Sample records for functional renormalization group

  1. Local renormalization group functions from quantum renormalization group and holographic bulk locality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Yu

    Here, the bulk locality in the constructive holographic renormalization group requires miraculous cancellations among various local renormalization group functions. The cancellation is not only from the properties of the spectrum but from more detailed aspects of operator product expansions in relation to conformal anomaly. It is remarkable that one-loop computation of the universal local renormalization group functions in the weakly coupled limit of the N = 4 super Yang-Mills theory fulfils the necessary condition for the cancellation in the strongly coupled limit in its SL(2, Z) duality invariant form. From the consistency between the quantum renormalization group and the holographicmore » renormalization group, we determine some unexplored local renormalization group functions (e.g. diffusive term in the beta function for the gauge coupling constant) in the strongly coupled limit of the planar N = 4 super Yang-Mills theory.« less

  2. Functional Renormalization Group Flows on Friedman-Lemaître-Robertson-Walker backgrounds

    NASA Astrophysics Data System (ADS)

    Platania, Alessia; Saueressig, Frank

    2018-06-01

    We revisit the construction of the gravitational functional renormalization group equation tailored to the Arnowitt-Deser-Misner formulation emphasizing its connection to the covariant formulation. The results obtained from projecting the renormalization group flow onto the Einstein-Hilbert action are reviewed in detail and we provide a novel example illustrating how the formalism may be connected to the causal dynamical triangulations approach to quantum gravity.

  3. Novel demonstration of the renormalization group invariance of the fixed-order predictions using the principle of maximum conformality and the C -scheme coupling

    NASA Astrophysics Data System (ADS)

    Wu, Xing-Gang; Shen, Jian-Ming; Du, Bo-Lun; Brodsky, Stanley J.

    2018-05-01

    As a basic requirement of the renormalization group invariance, any physical observable must be independent of the choice of both the renormalization scheme and the initial renormalization scale. In this paper, we show that by using the newly suggested C -scheme coupling, one can obtain a demonstration that the principle of maximum conformality prediction is scheme-independent to all-orders for any renormalization schemes, thus satisfying all of the conditions of the renormalization group invariance. We illustrate these features for the nonsinglet Adler function and for τ decay to ν + hadrons at the four-loop level.

  4. Renormalization Group Invariance of the Pole Mass in the Multi-Higgs System

    NASA Astrophysics Data System (ADS)

    Kim, Chungku

    2018-06-01

    We have investigated the renormalization group running of the pole mass in the multi-Higgs theory in two different types of gauge fixing conditions. The pole mass, when expressed in terms of the Lagrangian parameters, turns out to be invariant under the renormalization group with the beta and gamma functions of the symmetric phase.

  5. Nonperturbative renormalization-group approach preserving the momentum dependence of correlation functions

    NASA Astrophysics Data System (ADS)

    Rose, F.; Dupuis, N.

    2018-05-01

    We present an approximation scheme of the nonperturbative renormalization group that preserves the momentum dependence of correlation functions. This approximation scheme can be seen as a simple improvement of the local potential approximation (LPA) where the derivative terms in the effective action are promoted to arbitrary momentum-dependent functions. As in the LPA, the only field dependence comes from the effective potential, which allows us to solve the renormalization-group equations at a relatively modest numerical cost (as compared, e.g., to the Blaizot-Mendéz-Galain-Wschebor approximation scheme). As an application we consider the two-dimensional quantum O(N ) model at zero temperature. We discuss not only the two-point correlation function but also higher-order correlation functions such as the scalar susceptibility (which allows for an investigation of the "Higgs" amplitude mode) and the conductivity. In particular, we show how, using Padé approximants to perform the analytic continuation i ωn→ω +i 0+ of imaginary frequency correlation functions χ (i ωn) computed numerically from the renormalization-group equations, one can obtain spectral functions in the real-frequency domain.

  6. Functional renormalization group and Kohn-Sham scheme in density functional theory

    NASA Astrophysics Data System (ADS)

    Liang, Haozhao; Niu, Yifei; Hatsuda, Tetsuo

    2018-04-01

    Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the φ4 theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.

  7. Functional renormalization group for the U (1 )-T56 tensorial group field theory with closure constraint

    NASA Astrophysics Data System (ADS)

    Lahoche, Vincent; Ousmane Samary, Dine

    2017-02-01

    This paper is focused on the functional renormalization group applied to the T56 tensor model on the Abelian group U (1 ) with closure constraint. For the first time, we derive the flow equations for the couplings and mass parameters in a suitable truncation around the marginal interactions with respect to the perturbative power counting. For the second time, we study the behavior around the Gaussian fixed point, and show that the theory is nonasymptotically free. Finally, we discuss the UV completion of the theory. We show the existence of several nontrivial fixed points, study the behavior of the renormalization group flow around them, and point out evidence in favor of an asymptotically safe theory.

  8. Functional renormalization group analysis of tensorial group field theories on Rd

    NASA Astrophysics Data System (ADS)

    Geloun, Joseph Ben; Martini, Riccardo; Oriti, Daniele

    2016-07-01

    Rank-d tensorial group field theories are quantum field theories (QFTs) defined on a group manifold G×d , which represent a nonlocal generalization of standard QFT and a candidate formalism for quantum gravity, since, when endowed with appropriate data, they can be interpreted as defining a field theoretic description of the fundamental building blocks of quantum spacetime. Their renormalization analysis is crucial both for establishing their consistency as quantum field theories and for studying the emergence of continuum spacetime and geometry from them. In this paper, we study the renormalization group flow of two simple classes of tensorial group field theories (TGFTs), defined for the group G =R for arbitrary rank, both without and with gauge invariance conditions, by means of functional renormalization group techniques. The issue of IR divergences is tackled by the definition of a proper thermodynamic limit for TGFTs. We map the phase diagram of such models, in a simple truncation, and identify both UV and IR fixed points of the RG flow. Encouragingly, for all the models we study, we find evidence for the existence of a phase transition of condensation type.

  9. Covariant Derivatives and the Renormalization Group Equation

    NASA Astrophysics Data System (ADS)

    Dolan, Brian P.

    The renormalization group equation for N-point correlation functions can be interpreted in a geometrical manner as an equation for Lie transport of amplitudes in the space of couplings. The vector field generating the diffeomorphism has components given by the β functions of the theory. It is argued that this simple picture requires modification whenever any one of the points at which the amplitude is evaluated becomes close to any other. This modification necessitates the introduction of a connection on the space of couplings and new terms appear in the renormalization group equation involving covariant derivatives of the β function and the curvature associated with the connection. It is shown how the connection is related to the operator product expansion coefficients, but there remains an arbitrariness in its definition.

  10. Conductance scaling of junctions of Luttinger-liquid wires out of equilibrium

    NASA Astrophysics Data System (ADS)

    Aristov, D. N.; Wölfle, P.

    2018-05-01

    We develop the renormalization group theory of the conductances of N -lead junctions of spinless Luttinger-liquid wires as functions of bias voltages applied to N independent Fermi-liquid reservoirs. Based on the perturbative results up to second order in the interaction we demonstrate that the conductances obey scaling. The corresponding renormalization group β functions are derived up to second order.

  11. Representation of Renormalization Group Functions By Nonsingular Integrals in a Model of the Critical Dynamics of Ferromagnets: The Fourth Order of The ɛ-Expansion

    NASA Astrophysics Data System (ADS)

    Adzhemyan, L. Ts.; Vorob'eva, S. E.; Ivanova, E. V.; Kompaniets, M. V.

    2018-04-01

    Using the representation for renormalization group functions in terms of nonsingular integrals, we calculate the dynamical critical exponents in the model of critical dynamics of ferromagnets in the fourth order of the ɛ-expansion. We calculate the Feynman diagrams using the sector decomposition technique generalized to critical dynamics problems.

  12. Functional renormalization-group approaches, one-particle (irreducible) reducible with respect to local Green’s functions, with dynamical mean-field theory as a starting point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katanin, A. A., E-mail: katanin@mail.ru

    We consider formulations of the functional renormalization-group (fRG) flow for correlated electronic systems with the dynamical mean-field theory as a starting point. We classify the corresponding renormalization-group schemes into those neglecting one-particle irreducible six-point vertices (with respect to the local Green’s functions) and neglecting one-particle reducible six-point vertices. The former class is represented by the recently introduced DMF{sup 2}RG approach [31], but also by the scale-dependent generalization of the one-particle irreducible representation (with respect to local Green’s functions, 1PI-LGF) of the generating functional [20]. The second class is represented by the fRG flow within the dual fermion approach [16, 32].more » We compare formulations of the fRG approach in each of these cases and suggest their further application to study 2D systems within the Hubbard model.« less

  13. Renormalization group flow of the Higgs potential

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Sondenheimer, René

    2018-01-01

    We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows one to describe the effective potential as a function of both scalar field amplitude and renormalization group scale. This sheds light onto the limitations of standard estimates which rely on the identification of the two scales and helps in clarifying the origin of a possible property of meta-stability of the Higgs potential. We demonstrate that the inclusion of higher-dimensional operators induced by an underlying theory at a high scale (GUT or Planck scale) can relax the conventional lower bound on the Higgs mass derived from the criterion of absolute stability. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  14. Density matrix renormalization group with efficient dynamical electron correlation through range separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch; Knecht, Stefan; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch

    2015-06-14

    We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.

  15. Renormalization of QCD in the interpolating momentum subtraction scheme at three loops

    NASA Astrophysics Data System (ADS)

    Gracey, J. A.; Simms, R. M.

    2018-04-01

    We introduce a more general set of kinematic renormalization schemes than the original momentum subtraction schemes of Celmaster and Gonsalves. These new schemes will depend on a parameter ω , which tags the external momentum of one of the legs of the three-point vertex functions in QCD. In each of the three new schemes, we renormalize QCD in the Landau and maximal Abelian gauges and establish the three-loop renormalization group functions in each gauge. For an application, we evaluate two critical exponents at the Banks-Zaks fixed point and demonstrate that their values appear to be numerically scheme independent in a subrange of the conformal window.

  16. The { β}-expansion formalism in perturbative QCD and its extension

    NASA Astrophysics Data System (ADS)

    Kataev, A. L.; Mikhailov, S. V.

    2016-11-01

    We discuss the { β}-expansion for renormalization group invariant quantities tracing this expansion to the different contractions of the corresponding incomplete BPHZ R-operation. All of the coupling renormalizations, which follow from these contractions, should be taken into account for the { β}-expansion. We illustrate this feature considering the nonsinglet Adler function D NS in the third order of perturbation. We propose a generalization of the { β}-expansion for the renormalization group covariant quantities — the { β, γ}-expansion.

  17. New form of the exact NSVZ β-function: the three-loop verification for terms containing Yukawa couplings

    NASA Astrophysics Data System (ADS)

    Kazantsev, A. E.; Shakhmanov, V. Yu.; Stepanyantz, K. V.

    2018-04-01

    We investigate a recently proposed new form of the exact NSVZ β-function, which relates the β-function to the anomalous dimensions of the quantum gauge superfield, of the Faddeev-Popov ghosts, and of the chiral matter superfields. Namely, for the general renormalizable N = 1 supersymmetric gauge theory, regularized by higher covariant derivatives, the sum of all three-loop contributions to the β-function containing the Yukawa couplings is compared with the corresponding two-loop contributions to the anomalous dimensions of the quantum superfields. It is demonstrated that for the considered terms both new and original forms of the NSVZ relation are valid independently of the subtraction scheme if the renormalization group functions are defined in terms of the bare couplings. This result is obtained from the equality relating the loop integrals, which, in turn, follows from the factorization of the integrals for the β-function into integrals of double total derivatives. For the renormalization group functions defined in terms of the renormalized couplings we verify that the NSVZ scheme is obtained with the higher covariant derivative regularization supplemented by the subtraction scheme in which only powers of ln Λ /μ are included into the renormalization constants.

  18. Threshold and flavor effects in the renormalization group equations of the MSSM: Dimensionless couplings

    NASA Astrophysics Data System (ADS)

    Box, Andrew D.; Tata, Xerxes

    2008-03-01

    In a theory with broken supersymmetry, gaugino couplings renormalize differently from gauge couplings, as do higgsino couplings from Higgs boson couplings. As a result, we expect the gauge (Higgs boson) couplings and the corresponding gaugino (higgsino) couplings to evolve to different values under renormalization group evolution. We reexamine the renormalization group equations (RGEs) for these couplings in the minimal supersymmetric standard model (MSSM). To include threshold effects, we calculate the β functions using a sequence of (nonsupersymmetric) effective theories with heavy particles decoupled at the scale of their mass. We find that the difference between the SM couplings and their SUSY cousins that is ignored in the literature may be larger than two-loop effects which are included, and further that renormalization group evolution induces a nontrivial flavor structure in gaugino interactions. We present here the coupled set of RGEs for these dimensionless gauge and Yukawa-type couplings. The RGEs for the dimensionful soft-supersymmetry-breaking parameters of the MSSM will be presented in a companion paper.

  19. Exploring excited eigenstates of many-body systems using the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Klöckner, Christian; Kennes, Dante Marvin; Karrasch, Christoph

    2018-05-01

    We introduce approximate, functional renormalization group based schemes to obtain correlation functions in pure excited eigenstates of large fermionic many-body systems at arbitrary energies. The algorithms are thoroughly benchmarked and their strengths and shortcomings are documented using a one-dimensional interacting tight-binding chain as a prototypical testbed. We study two "toy applications" from the world of Luttinger liquid physics: the survival of power laws in lowly excited states as well as the spectral function of high-energy "block" excitations, which feature several single-particle Fermi edges.

  20. Renormalization group fixed points of foliated gravity-matter systems

    NASA Astrophysics Data System (ADS)

    Biemans, Jorn; Platania, Alessia; Saueressig, Frank

    2017-05-01

    We employ the Arnowitt-Deser-Misner formalism to study the renormalization group flow of gravity minimally coupled to an arbitrary number of scalar, vector, and Dirac fields. The decomposition of the gravitational degrees of freedom into a lapse function, shift vector, and spatial metric equips spacetime with a preferred (Euclidean) "time"- direction. In this work, we provide a detailed derivation of the renormalization group flow of Newton's constant and the cosmological constant on a flat Friedmann-Robertson-Walker background. Adding matter fields, it is shown that their contribution to the flow is the same as in the covariant formulation and can be captured by two parameters d g d λ . We classify the resulting fixed point structure as a function of these parameters finding that the existence of non-Gaussian renormalization group fixed points is rather generic. In particular the matter content of the standard model and its most common extensions gives rise to one non-Gaussian fixed point with real critical exponents suitable for Asymptotic Safety. Moreover, we find non-Gaussian fixed points for any number of scalar matter fields, making the scenario attractive for cosmological model building.

  1. The renormalization group and the implicit function theorem for amplitude equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkinis, Eleftherios

    2008-07-15

    This article lays down the foundations of the renormalization group (RG) approach for differential equations characterized by multiple scales. The renormalization of constants through an elimination process and the subsequent derivation of the amplitude equation [Chen et al., Phys. Rev. E 54, 376 (1996)] are given a rigorous but not abstract mathematical form whose justification is based on the implicit function theorem. Developing the theoretical framework that underlies the RG approach leads to a systematization of the renormalization process and to the derivation of explicit closed-form expressions for the amplitude equations that can be carried out with symbolic computation formore » both linear and nonlinear scalar differential equations and first order systems but independently of their particular forms. Certain nonlinear singular perturbation problems are considered that illustrate the formalism and recover well-known results from the literature as special cases.« less

  2. Renormalization group flow of the Higgs potential.

    PubMed

    Gies, Holger; Sondenheimer, René

    2018-03-06

    We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows one to describe the effective potential as a function of both scalar field amplitude and renormalization group scale. This sheds light onto the limitations of standard estimates which rely on the identification of the two scales and helps in clarifying the origin of a possible property of meta-stability of the Higgs potential. We demonstrate that the inclusion of higher-dimensional operators induced by an underlying theory at a high scale (GUT or Planck scale) can relax the conventional lower bound on the Higgs mass derived from the criterion of absolute stability.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  3. Multiloop Functional Renormalization Group That Sums Up All Parquet Diagrams

    NASA Astrophysics Data System (ADS)

    Kugler, Fabian B.; von Delft, Jan

    2018-02-01

    We present a multiloop flow equation for the four-point vertex in the functional renormalization group (FRG) framework. The multiloop flow consists of successive one-loop calculations and sums up all parquet diagrams to arbitrary order. This provides substantial improvement of FRG computations for the four-point vertex and, consequently, the self-energy. Using the x-ray-edge singularity as an example, we show that solving the multiloop FRG flow is equivalent to solving the (first-order) parquet equations and illustrate this with numerical results.

  4. Renormalization group analysis of dipolar Heisenberg model on square lattice

    NASA Astrophysics Data System (ADS)

    Keleş, Ahmet; Zhao, Erhai

    2018-06-01

    We present a detailed functional renormalization group analysis of spin-1/2 dipolar Heisenberg model on square lattice. This model is similar to the well-known J1-J2 model and describes the pseudospin degrees of freedom of polar molecules confined in deep optical lattice with long-range anisotropic dipole-dipole interactions. Previous study of this model based on tensor network ansatz indicates a paramagnetic ground state for certain dipole tilting angles which can be tuned in experiments to control the exchange couplings. The tensor ansatz formulated on a small cluster unit cell is inadequate to describe the spiral order, and therefore the phase diagram at high azimuthal tilting angles remains undetermined. Here, we obtain the full phase diagram of the model from numerical pseudofermion functional renormalization group calculations. We show that an extended quantum paramagnetic phase is realized between the Néel and stripe/spiral phases. In this region, the spin susceptibility flows smoothly down to the lowest numerical renormalization group scales with no sign of divergence or breakdown of the flow, in sharp contrast to the flow towards the long-range-ordered phases. Our results provide further evidence that the dipolar Heisenberg model is a fertile ground for quantum spin liquids.

  5. Renormalization group analysis of B →π form factors with B -meson light-cone sum rules

    NASA Astrophysics Data System (ADS)

    Shen, Yue-Long; Wei, Yan-Bing; Lü, Cai-Dian

    2018-03-01

    Within the framework of the B -meson light-cone sum rules, we review the calculation of radiative corrections to the three B →π transition form factors at leading power in Λ /mb. To resum large logarithmic terms, we perform the complete renormalization group evolution of the correlation function. We employ the integral transformation which diagonalizes evolution equations of the jet function and the B -meson light-cone distribution amplitude to solve these evolution equations and obtain renormalization group improved sum rules for the B →π form factors. Results of the form factors are extrapolated to the whole physical q2 region and are compared with that of other approaches. The effect of B -meson three-particle light-cone distribution amplitudes, which will contribute to the form factors at next-to-leading power in Λ /mb at tree level, is not considered in this paper.

  6. Alien calculus and a Schwinger-Dyson equation: two-point function with a nonperturbative mass scale

    NASA Astrophysics Data System (ADS)

    Bellon, Marc P.; Clavier, Pierre J.

    2018-02-01

    Starting from the Schwinger-Dyson equation and the renormalization group equation for the massless Wess-Zumino model, we compute the dominant nonperturbative contributions to the anomalous dimension of the theory, which are related by alien calculus to singularities of the Borel transform on integer points. The sum of these dominant contributions has an analytic expression. When applied to the two-point function, this analysis gives a tame evolution in the deep euclidean domain at this approximation level, making doubtful the arguments on the triviality of the quantum field theory with positive β -function. On the other side, we have a singularity of the propagator for timelike momenta of the order of the renormalization group invariant scale of the theory, which has a nonperturbative relationship with the renormalization point of the theory. All these results do not seem to have an interpretation in terms of semiclassical analysis of a Feynman path integral.

  7. The Holographic F Theorem

    NASA Astrophysics Data System (ADS)

    Taylor, Marika; Woodhead, William

    2017-12-01

    The F theorem states that, for a unitary three dimensional quantum field theory, the F quantity defined in terms of the partition function on a three sphere is positive, stationary at fixed point and decreases monotonically along a renormalization group flow. We construct holographic renormalization group flows corresponding to relevant deformations of three-dimensional conformal field theories on spheres, working to quadratic order in the source. For these renormalization group flows, the F quantity at the IR fixed point is always less than F at the UV fixed point, but F increases along the RG flow for deformations by operators of dimension between 3/2 and 5/2. Therefore the strongest version of the F theorem is in general violated.

  8. Emergent supersymmetry in the marginal deformations of $$\\mathcal{N}=4$$ SYM

    DOE PAGES

    Jin, Qingjun

    2016-10-24

    Here, we study the one loop renormalization group flow of the marginal deformations ofmore » $$\\mathcal{N}=4$$ SYM theory using the a-function. We found that in the planar limit some non-supersymmetric deformations flow to the supersymmetric infrared fixed points described by the Leigh-Strassler theory. This means supersymmetry emerges as a result of renormalization group flow.« less

  9. One-dimensional continuum electronic structure with the density-matrix renormalization group and its implications for density-functional theory.

    PubMed

    Stoudenmire, E M; Wagner, Lucas O; White, Steven R; Burke, Kieron

    2012-08-03

    We extend the density matrix renormalization group to compute exact ground states of continuum many-electron systems in one dimension with long-range interactions. We find the exact ground state of a chain of 100 strongly correlated artificial hydrogen atoms. The method can be used to simulate 1D cold atom systems and to study density-functional theory in an exact setting. To illustrate, we find an interacting, extended system which is an insulator but whose Kohn-Sham system is metallic.

  10. Higher-order quantum-chromodynamic corrections to the longitudinal coefficient function in deep-inelastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, G.A.

    1982-01-01

    A calculation of nonsinglet longitudinal coefficient function of deep-inelastic scattering through order-g/sup 4/ is presented, using the operator-product expansion and the renormalization group. Both ultraviolet and infrared divergences are regulated with dimensional regularization. The renormalization scheme dependence of the result is discussed along with its phenomenological application in the determination of R = sigma/sub L//sigma/sub T/.

  11. Callan-Symanzik equations for infrared Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Weber, Axel; Dall'Olio, Pietro

    2017-12-01

    Dyson-Schwinger equations have been successful in determining the correlation functions in Yang-Mills theory in the Landau gauge, in the infrared regime. We argue that similar results can be obtained, in a technically simpler way, with Callan-Symanzik renormalization group equations. We present generalizations of the infrared safe renormalization scheme proposed by Tissier and Wschebor in 2011, and show how the renormalization scheme dependence can be used to improve the matching to the existing lattice data for the gluon and ghost propagators.

  12. Renormalization Group (RG) in Turbulence: Historical and Comparative Perspective

    NASA Technical Reports Server (NTRS)

    Zhou, Ye; McComb, W. David; Vahala, George

    1997-01-01

    The term renormalization and renormalization group are explained by reference to various physical systems. The extension of renormalization group to turbulence is then discussed; first as a comprehensive review and second concentrating on the technical details of a few selected approaches. We conclude with a discussion of the relevance and application of renormalization group to turbulence modelling.

  13. F4 symmetric ϕ3 theory at four loops

    NASA Astrophysics Data System (ADS)

    Gracey, J. A.

    2017-03-01

    The renormalization group functions for six dimensional scalar ϕ3 theory with an F4 symmetry are provided at four loops in the modified minimal subtraction (MS ¯ ) scheme. Aside from the anomalous dimension of ϕ and the β -function this includes the mass operator and a ϕ2-type operator. The anomalous dimension of the latter is computed explicitly at four loops for the 26 and 324 representations of F4. The ɛ expansion of all the related critical exponents are determined to O (ɛ4). For instance the value for Δϕ agrees with recent conformal bootstrap estimates in 5 and 5.95 dimensions. The renormalization group functions are also provided at four loops for the group E6.

  14. Impact of topology in foliated quantum Einstein gravity.

    PubMed

    Houthoff, W B; Kurov, A; Saueressig, F

    2017-01-01

    We use a functional renormalization group equation tailored to the Arnowitt-Deser-Misner formulation of gravity to study the scale dependence of Newton's coupling and the cosmological constant on a background spacetime with topology [Formula: see text]. The resulting beta functions possess a non-trivial renormalization group fixed point, which may provide the high-energy completion of the theory through the asymptotic safety mechanism. The fixed point is robust with respect to changing the parametrization of the metric fluctuations and regulator scheme. The phase diagrams show that this fixed point is connected to a classical regime through a crossover. In addition the flow may exhibit a regime of "gravitational instability", modifying the theory in the deep infrared. Our work complements earlier studies of the gravitational renormalization group flow on a background topology [Formula: see text] (Biemans et al. Phys Rev D 95:086013, 2017, Biemans et al. arXiv:1702.06539, 2017) and establishes that the flow is essentially independent of the background topology.

  15. Calculational Schemes in GUTs

    NASA Astrophysics Data System (ADS)

    Kounnas, Costas

    The following sections are included: * Introduction * Mass Spectrum in a Spontaneously Broken-Theory SU(5) - Minimal Model * Renormalization and Renormalization Group Equation (R.G.E.) * Step Approximation and Decoupling Theorem * Notion of the Effective Coupling Constant * First Estimation of MX, α(MX) and sin2θ(MW) * Renormalization Properties and Photon-Z Mixing * β-Function Definitions * Threshold Functions and Decoupling Theorem * MX-Determination * Proton Lifetime * sin2θ(μ)-Determination * Quark-Lepton Mass Relations (mb/mτ) * Overview of the Conventional GUTs - Hierarchy Problem * Stability of Hierarchy - Supersymmetric GUTS * Cosmologically Acceptable SUSY GUT Models * Radiative Breaking of SU(2) × U(1) — MW/MX Hierarchy Generation * No Scale Supergravity Models^{56,57} Dynamical Determination of M_{B}-M_{F} * Conclusion * References

  16. Functional renormalization group approach to SU(N ) Heisenberg models: Real-space renormalization group at arbitrary N

    NASA Astrophysics Data System (ADS)

    Buessen, Finn Lasse; Roscher, Dietrich; Diehl, Sebastian; Trebst, Simon

    2018-02-01

    The pseudofermion functional renormalization group (pf-FRG) is one of the few numerical approaches that has been demonstrated to quantitatively determine the ordering tendencies of frustrated quantum magnets in two and three spatial dimensions. The approach, however, relies on a number of presumptions and approximations, in particular the choice of pseudofermion decomposition and the truncation of an infinite number of flow equations to a finite set. Here we generalize the pf-FRG approach to SU (N )-spin systems with arbitrary N and demonstrate that the scheme becomes exact in the large-N limit. Numerically solving the generalized real-space renormalization group equations for arbitrary N , we can make a stringent connection between the physically most significant case of SU(2) spins and more accessible SU (N ) models. In a case study of the square-lattice SU (N ) Heisenberg antiferromagnet, we explicitly demonstrate that the generalized pf-FRG approach is capable of identifying the instability indicating the transition into a staggered flux spin liquid ground state in these models for large, but finite, values of N . In a companion paper [Roscher et al., Phys. Rev. B 97, 064416 (2018), 10.1103/PhysRevB.97.064416] we formulate a momentum-space pf-FRG approach for SU (N ) spin models that allows us to explicitly study the large-N limit and access the low-temperature spin liquid phase.

  17. Functional renormalization group approach to the Yang-Lee edge singularity

    DOE PAGES

    An, X.; Mesterházy, D.; Stephanov, M. A.

    2016-07-08

    Here, we determine the scaling properties of the Yang-Lee edge singularity as described by a one-component scalar field theory with imaginary cubic coupling, using the nonperturbative functional renormalization group in 3 ≤ d ≤ 6 Euclidean dimensions. We find very good agreement with high-temperature series data in d = 3 dimensions and compare our results to recent estimates of critical exponents obtained with the four-loop ϵ = 6 - d expansion and the conformal bootstrap. The relevance of operator insertions at the corresponding fixed point of the RG β functions is discussed and we estimate the error associated with O(∂more » 4) truncations of the scale-dependent effective action.« less

  18. Functional renormalization group approach to the Yang-Lee edge singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, X.; Mesterházy, D.; Stephanov, M. A.

    Here, we determine the scaling properties of the Yang-Lee edge singularity as described by a one-component scalar field theory with imaginary cubic coupling, using the nonperturbative functional renormalization group in 3 ≤ d ≤ 6 Euclidean dimensions. We find very good agreement with high-temperature series data in d = 3 dimensions and compare our results to recent estimates of critical exponents obtained with the four-loop ϵ = 6 - d expansion and the conformal bootstrap. The relevance of operator insertions at the corresponding fixed point of the RG β functions is discussed and we estimate the error associated with O(∂more » 4) truncations of the scale-dependent effective action.« less

  19. Degeneracy relations in QCD and the equivalence of two systematic all-orders methods for setting the renormalization scale

    DOE PAGES

    Bi, Huan -Yu; Wu, Xing -Gang; Ma, Yang; ...

    2015-06-26

    The Principle of Maximum Conformality (PMC) eliminates QCD renormalization scale-setting uncertainties using fundamental renormalization group methods. The resulting scale-fixed pQCD predictions are independent of the choice of renormalization scheme and show rapid convergence. The coefficients of the scale-fixed couplings are identical to the corresponding conformal series with zero β-function. Two all-orders methods for systematically implementing the PMC-scale setting procedure for existing high order calculations are discussed in this article. One implementation is based on the PMC-BLM correspondence (PMC-I); the other, more recent, method (PMC-II) uses the R δ-scheme, a systematic generalization of the minimal subtraction renormalization scheme. Both approaches satisfymore » all of the principles of the renormalization group and lead to scale-fixed and scheme-independent predictions at each finite order. In this work, we show that PMC-I and PMC-II scale-setting methods are in practice equivalent to each other. We illustrate this equivalence for the four-loop calculations of the annihilation ratio R e+e– and the Higgs partial width I'(H→bb¯). Both methods lead to the same resummed (‘conformal’) series up to all orders. The small scale differences between the two approaches are reduced as additional renormalization group {β i}-terms in the pQCD expansion are taken into account. In addition, we show that special degeneracy relations, which underly the equivalence of the two PMC approaches and the resulting conformal features of the pQCD series, are in fact general properties of non-Abelian gauge theory.« less

  20. A functional renormalization method for wave propagation in random media

    NASA Astrophysics Data System (ADS)

    Lamagna, Federico; Calzetta, Esteban

    2017-08-01

    We develop the exact renormalization group approach as a way to evaluate the effective speed of the propagation of a scalar wave in a medium with random inhomogeneities. We use the Martin-Siggia-Rose formalism to translate the problem into a non equilibrium field theory one, and then consider a sequence of models with a progressively lower infrared cutoff; in the limit where the cutoff is removed we recover the problem of interest. As a test of the formalism, we compute the effective dielectric constant of an homogeneous medium interspersed with randomly located, interpenetrating bubbles. A simple approximation to the renormalization group equations turns out to be equivalent to a self-consistent two-loops evaluation of the effective dielectric constant.

  1. Functional renormalization group approach to electronic structure calculations for systems without translational symmetry

    NASA Astrophysics Data System (ADS)

    Seiler, Christian; Evers, Ferdinand

    2016-10-01

    A formalism for electronic-structure calculations is presented that is based on the functional renormalization group (FRG). The traditional FRG has been formulated for systems that exhibit a translational symmetry with an associated Fermi surface, which can provide the organization principle for the renormalization group (RG) procedure. We here advance an alternative formulation, where the RG flow is organized in the energy-domain rather than in k space. This has the advantage that it can also be applied to inhomogeneous matter lacking a band structure, such as disordered metals or molecules. The energy-domain FRG (ɛ FRG) presented here accounts for Fermi-liquid corrections to quasiparticle energies and particle-hole excitations. It goes beyond the state of the art G W -BSE , because in ɛ FRG the Bethe-Salpeter equation (BSE) is solved in a self-consistent manner. An efficient implementation of the approach that has been tested against exact diagonalization calculations and calculations based on the density matrix renormalization group is presented. Similar to the conventional FRG, also the ɛ FRG is able to signalize the vicinity of an instability of the Fermi-liquid fixed point via runaway flow of the corresponding interaction vertex. Embarking upon this fact, in an application of ɛ FRG to the spinless disordered Hubbard model we calculate its phase boundary in the plane spanned by the interaction and disorder strength. Finally, an extension of the approach to finite temperatures and spin S =1 /2 is also given.

  2. Renormalization group procedure for potential -g/r2

    NASA Astrophysics Data System (ADS)

    Dawid, S. M.; Gonsior, R.; Kwapisz, J.; Serafin, K.; Tobolski, M.; Głazek, S. D.

    2018-02-01

    Schrödinger equation with potential - g /r2 exhibits a limit cycle, described in the literature in a broad range of contexts using various regularizations of the singularity at r = 0. Instead, we use the renormalization group transformation based on Gaussian elimination, from the Hamiltonian eigenvalue problem, of high momentum modes above a finite, floating cutoff scale. The procedure identifies a richer structure than the one we found in the literature. Namely, it directly yields an equation that determines the renormalized Hamiltonians as functions of the floating cutoff: solutions to this equation exhibit, in addition to the limit-cycle, also the asymptotic-freedom, triviality, and fixed-point behaviors, the latter in vicinity of infinitely many separate pairs of fixed points in different partial waves for different values of g.

  3. Functional renormalization group and variational Monte Carlo studies of the electronic instabilities in graphene near (1)/(4) doping

    NASA Astrophysics Data System (ADS)

    Wang, Wan-Sheng; Xiang, Yuan-Yuan; Wang, Qiang-Hua; Wang, Fa; Yang, Fan; Lee, Dung-Hai

    2012-01-01

    We study the electronic instabilities of near 1/4 electron doped graphene using the singular-mode functional renormalization group, with a self-adaptive k mesh to improve the treatment of the van Hove singularities, and variational Monte Carlo method. At 1/4 doping the system is a chiral spin-density wave state exhibiting the anomalous quantized Hall effect. When the doping deviates from 1/4, the dx2-y2+idxy Cooper pairing becomes the leading instability. Our results suggest that near 1/4 electron or hole doping (away from the neutral point) the graphene is either a Chern insulator or a topoligical superconductor.

  4. 2PI effective theory at next-to-leading order using the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Carrington, M. E.; Friesen, S. A.; Meggison, B. A.; Phillips, C. D.; Pickering, D.; Sohrabi, K.

    2018-02-01

    We consider a symmetric scalar theory with quartic coupling in four dimensions. We show that the four-loop 2PI calculation can be done using a renormalization group method. The calculation involves one bare coupling constant which is introduced at the level of the Lagrangian and is therefore conceptually simpler than a standard 2PI calculation, which requires multiple counterterms. We explain how our method can be used to do the corresponding calculation at the 4PI level, which cannot be done using any known method by introducing counterterms.

  5. Fickian dispersion is anomalous

    DOE PAGES

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion wemore » illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.« less

  6. Estimate of the critical exponents from the field-theoretical renormalization group: mathematical meaning of the 'Standard Values'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogorelov, A. A.; Suslov, I. M.

    2008-06-15

    New estimates of the critical exponents have been obtained from the field-theoretical renormalization group using a new method for summing divergent series. The results almost coincide with the central values obtained by Le Guillou and Zinn-Justin (the so-called standard values), but have lower uncertainty. It has been shown that usual field-theoretical estimates implicitly imply the smoothness of the coefficient functions. The last assumption is open for discussion in view of the existence of the oscillating contribution to the coefficient functions. The appropriate interpretation of the last contribution is necessary both for the estimation of the systematic errors of the standardmore » values and for a further increase in accuracy.« less

  7. Renormalizable group field theory beyond melonic diagrams: An example in rank four

    NASA Astrophysics Data System (ADS)

    Carrozza, Sylvain; Lahoche, Vincent; Oriti, Daniele

    2017-09-01

    We prove the renormalizability of a gauge-invariant, four-dimensional group field theory (GFT) model on SU(2), whose defining interactions correspond to necklace bubbles (found also in the context of new large-N expansions of tensor models), rather than melonic ones, which are not renormalizable in this case. The respective scaling of different interactions in the vicinity of the Gaussian fixed point is determined by the renormalization group itself. This is possible because the appropriate notion of canonical dimension of the GFT coupling constants takes into account the detailed combinatorial structure of the individual interaction terms. This is one more instance of the peculiarity (and greater mathematical richness) of GFTs with respect to ordinary local quantum field theories. We also explore the renormalization group flow of the model at the nonperturbative level, using functional renormalization group methods, and identify a nontrivial fixed point in various truncations. This model is expected to have a similar structure of divergences as the GFT models of 4D quantum gravity, thus paving the way to more detailed investigations on them.

  8. Spectral functions with the density matrix renormalization group: Krylov-space approach for correction vectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. Our paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper also studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases we studied indicate that themore » Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.« less

  9. Spectral functions with the density matrix renormalization group: Krylov-space approach for correction vectors

    DOE PAGES

    None, None

    2016-11-21

    Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. Our paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper also studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases we studied indicate that themore » Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.« less

  10. Comprehensive renormalization group analysis of the littlest seesaw model

    NASA Astrophysics Data System (ADS)

    Geib, Tanja; King, Stephen F.

    2018-04-01

    We present a comprehensive renormalization group analysis of the littlest seesaw model involving two right-handed neutrinos and a very constrained Dirac neutrino Yukawa coupling matrix. We perform the first χ2 analysis of the low energy masses and mixing angles, in the presence of renormalization group corrections, for various right-handed neutrino masses and mass orderings, both with and without supersymmetry. We find that the atmospheric angle, which is predicted to be near maximal in the absence of renormalization group corrections, may receive significant corrections for some nonsupersymmetric cases, bringing it into close agreement with the current best fit value in the first octant. By contrast, in the presence of supersymmetry, the renormalization group corrections are relatively small, and the prediction of a near maximal atmospheric mixing angle is maintained, for the studied cases. Forthcoming results from T2K and NO ν A will decisively test these models at a precision comparable to the renormalization group corrections we have calculated.

  11. Phase structure of NJL model with weak renormalization group

    NASA Astrophysics Data System (ADS)

    Aoki, Ken-Ichi; Kumamoto, Shin-Ichiro; Yamada, Masatoshi

    2018-06-01

    We analyze the chiral phase structure of the Nambu-Jona-Lasinio model at finite temperature and density by using the functional renormalization group (FRG). The renormalization group (RG) equation for the fermionic effective potential V (σ ; t) is given as a partial differential equation, where σ : = ψ bar ψ and t is a dimensionless RG scale. When the dynamical chiral symmetry breaking (DχSB) occurs at a certain scale tc, V (σ ; t) has singularities originated from the phase transitions, and then one cannot follow RG flows after tc. In this study, we introduce the weak solution method to the RG equation in order to follow the RG flows after the DχSB and to evaluate the dynamical mass and the chiral condensate in low energy scales. It is shown that the weak solution of the RG equation correctly captures vacuum structures and critical phenomena within the pure fermionic system. We show the chiral phase diagram on temperature, chemical potential and the four-Fermi coupling constant.

  12. Multiloop functional renormalization group for general models

    NASA Astrophysics Data System (ADS)

    Kugler, Fabian B.; von Delft, Jan

    2018-02-01

    We present multiloop flow equations in the functional renormalization group (fRG) framework for the four-point vertex and self-energy, formulated for a general fermionic many-body problem. This generalizes the previously introduced vertex flow [F. B. Kugler and J. von Delft, Phys. Rev. Lett. 120, 057403 (2018), 10.1103/PhysRevLett.120.057403] and provides the necessary corrections to the self-energy flow in order to complete the derivative of all diagrams involved in the truncated fRG flow. Due to its iterative one-loop structure, the multiloop flow is well suited for numerical algorithms, enabling improvement of many fRG computations. We demonstrate its equivalence to a solution of the (first-order) parquet equations in conjunction with the Schwinger-Dyson equation for the self-energy.

  13. Tau hadronic spectral function moments: perturbative expansion and αs extractions

    NASA Astrophysics Data System (ADS)

    Boito, D.

    2016-04-01

    In the extraction of αs from hadronic τ decays different moments of the spectral functions have been used. Furthermore, the two mainstream renormalization group improvement (RGI) frameworks, namely Fixed Order Perturbation Theory (FOPT) and Contour Improved Perturbation Theory (CIPT), lead to conflicting values of αs. In order to improve the strategy used in αs determinations, we have performed a systematic study of the perturbative behaviour of these spectral moments in the context of FOPT and CIPT. Higher order coefficients of the perturbative series, yet unknown, were modelled using available knowledge of the renormalon content of the QCD Adler function. We conclude that within these RGI frameworks some of the moments often employed in αs extractions should be avoided due to their poor perturbative behaviour. Finally, under reasonable assumptions about higher orders, we conclude that FOPT is the preferred method to perform the renormalization group improvement of the perturbative series.

  14. τ hadronic spectral function moments in a nonpower QCD perturbation theory

    NASA Astrophysics Data System (ADS)

    Abbas, Gauhar; Ananthanarayan, B.; Caprini, I.; Fischer, J.

    2016-04-01

    The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling and other QCD parameters from the hadronic decays of the τ lepton. We consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ;reference model;, including moments that are poorly described by the standard expansions.

  15. Anomalous dimension in a two-species reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Vollmayr-Lee, Benjamin; Hanson, Jack; McIsaac, R. Scott; Hellerick, Joshua D.

    2018-01-01

    We study a two-species reaction-diffusion system with the reactions A+A\\to (0, A) and A+B\\to A , with general diffusion constants D A and D B . Previous studies showed that for dimensions d≤slant 2 the B particle density decays with a nontrivial, universal exponent that includes an anomalous dimension resulting from field renormalization. We demonstrate via renormalization group methods that the scaled B particle correlation function has a distinct anomalous dimension resulting in the asymptotic scaling \\tilde CBB(r, t) ˜ tφf(r/\\sqrt{t}) , where the exponent ϕ results from the renormalization of the square of the field associated with the B particles. We compute this exponent to first order in \

  16. Deviation pattern approach for optimizing perturbative terms of QCD renormalization group invariant observables

    NASA Astrophysics Data System (ADS)

    Khellat, M. R.; Mirjalili, A.

