currently the industry gold-standard for monoclonal antibody and Fc-fusion protein purification. The high cost of Protein A, however, makes resin lifetime and resin reuse an important factor for process economics. Typical resin lifetime studies performed in the industry usually examine the effect of resin re-use on binding capacity, yield, and product quality without answering the fundamental question of what is causing the decrease in performance. A two part mechanistic study was conducted in an attempt to decouple the effect of the two possible factors (resin hydrolysis and/or degradation vs. resin fouling) on column performance over lifetime of the most commonly used alkali-stable Protein A resins (MabSelect SuRe and MabSelect SuRe LX). The change in binding capacity as a function of sodium hydroxide concentration (rate of hydrolysis), temperature, and stabilizing additives was examined. Additionally, resin extraction studies and product cycling studies were conducted to determine cleaning effectiveness (resin fouling) of various cleaning strategies. Sodium hydroxide-based cleaning solutions were shown to be more effective at preventing resin fouling. Conversely, cold temperature and the use of stabilizing additives in conjunction with sodium hydroxide were found to be beneficial in minimizing the rate of Protein A ligand hydrolysis. An effective and robust cleaning strategy is presented here to maximize resin lifetime and thereby the number of column cycles for future manufacturing processes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 2017.

  16. Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics.

    PubMed

    Tiwari, Sadhana; Vinchurkar, Madhuri; Rao, V Ramgopal; Garnier, Gil

    2017-03-02

    Distinguishing a specific biomarker from a biofluid sample containing a large variety of proteins often requires the selective preconcentration of that particular biomarker to a detectable level for analysis. Low-cost, paper-based device is an emerging opportunity in diagnostics. In the present study, we report a novel Zinc oxide nanorods functionalized paper platform for the preconcentration of Myoglobin, a cardiac biomarker. Zinc oxide nanorods were grown on a Whatman filter paper no. 1 via the standard hydrothermal route. The growth of Zinc oxide nanorods on paper was confirmed by a combination of techniques consisting of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS,) scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX) analysis. The Zinc oxide nanorods modified Whatman filter paper (ZnO-NRs/WFP) was further tested for use as a protein preconcentrator. Paper-based ELISA was performed for determination of pre-concentration of cardiac marker protein Myoglobin using the new ZnO-NRs/WFP platform. The ZnO-NRs/WFP could efficiently capture the biomarker even from a very dilute solution (Myoglobin < 50 nM). Our ELISA results show a threefold enhancement in protein capture with ZnO-NRs/WFP compared to unmodified Whatman filter paper, allowing accurate protein analysis and showing the diagnostic concept.

  17. Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics

    NASA Astrophysics Data System (ADS)

    Tiwari, Sadhana; Vinchurkar, Madhuri; Rao, V. Ramgopal; Garnier, Gil

    2017-03-01

    Distinguishing a specific biomarker from a biofluid sample containing a large variety of proteins often requires the selective preconcentration of that particular biomarker to a detectable level for analysis. Low-cost, paper-based device is an emerging opportunity in diagnostics. In the present study, we report a novel Zinc oxide nanorods functionalized paper platform for the preconcentration of Myoglobin, a cardiac biomarker. Zinc oxide nanorods were grown on a Whatman filter paper no. 1 via the standard hydrothermal route. The growth of Zinc oxide nanorods on paper was confirmed by a combination of techniques consisting of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS,) scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX) analysis. The Zinc oxide nanorods modified Whatman filter paper (ZnO-NRs/WFP) was further tested for use as a protein preconcentrator. Paper-based ELISA was performed for determination of pre-concentration of cardiac marker protein Myoglobin using the new ZnO-NRs/WFP platform. The ZnO-NRs/WFP could efficiently capture the biomarker even from a very dilute solution (Myoglobin < 50 nM). Our ELISA results show a threefold enhancement in protein capture with ZnO-NRs/WFP compared to unmodified Whatman filter paper, allowing accurate protein analysis and showing the diagnostic concept.

  18. Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics

    PubMed Central

    Tiwari, Sadhana; Vinchurkar, Madhuri; Rao, V. Ramgopal; Garnier, Gil

    2017-01-01

    Distinguishing a specific biomarker from a biofluid sample containing a large variety of proteins often requires the selective preconcentration of that particular biomarker to a detectable level for analysis. Low-cost, paper-based device is an emerging opportunity in diagnostics. In the present study, we report a novel Zinc oxide nanorods functionalized paper platform for the preconcentration of Myoglobin, a cardiac biomarker. Zinc oxide nanorods were grown on a Whatman filter paper no. 1 via the standard hydrothermal route. The growth of Zinc oxide nanorods on paper was confirmed by a combination of techniques consisting of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS,) scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX) analysis. The Zinc oxide nanorods modified Whatman filter paper (ZnO-NRs/WFP) was further tested for use as a protein preconcentrator. Paper-based ELISA was performed for determination of pre-concentration of cardiac marker protein Myoglobin using the new ZnO-NRs/WFP platform. The ZnO-NRs/WFP could efficiently capture the biomarker even from a very dilute solution (Myoglobin < 50 nM). Our ELISA results show a threefold enhancement in protein capture with ZnO-NRs/WFP compared to unmodified Whatman filter paper, allowing accurate protein analysis and showing the diagnostic concept. PMID:28252113

  19. Urothelial function reconsidered: A role in urinary protein secretion

    PubMed Central

    Deng, Fang-Ming; Ding, Mingxiao; Lavker, Robert M.; Sun, Tung-Tien

    2001-01-01

    Mammalian bladder epithelium functions as an effective permeability barrier. We demonstrate here that this epithelium can also function as a secretory tissue directly involved in modifying urinary protein composition. Our data indicate that normal bovine urothelium synthesizes, as its major differentiation products, two well-known proteases: tissue-type plasminogen activator and urokinase, as well as a serine protease inhibitor, PP5. Moreover, we demonstrate that the urothelium secretes these proteins in a polarized fashion into the urine via a cAMP- and calcium-regulated pathway. Urinary plasminogen activators of ruminants are therefore urothelium derived rather then kidney derived as in some other species; this heterogeneity may have evolved in response to different physiological or dietary factors. In conjunction with our recent finding that transgenic mouse urothelium can secrete ectopically expressed human growth hormone into the urine, our data establish that normal mammalian urothelium can function not only as a permeability barrier but also as a secretor of urinary proteins that can play physiological or pathological roles in the urinary tract. PMID:11136252

  20. Moving in the Right Direction: Protein Vibrational Steering Function.

    PubMed

    Niessen, Katherine A; Xu, Mengyang; Paciaroni, Alessandro; Orecchini, Andrea; Snell, Edward H; Markelz, Andrea G

    2017-03-14

    Nearly all protein functions require structural change, such as enzymes clamping onto substrates, and ion channels opening and closing. These motions are a target for possible new therapies; however, the control mechanisms are under debate. Calculations have indicated protein vibrations enable structural change. However, previous measurements found these vibrations only weakly depend on the functional state. By using the novel technique of anisotropic terahertz microscopy, we find that there is a dramatic change to the vibrational directionality with inhibitor binding to lysozyme, whereas the vibrational energy distribution, as measured by neutron inelastic scattering, is only slightly altered. The anisotropic terahertz measurements provide unique access to the directionality of the intramolecular vibrations, and immediately resolve the inconsistency between calculations and previous measurements, which were only sensitive to the energy distribution. The biological importance of the vibrational directions versus the energy distribution is revealed by our calculations comparing wild-type lysozyme with a higher catalytic rate double deletion mutant. The vibrational energy distribution is identical, but the more efficient mutant shows an obvious reorientation of motions. These results show that it is essential to characterize the directionality of motion to understand and control protein dynamics to optimize or inhibit function.

  1. Functional characterization of Clostridium difficile spore coat proteins.

    PubMed

    Permpoonpattana, Patima; Phetcharaburanin, Jutarop; Mikelsone, Anna; Dembek, Marcin; Tan, Sisareuth; Brisson, Marie-Clémence; La Ragione, Roberto; Brisson, Alain R; Fairweather, Neil; Hong, Huynh A; Cutting, Simon M

    2013-04-01

    Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins (cotA, cotB, cotCB, cotD, cotE, and sodA) were disrupted by ClosTron insertional mutagenesis. Mutation of one gene, cotA, presented a major structural defect in spore assembly, with a clear misassembly of the outermost layers of the spore coat. The CotA protein is most probably subject to posttranslational modification and could play a key role in stabilizing the spore coat. Surprisingly, mutation of the other spore coat genes did not affect the integrity of the spore, although for the cotD, cotE, and sodA mutants, enzyme activity was reduced or abolished. This could imply that these enzymatic proteins are located in the exosporium or alternatively that they are structurally redundant. Of the spore coat proteins predicted to carry enzymatic activity, three were confirmed to be enzymes using both in vivo and in vitro methods, the latter using recombinant expressed proteins. These were a manganese catalase, encoded by cotD, a superoxide dismutase (SOD), encoded by sodA, and a bifunctional enzyme with peroxiredoxin and chitinase activity, encoded by cotE. These enzymes being exposed on the spore surface would play a role in coat polymerization and detoxification of H2O2. Two additional proteins, CotF (a tyrosine-rich protein and potential substrate for SodA) and CotG (a putative manganese catalase) were shown to be located at the spore surface.