    2017-03-01

    We first consider the idea of renormalization group-induced estimates, in the context of optimization procedures, for the Brodsky-Lepage-Mackenzie approach to generate higher-order contributions to QCD perturbative series. Secondly, we develop the deviation pattern approach (DPA) in which through a series of comparisons between lowerorder RG-induced estimates and the corresponding analytical calculations, one could modify higher-order RG-induced estimates. Finally, using the normal estimation procedure and DPA, we get estimates of αs4 corrections for the Bjorken sum rule of polarized deep-inelastic scattering and for the non-singlet contribution to the Adler function.

  17. The metric on field space, functional renormalization, and metric–torsion quantum gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reuter, Martin, E-mail: reuter@thep.physik.uni-mainz.de; Schollmeyer, Gregor M., E-mail: schollmeyer@thep.physik.uni-mainz.de

    Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein–Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and “tetrad-only” gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an additional input. A modifiedmore » FRGE is obtained if this metric is scale-dependent, as it happens in the metric–torsion system considered.« less

  18. Fermi-edge singularity and the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Kugler, Fabian B.; von Delft, Jan

    2018-05-01

    We study the Fermi-edge singularity, describing the response of a degenerate electron system to optical excitation, in the framework of the functional renormalization group (fRG). Results for the (interband) particle-hole susceptibility from various implementations of fRG (one- and two-particle-irreducible, multi-channel Hubbard–Stratonovich, flowing susceptibility) are compared to the summation of all leading logarithmic (log) diagrams, achieved by a (first-order) solution of the parquet equations. For the (zero-dimensional) special case of the x-ray-edge singularity, we show that the leading log formula can be analytically reproduced in a consistent way from a truncated, one-loop fRG flow. However, reviewing the underlying diagrammatic structure, we show that this derivation relies on fortuitous partial cancellations special to the form of and accuracy applied to the x-ray-edge singularity and does not generalize.

  19. Renormalization group approach to power-law modeling of complex metabolic networks.

    PubMed

    Hernández-Bermejo, Benito

    2010-08-07

    In the modeling of complex biological systems, and especially in the framework of the description of metabolic pathways, the use of power-law models (such as S-systems and GMA systems) often provides a remarkable accuracy over several orders of magnitude in concentrations, an unusually broad range not fully understood at present. In order to provide additional insight in this sense, this article is devoted to the renormalization group analysis of reactions in fractal or self-similar media. In particular, the renormalization group methodology is applied to the investigation of how rate-laws describing such reactions are transformed when the geometric scale is changed. The precise purpose of such analysis is to investigate whether or not power-law rate-laws present some remarkable features accounting for the successes of power-law modeling. As we shall see, according to the renormalization group point of view the answer is positive, as far as power-laws are the critical solutions of the renormalization group transformation, namely power-law rate-laws are the renormalization group invariant solutions. Moreover, it is shown that these results also imply invariance under the group of concentration scalings, thus accounting for the reported power-law model accuracy over several orders of magnitude in metabolite concentrations. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Nonlinear Gyro-Landau-Fluid Equations

    NASA Astrophysics Data System (ADS)

    Raskolnikov, I.; Mattor, Nathan; Parker, Scott E.

    1996-11-01

    We present fluid equations which describe the effects of both linear and nonlinear Landau damping (wave-particle-wave effects). These are derived using a recently developed analytical method similar to renormalization group theory. (Scott E. Parker and Daniele Carati, Phys. Rev. Lett. 75), 441 (1995). In this technique, the phase space structure inherent in Landau damping is treated analytically by building a ``renormalized collisionality'' onto a bare collisionality (which may be taken as vanishingly small). Here we apply this technique to the nonlinear ion gyrokinetic equation in slab geometry, obtaining nonlinear fluid equations for density, parallel momentum and heat. Wave-particle resonances are described by two functions appearing in the heat equation: a renormalized ``collisionality'' and a renormalized nonlinear coupling coeffient. It will be shown that these new equations may correct a deficiency in existing gyrofluid equations, (G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64,) 3019 (1990). which can severely underestimate the strength of nonlinear interaction in regimes where linear resonance is strong. (N. Mattor, Phys. Fluids B 4,) 3952 (1992).

  1. Theory of droplet. Part 1: Renormalized laws of droplet vaporization in non-dilute sprays

    NASA Technical Reports Server (NTRS)

    Chiu, H. H.

    1989-01-01

    The vaporization of a droplet, interacting with its neighbors in a non-dilute spray environment is examined as well as a vaporization scaling law established on the basis of a recently developed theory of renormalized droplet. The interacting droplet consists of a centrally located droplet and its vapor bubble which is surrounded by a cloud of droplets. The distribution of the droplets and the size of the cloud are characterized by a pair-distribution function. The vaporization of a droplet is retarded by the collective thermal quenching, the vapor concentration accumulated in the outer sphere, and by the limited percolative passages for mass, momentum and energy fluxes. The retardation is scaled by the local collective interaction parameters (group combustion number of renormalized droplet, droplet spacing, renormalization number and local ambient conditions). The numerical results of a selected case study reveal that the vaporization correction factor falls from unity monotonically as the group combustion number increases, and saturation is likely to occur when the group combustion number reaches 35 to 40 with interdroplet spacing of 7.5 diameters and an environment temperature of 500 K. The scaling law suggests that dense sprays can be classified into: (1) a diffusively dense cloud characterized by uniform thermal quenching in the cloud; (2) a stratified dense cloud characterized by a radial stratification in temperature by the differential thermal quenching of the cloud; or (3) a sharply dense cloud marked by fine structure in the quasi-droplet cloud and the corresponding variation in the correction factor due to the variation in the topological structure of the cloud characterized by a pair-distribution function of quasi-droplets.

  2. On the soft supersymmetry-breaking parameters in gauge-mediated models

    NASA Astrophysics Data System (ADS)

    Wagner, C. E. M.

    1998-09-01

    Gauge mediation of supersymmetry breaking in the observable sector is an attractive idea, which naturally alleviates the flavor changing neutral current problem of supersymmetric theories. Quite generally, however, the number and quantum number of the messengers are not known; nor is their characteristic mass scale determined by the theory. Using the recently proposed method to extract supersymmetry-breaking parameters from wave-function renormalization, we derived general formulae for the soft supersymmetry-breaking parameters in the observable sector, valid in the small and moderate tan β regimes, for the case of split messengers. The full leading-order effects of top Yukawa and gauge couplings on the soft supersymmetry-breaking parameters are included. We give a simple interpretation of the general formulae in terms of the renormalization group evolution of the soft supersymmetry-breaking parameters. As a by-product of this analysis, the one-loop renormalization group evolution of the soft supersymmetry-breaking parameters is obtained for arbitrary boundary conditions of the scalar and gaugino mass parameters at high energies.

  3. Renormalization group study of the melting of a two-dimensional system of collapsing hard disks

    NASA Astrophysics Data System (ADS)

    Ryzhov, V. N.; Tareyeva, E. E.; Fomin, Yu. D.; Tsiok, E. N.; Chumakov, E. S.

    2017-06-01

    We consider the melting of a two-dimensional system of collapsing hard disks (a system with a hard-disk potential to which a repulsive step is added) for different values of the repulsive-step width. We calculate the system phase diagram by the method of the density functional in crystallization theory using equations of the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young theory to determine the lines of stability with respect to the dissociation of dislocation pairs, which corresponds to the continuous transition from the solid to the hexatic phase. We show that the crystal phase can melt via a continuous transition at low densities (the transition to the hexatic phase) with a subsequent transition from the hexatic phase to the isotropic liquid and via a first-order transition. Using the solution of renormalization group equations with the presence of singular defects (dislocations) in the system taken into account, we consider the influence of the renormalization of the elastic moduli on the form of the phase diagram.

  4. Renormalization group method based on the ionization energy theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arulsamy, Andrew Das, E-mail: sadwerdna@gmail.com; School of Physics, University of Sydney, Sydney, New South Wales 2006

    2011-03-15

    Proofs are developed to explicitly show that the ionization energy theory is a renormalized theory, which mathematically exactly satisfies the renormalization group formalisms developed by Gell-Mann-Low, Shankar and Zinn-Justin. However, the cutoff parameter for the ionization energy theory relies on the energy-level spacing, instead of lattice point spacing in k-space. Subsequently, we apply the earlier proofs to prove that the mathematical structure of the ionization-energy dressed electron-electron screened Coulomb potential is exactly the same as the ionization-energy dressed electron-phonon interaction potential. The latter proof is proven by means of the second-order time-independent perturbation theory with the heavier effective mass condition,more » as required by the electron-electron screened Coulomb potential. The outcome of this proof is that we can derive the heat capacity and the Debye frequency as a function of ionization energy, which can be applied in strongly correlated matter and nanostructures.« less

  5. Renormalization of Extended QCD2

    NASA Astrophysics Data System (ADS)

    Fukaya, Hidenori; Yamamura, Ryo

    2015-10-01

    Extended QCD (XQCD), proposed by Kaplan [D. B. Kaplan, arXiv:1306.5818], is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low-energy hadronic models. We analyze the renormalization group flow of 2D (X)QCD, which is solvable in the limit of a large number of colors N_c, to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low-energy region.

  6. Products of composite operators in the exact renormalization group formalism

    NASA Astrophysics Data System (ADS)

    Pagani, C.; Sonoda, H.

    2018-02-01

    We discuss a general method of constructing the products of composite operators using the exact renormalization group formalism. Considering mainly the Wilson action at a generic fixed point of the renormalization group, we give an argument for the validity of short-distance expansions of operator products. We show how to compute the expansion coefficients by solving differential equations, and test our method with some simple examples.

  7. Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer.

    PubMed

    Kurashige, Yuki; Yanai, Takeshi

    2011-09-07

    We present a second-order perturbation theory based on a density matrix renormalization group self-consistent field (DMRG-SCF) reference function. The method reproduces the solution of the complete active space with second-order perturbation theory (CASPT2) when the DMRG reference function is represented by a sufficiently large number of renormalized many-body basis, thereby being named DMRG-CASPT2 method. The DMRG-SCF is able to describe non-dynamical correlation with large active space that is insurmountable to the conventional CASSCF method, while the second-order perturbation theory provides an efficient description of dynamical correlation effects. The capability of our implementation is demonstrated for an application to the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems that require best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets. The DMRG-CASPT2/cc-pwCV5Z calculations were performed with a large (3d double-shell) active space consisting of 28 orbitals. Our approach using large-size DMRG reference addressed the problems of why the dissociation energy is largely overestimated by CASPT2 with the small active space consisting of 12 orbitals (3d4s), and also is oversensitive to the choice of the zeroth-order Hamiltonian. © 2011 American Institute of Physics

  8. The ab-initio density matrix renormalization group in practice.

    PubMed

    Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  9. Aspects of Higher-Spin Conformal Field Theories and Their Renormalization Group Flows

    NASA Astrophysics Data System (ADS)

    Diab, Kenan S.

    In this thesis, we study conformal field theories (CFTs) with higher-spin symmetry and the renormalization group flows of some models with interactions that weakly break the higher-spin symmetry. When the higher-spin symmetry is exact, we will present CFT analogues of two classic results in quantum field theory: the Coleman-Mandula theorem, which is the subject of chapter 2, and the Weinberg-Witten theorem, which is the subject of chapter 3. Schematically, our Coleman-Mandula analogue states that a CFT that contains a symmetric conserved current of spin s > 2 in any dimension d > 3 is effectively free, and our Weinberg-Witten analogue states that the presence of certain short, higher-spin, "sufficiently asymmetric" representations of the conformal group is either inconsistent with conformal symmetry or leads to free theories in d = 4 dimensions. In both chapters, the basic strategy is to solve certain Ward identities in convenient kinematical limits and thereby show that the number of solutions is very limited. In the latter chapter, Hofman-Maldacena bounds, which constrain one-point functions of the stress tensor in general states, play a key role. Then, in chapter 4, we will focus on the particular examples of the O(N) and Gross-Neveu model in continuous dimensions. Using diagrammatic techniques, we explicitly calculate how the coefficients of the two-point function of a U(1) current and the two-point function of the stress tensor (CJ and CT, respectively) are renormalized in the 1/N and epsilon expansions. From the higher-spin perspective, these models are interesting since they are related via the AdS/CFT correspondence to Vasiliev gravity. In addition to checking and extending a number of previously-known results about CT and CJ in these theories, we find that in certain dimensions, CJ and CT are not monotonic along the renormalization group flow. Although it was already known that certain supersymmetric models do not satisfy a "CJ"- or " CT"-theorem, this shows that such a theorem is unlikely to hold even under more restrictive assumptions.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gyeong Won; Shim, Jaewon; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr

    The influence of renormalization plasma screening on the entanglement fidelity for the elastic electron-atom scattering is investigated in partially ionized dense hydrogen plasmas. The partial wave analysis and effective interaction potential are employed to obtain the scattering entanglement fidelity in dense hydrogen plasmas as functions of the collision energy, the Debye length, and the renormalization parameter. It is found that the renormalization plasma shielding enhances the scattering entanglement fidelity. Hence, we show that the transmission of the quantum information can be increased about 10% due to the renormalization shielding effect in dense hydrogen plasmas. It is also found that themore » renormalization shielding effect on the entanglement fidelity for the electron-atom collision increases with an increase of the collision energy. In addition, the renormalization shielding function increases with increasing collision energy and saturates to the unity with an increase of the Debye length.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, Davi C.; Piattella, Oliver F.; Chauvineau, Bertrand, E-mail: davi.rodrigues@cosmo-ufes.org, E-mail: Bertrand.Chauvineau@oca.eu, E-mail: oliver.piattella@pq.cnpq.br

    We show that Renormalization Group extensions of the Einstein-Hilbert action for large scale physics are not, in general, a particular case of standard Scalar-Tensor (ST) gravity. We present a new class of ST actions, in which the potential is not necessarily fixed at the action level, and show that this extended ST theory formally contains the Renormalization Group case. We also propose here a Renormalization Group scale setting identification that is explicitly covariant and valid for arbitrary relativistic fluids.

  12. Criticality of the random field Ising model in and out of equilibrium: A nonperturbative functional renormalization group description

    NASA Astrophysics Data System (ADS)

    Balog, Ivan; Tarjus, Gilles; Tissier, Matthieu

    2018-03-01

    We show that, contrary to previous suggestions based on computer simulations or erroneous theoretical treatments, the critical points of the random-field Ising model out of equilibrium, when quasistatically changing the applied source at zero temperature, and in equilibrium are not in the same universality class below some critical dimension dD R≈5.1 . We demonstrate this by implementing a nonperturbative functional renormalization group for the associated dynamical field theory. Above dD R, the avalanches, which characterize the evolution of the system at zero temperature, become irrelevant at large distance, and hysteresis and equilibrium critical points are then controlled by the same fixed point. We explain how to use computer simulation and finite-size scaling to check the correspondence between in and out of equilibrium criticality in a far less ambiguous way than done so far.

  13. Multistage electronic nematic transitions in cuprate superconductors: A functional-renormalization-group analysis

    NASA Astrophysics Data System (ADS)

    Tsuchiizu, Masahisa; Kawaguchi, Kouki; Yamakawa, Youichi; Kontani, Hiroshi

    2018-04-01

    Recently, complex rotational symmetry-breaking phenomena have been discovered experimentally in cuprate superconductors. To find the realized order parameters, we study various unconventional charge susceptibilities in an unbiased way by applying the functional-renormalization-group method to the d -p Hubbard model. Without assuming the wave vector of the order parameter, we reveal that the most dominant instability is the uniform (q =0 ) charge modulation on the px and py orbitals, which possesses d symmetry. This uniform nematic order triggers another nematic p -orbital density wave along the axial (Cu-Cu) direction at Qa≈(π /2 ,0 ) . It is predicted that uniform nematic order is driven by the spin fluctuations in the pseudogap region, and another nematic density-wave order at q =Qa is triggered by the uniform order. The predicted multistage nematic transitions are caused by Aslamazov-Larkin-type fluctuation-exchange processes.

  14. A low-cost approach to electronic excitation energies based on the driven similarity renormalization group

    NASA Astrophysics Data System (ADS)

    Li, Chenyang; Verma, Prakash; Hannon, Kevin P.; Evangelista, Francesco A.

    2017-08-01

    We propose an economical state-specific approach to evaluate electronic excitation energies based on the driven similarity renormalization group truncated to second order (DSRG-PT2). Starting from a closed-shell Hartree-Fock wave function, a model space is constructed that includes all single or single and double excitations within a given set of active orbitals. The resulting VCIS-DSRG-PT2 and VCISD-DSRG-PT2 methods are introduced and benchmarked on a set of 28 organic molecules [M. Schreiber et al., J. Chem. Phys. 128, 134110 (2008)]. Taking CC3 results as reference values, mean absolute deviations of 0.32 and 0.22 eV are observed for VCIS-DSRG-PT2 and VCISD-DSRG-PT2 excitation energies, respectively. Overall, VCIS-DSRG-PT2 yields results with accuracy comparable to those from time-dependent density functional theory using the B3LYP functional, while VCISD-DSRG-PT2 gives excitation energies comparable to those from equation-of-motion coupled cluster with singles and doubles.

  15. Nonperturbative renormalization group study of the stochastic Navier-Stokes equation.

    PubMed

    Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo

    2012-07-01

    We study the renormalization group flow of the average action of the stochastic Navier-Stokes equation with power-law forcing. Using Galilean invariance, we introduce a nonperturbative approximation adapted to the zero-frequency sector of the theory in the parametric range of the Hölder exponent 4-2ε of the forcing where real-space local interactions are relevant. In any spatial dimension d, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's -5/3 law is, thus, recovered for ε = 2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the -5/3 law emerges in the presence of a saturation in the ε dependence of the scaling dimension of the eddy diffusivity at ε = 3/2 when, according to perturbative renormalization, the velocity field becomes infrared relevant.

  16. The generalized scheme-independent Crewther relation in QCD

    NASA Astrophysics Data System (ADS)

    Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; Brodsky, Stanley J.

    2017-07-01

    The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton-nucleon scattering times the Adler function, defined from the cross section for electron-positron annihilation into hadrons, has no pQCD radiative corrections. The ;Generalized Crewther Relation; relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (Dns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (CBjp) at leading twist. A scheme-dependent ΔCSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both Dns and the inverse coefficient CBjp-1 have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, αˆd (Q) =∑i≥1 αˆg1 i (Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.

  17. Renormalization-group theory of plasma microturbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carati, D.; Chriaa, K.; Balescu, R.

    1994-08-01

    The dynamical renormalization-group methods are applied to the gyrokinetic equation describing drift-wave turbulence in plasmas. As in both magnetohydrodynamic and neutral turbulence, small-scale fluctuations appear to act as effective dissipative processes on large-scale phenomena. A linear renormalized gyrokinetic equation is derived. No artificial forcing is introduced into the equations and all the renormalized corrections are expressed in terms of the fluctuating electric potential. The link with the quasilinear limit and the direct interaction approximation is investigated. Simple analytical expressions for the anomalous transport coefficients are derived by using the linear renormalized gyrokinetic equation. Examples show that both quasilinear and Bohmmore » scalings can be recovered depending on the spectral amplitude of the electric potential fluctuations.« less

  18. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    NASA Astrophysics Data System (ADS)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  19. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-07

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  20. Evidence for equivalence of diffusion processes of passive scalar and magnetic fields in anisotropic Navier-Stokes turbulence.

    PubMed

    Jurčišinová, E; Jurčišin, M

    2017-05-01

    The influence of the uniaxial small-scale anisotropy on the kinematic magnetohydrodynamic turbulence is investigated by using the field theoretic renormalization group technique in the one-loop approximation of a perturbation theory. The infrared stable fixed point of the renormalization group equations, which drives the scaling properties of the model in the inertial range, is investigated as the function of the anisotropy parameters and it is shown that, at least at the one-loop level of approximation, the diffusion processes of the weak passive magnetic field in the anisotropically driven kinematic magnetohydrodynamic turbulence are completely equivalent to the corresponding diffusion processes of passively advected scalar fields in the anisotropic Navier-Stokes turbulent environments.

  1. Extended investigation of the twelve-flavor β-function

    NASA Astrophysics Data System (ADS)

    Fodor, Zoltán; Holland, Kieran; Kuti, Julius; Nógrádi, Dániel; Wong, Chik Him

    2018-04-01

    We report new results from high precision analysis of an important BSM gauge theory with twelve massless fermion flavors in the fundamental representation of the SU(3) color gauge group. The range of the renormalized gauge coupling is extended from our earlier work [1] to probe the existence of an infrared fixed point (IRFP) in the β-function reported at two different locations, originally in [2] and at a new location in [3]. We find no evidence for the IRFP of the β-function in the extended range of the renormalized gauge coupling, in disagreement with [2,3]. New arguments to guard the existence of the IRFP remain unconvincing [4], including recent claims of an IRFP with ten massless fermion flavors [5,6] which we also rule out. Predictions of the recently completed 5-loop QCD β-function for general flavor number are discussed in this context.

  2. Renormalization of Supersymmetric QCD on the Lattice

    NASA Astrophysics Data System (ADS)

    Costa, Marios; Panagopoulos, Haralambos

    2018-03-01

    We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric N=1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves theWilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (ZΨ), gluon (Zu), gluino (Zλ), squark (ZA±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.

  3. Renormalization-group theory for the eddy viscosity in subgrid modeling

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Vahala, George; Hossain, Murshed

    1988-01-01

    Renormalization-group theory is applied to incompressible three-dimensional Navier-Stokes turbulence so as to eliminate unresolvable small scales. The renormalized Navier-Stokes equation now includes a triple nonlinearity with the eddy viscosity exhibiting a mild cusp behavior, in qualitative agreement with the test-field model results of Kraichnan. For the cusp behavior to arise, not only is the triple nonlinearity necessary but the effects of pressure must be incorporated in the triple term. The renormalized eddy viscosity will not exhibit a cusp behavior if it is assumed that a spectral gap exists between the large and small scales.

  4. Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review.

    PubMed

    Wu, Xing-Gang; Ma, Yang; Wang, Sheng-Quan; Fu, Hai-Bing; Ma, Hong-Hao; Brodsky, Stanley J; Mojaza, Matin

    2015-12-01

    A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme--this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since a truncated perturbation series does not automatically satisfy the requirements of the renormalization group. In a previous review, we provided a general introduction to the various scale setting approaches suggested in the literature. As a step forward, in the present review, we present a discussion in depth of two well-established scale-setting methods based on RGI. One is the 'principle of maximum conformality' (PMC) in which the terms associated with the β-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the 'principle of minimum sensitivity' (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a detailed comparison of the PMC and PMS procedures by analyzing two physical observables R(e+e-) and [Formula: see text] up to four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observables agree within small errors with those of conventional scale setting assuming a physically-motivated scale, and each prediction shows small scale dependences. However, the convergence of the pQCD series at high orders, behaves quite differently: the PMC displays the best pQCD convergence since it eliminates divergent renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even worse than the conventional prediction based on an arbitrary guess for the renormalization scale. PMC predictions also have the property that any residual dependence on the choice of initial scale is highly suppressed even for low-order predictions. Thus the PMC, based on the standard RGI, has a rigorous foundation; it eliminates an unnecessary systematic error for high precision pQCD predictions and can be widely applied to virtually all high-energy hadronic processes, including multi-scale problems.

  5. Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review

    NASA Astrophysics Data System (ADS)

    Wu, Xing-Gang; Ma, Yang; Wang, Sheng-Quan; Fu, Hai-Bing; Ma, Hong-Hao; Brodsky, Stanley J.; Mojaza, Matin

    2015-12-01

    A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme—this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since a truncated perturbation series does not automatically satisfy the requirements of the renormalization group. In a previous review, we provided a general introduction to the various scale setting approaches suggested in the literature. As a step forward, in the present review, we present a discussion in depth of two well-established scale-setting methods based on RGI. One is the ‘principle of maximum conformality’ (PMC) in which the terms associated with the β-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the ‘principle of minimum sensitivity’ (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a detailed comparison of the PMC and PMS procedures by analyzing two physical observables R e+e- and Γ(H\\to b\\bar{b}) up to four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observables agree within small errors with those of conventional scale setting assuming a physically-motivated scale, and each prediction shows small scale dependences. However, the convergence of the pQCD series at high orders, behaves quite differently: the PMC displays the best pQCD convergence since it eliminates divergent renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even worse than the conventional prediction based on an arbitrary guess for the renormalization scale. PMC predictions also have the property that any residual dependence on the choice of initial scale is highly suppressed even for low-order predictions. Thus the PMC, based on the standard RGI, has a rigorous foundation; it eliminates an unnecessary systematic error for high precision pQCD predictions and can be widely applied to virtually all high-energy hadronic processes, including multi-scale problems.

  6. Renormalization group independence of Cosmological Attractors

    NASA Astrophysics Data System (ADS)

    Fumagalli, Jacopo

    2017-06-01

    The large class of inflationary models known as α- and ξ-attractors gives identical cosmological predictions at tree level (at leading order in inverse power of the number of efolds). Working with the renormalization group improved action, we show that these predictions are robust under quantum corrections. This means that for all the models considered the inflationary parameters (ns , r) are (nearly) independent on the Renormalization Group flow. The result follows once the field dependence of the renormalization scale, fixed by demanding the leading log correction to vanish, satisfies a quite generic condition. In Higgs inflation (which is a particular ξ-attractor) this is indeed the case; in the more general attractor models this is still ensured by the renormalizability of the theory in the effective field theory sense.

  7. Thermodynamics in the vicinity of a relativistic quantum critical point in 2+1 dimensions.

    PubMed

    Rançon, A; Kodio, O; Dupuis, N; Lecheminant, P

    2013-07-01

    We study the thermodynamics of the relativistic quantum O(N) model in two space dimensions. In the vicinity of the zero-temperature quantum critical point (QCP), the pressure can be written in the scaling form P(T)=P(0)+N(T(3)/c(2))F(N)(Δ/T), where c is the velocity of the excitations at the QCP and |Δ| a characteristic zero-temperature energy scale. Using both a large-N approach to leading order and the nonperturbative renormalization group, we compute the universal scaling function F(N). For small values of N (N/~1) regimes, but fails to describe the nonmonotonic behavior of F(N) in the quantum critical regime. We discuss the renormalization-group flows in the various regimes near the QCP and make the connection with the quantum nonlinear sigma model in the renormalized classical regime. We compute the Berezinskii-Kosterlitz-Thouless transition temperature in the quantum O(2) model and find that in the vicinity of the QCP the universal ratio T(BKT)/ρ(s)(0) is very close to π/2, implying that the stiffness ρ(s)(T(BKT)(-)) at the transition is only slightly reduced with respect to the zero-temperature stiffness ρ(s)(0). Finally, we briefly discuss the experimental determination of the universal function F(2) from the pressure of a Bose gas in an optical lattice near the superfluid-Mott-insulator transition.

  8. Strong-coupling Bose polarons out of equilibrium: Dynamical renormalization-group approach

    NASA Astrophysics Data System (ADS)

    Grusdt, Fabian; Seetharam, Kushal; Shchadilova, Yulia; Demler, Eugene

    2018-03-01

    When a mobile impurity interacts with a surrounding bath of bosons, it forms a polaron. Numerous methods have been developed to calculate how the energy and the effective mass of the polaron are renormalized by the medium for equilibrium situations. Here, we address the much less studied nonequilibrium regime and investigate how polarons form dynamically in time. To this end, we develop a time-dependent renormalization-group approach which allows calculations of all dynamical properties of the system and takes into account the effects of quantum fluctuations in the polaron cloud. We apply this method to calculate trajectories of polarons following a sudden quench of the impurity-boson interaction strength, revealing how the polaronic cloud around the impurity forms in time. Such trajectories provide additional information about the polaron's properties which are challenging to extract directly from the spectral function measured experimentally using ultracold atoms. At strong couplings, our calculations predict the appearance of trajectories where the impurity wavers back at intermediate times as a result of quantum fluctuations. Our method is applicable to a broader class of nonequilibrium problems. As a check, we also apply it to calculate the spectral function and find good agreement with experimental results. At very strong couplings, we predict that quantum fluctuations lead to the appearance of a dark continuum with strongly suppressed spectral weight at low energies. While our calculations start from an effective Fröhlich Hamiltonian describing impurities in a three-dimensional Bose-Einstein condensate, we also calculate the effects of additional terms in the Hamiltonian beyond the Fröhlich paradigm. We demonstrate that the main effect of these additional terms on the attractive side of a Feshbach resonance is to renormalize the coupling strength of the effective Fröhlich model.

  9. Non-Perturbative Renormalization of the Lattice Heavy Quark Classical Velocity

    NASA Astrophysics Data System (ADS)

    Mandula, Jeffrey E.; Ogilvie, Michael C.

    1997-02-01

    We discuss the renormalization of the lattice formulation of the Heavy Quark Effective Theory (LHQET). In addition to wave function and composite operator renormalizations, on the lattice the classical velocity is also renormalized. The origin of this renormalization is the reduction of Lorentz (or O(4)) invariance to (hyper)cubic invariance. We present results of a new, direct lattice simulation of this finite renormalization, and compare the results to the perturbative (one loop) result. The simulation results are obtained with the use of a variationally optimized heavy-light meson operator, using an ensemble of lattices provided by the Fermilab ACP-MAPS collaboration.

  10. Transverse momentum dependent fragmenting jet functions with applications to quarkonium production

    DOE PAGES

    Bain, Reggie; Makris, Yiannis; Mehen, Thomas

    2016-11-23

    We introduce the transverse momentum dependent fragmenting jet function (TMDFJF), which appears in factorization theorems for cross sections for jets with an identified hadron. These are functions of z, the hadron’s longitudinal momentum fraction, and transverse momentum, p ⊥, relative to the jet axis. In the framework of Soft-Collinear Effective Theory (SCET) we derive the TMDFJF from both a factorized SCET cross section and the TMD fragmentation function defined in the literature. The TMDFJFs are factorized into distinct collinear and soft-collinear modes by matching onto SCET +. As TMD calculations contain rapidity divergences, both the renormalization group (RG) and rapiditymore » renormalization group (RRG) must be used to provide resummed calculations with next-to-leading-logarithm prime (NLL’) accuracy. We apply our formalism to the production of J/ψ within jets initiated by gluons. In this case the TMDFJF can be calculated in terms of NRQCD (Non-relativistic quantum chromodynamics) fragmentation functions. We find that when the J/ψ carries a significant fraction of the jet energy, the p T and z distributions differ for different NRQCD production mechanisms. Another observable with discriminating power is the average angle that the J/ψ makes with the jet axis.« less

  11. Geometry of the theory space in the exact renormalization group formalism

    NASA Astrophysics Data System (ADS)

    Pagani, C.; Sonoda, H.

    2018-01-01

    We consider the theory space as a manifold whose coordinates are given by the couplings appearing in the Wilson action. We discuss how to introduce connections on this theory space. A particularly intriguing connection can be defined directly from the solution of the exact renormalization group (ERG) equation. We advocate a geometric viewpoint that lets us define straightforwardly physically relevant quantities invariant under the changes of a renormalization scheme.

  12. Spectroscopic accuracy directly from quantum chemistry: application to ground and excited states of beryllium dimer.

    PubMed

    Sharma, Sandeep; Yanai, Takeshi; Booth, George H; Umrigar, C J; Chan, Garnet Kin-Lic

    2014-03-14

    We combine explicit correlation via the canonical transcorrelation approach with the density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer curve, without the use of composite methods. In particular, our direct density matrix renormalization group calculations produce a well-depth of D(e) = 931.2 cm(-1) which agrees very well with recent experimentally derived estimates D(e) = 929.7±2 cm(-1) [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)] and D(e) = 934.6 cm(-1) [K. Patkowski, V. Špirko, and K. Szalewicz, Science 326, 1382 (2009)], as well the best composite theoretical estimates, D(e) = 938±15 cm(-1) [K. Patkowski, R. Podeszwa, and K. Szalewicz, J. Phys. Chem. A 111, 12822 (2007)] and D(e) = 935.1±10 cm(-1) [J. Koput, Phys. Chem. Chem. Phys. 13, 20311 (2011)]. Our results suggest possible inaccuracies in the functional form of the potential used at shorter bond lengths to fit the experimental data [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)]. With the density matrix renormalization group we also compute near-exact vertical excitation energies at the equilibrium geometry. These provide non-trivial benchmarks for quantum chemical methods for excited states, and illustrate the surprisingly large error that remains for 1 ¹Σ(g)⁻ state with approximate multi-reference configuration interaction and equation-of-motion coupled cluster methods. Overall, we demonstrate that explicitly correlated density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods allow us to fully converge to the basis set and correlation limit of the non-relativistic Schrödinger equation in small molecules.

  13. Renormalization group contraction of tensor networks in three dimensions

    NASA Astrophysics Data System (ADS)

    García-Sáez, Artur; Latorre, José I.

    2013-02-01

    We present a new strategy for contracting tensor networks in arbitrary geometries. This method is designed to follow as strictly as possible the renormalization group philosophy, by first contracting tensors in an exact way and, then, performing a controlled truncation of the resulting tensor. We benchmark this approximation procedure in two dimensions against an exact contraction. We then apply the same idea to a three-dimensional quantum system. The underlying rational for emphasizing the exact coarse graining renormalization group step prior to truncation is related to monogamy of entanglement.

  14. Effective-field renormalization-group method for Ising systems

    NASA Astrophysics Data System (ADS)

    Fittipaldi, I. P.; De Albuquerque, D. F.

    1992-02-01

    A new applicable effective-field renormalization-group (ERFG) scheme for computing critical properties of Ising spins systems is proposed and used to study the phase diagrams of a quenched bond-mixed spin Ising model on square and Kagomé lattices. The present EFRG approach yields results which improves substantially on those obtained from standard mean-field renormalization-group (MFRG) method. In particular, it is shown that the EFRG scheme correctly distinguishes the geometry of the lattice structure even when working with the smallest possible clusters, namely N'=1 and N=2.

  15. Critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model

    NASA Astrophysics Data System (ADS)

    Sousa, J. Ricardo de

    A two-step renormalization group approach - a decimation followed by an effective field renormalization group (EFRG) - is proposed in this work to study the critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model. The new method is illustrated by employing approximations in which clusters with one, two and three spins are used. The values of the critical parameter and critical exponent, in two- and three-dimensional lattices, for the Ising and isotropic Heisenberg limits are calculated and compared with other renormalization group approaches and exact (or series) results.

  16. An extended approach for computing the critical properties in the two-and three-dimensional lattices within the effective-field renormalization group method

    NASA Astrophysics Data System (ADS)

    de Albuquerque, Douglas F.; Santos-Silva, Edimilson; Moreno, N. O.

    2009-10-01

    In this letter we employing the effective-field renormalization group (EFRG) to study the Ising model with nearest neighbors to obtain the reduced critical temperature and exponents ν for bi- and three-dimensional lattices by increasing cluster scheme by extending recent works. The technique follows up the same strategy of the mean field renormalization group (MFRG) by introducing an alternative way for constructing classical effective-field equations of state takes on rigorous Ising spin identities.

  17. Renormalization of concurrence: The application of the quantum renormalization group to quantum-information systems

    NASA Astrophysics Data System (ADS)

    Kargarian, M.; Jafari, R.; Langari, A.

    2007-12-01

    We have combined the idea of renormalization group and quantum-information theory. We have shown how the entanglement or concurrence evolve as the size of the system becomes large, i.e., the finite size scaling is obtained. Moreover, we introduce how the renormalization-group approach can be implemented to obtain the quantum-information properties of a many-body system. We have obtained the concurrence as a measure of entanglement, its derivatives and their scaling behavior versus the size of system for the one-dimensional Ising model in transverse field. We have found that the derivative of concurrence between two blocks each containing half of the system size diverges at the critical point with the exponent, which is directly associated with the divergence of the correlation length.

  18. The quantum-field renormalization group in the problem of a growing phase boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonov, N.V.; Vasil`ev, A.N.

    1995-09-01

    Within the quantum-field renormalization-group approach we examine the stochastic equation discussed by S.I. Pavlik in describing a randomly growing phase boundary. We show that, in contrast to Pavlik`s assertion, the model is not multiplicatively renormalizable and that its consistent renormalization-group analysis requires introducing an infinite number of counterterms and the respective coupling constants ({open_quotes}charge{close_quotes}). An explicit calculation in the one-loop approximation shows that a two-dimensional surface of renormalization-group points exits in the infinite-dimensional charge space. If the surface contains an infrared stability region, the problem allows for scaling with the nonuniversal critical dimensionalities of the height of the phase boundarymore » and time, {delta}{sub h} and {delta}{sub t}, which satisfy the exact relationship 2 {delta}{sub h}= {delta}{sub t} + d, where d is the dimensionality of the phase boundary. 23 refs., 1 tab.« less

  19. Renormalization-group constraints on Yukawa alignment in multi-Higgs-doublet models

    NASA Astrophysics Data System (ADS)

    Ferreira, P. M.; Lavoura, L.; Silva, João P.

    2010-05-01

    We write down the renormalization-group equations for the Yukawa-coupling matrices in a general multi-Higgs-doublet model. We then assume that the matrices of the Yukawa couplings of the various Higgs doublets to right-handed fermions of fixed quantum numbers are all proportional to each other. We demonstrate that, in the case of the two-Higgs-doublet model, this proportionality is preserved by the renormalization-group running only in the cases of the standard type-I, II, X, and Y models. We furthermore show that a similar result holds even when there are more than two Higgs doublets: the Yukawa-coupling matrices to fermions of a given electric charge remain proportional under the renormalization-group running if and only if there is a basis for the Higgs doublets in which all the fermions of a given electric charge couple to only one Higgs doublet.

  20. Chemical-potential flow equations for graphene with Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Fräßdorf, Christian; Mosig, Johannes E. M.

    2018-06-01

    We calculate the chemical potential dependence of the renormalized Fermi velocity and static dielectric function for Dirac quasiparticles in graphene nonperturbatively at finite temperature. By reinterpreting the chemical potential as a flow parameter in the spirit of the functional renormalization group (fRG) we obtain a set of flow equations, which describe the change of these functions upon varying the chemical potential. In contrast to the fRG the initial condition of the flow is nontrivial and has to be calculated separately. Our results are consistent with a charge carrier-independent Fermi velocity v (k ) for small densities n ≲k2/π , supporting the comparison of the zero-density fRG calculation of Bauer et al. [Phys. Rev. B 92, 121409 (2015), 10.1103/PhysRevB.92.121409], with the experiment of Elias et al. [Nat. Phys. 7, 701 (2011), 10.1038/nphys2049].

  1. Computation of parton distributions from the quasi-PDF approach at the physical point

    NASA Astrophysics Data System (ADS)

    Alexandrou, Constantia; Bacchio, Simone; Cichy, Krzysztof; Constantinou, Martha; Hadjiyiannakou, Kyriakos; Jansen, Karl; Koutsou, Giannis; Scapellato, Aurora; Steffens, Fernanda

    2018-03-01

    We show the first results for parton distribution functions within the proton at the physical pion mass, employing the method of quasi-distributions. In particular, we present the matrix elements for the iso-vector combination of the unpolarized, helicity and transversity quasi-distributions, obtained with Nf = 2 twisted mass cloverimproved fermions and a proton boosted with momentum |p→| = 0.83 GeV. The momentum smearing technique has been applied to improve the overlap with the proton boosted state. Moreover, we present the renormalized helicity matrix elements in the RI' scheme, following the non-perturbative renormalization prescription recently developed by our group.

  2. Dimensional regularization in position space and a Forest Formula for Epstein-Glaser renormalization

    NASA Astrophysics Data System (ADS)

    Dütsch, Michael; Fredenhagen, Klaus; Keller, Kai Johannes; Rejzner, Katarzyna

    2014-12-01

    We reformulate dimensional regularization as a regularization method in position space and show that it can be used to give a closed expression for the renormalized time-ordered products as solutions to the induction scheme of Epstein-Glaser. This closed expression, which we call the Epstein-Glaser Forest Formula, is analogous to Zimmermann's Forest Formula for BPH renormalization. For scalar fields, the resulting renormalization method is always applicable, we compute several examples. We also analyze the Hopf algebraic aspects of the combinatorics. Our starting point is the Main Theorem of Renormalization of Stora and Popineau and the arising renormalization group as originally defined by Stückelberg and Petermann.

  3. Ghost-gluon vertex in the presence of the Gribov horizon

    NASA Astrophysics Data System (ADS)

    Mintz, B. W.; Palhares, L. F.; Sorella, S. P.; Pereira, A. D.

    2018-02-01

    We consider Yang-Mills theories quantized in the Landau gauge in the presence of the Gribov horizon via the refined Gribov-Zwanziger (RGZ) framework. As the restriction of the gauge path integral to the Gribov region is taken into account, the resulting gauge field propagators display a nontrivial infrared behavior, being very close to the ones observed in lattice gauge field theory simulations. In this work, we explore a higher correlation function in the refined Gribov-Zwanziger theory: the ghost-gluon interaction vertex, at one-loop level. We show explicit compatibility with kinematical constraints, as required by the Ward identities of the theory, and obtain analytical expressions in the limit of vanishing gluon momentum. We find that the RGZ results are nontrivial in the infrared regime, being compatible with lattice Yang-Mills simulations in both SU(2) and SU(3), as well as with solutions from Schwinger-Dyson equations in different truncation schemes, Functional Renormalization Group analysis, and the renormalization group-improved Curci-Ferrari model.

  4. Functional renormalization group and bosonization as a solver for 2D fermionic Hubbard models

    NASA Astrophysics Data System (ADS)

    Schuetz, Florian; Marston, Brad

    2007-03-01

    The functional renormalization group (fRG) provides an unbiased framework to analyze competing instabilities in two-dimensional electron systems and has been used extensively over the past decade [1]. In order to obtain an equally unbiased tool to interprete the flow, we investigate the combination of a many-patch, one-loop calculation with higher dimensional bosonization [2] of the resulting low-energy action. Subsequently a semi-classical approximation [3] can be used to describe the resulting phases. The spinless Hubbard model on a square lattice with nearest neighbor repulsion is investigated as a test case. [1] M. Salmhofer and C. Honerkamp, Prog. Theor. Phys. 105, 1 (2001). [2] A. Houghton, H.-J. Kwon, J. B. Marston, Adv.Phys. 49, 141 (2000); P. Kopietz, Bosonization of interacting fermions in arbitrary dimensions, (Springer, Berlin, 1997). [3] H.-H. Lin, L. Balents, M. P. A. Fisher, Phys. Rev. B 56, 6569 6593 (1997); J. O. Fjaerestad, J. B. Marston, U. Schollwoeck, Ann. Phys. (N.Y.) 321, 894 (2006).

  5. Improved Monte Carlo Renormalization Group Method

    DOE R&D Accomplishments Database

    Gupta, R.; Wilson, K. G.; Umrigar, C.

    1985-01-01

    An extensive program to analyze critical systems using an Improved Monte Carlo Renormalization Group Method (IMCRG) being undertaken at LANL and Cornell is described. Here we first briefly review the method and then list some of the topics being investigated.

  6. Statistical symmetry restoration in fully developed turbulence: Renormalization group analysis of two models.

    PubMed

    Antonov, N V; Gulitskiy, N M; Kostenko, M M; Malyshev, A V

    2018-03-01

    In this paper we consider the model of incompressible fluid described by the stochastic Navier-Stokes equation with finite correlation time of a random force. Inertial-range asymptotic behavior of fully developed turbulence is studied by means of the field theoretic renormalization group within the one-loop approximation. It is corroborated that regardless of the values of model parameters and initial data the inertial-range behavior of the model is described by the limiting case of vanishing correlation time. This indicates that the Galilean symmetry of the model violated by the "colored" random force is restored in the inertial range. This regime corresponds to the only nontrivial fixed point of the renormalization group equation. The stability of this point depends on the relation between the exponents in the energy spectrum E∝k^{1-y} and the dispersion law ω∝k^{2-η}. The second analyzed problem is the passive advection of a scalar field by this velocity ensemble. Correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. We demonstrate that in accordance with Kolmogorov's hypothesis of the local symmetry restoration the main contribution to the operator product expansion is given by the isotropic operator, while anisotropic terms should be considered only as corrections.

  7. Statistical symmetry restoration in fully developed turbulence: Renormalization group analysis of two models

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Malyshev, A. V.

    2018-03-01

    In this paper we consider the model of incompressible fluid described by the stochastic Navier-Stokes equation with finite correlation time of a random force. Inertial-range asymptotic behavior of fully developed turbulence is studied by means of the field theoretic renormalization group within the one-loop approximation. It is corroborated that regardless of the values of model parameters and initial data the inertial-range behavior of the model is described by the limiting case of vanishing correlation time. This indicates that the Galilean symmetry of the model violated by the "colored" random force is restored in the inertial range. This regime corresponds to the only nontrivial fixed point of the renormalization group equation. The stability of this point depends on the relation between the exponents in the energy spectrum E ∝k1 -y and the dispersion law ω ∝k2 -η . The second analyzed problem is the passive advection of a scalar field by this velocity ensemble. Correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. We demonstrate that in accordance with Kolmogorov's hypothesis of the local symmetry restoration the main contribution to the operator product expansion is given by the isotropic operator, while anisotropic terms should be considered only as corrections.

  8. Simple Approach to Renormalize the Cabibbo-Kobayashi-Maskawa Matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kniehl, Bernd A.; Sirlin, Alberto

    2006-12-01

    We present an on-shell scheme to renormalize the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is based on a novel procedure to separate the external-leg mixing corrections into gauge-independent self-mass and gauge-dependent wave function renormalization contributions, and to implement the on-shell renormalization of the former with nondiagonal mass counterterm matrices. Diagonalization of the complete mass matrix leads to an explicit CKM counterterm matrix, which automatically satisfies all the following important properties: it is gauge independent, preserves unitarity, and leads to renormalized amplitudes that are nonsingular in the limit in which any two fermions become mass degenerate.

  9. How nonperturbative is the infrared regime of Landau gauge Yang-Mills correlators?

    NASA Astrophysics Data System (ADS)

    Reinosa, U.; Serreau, J.; Tissier, M.; Wschebor, N.

    2017-07-01

    We study the Landau gauge correlators of Yang-Mills fields for infrared Euclidean momenta in the context of a massive extension of the Faddeev-Popov Lagrangian which, we argue, underlies a variety of continuum approaches. Standard (perturbative) renormalization group techniques with a specific, infrared-safe renormalization scheme produce so-called decoupling and scaling solutions for the ghost and gluon propagators, which correspond to nontrivial infrared fixed points. The decoupling fixed point is infrared stable and weakly coupled, while the scaling fixed point is unstable and generically strongly coupled except for low dimensions d →2 . Under the assumption that such a scaling fixed point exists beyond one-loop order, we find that the corresponding ghost and gluon scaling exponents are, respectively, 2 αF=2 -d and 2 αG=d at all orders of perturbation theory in the present renormalization scheme. We discuss the relation between the ghost wave function renormalization, the gluon screening mass, the scale of spectral positivity violation, and the gluon mass parameter. We also show that this scaling solution does not realize the standard Becchi-Rouet-Stora-Tyutin symmetry of the Faddeev-Popov Lagrangian. Finally, we discuss our findings in relation to the results of nonperturbative continuum methods.

  10. Multiscale unfolding of real networks by geometric renormalization

    NASA Astrophysics Data System (ADS)

    García-Pérez, Guillermo; Boguñá, Marián; Serrano, M. Ángeles

    2018-06-01

    Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.

  11. Renormalization group estimates of transport coefficients in the advection of a passive scalar by incompressible turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Vahala, George

    1993-01-01

    The advection of a passive scalar by incompressible turbulence is considered using recursive renormalization group procedures in the differential sub grid shell thickness limit. It is shown explicitly that the higher order nonlinearities induced by the recursive renormalization group procedure preserve Galilean invariance. Differential equations, valid for the entire resolvable wave number k range, are determined for the eddy viscosity and eddy diffusivity coefficients, and it is shown that higher order nonlinearities do not contribute as k goes to 0, but have an essential role as k goes to k(sub c) the cutoff wave number separating the resolvable scales from the sub grid scales. The recursive renormalization transport coefficients and the associated eddy Prandtl number are in good agreement with the k-dependent transport coefficients derived from closure theories and experiments.

  12. Renormalization group, normal form theory and the Ising model

    NASA Astrophysics Data System (ADS)

    Raju, Archishman; Hayden, Lorien; Clement, Colin; Liarte, Danilo; Sethna, James

    The results of the renormalization group are commonly advertised as the existence of power law singularities at critical points. Logarithmic and exponential corrections are seen as special cases and dealt with on a case-by-case basis. We propose to systematize computing the singularities in the renormalization group using perturbative normal form theory. This gives us a way to classify all such singularities in a unified framework and to generate a systematic machinery to do scaling collapses. We show that this procedure leads to some new results even in classic cases like the Ising model and has general applicability.

  13. Hypercuboidal renormalization in spin foam quantum gravity

    NASA Astrophysics Data System (ADS)

    Bahr, Benjamin; Steinhaus, Sebastian

    2017-06-01

    In this article, we apply background-independent renormalization group methods to spin foam quantum gravity. It is aimed at extending and elucidating the analysis of a companion paper, in which the existence of a fixed point in the truncated renormalization group flow for the model was reported. Here, we repeat the analysis with various modifications and find that both qualitative and quantitative features of the fixed point are robust in this setting. We also go into details about the various approximation schemes employed in the analysis.

  14. Renormalization scheme and gauge (in)dependence of the generalized Crewther relation: what are the real grounds of the β-factorization property?

    NASA Astrophysics Data System (ADS)

    Garkusha, A. V.; Kataev, A. L.; Molokoedov, V. S.

    2018-02-01

    The problem of scheme and gauge dependence of the factorization property of the renormalization group β-function in the SU( N c ) QCD generalized Crewther relation (GCR), which connects the flavor non-singlet contributions to the Adler and Bjorken polarized sum rule functions, is investigated at the O({a}_s^4) level of perturbation theory. It is known that in the gauge-invariant renormalization \\overline{MS} -scheme this property holds in the QCD GCR at least at this order. To study whether this factorization property is true in all gauge-invariant schemes, we consider the MS-like schemes in QCD and the QED-limit of the GCR in the \\overline{MS} -scheme and in two other gauge-independent subtraction schemes, namely in the momentum MOM and the on-shell OS schemes. In these schemes we confirm the existence of the β-function factorization in the QCD and QED variants of the GCR. The problem of the possible β-factorization in the gauge-dependent renormalization schemes in QCD is studied. To investigate this problem we consider the gauge non-invariant mMOM and MOMgggg-schemes. We demonstrate that in the mMOM scheme at the O({a}_s^3) level the β-factorization is valid for three values of the gauge parameter ξ only, namely for ξ = -3 , -1 and ξ = 0. In the O({a}_s^4) order of PT it remains valid only for case of the Landau gauge ξ = 0. The consideration of these two gauge-dependent schemes for the QCD GCR allows us to conclude that the factorization of RG β-function will always be implemented in any MOM-like renormalization schemes with linear covariant gauge at ξ = 0 and ξ = -3 at the O({a}_s^3) approximation. It is demonstrated that if factorization property for the MS-like schemes is true in all orders of PT, as theoretically indicated in the several works on the subject, then the factorization will also occur in the arbitrary MOM-like scheme in the Landau gauge in all orders of perturbation theory as well.

  15. The generalized scheme-independent Crewther relation in QCD

    DOE PAGES

    Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; ...

    2017-05-10

    The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton–nucleon scattering times the Adler function, defined from the cross section for electron–positron annihilation into hadrons, has no pQCD radiative corrections. The “Generalized Crewther Relation” relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (D ns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (C Bjp) at leading twist. A scheme-dependent Δ CSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both D ns and the inverse coefficient Cmore » $$-1\\atop{Bjp}$$ have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, $$\\hat{α}$$ d(Q)=Σ i≥1$$\\hat{α}^i\\atop{g1}$$(Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Lastly, similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.« less

  16. The generalized scheme-independent Crewther relation in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang

    The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton–nucleon scattering times the Adler function, defined from the cross section for electron–positron annihilation into hadrons, has no pQCD radiative corrections. The “Generalized Crewther Relation” relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (D ns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (C Bjp) at leading twist. A scheme-dependent Δ CSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both D ns and the inverse coefficient Cmore » $$-1\\atop{Bjp}$$ have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, $$\\hat{α}$$ d(Q)=Σ i≥1$$\\hat{α}^i\\atop{g1}$$(Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Lastly, similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.« less

  17. Effects of two-loop contributions in the pseudofermion functional renormalization group method for quantum spin systems

    NASA Astrophysics Data System (ADS)

    Rück, Marlon; Reuther, Johannes

    2018-04-01

    We implement an extension of the pseudofermion functional renormalization group method for quantum spin systems that takes into account two-loop diagrammatic contributions. An efficient numerical treatment of the additional terms is achieved within a nested graph construction which recombines different one-loop interaction channels. In order to be fully self-consistent with respect to self-energy corrections, we also include certain three-loop terms of Katanin type. We first apply this formalism to the antiferromagnetic J1-J2 Heisenberg model on the square lattice and benchmark our results against the previous one-loop plus Katanin approach. Even though the renormalization group (RG) equations undergo significant modifications when including the two-loop terms, the magnetic phase diagram, comprising Néel ordered and collinear ordered phases separated by a magnetically disordered regime, remains remarkably unchanged. Only the boundary position between the disordered and the collinear phases is found to be moderately affected by two-loop terms. On the other hand, critical RG scales, which we associate with critical temperatures Tc, are reduced by a factor of ˜2 indicating that the two-loop diagrams play a significant role in enforcing the Mermin-Wagner theorem. Improved estimates for critical temperatures are also obtained for the Heisenberg ferromagnet on the three-dimensional simple cubic lattice where errors in Tc are reduced by ˜34 % . These findings have important implications for the quantum phase diagrams calculated within the previous one-loop plus Katanin approach which turn out to be already well converged.

  18. Variational Approach to Monte Carlo Renormalization Group

    NASA Astrophysics Data System (ADS)

    Wu, Yantao; Car, Roberto

    2017-12-01

    We present a Monte Carlo method for computing the renormalized coupling constants and the critical exponents within renormalization theory. The scheme, which derives from a variational principle, overcomes critical slowing down, by means of a bias potential that renders the coarse grained variables uncorrelated. The two-dimensional Ising model is used to illustrate the method.

  19. Renormalized Energy Concentration in Random Matrices

    NASA Astrophysics Data System (ADS)

    Borodin, Alexei; Serfaty, Sylvia

    2013-05-01

    We define a "renormalized energy" as an explicit functional on arbitrary point configurations of constant average density in the plane and on the real line. The definition is inspired by ideas of Sandier and Serfaty (From the Ginzburg-Landau model to vortex lattice problems, 2012; 1D log-gases and the renormalized energy, 2013). Roughly speaking, it is obtained by subtracting two leading terms from the Coulomb potential on a growing number of charges. The functional is expected to be a good measure of disorder of a configuration of points. We give certain formulas for its expectation for general stationary random point processes. For the random matrix β-sine processes on the real line ( β = 1,2,4), and Ginibre point process and zeros of Gaussian analytic functions process in the plane, we compute the expectation explicitly. Moreover, we prove that for these processes the variance of the renormalized energy vanishes, which shows concentration near the expected value. We also prove that the β = 2 sine process minimizes the renormalized energy in the class of determinantal point processes with translation invariant correlation kernels.

  20. Turbulent mixing of a critical fluid: The non-perturbative renormalization

    NASA Astrophysics Data System (ADS)

    Hnatič, M.; Kalagov, G.; Nalimov, M.

    2018-01-01

    Non-perturbative Renormalization Group (NPRG) technique is applied to a stochastical model of a non-conserved scalar order parameter near its critical point, subject to turbulent advection. The compressible advecting flow is modeled by a random Gaussian velocity field with zero mean and correlation function 〈υjυi 〉 ∼ (Pji⊥ + αPji∥) /k d + ζ. Depending on the relations between the parameters ζ, α and the space dimensionality d, the model reveals several types of scaling regimes. Some of them are well known (model A of equilibrium critical dynamics and linear passive scalar field advected by a random turbulent flow), but there is a new nonequilibrium regime (universality class) associated with new nontrivial fixed points of the renormalization group equations. We have obtained the phase diagram (d, ζ) of possible scaling regimes in the system. The physical point d = 3, ζ = 4 / 3 corresponding to three-dimensional fully developed Kolmogorov's turbulence, where critical fluctuations are irrelevant, is stable for α ≲ 2.26. Otherwise, in the case of "strong compressibility" α ≳ 2.26, the critical fluctuations of the order parameter become relevant for three-dimensional turbulence. Estimations of critical exponents for each scaling regime are presented.

  1. In-Medium Similarity Renormalization Group Approach to the Nuclear Many-Body Problem

    NASA Astrophysics Data System (ADS)

    Hergert, Heiko; Bogner, Scott K.; Lietz, Justin G.; Morris, Titus D.; Novario, Samuel J.; Parzuchowski, Nathan M.; Yuan, Fei

    We present a pedagogical discussion of Similarity Renormalization Group (SRG) methods, in particular the In-Medium SRG (IMSRG) approach for solving the nuclear many-body problem. These methods use continuous unitary transformations to evolve the nuclear Hamiltonian to a desired shape. The IMSRG, in particular, is used to decouple the ground state from all excitations and solve the many-body Schrödinger equation. We discuss the IMSRG formalism as well as its numerical implementation, and use the method to study the pairing model and infinite neutron matter. We compare our results with those of Coupled cluster theory (Chap. 8), Configuration-Interaction Monte Carlo (Chap. 9), and the Self-Consistent Green's Function approach discussed in Chap. 11 The chapter concludes with an expanded overview of current research directions, and a look ahead at upcoming developments.

  2. Stability of Dirac Liquids with Strong Coulomb Interaction.

    PubMed

    Tupitsyn, Igor S; Prokof'ev, Nikolay V

    2017-01-13

    We develop and apply the diagrammatic Monte Carlo technique to address the problem of the stability of the Dirac liquid state (in a graphene-type system) against the strong long-range part of the Coulomb interaction. So far, all attempts to deal with this problem in the field-theoretical framework were limited either to perturbative or random phase approximation and functional renormalization group treatments, with diametrically opposite conclusions. Our calculations aim at the approximation-free solution with controlled accuracy by computing vertex corrections from higher-order skeleton diagrams and establishing the renormalization group flow of the effective Coulomb coupling constant. We unambiguously show that with increasing the system size L (up to ln(L)∼40), the coupling constant always flows towards zero; i.e., the two-dimensional Dirac liquid is an asymptotically free T=0 state with divergent Fermi velocity.

  3. Critical properties of the classical XY and classical Heisenberg models: A renormalization group study

    NASA Astrophysics Data System (ADS)

    de Sousa, J. Ricardo; de Albuquerque, Douglas F.

    1997-02-01

    By using two approaches of renormalization group (RG), mean field RG (MFRG) and effective field RG (EFRG), we study the critical properties of the simple cubic lattice classical XY and classical Heisenberg models. The methods are illustrated by employing its simplest approximation version in which small clusters with one ( N‧ = 1) and two ( N = 2) spins are used. The thermal and magnetic critical exponents, Yt and Yh, and the critical parameter Kc are numerically obtained and are compared with more accurate methods (Monte Carlo, series expansion and ε-expansion). The results presented in this work are in excellent agreement with these sophisticated methods. We have also shown that the exponent Yh does not depend on the symmetry n of the Hamiltonian, hence the criteria of universality for this exponent is only a function of the dimension d.

  4. Higgs boson self-coupling from two-loop analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhendi, H. A.; National Center for Mathematics and Physics, KACST P. O. Box 6086, Riyadh 11442; Barakat, T.

    2010-09-01

    The scale invariant of the effective potential of the standard model at two loop is used as a boundary condition under the assumption that the two-loop effective potential approximates the full effective potential. This condition leads with the help of the renormalization-group functions of the model at two loop to an algebraic equation of the scalar self-coupling with coefficients that depend on the gauge and the top quark couplings. It admits only two real positive solutions. One of them, in the absence of the gauge and top quark couplings, corresponds to the nonperturbative ultraviolet fixed point of the scalar renormalization-groupmore » function and the other corresponds to the perturbative infrared fixed point. The dependence of the scalar coupling on the top quark and the strong couplings at two-loop radiative corrections is analyzed.« less

  5. Entanglement renormalization and topological order.

    PubMed

    Aguado, Miguel; Vidal, Guifré

    2008-02-22

    The multiscale entanglement renormalization ansatz (MERA) is argued to provide a natural description for topological states of matter. The case of Kitaev's toric code is analyzed in detail and shown to possess a remarkably simple MERA description leading to distillation of the topological degrees of freedom at the top of the tensor network. Kitaev states on an infinite lattice are also shown to be a fixed point of the renormalization group flow associated with entanglement renormalization. All of these results generalize to arbitrary quantum double models.

  6. Influence of renormalization shielding on the electron-impact ionization process in dense partially ionized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr

    2015-04-15

    The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it ismore » found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.« less

  7. Long-time correlation for the chaotic orbit in the two-wave Hamiltonian

    NASA Astrophysics Data System (ADS)

    Hatori, Tadatsugu; Irie, Haruyuki

    1987-03-01

    The time correlation function of velocity is found to decay with the power law for the orbit governed by a Hamiltonian, H=v sup 2/2 - Mcosx - Pcos (k(x-t)). The renormalization group technique can predict the power of decay for the correlation function defined by the ensemble average. The power spectrum becomes the 1/f-type for a special case.

  8. Exact renormalization group equations: an introductory review

    NASA Astrophysics Data System (ADS)

    Bagnuls, C.; Bervillier, C.

    2001-07-01

    We critically review the use of the exact renormalization group equations (ERGE) in the framework of the scalar theory. We lay emphasis on the existence of different versions of the ERGE and on an approximation method to solve it: the derivative expansion. The leading order of this expansion appears as an excellent textbook example to underline the nonperturbative features of the Wilson renormalization group theory. We limit ourselves to the consideration of the scalar field (this is why it is an introductory review) but the reader will find (at the end of the review) a set of references to existing studies on more complex systems.

  9. First Renormalized Parton Distribution Functions from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Lin, Huey-Wen; LP3 Collaboration

    2017-09-01

    We present the first lattice-QCD results on the nonperturbatively renormalized parton distribution functions (PDFs). Using X.D. Ji's large-momentum effective theory (LaMET) framework, lattice-QCD hadron structure calculations are able to overcome the longstanding problem of determining the Bjorken- x dependence of PDFs. This has led to numerous additional theoretical works and exciting progress. In this talk, we will address a recent development that implements a step missing from prior lattice-QCD calculations: renormalization, its effects on the nucleon matrix elements, and the resultant changes to the calculated distributions.

  10. Effects of long-range interactions on curvature energies of viral shells

    NASA Astrophysics Data System (ADS)

    Shojaei, Hamid R.; Božič, Anže Lošdorfer; Muthukumar, Murugappan; Podgornik, Rudolf

    2016-05-01

    We formulate a theory of the effects of long-range interactions on the surface tension and spontaneous curvature of proteinaceous shells based on the general Deryaguin-Landau-Verwey-Overbeek mesoscale approach to colloid stability. We derive the full renormalization formulas for the elastic properties of the shell and consider in detail the renormalization of the spontaneous curvature as a function of the corresponding Hamaker coefficient, inner and outer capsid charges, and bathing solution properties. The renormalized spontaneous curvature is found to be a nonmonotonic function of several parameters describing the system.

  11. PyR@TE. Renormalization group equations for general gauge theories

    NASA Astrophysics Data System (ADS)

    Lyonnet, F.; Schienbein, I.; Staub, F.; Wingerter, A.

    2014-03-01

    Although the two-loop renormalization group equations for a general gauge field theory have been known for quite some time, deriving them for specific models has often been difficult in practice. This is mainly due to the fact that, albeit straightforward, the involved calculations are quite long, tedious and prone to error. The present work is an attempt to facilitate the practical use of the renormalization group equations in model building. To that end, we have developed two completely independent sets of programs written in Python and Mathematica, respectively. The Mathematica scripts will be part of an upcoming release of SARAH 4. The present article describes the collection of Python routines that we dubbed PyR@TE which is an acronym for “Python Renormalization group equations At Two-loop for Everyone”. In PyR@TE, once the user specifies the gauge group and the particle content of the model, the routines automatically generate the full two-loop renormalization group equations for all (dimensionless and dimensionful) parameters. The results can optionally be exported to LaTeX and Mathematica, or stored in a Python data structure for further processing by other programs. For ease of use, we have implemented an interactive mode for PyR@TE in form of an IPython Notebook. As a first application, we have generated with PyR@TE the renormalization group equations for several non-supersymmetric extensions of the Standard Model and found some discrepancies with the existing literature. Catalogue identifier: AERV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERV_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 924959 No. of bytes in distributed program, including test data, etc.: 495197 Distribution format: tar.gz Programming language: Python. Computer: Personal computer. Operating system: Tested on Fedora 15, MacOS 10 and 11, Ubuntu 12. Classification: 11.1. External routines: SymPy, PyYAML, NumPy, IPython, SciPy Nature of problem: Deriving the renormalization group equations for a general quantum field theory. Solution method: Group theory, tensor algebra Running time: Tens of seconds per model (one-loop), tens of minutes (two-loop)

  12. A formalism for the systematic treatment of rapidity logarithms in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Chiu, Jui-Yu; Jain, Ambar; Neill, Duff; Rothstein, Ira Z.

    2012-05-01

    Many observables in QCD rely upon the resummation of perturbation theory to retain predictive power. Resummation follows after one factorizes the cross section into the relevant modes. The class of observables which are sensitive to soft recoil effects are particularly challenging to factorize and resum since they involve rapidity logarithms. Such observables include: transverse momentum distributions at p T much less then the high energy scattering scale, jet broadening, exclusive hadroproduction and decay, as well as the Sudakov form factor. In this paper we will present a formalism which allows one to factorize and resum the perturbative series for such observables in a systematic fashion through the notion of a "rapidity renormalization group". That is, a Collin-Soper like equation is realized as a renormalization group equation, but has a more universal applicability to observables beyond the traditional transverse momentum dependent parton distribution functions (TMDPDFs) and the Sudakov form factor. This formalism has the feature that it allows one to track the (non-standard) scheme dependence which is inherent in any sce- nario where one performs a resummation of rapidity divergences. We present a pedagogical introduction to the formalism by applying it to the well-known massive Sudakov form fac- tor. The formalism is then used to study observables of current interest. A factorization theorem for the transverse momentum distribution of Higgs production is presented along with the result for the resummed cross section at NLL. Our formalism allows one to define gauge invariant TMDPDFs which are independent of both the hard scattering amplitude and the soft function, i.e. they are universal. We present details of the factorization and re- summation of the jet broadening cross section including a renormalization in p ⊥ space. We furthermore show how to regulate and renormalize exclusive processes which are plagued by endpoint singularities in such a way as to allow for a consistent resummation.

  13. Supersymmetric QCD on the lattice: An exploratory study

    NASA Astrophysics Data System (ADS)

    Costa, M.; Panagopoulos, H.

    2017-08-01

    We perform a pilot study of the perturbative renormalization of a supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider supersymmetric N =1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves the Wilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naïve discretization. The gauge group that we consider is S U (Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α , are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (Zψ), gluon (Zu), gluino (Zλ), squark (ZA ±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.

  14. Non-Fermi-liquid superconductivity: Eliashberg approach versus the renormalization group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huajia; Raghu, Srinivas; Torroba, Gonzalo

    Here, we address the problem of superconductivity for non-Fermi liquids using two commonly adopted, yet apparently distinct, methods: (1) the renormalization group (RG) and (2) Eliashberg theory. The extent to which both methods yield consistent solutions for the low-energy behavior of quantum metals has remained unclear. We show that the perturbative RG beta function for the 4-Fermi coupling can be explicitly derived from the linearized Eliashberg equations, under the assumption that quantum corrections are approximately local across energy scales. We apply our analysis to the test case of phonon-mediated superconductivity and show the consistency of both the Eliashberg and RGmore » treatments. We next study superconductivity near a class of quantum critical points and find a transition between superconductivity and a “naked” metallic quantum critical point with finite, critical BCS couplings. We speculate on the applications of our theory to the phenomenology of unconventional metals.« less

  15. Non-Fermi-liquid superconductivity: Eliashberg approach versus the renormalization group

    DOE PAGES

    Wang, Huajia; Raghu, Srinivas; Torroba, Gonzalo

    2017-04-15

    Here, we address the problem of superconductivity for non-Fermi liquids using two commonly adopted, yet apparently distinct, methods: (1) the renormalization group (RG) and (2) Eliashberg theory. The extent to which both methods yield consistent solutions for the low-energy behavior of quantum metals has remained unclear. We show that the perturbative RG beta function for the 4-Fermi coupling can be explicitly derived from the linearized Eliashberg equations, under the assumption that quantum corrections are approximately local across energy scales. We apply our analysis to the test case of phonon-mediated superconductivity and show the consistency of both the Eliashberg and RGmore » treatments. We next study superconductivity near a class of quantum critical points and find a transition between superconductivity and a “naked” metallic quantum critical point with finite, critical BCS couplings. We speculate on the applications of our theory to the phenomenology of unconventional metals.« less

  16. Influence of phonon-assisted tunneling on the linear thermoelectric transport through molecular quantum dots

    NASA Astrophysics Data System (ADS)

    Khedri, A.; Meden, V.; Costi, T. A.

    2017-11-01

    We investigate the effect of vibrational degrees of freedom on the linear thermoelectric transport through a single-level quantum dot described by the spinless Anderson-Holstein impurity model. To study the effects of strong electron-phonon coupling, we use the nonperturbative numerical renormalization group approach. We also compare our results, at weak to intermediate coupling, with those obtained by employing the functional renormalization group method, finding good agreement in this parameter regime. When applying a gate voltage at finite temperatures, the inelastic scattering processes, induced by phonon-assisted tunneling, result in an interesting interplay between electrical and thermal transport. We explore different parameter regimes and identify situations for which the thermoelectric power as well as the dimensionless figure of merit are significantly enhanced via a Mahan-Sofo type of mechanism. We show, in particular, that this occurs at strong electron-phonon coupling and in the antiadiabatic regime.

  17. Drude weight of the spin-(1)/(2) XXZ chain: Density matrix renormalization group versus exact diagonalization

    NASA Astrophysics Data System (ADS)

    Karrasch, C.; Hauschild, J.; Langer, S.; Heidrich-Meisner, F.

    2013-06-01

    We revisit the problem of the spin Drude weight D of the integrable spin-1/2 XXZ chain using two complementary approaches, exact diagonalization (ED) and the time-dependent density-matrix renormalization group (tDMRG). We pursue two main goals. First, we present extensive results for the temperature dependence of D. By exploiting time translation invariance within tDMRG, one can extract D for significantly lower temperatures than in previous tDMRG studies. Second, we discuss the numerical quality of the tDMRG data and elaborate on details of the finite-size scaling of the ED results, comparing calculations carried out in the canonical and grand-canonical ensembles. Furthermore, we analyze the behavior of the Drude weight as the point with SU(2)-symmetric exchange is approached and discuss the relative contribution of the Drude weight to the sum rule as a function of temperature.

  18. Mixed Spin-1/2 and Spin-5/2 Model by Renormalization Group Theory: Recursion Equations and Thermodynamic Study

    NASA Astrophysics Data System (ADS)

    Antari, A. El; Zahir, H.; Hasnaoui, A.; Hachem, N.; Alrajhi, A.; Madani, M.; Bouziani, M. El

    2018-04-01

    Using the renormalization group approximation, specifically the Migdal-Kadanoff technique, we investigate the Blume-Capel model with mixed spins S = 1/2 and S = 5/2 on d-dimensional hypercubic lattice. The flow in the parameter space of the Hamiltonian and the thermodynamic functions are determined. The phase diagram of this model is plotted in the (anisotropy, temperature) plane for both cases d = 2 and d = 3 in which the system exhibits the first and second order phase transitions and critical end-points. The associated fixed points are drawn up in a table, and by linearizing the transformation at the vicinity of these points, we determine the critical exponents for d = 2 and d = 3. We have also presented a variation of the free energy derivative at the vicinity of the first and second order transitions. Finally, this work is completed by a discussion and comparison with other approximation.

  19. Prediction of global vapor-liquid equilibria for mixtures containing polar and associating components with improved renormalization group theory.

    PubMed

    Mi, Jianguo; Tang, Yiping; Zhong, Chongli; Li, Yi-Gui

    2005-11-03

    Our recently improved renormalization group (RG) theory is further reformulated within the context of density functional theory. To improve the theory for polar and associating fluids, an explicit and complete expression of the theory is derived in which the density fluctuation is expanded up to the third-order term instead of the original second-order term. A new predictive equation of state based on the first-order mean spherical approximation statistical associating fluid theory (FMSA-SAFT) and the newly improved RG theory is proposed for systems containing polar and associating fluids. The calculated results for both pure fluids and mixtures are in good agreement with experimental data both inside and outside the critical region. This work demonstrates that the RG theory incorporated with the solution of FMSA is a promising route for accurately describing the global phase behavior of complex fluids and mixtures.

  20. Critical asymmetry in renormalization group theory for fluids.

    PubMed

    Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun

    2013-06-21

    The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.

  1. Renormalization group flows and continual Lie algebras

    NASA Astrophysics Data System (ADS)

    Bakas, Ioannis

    2003-08-01

    We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by Script G(d/dt;1), with anti-symmetric Cartan kernel K(t,t') = delta'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N|N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Bäcklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Zn to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra Script G(d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown.

  2. Horizon as critical phenomenon

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Sik

    2016-09-01

    We show that renormalization group flow can be viewed as a gradual wave function collapse, where a quantum state associated with the action of field theory evolves toward a final state that describes an IR fixed point. The process of collapse is described by the radial evolution in the dual holographic theory. If the theory is in the same phase as the assumed IR fixed point, the initial state is smoothly projected to the final state. If in a different phase, the initial state undergoes a phase transition which in turn gives rise to a horizon in the bulk geometry. We demonstrate the connection between critical behavior and horizon in an example, by deriving the bulk metrics that emerge in various phases of the U( N ) vector model in the large N limit based on the holographic dual constructed from quantum renormalization group. The gapped phase exhibits a geometry that smoothly ends at a finite proper distance in the radial direction. The geometric distance in the radial direction measures a complexity: the depth of renormalization group transformation that is needed to project the generally entangled UV state to a direct product state in the IR. For gapless states, entanglement persistently spreads out to larger length scales, and the initial state can not be projected to the direct product state. The obstruction to smooth projection at charge neutral point manifests itself as the long throat in the anti-de Sitter space. The Poincare horizon at infinity marks the critical point which exhibits a divergent length scale in the spread of entanglement. For the gapless states with non-zero chemical potential, the bulk space becomes the Lifshitz geometry with the dynamical critical exponent two. The identification of horizon as critical point may provide an explanation for the universality of horizon. We also discuss the structure of the bulk tensor network that emerges from the quantum renormalization group.

  3. On the interface between perturbative and nonperturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deur, Alexandre; Brodsky, Stanley J.; de Teramond, Guy F.

    2016-04-04

    The QCD running couplingmore » $$\\alpha_s(Q^2)$$ sets the strength of the interactions of quarks and gluons as a function of the momentum transfer $Q$. The $Q^2$ dependence of the coupling is required to describe hadronic interactions at both large and short distances. In this article we adopt the light-front holographic approach to strongly-coupled QCD, a formalism which incorporates confinement, predicts the spectroscopy of hadrons composed of light quarks, and describes the low-$Q^2$ analytic behavior of the strong coupling $$\\alpha_s(Q^2)$$. The high-$Q^2$ dependence of the coupling $$\\alpha_s(Q^2)$$ is specified by perturbative QCD and its renormalization group equation. The matching of the high and low $Q^2$ regimes of $$\\alpha_s(Q^2)$$ then determines the scale $$Q_0$$ which sets the interface between perturbative and nonperturbative hadron dynamics. The value of $$Q_0$$ can be used to set the factorization scale for DGLAP evolution of hadronic structure functions and the ERBL evolution of distribution amplitudes. We discuss the scheme-dependence of the value of $$Q_0$$ and the infrared fixed-point of the QCD coupling. Our analysis is carried out for the $$\\bar{MS}$$, $$g_1$$, $MOM$ and $V$ renormalization schemes. Our results show that the discrepancies on the value of $$\\alpha_s$$ at large distance seen in the literature can be explained by different choices of renormalization schemes. Lastly, we also provide the formulae to compute $$\\alpha_s(Q^2)$$ over the entire range of space-like momentum transfer for the different renormalization schemes discussed in this article.« less

  4. Controlling sign problems in spin models using tensor renormalization

    NASA Astrophysics Data System (ADS)

    Denbleyker, Alan; Liu, Yuzhi; Meurice, Y.; Qin, M. P.; Xiang, T.; Xie, Z. Y.; Yu, J. F.; Zou, Haiyuan

    2014-01-01

    We consider the sign problem for classical spin models at complex β =1/g02 on L ×L lattices. We show that the tensor renormalization group method allows reliable calculations for larger Imβ than the reweighting Monte Carlo method. For the Ising model with complex β we compare our results with the exact Onsager-Kaufman solution at finite volume. The Fisher zeros can be determined precisely with the tensor renormalization group method. We check the convergence of the tensor renormalization group method for the O(2) model on L×L lattices when the number of states Ds increases. We show that the finite size scaling of the calculated Fisher zeros agrees very well with the Kosterlitz-Thouless transition assumption and predict the locations for larger volume. The location of these zeros agree with Monte Carlo reweighting calculation for small volume. The application of the method for the O(2) model with a chemical potential is briefly discussed.

  5. Turbulent transport of a passive-scalar field by using a renormalization-group method

    NASA Technical Reports Server (NTRS)

    Hossain, Murshed

    1992-01-01

    A passive-scalar field is considered to evolve under the influence of a turbulent fluid governed by the Navier-Stokes equation. Turbulent-transport coefficients are calculated by small-scale elimination using a renormalization-group method. Turbulent processes couple both the viscosity and the diffusivity. In the absence of any correlation between the passive-scalar fluctuations and any component of the fluid velocity, the renormalized diffusivity is essentially the same as if the fluid velocity were frozen, although the renormalized equation does contain higher-order nonlinear terms involving viscosity. This arises due to the nonlinear interaction of the velocity with itself. In the presence of a finite correlation, the turbulent diffusivity becomes coupled with both the velocity field and the viscosity. There is then a dependence of the turbulent decay of the passive scalar on the turbulent Prandtl number.

  6. Renormalization of entanglement entropy from topological terms

    NASA Astrophysics Data System (ADS)

    Anastasiou, Giorgos; Araya, Ignacio J.; Olea, Rodrigo

    2018-05-01

    We propose a renormalization scheme for entanglement entropy of three-dimensional CFTs with a four-dimensional asymptotically AdS gravity dual in the context of the gauge/gravity correspondence. The procedure consists in adding the Chern form as a boundary term to the area functional of the Ryu-Takayanagi minimal surface. We provide an explicit prescription for the renormalized entanglement entropy, which is derived via the replica trick. This is achieved by considering a Euclidean gravitational action renormalized by the addition of the Chern form at the spacetime boundary, evaluated in the conically-singular replica manifold. We show that the addition of this boundary term cancels the divergent part of the entanglement entropy, recovering the results obtained by Taylor and Woodhead. We comment on how this prescription for renormalizing the entanglement entropy is in line with the general program of topological renormalization in asymptotically AdS gravity.

  7. Emergent geometric description for a topological phase transition in the Kitaev superconductor model

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Seok; Park, Miok; Cho, Jaeyoon; Park, Chanyong

    2017-10-01

    Resorting to Wilsonian renormalization group (RG) transformations, we propose an emergent geometric description for a topological phase transition in the Kitaev superconductor model. An effective field theory consists of an emergent bulk action with an extra dimension, an ultraviolet (UV) boundary condition for an initial value of a coupling function, and an infrared (IR) effective action with a fully renormalized coupling function. The bulk action describes the evolution of the coupling function along the direction of the extra dimension, where the extra dimension is identified with an RG scale and the resulting equation of motion is nothing but a β function. In particular, the IR effective field theory turns out to be consistent with a Callan-Symanzik equation which takes into account both the bulk and IR boundary contributions. This derived Callan-Symanzik equation gives rise to a metric structure. Based on this emergent metric tensor, we uncover the equivalence of the entanglement entropy between the emergent geometric description and the quantum field theory in the vicinity of the quantum critical point.

  8. Noncommutative Jackiw-Pi model: One-loop renormalization

    NASA Astrophysics Data System (ADS)

    Bufalo, R.; Ghasemkhani, M.; Alipour, M.

    2018-06-01

    In this paper, we study the quantum behavior of the noncommutative Jackiw-Pi model. After establishing the Becchi-Rouet-Store-Tyutin (BRST) invariant action, the perturbative renormalizability is discussed, allowing us to introduce the renormalized mass and gauge coupling. We then proceed to compute the one-loop correction to the basic 1PI functions, necessary to determine the renormalized parameters (mass and charge), next we discuss the physical behavior of these parameters.

  9. Group-theoretical model of developed turbulence and renormalization of the Navier-Stokes equation.

    PubMed

    Saveliev, V L; Gorokhovski, M A

    2005-07-01

    On the basis of the Euler equation and its symmetry properties, this paper proposes a model of stationary homogeneous developed turbulence. A regularized averaging formula for the product of two fields is obtained. An equation for the averaged turbulent velocity field is derived from the Navier-Stokes equation by renormalization-group transformation.

  10. Turbulent compressible fluid: Renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Lučivjanský, T.

    2017-03-01

    We study a model of fully developed turbulence of a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field-theoretic renormalization group. In this approach, scaling properties are related to the fixed points of the renormalization group equations. Previous analysis of this model near the real-world space dimension 3 identified a scaling regime [N. V. Antonov et al., Theor. Math. Phys. 110, 305 (1997), 10.1007/BF02630456]. The aim of the present paper is to explore the existence of additional regimes, which could not be found using the direct perturbative approach of the previous work, and to analyze the crossover between different regimes. It seems possible to determine them near the special value of space dimension 4 in the framework of double y and ɛ expansion, where y is the exponent associated with the random force and ɛ =4 -d is the deviation from the space dimension 4. Our calculations show that there exists an additional fixed point that governs scaling behavior. Turbulent advection of a passive scalar (density) field by this velocity ensemble is considered as well. We demonstrate that various correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. The corresponding anomalous exponents, identified as scaling dimensions of certain composite fields, can be systematically calculated as a series in y and ɛ . All calculations are performed in the leading one-loop approximation.

  11. Intersecting surface defects and instanton partition functions

    NASA Astrophysics Data System (ADS)

    Pan, Yiwen; Peelaers, Wolfger

    2017-07-01

    We analyze intersecting surface defects inserted in interacting four-dimensional N=2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared fixed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like configurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. Our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.