  2. Functional Analysis of GLRX5 Mutants Reveals Distinct Functionalities of GLRX5 Protein.

    PubMed

    Liu, Gang; Wang, Yongwei; Anderson, Gregory J; Camaschella, Clara; Chang, Yanzhong; Nie, Guangjun

    2016-01-01

    Glutaredoxin 5 (GLRX5) is a 156 amino acid mitochondrial protein that plays an essential role in mitochondrial iron-sulfur cluster transfer. Mutations in this protein were reported to result in sideroblastic anemia and variant nonketotic hyperglycinemia in human. Recently, we have characterized a Chinese congenital sideroblastic anemia patient who has two compound heterozygous missense mutations (c. 301 A>C and c. 443 T>C) in his GLRX5 gene. Herein, we developed a GLRX5 knockout K562 cell line and studied the biochemical functions of the identified pathogenic mutations and other conserved amino acids with predicted essential functions. We observed that the K101Q mutation (due to c. 301 A>C mutation) may prevent the binding of [Fe-S] to GLRX5 protein, while L148S (due to c. 443 T>C mutation) may interfere with [Fe-S] transfer from GLRX5 to iron regulatory protein 1 (IRP1), mitochondrial aconitase (m-aconitase) and ferrochelatase. We also demonstrated that L148S is functionally complementary to the K51del mutant with respect to Fe/S-ferrochelatase, Fe/S-IRP1, Fe/S-succinate dehydrogenase, and Fe/S-m-aconitase biosynthesis and lipoylation of pyruvate dehydrogenase complex and α-ketoglutarate dehydrogenase complex. Furthermore, we demonstrated that the mutations of highly conserved amino acid residues in GLRX5 protein can have different effects on downstream Fe/S proteins. Collectively, our current work demonstrates that GLRX5 protein is multifunctional in [Fe-S] protein synthesis and maturation and defects of the different amino acids of the protein will lead to distinct effects on downstream Fe/S biosynthesis.

  3. Adrenal Mitochondria and Steroidogenesis: From Individual Proteins to Functional Protein Assemblies

    PubMed Central

    Midzak, Andrew; Papadopoulos, Vassilios

    2016-01-01

    The adrenal cortex is critical for physiological function as the central site of glucocorticoid and mineralocorticoid synthesis. It possesses a great degree of specialized compartmentalization at multiple hierarchical levels, ranging from the tissue down to the molecular levels. In this paper, we discuss this functionalization, beginning with the tissue zonation of the adrenal cortex and how this impacts steroidogenic output. We then discuss the cellular biology of steroidogenesis, placing special emphasis on the mitochondria. Mitochondria are classically known as the “powerhouses of the cell” for their central role in respiratory adenosine triphosphate synthesis, and attention is given to mitochondrial electron transport, in both the context of mitochondrial respiration and mitochondrial steroid metabolism. Building on work demonstrating functional assembly of large protein complexes in respiration, we further review research demonstrating a role for multimeric protein complexes in mitochondrial cholesterol transport, steroidogenesis, and mitochondria–endoplasmic reticulum contact. We aim to highlight with this review the shift in steroidogenic cell biology from a focus on the actions of individual proteins in isolation to the actions of protein assemblies working together to execute cellular functions. PMID:27524977

  4. Pulse Dipolar ESR and Protein Superstructures and Function

    NASA Astrophysics Data System (ADS)

    Freed, Jack

    2014-03-01

    Pulse dipolar electron-spin resonance (PDS-ESR) has emerged as a powerful methodology for the study of protein structure and function. This technology, in the form of double quantum coherence (DQC) - ESR and double-electron-electron resonance (DEER) in conjunction with site-directed spin-labeling will be described. It enables the measurement of distances and their distributions in the range of 1-9 nm between pairs of spins labeled at two sites in the protein. Many biological objects can be studied: soluble and membrane proteins, protein complexes, etc. Many sample morphologies are possible: uniform, heterogeneous, etc. thereby permitting a variety of sample types: solutions, liposomes, micelles, bicelles. Concentrations from micromolar to tens of millimolar are amenable, requiring only small amounts of biomolecules. The distances are quite accurate, so a relatively small number of them are sufficient to reveal structures and functional details. Several examples will be shown. The first is defining the protein complexes that mediate bacterial chemotaxis, which is the process whereby cells modulate their flagella-driven motility in response to environmental cues. It relies on a complex sensory apparatus composed of transmembrane receptors, histidine kinases, and coupling proteins. PDS-based models have captured key architectural features of the receptor kinase arrays and the flagellar motor, and their changes in conformation and dynamics that accompany kinase activation and motor switching. Another example will be determining the conformational states and cycling of a membrane transporter, GltPh, which is a homotrimer, in its apo, substrate-bound, and inhibitor-bound, states in membrane vesicles providing insight into its energetics. In a third example the structureless (in solution) proteins alpha-synuclein and tau, which are important in Parkinson's disease and in neurodegeneration will be described and the structures they take on in contact with membranes will be

  5. Polyethyleneimine-modified graphene oxide nanocomposites for effective protein functionalization

    NASA Astrophysics Data System (ADS)

    Weng, Yejing; Jiang, Bo; Yang, Kaiguang; Sui, Zhigang; Zhang, Lihua; Zhang, Yukui

    2015-08-01

    A facile method to prepare a biocompatible graphene oxide (GO)-based substrate for protein immobilization was developed to overcome the drawbacks of GO, such as the strong electrostatic and hydrophobic interactions which could potentially alter the conformation and biological activity of proteins. The GO was coated with hydrophilic branched polyethyleneimine (BPEI), while Concanavalin A (Con A) as a model lectin protein was employed to fabricate the functionalized composites to evaluate the feasibility of this strategy. The composites exhibit an extremely high binding capacity for glycoproteins (i.e. IgG 538.3 mg g-1), which are superior to other immobilized materials. Moreover, they can work well in 500-fold non-glycoprotein interference and even in complex biological samples. All these data suggest that the GO@BPEI composites will have great potential as scaffolds for proteins fully exerting their biofunctions.A facile method to prepare a biocompatible graphene oxide (GO)-based substrate for protein immobilization was developed to overcome the drawbacks of GO, such as the strong electrostatic and hydrophobic interactions which could potentially alter the conformation and biological activity of proteins. The GO was coated with hydrophilic branched polyethyleneimine (BPEI), while Concanavalin A (Con A) as a model lectin protein was employed to fabricate the functionalized composites to evaluate the feasibility of this strategy. The composites exhibit an extremely high binding capacity for glycoproteins (i.e. IgG 538.3 mg g-1), which are superior to other immobilized materials. Moreover, they can work well in 500-fold non-glycoprotein interference and even in complex biological samples. All these data suggest that the GO@BPEI composites will have great potential as scaffolds for proteins fully exerting their biofunctions. Electronic supplementary information (ESI) available: Cell viability assay, enrichment of standard glycoprotein, pretreatment and analysis of real

  6. Assessing scoring functions for protein-ligand interactions.

    PubMed

    Ferrara, Philippe; Gohlke, Holger; Price, Daniel J; Klebe, Gerhard; Brooks, Charles L

    2004-06-03

    An assessment of nine scoring functions commonly applied in docking using a set of 189 protein-ligand complexes is presented. The scoring functions include the CHARMm potential, the scoring function DrugScore, the scoring function used in AutoDock, the three scoring functions implemented in DOCK, as well as three scoring functions implemented in the CScore module in SYBYL (PMF, Gold, ChemScore). We evaluated the abilities of these scoring functions to recognize near-native configurations among a set of decoys and to rank binding affinities. Binding site decoys were generated by molecular dynamics with restraints. To investigate whether the scoring functions can also be applied for binding site detection, decoys on the protein surface were generated. The influence of the assignment of protonation states was probed by either assigning "standard" protonation states to binding site residues or adjusting protonation states according to experimental evidence. The role of solvation models in conjunction with CHARMm was explored in detail. These include a distance-dependent dielectric function, a generalized Born model, and the Poisson equation. We evaluated the effect of using a rigid receptor on the outcome of docking by generating all-pairs decoys ("cross-decoys") for six trypsin and seven HIV-1 protease complexes. The scoring functions perform well to discriminate near-native from misdocked conformations, with CHARMm, DOCK-energy, DrugScore, ChemScore, and AutoDock yielding recognition rates of around 80%. Significant degradation in performance is observed in going from decoy to cross-decoy recognition for CHARMm in the case of HIV-1 protease, whereas DrugScore and ChemScore, as well as CHARMm in the case of trypsin, show only small deterioration. In contrast, the prediction of binding affinities remains problematic for all of the scoring functions. ChemScore gives the highest correlation value with R(2) = 0.51 for the set of 189 complexes and R(2) = 0.43 for the set