  12. Properties of resonance wave functions.

    NASA Technical Reports Server (NTRS)

    More, R. M.; Gerjuoy, E.

    1973-01-01

    Construction and study of resonance wave functions corresponding to poles of the Green's function for several illustrative models of theoretical interest. Resonance wave functions obtained from the Siegert and Kapur-Peierls definitions of the resonance energies are compared. The comparison especially clarifies the meaning of the normalization constant of the resonance wave functions. It is shown that the wave functions may be considered renormalized in a sense analogous to that of quantum field theory. However, this renormalization is entirely automatic, and the theory has neither ad hoc procedures nor infinite quantities.

  13. Renormalization group naturalness of GUT Higgs potentials

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Amelino-Camelia, G.; Philipsen, O.; Pisanti, O.; Rosa, L.

    1999-01-01

    We analyze the symmetry-breaking patterns of grand unified theories from the point of view of a recently proposed criterion of renormalization-group naturalness. We perform the analysis on simple non-SUSY SU(5) and SO(10) and SUSY SU(5) GUTs. We find that the naturalness criterion can favor spontaneous symmetry breaking in the direction of the smallest of the maximal little groups. Some differences between theories with and without supersymmetry are also emphasized.

  14. Dual fermionic variables and renormalization group approach to junctions of strongly interacting quantum wires

    NASA Astrophysics Data System (ADS)

    Giuliano, Domenico; Nava, Andrea

    2015-09-01

    Making a combined use of bosonization and fermionization techniques, we build nonlocal transformations between dual fermion operators, describing junctions of strongly interacting spinful one-dimensional quantum wires. Our approach allows for trading strongly interacting (in the original coordinates) fermionic Hamiltonians for weakly interacting (in the dual coordinates) ones. It enables us to generalize to the strongly interacting regime the fermionic renormalization group approach to weakly interacting junctions. As a result, on one hand, we are able to pertinently complement the information about the phase diagram of the junction obtained within the bosonization approach; on the other hand, we map out the full crossover of the conductance tensors between any two fixed points in the phase diagram connected by a renormalization group trajectory.

  15. Two-loop renormalization of the quark propagator in the light-cone gauge

    NASA Astrophysics Data System (ADS)

    Williams, James Daniel

    The divergent parts of the five two-loop quark self- energy diagrams of quantum chromodynamics are evaluated in the noncovariant light-cone gauge. Most of the Feynman integrals are computed by means of the powerful matrix integration method, originally developed for the author's Master's thesis. From the results of the integrations, it is shown how to renormalize the quark mass and wave function in such a way that the effective quark propagator is rendered finite at two-loop order. The required counterterms turn out to be local functions of the quark momentum, due to cancellation of the nonlocal divergent parts of the two-loop integrals with equal and opposite contributions from one-loop counterterm subtraction diagrams. The final form of the counterterms is seen to be consistent with the renormalization framework proposed by Bassetto, Dalbosco, and Soldati, in which all noncovariant divergences are absorbed into the wave function normalizations. It also turns out that the mass renormalization d m is the same in the light-cone gauge as it is in a general covariant gauge, at least up to two-loop order.

  16. Relativistic bound-state problem in the light-front Yukawa model

    NASA Astrophysics Data System (ADS)

    Głazek, Stanisław; Harindranath, Avaroth; Pinsky, Stephen; Shigemitsu, Junko; Wilson, Kenneth

    1993-02-01

    We study the renormalization problem on the light front for the two-fermion bound state in the (3+1)-dimensional Yukawa model, working within the lowest-order Tamm-Dancoff approximation. In addition to traditional mass and wave-function renormalization, new types of counterterms are required. These are nonlocal and involve arbitrary functions of the longitudinal momenta. Their appearance is consistent with general power-counting arguments on the light front. We estimate the ``arbitrary function'' in two ways: (1) by using perturbation theory as a guide and (2) by considering the asymptotic large transverse momentum behavior of the kernel in the bound-state equations. The latter method, as it is currently implemented, is applicable only to the helicity-zero sector of the theory. Because of triviality, in the Yukawa model one must retain a finite cutoff Λ in order to have a nonvanishing renormalized coupling. For the range of renormalized couplings (and cutoffs) allowed by triviality, one finds that the perturbative counterterm does a good job in eliminating cutoff dependence in the low-energy spectrum (masses <<Λ).

  17. Gutzwiller renormalization group

    DOE PAGES

    Lanatà, Nicola; Yao, Yong -Xin; Deng, Xiaoyu; ...

    2016-01-06

    We develop a variational scheme called the “Gutzwiller renormalization group” (GRG), which enables us to calculate the ground state of Anderson impurity models (AIM) with arbitrary numerical precision. Our method exploits the low-entanglement property of the ground state of local Hamiltonians in combination with the framework of the Gutzwiller wave function and indicates that the ground state of the AIM has a very simple structure, which can be represented very accurately in terms of a surprisingly small number of variational parameters. Furthermore, we perform benchmark calculations of the single-band AIM that validate our theory and suggest that the GRG mightmore » enable us to study complex systems beyond the reach of the other methods presently available and pave the way to interesting generalizations, e.g., to nonequilibrium transport in nanostructures.« less

  18. Nonperturbative light-front Hamiltonian methods

    NASA Astrophysics Data System (ADS)

    Hiller, J. R.

    2016-09-01

    We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.

  19. The renormalization scale-setting problem in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xing-Gang; Brodsky, Stanley J.; Mojaza, Matin

    2013-09-01

    A key problem in making precise perturbative QCD predictions is to set the proper renormalization scale of the running coupling. The conventional scale-setting procedure assigns an arbitrary range and an arbitrary systematic error to fixed-order pQCD predictions. In fact, this ad hoc procedure gives results which depend on the choice of the renormalization scheme, and it is in conflict with the standard scale-setting procedure used in QED. Predictions for physical results should be independent of the choice of the scheme or other theoretical conventions. We review current ideas and points of view on how to deal with the renormalization scalemore » ambiguity and show how to obtain renormalization scheme- and scale-independent estimates. We begin by introducing the renormalization group (RG) equation and an extended version, which expresses the invariance of physical observables under both the renormalization scheme and scale-parameter transformations. The RG equation provides a convenient way for estimating the scheme- and scale-dependence of a physical process. We then discuss self-consistency requirements of the RG equations, such as reflexivity, symmetry, and transitivity, which must be satisfied by a scale-setting method. Four typical scale setting methods suggested in the literature, i.e., the Fastest Apparent Convergence (FAC) criterion, the Principle of Minimum Sensitivity (PMS), the Brodsky–Lepage–Mackenzie method (BLM), and the Principle of Maximum Conformality (PMC), are introduced. Basic properties and their applications are discussed. We pay particular attention to the PMC, which satisfies all of the requirements of RG invariance. Using the PMC, all non-conformal terms associated with the β-function in the perturbative series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any finite order. The PMC provides the principle underlying the BLM method, since it gives the general rule for extending BLM up to any perturbative order; in fact, they are equivalent to each other through the PMC–BLM correspondence principle. Thus, all the features previously observed in the BLM literature are also adaptable to the PMC. The PMC scales and the resulting finite-order PMC predictions are to high accuracy independent of the choice of the initial renormalization scale, and thus consistent with RG invariance. The PMC is also consistent with the renormalization scale-setting procedure for QED in the zero-color limit. The use of the PMC thus eliminates a serious systematic scale error in perturbative QCD predictions, greatly improving the precision of empirical tests of the Standard Model and their sensitivity to new physics.« less

  20. Low-temperature behavior of the quark-meson model

    NASA Astrophysics Data System (ADS)

    Tripolt, Ralf-Arno; Schaefer, Bernd-Jochen; von Smekal, Lorenz; Wambach, Jochen

    2018-02-01

    We revisit the phase diagram of strong-interaction matter for the two-flavor quark-meson model using the functional renormalization group. In contrast to standard mean-field calculations, an unusual phase structure is encountered at low temperatures and large quark chemical potentials. In particular, we identify a regime where the pressure decreases with increasing temperature and discuss possible reasons for this unphysical behavior.

  1. AdS/CFT and local renormalization group with gauge fields

    NASA Astrophysics Data System (ADS)

    Kikuchi, Ken; Sakai, Tadakatsu

    2016-03-01

    We revisit a study of local renormalization group (RG) with background gauge fields incorporated using the AdS/CFT correspondence. Starting with a (d+1)-dimensional bulk gravity coupled to scalars and gauge fields, we derive a local RG equation from a flow equation by working in the Hamilton-Jacobi formulation of the bulk theory. The Gauss's law constraint associated with gauge symmetry plays an important role. RG flows of the background gauge fields are governed by vector β-functions, and some of their interesting properties are known to follow. We give a systematic rederivation of them on the basis of the flow equation. Fixing an ambiguity of local counterterms in such a manner that is natural from the viewpoint of the flow equation, we determine all the coefficients uniquely appearing in the trace of the stress tensor for d=4. A relation between a choice of schemes and a virial current is discussed. As a consistency check, these are found to satisfy the integrability conditions of local RG transformations. From these results, we are led to a proof of a holographic c-theorem by determining a full family of schemes where a trace anomaly coefficient is related with a holographic c-function.

  2. Functional renormalization group study of orbital fluctuation mediated superconductivity: Impact of the electron-boson coupling vertex corrections

    NASA Astrophysics Data System (ADS)

    Tazai, Rina; Yamakawa, Youichi; Tsuchiizu, Masahisa; Kontani, Hiroshi

    2016-09-01

    In various multiorbital systems, the emergence of the orbital fluctuations and their role on the pairing mechanism attract increasing attention. To achieve deep understanding on these issues, we perform a functional renormalization group (fRG) study for the two-orbital Hubbard model. The vertex corrections for the electron-boson coupling (U -VC), which are dropped in the Migdal-Eliashberg gap equation, are obtained by solving the RG equation. We reveal that the dressed electron-boson coupling for the charge channel Ûeffc becomes much larger than the bare Coulomb interaction Û 0 due to the U -VC in the presence of moderate spin fluctuations. For this reason, the attractive pairing interaction due to the charge or orbital fluctuations is enlarged by the factor (Ûeffc/Û0) 2≫1 . In contrast, the spin fluctuation pairing interaction is suppressed by the spin-channel U -VC, because of the relation Ûeffs≪Û 0 . The present study demonstrates that the orbital or charge fluctuation pairing mechanism can be realized in various multiorbital systems thanks to the U -VC, such as in Fe-based superconductors.

  3. Composite operator and condensate in the S U (N ) Yang-Mills theory with U (N -1 ) stability group

    NASA Astrophysics Data System (ADS)

    Warschinke, Matthias; Matsudo, Ryutaro; Nishino, Shogo; Shinohara, Toru; Kondo, Kei-Ichi

    2018-02-01

    Recently, some reformulations of the Yang-Mills theory inspired by the Cho-Faddeev-Niemi decomposition have been developed in order to understand confinement from the viewpoint of the dual superconductivity. In this paper we focus on the reformulated S U (N ) Yang-Mills theory in the minimal option with U (N -1 ) stability group. Despite existing numerical simulations on the lattice we perform the perturbative analysis to one-loop level as a first step towards the nonperturbative analytical treatment. First, we give the Feynman rules and calculate all renormalization factors to obtain the standard renormalization group functions to one-loop level in light of the renormalizability of this theory. Then we introduce a mixed gluon-ghost composite operator of mass dimension 2 and show the Bechi-Rouet-Stora-Tyutin invariance and the multiplicative renormalizability. Armed with these results, we argue the existence of the mixed gluon-ghost condensate by means of the so-called local composite operator formalism, which leads to various interesting implications for confinement as shown in preceding works.

  4. Asymptotic safety of quantum gravity beyond Ricci scalars

    NASA Astrophysics Data System (ADS)

    Falls, Kevin; King, Callum R.; Litim, Daniel F.; Nikolakopoulos, Kostas; Rahmede, Christoph

    2018-04-01

    We investigate the asymptotic safety conjecture for quantum gravity including curvature invariants beyond Ricci scalars. Our strategy is put to work for families of gravitational actions which depend on functions of the Ricci scalar, the Ricci tensor, and products thereof. Combining functional renormalization with high order polynomial approximations and full numerical integration we derive the renormalization group flow for all couplings and analyse their fixed points, scaling exponents, and the fixed point effective action as a function of the background Ricci curvature. The theory is characterized by three relevant couplings. Higher-dimensional couplings show near-Gaussian scaling with increasing canonical mass dimension. We find that Ricci tensor invariants stabilize the UV fixed point and lead to a rapid convergence of polynomial approximations. We apply our results to models for cosmology and establish that the gravitational fixed point admits inflationary solutions. We also compare findings with those from f (R ) -type theories in the same approximation and pin-point the key new effects due to Ricci tensor interactions. Implications for the asymptotic safety conjecture of gravity are indicated.

  5. Renormalization and radiative corrections to masses in a general Yukawa model

    NASA Astrophysics Data System (ADS)

    Fox, M.; Grimus, W.; Löschner, M.

    2018-01-01

    We consider a model with arbitrary numbers of Majorana fermion fields and real scalar fields φa, general Yukawa couplings and a ℤ4 symmetry that forbids linear and trilinear terms in the scalar potential. Moreover, fermions become massive only after spontaneous symmetry breaking of the ℤ4 symmetry by vacuum expectation values (VEVs) of the φa. Introducing the shifted fields ha whose VEVs vanish, MS¯ renormalization of the parameters of the unbroken theory suffices to make the theory finite. However, in this way, beyond tree level it is necessary to perform finite shifts of the tree-level VEVs, induced by the finite parts of the tadpole diagrams, in order to ensure vanishing one-point functions of the ha. Moreover, adapting the renormalization scheme to a situation with many scalars and VEVs, we consider the physical fermion and scalar masses as derived quantities, i.e. as functions of the coupling constants and VEVs. Consequently, the masses have to be computed order by order in a perturbative expansion. In this scheme, we compute the self-energies of fermions and bosons and show how to obtain the respective one-loop contributions to the tree-level masses. Furthermore, we discuss the modification of our results in the case of Dirac fermions and investigate, by way of an example, the effects of a flavor symmetry group.

  6. An Exponential Regulator for Rapidity Divergences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ye; Neill, Duff; Zhu, Hua Xing

    2016-04-01

    Finding an efficient and compelling regularization of soft and collinear degrees of freedom at the same invariant mass scale, but separated in rapidity is a persistent problem in high-energy factorization. In the course of a calculation, one encounters divergences unregulated by dimensional regularization, often called rapidity divergences. Once regulated, a general framework exists for their renormalization, the rapidity renormalization group (RRG), leading to fully resummed calculations of transverse momentum (to the jet axis) sensitive quantities. We examine how this regularization can be implemented via a multi-differential factorization of the soft-collinear phase-space, leading to an (in principle) alternative non-perturbative regularization ofmore » rapidity divergences. As an example, we examine the fully-differential factorization of a color singlet's momentum spectrum in a hadron-hadron collision at threshold. We show how this factorization acts as a mother theory to both traditional threshold and transverse momentum resummation, recovering the classical results for both resummations. Examining the refactorization of the transverse momentum beam functions in the threshold region, we show that one can directly calculate the rapidity renormalized function, while shedding light on the structure of joint resummation. Finally, we show how using modern bootstrap techniques, the transverse momentum spectrum is determined by an expansion about the threshold factorization, leading to a viable higher loop scheme for calculating the relevant anomalous dimensions for the transverse momentum spectrum.« less

  7. Emergence of criticality in the transportation passenger flow: scaling and renormalization in the Seoul bus system.

    PubMed

    Goh, Segun; Lee, Keumsook; Choi, Moo Young; Fortin, Jean-Yves

    2014-01-01

    Social systems have recently attracted much attention, with attempts to understand social behavior with the aid of statistical mechanics applied to complex systems. Collective properties of such systems emerge from couplings between components, for example, individual persons, transportation nodes such as airports or subway stations, and administrative districts. Among various collective properties, criticality is known as a characteristic property of a complex system, which helps the systems to respond flexibly to external perturbations. This work considers the criticality of the urban transportation system entailed in the massive smart card data on the Seoul transportation network. Analyzing the passenger flow on the Seoul bus system during one week, we find explicit power-law correlations in the system, that is, power-law behavior of the strength correlation function of bus stops and verify scale invariance of the strength fluctuations. Such criticality is probed by means of the scaling and renormalization analysis of the modified gravity model applied to the system. Here a group of nearby (bare) bus stops are transformed into a (renormalized) "block stop" and the scaling relations of the network density turn out to be closely related to the fractal dimensions of the system, revealing the underlying structure. Specifically, the resulting renormalized values of the gravity exponent and of the Hill coefficient give a good description of the Seoul bus system: The former measures the characteristic dimensionality of the network whereas the latter reflects the coupling between distinct transportation modes. It is thus demonstrated that such ideas of physics as scaling and renormalization can be applied successfully to social phenomena exemplified by the passenger flow.

  8. Emergence of Criticality in the Transportation Passenger Flow: Scaling and Renormalization in the Seoul Bus System

    PubMed Central

    Goh, Segun; Lee, Keumsook; Choi, MooYoung; Fortin, Jean-Yves

    2014-01-01

    Social systems have recently attracted much attention, with attempts to understand social behavior with the aid of statistical mechanics applied to complex systems. Collective properties of such systems emerge from couplings between components, for example, individual persons, transportation nodes such as airports or subway stations, and administrative districts. Among various collective properties, criticality is known as a characteristic property of a complex system, which helps the systems to respond flexibly to external perturbations. This work considers the criticality of the urban transportation system entailed in the massive smart card data on the Seoul transportation network. Analyzing the passenger flow on the Seoul bus system during one week, we find explicit power-law correlations in the system, that is, power-law behavior of the strength correlation function of bus stops and verify scale invariance of the strength fluctuations. Such criticality is probed by means of the scaling and renormalization analysis of the modified gravity model applied to the system. Here a group of nearby (bare) bus stops are transformed into a (renormalized) “block stop” and the scaling relations of the network density turn out to be closely related to the fractal dimensions of the system, revealing the underlying structure. Specifically, the resulting renormalized values of the gravity exponent and of the Hill coefficient give a good description of the Seoul bus system: The former measures the characteristic dimensionality of the network whereas the latter reflects the coupling between distinct transportation modes. It is thus demonstrated that such ideas of physics as scaling and renormalization can be applied successfully to social phenomena exemplified by the passenger flow. PMID:24599221

  9. Nonequilibrium Kondo effect in a magnetic field: auxiliary master equation approach

    NASA Astrophysics Data System (ADS)

    Fugger, Delia M.; Dorda, Antonius; Schwarz, Frauke; von Delft, Jan; Arrigoni, Enrico

    2018-01-01

    We study the single-impurity Anderson model out of equilibrium under the influence of a bias voltage ϕ and a magnetic field B. We investigate the interplay between the shift ({ω }B) of the Kondo peak in the spin-resolved density of states (DOS) and the one ({φ }B) of the conductance anomaly. In agreement with experiments and previous theoretical calculations we find that, while the latter displays a rather linear behavior with an almost constant slope as a function of B down to the Kondo scale, the DOS shift first features a slower increase reaching the same behavior as {φ }B only for | g| {μ }BB\\gg {k}B{T}K. Our auxiliary master equation approach yields highly accurate nonequilibrium results for the DOS and for the conductance all the way from within the Kondo up to the charge fluctuation regime, showing excellent agreement with a recently introduced scheme based on a combination of numerical renormalization group with time-dependent density matrix renormalization group.

  10. The signed permutation group on Feynman graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purkart, Julian, E-mail: purkart@physik.hu-berlin.de

    2016-08-15

    The Feynman rules assign to every graph an integral which can be written as a function of a scaling parameter L. Assuming L for the process under consideration is very small, so that contributions to the renormalization group are small, we can expand the integral and only consider the lowest orders in the scaling. The aim of this article is to determine specific combinations of graphs in a scalar quantum field theory that lead to a remarkable simplification of the first non-trivial term in the perturbation series. It will be seen that the result is independent of the renormalization schememore » and the scattering angles. To achieve that goal we will utilize the parametric representation of scalar Feynman integrals as well as the Hopf algebraic structure of the Feynman graphs under consideration. Moreover, we will present a formula which reduces the effort of determining the first-order term in the perturbation series for the specific combination of graphs to a minimum.« less

  11. Renormalization-group theory for finite-size scaling in extreme statistics

    NASA Astrophysics Data System (ADS)

    Györgyi, G.; Moloney, N. R.; Ozogány, K.; Rácz, Z.; Droz, M.

    2010-04-01

    We present a renormalization-group (RG) approach to explain universal features of extreme statistics applied here to independent identically distributed variables. The outlines of the theory have been described in a previous paper, the main result being that finite-size shape corrections to the limit distribution can be obtained from a linearization of the RG transformation near a fixed point, leading to the computation of stable perturbations as eigenfunctions. Here we show details of the RG theory which exhibit remarkable similarities to the RG known in statistical physics. Besides the fixed points explaining universality, and the least stable eigendirections accounting for convergence rates and shape corrections, the similarities include marginally stable perturbations which turn out to be generic for the Fisher-Tippett-Gumbel class. Distribution functions containing unstable perturbations are also considered. We find that, after a transitory divergence, they return to the universal fixed line at the same or at a different point depending on the type of perturbation.

  12. Asymptotic behavior of solutions of the renormalization group K-epsilon turbulence model

    NASA Technical Reports Server (NTRS)

    Yakhot, A.; Staroselsky, I.; Orszag, S. A.

    1994-01-01

    Presently, the only efficient way to calculate turbulent flows in complex geometries of engineering interest is to use Reynolds-average Navier-Stokes (RANS) equations. As compared to the original Navier-Stokes problem, these RANS equations posses much more complicated nonlinear structure and may exhibit far more complex nonlinear behavior. In certain cases, the asymptotic behavior of such models can be studied analytically which, aside from being an interesting fundamental problem, is important for better understanding of the internal structure of the models as well as to improve their performances. The renormalization group (RNG) K-epsilon turbulence model, derived directly from the incompresible Navier-Stokes equations, is analyzed. It has already been used to calculate a variety of turbulent and transitional flows in complex geometries. For large values of the RNG viscosity parameter, the model may exhibit singular behavior. In the form of the RNG K-epsilon model that avoids the use of explicit wall functions, a = 1, so the RNG viscosity parameter must be smaller than 23.62 to avoid singularities.

  13. One-loop calculations in Supersymmetric Lattice QCD

    NASA Astrophysics Data System (ADS)

    Costa, M.; Panagopoulos, H.

    2017-03-01

    We study the self energies of all particles which appear in a lattice regularization of supersymmetric QCD (N = 1). We compute, perturbatively to one-loop, the relevant two-point Green's functions using both the dimensional and the lattice regularizations. Our lattice formulation employs the Wilson fermion acrion for the gluino and quark fields. The gauge group that we consider is SU(Nc) while the number of colors, Nc and the number of flavors, Nf , are kept as generic parameters. We have also searched for relations among the propagators which are computed from our one-loop results. We have obtained analytic expressions for the renormalization functions of the quark field (Zψ), gluon field (Zu), gluino field (Zλ) and squark field (ZA±). We present here results from dimensional regularization, relegating to a forthcoming publication [1] our results along with a more complete list of references. Part of the lattice study regards also the renormalization of quark bilinear operators which, unlike the nonsupersymmetric case, exhibit a rich pattern of operator mixing at the quantum level.

  14. Structural impact on the eigenenergy renormalization for carbon and silicon allotropes and boron nitride polymorphs

    NASA Astrophysics Data System (ADS)

    Tutchton, Roxanne; Marchbanks, Christopher; Wu, Zhigang

    2018-05-01

    The phonon-induced renormalization of electronic band structures is investigated through first-principles calculations based on the density functional perturbation theory for nine materials with various crystal symmetries. Our results demonstrate that the magnitude of the zero-point renormalization (ZPR) of the electronic band structure is dependent on both crystal structure and material composition. We have performed analysis of the electron-phonon-coupling-induced renormalization for two silicon (Si) allotropes, three carbon (C) allotropes, and four boron nitride (BN) polymorphs. Phonon dispersions of each material were computed, and our analysis indicates that materials with optical phonons at higher maximum frequencies, such as graphite and hexagonal BN, have larger absolute ZPRs, with the exception of graphene, which has a considerably smaller ZPR despite having phonon frequencies in the same range as graphite. Depending on the structure and material, renormalizations can be comparable to the GW many-body corrections to Kohn-Sham eigenenergies and, thus, need to be considered in electronic structure calculations. The temperature dependence of the renormalizations is also considered, and in all materials, the eigenenergy renormalization at the band gap and around the Fermi level increases with increasing temperature.

  15. Effective scalar field theory and reduction of couplings

    NASA Astrophysics Data System (ADS)

    Atance, Mario; Cortés, José Luis

    1997-09-01

    A general discussion of the renormalization of the quantum theory of a scalar field as an effective field theory is presented. The renormalization group equations in a mass-independent renormalization scheme allow us to identify the possibility to go beyond the renormalizable φ4 theory without losing its predictive power. It is shown that there is a minimal extension with just one additional free parameter (the mass scale of the effective theory expansion) and some of its properties are discussed.

  16. Renormalization Group scale-setting in astrophysical systems

    NASA Astrophysics Data System (ADS)

    Domazet, Silvije; Štefančić, Hrvoje

    2011-09-01

    A more general scale-setting procedure for General Relativity with Renormalization Group corrections is proposed. Theoretical aspects of the scale-setting procedure and the interpretation of the Renormalization Group running scale are discussed. The procedure is elaborated for several highly symmetric systems with matter in the form of an ideal fluid and for two models of running of the Newton coupling and the cosmological term. For a static spherically symmetric system with the matter obeying the polytropic equation of state the running scale-setting is performed analytically. The obtained result for the running scale matches the Ansatz introduced in a recent paper by Rodrigues, Letelier and Shapiro which provides an excellent explanation of rotation curves for a number of galaxies. A systematic explanation of the galaxy rotation curves using the scale-setting procedure introduced in this Letter is identified as an important future goal.

  17. Effect of electron-phonon coupling on energy and density of states renormalizations of dynamically screened graphene

    NASA Astrophysics Data System (ADS)

    Leblanc, J. P. F.; Carbotte, J. P.; Nicol, E. J.

    2012-02-01

    Motivated by recent tunneling and angle-resolved photoemission (ARPES) work [1,2], we explore the combined effect of electron-electron and electron-phonon couplings on the renormalized energy dispersion, the spectral function, and the density of states of doped graphene. We find that the plasmarons seen in ARPES are also observable in the density of states and appear as structures with quadratic dependence on energy about the minima. Further, we illustrate how knowledge of the slopes of both the density of states and the renormalized dispersion near the Fermi level can allow for the separation of momentum and frequency dependent renormalizations to the Fermi velocity. This analysis should allow for the isolation of the renormalization due to the electron-phonon interaction from that of the electron-electron interaction. [4pt] [1] Brar et al. Phys. Rev. Lett. 104, 036805 (2010) [2] Bostwick et al. Science 328, p.999 (2010)

  18. Spectral Function and Quasiparticle Damping of Interacting Bosons in Two Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinner, Andreas; Kopietz, Peter; Hasselmann, Nils

    2009-03-27

    We employ the functional renormalization group to study dynamical properties of the two-dimensional Bose gas. Our approach is free of infrared divergences, which plague the usual diagrammatic approaches, and is consistent with the exact Nepomnyashchy identity, which states that the anomalous self-energy vanishes at zero frequency and momentum. We recover the correct infrared behavior of the propagators and present explicit results for the spectral line shape, from which we extract the quasiparticle dispersion and dampi0008.

  19. Remarks on the renormalization group in statistical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Fournier, J.-D.; Frisch, U.

    1983-08-01

    A variant of the renormalization group is applied to the problem of randomly forced fluids studied by Forster, Nelson, and Stephen

    [Phys. Rev. A 16, 732 (1977)]
    and others. Amplitude factors (thought to be nonuniversal by some authors) are evaluated and shown to have universal values. Comparisons with closures are made. The possibility of a breakdown of self-similarity and/or universality due to intermittency effects is discussed.

  20. Intersecting surface defects and instanton partition functions

    DOE PAGES

    Pan, Yiwen; Peelaers, Wolfger

    2017-07-14

    We analyze intersecting surface defects inserted in interacting four-dimensional N = 2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared xed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like con gurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. In conclusion, our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.

  1. Intersecting surface defects and instanton partition functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yiwen; Peelaers, Wolfger

    We analyze intersecting surface defects inserted in interacting four-dimensional N = 2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared xed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like con gurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. In conclusion, our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.

  2. Topological terms, AdS2 n gravity, and renormalized entanglement entropy of holographic CFTs

    NASA Astrophysics Data System (ADS)

    Anastasiou, Giorgos; Araya, Ignacio J.; Olea, Rodrigo

    2018-05-01

    We extend our topological renormalization scheme for entanglement entropy to holographic CFTs of arbitrary odd dimensions in the context of the AdS /CFT correspondence. The procedure consists in adding the Chern form as a boundary term to the area functional of the Ryu-Takayanagi minimal surface. The renormalized entanglement entropy thus obtained can be rewritten in terms of the Euler characteristic and the AdS curvature of the minimal surface. This prescription considers the use of the replica trick to express the renormalized entanglement entropy in terms of the renormalized gravitational action evaluated on the conically singular replica manifold extended to the bulk. This renormalized action is obtained in turn by adding the Chern form as the counterterm at the boundary of the 2 n -dimensional asymptotically AdS bulk manifold. We explicitly show that, up to next-to-leading order in the holographic radial coordinate, the addition of this boundary term cancels the divergent part of the entanglement entropy. We discuss possible applications of the method for studying CFT parameters like central charges.

  3. Fixing the fixed-point system—Applying Dynamic Renormalization Group to systems with long-range interactions

    NASA Astrophysics Data System (ADS)

    Katzav, Eytan

    2013-04-01

    In this paper, a mode of using the Dynamic Renormalization Group (DRG) method is suggested in order to cope with inconsistent results obtained when applying it to a continuous family of one-dimensional nonlocal models. The key observation is that the correct fixed-point dynamical system has to be identified during the analysis in order to account for all the relevant terms that are generated under renormalization. This is well established for static problems, however poorly implemented in dynamical ones. An application of this approach to a nonlocal extension of the Kardar-Parisi-Zhang equation resolves certain problems in one-dimension. Namely, obviously problematic predictions are eliminated and the existing exact analytic results are recovered.

  4. Loop optimization for tensor network renormalization

    NASA Astrophysics Data System (ADS)

    Yang, Shuo; Gu, Zheng-Cheng; Wen, Xiao-Gang

    We introduce a tensor renormalization group scheme for coarse-graining a two-dimensional tensor network, which can be successfully applied to both classical and quantum systems on and off criticality. The key idea of our scheme is to deform a 2D tensor network into small loops and then optimize tensors on each loop. In this way we remove short-range entanglement at each iteration step, and significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm in the classical Ising model and a frustrated 2D quantum model. NSF Grant No. DMR-1005541 and NSFC 11274192, BMO Financial Group, John Templeton Foundation, Government of Canada through Industry Canada, Province of Ontario through the Ministry of Economic Development & Innovation.

  5. Renormalization of generalized scalar Duffin-Kemmer-Petiau electrodynamics

    NASA Astrophysics Data System (ADS)

    Bufalo, R.; Cardoso, T. R.; Nogueira, A. A.; Pimentel, B. M.

    2018-05-01

    We establish the multiplicative renormalization procedure of generalized scalar Duffin-Kemmer-Petiau electrodynamics (GSDKP4 ) in the mass shell. We show an explicit calculation of the first radiative corrections (one-loop) associated with the photon propagator, meson propagator, vertex function, and photon-photon four-point function utilizing the dimensional regularization method, where the gauge symmetry is manifest. As we will see, one of the consequences of the study is that, from the complete photon propagator renormalization condition, imposing that it behaves as a massless field, an energy range where GSDKP4 is well defined is m2≪k2

  6. Normal state of metallic hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A.

    2017-02-01

    A generalized theory of the normal properties of metals in the case of electron-phonon (EP) systems with a nonconstant density of electron states has been used to study the normal state of the SH3 and SH2 phases of hydrogen sulfide at different pressures. The frequency dependence of the real Re Σ (ω) and imaginary ImΣ (ω) parts of the self-energy Σ (ω) part (SEP) of the Green's function of the electron Σ (ω), real part Re Z (ω), and imaginary part Im Z (ω) of the complex renormalization of the mass of the electron; the real part Re χ (ω) and the imaginary part Imχ (ω) of the complex renormalization of the chemical potential; and the density of electron states N (ɛ) renormalized by strong electron-phonon interaction have been calculated. Calculations have been carried out for the stable orthorhombic structure (space group Im3¯ m) of the hydrogen sulfide SH3 for three values of the pressure P = 170, 180, and 225 GPa; and for an SH2 structure with a symmetry of I4/ mmm ( D4 h1¯7) for three values of pressure P = 150, 180, and 225 GP at temperature T = 200 K.

  7. Many-body effects and ultraviolet renormalization in three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Throckmorton, Robert; Hofmann, Johannes; Barnes, Edwin

    We develop a theory for electron-electron interaction-induced many-body effects in three dimensional (3D) Weyl or Dirac semimetals, including interaction corrections to the polarizability, electron self-energy, and vertex function, up to second order in the effective fine structure constant of the Dirac material. These results are used to derive the higher-order ultraviolet renormalization of the Fermi velocity, effective coupling, and quasiparticle residue, revealing that the corrections to the renormalization group (RG) flows of both the velocity and coupling counteract the leading-order tendencies of velocity enhancement and coupling suppression at low energies. This in turn leads to the emergence of a critical coupling above which the interaction strength grows with decreasing energy scale. In addition, we identify a range of coupling strengths below the critical point in which the Fermi velocity varies non-monotonically as the low-energy, non-interacting fixed point is approached. Furthermore, we find that while the higher-order correction to the flow of the coupling is generally small compared to the leading order, the corresponding correction to the velocity flow carries an additional factor of the Dirac cone flavor number relative to the leading-order result. Supported by LPS-MPO-CMTC.

  8. Renormalization in Quantum Field Theory and the Riemann-Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem

    NASA Astrophysics Data System (ADS)

    Connes, Alain; Kreimer, Dirk

    This paper gives a complete selfcontained proof of our result announced in [6] showing that renormalization in quantum field theory is a special instance of a general mathematical procedure of extraction of finite values based on the Riemann-Hilbert problem. We shall first show that for any quantum field theory, the combinatorics of Feynman graphs gives rise to a Hopf algebra which is commutative as an algebra. It is the dual Hopf algebra of the enveloping algebra of a Lie algebra whose basis is labelled by the one particle irreducible Feynman graphs. The Lie bracket of two such graphs is computed from insertions of one graph in the other and vice versa. The corresponding Lie group G is the group of characters of . We shall then show that, using dimensional regularization, the bare (unrenormalized) theory gives rise to a loop where C is a small circle of complex dimensions around the integer dimension D of space-time. Our main result is that the renormalized theory is just the evaluation at z=D of the holomorphic part γ+ of the Birkhoff decomposition of γ. We begin to analyse the group G and show that it is a semi-direct product of an easily understood abelian group by a highly non-trivial group closely tied up with groups of diffeomorphisms. The analysis of this latter group as well as the interpretation of the renormalization group and of anomalous dimensions are the content of our second paper with the same overall title.

  9. The density-matrix renormalization group: a short introduction.

    PubMed

    Schollwöck, Ulrich

    2011-07-13

    The density-matrix renormalization group (DMRG) method has established itself over the last decade as the leading method for the simulation of the statics and dynamics of one-dimensional strongly correlated quantum lattice systems. The DMRG is a method that shares features of a renormalization group procedure (which here generates a flow in the space of reduced density operators) and of a variational method that operates on a highly interesting class of quantum states, so-called matrix product states (MPSs). The DMRG method is presented here entirely in the MPS language. While the DMRG generally fails in larger two-dimensional systems, the MPS picture suggests a straightforward generalization to higher dimensions in the framework of tensor network states. The resulting algorithms, however, suffer from difficulties absent in one dimension, apart from a much more unfavourable efficiency, such that their ultimate success remains far from clear at the moment.

  10. Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory.

    PubMed

    Yanai, Takeshi; Kurashige, Yuki; Neuscamman, Eric; Chan, Garnet Kin-Lic

    2010-01-14

    We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu(2)O(2)](2+) core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu(2)O(2)](2+).

  11. Entanglement Holographic Mapping of Many-Body Localized System by Spectrum Bifurcation Renormalization Group

    NASA Astrophysics Data System (ADS)

    You, Yi-Zhuang; Qi, Xiao-Liang; Xu, Cenke

    We introduce the spectrum bifurcation renormalization group (SBRG) as a generalization of the real-space renormalization group for the many-body localized (MBL) system without truncating the Hilbert space. Starting from a disordered many-body Hamiltonian in the full MBL phase, the SBRG flows to the MBL fixed-point Hamiltonian, and generates the local conserved quantities and the matrix product state representations for all eigenstates. The method is applicable to both spin and fermion models with arbitrary interaction strength on any lattice in all dimensions, as long as the models are in the MBL phase. In particular, we focus on the 1 d interacting Majorana chain with strong disorder, and map out its phase diagram using the entanglement entropy. The SBRG flow also generates an entanglement holographic mapping, which duals the MBL state to a fragmented holographic space decorated with small blackholes.

  12. Leading temperature dependence of the conductance in Kondo-correlated quantum dots.

    PubMed

    Aligia, A A

    2018-04-18

    Using renormalized perturbation theory in the Coulomb repulsion, we derive an analytical expression for the leading term in the temperature dependence of the conductance through a quantum dot described by the impurity Anderson model, in terms of the renormalized parameters of the model. Taking these parameters from the literature, we compare the results with published ones calculated using the numerical renormalization group obtaining a very good agreement. The approach is superior to alternative perturbative treatments. We compare in particular to the results of a simple interpolative perturbation approach.

  13. Renormalization in Large Momentum Effective Theory of Parton Physics.

    PubMed

    Ji, Xiangdong; Zhang, Jian-Hui; Zhao, Yong

    2018-03-16

    In the large-momentum effective field theory approach to parton physics, the matrix elements of nonlocal operators of quark and gluon fields, linked by straight Wilson lines in a spatial direction, are calculated in lattice quantum chromodynamics as a function of hadron momentum. Using the heavy-quark effective theory formalism, we show a multiplicative renormalization of these operators at all orders in perturbation theory, both in dimensional and lattice regularizations. The result provides a theoretical basis for extracting parton properties through properly renormalized observables in Monte Carlo simulations.

  14. Renormalization of loop functions for all loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, R.A.; Neri, F.; Sato, M.

    1981-08-15

    It is shown that the vacuum expectation values W(C/sub 1/,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp(igcontour-integral/sub C/iA/sub ..mu../(x)dx/sup ..mu../) are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub ..mu../(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multipliedmore » by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub ..gamma../ is a loop which is smooth and simple except for a single cusp of angle ..gamma.., then W/sub R/(C/sub ..gamma../) = Z(..gamma..)W(C/sub ..gamma../) is finite for a suitable renormalization factor Z(..gamma..) which depends on ..gamma.. but on no other characteristic of C/sub ..gamma../. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub ..gamma../) = 1 for an arbitrary but fixed loop C-bar/sub ..gamma../. Next, if C/sub ..beta../ is a loop which is smooth and simple except for a cross point of angles ..beta.., then W(C/sub ..beta../) must be renormalized together with the loop functions of associated sets S/sup i//sub ..beta../ = )C/sup i//sub 1/,xxx, C/sup i//sub p/i) (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub ..beta../equivalentC/sup 1//sub 1/. Then W/sub R/(S/sup i//sub ..beta../) = Z/sup i/j(..beta..)W(S/sup j//sub ..beta../) is finite for a suitable matrix Z/sup i/j(..beta..).« less

  15. Density-matrix renormalization group method for the conductance of one-dimensional correlated systems using the Kubo formula

    NASA Astrophysics Data System (ADS)

    Bischoff, Jan-Moritz; Jeckelmann, Eric

    2017-11-01

    We improve the density-matrix renormalization group (DMRG) evaluation of the Kubo formula for the zero-temperature linear conductance of one-dimensional correlated systems. The dynamical DMRG is used to compute the linear response of a finite system to an applied ac source-drain voltage; then the low-frequency finite-system response is extrapolated to the thermodynamic limit to obtain the dc conductance of an infinite system. The method is demonstrated on the one-dimensional spinless fermion model at half filling. Our method is able to replicate several predictions of the Luttinger liquid theory such as the renormalization of the conductance in a homogeneous conductor, the universal effects of a single barrier, and the resonant tunneling through a double barrier.

  16. Small-cluster renormalization group in Ising and Blume-Emery-Griffiths models with ferromagnetic, antiferromagnetic, and quenched disordered magnetic interactions

    NASA Astrophysics Data System (ADS)

    Antenucci, F.; Crisanti, A.; Leuzzi, L.

    2014-07-01

    The Ising and Blume-Emery-Griffiths (BEG) models' critical behavior is analyzed in two dimensions and three dimensions by means of a renormalization group scheme on small clusters made of a few lattice cells. Different kinds of cells are proposed for both ordered and disordered model cases. In particular, cells preserving a possible antiferromagnetic ordering under renormalization allow for the determination of the Néel critical point and its scaling indices. These also provide more reliable estimates of the Curie fixed point than those obtained using cells preserving only the ferromagnetic ordering. In all studied dimensions, the present procedure does not yield a strong-disorder critical point corresponding to the transition to the spin-glass phase. This limitation is thoroughly analyzed and motivated.

  17. Exploration of quantum phases transition in the XXZ model with Dzyaloshinskii-Moriya interaction using trance distance discord

    NASA Astrophysics Data System (ADS)

    Zhang, Ren-jie; Xu, Shuai; Shi, Jia-dong; Ma, Wen-chao; Ye, Liu

    2015-11-01

    In the paper, we researched the quantum phase transition (QPT) in the anisotropic spin XXZ model by exploiting the quantum renormalization group (QRG) method. The innovation point is that we adopt a new approach called trace distance discord to indicate the quantum correlation of the system. QPT after several iterations of renormalization in current system has been observed. Consequently, it opened the possibility of investigation of QPR in the geometric discord territory. While the anisotropy suppresses the correlation due to favoring of the alignment of spins, the DM interaction restores the spoiled correlation via creation of the quantum fluctuations. We also apply quantum renormalization group method to probe the thermodynamic limit of the model and emerging of nonanalytic behavior of the correlation.

  18. Critical behavior of a chiral superfluid in a bipartite square lattice

    NASA Astrophysics Data System (ADS)

    Okamoto, Junichi; Huang, Wen-Min; Höppner, Robert; Mathey, Ludwig

    2018-01-01

    We study the critical behavior of Bose-Einstein condensation in the second band of a bipartite optical square lattice in a renormalization group framework at one-loop order. Within our field theoretical representation of the system, we approximate the system as a two-component Bose gas in three dimensions. We demonstrate that the system is in a different universality class than the previously studied condensation in a frustrated triangular lattice due to an additional Umklapp scattering term, which stabilizes the chiral superfluid order at low temperatures. We derive the renormalization group flow of the system and show that this order persists in the low energy limit. Furthermore, the renormalization flow suggests that the phase transition from the thermal phase to the chiral superfluid state is first order.

  19. Development of a Renormalization Group Approach to Multi-Scale Plasma Physics Computation

    DTIC Science & Technology

    2012-03-28

    with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1...NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a . REPORT...code) 29-12-2008 Final Technical Report From 29-12-2008 To 16-95-2011 (STTR PHASE II) DEVELOPMENT OF A RENORMALIZATION GROUP APPROACH TO MULTI-SCALE

  20. New applications of renormalization group methods in nuclear physics.

    PubMed

    Furnstahl, R J; Hebeler, K

    2013-12-01

    We review recent developments in the use of renormalization group (RG) methods in low-energy nuclear physics. These advances include enhanced RG technology, particularly for three-nucleon forces, which greatly extends the reach and accuracy of microscopic calculations. We discuss new results for the nucleonic equation of state with applications to astrophysical systems such as neutron stars, new calculations of the structure and reactions of finite nuclei, and new explorations of correlations in nuclear systems.

  1. Renormalization Group Theory for the Imbalanced Fermi Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubbels, K. B.; Stoof, H. T. C.

    2008-04-11

    We formulate a Wilsonian renormalization group theory for the imbalanced Fermi gas. The theory is able to recover quantitatively well-established results in both the weak-coupling and the strong-coupling (unitarity) limits. We determine for the latter case the line of second-order phase transitions of the imbalanced Fermi gas and, in particular, the location of the tricritical point. We obtain good agreement with the recent experiments of Y. Shin et al. [Nature (London) 451, 689 (2008)].

  2. Application of renormalization group theory to the large-eddy simulation of transitional boundary layers

    NASA Technical Reports Server (NTRS)

    Piomelli, Ugo; Zang, Thomas A.; Speziale, Charles G.; Lund, Thomas S.

    1990-01-01

    An eddy viscosity model based on the renormalization group theory of Yakhot and Orszag (1986) is applied to the large-eddy simulation of transition in a flat-plate boundary layer. The simulation predicts with satisfactory accuracy the mean velocity and Reynolds stress profiles, as well as the development of the important scales of motion. The evolution of the structures characteristic of the nonlinear stages of transition is also predicted reasonably well.

  3. The long flow to freedom

    DOE PAGES

    Aharony, Ofer; Razamat, Shlomo S.; Seiberg, Nathan; ...

    2017-02-10

    Two-dimensional field theories do not have a moduli space of vacua. Instead, it is common that their low-energy behavior is a sigma model with a target space. When this target space is compact its renormalization group flow is standard. When it is non-compact the continuous spectrum of operators can change the qualitative behavior. Here we discuss two-dimensional gauge theories with N = (2,2) supersymmetry. We focus on two specific theories, for which we argue that they flow to free chiral multiplets at low energies: the U(1) gauge theory with one flavor (two chiral superfields with charges plus and minus one)more » and a non-zero Fayet-Iliopoulos term, and pure SU( N) gauge theories. We argue that the renormalization group flow of these theories has an interesting order of limits issue. Holding the position on the target space fixed, the space flattens out under the renormalization group. On the other hand, if we first go to infinity on the target space and then perform the renormalization group, we always have a non-trivial space, e.g. a cone with a deficit angle. We explain how to interpret low-energy dualities between theories with non-compact target spaces. As a result, we expect a similar qualitative behavior also for other non-compact sigma models, even when they do not flow to free theories.« less

  4. Absence of Long-Range Order in a Triangular Spin System with Dipolar Interactions

    NASA Astrophysics Data System (ADS)

    Keleş, Ahmet; Zhao, Erhai

    2018-05-01

    The antiferromagnetic Heisenberg model on the triangular lattice is perhaps the best known example of frustrated magnets, but it orders at low temperatures. Recent density matrix renormalization group (DMRG) calculations find that the next nearest neighbor interaction J2 enhances the frustration, and it leads to a spin liquid for J2/J1∈(0.08 ,0.15 ). In addition, a DMRG study of a dipolar Heisenberg model with longer range interactions gives evidence for a spin liquid at a small dipole tilting angle θ ∈[0 ,1 0 ° ). In both cases, the putative spin liquid region appears to be small. Here, we show that for the triangular lattice dipolar Heisenberg model, a robust quantum paramagnetic phase exists in a surprisingly wide region, θ ∈[0 ,5 4 ° ) , for dipoles tilted along the lattice diagonal direction. We obtain the phase diagram of the model by functional renormalization group (RG), which treats all magnetic instabilities on equal footing. The quantum paramagnetic phase is characterized by a smooth continuous flow of vertex functions and spin susceptibility down to the lowest RG scale, in contrast to the apparent breakdown of RG flow in phases with stripe or spiral order. Our finding points to a promising direction to search for quantum spin liquids in ultracold dipolar molecules.

  5. Horizontal visibility graphs generated by type-I intermittency

    NASA Astrophysics Data System (ADS)

    Núñez, Ángel M.; Luque, Bartolo; Lacasa, Lucas; Gómez, Jose Patricio; Robledo, Alberto

    2013-05-01

    The type-I intermittency route to (or out of) chaos is investigated within the horizontal visibility (HV) graph theory. For that purpose, we address the trajectories generated by unimodal maps close to an inverse tangent bifurcation and construct their associated HV graphs. We show how the alternation of laminar episodes and chaotic bursts imprints a fingerprint in the resulting graph structure. Accordingly, we derive a phenomenological theory that predicts quantitative values for several network parameters. In particular, we predict that the characteristic power-law scaling of the mean length of laminar trend sizes is fully inherited by the variance of the graph degree distribution, in good agreement with the numerics. We also report numerical evidence on how the characteristic power-law scaling of the Lyapunov exponent as a function of the distance to the tangent bifurcation is inherited in the graph by an analogous scaling of block entropy functionals defined on the graph. Furthermore, we are able to recast the full set of HV graphs generated by intermittent dynamics into a renormalization-group framework, where the fixed points of its graph-theoretical renormalization-group flow account for the different types of dynamics. We also establish that the nontrivial fixed point of this flow coincides with the tangency condition and that the corresponding invariant graph exhibits extremal entropic properties.

  6. Quantum corrections to non-Abelian SUSY theories on orbifolds

    NASA Astrophysics Data System (ADS)

    Groot Nibbelink, Stefan; Hillenbach, Mark

    2006-07-01

    We consider supersymmetric non-Abelian gauge theories coupled to hyper multiplets on five and six dimensional orbifolds, S/Z and T/Z, respectively. We compute the bulk and local fixed point renormalizations of the gauge couplings. To this end we extend supergraph techniques to these orbifolds by defining orbifold compatible delta functions. We develop their properties in detail. To cancel the bulk one-loop divergences the bulk gauge kinetic terms and dimension six higher derivative operators are required. The gauge couplings renormalize at the Z fixed points due to vector multiplet self interactions; the hyper multiplet renormalizes only non- Z fixed points. In 6D the Wess-Zumino-Witten term and a higher derivative analogue have to renormalize in the bulk as well to preserve 6D gauge invariance.

  7. Kenneth Wilson and Renormalization

    Science.gov Websites

    of the Renormalization Group (RG) into a central tool in physics. ... He received a doctorate from one of the most amazing experiences of my life," says Peskin. "He was saying, 'I see the big actually the data you need to move from one scale to another. ... RG theory implies that, with enough

  8. Universal energy distribution for interfaces in a random-field environment

    NASA Astrophysics Data System (ADS)

    Fedorenko, Andrei A.; Stepanow, Semjon

    2003-11-01

    We study the energy distribution function ρ(E) for interfaces in a random-field environment at zero temperature by summing the leading terms in the perturbation expansion of ρ(E) in powers of the disorder strength, and by taking into account the nonperturbational effects of the disorder using the functional renormalization group. We have found that the average and the variance of the energy for one-dimensional interface of length L behave as, R∝L ln L, ΔER∝L, while the distribution function of the energy tends for large L to the Gumbel distribution of the extreme value statistics.

  9. Asymptotically Free Gauge Theories. I

    DOE R&D Accomplishments Database

    Wilczek, Frank; Gross, David J.

    1973-07-01

    Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.

  10. Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Zhengcheng; Wen Xiaogang

    2009-10-15

    We study the renormalization group flow of the Lagrangian for statistical and quantum systems by representing their path integral in terms of a tensor network. Using a tensor-entanglement-filtering renormalization approach that removes local entanglement and produces a coarse-grained lattice, we show that the resulting renormalization flow of the tensors in the tensor network has a nice fixed-point structure. The isolated fixed-point tensors T{sub inv} plus the symmetry group G{sub sym} of the tensors (i.e., the symmetry group of the Lagrangian) characterize various phases of the system. Such a characterization can describe both the symmetry breaking phases and topological phases, asmore » illustrated by two-dimensional (2D) statistical Ising model, 2D statistical loop-gas model, and 1+1D quantum spin-1/2 and spin-1 models. In particular, using such a (G{sub sym},T{sub inv}) characterization, we show that the Haldane phase for a spin-1 chain is a phase protected by the time-reversal, parity, and translation symmetries. Thus the Haldane phase is a symmetry-protected topological phase. The (G{sub sym},T{sub inv}) characterization is more general than the characterizations based on the boundary spins and string order parameters. The tensor renormalization approach also allows us to study continuous phase transitions between symmetry breaking phases and/or topological phases. The scaling dimensions and the central charges for the critical points that describe those continuous phase transitions can be calculated from the fixed-point tensors at those critical points.« less

  11. Wormholes or gravastars?

    NASA Astrophysics Data System (ADS)

    Garattini, Remo

    2013-09-01

    The one loop effective action in a Schwarzschild background is here used to compute the Zero Point Energy (ZPE) which is compared to the same one generated by an existing gravastar. We find that only when we set up a difference between ZPE in these different background we can have an indication on which configuration is favored. Such a ZPE difference represents the Casimir energy. Such an energy, being negative, can be considered as a part of the Dark Energy necessary for the topology change. It is also shown that the expression of the ZPE is equivalent to the one computed by means of a variational approach. To handle with ZPE divergences, we use the zeta function regularization. A renormalization procedure to remove the infinities together with a renormalization group equation is introduced. We find that the final configuration is dependent on the ratio between the radius of the wormhole augmented by the "brick wall" and the radius of the gravastar.

  12. Magnetic-field control of electric polarization in coupled spin chains with three-site interactions

    NASA Astrophysics Data System (ADS)

    Sznajd, Jozef

    2018-06-01

    The linear perturbation renormalization group (LPRG) is used to study coupled X Y chains with Dzyaloshinskii-Moriya (DM) and three-spin interactions in a magnetic field. Starting with a minimal model exhibiting the magnetoelectric effect, a spin-1/2 X Y chain with nearest, next-nearest (J2x) , and DM (D1y) interactions in a magnetic field, the recursion relations for all effective interactions generated by the LPRG transformation are found. The evaluation of these relations allows us to analyze, among others, the influence of J2x,D1y , three-spin (SixSi+1 ySi+2 z-SiySi+1 xSi+2 z ), and interchain interactions on the thermodynamic properties. The field and temperature dependences of the polarization, specific heat, and correlation functions are found. It is shown that an interchain coupling triggers a phase transition indicated by the divergence of the renormalized coupling parameters.

  13. Renormalization-group flow of the effective action of cosmological large-scale structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Floerchinger, Stefan; Garny, Mathias; Tetradis, Nikolaos

    Following an approach of Matarrese and Pietroni, we derive the functional renormalization group (RG) flow of the effective action of cosmological large-scale structures. Perturbative solutions of this RG flow equation are shown to be consistent with standard cosmological perturbation theory. Non-perturbative approximate solutions can be obtained by truncating the a priori infinite set of possible effective actions to a finite subspace. Using for the truncated effective action a form dictated by dissipative fluid dynamics, we derive RG flow equations for the scale dependence of the effective viscosity and sound velocity of non-interacting dark matter, and we solve them numerically. Physically,more » the effective viscosity and sound velocity account for the interactions of long-wavelength fluctuations with the spectrum of smaller-scale perturbations. We find that the RG flow exhibits an attractor behaviour in the IR that significantly reduces the dependence of the effective viscosity and sound velocity on the input values at the UV scale. This allows for a self-contained computation of matter and velocity power spectra for which the sensitivity to UV modes is under control.« less

  14. Backward renormalization-group inference of cortical dipole sources and neural connectivity efficacy

    NASA Astrophysics Data System (ADS)

    Amaral, Selene da Rocha; Baccalá, Luiz A.; Barbosa, Leonardo S.; Caticha, Nestor

    2017-06-01

    Proper neural connectivity inference has become essential for understanding cognitive processes associated with human brain function. Its efficacy is often hampered by the curse of dimensionality. In the electroencephalogram case, which is a noninvasive electrophysiological monitoring technique to record electrical activity of the brain, a possible way around this is to replace multichannel electrode information with dipole reconstructed data. We use a method based on maximum entropy and the renormalization group to infer the position of the sources, whose success hinges on transmitting information from low- to high-resolution representations of the cortex. The performance of this method compares favorably to other available source inference algorithms, which are ranked here in terms of their performance with respect to directed connectivity inference by using artificially generated dynamic data. We examine some representative scenarios comprising different numbers of dynamically connected dipoles over distinct cortical surface positions and under different sensor noise impairment levels. The overall conclusion is that inverse problem solutions do not affect the correct inference of the direction of the flow of information as long as the equivalent dipole sources are correctly found.

  15. Differential renormalization-group generators for static and dynamic critical phenomena

    NASA Astrophysics Data System (ADS)

    Chang, T. S.; Vvedensky, D. D.; Nicoll, J. F.

    1992-09-01

    The derivation of differential renormalization-group (DRG) equations for applications to static and dynamic critical phenomena is reviewed. The DRG approach provides a self-contained closed-form representation of the Wilson renormalization group (RG) and should be viewed as complementary to the Callan-Symanzik equations used in field-theoretic approaches to the RG. The various forms of DRG equations are derived to illustrate the general mathematical structure of each approach and to point out the advantages and disadvantages for performing practical calculations. Otherwise, the review focuses upon the one-particle-irreducible DRG equations derived by Nicoll and Chang and by Chang, Nicoll, and Young; no attempt is made to provide a general treatise of critical phenomena. A few specific examples are included to illustrate the utility of the DRG approach: the large- n limit of the classical n-vector model (the spherical model), multi- or higher-order critical phenomena, and crit ical dynamics far from equilibrium. The large- n limit of the n-vector model is used to introduce the application of DRG equations to a well-known example, with exact solution obtained for the nonlinear trajectories, generating functions for nonlinear scaling fields, and the equation of state. Trajectory integrals and nonlinear scaling fields within the framework of ɛ-expansions are then discussed for tricritical crossover, and briefly for certain aspects of multi- or higher-order critical points, including the derivation of the Helmholtz free energy and the equation of state. The discussion then turns to critical dynamics with a development of the path integral formulation for general dynamic processes. This is followed by an application to a model far-from-equilibrium system that undergoes a phase transformation analogous to a second-order critical point, the Schlögl model for a chemical instability.

  16. Monte Carlo renormalization-group study of the Baxter-Wu model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novotny, M.A.; Landau, D.P.; Swendsen, R.H.

    1982-07-01

    The effectiveness of a Monte Carlo renormalization-group method is studied by applying it to the Baxter-Wu model (Ising spins on a triangular lattice with three-spin interactions). The calculations yield three relevent eigenvalues in good agreement with exact or conjectured results. We demonstrate that the method is capable of distinguishing between models expected to be in the same universality class, when one of them (four-state Potts) exhibits logarithmic corrections to the usual power-law singularities and the other (Baxter-Wu) does not.

  17. New applications of the renormalization group method in physics: a brief introduction.

    PubMed

    Meurice, Y; Perry, R; Tsai, S-W

    2011-07-13

    The renormalization group (RG) method developed by Ken Wilson more than four decades ago has revolutionized the way we think about problems involving a broad range of energy scales such as phase transitions, turbulence, continuum limits and bifurcations in dynamical systems. The Theme Issue provides articles reviewing recent progress made using the RG method in atomic, condensed matter, nuclear and particle physics. In the following, we introduce these articles in a way that emphasizes common themes and the universal aspects of the method.

  18. Two-point functions in a holographic Kondo model

    NASA Astrophysics Data System (ADS)

    Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Papadimitriou, Ioannis; Probst, Jonas; Wu, Jackson M. S.

    2017-03-01

    We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0 + 1)-dimensional impurity spin of a gauged SU( N ) interacting with a (1 + 1)-dimensional, large- N , strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU( N )-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O^{\\dagger}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1 + 1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0 + 1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green's function of the form - i< O >2, which is characteristic of a Kondo resonance.

  19. Two-loop renormalization of gaugino masses in general supersymmetric gauge models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Y.

    1994-01-03

    We calculate the two-loop renormalization group equations for the running gaugino masses in general supersymmetry (SUSY) gauge models, improving our previous result. We also study its consequences on the unification of the gaugino masses in the SUSY SU(5) model. The two-loop correction to the one-loop relation [ital m][sub [ital i

  20. Critical Exponents, Scaling Law, Universality and Renormalization Group Flow in Strong Coupling QED

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi

    The critical behavior of strongly coupled QED with a chiral-invariant four-fermion interaction (gauged Nambu-Jona-Lasinio model) is investigated through the unquenched Schwinger-Dyson equation including the fermion loop effect at the one-loop level. It is shown that the critical exponents satisfy the (hyper)scaling relations as in the quenched case. However, the respective critical exponent takes the classical mean-field value, and consequently unquenched QED belongs to the same universality class as the zero-charge model. On the other hand, it is pointed out that quenched QED violates not only universality but also weak universality, due to continuously varying critical exponents. Furthermore, the renormalization group flow of constant renormalized charge is given. All the results are consistent with triviality of QED and the gauged Nambu-Jona-Lasinio model in the unquenched case.

  1. Off-shell renormalization in Higgs effective field theories

    NASA Astrophysics Data System (ADS)

    Binosi, Daniele; Quadri, Andrea

    2018-04-01

    The off-shell one-loop renormalization of a Higgs effective field theory possessing a scalar potential ˜ {({Φ}^{\\dagger}Φ -υ^2/2)}^N with N arbitrary is presented. This is achieved by renormalizing the theory once reformulated in terms of two auxiliary fields X 1,2, which, due to the invariance under an extended Becchi-Rouet-Stora-Tyutin symmetry, are tightly constrained by functional identities. The latter allow in turn the explicit derivation of the mapping onto the original theory, through which the (divergent) multi-Higgs amplitude are generated in a purely algebraic fashion. We show that, contrary to naive expectations based on the loss of power counting renormalizability, the Higgs field undergoes a linear Standard Model like redefinition, and evaluate the renormalization of the complete set of Higgs self-coupling in the N → ∞ case.

  2. Band gap renormalization and Burstein-Moss effect in silicon- and germanium-doped wurtzite GaN up to 1020 cm-3

    NASA Astrophysics Data System (ADS)

    Feneberg, Martin; Osterburg, Sarah; Lange, Karsten; Lidig, Christian; Garke, Bernd; Goldhahn, Rüdiger; Richter, Eberhard; Netzel, Carsten; Neumann, Maciej D.; Esser, Norbert; Fritze, Stephanie; Witte, Hartmut; Bläsing, Jürgen; Dadgar, Armin; Krost, Alois

    2014-08-01

    The interplay between band gap renormalization and band filling (Burstein-Moss effect) in n-type wurtzite GaN is investigated. For a wide range of electron concentrations up to 1.6×1020cm-3 spectroscopic ellipsometry and photoluminescence were used to determine the dependence of the band gap energy and the Fermi edge on electron density. The band gap renormalization is the dominating effect up to an electron density of about 9×1018cm-3; at higher values the Burstein-Moss effect is stronger. Exciton screening, the Mott transition, and formation of Mahan excitons are discussed. A quantitative understanding of the near gap transition energies on electron density is obtained. Higher energy features in the dielectric functions up to 10eV are not influenced by band gap renormalization.

  3. Renormalization group and Ward identities for infrared QED4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastropietro, Vieri

    2007-10-15

    A regularized version of Euclidean QED4 in the Feynman gauge is considered, with a fixed ultraviolet cutoff, photon mass of the size of the cutoff, and any value, including zero, of the electron mass. We will prove that the Schwinger functions are expressed by convergent series for small values of the charge and verify the Ward identities, up to corrections which are small for momentum scales far from the ultraviolet cutoff.

  4. Stochastic quantization of conformally coupled scalar in AdS

    NASA Astrophysics Data System (ADS)

    Jatkar, Dileep P.; Oh, Jae-Hyuk

    2013-10-01

    We explore the relation between stochastic quantization and holographic Wilsonian renormalization group flow further by studying conformally coupled scalar in AdS d+1. We establish one to one mapping between the radial flow of its double trace deformation and stochastic 2-point correlation function. This map is shown to be identical, up to a suitable field re-definition of the bulk scalar, to the original proposal in arXiv:1209.2242.

  5. Effective field renormalization group approach for Ising lattice spin systems

    NASA Astrophysics Data System (ADS)

    Fittipaldi, Ivon P.

    1994-03-01

    A new applicable real-space renormalization group framework (EFRG) for computing the critical properties of Ising lattice spin systems is presented. The method, which follows up the same strategy of the mean-field renormalization group scheme (MFRG), is based on rigorous Ising spin identities and utilizes a convenient differential operator expansion technique. Within this scheme, in contrast with the usual mean-field type of equation of state, all the relevant self-spin correlations are taken exactly into account. The results for the critical coupling and the critical exponent v, for the correlation length, are very satisfactory and it is shown that this technique leads to rather accurate results which represent a remarkable improvement on those obtained from the standard MFRG method. In particular, it is shown that the present EFRG approach correctly distinguishes the geometry of the lattice structure even when employing its simplest size-cluster version. Owing to its simplicity we also comment on the wide applicability of the present method to problems in crystalline and disordered Ising spin systems.

  6. Restoration of dimensional reduction in the random-field Ising model at five dimensions

    NASA Astrophysics Data System (ADS)

    Fytas, Nikolaos G.; Martín-Mayor, Víctor; Picco, Marco; Sourlas, Nicolas

    2017-04-01

    The random-field Ising model is one of the few disordered systems where the perturbative renormalization group can be carried out to all orders of perturbation theory. This analysis predicts dimensional reduction, i.e., that the critical properties of the random-field Ising model in D dimensions are identical to those of the pure Ising ferromagnet in D -2 dimensions. It is well known that dimensional reduction is not true in three dimensions, thus invalidating the perturbative renormalization group prediction. Here, we report high-precision numerical simulations of the 5D random-field Ising model at zero temperature. We illustrate universality by comparing different probability distributions for the random fields. We compute all the relevant critical exponents (including the critical slowing down exponent for the ground-state finding algorithm), as well as several other renormalization-group invariants. The estimated values of the critical exponents of the 5D random-field Ising model are statistically compatible to those of the pure 3D Ising ferromagnet. These results support the restoration of dimensional reduction at D =5 . We thus conclude that the failure of the perturbative renormalization group is a low-dimensional phenomenon. We close our contribution by comparing universal quantities for the random-field problem at dimensions 3 ≤D <6 to their values in the pure Ising model at D -2 dimensions, and we provide a clear verification of the Rushbrooke equality at all studied dimensions.

  7. Restoration of dimensional reduction in the random-field Ising model at five dimensions.

    PubMed

    Fytas, Nikolaos G; Martín-Mayor, Víctor; Picco, Marco; Sourlas, Nicolas

    2017-04-01

    The random-field Ising model is one of the few disordered systems where the perturbative renormalization group can be carried out to all orders of perturbation theory. This analysis predicts dimensional reduction, i.e., that the critical properties of the random-field Ising model in D dimensions are identical to those of the pure Ising ferromagnet in D-2 dimensions. It is well known that dimensional reduction is not true in three dimensions, thus invalidating the perturbative renormalization group prediction. Here, we report high-precision numerical simulations of the 5D random-field Ising model at zero temperature. We illustrate universality by comparing different probability distributions for the random fields. We compute all the relevant critical exponents (including the critical slowing down exponent for the ground-state finding algorithm), as well as several other renormalization-group invariants. The estimated values of the critical exponents of the 5D random-field Ising model are statistically compatible to those of the pure 3D Ising ferromagnet. These results support the restoration of dimensional reduction at D=5. We thus conclude that the failure of the perturbative renormalization group is a low-dimensional phenomenon. We close our contribution by comparing universal quantities for the random-field problem at dimensions 3≤D<6 to their values in the pure Ising model at D-2 dimensions, and we provide a clear verification of the Rushbrooke equality at all studied dimensions.

  8. Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    NASA Astrophysics Data System (ADS)

    Merker, L.; Costi, T. A.

    2012-08-01

    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.

  9. A key heterogeneous structure of fractal networks based on inverse renormalization scheme

    NASA Astrophysics Data System (ADS)

    Bai, Yanan; Huang, Ning; Sun, Lina

    2018-06-01

    Self-similarity property of complex networks was found by the application of renormalization group theory. Based on this theory, network topologies can be classified into universality classes in the space of configurations. In return, through inverse renormalization scheme, a given primitive structure can grow into a pure fractal network, then adding different types of shortcuts, it exhibits different characteristics of complex networks. However, the effect of primitive structure on networks structural property has received less attention. In this paper, we introduce a degree variance index to measure the dispersion of nodes degree in the primitive structure, and investigate the effect of the primitive structure on network structural property quantified by network efficiency. Numerical simulations and theoretical analysis show a primitive structure is a key heterogeneous structure of generated networks based on inverse renormalization scheme, whether or not adding shortcuts, and the network efficiency is positively correlated with degree variance of the primitive structure.

  10. Renormalization of position space amplitudes in a massless QFT

    NASA Astrophysics Data System (ADS)

    Todorov, Ivan

    2017-03-01

    Ultraviolet renormalization of position space massless Feynman amplitudes has been shown to yield associate homogeneous distributions. Their degree is determined by the degree of divergence while their order—the highest power of logarithm in the dilation anomaly—is given by the number of (sub)divergences. In the present paper we review these results and observe that (convergent) integration over internal vertices does not alter the total degree of (superficial) ultraviolet divergence. For a conformally invariant theory internal integration is also proven to preserve the order of associate homogeneity. The renormalized 4-point amplitudes in the φ4 theory (in four space-time dimensions) are written as (non-analytic) translation invariant functions of four complex variables with calculable conformal anomaly. Our conclusion concerning the (off-shell) infrared finiteness of the ultraviolet renormalized massless φ4 theory agrees with the old result of Lowenstein and Zimmermann [23].

  11. REVIEWS OF TOPICAL PROBLEMS: Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods)

    NASA Astrophysics Data System (ADS)

    Bykov, Andrei M.; Toptygin, Igor'N.

    1993-11-01

    This review presents methods available for calculating transport coefficients for impurity particles in plasmas with strong long-wave MHD-type velocity and magnetic-field fluctuations, and random ensembles of strong shock fronts. The renormalization of the coefficients of the mean-field equation of turbulent dynamo theory is also considered. Particular attention is devoted to the renormalization method developed by the authors in which the renormalized transport coefficients are calculated from a nonlinear transcendental equation (or a set of such equations) and are expressed in the form of explicit functions of pair correlation tensors describing turbulence. Numerical calculations are reproduced for different turbulence spectra. Spatial transport in a magnetic field and particle acceleration by strong turbulence are investigated. The theory can be used in a wide range of practical problems in plasma physics, atmospheric physics, ocean physics, astrophysics, cosmic-ray physics, and so on.

  12. RG flows for λ-deformed CFTs

    NASA Astrophysics Data System (ADS)

    Sagkrioti, E.; Sfetsos, K.; Siampos, K.

    2018-05-01

    We study the renormalization group equations of the fully anisotropic λ-deformed CFTs involving the direct product of two current algebras at different levels k1,2 for general semi-simple groups. The exact, in the deformation parameters, β-function is found via the effective action of the quantum fluctuations around a classical background as well as from gravitational techniques. Furthermore, agreement with known results for symmetric couplings and/or for equal levels, is demonstrated. We study in detail the two coupling case arising by splitting the group into a subgroup and the corresponding coset manifold which consistency requires to be either a symmetric-space one or a non-symmetric Einstein-space.

  13. One-loop renormalization of Lee-Wick gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinstein, Benjamin; O'Connell, Donal

    2008-11-15

    We examine the renormalization of Lee-Wick gauge theory to one-loop order. We show that only knowledge of the wave function renormalization is necessary to determine the running couplings, anomalous dimensions, and vector boson masses. In particular, the logarithmic running of the Lee-Wick vector boson mass is exactly related to the running of the coupling. In the case of an asymptotically free theory, the vector boson mass runs to infinity in the ultraviolet. Thus, the UV fixed point of the pure gauge theory is an ordinary quantum field theory. We find that the coupling runs more quickly in Lee-Wick gauge theorymore » than in ordinary gauge theory, so the Lee-Wick standard model does not naturally unify at any scale. Finally, we present results on the beta function of more general theories containing dimension six operators which differ from previous results in the literature.« less

  14. Topological Luttinger liquids from decorated domain walls

    NASA Astrophysics Data System (ADS)

    Parker, Daniel E.; Scaffidi, Thomas; Vasseur, Romain

    2018-04-01

    We introduce a systematic construction of a gapless symmetry-protected topological phase in one dimension by "decorating" the domain walls of Luttinger liquids. The resulting strongly interacting phases provide a concrete example of a gapless symmetry-protected topological (gSPT) phase with robust symmetry-protected edge modes. Using boundary conformal field theory arguments, we show that while the bulks of such gSPT phases are identical to conventional Luttinger liquids, their boundary critical behavior is controlled by a different, strongly coupled renormalization group fixed point. Our results are checked against extensive density matrix renormalization group calculations.

  15. Influence of anisotropy on anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field.

    PubMed

    Jurcisinová, E; Jurcisin, M; Remecký, R

    2009-10-01

    The influence of weak uniaxial small-scale anisotropy on the stability of the scaling regime and on the anomalous scaling of the single-time structure functions of a passive scalar advected by the velocity field governed by the stochastic Navier-Stokes equation is investigated by the field theoretic renormalization group and operator-product expansion within one-loop approximation of a perturbation theory. The explicit analytical expressions for coordinates of the corresponding fixed point of the renormalization-group equations as functions of anisotropy parameters are found, the stability of the three-dimensional Kolmogorov-like scaling regime is demonstrated, and the dependence of the borderline dimension d(c) is an element of (2,3] between stable and unstable scaling regimes is found as a function of the anisotropy parameters. The dependence of the turbulent Prandtl number on the anisotropy parameters is also briefly discussed. The influence of weak small-scale anisotropy on the anomalous scaling of the structure functions of a passive scalar field is studied by the operator-product expansion and their explicit dependence on the anisotropy parameters is present. It is shown that the anomalous dimensions of the structure functions, which are the same (universal) for the Kraichnan model, for the model with finite time correlations of the velocity field, and for the model with the advection by the velocity field driven by the stochastic Navier-Stokes equation in the isotropic case, can be distinguished by the assumption of the presence of the small-scale anisotropy in the systems even within one-loop approximation. The corresponding comparison of the anisotropic anomalous dimensions for the present model with that obtained within the Kraichnan rapid-change model is done.

  16. Application of the principle of maximum conformality to the hadroproduction of the Higgs boson at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Sheng-Quan; Wu, Xing-Gang; Brodsky, Stanley J.

    We present improved perturbative QCD (pQCD) predictions for Higgs boson hadroproduction at the LHC by applying the principle of maximum conformality (PMC), a procedure which resums the pQCD series using the renormalization group (RG), thereby eliminating the dependence of the predictions on the choice of the renormalization scheme while minimizing sensitivity to the initial choice of the renormalization scale. In previous pQCD predictions for Higgs boson hadroproduction, it has been conventional to assume that the renormalization scale μ r of the QCD coupling α s ( μ r ) is the Higgs mass and then to vary this choice overmore » the range 1 / 2 m H < μ r < 2 m H in order to estimate the theory uncertainty. However, this error estimate is only sensitive to the nonconformal β terms in the pQCD series, and thus it fails to correctly estimate the theory uncertainty in cases where a pQCD series has large higher-order contributions, as is the case for Higgs boson hadroproduction. Furthermore, this ad hoc choice of scale and range gives pQCD predictions which depend on the renormalization scheme being used, in contradiction to basic RG principles. In contrast, after applying the PMC, we obtain next-to-next-to-leading-order RG resummed pQCD predictions for Higgs boson hadroproduction which are renormalization-scheme independent and have minimal sensitivity to the choice of the initial renormalization scale. Taking m H = 125 GeV , the PMC predictions for the p p → H X Higgs inclusive hadroproduction cross sections for various LHC center-of-mass energies are σ Incl | 7 TeV = 21.2 1 + 1.36 - 1.32 pb , σ Incl | 8 TeV = 27.3 7 + 1.65 - 1.59 pb , and σ Incl | 13 TeV = 65.7 2 + 3.46 - 3.0 pb . We also predict the fiducial cross section σ fid ( p p → H → γ γ ) : σ fid | 7 TeV = 30.1 + 2.3 - 2.2 fb , σ fid | 8 TeV = 38.3 + 2.9 - 2.8 fb , and σ fid | 13 TeV = 85.8 + 5.7 - 5.3 fb . The error limits in these predictions include the small residual high-order renormalization-scale dependence plus the uncertainty from the factorization scale. The PMC predictions show better agreement with the ATLAS measurements than the LHC Higgs Cross Section Working Group predictions which are based on conventional renormalization-scale setting.« less

  17. Glueball spectra from a matrix model of pure Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Acharyya, Nirmalendu; Balachandran, A. P.; Pandey, Mahul; Sanyal, Sambuddha; Vaidya, Sachindeo

    2018-05-01

    We present variational estimates for the low-lying energies of a simple matrix model that approximates SU(3) Yang-Mills theory on a three-sphere of radius R. By fixing the ground state energy, we obtain the (integrated) renormalization group (RG) equation for the Yang-Mills coupling g as a function of R. This RG equation allows to estimate the mass of other glueball states, which we find to be in excellent agreement with lattice simulations.

  18. Dynamical conductivity at the dirty superconductor-metal quantum phase transition.

    PubMed

    Del Maestro, Adrian; Rosenow, Bernd; Hoyos, José A; Vojta, Thomas

    2010-10-01

    We study the transport properties of ultrathin disordered nanowires in the neighborhood of the superconductor-metal quantum phase transition. To this end we combine numerical calculations with analytical strong-disorder renormalization group results. The quantum critical conductivity at zero temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated scaling associated with an infinite-randomness quantum critical point. We extend the scaling theory to higher dimensions and discuss implications for experiments.

  19. Bose gases near resonance: Renormalized interactions in a condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Fei, E-mail: feizhou@phas.ubc.ca; Mashayekhi, Mohammad S.

    2013-01-15

    Bose gases at large scattering lengths or beyond the usual dilute limit for a long time have been one of the most challenging problems in many-body physics. In this article, we investigate the fundamental properties of a near-resonance Bose gas and illustrate that three-dimensional Bose gases become nearly fermionized near resonance when the chemical potential as a function of scattering lengths reaches a maximum and the atomic condensates lose metastability. The instability and accompanying maximum are shown to be a precursor of the sign change of g{sub 2}, the renormalized two-body interaction between condensed atoms. g{sub 2} changes from effectivelymore » repulsive to attractive when approaching resonance from the molecular side, even though the scattering length is still positive. This occurs when dimers, under the influence of condensates, emerge at zero energy in the atomic gases at a finite positive scattering length. We carry out our studies of Bose gases via applying a self-consistent renormalization group equation which is further subject to a boundary condition. We also comment on the relation between the approach here and the diagrammatic calculation in an early article [D. Borzov, M.S. Mashayekhi, S. Zhang, J.-L. Song, F. Zhou, Phys. Rev. A 85 (2012) 023620]. - Highlights: Black-Right-Pointing-Pointer A Bose gas becomes nearly fermionized when its chemical potential approaches a maximum near resonance. Black-Right-Pointing-Pointer At the maximum, an onset instability sets in at a positive scattering length. Black-Right-Pointing-Pointer Condensates strongly influence the renormalization flow of few-body running coupling constants. Black-Right-Pointing-Pointer The effective two-body interaction constant changes its sign at a positive scattering length.« less

  20. Charge and Spin Dynamics of the Hubbard Chains

    NASA Technical Reports Server (NTRS)

    Park, Youngho; Liang, Shoudan

    1999-01-01

    We calculate the local correlation functions of charge and spin for the one-chain and two-chain Hubbard model using density matrix renormalization group method and the recursion technique. Keeping only finite number of states we get good accuracy for the low energy excitations. We study the charge and spin gaps, bandwidths and weights of the spectra for various values of the on-site Coulomb interaction U and the electron filling. In the low energy part, the local correlation functions are different for the charge and spin. The bandwidths are proportional to t for the charge and J for the spin respectively.

  1. Focus on quantum Einstein gravity Focus on quantum Einstein gravity

    NASA Astrophysics Data System (ADS)

    Ambjorn, Jan; Reuter, Martin; Saueressig, Frank

    2012-09-01

    The gravitational asymptotic safety program summarizes the attempts to construct a consistent and predictive quantum theory of gravity within Wilson's generalized framework of renormalization. Its key ingredient is a non-Gaussian fixed point of the renormalization group flow which controls the behavior of the theory at trans-Planckian energies and renders gravity safe from unphysical divergences. Provided that the fixed point comes with a finite number of ultraviolet-attractive (relevant) directions, this construction gives rise to a consistent quantum field theory which is as predictive as an ordinary, perturbatively renormalizable one. This opens up the exciting possibility of establishing quantum Einstein gravity as a fundamental theory of gravity, without introducing supersymmetry or extra dimensions, and solely based on quantization techniques that are known to work well for the other fundamental forces of nature. While the idea of gravity being asymptotically safe was proposed by Steven Weinberg more than 30 years ago [1], the technical tools for investigating this scenario only emerged during the last decade. Here a key role is played by the exact functional renormalization group equation for gravity, which allows the construction of non-perturbative approximate solutions for the RG-flow of the gravitational couplings. Most remarkably, all solutions constructed to date exhibit a suitable non-Gaussian fixed point, lending strong support to the asymptotic safety conjecture. Moreover, the functional renormalization group also provides indications that the central idea of a non-Gaussian fixed point providing a safe ultraviolet completion also carries over to more realistic scenarios where gravity is coupled to a suitable matter sector like the standard model. These theoretical successes also triggered a wealth of studies focusing on the consequences of asymptotic safety in a wide range of phenomenological applications covering the physics of black holes, early time cosmology and the big bang, as well as TeV-scale gravity models testable at the Large Hadron Collider. On different grounds, Monte-Carlo studies of the gravitational partition function based on the discrete causal dynamical triangulations approach provide an a priori independent avenue towards unveiling the non-perturbative features of gravity. As a highlight, detailed simulations established that the phase diagram underlying causal dynamical triangulations contains a phase where the triangulations naturally give rise to four-dimensional, macroscopic universes. Moreover, there are indications for a second-order phase transition that naturally forms the discrete analog of the non-Gaussian fixed point seen in the continuum computations. Thus there is a good chance that the discrete and continuum computations will converge to the same fundamental physics. This focus issue collects a series of papers that outline the current frontiers of the gravitational asymptotic safety program. We hope that readers get an impression of the depth and variety of this research area as well as our excitement about the new and ongoing developments. References [1] Weinberg S 1979 General Relativity, an Einstein Centenary Survey ed S W Hawking and W Israel (Cambridge: Cambridge University Press)

  2. Apker Award Recipient: Renormalization-Group Study of Helium Mixtures Immersed in a Porous Medium

    NASA Astrophysics Data System (ADS)

    Lopatnikova, Anna

    1998-03-01

    Superfluidity and phase separation in ^3He-^4He mixtures immersed in aerogel are studied by renormalization-group theory. Firstly, the theory is applied to jungle-gym (non-random) aerogel.(A. Lopatnikova and A.N. Berker, Phys. Rev. B 55, 3798 (1997).) This calculation is conducted via the coupled renormalization-group mappings of interactions near and away from aerogel. Superfluidity at very low ^4He concentrations and a depressed tricritical temperature are found at the onset of superfludity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. Secondly, the theory is applied to true aerogel, which has quenched disorder at both atomic and geometric levels.(A. Lopatnikova and A.N. Berker, Phys. Rev. B 56, 11865 (1997).) This calculation is conducted via the coupled renormalization-group mappings, near and away from aerogel, of quenched probability distributions of random interactions. Random-bond effects on superfluidity onset and random-field effects on superfluid phase separation are seen. The quenched randomness causes the λ line of second-order phase transitions of superfluidity onset to reach zero temperature, in agreement with general prediction and experiments. Based on these studies, the experimentally observed(S.B. Kim, J. Ma, and M.H.W. Chan, Phys. Rev. Lett. 71, 2268 (1993); N. Mulders and M.H.W. Chan, Phys. Rev. Lett. 75, 3705 (1995).) distinctive characteristics of ^3He-^4He mixtures in aerogel are related to the aerogel properties of connectivity, tenuousness, and atomic and geometric randomness.