  7. Membrane proteins in four acts: function precedes structure determination.

    PubMed

    Cramer, W A; Zakharov, S D; Saif Hasan, S; Zhang, H; Baniulis, D; Zhalnina, M V; Soriano, G M; Sharma, O; Rochet, J C; Ryan, C; Whitelegge, J; Kurisu, G; Yamashita, E

    2011-12-01

    Studies on four membrane protein systems, which combine information derived from crystal structures and biophysical studies have emphasized, as a precursor to crystallization, demonstration of functional activity. These assays have relied on sensitive spectrophotometric, electrophysiological, and microbiological assays of activity to select purification procedures that lead to functional complexes and with greater likelihood to successful crystallization: (I), Hetero-oligomeric proteins involved in electron transport/proton translocation. (1) Crystal structures of the eight subunit hetero-oligomeric trans-membrane dimeric cytochrome b(6)f complex were obtained from cyanobacteria using a protocol that allowed an analysis of the structure and function of internal lipids at specific intra-membrane, intra-protein sites. Proteolysis and monomerization that inactivated the complex and prevented crystallization was minimized through the use of filamentous cyanobacterial strains that seem to have a different set of membrane-active proteases. (2) An NADPH-quinone oxido-reductase isolated from cyanobacteria contains an expanded set of 17 monotopic and polytopic hetero-subunits. (II) β-Barrel outer membrane proteins (OMPs). High resolution structures of the vitamin B(12) binding protein, BtuB, solved in meso and in surfo, provide the best example of the differences in such structures that were anticipated in the first application of the lipid cubic phase to membrane proteins [1]. A structure of the complex of BtuB with the colicin E3 and E2 receptor binding domain established a "fishing pole" model for outer membrane receptor function in cellular import of nuclease colicins. (III) A modified faster purification procedure contributed to significantly improved resolution (1.83Å) of the universal porin, OmpF, the first membrane protein for which meaningful 3D crystals have been obtained [2]. A crystal structure of the N-terminal translocation domain of colicin E3 complexed to

  8. Exopolysaccharides modify functional properties of whey protein concentrate.

    PubMed

    Deep, G; Hassan, A N; Metzger, L

    2012-11-01

    The objective of this research was to produce whey protein concentrate (WPC) with modified functionality using exopolysaccharide- (EPS) producing cultures. Two different EPS-producing cultures, Lactococcus lactis ssp. cremoris JFR and Streptococcus thermophilus, producing EPS1 and EPS2 respectively, were used in this study. One EPS-nonproducing commercial cheese culture (DVS 850; Chr. Hansen, Milwaukee, WI) was used as the control. Reconstituted sweet whey powder was used in this study to eliminate variations from fresh whey. Cultures grown overnight in reconstituted WPC (10% wt/vol) were added, directly or after overnight cooling (cooled EPS), at 2% (wt/vol) to 6% (wt/wt) solution of reconstituted whey. Whey was then high-temperature, short-time pasteurized at 75 °C for 35s and ultrafiltered to a volume reduction factor of 5. Ultrafiltered whey (retentate) was spray dried at inlet and outlet air temperatures of 200 and 90 °C, respectively, to obtain WPC. In general, the solubility of WPC was higher at pH 7 than at pH 3. Whey protein concentrate containing EPS2 exhibited higher protein solubility than did WPC containing no EPS. Also, the presence of EPS in WPC decreased protein denaturation. The emulsifying ability of WPC containing EPS was higher than that in control. Addition of EPS to WPC significantly enhanced its gelling ability. Foam overrun and hydrophobicity of WPC were not affected by addition of EPS. In conclusion, data obtained from this study show that EPS modify WPC functionality. The extent of modification depends on the type of EPS. Cooling of culture containing EPS before its addition to whey further reduced WPC protein denaturation and increased its solubility at pH 7 and gel hardness.

  9. Heat-induced whey protein gels: protein-protein interactions and functional properties.

    PubMed

    Havea, Palatasa; Watkinson, Philip; Kuhn-Sherlock, Barbara

    2009-02-25

    Heat-induced gelation (80 degrees C for 30 min or 85 degrees C for 60 min) of whey protein concentrate (WPC) solutions was studied using small deformation dynamic rheology, small and large deformation compression, and polyacrylamide gel electrophoresis (PAGE). The WPC solutions (15% w/w, pH 6.9) were prepared by dispersing WPC powder in water (control), 1% (w/w) sodium dodecyl sulfate (SDS) solution, and N-ethylmaleimide (NEM) solution at a protein/NEM molar ratio of 1:1 or in 10 mM dithiothreitol (DTT) solution. PAGE analyses showed that the heat treatment of control solutions contained both disulfide and non-covalent linkages between denatured protein molecules. Only disulfide linkages were formed in heated SDS-WPC solutions, whereas only non-covalent linkages were formed in DTT-WPC and NEM-WPC solutions during heating. In heated NEM-WPC solutions, the pre-existing disulfide linkages remained unaltered. Small deformation rheology measurements showed that the storage modulus (G') values, compared with those of the control WPC gels (approximately 14000 Pa), were 3 times less for the SDS-WPC gels (approximately 4000 Pa), double for the NEM-WPC gels (approximately 24000 Pa), and even higher for the DTT-WPC gels (approximately 30000 Pa). Compression tests suggested that the rubberiness (fracture strain) of the WPC gels increased as the degree of disulfide linkages within the gels increased, whereas the stiffness (modulus) of the gels increased as the degree of non-covalent associations among the denatured protein molecules increased.

  10. A novel neural response algorithm for protein function prediction

    PubMed Central

    2012-01-01

    Background Large amounts of data are being generated by high-throughput genome sequencing methods. But the rate of the experimental functional characterization falls far behind. To fill the gap between the number of sequences and their annotations, fast and accurate automated annotation methods are required. Many methods, such as GOblet, GOFigure, and Gotcha, are designed based on the BLAST search. Unfortunately, the sequence coverage of these methods is low as they cannot detect the remote homologues. Adding to this, the lack of annotation specificity advocates the need to improve automated protein function prediction. Results We designed a novel automated protein functional assignment method based on the neural response algorithm, which simulates the neuronal behavior of the visual cortex in the human brain. Firstly, we predict the most similar target protein for a given query protein and thereby assign its GO term to the query sequence. When assessed on test set, our method ranked the actual leaf GO term among the top 5 probable GO terms with accuracy of 86.93%. Conclusions The proposed algorithm is the first instance of neural response algorithm being used in the biological domain. The use of HMM profiles along with the secondary structure information to define the neural response gives our method an edge over other available methods on annotation accuracy. Results of the 5-fold cross validation and the comparison with PFP and FFPred servers indicate the prominent performance by our method. The program, the dataset, and help files are available at http://www.jjwanglab.org/NRProF/. PMID:23046521

  11. Functional aspects of membrane association of reggie/flotillin proteins.

    PubMed

    Banning, Antje; Tomasovic, Ana; Tikkanen, Ritva

    2011-12-01

    Flotillin-2 and flotillin-1, also called reggie-1 and reggie-2, are ubiquitously expressed and highly conserved proteins. Originally, they were described as neuronal regeneration proteins, but they appear to function in a wide variety of cellular processes, such as membrane receptor signaling, endocytosis, phagocytosis and cell adhesion. The molecular details of the function of flotillins in these processes have only been partially clarified. Flotillins are associated with cholesterol and sphingolipid enriched membrane microdomains known as rafts, and some findings even suggest that they define their own kind of a microdomain. The mechanism of the membrane association of flotillins appears to rely mainly on acylation (myristoylation and/or palmitoylation), localizing flotillins onto the cytosolic side of the membranes, whereas no transmembrane domains are present. In addition, flotillins show a strong tendency to form homo- and hetero-oligomers with each other. In this review, we will summarize the recent findings on the function of flotillins and discuss the mechanisms that might regulate their function, such as membrane association, oligomerization and phosphorylation.

  12. The importance of slow motions for protein functional loops.

    PubMed

    Skliros, Aris; Zimmermann, Michael T; Chakraborty, Debkanta; Saraswathi, Saras; Katebi, Ataur R; Leelananda, Sumudu P; Kloczkowski, Andrzej; Jernigan, Robert L

    2012-02-07

    Loops in proteins that connect secondary structures such as alpha-helix and beta-sheet, are often on the surface and may play a critical role in some functions of a protein. The mobility of loops is central for the motional freedom and flexibility requirements of active-site loops and may play a critical role for some functions. The structures and behaviors of loops have not been studied much in the context of the whole structure and its overall motions, especially how these might be coupled. Here we investigate loop motions by using coarse-grained structures (C(α) atoms only) to solve the motions of the system by applying Lagrange equations with elastic network models to learn about which loops move in an independent fashion and which move in coordination with domain motions, faster and slower, respectively. The normal modes of the system are calculated using eigen-decomposition of the stiffness matrix. The contribution of individual modes and groups of modes is investigated for their effects on all residues in each loop by using Fourier analyses. Our results indicate overall that the motions of functional sets of loops behave in similar ways as the whole structure. But overall only a relatively few loops move in coordination with the dominant slow modes of motion, and these are often closely related to function.