  3. Setting the renormalization scale in pQCD: Comparisons of the principle of maximum conformality with the sequential extended Brodsky-Lepage-Mackenzie approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Hong -Hao; Wu, Xing -Gang; Ma, Yang

    A key problem in making precise perturbative QCD (pQCD) predictions is how to set the renormalization scale of the running coupling unambiguously at each finite order. The elimination of the uncertainty in setting the renormalization scale in pQCD will greatly increase the precision of collider tests of the Standard Model and the sensitivity to new phenomena. Renormalization group invariance requires that predictions for observables must also be independent on the choice of the renormalization scheme. The well-known Brodsky-Lepage-Mackenzie (BLM) approach cannot be easily extended beyond next-to-next-to-leading order of pQCD. Several suggestions have been proposed to extend the BLM approach tomore » all orders. In this paper we discuss two distinct methods. One is based on the “Principle of Maximum Conformality” (PMC), which provides a systematic all-orders method to eliminate the scale and scheme ambiguities of pQCD. The PMC extends the BLM procedure to all orders using renormalization group methods; as an outcome, it significantly improves the pQCD convergence by eliminating renormalon divergences. An alternative method is the “sequential extended BLM” (seBLM) approach, which has been primarily designed to improve the convergence of pQCD series. The seBLM, as originally proposed, introduces auxiliary fields and follows the pattern of the β0-expansion to fix the renormalization scale. However, the seBLM requires a recomputation of pQCD amplitudes including the auxiliary fields; due to the limited availability of calculations using these auxiliary fields, the seBLM has only been applied to a few processes at low orders. In order to avoid the complications of adding extra fields, we propose a modified version of seBLM which allows us to apply this method to higher orders. As a result, we then perform detailed numerical comparisons of the two alternative scale-setting approaches by investigating their predictions for the annihilation cross section ratio R e+e– at four-loop order in pQCD.« less

  4. A unified effective-field renormalization-group framework approach for the quenched diluted Ising models

    NASA Astrophysics Data System (ADS)

    de Albuquerque, Douglas F.; Fittipaldi, I. P.

    1994-05-01

    A unified effective-field renormalization-group framework (EFRG) for both quenched bond- and site-diluted Ising models is herein developed by extending recent works. The method, as in the previous works, follows up the same strategy of the mean-field renormalization-group scheme (MFRG), and is achieved by introducing an alternative way for constructing classical effective-field equations of state, based on rigorous Ising spin identities. The concentration dependence of the critical temperature, Tc(p), and the critical concentrations of magnetic atoms, pc, at which the transition temperature goes to zero, are evaluated for several two- and three-dimensional lattice structures. The obtained values of Tc and pc and the resulting phase diagrams for both bond and site cases are much more accurate than those estimated by the standard MFRG approach. Although preserving the same level of simplicity as the MFRG, it is shown that the present EFRG method, even by considering its simplest size-cluster version, provides results that correctly distinguishes those lattices that have the same coordination number, but differ in dimensionality or geometry.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, Davi C., E-mail: davirodrigues.ufes@gmail.com

    The renormalization group framework can be applied to Quantum Field Theory on curved space-time, but there is no proof whether the beta-function of the gravitational coupling indeed goes to zero in the far infrared or not. In a recent paper [1] we have shown that the amount of dark matter inside spiral galaxies may be negligible if a small running of the General Relativity coupling G is present (δG/G{sub 0}∼<10{sup −7} across a galaxy). Here we extend the proposed model to elliptical galaxies and present a detailed analysis on the modeling of NGC 4494 (an ordinary elliptical) and NGC 4374more » (a giant elliptical). In order to compare our results to a well known alternative model to the standard dark matter picture, we also evaluate NGC 4374 with MOND. In this galaxy MOND leads to a significative discrepancy with the observed velocity dispersion curve and has a significative tendency towards tangential anisotropy. On the other hand, the approach based on the renormalization group and general relativity (RGGR) could be applied with good results to these elliptical galaxies and is compatible with lower mass-to-light ratios (of about the Kroupa IMF type)« less

  6. Extending the range of real time density matrix renormalization group simulations

    NASA Astrophysics Data System (ADS)

    Kennes, D. M.; Karrasch, C.

    2016-03-01

    We discuss a few simple modifications to time-dependent density matrix renormalization group (DMRG) algorithms which allow to access larger time scales. We specifically aim at beginners and present practical aspects of how to implement these modifications within any standard matrix product state (MPS) based formulation of the method. Most importantly, we show how to 'combine' the Schrödinger and Heisenberg time evolutions of arbitrary pure states | ψ 〉 and operators A in the evaluation of 〈A〉ψ(t) = 〈 ψ | A(t) | ψ 〉 . This includes quantum quenches. The generalization to (non-)thermal mixed state dynamics 〈A〉ρ(t) =Tr [ ρA(t) ] induced by an initial density matrix ρ is straightforward. In the context of linear response (ground state or finite temperature T > 0) correlation functions, one can extend the simulation time by a factor of two by 'exploiting time translation invariance', which is efficiently implementable within MPS DMRG. We present a simple analytic argument for why a recently-introduced disentangler succeeds in reducing the effort of time-dependent simulations at T > 0. Finally, we advocate the python programming language as an elegant option for beginners to set up a DMRG code.

  7. Renormalization group analysis of the 2000-2002 anti-bubble in the US S&P500 index: explanation of the hierarchy of five crashes and prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Wei-Xing; Sornette, Didier

    2003-12-01

    We propose a straightforward extension of our previously proposed log-periodic power-law model of the “anti-bubble” regime of the USA stock market since the summer of 2000, in terms of the renormalization group framework to model critical points. Using a previous work by Gluzman and Sornette (Phys. Rev. E 65 (2003) 036142) on the classification of the class of Weierstrass-like functions, we show that the five crashes that occurred since August 2000 can be accurately modeled by this approach, in a fully consistent way with no additional parameters. Our theory suggests an overall consistent organization of the investors forming a collective network which interact to form the pessimistic bearish “anti-bubble” regime with intermittent acceleration of the positive feedbacks of pessimistic sentiment leading to these crashes. We develop retrospective predictions, that confirm the existence of significant arbitrage opportunities for a trader using our model. Finally, we offer a prediction for the unknown future of the US S&P500 index extending over 2003 and 2004, that refines the previous prediction of Sornette and Zhou (Quant. Finance 2 (2002) 468).

  8. Influence of Fröhlich polaron coupling on renormalized electron bands in polar semiconductors: Results for zinc-blende GaN

    NASA Astrophysics Data System (ADS)

    Nery, Jean Paul; Allen, Philip B.

    2016-09-01

    We develop a simple method to study the zero-point and thermally renormalized electron energy ɛk n(T ) for k n the conduction band minimum or valence maximum in polar semiconductors. We use the adiabatic approximation, including an imaginary broadening parameter i δ to suppress noise in the density-functional integrations. The finite δ also eliminates the polar divergence which is an artifact of the adiabatic approximation. Nonadiabatic Fröhlich polaron methods then provide analytic expressions for the missing part of the contribution of the problematic optical phonon mode. We use this to correct the renormalization obtained from the adiabatic approximation. Test calculations are done for zinc-blende GaN for an 18 ×18 ×18 integration grid. The Fröhlich correction is of order -0.02 eV for the zero-point energy shift of the conduction band minimum, and +0.03 eV for the valence band maximum; the correction to renormalization of the 3.28 eV gap is -0.05 eV, a significant fraction of the total zero point renormalization of -0.15 eV.

  9. Operator evolution for ab initio electric dipole transitions of 4He

    DOE PAGES

    Schuster, Micah D.; Quaglioni, Sofia; Johnson, Calvin W.; ...

    2015-07-24

    A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables starting from accurate microscopic internucleon forces. A major element of such an effort is applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence of ab initio calculations as a function of the model space size. The consistent simultaneous transformation of external operators, however, has been overlooked in applications of the theory, particularly for nonscalar transitions. We study the evolution of the electric dipole operator in the framework of the similarity renormalization group method and apply the renormalized matrix elements to the calculationmore » of the 4He total photoabsorption cross section and electric dipole polarizability. All observables are calculated within the ab initio no-core shell model. Furthermore, we find that, although seemingly small, the effects of evolved operators on the photoabsorption cross section are comparable in magnitude to the correction produced by including the chiral three-nucleon force and cannot be neglected.« less

  10. On the divergences of inflationary superhorizon perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enqvist, K; Nurmi, S; Podolsky, D

    2008-04-15

    We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that, within the stochastic framework, they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the {Delta}N formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two-and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for themore » infrared cutoff would, of course, be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization-group-invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point-independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.« less

  11. Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm

    NASA Astrophysics Data System (ADS)

    Nakatani, Naoki; Chan, Garnet Kin-Lic

    2013-04-01

    We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.

  12. A quenched study of the Schrödinger functional with chirally rotated boundary conditions: Applications

    NASA Astrophysics Data System (ADS)

    González López, J.; Jansen, K.; Renner, D. B.; Shindler, A.

    2013-02-01

    In a previous paper (González López, et al., 2013) [1], we have discussed the non-perturbative tuning of the chirally rotated Schrödinger functional (χSF). This tuning is required to eliminate bulk O(a) cutoff effects in physical correlation functions. Using our tuning results obtained in González López et al. (2013) [1] we perform scaling and universality tests analyzing the residual O(a) cutoff effects of several step-scaling functions and we compute renormalization factors at the matching scale. As an example of possible application of the χSF we compute the renormalized strange quark mass using large volume data obtained from Wilson twisted mass fermions at maximal twist.

  13. Infinitely robust order and local order-parameter tulips in Apollonian networks with quenched disorder

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Hinczewski, Michael; Berker, A. Nihat

    2009-06-01

    For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder. We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns.

  14. Scaling Property of Period-n-Tupling Sequences in One-Dimensional Mappings

    NASA Astrophysics Data System (ADS)

    Zeng, Wan-Zhen; Hao, Bai-Lin; Wang, Guang-Rui; Chen, Shi-Gang

    1984-05-01

    We calculated the universal scaling function g(x) and the scaling factor α as well as the convergence rate δ for periodtripling, -quadrapling and-quintupling sequences of RL, RL^2, RLR^2, RL2 R and RL^3 types. The superstable periods are closely connected to a set of polynomial P_n defined recursively by the original mapping. Some notable properties of these polynomials are studied. Several approaches to solving the renormalization group equation and estimating the scaling factors are suggested.

  15. Dynamical conductivity at the dirty superconductor-metal quantum phase transition

    NASA Astrophysics Data System (ADS)

    Hoyos, J. A.; Del Maestro, Adrian; Rosenow, Bernd; Vojta, Thomas

    2011-03-01

    We study the transport properties of ultrathin disordered nanowires in the neighborhood of the superconductor-metal quantum phase transition. To this end we combine numerical calculations with analytical strong-disorder renormalization group results. The quantum critical conductivity at zero temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated scaling associated with an infinite-randomness quantum critical point. We extend the scaling theory to higher dimensions and discuss implications for experiments. Financial support: Fapesp, CNPq, NSF, and Research Corporation.

  16. The Renormalization-Group Method in the Problem on Calculation of the Spectral Energy Density of Fluid Turbulence

    NASA Astrophysics Data System (ADS)

    Teodorovich, E. V.

    2018-03-01

    In order to find the shape of energy spectrum within the framework of the model of stationary homogeneous isotropic turbulence, the renormalization-group equations, which reflect the Markovian nature of the mechanism of energy transfer along the wavenumber spectrum, are used in addition to the dimensional considerations and the energy balance equation. For the spectrum, the formula depends on three parameters, namely, the wavenumber, which determines the upper boundary of the range of the turbulent energy production, the spectral flux through this boundary, and the fluid kinematic viscosity.

  17. Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group

    NASA Astrophysics Data System (ADS)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2018-05-01

    We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.

  18. Improving the In-Medium Similarity Renormalization Group via approximate inclusion of three-body effects

    NASA Astrophysics Data System (ADS)

    Morris, Titus; Bogner, Scott

    2015-10-01

    The In-Medium Similarity Renormalization Group (IM-SRG) has been applied successfully not only to several closed shell finite nuclei, but has recently been used to produce effective shell model interactions that are competitive with phenomenological interactions in the SD shell. A recent alternative method for solving of the IM-SRG equations, called the Magnus expansion, not only provides a computationally feasible route to producing observables, but also allows for approximate handling of induced three-body forces. Promising results for several systems, including finite nuclei, will be presented and discussed.

  19. Renormalization Group Theory of Bolgiano Scaling in Boussinesq Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    1994-01-01

    Bolgiano scaling in Boussinesq turbulence is analyzed using the Yakhot-Orszag renormalization group. For this purpose, an isotropic model is introduced. Scaling exponents are calculated by forcing the temperature equation so that the temperature variance flux is constant in the inertial range. Universal amplitudes associated with the scaling laws are computed by expanding about a logarithmic theory. Connections between this formalism and the direct interaction approximation are discussed. It is suggested that the Yakhot-Orszag theory yields a lowest order approximate solution of a regularized direct interaction approximation which can be corrected by a simple iterative procedure.

  20. Renormalization-group study of superfluidity and phase separation of helium mixtures immersed in a nonrandom aerogel

    NASA Astrophysics Data System (ADS)

    Lopatnikova, Anna; Nihat Berker, A.

    1997-02-01

    Superfluidity and phase separation in 3-4He mixtures immersed in a jungle-gym (nonrandom) aerogel are studied by renormalization-group theory. Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low 4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena and trends with respect to aerogel concentration are explained by the connectivity and tenuousness of a jungle-gym aerogel.

  1. Density matrix renormalization group for a highly degenerate quantum system: Sliding environment block approach

    NASA Astrophysics Data System (ADS)

    Schmitteckert, Peter

    2018-04-01

    We present an infinite lattice density matrix renormalization group sweeping procedure which can be used as a replacement for the standard infinite lattice blocking schemes. Although the scheme is generally applicable to any system, its main advantages are the correct representation of commensurability issues and the treatment of degenerate systems. As an example we apply the method to a spin chain featuring a highly degenerate ground-state space where the new sweeping scheme provides an increase in performance as well as accuracy by many orders of magnitude compared to a recently published work.

  2. Importance of proper renormalization scale-setting for QCD testing at colliders

    DOE PAGES

    Wu, Xing -Gang; Wang, Sheng -Quan; Brodsky, Stanley J.

    2015-12-22

    A primary problem affecting perturbative quantum chromodynamic (pQCD) analyses is the lack of a method for setting the QCD running-coupling renormalization scale such that maximally precise fixed-order predictions for physical observables are obtained. The Principle of Maximum Conformality (PMC) eliminates the ambiguities associated with the conventional renormalization scale-setting procedure, yielding predictions that are independent of the choice of renormalization scheme. The QCD coupling scales and the effective number of quark flavors are set order-by-order in the pQCD series. The PMC has a solid theoretical foundation, satisfying the standard renormalization group invariance condition and all of the self-consistency conditions derived frommore » the renormalization group. The PMC scales at each order are obtained by shifting the arguments of the strong force coupling constant αs to eliminate all non-conformal {βi} terms in the pQCD series. The {βi} terms are determined from renormalization group equations without ambiguity. The correct behavior of the running coupling at each order and at each phase-space point can then be obtained. The PMC reduces in the N C → 0 Abelian limit to the Gell-Mann-Low method. In this brief report, we summarize the results of our recent application of the PMC to a number of collider processes, emphasizing the generality and applicability of this approach. A discussion of hadronic Z decays shows that, by applying the PMC, one can achieve accurate predictions for the total and separate decay widths at each order without scale ambiguities. We also show that, if one employs the PMC to determine the top-quark pair forward-backward asymmetry at the next-to-next-to-leading order level, one obtains a comprehensive, self-consistent pQCD explanation for the Tevatron measurements of the asymmetry. This accounts for the “increasing-decreasing” behavior observed by the D0 collaboration for increasing tt¯ invariant mass. At lower energies, the angular distributions of heavy quarks can be used to obtain a direct determination of the heavy quark potential. A discussion of the angular distributions of massive quarks and leptons is also presented, including the fermionic component of the two-loop corrections to the electromagnetic form factors. Furthermore, these results demonstrate that the application of the PMC systematically eliminates a major theoretical uncertainty for pQCD predictions, thus increasing collider sensitivity to possible new physics beyond the Standard Model.« less

  3. Tachyonic instability of the scalar mode prior to the QCD critical point based on the functional renormalization-group method in the two-flavor case

    NASA Astrophysics Data System (ADS)

    Yokota, Takeru; Kunihiro, Teiji; Morita, Kenji

    2017-10-01

    We establish and elucidate the physical meaning of the appearance of an acausal mode in the sigma mesonic channel, found in the previous work by the present authors, when the system approaches the Z2 critical point. The functional renormalization-group method is applied to the two-flavor quark-meson model with varying current quark mass mq even away from the physical value at which the pion mass is reproduced. We first determine the whole phase structure in the three-dimensional space (T ,μ ,mq) consisting of temperature T , quark chemical potential μ and mq, with the tricritical point, O(4) and Z2 critical lines being located; they altogether make a winglike shape quite reminiscent of those known in the condensed matters with a tricritical point. We then calculate the spectral functions ρσ ,π(ω ,p ) in the scalar and pseudoscalar channel around the critical points. We find that the sigma mesonic mode becomes tachyonic with a superluminal velocity at finite momenta before the system reaches the Z2 point from the lower density, even for mq smaller than the physical value. One of the possible implications of the appearance of such a tachyonic mode at finite momenta is that the assumed equilibrium state with a uniform chiral condensate is unstable toward a state with an inhomogeneous σ condensate. No such anomalous behavior is found in the pseudoscalar channel. We find that the σ -to-2 σ coupling due to finite mq plays an essential role for the drastic modification of the spectral function.

  4. TOPICAL REVIEW: Nonlinear aspects of the renormalization group flows of Dyson's hierarchical model

    NASA Astrophysics Data System (ADS)

    Meurice, Y.

    2007-06-01

    We review recent results concerning the renormalization group (RG) transformation of Dyson's hierarchical model (HM). This model can be seen as an approximation of a scalar field theory on a lattice. We introduce the HM and show that its large group of symmetry simplifies drastically the blockspinning procedure. Several equivalent forms of the recursion formula are presented with unified notations. Rigourous and numerical results concerning the recursion formula are summarized. It is pointed out that the recursion formula of the HM is inequivalent to both Wilson's approximate recursion formula and Polchinski's equation in the local potential approximation (despite the very small difference with the exponents of the latter). We draw a comparison between the RG of the HM and functional RG equations in the local potential approximation. The construction of the linear and nonlinear scaling variables is discussed in an operational way. We describe the calculation of non-universal critical amplitudes in terms of the scaling variables of two fixed points. This question appears as a problem of interpolation between these fixed points. Universal amplitude ratios are calculated. We discuss the large-N limit and the complex singularities of the critical potential calculable in this limit. The interpolation between the HM and more conventional lattice models is presented as a symmetry breaking problem. We briefly introduce models with an approximate supersymmetry. One important goal of this review is to present a configuration space counterpart, suitable for lattice formulations, of functional RG equations formulated in momentum space (often called exact RG equations and abbreviated ERGE).

  5. Emergent space-time via a geometric renormalization method

    NASA Astrophysics Data System (ADS)

    Rastgoo, Saeed; Requardt, Manfred

    2016-12-01

    We present a purely geometric renormalization scheme for metric spaces (including uncolored graphs), which consists of a coarse graining and a rescaling operation on such spaces. The coarse graining is based on the concept of quasi-isometry, which yields a sequence of discrete coarse grained spaces each having a continuum limit under the rescaling operation. We provide criteria under which such sequences do converge within a superspace of metric spaces, or may constitute the basin of attraction of a common continuum limit, which hopefully may represent our space-time continuum. We discuss some of the properties of these coarse grained spaces as well as their continuum limits, such as scale invariance and metric similarity, and show that different layers of space-time can carry different distance functions while being homeomorphic. Important tools in this analysis are the Gromov-Hausdorff distance functional for general metric spaces and the growth degree of graphs or networks. The whole construction is in the spirit of the Wilsonian renormalization group (RG). Furthermore, we introduce a physically relevant notion of dimension on the spaces of interest in our analysis, which, e.g., for regular lattices reduces to the ordinary lattice dimension. We show that this dimension is stable under the proposed coarse graining procedure as long as the latter is sufficiently local, i.e., quasi-isometric, and discuss the conditions under which this dimension is an integer. We comment on the possibility that the limit space may turn out to be fractal in case the dimension is noninteger. At the end of the paper we briefly mention the possibility that our network carries a translocal far order that leads to the concept of wormhole spaces and a scale dependent dimension if the coarse graining procedure is no longer local.

  6. Charged plate in asymmetric electrolytes: One-loop renormalization of surface charge density and Debye length due to ionic correlations.

    PubMed

    Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun

    2016-10-01

    Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.

  7. Simple on-shell renormalization framework for the Cabibbo-Kobayashi-Maskawa matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kniehl, Bernd A.; Sirlin, Alberto

    2006-12-01

    We present an explicit on-shell framework to renormalize the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix at the one-loop level. It is based on a novel procedure to separate the external-leg mixing corrections into gauge-independent self-mass (sm) and gauge-dependent wave-function renormalization contributions, and to adjust nondiagonal mass counterterm matrices to cancel all the divergent sm contributions, and also their finite parts subject to constraints imposed by the Hermiticity of the mass matrices. It is also shown that the proof of gauge independence and finiteness of the remaining one-loop corrections to W{yields}q{sub i}+q{sub j} reduces to that in the unmixed, single-generation case. Diagonalizationmore » of the complete mass matrices leads then to an explicit expression for the CKM counterterm matrix, which is gauge independent, preserves unitarity, and leads to renormalized amplitudes that are nonsingular in the limit in which any two fermions become mass degenerate.« less

  8. E-cigarette marketing and older smokers: road to renormalization.

    PubMed

    Cataldo, Janine K; Petersen, Anne Berit; Hunter, Mary; Wang, Julie; Sheon, Nicolas

    2015-05-01

    To describe older smokers' perceptions of risks and use of e-cigarettes, and their responses to marketing and knowledge of, and opinions about, regulation of e-cigarettes. Eight 90-minute focus groups with 8 to 9 participants met in urban and suburban California to discuss topics related to cigarettes and alternative tobacco products. Older adults are using e-cigarettes for cessation and as a way to circumvent no-smoking policies; they have false perceptions about the effectiveness and safety of e-cigarettes. They perceive e-cigarette marketing as a way to renormalize smoking. To stem the current epidemic of nicotine addiction, the FDA must take immediate action because e-cigarette advertising promotes dual use and may contribute to the renormalization of smoking.

  9. A GPU-based large-scale Monte Carlo simulation method for systems with long-range interactions

    NASA Astrophysics Data System (ADS)

    Liang, Yihao; Xing, Xiangjun; Li, Yaohang

    2017-06-01

    In this work we present an efficient implementation of Canonical Monte Carlo simulation for Coulomb many body systems on graphics processing units (GPU). Our method takes advantage of the GPU Single Instruction, Multiple Data (SIMD) architectures, and adopts the sequential updating scheme of Metropolis algorithm. It makes no approximation in the computation of energy, and reaches a remarkable 440-fold speedup, compared with the serial implementation on CPU. We further use this method to simulate primitive model electrolytes, and measure very precisely all ion-ion pair correlation functions at high concentrations. From these data, we extract the renormalized Debye length, renormalized valences of constituent ions, and renormalized dielectric constants. These results demonstrate unequivocally physics beyond the classical Poisson-Boltzmann theory.

  10. Interacting Electrons in Graphene: Fermi Velocity Renormalization and Optical Response

    NASA Astrophysics Data System (ADS)

    Stauber, T.; Parida, P.; Trushin, M.; Ulybyshev, M. V.; Boyda, D. L.; Schliemann, J.

    2017-06-01

    We have developed a Hartree-Fock theory for electrons on a honeycomb lattice aiming to solve a long-standing problem of the Fermi velocity renormalization in graphene. Our model employs no fitting parameters (like an unknown band cutoff) but relies on a topological invariant (crystal structure function) that makes the Hartree-Fock sublattice spinor independent of the electron-electron interaction. Agreement with the experimental data is obtained assuming static self-screening including local field effects. As an application of the model, we derive an explicit expression for the optical conductivity and discuss the renormalization of the Drude weight. The optical conductivity is also obtained via precise quantum Monte Carlo calculations which compares well to our mean-field approach.

  11. Renormalization Group Studies and Monte Carlo Simulation for Quantum Spin Systems.

    NASA Astrophysics Data System (ADS)

    Pan, Ching-Yan

    We have discussed the extended application of various real space renormalization group methods to the quantum spin systems. At finite temperature, we extended both the reliability and range of application of the decimation renormalization group method (DRG) for calculating the thermal and magnetic properties of low-dimensional quantum spin chains, in which we have proposed general models of the three-state Potts model and the general Heisenberg model. Some interesting finite-temperature behavior of the models has been obtained. We also proposed a general formula for the critical properties of the n-dimensional q-state Potts model by using a modified migdal-Kadanoff approach which is in very good agreement with all available results for general q and d. For high-spin systems, we have investigated the famous Haldane's prediction by using a modified block renormalization group approach in spin -1over2, spin-1 and spin-3 over2 cases. Our result supports Haldane's prediction and a novel property of the spin-1 Heisenberg antiferromagnet has been predicted. A modified quantum monte Carlo simulation approach has been developed in this study which we use to treat quantum interacting problems (we only work on quantum spin systems in this study) without the "negative sign problem". We also obtain with the Monte Carlo approach the numerical derivative directly. Furthermore, using this approach we have obtained the energy spectrum and the thermodynamic properties of the antiferromagnetic q-state Potts model, and have studied the q-color problem with the result which supports Mattis' recent conjecture of entropy for the n -dimensional q-state Potts antiferromagnet. We also find a general solution for the q-color problem in d dimensions.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Damien P.; Mooij, Sander; Postma, Marieke, E-mail: dpg39@cam.ac.uk, E-mail: sander.mooij@ing.uchile.cl, E-mail: mpostma@nikhef.nl

    We compute the one-loop renormalization group equations for Standard Model Higgs inflation. The calculation is done in the Einstein frame, using a covariant formalism for the multi-field system. All counterterms, and thus the betafunctions, can be extracted from the radiative corrections to the two-point functions; the calculation of higher n-point functions then serves as a consistency check of the approach. We find that the theory is renormalizable in the effective field theory sense in the small, mid and large field regime. In the large field regime our results differ slightly from those found in the literature, due to a differentmore » treatment of the Goldstone bosons.« less

  13. On Painlevé/gauge theory correspondence

    NASA Astrophysics Data System (ADS)

    Bonelli, Giulio; Lisovyy, Oleg; Maruyoshi, Kazunobu; Sciarappa, Antonio; Tanzini, Alessandro

    2017-12-01

    We elucidate the relation between Painlevé equations and four-dimensional rank one N = 2 theories by identifying the connection associated with Painlevé isomonodromic problems with the oper limit of the flat connection of the Hitchin system associated with gauge theories and by studying the corresponding renormalization group flow. Based on this correspondence, we provide long-distance expansions at various canonical rays for all Painlevé τ -functions in terms of magnetic and dyonic Nekrasov partition functions for N = 2 SQCD and Argyres-Douglas theories at self-dual Omega background ɛ _1 + ɛ _2 = 0 or equivalently in terms of c=1 irregular conformal blocks.

  14. Polymer diffusion in quenched disorder: A renormalization group approach

    NASA Astrophysics Data System (ADS)

    Ebert, Ute

    1996-01-01

    We study the diffusion of polymers through quenched short-range correlated random media by renormalization group (RG) methods, which allow us to derive universal predictions in the limit of long chains and weak disorder. We take local quenched random potentials with second moment v and the excluded-volume interaction u of the chain segments into account. We show that our model contains the relevant features of polymer diffusion in random media in the RG sense if we focus on the local entropic effects rather than on the topological constraints of a quenched random medium. The dynamic generating functional and the general structure of its perturbation expansion in u and v are derived. The distribution functions for the center-of-mass motion and the internal modes of one chain and for the correlation of the center of mass motions of two chains are calculated to one-loop order. The results allow for sufficient cross-checks to have trust in the one-loop renormalizability of the model. The general structure as well as the one-loop results of the integrated RG flow of the parameters are discussed. Universal results can be found for the effective static interaction w≔u-v≥0 and for small effective disorder couplingbar v(l) on the intermediate length scale l. As a first physical prediction from our analysis, we determine the general nonlinear scaling form of the chain diffusion constant and evaluate it explicitly as[Figure not available: see fulltext.] forbar v(l) ≪ 1.

  15. PyR@TE 2: A Python tool for computing RGEs at two-loop

    NASA Astrophysics Data System (ADS)

    Lyonnet, F.; Schienbein, I.

    2017-04-01

    Renormalization group equations are an essential tool for the description of theories across different energy scales. Even though their expressions at two-loop for an arbitrary gauge field theory have been known for more than thirty years, deriving the full set of equations for a given model by hand is very challenging and prone to errors. To tackle this issue, we have introduced in Lyonnet et al. (2014) a Python tool called PyR@TE; Python Renormalization group equations @ Two-loop for Everyone. With PyR@TE, it is easy to implement a given Lagrangian and derive the complete set of two-loop RGEs for all the parameters of the theory. In this paper, we present the new version of this code, PyR@TE 2, which brings many new features and in particular it incorporates kinetic mixing when several U(1) gauge groups are involved. In addition, the group theory part has been greatly improved as we introduced a new Python module dubbed PyLie that deals with all the group theoretical aspects required for the calculation of the RGEs as well as providing very useful model building capabilities. This allows the use of any irreducible representation of the SU(n) , SO(2 n) and SO(2n + 1) groups. Furthermore, it is now possible to implement terms in the Lagrangian involving fields which can be contracted into gauge singlets in more than one way. As a byproduct, results for a popular model (SM + complex triplet) for which, to our knowledge, the complete set of two-loop RGEs has not been calculated before are presented in this paper. Finally, the two-loop RGEs for the anomalous dimension of the scalar and fermion fields have been implemented as well. It is now possible to export the coupled system of beta functions into a numerical C++ function, leading to a consequent speed up in solving them.

  16. Variational optimization algorithms for uniform matrix product states

    NASA Astrophysics Data System (ADS)

    Zauner-Stauber, V.; Vanderstraeten, L.; Fishman, M. T.; Verstraete, F.; Haegeman, J.

    2018-01-01

    We combine the density matrix renormalization group (DMRG) with matrix product state tangent space concepts to construct a variational algorithm for finding ground states of one-dimensional quantum lattices in the thermodynamic limit. A careful comparison of this variational uniform matrix product state algorithm (VUMPS) with infinite density matrix renormalization group (IDMRG) and with infinite time evolving block decimation (ITEBD) reveals substantial gains in convergence speed and precision. We also demonstrate that VUMPS works very efficiently for Hamiltonians with long-range interactions and also for the simulation of two-dimensional models on infinite cylinders. The new algorithm can be conveniently implemented as an extension of an already existing DMRG implementation.

  17. Improving the In-Medium Similarity Renormalization Group via approximate inclusion of three-body effects

    NASA Astrophysics Data System (ADS)

    Morris, Titus; Bogner, Scott

    2016-09-01

    The In-Medium Similarity Renormalization Group (IM-SRG) has been applied successfully to the ground state of closed shell finite nuclei. Recent work has extended its ability to target excited states of these closed shell systems via equation of motion methods, and also complete spectra of the whole SD shell via effective shell model interactions. A recent alternative method for solving of the IM-SRG equations, based on the Magnus expansion, not only provides a computationally feasible route to producing observables, but also allows for approximate handling of induced three-body forces. Promising results for several systems, including finite nuclei, will be presented and discussed.

  18. Multicritical points for spin-glass models on hierarchical lattices.

    PubMed

    Ohzeki, Masayuki; Nishimori, Hidetoshi; Berker, A Nihat

    2008-06-01

    The locations of multicritical points on many hierarchical lattices are numerically investigated by the renormalization group analysis. The results are compared with an analytical conjecture derived by using the duality, the gauge symmetry, and the replica method. We find that the conjecture does not give the exact answer but leads to locations slightly away from the numerically reliable data. We propose an improved conjecture to give more precise predictions of the multicritical points than the conventional one. This improvement is inspired by a different point of view coming from the renormalization group and succeeds in deriving very consistent answers with many numerical data.

  19. Renormalization group analysis of turbulence

    NASA Technical Reports Server (NTRS)

    Smith, Leslie M.

    1989-01-01

    The objective is to understand and extend a recent theory of turbulence based on dynamic renormalization group (RNG) techniques. The application of RNG methods to hydrodynamic turbulence was explored most extensively by Yakhot and Orszag (1986). An eddy viscosity was calculated which was consistent with the Kolmogorov inertial range by systematic elimination of the small scales in the flow. Further, assumed smallness of the nonlinear terms in the redefined equations for the large scales results in predictions for important flow constants such as the Kolmogorov constant. It is emphasized that no adjustable parameters are needed. The parameterization of the small scales in a self-consistent manner has important implications for sub-grid modeling.

  20. Renormalization-Group Theory Study of Superfluidity and Phase Separation of Helium Mixtures Immersed in Jungle-Gym Aerogel

    NASA Astrophysics Data System (ADS)

    Lopatnikova, Anna; Berker, A. Nihat

    1997-03-01

    Superfluidity and phase separation in ^3He-^4He mixtures immersed in jungle-gym (non-random) aerogel are studied by renormalization-group theory.(Phys. Rev. B, in press (1996)) Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low ^4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena, and trends with respect to aerogel concentration, are explained by the connectivity and tenuousness of jungle-gym aerogel.

  1. Renormalization-group study of superfluidity and phase separation of helium mixtures immersed in a nonrandom aerogel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatnikova, A.; Berker, A.N.

    1997-02-01

    Superfluidity and phase separation in {sup 3}He-{sup 4}He mixtures immersed in a jungle-gym (nonrandom) aerogel are studied by renormalization-group theory. Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low {sup 4}He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena and trends with respect to aerogel concentration are explained by the connectivity and tenuousness of a jungle-gym aerogel. {copyright} {ital 1997} {ital The American Physical Society}

  2. Experience with turbulence interaction and turbulence-chemistry models at Fluent Inc.

    NASA Technical Reports Server (NTRS)

    Choudhury, D.; Kim, S. E.; Tselepidakis, D. P.; Missaghi, M.

    1995-01-01

    This viewgraph presentation discusses (1) turbulence modeling: challenges in turbulence modeling, desirable attributes of turbulence models, turbulence models in FLUENT, and examples using FLUENT; and (2) combustion modeling: turbulence-chemistry interaction and FLUENT equilibrium model. As of now, three turbulence models are provided: the conventional k-epsilon model, the renormalization group model, and the Reynolds-stress model. The renormalization group k-epsilon model has broadened the range of applicability of two-equation turbulence models. The Reynolds-stress model has proved useful for strongly anisotropic flows such as those encountered in cyclones, swirlers, and combustors. Issues remain, such as near-wall closure, with all classes of models.

  3. Renormalization-group study of the Nagel-Schreckenberg model

    NASA Astrophysics Data System (ADS)

    Teoh, Han Kheng; Yong, Ee Hou

    2018-03-01

    We study the phase transition from free flow to congested phases in the Nagel-Schreckenberg (NS) model by using the dynamically driven renormalization group (DDRG). The breaking probability p that governs the driving strategy is investigated. For the deterministic case p =0 , the dynamics remain invariant in each renormalization-group (RG) transformation. Two fully attractive fixed points, ρc*=0 and 1, and one unstable fixed point, ρc*=1 /(vmax+1 ) , are obtained. The critical exponent ν which is related to the correlation length is calculated for various vmax. The critical exponent appears to decrease weakly with vmax from ν =1.62 to the asymptotical value of 1.00. For the random case p >0 , the transition rules in the coarse-grained scale are found to be different from the NS specification. To have a qualitative understanding of the effect of stochasticity, the case p →0 is studied with simulation, and the RG flow in the ρ -p plane is obtained. The fixed points p =0 and 1 that govern the driving strategy of the NS model are found. A short discussion on the extension of the DDRG method to the NS model with the open-boundary condition is outlined.

  4. Stepwise positional-orientational order and the multicritical-multistructural global phase diagram of the s=3/2 Ising model from renormalization-group theory.

    PubMed

    Yunus, Çağın; Renklioğlu, Başak; Keskin, Mustafa; Berker, A Nihat

    2016-06-01

    The spin-3/2 Ising model, with nearest-neighbor interactions only, is the prototypical system with two different ordering species, with concentrations regulated by a chemical potential. Its global phase diagram, obtained in d=3 by renormalization-group theory in the Migdal-Kadanoff approximation or equivalently as an exact solution of a d=3 hierarchical lattice, with flows subtended by 40 different fixed points, presents a very rich structure containing eight different ordered and disordered phases, with more than 14 different types of phase diagrams in temperature and chemical potential. It exhibits phases with orientational and/or positional order. It also exhibits quintuple phase transition reentrances. Universality of critical exponents is conserved across different renormalization-group flow basins via redundant fixed points. One of the phase diagrams contains a plastic crystal sequence, with positional and orientational ordering encountered consecutively as temperature is lowered. The global phase diagram also contains double critical points, first-order and critical lines between two ordered phases, critical end points, usual and unusual (inverted) bicritical points, tricritical points, multiple tetracritical points, and zero-temperature criticality and bicriticality. The four-state Potts permutation-symmetric subspace is contained in this model.

  5. Implementation of rigorous renormalization group method for ground space and low-energy states of local Hamiltonians

    NASA Astrophysics Data System (ADS)

    Roberts, Brenden; Vidick, Thomas; Motrunich, Olexei I.

    2017-12-01

    The success of polynomial-time tensor network methods for computing ground states of certain quantum local Hamiltonians has recently been given a sound theoretical basis by Arad et al. [Math. Phys. 356, 65 (2017), 10.1007/s00220-017-2973-z]. The convergence proof, however, relies on "rigorous renormalization group" (RRG) techniques which differ fundamentally from existing algorithms. We introduce a practical adaptation of the RRG procedure which, while no longer theoretically guaranteed to converge, finds matrix product state ansatz approximations to the ground spaces and low-lying excited spectra of local Hamiltonians in realistic situations. In contrast to other schemes, RRG does not utilize variational methods on tensor networks. Rather, it operates on subsets of the system Hilbert space by constructing approximations to the global ground space in a treelike manner. We evaluate the algorithm numerically, finding similar performance to density matrix renormalization group (DMRG) in the case of a gapped nondegenerate Hamiltonian. Even in challenging situations of criticality, large ground-state degeneracy, or long-range entanglement, RRG remains able to identify candidate states having large overlap with ground and low-energy eigenstates, outperforming DMRG in some cases.

  6. Wave-function-renormalization effects in resonantly enhanced tunneling

    NASA Astrophysics Data System (ADS)

    Lörch, N.; Pepe, F. V.; Lignier, H.; Ciampini, D.; Mannella, R.; Morsch, O.; Arimondo, E.; Facchi, P.; Florio, G.; Pascazio, S.; Wimberger, S.

    2012-05-01

    We study the time evolution of ultracold atoms in an accelerated optical lattice. For a Bose-Einstein condensate with a narrow quasimomentum distribution in a shallow optical lattice the decay of the survival probability in the ground band has a steplike structure. In this regime we establish a connection between the wave-function-renormalization parameter Z introduced by P. Facchi, H. Nakazato, and S. Pascazio [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.86.2699 86, 2699 (2001)] to characterize nonexponential decay and the phenomenon of resonantly enhanced tunneling, where the decay rate is peaked for particular values of the lattice depth and the accelerating force.

  7. Exact solutions to the fermion propagator Schwinger-Dyson equation in Minkowski space with on-shell renormalization for quenched QED

    DOE PAGES

    Jia, Shaoyang; Pennington, M. R.

    2017-08-01

    With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization conditions, analytic solutions for the fermion propagator spectral functions are obtained in four dimensions with a renormalizable version of the Gauge Technique anzatz for the fermion-photon vertex in the quenched approximation in the Landau gauge. Despite the limitations of this model, having an explicit solution provides a guiding example of the fermion propagator with the correct analytic structure. The Padé approximation for the spectral functions is also investigated.

  8. Exact solutions to the fermion propagator Schwinger-Dyson equation in Minkowski space with on-shell renormalization for quenched QED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Shaoyang; Pennington, M. R.

    With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization conditions, analytic solutions for the fermion propagator spectral functions are obtained in four dimensions with a renormalizable version of the Gauge Technique anzatz for the fermion-photon vertex in the quenched approximation in the Landau gauge. Despite the limitations of this model, having an explicit solution provides a guiding example of the fermion propagator with the correct analytic structure. The Padé approximation for the spectral functions is also investigated.

  9. Critical temperature of metallic hydrogen sulfide at 225-GPa pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A., E-mail: EAMazur@mephi.ru

    2017-01-15

    The Eliashberg theory generalized for electron—phonon systems with a nonconstant density of electron states and with allowance made for the frequency behavior of the electron mass and chemical potential renormalizations is used to study T{sub c} in the SH{sub 3} phase of hydrogen sulfide under pressure. The phonon contribution to the anomalous electron Green’s function is considered. The pairing within the total width of the electron band and not only in a narrow layer near the Fermi surface is taken into account. The frequency and temperature dependences of the complex mass renormalization ReZ(ω), the density of states N(ε) renormalized bymore » the electron—phonon interactions, and the electron—phonon spectral function obtained computationally are used to calculate the anomalous electron Green’s function. A generalized Eliashberg equation with a variable density of electron states has been solved. The frequency dependence of the real and imaginary parts of the order parameter in the SH{sub 3} phase has been obtained. The value of T{sub c} ≈ 177 K in the SH{sub 3} phase of hydrogen sulfide at pressure P = 225 GPa has been determined by solving the system of Eliashberg equations.« less

  10. E-cigarette Marketing and Older Smokers: Road to Renormalization

    PubMed Central

    Cataldo, Janine K.; Petersen, Anne Berit; Hunter, Mary; Wang, Julie; Sheon, Nicolas

    2015-01-01

    Objectives To describe older smokers’ perceptions of risks and use of e-cigarettes, and their responses to marketing and knowledge of, and opinions about, regulation of e-cigarettes. Methods Eight 90-minute focus groups with 8 to 9 participants met in urban and suburban California to discuss topics related to cigarettes and alternative tobacco products. Results Older adults are using e-cigarettes for cessation and as a way to circumvent no-smoking policies; they have false perceptions about the effectiveness and safety of e-cigarettes. They perceive e-cigarette marketing as a way to renormalize smoking. Conclusions To stem the current epidemic of nicotine addiction, the FDA must take immediate action because e-cigarette advertising promotes dual use and may contribute to the renormalization of smoking. PMID:25741681

  11. Nonperturbative renormalization of the axial current in Nf=3 lattice QCD with Wilson fermions and a tree-level improved gauge action

    NASA Astrophysics Data System (ADS)

    Bulava, John; Della Morte, Michele; Heitger, Jochen; Wittemeier, Christian

    2016-06-01

    We nonperturbatively determine the renormalization factor of the axial vector current in lattice QCD with Nf=3 flavors of Wilson-clover fermions and the tree-level Symanzik-improved gauge action. The (by now standard) renormalization condition is derived from the massive axial Ward identity, and it is imposed among Schrödinger functional states with large overlap on the lowest lying hadronic state in the pseudoscalar channel, in order to reduce kinematically enhanced cutoff effects. We explore a range of couplings relevant for simulations at lattice spacings of ≈0.09 fm and below. An interpolation formula for ZA(g02) , smoothly connecting the nonperturbative values to the 1-loop expression, is provided together with our final results.

  12. Anomalous scaling of passive scalar fields advected by the Navier-Stokes velocity ensemble: effects of strong compressibility and large-scale anisotropy.

    PubMed

    Antonov, N V; Kostenko, M M

    2014-12-01

    The field theoretic renormalization group and the operator product expansion are applied to two models of passive scalar quantities (the density and the tracer fields) advected by a random turbulent velocity field. The latter is governed by the Navier-Stokes equation for compressible fluid, subject to external random force with the covariance ∝δ(t-t')k(4-d-y), where d is the dimension of space and y is an arbitrary exponent. The original stochastic problems are reformulated as multiplicatively renormalizable field theoretic models; the corresponding renormalization group equations possess infrared attractive fixed points. It is shown that various correlation functions of the scalar field, its powers and gradients, demonstrate anomalous scaling behavior in the inertial-convective range already for small values of y. The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields ("operators" in the quantum-field terminology), can be systematically calculated as series in y. The practical calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are manifestly Galilean covariant. The validity of the one-loop approximation and comparison with Gaussian models are briefly discussed.

  13. Nonequilibrium Kondo effect by the equilibrium numerical renormalization group method: The hybrid Anderson model subject to a finite spin bias

    NASA Astrophysics Data System (ADS)

    Fang, Tie-Feng; Guo, Ai-Min; Sun, Qing-Feng

    2018-06-01

    We investigate Kondo correlations in a quantum dot with normal and superconducting electrodes, where a spin bias voltage is applied across the device and the local interaction U is either attractive or repulsive. When the spin current is blockaded in the large-gap regime, this nonequilibrium strongly correlated problem maps into an equilibrium model solvable by the numerical renormalization group method. The Kondo spectra with characteristic splitting due to the nonequilibrium spin accumulation are thus obtained at high precision. It is shown that while the bias-induced decoherence of the spin Kondo effect is partially compensated by the superconductivity, the charge Kondo effect is enhanced out of equilibrium and undergoes an additional splitting by the superconducting proximity effect, yielding four Kondo peaks in the local spectral density. In the charge Kondo regime, we find a universal scaling of charge conductance in this hybrid device under different spin biases. The universal conductance as a function of the coupling to the superconducting lead is peaked at and hence directly measures the Kondo temperature. Our results are of direct relevance to recent experiments realizing a negative-U charge Kondo effect in hybrid oxide quantum dots [Nat. Commun. 8, 395 (2017), 10.1038/s41467-017-00495-7].

  14. Competition of density waves and quantum multicritical behavior in Dirac materials from functional renormalization

    NASA Astrophysics Data System (ADS)

    Classen, Laura; Herbut, Igor F.; Janssen, Lukas; Scherer, Michael M.

    2016-03-01

    We study the competition of spin- and charge-density waves and their quantum multicritical behavior for the semimetal-insulator transitions of low-dimensional Dirac fermions. Employing the effective Gross-Neveu-Yukawa theory with two order parameters as a model for graphene and a growing number of other two-dimensional Dirac materials allows us to describe the physics near the multicritical point at which the semimetallic and the spin- and charge-density-wave phases meet. With the help of a functional renormalization group approach, we are able to reveal a complex structure of fixed points, the stability properties of which decisively depend on the number of Dirac fermions Nf. We give estimates for the critical exponents and observe crucial quantitative corrections as compared to the previous first-order ɛ expansion. For small Nf, the universal behavior near the multicritical point is determined by the chiral Heisenberg universality class supplemented by a decoupled, purely bosonic, Ising sector. At large Nf, a novel fixed point with nontrivial couplings between all sectors becomes stable. At intermediate Nf, including the graphene case (Nf=2 ), no stable and physically admissible fixed point exists. Graphene's phase diagram in the vicinity of the intersection between the semimetal, antiferromagnetic, and staggered density phases should consequently be governed by a triple point exhibiting first-order transitions.

  15. Precise MS light-quark masses from lattice QCD in the regularization invariant symmetric momentum-subtraction scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorbahn, Martin; Jaeger, Sebastian; Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH

    2010-12-01

    We compute the conversion factors needed to obtain the MS and renormalization-group-invariant (RGI) up, down, and strange quark masses at next-to-next-to-leading order from the corresponding parameters renormalized in the recently proposed RI/SMOM and RI/SMOM{sub {gamma}{sub {mu}} }renormalization schemes. This is important for obtaining the MS masses with the best possible precision from numerical lattice QCD simulations, because the customary RI{sup (')}/MOM scheme is afflicted with large irreducible uncertainties both on the lattice and in perturbation theory. We find that the smallness of the known one-loop matching coefficients is accompanied by even smaller two-loop contributions. From a study of residual scalemore » dependences, we estimate the resulting perturbative uncertainty on the light-quark masses to be about 2% in the RI/SMOM scheme and about 3% in the RI/SMOM{sub {gamma}{sub {mu}} }scheme. Our conversion factors are given in fully analytic form, for general covariant gauge and renormalization point. We provide expressions for the associated anomalous dimensions.« less

  16. Center for Modeling of Turbulence and Transition (CMOTT): Research Briefs, 1992

    NASA Technical Reports Server (NTRS)

    Liou, William W. (Editor)

    1992-01-01

    The progress is reported of the Center for Modeling of Turbulence and Transition (CMOTT). The main objective of the CMOTT is to develop, validate and implement the turbulence and transition models for practical engineering flows. The flows of interest are three-dimensional, incompressible and compressible flows with chemical reaction. The research covers two-equation (e.g., k-e) and algebraic Reynolds-stress models, second moment closure models, probability density function (pdf) models, Renormalization Group Theory (RNG), Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).

  17. Alien calculus and non perturbative effects in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Bellon, Marc P.

    2016-12-01

    In many domains of physics, methods for dealing with non-perturbative aspects are required. Here, I want to argue that a good approach for this is to work on the Borel transforms of the quantities of interest, the singularities of which give non-perturbative contributions. These singularities in many cases can be largely determined by using the alien calculus developed by Jean Écalle. My main example will be the two point function of a massless theory given as a solution of a renormalization group equation.

  18. Higher dimensional curved domain walls on Kähler surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbar, Fiki T., E-mail: ftakbar@fi.itb.ac.id; Gunara, Bobby E., E-mail: bobby@fi.itb.ac.id; Radjabaycolle, Flinn C.

    In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.

  19. Hořava Gravity is Asymptotically Free in 2+1 Dimensions.

    PubMed

    Barvinsky, Andrei O; Blas, Diego; Herrero-Valea, Mario; Sibiryakov, Sergey M; Steinwachs, Christian F

    2017-11-24

    We compute the β functions of marginal couplings in projectable Hořava gravity in 2+1 spacetime dimensions. We show that the renormalization group flow has an asymptotically free fixed point in the ultraviolet (UV), establishing the theory as a UV-complete model with dynamical gravitational degrees of freedom. Therefore, this theory may serve as a toy model to study fundamental aspects of quantum gravity. Our results represent a step forward towards understanding the UV properties of realistic versions of Hořava gravity.

  20. Equilibrium dynamics of the sub-Ohmic spin-boson model under bias

    NASA Astrophysics Data System (ADS)

    Zheng, Da-Chuan; Tong, Ning-Hua

    2017-06-01

    Using the bosonic numerical renormalization group method, we studied the equilibrium dynamical correlation function C(ω) of the spin operator σ z for the biased sub-Ohmic spin-boson model. The small-ω behavior C(ω )\\propto {ω }s is found to be universal and independent of the bias ɛ and the coupling strength α (except at the quantum critical point α ={α }{{c}} and ɛ = 0). Our NRG data also show C(ω )\\propto {χ }2{ω }s for a wide range of parameters, including the biased strong coupling regime (\\varepsilon \

  1. Chiral algebras in Landau-Ginzburg models

    NASA Astrophysics Data System (ADS)

    Dedushenko, Mykola

    2018-03-01

    Chiral algebras in the cohomology of the {\\overline{Q}}+ supercharge of two-dimensional N=(0,2) theories on flat spacetime are discussed. Using the supercurrent multiplet, we show that the answer is renormalization group invariant for theories with an R-symmetry. For N=(0,2) Landau-Ginzburg models, the chiral algebra is determined by the operator equations of motion, which preserve their classical form, and quantum renormalization of composite operators. We study these theories and then specialize to the N=(2,2) models and consider some examples.

  2. Breaking of scale invariance in the time dependence of correlation functions in isotropic and homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Tarpin, Malo; Canet, Léonie; Wschebor, Nicolás

    2018-05-01

    In this paper, we present theoretical results on the statistical properties of stationary, homogeneous, and isotropic turbulence in incompressible flows in three dimensions. Within the framework of the non-perturbative renormalization group, we derive a closed renormalization flow equation for a generic n-point correlation (and response) function for large wave-numbers with respect to the inverse integral scale. The closure is obtained from a controlled expansion and relies on extended symmetries of the Navier-Stokes field theory. It yields the exact leading behavior of the flow equation at large wave-numbers |p→ i| and for arbitrary time differences ti in the stationary state. Furthermore, we obtain the form of the general solution of the corresponding fixed point equation, which yields the analytical form of the leading wave-number and time dependence of n-point correlation functions, for large wave-numbers and both for small ti and in the limit ti → ∞. At small ti, the leading contribution at large wave-numbers is logarithmically equivalent to -α (ɛL ) 2 /3|∑tip→ i|2, where α is a non-universal constant, L is the integral scale, and ɛ is the mean energy injection rate. For the 2-point function, the (tp)2 dependence is known to originate from the sweeping effect. The derived formula embodies the generalization of the effect of sweeping to n-point correlation functions. At large wave-numbers and large ti, we show that the ti2 dependence in the leading order contribution crosses over to a |ti| dependence. The expression of the correlation functions in this regime was not derived before, even for the 2-point function. Both predictions can be tested in direct numerical simulations and in experiments.

  3. Two loop QCD vertices at the symmetric point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gracey, J. A.

    2011-10-15

    We compute the triple gluon, quark-gluon and ghost-gluon vertices of QCD at the symmetric subtraction point at two loops in the MS scheme. In addition we renormalize each of the three vertices in their respective momentum subtraction schemes, MOMggg, MOMq and MOMh. The conversion functions of all the wave functions, coupling constant and gauge parameter renormalization constants of each of the schemes relative to MS are determined analytically. These are then used to derive the three loop anomalous dimensions of the gluon, quark, Faddeev-Popov ghost and gauge parameter as well as the {beta} function in an arbitrary linear covariant gaugemore » for each MOM scheme. There is good agreement of the latter with earlier Landau gauge numerical estimates of Chetyrkin and Seidensticker.« less

  4. Renormalization shielding effect on the Wannier-ridge mode for double-electron continua in partially ionized dense hydrogen plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590

    2016-01-15

    The influence of renormalization shielding on the Wannier threshold law for the double-electron escapes by the electron-impact ionization is investigated in partially ionized dense plasmas. The renormalized electron charge and Wannier exponent are obtained by considering the equation of motion in the Wannier-ridge including the renormalization shielding effect. It is found that the renormalization shielding effect reduces the magnitude of effective electron charge, especially, within the Bohr radius in partially ionized dense plasmas. The maximum position of the renormalized electron charge approaches to the center of the target atom with an increase of the renormalization parameter. In addition, the Wanniermore » exponent increases with an increase of the renormalization parameter. The variations of the renormalized electron charge and Wannier exponent due to the renormalization shielding effect are also discussed.« less

  5. Finite-size scaling study of the two-dimensional Blume-Capel model

    NASA Astrophysics Data System (ADS)

    Beale, Paul D.

    1986-02-01

    The phase diagram of the two-dimensional Blume-Capel model is investigated by using the technique of phenomenological finite-size scaling. The location of the tricritical point and the values of the critical and tricritical exponents are determined. The location of the tricritical point (Tt=0.610+/-0.005, Dt=1.9655+/-0.0010) is well outside the error bars for the value quoted in previous Monte Carlo simulations but in excellent agreement with more recent Monte Carlo renormalization-group results. The values of the critical and tricritical exponents, with the exception of the leading thermal tricritical exponent, are in excellent agreement with previous calculations, conjectured values, and Monte Carlo renormalization-group studies.

  6. Scaling properties of the two-dimensional randomly stirred Navier-Stokes equation.

    PubMed

    Mazzino, Andrea; Muratore-Ginanneschi, Paolo; Musacchio, Stefano

    2007-10-05

    We inquire into the scaling properties of the 2D Navier-Stokes equation sustained by a force field with Gaussian statistics, white noise in time, and with a power-law correlation in momentum space of degree 2 - 2 epsilon. This is at variance with the setting usually assumed to derive Kraichnan's classical theory. We contrast accurate numerical experiments with the different predictions provided for the small epsilon regime by Kraichnan's double cascade theory and by renormalization group analysis. We give clear evidence that for all epsilon, Kraichnan's theory is consistent with the observed phenomenology. Our results call for a revision in the renormalization group analysis of (2D) fully developed turbulence.

  7. Universal renormalization-group dynamics at the onset of chaos in logistic maps and nonextensive statistical mechanics

    NASA Astrophysics Data System (ADS)

    Baldovin, F.; Robledo, A.

    2002-10-01

    We uncover the dynamics at the chaos threshold μ∞ of the logistic map and find that it consists of trajectories made of intertwined power laws that reproduce the entire period-doubling cascade that occurs for μ<μ∞. We corroborate this structure analytically via the Feigenbaum renormalization-group (RG) transformation and find that the sensitivity to initial conditions has precisely the form of a q exponential, of which we determine the q index and the q-generalized Lyapunov coefficient λq. Our results are an unequivocal validation of the applicability of the nonextensive generalization of Boltzmann-Gibbs statistical mechanics to critical points of nonlinear maps.

  8. Stochastic quantization and holographic Wilsonian renormalization group of free massive fermion

    NASA Astrophysics Data System (ADS)

    Moon, Sung Pil

    2018-06-01

    We examine a suggested relation between stochastic quantization and the holographic Wilsonian renormalization group in the massive fermion case on Euclidean AdS space. The original suggestion about the general relation between the two theories is posted in arXiv:1209.2242. In the previous researches, it is already verified that scalar fields, U(1) gauge fields, and massless fermions are consistent with the relation. In this paper, we examine the relation in the massive fermion case. Contrary to the other case, in the massive fermion case, the action needs particular boundary terms to satisfy boundary conditions. We finally confirm that the proposed suggestion is also valid in the massive fermion case.

  9. On the Yakhot-Orszag renormalization group method for deriving turbulence statistics and models

    NASA Technical Reports Server (NTRS)

    Smith, L. M.; Reynolds, W. C.

    1992-01-01

    An independent, comprehensive, critical review of the 'renormalization group' (RNG) theory of turbulence developed by Yakhot and Orszag (1986) is provided. Their basic theory for the Navier-Stokes equations is confirmed, and approximations in the scale removal procedure are discussed. The YO derivations of the velocity-derivative skewness and the transport equation for the energy dissipation rate are examined. An algebraic error in the derivation of the skewness is corrected. The corrected RNG skewness value of -0.59 is in agreement with experiments at moderate Reynolds numbers. Several problems are identified in the derivation of the energy dissipation rate equations which suggest that the derivation should be reformulated.

  10. Development of renormalization group analysis of turbulence

    NASA Technical Reports Server (NTRS)

    Smith, L. M.

    1990-01-01

    The renormalization group (RG) procedure for nonlinear, dissipative systems is now quite standard, and its applications to the problem of hydrodynamic turbulence are becoming well known. In summary, the RG method isolates self similar behavior and provides a systematic procedure to describe scale invariant dynamics in terms of large scale variables only. The parameterization of the small scales in a self consistent manner has important implications for sub-grid modeling. This paper develops the homogeneous, isotropic turbulence and addresses the meaning and consequence of epsilon-expansion. The theory is then extended to include a weak mean flow and application of the RG method to a sequence of models is shown to converge to the Navier-Stokes equations.

  11. Loop Variables in String Theory

    NASA Astrophysics Data System (ADS)

    Sathiapalan, B.

    The loop variable approach is a proposal for a gauge-invariant generalization of the sigma-model renormalization group method of obtaining equations of motion in string theory. The basic guiding principle is space-time gauge invariance rather than world sheet properties. In essence it is a version of Wilson's exact renormalization group equation for the world sheet theory. It involves all the massive modes and is defined with a finite world sheet cutoff, which allows one to go off the mass-shell. On shell the tree amplitudes of string theory are reproduced. The equations are gauge-invariant off shell also. This paper is a self-contained discussion of the loop variable approach as well as its connection with the Wilsonian RG.

  12. Nonlocality and Short-Range Wetting Phenomena

    NASA Astrophysics Data System (ADS)

    Parry, A. O.; Romero-Enrique, J. M.; Lazarides, A.

    2004-08-01

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  13. Nonlocality and short-range wetting phenomena.

    PubMed

    Parry, A O; Romero-Enrique, J M; Lazarides, A

    2004-08-20

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  14. Two-point function of a quantum scalar field in the interior region of a Reissner-Nordstrom black hole

    NASA Astrophysics Data System (ADS)

    Lanir, Assaf; Levi, Adam; Ori, Amos; Sela, Orr

    2018-01-01

    We derive explicit expressions for the two-point function of a massless scalar field in the interior region of a Reissner-Nordstrom black hole, in both the Unruh and the Hartle-Hawking quantum states. The two-point function is expressed in terms of the standard l m ω modes of the scalar field (those associated with a spherical harmonic Yl m and a temporal mode e-i ω t), which can be conveniently obtained by solving an ordinary differential equation, the radial equation. These explicit expressions are the internal analogs of the well-known results in the external region (originally derived by Christensen and Fulling), in which the two-point function outside the black hole is written in terms of the external l m ω modes of the field. They allow the computation of ⟨Φ2⟩ren and the renormalized stress-energy tensor inside the black hole, after the radial equation has been solved (usually numerically). In the second part of the paper, we provide an explicit expression for the trace of the renormalized stress-energy tensor of a minimally coupled massless scalar field (which is nonconformal), relating it to the d'Alembertian of ⟨Φ2⟩ren . This expression proves itself useful in various calculations of the renormalized stress-energy tensor.

  15. Quantum multicriticality in disordered Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Luo, Xunlong; Xu, Baolong; Ohtsuki, Tomi; Shindou, Ryuichi

    2018-01-01

    In electronic band structure of solid-state material, two band-touching points with linear dispersion appear in pairs in the momentum space. When they annihilate each other, the system undergoes a quantum phase transition from a three-dimensional (3D) Weyl semimetal (WSM) phase to a band insulator phase such as a Chern band insulator (CI) phase. The phase transition is described by a new critical theory with a "magnetic dipole"-like object in the momentum space. In this paper, we reveal that the critical theory hosts a novel disorder-driven quantum multicritical point, which is encompassed by three quantum phases: a renormalized WSM phase, a CI phase, and a diffusive metal (DM) phase. Based on the renormalization group argument, we first clarify scaling properties around the band-touching points at the quantum multicritical point as well as all phase boundaries among these three phases. Based on numerical calculations of localization length, density of states, and critical conductance distribution, we next prove that a localization-delocalization transition between the CI phase with a finite zero-energy density of states (zDOS) and DM phase belongs to an ordinary 3D unitary class. Meanwhile, a localization-delocalization transition between the Chern insulator phase with zero zDOS and a renormalized WSM phase turns out to be a direct phase transition whose critical exponent ν =0.80 ±0.01 . We interpret these numerical results by a renormalization group analysis on the critical theory.

  16. Many-body effects and ultraviolet renormalization in three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Throckmorton, Robert E.; Hofmann, Johannes; Barnes, Edwin; Das Sarma, S.

    2015-09-01

    We develop a theory for electron-electron interaction-induced many-body effects in three-dimensional Weyl or Dirac semimetals, including interaction corrections to the polarizability, electron self-energy, and vertex function, up to second order in the effective fine-structure constant of the Dirac material. These results are used to derive the higher-order ultraviolet renormalization of the Fermi velocity, effective coupling, and quasiparticle residue, revealing that the corrections to the renormalization group flows of both the velocity and coupling counteract the leading-order tendencies of velocity enhancement and coupling suppression at low energies. This in turn leads to the emergence of a critical coupling above which the interaction strength grows with decreasing energy scale. In addition, we identify a range of coupling strengths below the critical point in which the Fermi velocity varies nonmonotonically as the low-energy, noninteracting fixed point is approached. Furthermore, we find that while the higher-order correction to the flow of the coupling is generally small compared to the leading order, the corresponding correction to the velocity flow carries an additional factor of the Dirac cone flavor number (the multiplicity of electron species, e.g. ground-state valley degeneracy arising from the band structure) relative to the leading-order result. Thus, for materials with a larger multiplicity, the regime of velocity nonmonotonicity is reached for modest values of the coupling strength. This is in stark contrast to an approach based on a large-N expansion or the random phase approximation (RPA), where higher-order corrections are strongly suppressed for larger values of the Dirac cone multiplicity. This suggests that perturbation theory in the coupling constant (i.e., the loop expansion) and the RPA/large-N expansion are complementary in the sense that they are applicable in different parameter regimes of the theory. We show how our results for the ultraviolet renormalization of quasiparticle properties can be tested experimentally through measurements of quantities such as the optical conductivity or dielectric function (with carrier density or temperature acting as the scale being varied to induce the running coupling). Although experiments typically access the finite-density regime, we show that our zero-density results still capture clear many-body signatures that should be visible at higher temperatures even in real systems with disorder and finite doping.

  17. Holographic renormalization group and cosmology in theories with quasilocalized gravity

    NASA Astrophysics Data System (ADS)

    Csáki, Csaba; Erlich, Joshua; Hollowood, Timothy J.; Terning, John

    2001-03-01

    We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowski space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations.

  18. Holographic renormalization group and cosmology in theories with quasilocalized gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.

    2001-03-15

    We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowskimore » space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations.« less

  19. Exact renormalization group in Batalin-Vilkovisky theory

    NASA Astrophysics Data System (ADS)

    Zucchini, Roberto

    2018-03-01

    In this paper, inspired by the Costello's seminal work [11], we present a general formulation of exact renormalization group (RG) within the Batalin-Vilkovisky (BV) quantization scheme. In the spirit of effective field theory, the BV bracket and Laplacian structure as well as the BV effective action (EA) depend on an effective energy scale. The BV EA at a certain scale satisfies the BV quantum master equation at that scale. The RG flow of the EA is implemented by BV canonical maps intertwining the BV structures at different scales. Infinitesimally, this generates the BV exact renormalization group equation (RGE). We show that BV RG theory can be extended by augmenting the scale parameter space R to its shifted tangent bundle T [1]ℝ. The extra odd direction in scale space allows for a BV RG supersymmetry that constrains the structure of the BV RGE bringing it to Polchinski's form [6]. We investigate the implications of BV RG supersymmetry in perturbation theory. Finally, we illustrate our findings by constructing free models of BV RG flow and EA exhibiting RG supersymmetry in the degree -1 symplectic framework and studying the perturbation theory thereof. We find in particular that the odd partner of effective action describes perturbatively the deviation of the interacting RG flow from its free counterpart.

  20. Critical behavior of the anisotropic Heisenberg model by effective-field renormalization group

    NASA Astrophysics Data System (ADS)

    de Sousa, J. Ricardo; Fittipaldi, I. P.

    1994-05-01

    A real-space effective-field renormalization-group method (ERFG) recently derived for computing critical properties of Ising spins is extended to treat the quantum spin-1/2 anisotropic Heisenberg model. The formalism is based on a generalized but approximate Callen-Suzuki spin relation and utilizes a convenient differential operator expansion technique. The method is illustrated in several lattice structures by employing its simplest approximation version in which clusters with one (N'=1) and two (N=2) spins are used. The results are compared with those obtained from the standard mean-field (MFRG) and Migdal-Kadanoff (MKRG) renormalization-group treatments and it is shown that this technique leads to rather accurate results. It is shown that, in contrast with the MFRG and MKRG predictions, the EFRG, besides correctly distinguishing the geometries of different lattice structures, also provides a vanishing critical temperature for all two-dimensional lattices in the isotropic Heisenberg limit. For the simple cubic lattice, the dependence of the transition temperature Tc with the exchange anisotropy parameter Δ [i.e., Tc(Δ)], and the resulting value for the critical thermal crossover exponent φ [i.e., Tc≂Tc(0)+AΔ1/φ ] are in quite good agreement with results available in the literature in which more sophisticated treatments are used.

  1. Solar System constraints on renormalization group extended general relativity: The PPN and Laplace-Runge-Lenz analyses with the external potential effect

    NASA Astrophysics Data System (ADS)

    Rodrigues, Davi C.; Mauro, Sebastião; de Almeida, Álefe O. F.

    2016-10-01

    General relativity extensions based on renormalization group effects are motivated by a known physical principle and constitute a class of extended gravity theories that have some unexplored unique aspects. In this work we develop in detail the Newtonian and post-Newtonian limits of a realization called renormalization group extended general relativity (RGGR). Special attention is given to the external potential effect, which constitutes a type of screening mechanism typical of RGGR. In the Solar System, RGGR depends on a single dimensionless parameter ν¯⊙, and this parameter is such that for ν¯⊙=0 one fully recovers GR in the Solar System. Previously this parameter was constrained to be |ν¯ ⊙|≲10-21 , without considering the external potential effect. Here we show that under a certain approximation RGGR can be cast in a form compatible with the parametrized post-Newtonian (PPN) formalism, and we use both the PPN formalism and the Laplace-Runge-Lenz technique to put new bounds on ν¯⊙, either considering or not the external potential effect. With the external potential effect the new bound reads |ν¯ ⊙|≲10-16 . We discuss the possible consequences of this bound on the dark matter abundance in galaxies.

  2. Convergence behavior of the random phase approximation renormalized correlation energy

    NASA Astrophysics Data System (ADS)

    Bates, Jefferson E.; Sensenig, Jonathon; Ruzsinszky, Adrienn

    2017-05-01

    Based on the random phase approximation (RPA), RPA renormalization [J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013), 10.1063/1.4827254] is a robust many-body perturbation theory that works for molecules and materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies since the total correlation energy is the sum of a series of independent contributions. The first-order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate numerically that RPA renormalization beyond first order converges monotonically to the infinite-order beyond-RPA correlation energy for several model exchange-correlation kernels and that the rate of convergence is principally determined by the choice of the kernel and spin polarization of the ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized correlation energy corrections, assuming the exchange-correlation kernel and response functions satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find that RPA renormalization is typically converged to 1 meV error or less by fourth order regardless of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate, with errors on the order of 10 meV at fourth order and typically requiring up to sixth order to reach 1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging case and require many higher orders to converge.

  3. Exact phase boundaries and topological phase transitions of the X Y Z spin chain

    NASA Astrophysics Data System (ADS)

    Jafari, S. A.

    2017-07-01

    Within the block spin renormalization group, we give a very simple derivation of the exact phase boundaries of the X Y Z spin chain. First, we identify the Ising order along x ̂ or y ̂ as attractive renormalization group fixed points of the Kitaev chain. Then, in a global phase space composed of the anisotropy λ of the X Y interaction and the coupling Δ of the Δ σzσz interaction, we find that the above fixed points remain attractive in the two-dimesional parameter space. We therefore classify the gapped phases of the X Y Z spin chain as: (1) either attracted to the Ising limit of the Kitaev-chain, which in turn is characterized by winding number ±1 , depending on whether the Ising order parameter is along x ̂ or y ̂ directions; or (2) attracted to the charge density wave (CDW) phases of the underlying Jordan-Wigner fermions, which is characterized by zero winding number. We therefore establish that the exact phase boundaries of the X Y Z model in Baxter's solution indeed correspond to topological phase transitions. The topological nature of the phase transitions of the X Y Z model justifies why our analytical solution of the three-site problem that is at the core of the present renormalization group treatment is able to produce the exact phase boundaries of Baxter's solution. We argue that the distribution of the winding numbers between the three Ising phases is a matter of choice of the coordinate system, and therefore the CDW-Ising phase is entitled to host appropriate form of zero modes. We further observe that in the Kitaev-chain the renormalization group flow can be cast into a geometric progression of a properly identified parameter. We show that this new parameter is actually the size of the (Majorana) zero modes.

  4. The Adler D-function for N = 1 SQCD regularized by higher covariant derivatives in the three-loop approximation

    NASA Astrophysics Data System (ADS)

    Kataev, A. L.; Kazantsev, A. E.; Stepanyantz, K. V.

    2018-01-01

    We calculate the Adler D-function for N = 1 SQCD in the three-loop approximation using the higher covariant derivative regularization and the NSVZ-like subtraction scheme. The recently formulated all-order relation between the Adler function and the anomalous dimension of the matter superfields defined in terms of the bare coupling constant is first considered and generalized to the case of an arbitrary representation for the chiral matter superfields. The correctness of this all-order relation is explicitly verified at the three-loop level. The special renormalization scheme in which this all-order relation remains valid for the D-function and the anomalous dimension defined in terms of the renormalized coupling constant is constructed in the case of using the higher derivative regularization. The analytic expression for the Adler function for N = 1 SQCD is found in this scheme to the order O (αs2). The problem of scheme-dependence of the D-function and the NSVZ-like equation is briefly discussed.

  5. Diagrammatic analysis of correlations in polymer fluids: Cluster diagrams via Edwards' field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morse, David C.

    2006-10-15

    Edwards' functional integral approach to the statistical mechanics of polymer liquids is amenable to a diagrammatic analysis in which free energies and correlation functions are expanded as infinite sums of Feynman diagrams. This analysis is shown to lead naturally to a perturbative cluster expansion that is closely related to the Mayer cluster expansion developed for molecular liquids by Chandler and co-workers. Expansion of the functional integral representation of the grand-canonical partition function yields a perturbation theory in which all quantities of interest are expressed as functionals of a monomer-monomer pair potential, as functionals of intramolecular correlation functions of non-interacting molecules,more » and as functions of molecular activities. In different variants of the theory, the pair potential may be either a bare or a screened potential. A series of topological reductions yields a renormalized diagrammatic expansion in which collective correlation functions are instead expressed diagrammatically as functionals of the true single-molecule correlation functions in the interacting fluid, and as functions of molecular number density. Similar renormalized expansions are also obtained for a collective Ornstein-Zernicke direct correlation function, and for intramolecular correlation functions. A concise discussion is given of the corresponding Mayer cluster expansion, and of the relationship between the Mayer and perturbative cluster expansions for liquids of flexible molecules. The application of the perturbative cluster expansion to coarse-grained models of dense multi-component polymer liquids is discussed, and a justification is given for the use of a loop expansion. As an example, the formalism is used to derive a new expression for the wave-number dependent direct correlation function and recover known expressions for the intramolecular two-point correlation function to first-order in a renormalized loop expansion for coarse-grained models of binary homopolymer blends and diblock copolymer melts.« less

  6. Renormalization of Coulomb interactions in a system of two-dimensional tilted Dirac fermions

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Wen; Lee, Yu-Li

    2018-01-01

    We investigate the effects of long-ranged Coulomb interactions in a tilted Dirac semimetal in two dimensions by using the perturbative renormalization-group (RG) method. Depending on the magnitude of the tilting parameter, the undoped system can have either Fermi points (type I) or Fermi lines (type II). Previous studies usually performed the renormalization-group transformations by integrating out the modes with large momenta. This is problematic when the Fermi surface is open, like type-II Dirac fermions. In this work we study the effects of Coulomb interactions, following the spirit of Shankar [Rev. Mod. Phys. 66, 129 (1994), 10.1103/RevModPhys.66.129], by introducing a cutoff in the energy scale around the Fermi surface and integrating out the high-energy modes. For type-I Dirac fermions, our result is consistent with that of the previous work. On the other hand, we find that for type-II Dirac fermions, the magnitude of the tilting parameter increases monotonically with lowering energies. This implies the stability of type-II Dirac fermions in the presence of Coulomb interactions, in contrast with previous results. Furthermore, for type-II Dirac fermions, the velocities in different directions acquire different renormalization even if they have the same bare values. By taking into account the renormalization of the tilting parameter and the velocities due to the Coulomb interactions, we show that while the presence of a charged impurity leads only to charge redistribution around the impurity for type-I Dirac fermions, for type-II Dirac fermions, the impurity charge is completely screened, albeit with a very long screening length. The latter indicates that the temperature dependence of physical observables are essentially determined by the RG equations we derived. We illustrate this by calculating the temperature dependence of the compressibility and specific heat of the interacting tilted Dirac fermions.

  7. Weyl consistency conditions in non-relativistic quantum field theory

    DOE PAGES

    Pal, Sridip; Grinstein, Benjamín

    2016-12-05

    Weyl consistency conditions have been used in unitary relativistic quantum field theory to impose constraints on the renormalization group flow of certain quantities. We classify the Weyl anomalies and their renormalization scheme ambiguities for generic non-relativistic theories in 2 + 1 dimensions with anisotropic scaling exponent z = 2; the extension to other values of z are discussed as well. We give the consistency conditions among these anomalies. As an application we find several candidates for a C-theorem. Here, we comment on possible candidates for a C-theorem in higher dimensions.

  8. Exact renormalization group equation for the Lifshitz critical point

    NASA Astrophysics Data System (ADS)

    Bervillier, C.

    2004-10-01

    An exact renormalization equation (ERGE) accounting for an anisotropic scaling is derived. The critical and tricritical Lifshitz points are then studied at leading order of the derivative expansion which is shown to involve two differential equations. The resulting estimates of the Lifshitz critical exponents compare well with the O(ε) calculations. In the case of the Lifshitz tricritical point, it is shown that a marginally relevant coupling defies the perturbative approach since it actually makes the fixed point referred to in the previous perturbative calculations O(ε) finally unstable.

  9. Quantization of the nonlinear sigma model revisited

    NASA Astrophysics Data System (ADS)

    Nguyen, Timothy

    2016-08-01

    We revisit the subject of perturbatively quantizing the nonlinear sigma model in two dimensions from a rigorous, mathematical point of view. Our main contribution is to make precise the cohomological problem of eliminating potential anomalies that may arise when trying to preserve symmetries under quantization. The symmetries we consider are twofold: (i) diffeomorphism covariance for a general target manifold; (ii) a transitive group of isometries when the target manifold is a homogeneous space. We show that there are no anomalies in case (i) and that (ii) is also anomaly-free under additional assumptions on the target homogeneous space, in agreement with the work of Friedan. We carry out some explicit computations for the O(N)-model. Finally, we show how a suitable notion of the renormalization group establishes the Ricci flow as the one loop renormalization group flow of the nonlinear sigma model.

  10. Universality, twisted fans, and the Ising model. [Renormalization, two-loop calculations, scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dash, J.W.; Harrington, S.J.

    1975-06-24

    Critical exponents are evaluated for the Ising model using universality in the form of ''twisted fans'' previously introduced in Reggeon field theory. The universality is with respect to scales induced through renormalization. Exact twists are obtained at ..beta.. = 0 in one loop for D = 2,3 with ..nu.. = 0.75 and 0.60 respectively. In two loops one obtains ..nu.. approximately 1.32 and 0.68. No twists are obtained for eta, however. The results for the standard two loop calculations are also presented as functions of a scale.

  11. Power counting and Wilsonian renormalization in nuclear effective field theory

    NASA Astrophysics Data System (ADS)

    Valderrama, Manuel Pavón

    2016-05-01

    Effective field theories are the most general tool for the description of low energy phenomena. They are universal and systematic: they can be formulated for any low energy systems we can think of and offer a clear guide on how to calculate predictions with reliable error estimates, a feature that is called power counting. These properties can be easily understood in Wilsonian renormalization, in which effective field theories are the low energy renormalization group evolution of a more fundamental — perhaps unknown or unsolvable — high energy theory. In nuclear physics they provide the possibility of a theoretically sound derivation of nuclear forces without having to solve quantum chromodynamics explicitly. However there is the problem of how to organize calculations within nuclear effective field theory: the traditional knowledge about power counting is perturbative but nuclear physics is not. Yet power counting can be derived in Wilsonian renormalization and there is already a fairly good understanding of how to apply these ideas to non-perturbative phenomena and in particular to nuclear physics. Here we review a few of these ideas, explain power counting in two-nucleon scattering and reactions with external probes and hint at how to extend the present analysis beyond the two-body problem.

  12. A shape dynamical approach to holographic renormalization

    NASA Astrophysics Data System (ADS)

    Gomes, Henrique; Gryb, Sean; Koslowski, Tim; Mercati, Flavio; Smolin, Lee

    2015-01-01

    We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: (1) to advertise the simple classical mechanism, trading off gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/conformal field theory (CFT); and (2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with the usual semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible that the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a CFT. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps toward understanding what this new perspective may be able to teach us about holographic dualities.

  13. Observation of an anisotropic Dirac cone reshaping and ferrimagnetic spin polarization in an organic conductor

    PubMed Central

    Hirata, Michihiro; Ishikawa, Kyohei; Miyagawa, Kazuya; Tamura, Masafumi; Berthier, Claude; Basko, Denis; Kobayashi, Akito; Matsuno, Genki; Kanoda, Kazushi

    2016-01-01

    The Coulomb interaction among massless Dirac fermions in graphene is unscreened around the isotropic Dirac points, causing a logarithmic velocity renormalization and a cone reshaping. In less symmetric Dirac materials possessing anisotropic cones with tilted axes, the Coulomb interaction can provide still more exotic phenomena, which have not been experimentally unveiled yet. Here, using site-selective nuclear magnetic resonance, we find a non-uniform cone reshaping accompanied by a bandwidth reduction and an emergent ferrimagnetism in tilted Dirac cones that appear on the verge of charge ordering in an organic compound. Our theoretical analyses based on the renormalization-group approach and the Hubbard model show that these observations are the direct consequences of the long-range and short-range parts of the Coulomb interaction, respectively. The cone reshaping and the bandwidth renormalization, as well as the magnetic behaviour revealed here, can be ubiquitous and vital for many Dirac materials. PMID:27578363

  14. Mass deformations of 5d SCFTs via holography

    NASA Astrophysics Data System (ADS)

    Gutperle, Michael; Kaidi, Justin; Raj, Himanshu

    2018-02-01

    Using six-dimensional Euclidean F (4) gauged supergravity we construct a holographic renormalization group flow for a CFT on S 5. Numerical solutions to the BPS equations are obtained and the free energy of the theory on S 5 is determined holographically by calculation of the renormalized on-shell supergravity action. In the process, we deal with subtle issues such as holographic renormalization and addition of finite counterterms. We then propose a candidate field theory dual to these solutions. This tentative dual is a supersymmetry-preserving deformation of the strongly-coupled non-Lagrangian SCFT derived from the D4-D8 system in string theory. In the IR, this theory is a mass deformation of a USp(2 N ) gauge theory. A localization calculation of the free energy is performed for this IR theory, which for reasonably small values of the deformation parameter is found to have the same qualitative behaviour as the holographic free energy.