  13. Decreased function of survival motor neuron protein impairs endocytic pathways

    PubMed Central

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S.; O’Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C. Q.; Cook, Steven J.; Poulogiannis, George; Atwood, Walter J.; Hall, David H.; Hart, Anne C.

    2016-01-01

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death. PMID:27402754

  14. STRING: a database of predicted functional associations between proteins.

    PubMed

    von Mering, Christian; Huynen, Martijn; Jaeggi, Daniel; Schmidt, Steffen; Bork, Peer; Snel, Berend

    2003-01-01

    Functional links between proteins can often be inferred from genomic associations between the genes that encode them: groups of genes that are required for the same function tend to show similar species coverage, are often located in close proximity on the genome (in prokaryotes), and tend to be involved in gene-fusion events. The database STRING is a precomputed global resource for the exploration and analysis of these associations. Since the three types of evidence differ conceptually, and the number of predicted interactions is very large, it is essential to be able to assess and compare the significance of individual predictions. Thus, STRING contains a unique scoring-framework based on benchmarks of the different types of associations against a common reference set, integrated in a single confidence score per prediction. The graphical representation of the network of inferred, weighted protein interactions provides a high-level view of functional linkage, facilitating the analysis of modularity in biological processes. STRING is updated continuously, and currently contains 261 033 orthologs in 89 fully sequenced genomes. The database predicts functional interactions at an expected level of accuracy of at least 80% for more than half of the genes; it is online at http://www.bork.embl-heidelberg.de/STRING/.

  15. The chaperone like function of the nonhistone protein HMGB1

    SciTech Connect

    Osmanov, Taner; Ugrinova, Iva; Pasheva, Evdokia

    2013-03-08

    -synthetic acetylation for the chaperone function of HMGB1 protein. The presence of an acetyl groups at Lys 2 decreases strongly the stimulating effect of the protein in the stepwise salt dialysis experiment and the same tendency persisted in the dialysis free experiment.

  16. Functional interactions between a glutamine synthetase promoter and MYB proteins.

    PubMed

    Gómez-Maldonado, Josefa; Avila, Concepción; Torre, Fernando; Cañas, Rafael; Cánovas, Francisco M; Campbell, Malcolm M

    2004-08-01

    In Scots pine (Pinus sylvestris), ammonium assimilation is catalysed by glutamine synthetase (GS) [EC 6.3.1.2], which is encoded by two genes, PsGS1a and PsGS1b. PsGS1b is expressed in the vascular tissue throughout the plant body, where it is believed to play a role in recycling ammonium released by various facets of metabolism. The mechanisms that may underpin the transcriptional regulation of PsGS1b were explored. The PsGS1b promoter contains a region that is enriched in previously characterized cis-acting elements, known as AC elements. Pine nuclear proteins bound these AC element-rich regions in a tissue-specific manner. As previous experiments had shown that R2R3-MYB transcription factors could interact with AC elements, the capacity of the AC elements in the PsGS1b promoter to interact with MYB proteins was examined. Two MYB proteins from loblolly pine (Pinus taeda), PtMYB1 and PtMYB4, bound to the PsGS1b promoter were able to activate transcription from this promoter in yeast, arabidopsis and pine cells. Immunolocalization experiments revealed that the two MYB proteins were most abundant in cells previously shown to accumulate PsGS1b transcripts. Immunoprecipitation analysis and supershift electrophoretic mobility shift assays implicated these same two proteins in the formation of complexes between pine nuclear extracts and the PsGS1b promoter. Given that these MYB proteins were previously shown to have the capacity to activate gene expression related to lignin biosynthesis, we hypothesize that they may function to co-regulate lignification, a process that places significant demands on nitrogen recycling, and GS, the major enzyme involved in the nitrogen recycling pathway.

  17. Human PIEZO1 Ion Channel Functions as a Split Protein

    PubMed Central

    Bae, Chilman; Suchyna, Thomas M.; Ziegler, Lynn; Sachs, Frederick; Gottlieb, Philip A.

    2016-01-01

    PIEZO1 is a mechanosensitive eukaryotic cation-selective channel that rapidly inactivates in a voltage-dependent manner. We previously showed that a fluorescent protein could be encoded within the hPIEZO1 sequence without loss of function. In this work, we split the channel into two at this site and asked if coexpression would produce a functional channel or whether gating and permeation might be contained in either segment. The split protein was expressed in two segments by a bicistronic plasmid where the first segment spanned residues 1 to 1591, and the second segment spanned 1592 to 2521. When the “split protein” is coexpressed, the parts associate to form a normal channel. We measured the whole-cell, cell-attached and outside-out patch currents in transfected HEK293 cells. Indentation produced whole-cell currents monotonic with the stimulus. Single channel recordings showed voltage-dependent inactivation. The Boltzmann activation curve for outside-out patches had a slope of 8.6/mmHg vs 8.1 for wild type, and a small leftward shift in the midpoint (32 mmHg vs 41 mmHg). The association of the two channel domains was confirmed by FRET measurements of mCherry on the N-terminus and EGFP on the C-terminus. Neither of the individual protein segments produced current when expressed alone. PMID:26963637

  18. Growth hormone receptor/binding protein: Physiology and function

    SciTech Connect

    Herington, A.C.; Ymer, S.I.; Stevenson, J.L.; Roupas, P.

    1994-12-31

    Soluble truncated forms of the growth hormone receptor (GHR) are present in the circulation of many species and are also produced by many tissues/cell types. The major high-affinity forms of these GH-binding proteins (GHBP) are derived by alternative splicing of GHR mRNA in rodents, but probably by proteolytic cleavage in other species. Questions still remain with respect to the origins, native molecular forms(s), physiology, and function of the GHBPs, however. The observation that GH induces dimerization of the soluble GHBP and a membrane GHR, and that dimerization of GHR appears to be critical for GH bioactivity suggests that the presentation of GH to target cells, in an unbound form or as a monomeric or dimeric complex with GHBP, may have significant implications for the ability of GH to activate specific postreceptor signaling pathways (tyrosine kinase, protein kinase C, G-protein pathways) known to be utilized by GH for its diverse biological effects. This minireview addresses some of these aspects and highlights several new questions which have arisen as a result of recent advances in our understanding of the structure, function, and signaling mechanisms of the membrane bound GHR. 43 refs.

  19. EXTRACELLULAR HEAT SHOCK PROTEINS: A NEW LOCATION, A NEW FUNCTION

    PubMed Central

    De Maio, Antonio; Vazquez, Daniel

    2015-01-01

    The expression of heat shock proteins (hsp) is a basic and well conserved cellular response to an array of stresses. These proteins are involved in the repair of cellular damage induced by the stress, which is necessary for the salutary resolution from the insult. Moreover, they confer protection from subsequent insults, which has been coined stress tolerance. Since these proteins are expressed in subcellular compartments, it was thought that their function during stress conditions was circumscribed to the intracellular environment. However, it is now well established that hsp can also be present outside cells where they appear to display a function different than the well understood chaperone role. Extracellular hsp act as alert stress signals priming other cells, particularly of the immune system, to avoid the propagation of the insult and favor resolution. Since the majority of hsp do not possess a secretory peptide signal, they are likely be exported by a non-classical secretory pathway. Different mechanisms have been proposed to explain the export of hsp, including translocation across the plasma membrane and release associated with lipid vesicles, as well as the passive release after cell death by necrosis. Extracellular hsp appear in various flavors, including membrane-bound and membrane-free forms. All of these variants of extracellular hsp suggest that their interactions with cells may be quite diverse, both in target cell types and the activation signaling pathways. This review addresses some of our current knowledge about the release and relevance of extracellular hsp. PMID:23807250

  20. Fragile X syndrome: From protein function to therapy.

    PubMed

    Bagni, Claudia; Oostra, Ben A

    2013-11-01

    Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and autism. The FMR1 gene contains a CGG repeat present in the 5'-untranslated region which can be unstable upon transmission to the next generation. The repeat is up to 55 CGGs long in the normal population. In patients with fragile X syndrome (FXS), a repeat length exceeding 200 CGGs generally leads to methylation of the repeat and the promoter region, which is accompanied by silencing of the FMR1 gene. The disease is a result of lack of expression of the fragile X mental retardation protein leading to severe symptoms, including intellectual disability, hyperactivity, and autistic-like behavior. The FMR1 protein (FMRP) has a number of functions. The translational dysregulation of a subset of mRNAs targeted by FMRP is probably the major contribution to FXS. FMRP is also involved in mRNA transport to synapses where protein synthesis occurs. For some FMRP-bound mRNAs, FMRP is a direct modulator of mRNA stability either by sustaining or preventing mRNA decay. Increased knowledge about the role of FMRP has led to the identification of potential treatments for fragile X syndrome that were often tested first in the different animal models. This review gives an overview about the present knowledge of the function of FMRP and the therapeutic strategies in mouse and man.

  1. Fission Yeast CSL Proteins Function as Transcription Factors

    PubMed Central

    Oravcová, Martina; Teska, Mikoláš; Půta, František; Folk, Petr; Převorovský, Martin

    2013-01-01

    Background Transcription factors of the CSL (CBF1/RBP-Jk/Suppressor of Hairless/LAG-1) family are key regulators of metazoan development and function as the effector components of the Notch receptor signalling pathway implicated in various cell fate decisions. CSL proteins recognize specifically the GTG[G/A]AA sequence motif and several mutants compromised in their ability to bind DNA have been reported. In our previous studies we have identified a number of novel putative CSL family members in fungi, organisms lacking the Notch pathway. It is not clear whether these represent genuine CSL family members. Methodology/Principal Findings Using a combination of in vitro and in vivo approaches we characterized the DNA binding properties of Cbf11 and Cbf12, the antagonistic CSL paralogs from the fission yeast, important for the proper coordination of cell cycle events and the regulation of cell adhesion. We have shown that a mutation of a conserved arginine residue abolishes DNA binding in both CSL paralogs, similar to the situation in mouse. We have also demonstrated the ability of Cbf11 and Cbf12 to activate gene expression in an autologous fission yeast reporter system. Conclusions/Significance Our results indicate that the fission yeast CSL proteins are indeed genuine family members capable of functioning as transcription factors, and provide support for the ancient evolutionary origin of this important protein family. PMID:23555033

  2. SNAP-25, a Known Presynaptic Protein with Emerging Postsynaptic Functions

    PubMed Central

    Antonucci, Flavia; Corradini, Irene; Fossati, Giuliana; Tomasoni, Romana; Menna, Elisabetta; Matteoli, Michela

    2016-01-01

    A hallmark of synaptic specializations is their dependence on highly organized complexes of proteins that interact with each other. The loss or modification of key synaptic proteins directly affects the properties of such networks, ultimately impacting synaptic function. SNAP-25 is a component of the SNARE complex, which is central to synaptic vesicle exocytosis, and, by directly interacting with different calcium channels subunits, it negatively modulates neuronal voltage-gated calcium channels, thus regulating intracellular calcium dynamics. The SNAP-25 gene has been associated with distinct brain diseases, including Attention Deficit Hyperactivity Disorder (ADHD), schizophrenia and bipolar disorder, indicating that the protein may act as a shared biological substrate among different “synaptopathies”. The mechanisms by which alterations in SNAP-25 may concur to these psychiatric diseases are still undefined, although alterations in neurotransmitter release have been indicated as potential causative processes. This review summarizes recent work showing that SNAP-25 not only controls exo/endocytic processes at the presynaptic terminal, but also regulates postsynaptic receptor trafficking, spine morphogenesis, and plasticity, thus opening the possibility that SNAP-25 defects may contribute to psychiatric diseases by impacting not only presynaptic but also postsynaptic functions. PMID:27047369

  3. Differences in Signal Activation by LH and hCG are Mediated by the LH/CG Receptor's Extracellular Hinge Region.

    PubMed

    Grzesik, Paul; Kreuchwig, Annika; Rutz, Claudia; Furkert, Jens; Wiesner, Burkhard; Schuelein, Ralf; Kleinau, Gunnar; Gromoll, Joerg; Krause, Gerd

    2015-01-01

    The human lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG) - secreted by the placenta, and lutropin (LH) - produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor's leucine-rich-repeat domain (LRRD), as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting) mutations. These helix preserving modifications showed no effect on hormone-induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10-deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge

  4. Glycogen Synthase Kinase 3β Interaction Protein Functions as an A-kinase Anchoring Protein*

    PubMed Central

    Hundsrucker, Christian; Skroblin, Philipp; Christian, Frank; Zenn, Hans-Michael; Popara, Viola; Joshi, Mangesh; Eichhorst, Jenny; Wiesner, Burkhard; Herberg, Friedrich W.; Reif, Bernd; Rosenthal, Walter; Klussmann, Enno

    2010-01-01

    A-kinase anchoring proteins (AKAPs) include a family of scaffolding proteins that target protein kinase A (PKA) and other signaling proteins to cellular compartments and thereby confine the activities of the associated proteins to distinct regions within cells. AKAPs bind PKA directly. The interaction is mediated by the dimerization and docking domain of regulatory subunits of PKA and the PKA-binding domain of AKAPs. Analysis of the interactions between the dimerization and docking domain and various PKA-binding domains yielded a generalized motif allowing the identification of AKAPs. Our bioinformatics and peptide array screening approaches based on this signature motif identified GSKIP (glycogen synthase kinase 3β interaction protein) as an AKAP. GSKIP directly interacts with PKA and GSK3β (glycogen synthase kinase 3β). It is widely expressed and facilitates phosphorylation and thus inactivation of GSK3β by PKA. GSKIP contains the evolutionarily conserved domain of unknown function 727. We show here that this domain of GSKIP and its vertebrate orthologues binds both PKA and GSK3β and thereby provides a mechanism for the integration of PKA and GSK3β signaling pathways. PMID:20007971

  5. Assembling a Correctly Folded and Functional Heptahelical Membrane Protein by Protein Trans-splicing*

    PubMed Central

    Mehler, Michaela; Eckert, Carl Elias; Busche, Alena; Kulhei, Jennifer; Michaelis, Jonas; Becker-Baldus, Johanna; Wachtveitl, Josef; Dötsch, Volker; Glaubitz, Clemens

    2015-01-01

    Protein trans-splicing using split inteins is well established as a useful tool for protein engineering. Here we show, for the first time, that this method can be applied to a membrane protein under native conditions. We provide compelling evidence that the heptahelical proteorhodopsin can be assembled from two separate fragments consisting of helical bundles A and B and C, D, E, F, and G via a splicing site located in the BC loop. The procedure presented here is on the basis of dual expression and ligation in vivo. Global fold, stability, and photodynamics were analyzed in detergent by CD, stationary, as well as time-resolved optical spectroscopy. The fold within lipid bilayers has been probed by high field and dynamic nuclear polarization-enhanced solid-state NMR utilizing a 13C-labeled retinal cofactor and extensively 13C-15N-labeled protein. Our data show unambiguously that the ligation product is identical to its non-ligated counterpart. Furthermore, our data highlight the effects of BC loop modifications onto the photocycle kinetics of proteorhodopsin. Our data demonstrate that a correctly folded and functionally intact protein can be produced in this artificial way. Our findings are of high relevance for a general understanding of the assembly of membrane proteins for elucidating intramolecular interactions, and they offer the possibility of developing novel labeling schemes for spectroscopic applications. PMID:26405032

  6. Tactile efficiency of insect antennae with two hinge joints.

    PubMed

    Krause, Andre F; Dürr, Volker

    2004-09-01

    Antennae are the main organs of the arthropod tactile sense. In contrast to other senses that are capable of retrieving spatial information, e.g. vision, spatial sampling of tactile information requires active movement of the sense organ. For a quantitative analysis of basic principles of active tactile sensing, we use a generic model of arbitrary antennae with two hinge joints (revolute joints). This kind of antenna is typical for Orthoptera and Phasmatodea, i.e. insect orders that contain model species for the study of antennal movements, including cricket, locust and stick insect. First, we analyse the significance of morphological properties on workspace and sampling acuity. It is shown how joint axis orientation determines areas out of reach while affecting acuity in the areas within reach. Second, we assume a parametric set of movement strategies, based on empirical data on the stick insect Carausius morosus, and investigate the role of each strategy parameter on tactile sampling performance. A stochastic environment is used to measure sampling density, and a viscous friction model is assumed to introduce energy consumption and, thus, a measure of tactile efficiency. Up to a saturation level, sampling density is proportional to the range or frequency of joint angle modulation. The effect of phase shift is strong if joint angle modulation frequencies are equal, but diminishes for other frequency ratios. Speed of forward progression influences the optimal choice of movement strategy. Finally, for an analysis of environmental effects on tactile performance, we show how efficiency depends on predominant edge direction. For example, with slanted and non-orthogonal joint axis orientations, as present in the stick insect, the optimal sampling strategy is less sensitive to a change from horizontal to vertical edge predominance than with orthogonal and non-slanted joint axes, as present in a cricket.

  7. Modifications of wheat germ cell-free system for functional proteomics of plant membrane proteins.

    PubMed

    Nozawa, Akira; Tozawa, Yuzuru

    2014-01-01

    Functional proteomics of plant membrane proteins is an important approach to understand the comprehensive architecture of each metabolic pathway in plants. One bottleneck in the characterization of membrane proteins is the difficulty in producing sufficient quantities of functional protein for analysis. Here, we describe three methods for membrane protein production utilizing a wheat germ cell-free protein expression system. Owing to the open nature of cell-free synthesis reaction, protein synthesis can be modified with components necessary to produce functional protein. In this way we have developed modifications to a wheat germ cell-free system for the production of functional membrane proteins. Supplementation of liposomes or detergents allows the synthesis of functional integral membrane proteins. Furthermore, supplementation of myristic acid enables synthesis of N-myristylated peripheral membrane proteins. These modified cell-free synthesis methods facilitate the preparation and subsequent functional analyses of a wide variety of membrane proteins.

  8. Structure and function of gap junction proteins: role of gap junction proteins in embryonic heart development.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2014-01-01

    Intercellular (cell-to-cell) communication is a crucial and complex mechanism during embryonic heart development. In the cardiovascular system, the beating of the heart is a dynamic and key regulatory process, which is functionally regulated by the coordinated spread of electrical activity through heart muscle cells. Heart tissues are composed of individual cells, each bearing specialized cell surface membrane structures called gap junctions that permit the intercellular exchange of ions and low molecular weight molecules. Gap junction channels are essential in normal heart function and they assist in the mediated spread of electrical impulses that stimulate synchronized contraction (via an electrical syncytium) of cardiac tissues. This present review describes the current knowledge of gap junction biology. In the first part, we summarise some relevant biochemical and physiological properties of gap junction proteins, including their structure and function. In the second part, we review the current evidence demonstrating the role of gap junction proteins in embryonic development with particular reference to those involved in embryonic heart development. Genetics and transgenic animal studies of gap junction protein function in embryonic heart development are considered and the alteration/disruption of gap junction intercellular communication which may lead to abnormal heart development is also discussed.

  9. Outer membrane protein functions as integrator of protein import and DNA inheritance in mitochondria

    PubMed Central

    Käser, Sandro; Oeljeklaus, Silke; Týč, Jiří; Vaughan, Sue; Warscheid, Bettina; Schneider, André

    2016-01-01

    Trypanosomatids are one of the earliest diverging eukaryotes that have fully functional mitochondria. pATOM36 is a trypanosomatid-specific essential mitochondrial outer membrane protein that has been implicated in protein import. Changes in the mitochondrial proteome induced by ablation of pATOM36 and in vitro assays show that pATOM36 is required for the assembly of the archaic translocase of the outer membrane (ATOM), the functional analog of the TOM complex in other organisms. Reciprocal pull-down experiments and immunofluorescence analyses demonstrate that a fraction of pATOM36 interacts and colocalizes with TAC65, a previously uncharacterized essential component of the tripartite attachment complex (TAC). The TAC links the single-unit mitochondrial genome to the basal body of the flagellum and mediates the segregation of the replicated mitochondrial genomes. RNAi experiments show that pATOM36, in line with its dual localization, is not only essential for ATOM complex assembly but also for segregation of the replicated mitochondrial genomes. However, the two functions are distinct, as a truncated version of pATOM36 lacking the 75 C-terminal amino acids can rescue kinetoplast DNA missegregation but not the lack of ATOM complex assembly. Thus, pATOM36 has a dual function and integrates mitochondrial protein import with mitochondrial DNA inheritance. PMID:27436903

  10. Outer membrane protein functions as integrator of protein import and DNA inheritance in mitochondria.

    PubMed

    Käser, Sandro; Oeljeklaus, Silke; Týč, Jiří; Vaughan, Sue; Warscheid, Bettina; Schneider, André

    2016-08-02

    Trypanosomatids are one of the earliest diverging eukaryotes that have fully functional mitochondria. pATOM36 is a trypanosomatid-specific essential mitochondrial outer membrane protein that has been implicated in protein import. Changes in the mitochondrial proteome induced by ablation of pATOM36 and in vitro assays show that pATOM36 is required for the assembly of the archaic translocase of the outer membrane (ATOM), the functional analog of the TOM complex in other organisms. Reciprocal pull-down experiments and immunofluorescence analyses demonstrate that a fraction of pATOM36 interacts and colocalizes with TAC65, a previously uncharacterized essential component of the tripartite attachment complex (TAC). The TAC links the single-unit mitochondrial genome to the basal body of the flagellum and mediates the segregation of the replicated mitochondrial genomes. RNAi experiments show that pATOM36, in line with its dual localization, is not only essential for ATOM complex assembly but also for segregation of the replicated mitochondrial genomes. However, the two functions are distinct, as a truncated version of pATOM36 lacking the 75 C-terminal amino acids can rescue kinetoplast DNA missegregation but not the lack of ATOM complex assembly. Thus, pATOM36 has a dual function and integrates mitochondrial protein import with mitochondrial DNA inheritance.

  11. Pathway logic modeling of protein functional domains in signal transduction.

    PubMed

    Talcott, C; Eker, S; Knapp, M; Lincoln, P; Laderoute, K

    2004-01-01

    Protein functional domains (PFDs) are consensus sequences within signaling molecules that recognize and assemble other signaling components into complexes. Here we describe the application of an approach called Pathway Logic to the symbolic modeling signal transduction networks at the level of PFDs. These models are developed using Maude, a symbolic language founded on rewriting logic. Models can be queried (analyzed) using the execution, search and model-checking tools of Maude. We show how signal transduction processes can be modeled using Maude at very different levels of abstraction involving either an overall state of a protein or its PFDs and their interactions. The key insight for the latter is our algebraic representation of binding interactions as a graph.

  12. Combining heterogeneous data sources for accurate functional annotation of proteins

    PubMed Central

    2013-01-01

    Combining heterogeneous sources of data is essential for accurate prediction of protein function. The task is complicated by the fact that while sequence-based features can be readily compared across species, most other data are species-specific. In this paper, we present a multi-view extension to GOstruct, a structured-output framework for function annotation of proteins. The extended framework can learn from disparate data sources, with each data source provided to the framework in the form of a kernel. Our empirical results demonstrate that the multi-view framework is able to utilize all available information, yielding better performance than sequence-based models trained across species and models trained from collections of data within a given species. This version of GOstruct participated in the recent Critical Assessment of Functional Annotations (CAFA) challenge; since then we have significantly improved the natural language processing component of the method, which now provides performance that is on par with that provided by sequence information. The GOstruct framework is available for download at http://strut.sourceforge.net. PMID:23514123

  13. A functional protein pore with a "retro" transmembrane domain.

    PubMed Central

    Cheley, S.; Braha, O.; Lu, X.; Conlan, S.; Bayley, H.

    1999-01-01

    Extended retro (reversed) peptide sequences have not previously been accommodated within functional proteins. Here, we show that the entire transmembrane portion of the beta-barrel of the pore-forming protein alpha-hemolysin can be formed by retrosequences comprising a total of 175 amino acid residues, 25 contributed by the central sequence of each subunit of the heptameric pore. The properties of wild-type and retro heptamers in planar bilayers are similar. The single-channel conductance of the retro pore is 15% less than that of the wild-type heptamer and its current-voltage relationship denotes close to ohmic behavior, while the wild-type pore is weakly rectifying. Both wild-type and retro pores are very weakly anion selective. These results and the examination of molecular models suggest that beta-barrels may be especially accepting of retro sequences compared to other protein folds. Indeed, the ability to form a retro domain could be diagnostic of a beta-barrel, explaining, for example, the activity of the retro forms of many membrane-permeabilizing peptides. By contrast with the wild-type subunits, monomeric retro subunits undergo premature assembly in the absence of membranes, most likely because the altered central sequence fails to interact with the remainder of the subunit, thereby initiating assembly. Despite this difficulty, a technique was devised for obtaining heteromeric pores containing both wild-type and retro subunits. Most probably as a consequence of unfavorable interstrand side-chain interactions, the heteromeric pores are less stable than either the wild-type or retro homoheptamers, as judged by the presence of subconductance states in single-channel recordings. Knowledge about the extraordinary plasticity of the transmembrane beta-barrel of alpha-hemolysin will be very useful in the de novo design of functional membrane proteins based on the beta-barrel motif. PMID:10386875

  14. Hinge-line Migration of Petermann Gletscher, North Greenland, Detected Using Satellite Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1998-01-01

    The synthetic-aperture radar interferometry technique is used to detect the migration of the limit of tidal flexing, or hinge line, of the floating ice tongue of Petermann Gletscher, a major outlet glacier of north Greenland.

  15. Attitude dynamics simulation subroutines for systems of hinge-connected rigid bodies with nonrigid appendages

    NASA Technical Reports Server (NTRS)

    Fleischer, G. E.; Likins, P. W.

    1975-01-01

    Three computer subroutines designed to solve the vector-dyadic differential equations of rotational motion for systems that may be idealized as a collection of hinge-connected rigid bodies assembled in a tree topology, with an optional flexible appendage attached to each body are reported. Deformations of the appendages are mathematically represented by modal coordinates and are assumed small. Within these constraints, the subroutines provide equation solutions for (1) the most general case of unrestricted hinge rotations, with appendage base bodies nominally rotating at a constant speed, (2) the case of unrestricted hinge rotations between rigid bodies, with the restriction that those rigid bodies carrying appendages are nominally nonspinning, and (3) the case of small hinge rotations and nominally nonrotating appendages. Sample problems and their solutions are presented to illustrate the utility of the computer programs.

  16. Design methodology and performance analysis of application-oriented flexure hinges

    NASA Astrophysics Data System (ADS)

    Shi, R. C.; Dong, W.; Du, Z. J.

    2013-07-01

    Flexure hinges are widely employed in miniature and ultra-precision equipments with the development of precision engineering. In this paper, Castigliano's theorem and Labotto quadrature formula are utilized to derive the compliance matrix. An exclusive longitudinal section of corner-filleted flexure hinges is proposed and the curve of the cross-section is expressed by basic design parameters (r0, d, and l) and machining error parameter (η). The influences of parameters are analyzed by the defined evaluation indexes, i.e., rotation capacity, relative flexibility, and relative rotation error, which are used to assess the quality of flexure hinges. The analysis results indicate small d and optimized values of r0, l, and η will improve flexure hinges' performances. The proposed method is verified by finite element method and experiments within a 5% margin of error.

  17. Prion Protein Expression and Functional Importance in Skeletal Muscle

    PubMed Central

    Smith, Jeffrey D.; Moylan, Jennifer S.; Hardin, Brian J.; Chambers, Melissa A.; Estus, Steven; Telling, Glenn C.

    2011-01-01

    Abstract Skeletal muscle expresses prion protein (PrP) that buffers oxidant activity in neurons. Aims We hypothesize that PrP deficiency would increase oxidant activity in skeletal muscle and alter redox-sensitive functions, including contraction and glucose uptake. We used real-time polymerase chain reaction and Western blot analysis to measure PrP mRNA and protein in human diaphragm, five murine muscles, and muscle-derived C2C12 cells. Effects of PrP deficiency were tested by comparing PrP-deficient mice versus wild-type mice and morpholino-knockdown versus vehicle-treated myotubes. Oxidant activity (dichlorofluorescin oxidation) and specific force were measured in murine diaphragm fiber bundles. Results PrP content differs among mouse muscles (gastrocnemius>extensor digitorum longus, EDL>tibialis anterior, TA; soleus>diaphragm) as does glycosylation (di-, mono-, nonglycosylated; gastrocnemius, EDL, TA=60%, 30%, 10%; soleus, 30%, 40%, 30%; diaphragm, 30%, 30%, 40%). PrP is predominantly di-glycosylated in human diaphragm. PrP deficiency decreases body weight (15%) and EDL mass (9%); increases cytosolic oxidant activity (fiber bundles, 36%; C2C12 myotubes, 7%); and depresses specific force (12%) in adult (8–12 mos) but not adolescent (2 mos) mice. Innovation This study is the first to directly assess a role of prion protein in skeletal muscle function. Conclusions PrP content varies among murine skeletal muscles and is essential for maintaining normal redox homeostasis, muscle size, and contractile function in adult animals. Antioxid. Redox Signal. 15, 2465—2475. PMID:21453198

  18. Context-based retrieval of functional modules in protein-protein interaction networks.

    PubMed

    Dobay, Maria Pamela; Stertz, Silke; Delorenzi, Mauro

    2017-03-27

    Various techniques have been developed for identifying the most probable interactants of a protein under a given biological context. In this article, we dissect the effects of the choice of the protein-protein interaction network (PPI) and the manipulation of PPI settings on the network neighborhood of the influenza A virus (IAV) network, as well as hits in genome-wide small interfering RNA screen results for IAV host factors. We investigate the potential of context filtering, which uses text mining evidence linked to PPI edges, as a complement to the edge confidence scores typically provided in PPIs for filtering, for obtaining more biologically relevant network neighborhoods. Here, we estimate the maximum performance of context filtering to isolate a Kyoto Encyclopedia of Genes and Genomes (KEGG) network Ki from a union of KEGG networks and its network neighborhood. The work gives insights on the use of human PPIs in network neighborhood approaches for functional inference.

  19. The retinoblastoma protein: functions beyond the G1-S regulator.

    PubMed

    Uchida, Chiharu

    2012-12-01

    Retinoblastoma protein (pRB) is functionally inactivated in a large number of tumors including retinoblastoma, osteosarcoma, small-cell lung carcinoma, as well as bladder, breast and prostate cancers. The best known role of pRB in preventing cancer is inhibition of cell cycle progression by controlling the exit from the cell cycle into G0/G1. In addition, increasing evidence has suggested that pRB has important roles in DNA replication during S phase and G2/M transition. The tumor suppressor function of pRB has also been demonstrated by directly promoting differentiation via cell cycle exit with specific gene expression. Inactivation of pRB function during these cell cycle phases leads to dysregulated cell proliferation and/or chromosomal instability, which are strongly linked to cancer development. Thus pRB plays important roles through multiple functions in determining cell fate, i.e., normal growth/death and differentiation, or tumor formation. Therapeutic intervention by reactivation of pRB function would be expected to be an effective treatment against various cancers.

  20. Reversible lysine modification on proteins by using functionalized boronic acids.

    PubMed

    Cal, Pedro M S D; Frade, Raquel F M; Cordeiro, Carlos; Gois, Pedro M P

    2015-05-26

    Iminoboronates have been utilized to successfully install azide and alkyne bioorthogonal functions on proteins, which may then be further reacted with their bioorthogonal counterparts. These constructs were also used to add polyethylene glycol (PEG) to insulin, a modification which has been shown to be reversible in the presence of fructose. Finally, iminoboronates were used to assemble a folic acid/paclitaxel small-molecule/drug conjugate in situ with an IC50  value of 20.7 nM against NCI-H460 cancer cells and negligible cytotoxicity against the CRL-1502 noncancer cells.

  1. Structure and function analysis of protein-nucleic acid complexes

    NASA Astrophysics Data System (ADS)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein-nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  2. Biofield-effect protein-sensor: Plasma functionalization of polyaniline, protein immobilization, and sensing mechanism

    NASA Astrophysics Data System (ADS)

    Cho, Chae-Ryong; Lee, Hyun-Uk; Ahn, Kyun; Jeong, Se-Young; Choi, Jun-Hee; Kim, Jinwoo; Cho, Jiung

    2014-06-01

    We report the fabrication of a biofield-effect protein-sensor (BioFEP) based on atmospheric-pressure plasma (AP) treatment of a conducting polyaniline (PANI) film. Successive H2 and O2 AP (OHAP) treatment generated dominant hydrophilic -OH and O=CO- functional groups on the PANI film surface, which served as strong binding sites to immobilize bovine serum albumin (BSA) protein molecules. The output current changes of the BioFEP as a function of BSA concentration were obtained. The resistance of the OHAP surface could be sensitively increased from 2.5 × 108 Ω to 2.0 × 1012 Ω with increasing BSA concentrations in the range of 0.025-4 μg/ml. The results suggest that the method is a simple and cost-effective tool to determine the concentration of BSA by measuring electrical resistance.

  3. Interaction between nanoparticles and cytokine proteins: impact on protein and particle functionality

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Dickson, Claire; Duncan, Paul; Al-Attili, Furat; Stone, Vicki

    2010-05-01

    There is increased use of nanomaterials in many applications due to their unique properties, such as their high surface area and surface reactivity. However, the potential health effects to workers, consumers and the environment exposed to nanoparticles (NPs) is unknown. The aim of this study was to investigate whether NPs which may enter the body could adsorb proteins and whether this interaction affects both the particle and the protein function. The cytokines IL-8 and TNF-α were adsorbed significantly more by 14 nm carbon black (CB) compared with a similar dose of 260 nm CB. Uncoated 14 nm CB particles produced a significant increase in intracellular calcium [Ca2 + ]i which was greater than a similar mass dose of 260 nm CB. The 260 nm CB produced an increase in ICAM-1 expression in A549 epithelial cells at a comparable dose of 14 nm CB, and after coating with TNF-α 260 nm CB produced significantly more ICAM-1 expression compared with control cells. TNF-α bound to 14 nm CB induced a level of ICAM-1 expression that was no greater than the control level, suggesting that the TNF-α activity may be inhibited. These results suggest that NP-protein interaction results both in a decrease in protein function and particle activity in the cellular assays tested and this is currently being investigated.

  4. Identification of ubiquinol cytochrome c reductase hinge (UQCRH) as a potential diagnostic biomarker for lung adenocarcinoma

    PubMed Central

    Gao, Feng; Liu, Qicai; Li, Guoping; Dong, Feng; Qiu, Minglian; Lv, Xiaoting; Zhang, Sheng; Guo, Zheng

    2016-01-01

    Ubiquinol cytochrome c reductase hinge (UQCRH) is a novel protein that localizes in the mitochondrial membrane and induces mitochondrial reactive oxygen species (ROS) generation. It had a high expression rate of 87.10% (108/124) in lung adenocarcinoma. Moreover, serum UQCRH level in patients with lung adenocarcinoma was significantly increased compared with that of pneumonia patients (p < 0.0001) and normal control subjects (p < 0.0001). Receiver operating characteristic curve analysis using an optimal cut-off value of 162.65 pg ml−1 revealed sensitivity and specificity for the diagnosis of lung adenocarcinoma of 88.7% and 85.7%, respectively, with an area under the curve of 0.927 (95% CI: 0.892 to 0.962, p < 0.0001). Serum UQCRH discriminates lung adenocarcinoma patients from the population without cancer with considerable sensitivity and specificity, but it does not distinguish between heavy smokers and lung adenocarcinoma patients. Serum UQCRH could be a potential diagnostic biomarker for lung adenocarcinoma. PMID:27358292

  5. Secretion, delivery and function of oomycete effector proteins.

    PubMed

    Wawra, Stephan; Belmonte, Rodrigo; Löbach, Lars; Saraiva, Marcia; Willems, Ariane; van West, Pieter

    2012-12-01

    Oomycetes are responsible for multi-billion dollar damages in aquaculture, agriculture and forestry. One common strategy they share with most cellular disease agents is the secretion of effector proteins. Effectors are molecules that change host physiology by initiating and allowing an infection to develop. Oomycetes secrete both extracellular and intracellular effectors. Studying secretion, delivery and function of effectors will hopefully lead to alternative control measures, which is much needed as several chemicals to control plant and animal pathogenic oomycetes cannot be used anymore; due to resistance in the host, or because the control measures have been prohibited as a result of toxicity to the environment and/or consumers. Here the latest findings on oomycete effector secretion, delivery and function are discussed.

  6. A First Line of Stress Defense: Small Heat Shock Proteins and their function in protein homeostasis

    PubMed Central

    Haslbeck, Martin; Vierling, Elizabeth

    2015-01-01

    Small heat shock proteins (sHsps) are virtually ubiquitous molecular chaperones that can prevent the irreversible aggregation of denaturing proteins. To maintain protein homeostasis, sHsps complex with a variety of nonnative proteins in an ATP-independent manner and, in the context of the stress response, form a first line of defense against protein aggregation. In vertebrates they act to maintain the clarity of the eye lens, and in humans sHsp mutations are linked to myopathies and neuropathies. Although found in all domains of life, sHsps are quite diverse and have evolved independently in metazoans, plants and fungi. sHsp monomers range in size from approximately 12 to 42 kDa and are defined by a conserved β-sandwich α-crystallin domain, flanked by variable N- and C-terminal sequences. Most sHsps form large oligomeric ensembles with a broad distribution of different, sphere- or barrel like oligomers, with the size and structure of the oligomers dictated by features of the N- and C-termini. The activity of sHsps is regulated by mechanisms that change the equilibrium distribution in tertiary features and/or quaternary structure of the sHsp ensembles. Cooperation and/or coassembly between different sHsps in the same cellular compartment adds an underexplored level of complexity to sHsp structure and function. PMID:25681016

  7. A first line of stress defense: small heat shock proteins and their function in protein homeostasis.

    PubMed

    Haslbeck, Martin; Vierling, Elizabeth

    2015-04-10

    Small heat shock proteins (sHsps) are virtually ubiquitous molecular chaperones that can prevent the irreversible aggregation of denaturing proteins. sHsps complex with a variety of non-native proteins in an ATP-independent manner and, in the context of the stress response, form a first line of defense against protein aggregation in order to maintain protein homeostasis. In vertebrates, they act to maintain the clarity of the eye lens, and in humans, sHsp mutations are linked to myopathies and neuropathies. Although found in all domains of life, sHsps are quite diverse and have evolved independently in metazoans, plants and fungi. sHsp monomers range in size from approximately 12 to 42kDa and are defined by a conserved β-sandwich α-crystallin domain, flanked by variable N- and C-terminal sequences. Most sHsps form large oligomeric ensembles with a broad distribution of different, sphere- or barrel-like oligomers, with the size and structure of the oligomers dictated by features of the N- and C-termini. The activity of sHsps is regulated by mechanisms that change the equilibrium distribution in tertiary features and/or quaternary structure of the sHsp ensembles. Cooperation and/or co-assembly between different sHsps in the same cellular compartment add an underexplored level of complexity to sHsp structure and function.

  8. UBXD Proteins: A Family of Proteins with Diverse Functions in Cancer

    PubMed Central

    Rezvani, Khosrow

    2016-01-01

    The UBXD family is a diverse group of UBX (ubiquitin-regulatory X) domain-containing proteins in mammalian cells. Members of this family contain a UBX domain typically located at the carboxyl-terminal of the protein. In contrast to the UBX domain shared by all members of UBXD family, the amino-terminal domains are diverse and appear to carry out different roles in a subcellular localization-dependent manner. UBXD proteins are principally associated with the endoplasmic reticulum (ER), where they positively or negatively regulate the ER-associated degradation machinery (ERAD). The distinct protein interaction networks of UBXD proteins allow them to have specific functions independent of the ERAD pathway in a cell type- and tissue context-dependent manner. Recent reports have illustrated that a number of mammalian members of the UBXD family play critical roles in several proliferation and apoptosis pathways dysregulated in selected types of cancer. This review covers recent advances that elucidate the therapeutic potential of selected members of the UBXD family that can contribute to tumor growth. PMID:27754413

  9. Hinged external fixation for Regan-Morrey type I and II fractures and fracture-dislocations.

    PubMed

    Castelli, Alberto; D'amico, Salvatore; Combi, Alberto; Benazzo, Francesco

    2016-06-01

    Elbow fracture-dislocation is always demanding to manage due to the considerable soft-tissue swelling or damage involved, which can make an early open approach and ligamentous reconstruction impossible. The purpose of this study was to evaluate the role of elbow hinged external fixation (HEF) as a definitive treatment in patients with elbow dislocations associated with Regan-Morrey (R-M) type I and II coronoid fractures and soft-tissue damage. We treated 11 patients between 2010 and 2012 with HEF. Instability tests and standard X-ray examinations were performed before surgery and 1-3 to 3-6 months after surgery, respectively. All patients underwent a preoperative CT scan. Outcomes were assessed with a functional assessment scale (Mayo Elbow Performance Score, MEPS) that included 4 parameters: pain, ROM, stability, and function. The results were good or excellent in all 11 patients, and no patient complained of residual instability. Radiographic examination showed bone metaplasia involving the anterior and medial sides of the joint in 5 patients. HEF presented several advantages: it improves elbow stability and it avoids long and demanding surgery in particular in cases with large soft tissue damage. We therefore consider elbow HEF to be a viable option for treating R-M type I and II fracture-dislocations.

  10. Expanding the Range of Protein Function at the Far End of the Order-Structure Continuum*

    PubMed Central

    Burger, Virginia M.; Nolasco, Diego O.; Stultz, Collin M.

    2016-01-01

    The traditional view of the structure-function paradigm is that a protein's function is inextricably linked to a well defined, three-dimensional structure, which is determined by the protein's primary amino acid sequence. However, it is now accepted that a number of proteins do not adopt a unique tertiary structure in solution and that some degree of disorder is required for many proteins to perform their prescribed functions. In this review, we highlight how a number of protein functions are facilitated by intrinsic disorder and introduce a new protein structure taxonomy that is based on quantifiable metrics of a protein's disorder. PMID:26851282

  11. Targeting protein function: the expanding toolkit for conditional disruption.

    PubMed

    Campbell, Amy E; Bennett, Daimark

    2016-09-01

    A major objective in biological research is to understand spatial and temporal requirements for any given gene, especially in dynamic processes acting over short periods, such as catalytically driven reactions, subcellular transport, cell division, cell rearrangement and cell migration. The interrogation of such processes requires the use of rapid and flexible methods of interfering with gene function. However, many of the most widely used interventional approaches, such as RNAi or CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated 9), operate at the level of the gene or its transcripts, meaning that the effects of gene perturbation are exhibited over longer time frames than the process under investigation. There has been much activity over the last few years to address this fundamental problem. In the present review, we describe recent advances in disruption technologies acting at the level of the expressed protein, involving inducible methods of protein cleavage, (in)activation, protein sequestration or degradation. Drawing on examples from model organisms we illustrate the utility of fast-acting techniques and discuss how different components of the molecular toolkit can be employed to dissect previously intractable biochemical processes and cellular behaviours.

  12. Targeting protein function: the expanding toolkit for conditional disruption

    PubMed Central

    Campbell, Amy E.; Bennett, Daimark

    2016-01-01

    A major objective in biological research is to understand spatial and temporal requirements for any given gene, especially in dynamic processes acting over short periods, such as catalytically driven reactions, subcellular transport, cell division, cell rearrangement and cell migration. The interrogation of such processes requires the use of rapid and flexible methods of interfering with gene function. However, many of the most widely used interventional approaches, such as RNAi or CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated 9), operate at the level of the gene or its transcripts, meaning that the effects of gene perturbation are exhibited over longer time frames than the process under investigation. There has been much activity over the last few years to address this fundamental problem. In the present review, we descr