  15. Baryon chiral perturbation theory extended beyond the low-energy region.

    PubMed

    Epelbaum, E; Gegelia, J; Meißner, Ulf-G; Yao, De-Liang

    We consider an extension of the one-nucleon sector of baryon chiral perturbation theory beyond the low-energy region. The applicability of this approach for higher energies is restricted to small scattering angles, i.e. the kinematical region, where the quark structure of hadrons cannot be resolved. The main idea is to re-arrange the low-energy effective Lagrangian according to a new power counting and to exploit the freedom of the choice of the renormalization condition for loop diagrams. We generalize the extended on-mass-shell scheme for the one-nucleon sector of baryon chiral perturbation theory by choosing a sliding scale, that is, we expand the physical amplitudes around kinematical points beyond the threshold. This requires the introduction of complex-valued renormalized coupling constants, which can be either extracted from experimental data, or calculated using the renormalization group evolution of coupling constants fixed in threshold region.

  16. Canonical Drude Weight for Non-integrable Quantum Spin Chains

    NASA Astrophysics Data System (ADS)

    Mastropietro, Vieri; Porta, Marcello

    2018-03-01

    The Drude weight is a central quantity for the transport properties of quantum spin chains. The canonical definition of Drude weight is directly related to Kubo formula of conductivity. However, the difficulty in the evaluation of such expression has led to several alternative formulations, accessible to different methods. In particular, the Euclidean, or imaginary-time, Drude weight can be studied via rigorous renormalization group. As a result, in the past years several universality results have been proven for such quantity at zero temperature; remarkably, the proofs work for both integrable and non-integrable quantum spin chains. Here we establish the equivalence of Euclidean and canonical Drude weights at zero temperature. Our proof is based on rigorous renormalization group methods, Ward identities, and complex analytic ideas.

  17. Renormalization Group Theory, the Epsilon Expansion and Ken Wilson as I knew Him

    NASA Astrophysics Data System (ADS)

    Fisher, Michael E.

    The tasks posed for renormalization group theory (RGT) within statistical physics by critical phenomena theory in the 1960's are set out briefly in contradistinction to quantum field theory (QFT), which was the origin for Ken Wilson's concerns. Kadanoff's 1966 block spin scaling picture and its difficulties are presented;Wilson's early vision of flows is described from the author's perspective. How Wilson's subsequent breakthrough ideas, published in 1971, led to the epsilon expansion and the resulting clarity is related. Concluding sections complete the general picture of flows in a space of Hamiltonians, universality and scaling. The article represents a 40% condensation (but with added items) of an earlier account: Rev. Mod. Phys. 70, 653-681 (1998).

  18. Renormalization Group Tutorial

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.

    2004-01-01

    Complex physical systems sometimes have statistical behavior characterized by power- law dependence on the parameters of the system and spatial variability with no particular characteristic scale as the parameters approach critical values. The renormalization group (RG) approach was developed in the fields of statistical mechanics and quantum field theory to derive quantitative predictions of such behavior in cases where conventional methods of analysis fail. Techniques based on these ideas have since been extended to treat problems in many different fields, and in particular, the behavior of turbulent fluids. This lecture will describe a relatively simple but nontrivial example of the RG approach applied to the diffusion of photons out of a stellar medium when the photons have wavelengths near that of an emission line of atoms in the medium.

  19. Non-local geometry inside Lifshitz horizon

    NASA Astrophysics Data System (ADS)

    Hu, Qi; Lee, Sung-Sik

    2017-07-01

    Based on the quantum renormalization group, we derive the bulk geometry that emerges in the holographic dual of the fermionic U( N ) vector model at a nonzero charge density. The obstruction that prohibits the metallic state from being smoothly deformable to the direct product state under the renormalization group flow gives rise to a horizon at a finite radial coordinate in the bulk. The region outside the horizon is described by the Lifshitz geometry with a higher-spin hair determined by microscopic details of the boundary theory. On the other hand, the interior of the horizon is not described by any Riemannian manifold, as it exhibits an algebraic non-locality. The non-local structure inside the horizon carries the information on the shape of the filled Fermi sea.

  20. Quenched results for light quark physics with overlap fermions

    NASA Astrophysics Data System (ADS)

    Giusti, L.; Hoelbling, C.; Rebbi, C.

    2002-03-01

    We present results of a quenched QCD simulation with overlap fermions on a lattice of volume V = 16 3 × 32 at β = 6.0, which corresponds to a lattice cutoff of ⋍ 2 GeV and an extension of ⋍ 1.4 fm. From the two-point correlation functions of bilinear operators we extract the pseudoscalar meson masses and the corresponding decay constants. From the GMOR relation we determine the chiral condensate and, by using the K-meson mass as experimental input, we compute the sum of the strange and average up-down quark masses ( m s + overlinem). The needed logarithmic divergent renormalization constant Z S is computed with the RI/MOM non-perturbative renormalization technique. Since the overlap preserves chiral symmetry at finite cutoff and volume, no divergent quark mass and chiral condensate additive renormalizations are required and the results are O( a) improved.

  1. Renormalized charge in a two-dimensional model of colloidal suspension from hypernetted chain approach.

    PubMed

    Camargo, Manuel; Téllez, Gabriel

    2008-04-07

    The renormalized charge of a simple two-dimensional model of colloidal suspension was determined by solving the hypernetted chain approximation and Ornstein-Zernike equations. At the infinite dilution limit, the asymptotic behavior of the correlation functions is used to define the effective interactions between the components of the system and these effective interactions were compared to those derived from the Poisson-Boltzmann theory. The results we obtained show that, in contrast to the mean-field theory, the renormalized charge does not saturate, but exhibits a maximum value and then decays monotonically as the bare charge increases. The results also suggest that beyond the counterion layer near to the macroion surface, the ionic cloud is not a diffuse layer which can be handled by means of the linearized theory, as the two-state model claims, but a more complex structure is settled by the correlations between microions.

  2. Regulator dependence of fixed points in quantum Einstein gravity with R 2 truncation

    NASA Astrophysics Data System (ADS)

    Nagy, S.; Fazekas, B.; Peli, Z.; Sailer, K.; Steib, I.

    2018-03-01

    We performed a functional renormalization group analysis for the quantum Einstein gravity including a quadratic term in the curvature. The ultraviolet non-gaussian fixed point and its critical exponent for the correlation length are identified for different forms of regulators in case of dimension 3. We searched for that optimized regulator where the physical quantities show the least regulator parameter dependence. It is shown that the Litim regulator satisfies this condition. The infrared fixed point has also been investigated, it is found that the exponent is insensitive to the third coupling introduced by the R 2 term.

  3. Scaling of the local quantum uncertainty at quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Coulamy, I. B.; Warnes, J. H.; Sarandy, M. S.; Saguia, A.

    2016-04-01

    We investigate the local quantum uncertainty (LQU) between a block of L qubits and one single qubit in a composite system of n qubits driven through a quantum phase transition (QPT). A first-order QPT is analytically considered through a Hamiltonian implementation of the quantum search. In the case of second-order QPTs, we consider the transverse-field Ising chain via a numerical analysis through density matrix renormalization group. For both cases, we compute the LQU for finite-sizes as a function of L and of the coupling parameter, analyzing its pronounced behavior at the QPT.

  4. Absence of first-order unbinding transitions of fluid and polymerized membranes

    NASA Technical Reports Server (NTRS)

    Grotehans, Stefan; Lipowsky, Reinhard

    1990-01-01

    Unbinding transitions of fluid and polymerized membranes are studied by renormalization-group (RG) methods. Two different RG schemes are used and found to give rather consistent results. The fixed-point structure of both RG's exhibits a complex behavior as a function of the decay exponent tau for the fluctuation-induced interaction of the membranes. For tau greater than tau(S2) interacting membranes can undergo first-order transitions even in the strong-fluctuation regime. These estimates for tau(S2) imply, however, that both fluid and polymerized membranes unbind in a continuous way in the absence of lateral tension.

  5. Testing the renormalisation group theory of cooperative transitions at the lambda point of helium

    NASA Technical Reports Server (NTRS)

    Lipa, J. A.; Li, Q.; Chui, T. C. P.; Marek, D.

    1988-01-01

    The status of high resolution tests of the renormalization group theory of cooperative phase transitions performed near the lambda point of helium is described. The prospects for performing improved tests in space are discussed.

  6. Maximally random discrete-spin systems with symmetric and asymmetric interactions and maximally degenerate ordering

    NASA Astrophysics Data System (ADS)

    Atalay, Bora; Berker, A. Nihat

    2018-05-01

    Discrete-spin systems with maximally random nearest-neighbor interactions that can be symmetric or asymmetric, ferromagnetic or antiferromagnetic, including off-diagonal disorder, are studied, for the number of states q =3 ,4 in d dimensions. We use renormalization-group theory that is exact for hierarchical lattices and approximate (Migdal-Kadanoff) for hypercubic lattices. For all d >1 and all noninfinite temperatures, the system eventually renormalizes to a random single state, thus signaling q ×q degenerate ordering. Note that this is the maximally degenerate ordering. For high-temperature initial conditions, the system crosses over to this highly degenerate ordering only after spending many renormalization-group iterations near the disordered (infinite-temperature) fixed point. Thus, a temperature range of short-range disorder in the presence of long-range order is identified, as previously seen in underfrustrated Ising spin-glass systems. The entropy is calculated for all temperatures, behaves similarly for ferromagnetic and antiferromagnetic interactions, and shows a derivative maximum at the short-range disordering temperature. With a sharp immediate contrast of infinitesimally higher dimension 1 +ɛ , the system is as expected disordered at all temperatures for d =1 .

  7. Real-space finite-difference approach for multi-body systems: path-integral renormalization group method and direct energy minimization method.

    PubMed

    Sasaki, Akira; Kojo, Masashi; Hirose, Kikuji; Goto, Hidekazu

    2011-11-02

    The path-integral renormalization group and direct energy minimization method of practical first-principles electronic structure calculations for multi-body systems within the framework of the real-space finite-difference scheme are introduced. These two methods can handle higher dimensional systems with consideration of the correlation effect. Furthermore, they can be easily extended to the multicomponent quantum systems which contain more than two kinds of quantum particles. The key to the present methods is employing linear combinations of nonorthogonal Slater determinants (SDs) as multi-body wavefunctions. As one of the noticeable results, the same accuracy as the variational Monte Carlo method is achieved with a few SDs. This enables us to study the entire ground state consisting of electrons and nuclei without the need to use the Born-Oppenheimer approximation. Recent activities on methodological developments aiming towards practical calculations such as the implementation of auxiliary field for Coulombic interaction, the treatment of the kinetic operator in imaginary-time evolutions, the time-saving double-grid technique for bare-Coulomb atomic potentials and the optimization scheme for minimizing the total-energy functional are also introduced. As test examples, the total energy of the hydrogen molecule, the atomic configuration of the methylene and the electronic structures of two-dimensional quantum dots are calculated, and the accuracy, availability and possibility of the present methods are demonstrated.

  8. Collision group and renormalization of the Boltzmann collision integral.

    PubMed

    Saveliev, V L; Nanbu, K

    2002-05-01

    On the basis of a recently discovered collision group [V. L. Saveliev, in Rarefied Gas Dynamics: 22nd International Symposium, edited by T. J. Bartel and M. Gallis, AIP Conf. Proc. No. 585 (AIP, Melville, NY, 2001), p. 101], the Boltzmann collision integral is exactly rewritten in two parts. The first part describes the scattering of particles with small angles. In this part the infinity due to the infinite cross sections is extracted from the Boltzmann collision integral. Moreover, the Boltzmann collision integral is represented as a divergence of the flow in velocity space. Owing to this, the role of collisions in the kinetic equation can be interpreted in terms of the nonlocal friction force that depends on the distribution function.

  9. Collision group and renormalization of the Boltzmann collision integral

    NASA Astrophysics Data System (ADS)

    Saveliev, V. L.; Nanbu, K.

    2002-05-01

    On the basis of a recently discovered collision group [V. L. Saveliev, in Rarefied Gas Dynamics: 22nd International Symposium, edited by T. J. Bartel and M. Gallis, AIP Conf. Proc. No. 585 (AIP, Melville, NY, 2001), p. 101], the Boltzmann collision integral is exactly rewritten in two parts. The first part describes the scattering of particles with small angles. In this part the infinity due to the infinite cross sections is extracted from the Boltzmann collision integral. Moreover, the Boltzmann collision integral is represented as a divergence of the flow in velocity space. Owing to this, the role of collisions in the kinetic equation can be interpreted in terms of the nonlocal friction force that depends on the distribution function.

  10. Computational Nuclear Physics and Post Hartree-Fock Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lietz, Justin; Sam, Novario; Hjorth-Jensen, M.

    We present a computational approach to infinite nuclear matter employing Hartree-Fock theory, many-body perturbation theory and coupled cluster theory. These lectures are closely linked with those of chapters 9, 10 and 11 and serve as input for the correlation functions employed in Monte Carlo calculations in chapter 9, the in-medium similarity renormalization group theory of dense fermionic systems of chapter 10 and the Green's function approach in chapter 11. We provide extensive code examples and benchmark calculations, allowing thereby an eventual reader to start writing her/his own codes. We start with an object-oriented serial code and end with discussions onmore » strategies for porting the code to present and planned high-performance computing facilities.« less

  11. Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Yamada, Masatoshi

    2017-08-01

    We study asymptotic safety of models of the higher derivative quantum gravity with and without matter. The beta functions are derived by utilizing the functional renormalization group, and non-trivial fixed points are found. It turns out that all couplings in gravity sector, namely the cosmological constant, the Newton constant, and the R 2 and R μν 2 coupling constants, are relevant in case of higher derivative pure gravity. For the Higgs-Yukawa model non-minimal coupled with higher derivative gravity, we find a stable fixed point at which the scalar-quartic and the Yukawa coupling constants become relevant. The relevant Yukawa coupling is crucial to realize the finite value of the Yukawa coupling constants in the standard model.

  12. Extremal Correlators in the Ads/cft Correspondence

    NASA Astrophysics Data System (ADS)

    D'Hoker, Eric; Freedman, Daniel Z.; Mathur, Samir D.; Matusis, Alec; Rastelli, Leonardo

    The non-renormalization of the 3-point functions

  13. Random sequential renormalization and agglomerative percolation in networks: application to Erdös-Rényi and scale-free graphs.

    PubMed

    Bizhani, Golnoosh; Grassberger, Peter; Paczuski, Maya

    2011-12-01

    We study the statistical behavior under random sequential renormalization (RSR) of several network models including Erdös-Rényi (ER) graphs, scale-free networks, and an annealed model related to ER graphs. In RSR the network is locally coarse grained by choosing at each renormalization step a node at random and joining it to all its neighbors. Compared to previous (quasi-)parallel renormalization methods [Song et al., Nature (London) 433, 392 (2005)], RSR allows a more fine-grained analysis of the renormalization group (RG) flow and unravels new features that were not discussed in the previous analyses. In particular, we find that all networks exhibit a second-order transition in their RG flow. This phase transition is associated with the emergence of a giant hub and can be viewed as a new variant of percolation, called agglomerative percolation. We claim that this transition exists also in previous graph renormalization schemes and explains some of the scaling behavior seen there. For critical trees it happens as N/N(0) → 0 in the limit of large systems (where N(0) is the initial size of the graph and N its size at a given RSR step). In contrast, it happens at finite N/N(0) in sparse ER graphs and in the annealed model, while it happens for N/N(0) → 1 on scale-free networks. Critical exponents seem to depend on the type of the graph but not on the average degree and obey usual scaling relations for percolation phenomena. For the annealed model they agree with the exponents obtained from a mean-field theory. At late times, the networks exhibit a starlike structure in agreement with the results of Radicchi et al. [Phys. Rev. Lett. 101, 148701 (2008)]. While degree distributions are of main interest when regarding the scheme as network renormalization, mass distributions (which are more relevant when considering "supernodes" as clusters) are much easier to study using the fast Newman-Ziff algorithm for percolation, allowing us to obtain very high statistics.

  14. Estimating the boundaries of a limit cycle in a 2D dynamical system using renormalization group

    NASA Astrophysics Data System (ADS)

    Dutta, Ayan; Das, Debapriya; Banerjee, Dhruba; Bhattacharjee, Jayanta K.

    2018-04-01

    While the plausibility of formation of limit cycle has been a well studied topic in context of the Poincare-Bendixson theorem, studies on estimates in regard to the possible size and shape of the limit cycle seem to be scanty in the literature. In this paper we present a pedagogical study of some aspects of the size of this limit cycle using perturbative renormalization group by doing detailed and explicit calculations upto second order for the Selkov model for glycolytic oscillations. This famous model is well known to lead to a limit cycle for certain ranges of values of the parameters involved in the problem. Within the tenets of the approximations made, reasonable agreement with the numerical plots can be achieved.

  15. Dissipative exciton transfer in donor-bridge-acceptor systems: numerical renormalization group calculation of equilibrium properties.

    PubMed

    Tornow, Sabine; Tong, Ning-Hua; Bulla, Ralf

    2006-07-05

    We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.

  16. Deriving amplitude equations for weakly-nonlinear oscillators and their generalizations

    NASA Astrophysics Data System (ADS)

    O'Malley, Robert E., Jr.; Williams, David B.

    2006-06-01

    Results by physicists on renormalization group techniques have recently sparked interest in the singular perturbations community of applied mathematicians. The survey paper, [Phys. Rev. E 54(1) (1996) 376-394], by Chen et al. demonstrated that many problems which applied mathematicians solve using disparate methods can be solved using a single approach. Analysis of that renormalization group method by Mudavanhu and O'Malley [Stud. Appl. Math. 107(1) (2001) 63-79; SIAM J. Appl. Math. 63(2) (2002) 373-397], among others, indicates that the technique can be streamlined. This paper carries that analysis several steps further to present an amplitude equation technique which is both well adapted for use with a computer algebra system and easy to relate to the classical methods of averaging and multiple scales.

  17. Symmetry-conserving purification of quantum states within the density matrix renormalization group

    DOE PAGES

    Nocera, Alberto; Alvarez, Gonzalo

    2016-01-28

    The density matrix renormalization group (DMRG) algorithm was originally designed to efficiently compute the zero-temperature or ground-state properties of one-dimensional strongly correlated quantum systems. The development of the algorithm at finite temperature has been a topic of much interest, because of the usefulness of thermodynamics quantities in understanding the physics of condensed matter systems, and because of the increased complexity associated with efficiently computing temperature-dependent properties. The ancilla method is a DMRG technique that enables the computation of these thermodynamic quantities. In this paper, we review the ancilla method, and improve its performance by working on reduced Hilbert spaces andmore » using canonical approaches. Furthermore we explore its applicability beyond spins systems to t-J and Hubbard models.« less

  18. Hybrid Defect Phase Transition: Renormalization Group and Monte Carlo Analysis

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Diep, H. T.

    2010-03-01

    For the q-state Potts model with 2 < q <= 4 on the square lattice with a defect line, the order parameter on the defect line jumps discontinuously from zero to a nonzero value while the defect energy varies continuously with the temperature at the critical temperature. Monte-Carlo simulations (H. T. Diep, M. Kaufman, Phys Rev E 2009) of the q-state Potts model on a square lattice with a line of defects verify the renormalization group prediction (M. Kaufman, R. B. Griffiths, Phys Rev B 1982) on the occurrence of the hybrid transition on the defect line. This is interesting since for those q values the bulk transition is continuous. This hybrid (continuous - discontinuous) defect transition is induced by the infinite range correlations at the bulk critical point.

  19. Renormalized anisotropic exchange for representing heat assisted magnetic recording media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Yipeng; Liu, Zengyuan; Victora, R. H., E-mail: victora@umn.edu

    2015-05-07

    Anisotropic exchange has been incorporated in a description of magnetic recording media near the Curie temperature, as would be found during heat assisted magnetic recording. The new parameters were found using a cost function that minimized the difference between atomistic properties and those of renormalized spin blocks. Interestingly, the anisotropic exchange description at 1.5 nm discretization yields very similar switching and magnetization behavior to that found at 1.2 nm (and below) discretization for the previous isotropic exchange. This suggests that the increased accuracy of anisotropic exchange may also reduce the computational cost during simulation.

  20. Scale dependence of deuteron electrodisintegration

    NASA Astrophysics Data System (ADS)

    More, S. N.; Bogner, S. K.; Furnstahl, R. J.

    2017-11-01

    Background: Isolating nuclear structure properties from knock-out reactions in a process-independent manner requires a controlled factorization, which is always to some degree scale and scheme dependent. Understanding this dependence is important for robust extractions from experiment, to correctly use the structure information in other processes, and to understand the impact of approximations for both. Purpose: We seek insight into scale dependence by exploring a model calculation of deuteron electrodisintegration, which provides a simple and clean theoretical laboratory. Methods: By considering various kinematic regions of the longitudinal structure function, we can examine how the components—the initial deuteron wave function, the current operator, and the final-state interactions (FSIs)—combine at different scales. We use the similarity renormalization group to evolve each component. Results: When evolved to different resolutions, the ingredients are all modified, but how they combine depends strongly on the kinematic region. In some regions, for example, the FSIs are largely unaffected by evolution, while elsewhere FSIs are greatly reduced. For certain kinematics, the impulse approximation at a high renormalization group resolution gives an intuitive picture in terms of a one-body current breaking up a short-range correlated neutron-proton pair, although FSIs distort this simple picture. With evolution to low resolution, however, the cross section is unchanged but a very different and arguably simpler intuitive picture emerges, with the evolved current efficiently represented at low momentum through derivative expansions or low-rank singular value decompositions. Conclusions: The underlying physics of deuteron electrodisintegration is scale dependent and not just kinematics dependent. As a result, intuition about physics such as the role of short-range correlations or D -state mixing in particular kinematic regimes can be strongly scale dependent. Understanding this dependence is crucial in making use of extracted properties.

  1. Scaling theory of topological phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2016-02-01

    Topologically ordered systems are characterized by topological invariants that are often calculated from the momentum space integration of a certain function that represents the curvature of the many-body state. The curvature function may be Berry curvature, Berry connection, or other quantities depending on the system. Akin to stretching a messy string to reveal the number of knots it contains, a scaling procedure is proposed for the curvature function in inversion symmetric systems, from which the topological phase transition can be identified from the flow of the driving energy parameters that control the topology (hopping, chemical potential, etc) under scaling. At an infinitesimal operation, one obtains the renormalization group (RG) equations for the driving energy parameters. A length scale defined from the curvature function near the gap-closing momentum is suggested to characterize the scale invariance at critical points and fixed points, and displays a universal critical behavior in a variety of systems examined.

  2. Kondo effect and enhanced magnetic properties in gadolinium functionalized carbon nanotube supramolecular complex.

    PubMed

    Ncube, S; Coleman, C; Strydom, A; Flahaut, E; de Sousa, A; Bhattacharyya, S

    2018-05-23

    We report on the enhancement of magnetic properties of multiwalled carbon nanotubes (MWNTs) functionalized with a gadolinium based supramolecular complex. By employing a newly developed synthesis technique we find that the functionalization method of the nanocomposite enhances the strength of magnetic interaction leading to a large effective moment of 15.79 µ B and non-superparamagnetic behaviour unlike what has been previously reported. Saturating resistance at low temperatures is fitted with the numerical renormalization group formula verifying the Kondo effect for magnetic impurities on a metallic electron system. Magnetoresistance shows devices fabricated from aligned gadolinium functionalized MWNTs (Gd-Fctn-MWNTs) exhibit spin-valve switching behaviour of up to 8%. This study highlights the possibility of enhancing magnetic interactions in carbon systems through chemical modification, moreover we demonstrate the rich physics that might be useful for developing spin based quantum computing elements based on one-dimensional (1D) channels.

  3. Nonperturbative quark, gluon, and meson correlators of unquenched QCD

    NASA Astrophysics Data System (ADS)

    Cyrol, Anton K.; Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils

    2018-03-01

    We present nonperturbative first-principle results for quark, gluon, and meson 1PI correlation functions of two-flavor Landau-gauge QCD in the vacuum. These correlation functions carry the full information about the theory. They are obtained by solving their functional renormalization group equations in a systematic vertex expansion, aiming at apparent convergence. This work represents a crucial prerequisite for quantitative first-principle studies of the QCD phase diagram and the hadron spectrum within this framework. In particular, we have computed the gluon, ghost, quark, and scalar-pseudoscalar meson propagators, as well as gluon, ghost-gluon, quark-gluon, quark, quark-meson, and meson interactions. Our results stress the crucial importance of the quantitatively correct running of different vertices in the semiperturbative regime for describing the phenomena and scales of confinement and spontaneous chiral symmetry breaking without phenomenological input.

  4. Flux Renormalization in Constant Power Burnup Calculations

    DOE PAGES

    Isotalo, Aarno E.; Aalto Univ., Otaniemi; Davidson, Gregory G.; ...

    2016-06-15

    To more accurately represent the desired power in a constant power burnup calculation, the depletion steps of the calculation can be divided into substeps and the neutron flux renormalized on each substep to match the desired power. Here, this paper explores how such renormalization should be performed, how large a difference it makes, and whether using renormalization affects results regarding the relative performance of different neutronics–depletion coupling schemes. When used with older coupling schemes, renormalization can provide a considerable improvement in overall accuracy. With previously published higher order coupling schemes, which are more accurate to begin with, renormalization has amore » much smaller effect. Finally, while renormalization narrows the differences in the accuracies of different coupling schemes, their order of accuracy is not affected.« less

  5. Point-particle effective field theory I: classical renormalization and the inverse-square potential

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Hayman, Peter; Williams, M.; Zalavári, László

    2017-04-01

    Singular potentials (the inverse-square potential, for example) arise in many situations and their quantum treatment leads to well-known ambiguities in choosing boundary conditions for the wave-function at the position of the potential's singularity. These ambiguities are usually resolved by developing a self-adjoint extension of the original prob-lem; a non-unique procedure that leaves undetermined which extension should apply in specific physical systems. We take the guesswork out of this picture by using techniques of effective field theory to derive the required boundary conditions at the origin in terms of the effective point-particle action describing the physics of the source. In this picture ambiguities in boundary conditions boil down to the allowed choices for the source action, but casting them in terms of an action provides a physical criterion for their determination. The resulting extension is self-adjoint if the source action is real (and involves no new degrees of freedom), and not otherwise (as can also happen for reasonable systems). We show how this effective-field picture provides a simple framework for understanding well-known renormalization effects that arise in these systems, including how renormalization-group techniques can resum non-perturbative interactions that often arise, particularly for non-relativistic applications. In particular we argue why the low-energy effective theory tends to produce a universal RG flow of this type and describe how this can lead to the phenomenon of reaction catalysis, in which physical quantities (like scattering cross sections) can sometimes be surprisingly large compared to the underlying scales of the source in question. We comment in passing on the possible relevance of these observations to the phenomenon of the catalysis of baryon-number violation by scattering from magnetic monopoles.

  6. QCD as a Theory of Hadrons

    NASA Astrophysics Data System (ADS)

    Narison, Stephan

    2004-05-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.

  7. QCD as a Theory of Hadrons

    NASA Astrophysics Data System (ADS)

    Narison, Stephan

    2007-07-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.

  8. Functional Integration

    NASA Astrophysics Data System (ADS)

    Cartier, Pierre; DeWitt-Morette, Cecile

    2006-11-01

    Acknowledgements; List symbols, conventions, and formulary; Part I. The Physical and Mathematical Environment: 1. The physical and mathematical environment; Part II. Quantum Mechanics: 2. First lesson: gaussian integrals; 3. Selected examples; 4. Semiclassical expansion: WKB; 5. Semiclassical expansion: beyond WKB; 6. Quantum dynamics: path integrals and operator formalism; Part III. Methods from Differential Geometry: 7. Symmetries; 8. Homotopy; 9. Grassmann analysis: basics; 10. Grassmann analysis: applications; 11. Volume elements, divergences, gradients; Part IV. Non-Gaussian Applications: 12. Poisson processes in physics; 13. A mathematical theory of Poisson processes; 14. First exit time: energy problems; Part V. Problems in Quantum Field Theory: 15. Renormalization 1: an introduction; 16. Renormalization 2: scaling; 17. Renormalization 3: combinatorics; 18. Volume elements in quantum field theory Bryce DeWitt; Part VI. Projects: 19. Projects; Appendix A. Forward and backward integrals: spaces of pointed paths; Appendix B. Product integrals; Appendix C. A compendium of gaussian integrals; Appendix D. Wick calculus Alexander Wurm; Appendix E. The Jacobi operator; Appendix F. Change of variables of integration; Appendix G. Analytic properties of covariances; Appendix H. Feynman's checkerboard; Bibliography; Index.

  9. Functional Integration

    NASA Astrophysics Data System (ADS)

    Cartier, Pierre; DeWitt-Morette, Cecile

    2010-06-01

    Acknowledgements; List symbols, conventions, and formulary; Part I. The Physical and Mathematical Environment: 1. The physical and mathematical environment; Part II. Quantum Mechanics: 2. First lesson: gaussian integrals; 3. Selected examples; 4. Semiclassical expansion: WKB; 5. Semiclassical expansion: beyond WKB; 6. Quantum dynamics: path integrals and operator formalism; Part III. Methods from Differential Geometry: 7. Symmetries; 8. Homotopy; 9. Grassmann analysis: basics; 10. Grassmann analysis: applications; 11. Volume elements, divergences, gradients; Part IV. Non-Gaussian Applications: 12. Poisson processes in physics; 13. A mathematical theory of Poisson processes; 14. First exit time: energy problems; Part V. Problems in Quantum Field Theory: 15. Renormalization 1: an introduction; 16. Renormalization 2: scaling; 17. Renormalization 3: combinatorics; 18. Volume elements in quantum field theory Bryce DeWitt; Part VI. Projects: 19. Projects; Appendix A. Forward and backward integrals: spaces of pointed paths; Appendix B. Product integrals; Appendix C. A compendium of gaussian integrals; Appendix D. Wick calculus Alexander Wurm; Appendix E. The Jacobi operator; Appendix F. Change of variables of integration; Appendix G. Analytic properties of covariances; Appendix H. Feynman's checkerboard; Bibliography; Index.

  10. Generalized recursive solutions to Ornstein-Zernike integral equations

    NASA Astrophysics Data System (ADS)

    Rossky, Peter J.; Dale, William D. T.

    1980-09-01

    Recursive procedures for the solution of a class of integral equations based on the Ornstein-Zernike equation are developed; the hypernetted chain and Percus-Yevick equations are two special cases of the class considered. It is shown that certain variants of the new procedures developed here are formally equivalent to those recently developed by Dale and Friedman, if the new recursive expressions are initialized in the same way as theirs. However, the computational solution of the new equations is significantly more efficient. Further, the present analysis leads to the identification of various graphical quantities arising in the earlier study with more familiar quantities related to pair correlation functions. The analysis is greatly facilitated by the use of several identities relating simple chain sums whose graphical elements can be written as a sum of two or more parts. In particular, the use of these identities permits renormalization of the equivalent series solution to the integral equation to be directly incorporated into the recursive solution in a straightforward manner. Formulas appropriate to renormalization with respect to long and short range parts of the pair potential, as well as more general components of the direct correlation function, are obtained. To further illustrate the utility of this approach, we show that a simple generalization of the hypernetted chain closure relation for the direct correlation function leads directly to the reference hypernetted chain (RHNC) equation due to Lado. The form of the correlation function used in the exponential approximation of Andersen and Chandler is then seen to be equivalent to the first estimate obtained from a renormalized RHNC equation.

  11. Entanglement entropy in a one-dimensional disordered interacting system: the role of localization.

    PubMed

    Berkovits, Richard

    2012-04-27

    The properties of the entanglement entropy (EE) in one-dimensional disordered interacting systems are studied. Anderson localization leaves a clear signature on the average EE, as it saturates on the length scale exceeding the localization length. This is verified by numerically calculating the EE for an ensemble of disordered realizations using the density matrix renormalization group method. A heuristic expression describing the dependence of the EE on the localization length, which takes into account finite-size effects, is proposed. This is used to extract the localization length as a function of the interaction strength. The localization length dependence on the interaction fits nicely with the expectations.

  12. Infinitely Robust Order and Local Order-Parameter Tulips in Apollonian Networks with Quenched Disorder

    NASA Astrophysics Data System (ADS)

    Nadir Kaplan, C.; Hinczewski, Michael; Berker, A. Nihat

    2009-03-01

    For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder.[1] We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns. [1] C.N. Kaplan, M. Hinczewski, and A.N. Berker, arXiv:0811.3437v1 [cond-mat.dis-nn] (2008).

  13. The mechanism of double-exponential growth in hyper-inflation

    NASA Astrophysics Data System (ADS)

    Mizuno, T.; Takayasu, M.; Takayasu, H.

    2002-05-01

    Analyzing historical data of price indices, we find an extraordinary growth phenomenon in several examples of hyper-inflation in which, price changes are approximated nicely by double-exponential functions of time. In order to explain such behavior we introduce the general coarse-graining technique in physics, the Monte Carlo renormalization group method, to the price dynamics. Starting from a microscopic stochastic equation describing dealers’ actions in open markets, we obtain a macroscopic noiseless equation of price consistent with the observation. The effect of auto-catalytic shortening of characteristic time caused by mob psychology is shown to be responsible for the double-exponential behavior.

  14. Filling-driven Mott transition in SU(N ) Hubbard models

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Sup B.; von Delft, Jan; Weichselbaum, Andreas

    2018-04-01

    We study the filling-driven Mott transition involving the metallic and paramagnetic insulating phases in SU (N ) Fermi-Hubbard models, using the dynamical mean-field theory and the numerical renormalization group as its impurity solver. The compressibility shows a striking temperature dependence: near the critical end-point temperature, it is strongly enhanced in the metallic phase close to the insulating phase. We demonstrate that this compressibility enhancement is associated with the thermal suppression of the quasiparticle peak in the local spectral functions. We also explain that the asymmetric shape of the quasiparticle peak originates from the asymmetry in the dynamics of the generalized doublons and holons.

  15. Super-Hubble de Sitter fluctuations and the dynamical RG

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Leblond, L.; Holman, R.; Shandera, S.

    2010-03-01

    Perturbative corrections to correlation functions for interacting theories in de Sitter spacetime often grow secularly with time, due to the properties of fluctuations on super-Hubble scales. This growth can lead to a breakdown of perturbation theory at late times. We argue that Dynamical Renormalization Group (DRG) techniques provide a convenient framework for interpreting and resumming these secularly growing terms. In the case of a massless scalar field in de Sitter with quartic self-interaction, the resummed result is also less singular in the infrared, in precisely the manner expected if a dynamical mass is generated. We compare this improved infrared behavior with large-N expansions when applicable.

  16. Unconventional field induced phases in a quantum magnet formed by free radical tetramers

    NASA Astrophysics Data System (ADS)

    Saúl, Andrés; Gauthier, Nicolas; Askari, Reza Moosavi; Côté, Michel; Maris, Thierry; Reber, Christian; Lannes, Anthony; Luneau, Dominique; Nicklas, Michael; Law, Joseph M.; Green, Elizabeth Lauren; Wosnitza, Jochen; Bianchi, Andrea Daniele; Feiguin, Adrian

    2018-02-01

    We report experimental and theoretical studies on the magnetic and thermodynamic properties of NIT-2Py, a free radical based organic magnet. From magnetization and specific-heat measurements we establish the temperature versus magnetic field phase diagram which includes two Bose-Einstein condensates (BEC) and an infrequent half-magnetization plateau. Calculations based on density functional theory demonstrate that magnetically this system can be mapped to a quasi-two-dimensional structure of weakly coupled tetramers. Density matrix renormalization group calculations show the unusual characteristics of the BECs where the spins forming the low-field condensate are different than those participating in the high-field one.

  17. Center for Modeling of Turbulence and Transition (CMOTT). Research briefs: 1990

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A. (Compiler); Liou, Meng-Sing (Compiler); Shih, Tsan-Hsing (Compiler)

    1991-01-01

    Brief progress reports of the Center for Modeling of Turbulence and Transition (CMOTT) research staff from May 1990 to May 1991 are given. The objectives of the CMOTT are to develop, validate, and implement the models for turbulence and boundary layer transition in the practical engineering flows. The flows of interest are three dimensional, incompressible, and compressible flows with chemistry. The schemes being studied include the two-equation and algebraic Reynolds stress models, the full Reynolds stress (or second moment closure) models, the probability density function models, the Renormalization Group Theory (RNG) and Interaction Approximation (DIA), the Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).

  18. Magnetization of the Ising model on the Sierpinski pastry-shell

    NASA Astrophysics Data System (ADS)

    Chame, Anna; Branco, N. S.

    1992-02-01

    Using a real-space renormalization group approach, we calculate the approximate magnetization in the Ising model on the Sierpinski Pastry-shell. We consider, as an approximation, only two regions of the fractal: the internal surfaces, or walls (sites on the border of eliminated areas), with coupling constants JS, and the bulk (all other sites), with coupling constants Jv. We obtain the mean magnetization of the two regions as a function of temperature, for different values of α= JS/ JV and different geometric parameters b and l. Curves present a step-like behavior for some values of b and l, as well as different universality classes for the bulk transition.

  19. Conductivity fluctuations in polymer's networks

    NASA Astrophysics Data System (ADS)

    Samukhin, A. N.; Prigodin, V. N.; Jastrabík, L.

    1998-01-01

    A Polymer network is treated as an anisotropic fractal with fractional dimensionality D = 1 + ε close to one. Percolation model on such a fractal is studied. Using real space renormalization group approach of Migdal and Kadanoff, we find the threshold value and all the critical exponents in the percolation model to be strongly nonanalytic functions of ε, e.g. the critical exponent of the conductivity was obtained to be ε-2 exp (-1 - 1/ε). The main part of the finite-size conductivities distribution function at the threshold was found to be universal if expressed in terms of the fluctuating variable which is proportional to a large power of the conductivity, but with ε-dependent low-conductivity cut-off. Its reduced central momenta are of the order of e -1/ε up to a very high order.

  20. Anisotropy-driven transition from the Moore-Read state to quantum Hall stripes

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Sodemann, Inti; Sheng, D. N.; Fu, Liang

    2017-05-01

    We investigate the nature of the quantum Hall liquid in a half-filled second Landau level (n =1 ) as a function of band mass anisotropy using numerical exact diagonalization and density matrix renormalization group methods. We find increasing the mass anisotropy induces a quantum phase transition from the Moore-Read state to a charge density wave state. By analyzing the energy spectrum, guiding center structure factors, and by adding weak pinning potentials, we show that this charge density wave is a unidirectional quantum Hall stripe, which has a periodicity of a few magnetic lengths and survives in the thermodynamic limit. We find smooth profiles for the guiding center occupation function that reveal the strong coupling nature of the array of chiral Luttinger liquids residing at the stripe edges.

  1. Magnetism of internal surfaces in a fractal structure

    NASA Astrophysics Data System (ADS)

    Branco, N. S.; Chame, Anna

    1993-09-01

    We study the inhomogeneous magnetization behavior of an Ising ferromagnet in Sierpiński pastry shells, using a real-space renormalization group approach. Two qualitatively different regions on the fractal are distinguished: the bulk and the set of internal surfaces which border the eliminated portions. We obtain the spontaneous mean magnetizations for these regions as a function of the temperature for different values of α = JS/ JB (J S and J B are the internal surface and bulk coupling constants respectively) and different geometrical parameters b and l. The critical β exponents are obtained for the several transitions. We obtain different universality classes for the bulk transitions, depending on what occurs at the surfaces, and a step-like behavior of the magnetization as a function of the temperature of some values of b and l.

  2. Structure of p-shell nuclei using three-nucleon interactions evolved with the similarity renormalization group

    DOE PAGES

    Jurgenson, E. D.; Maris, P.; Furnstahl, R. J.; ...

    2013-05-13

    The similarity renormalization group (SRG) is used to soften interactions for ab initio nuclear structure calculations by decoupling low- and high-energy Hamiltonian matrix elements. The substantial contribution of both initial and SRG-induced three-nucleon forces requires their consistent evolution in a three-particle basis space before applying them to larger nuclei. While, in principle, the evolved Hamiltonians are unitarily equivalent, in practice the need for basis truncation introduces deviations, which must be monitored. Here we present benchmark no-core full configuration calculations with SRG-evolved interactions in p-shell nuclei over a wide range of softening. As a result, these calculations are used to assessmore » convergence properties, extrapolation techniques, and the dependence of energies, including four-body contributions, on the SRG resolution scale.« less

  3. Cosmological attractor inflation from the RG-improved Higgs sector of finite gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizalde, Emilio; Odintsov, Sergei D.; Pozdeeva, Ekaterina O.

    2016-02-01

    The possibility to construct an inflationary scenario for renormalization-group improved potentials corresponding to the Higgs sector of finite gauge models is investigated. Taking into account quantum corrections to the renormalization-group potential which sums all leading logs of perturbation theory is essential for a successful realization of the inflationary scenario, with very reasonable parameter values. The inflationary models thus obtained are seen to be in good agreement with the most recent and accurate observational data. More specifically, the values of the relevant inflationary parameters, n{sub s} and r, are close to the corresponding ones in the R{sup 2} and Higgs-driven inflationmore » scenarios. It is shown that the model here constructed and Higgs-driven inflation belong to the same class of cosmological attractors.« less

  4. Renormalization group analysis of anisotropic diffusion in turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Barton, J. Michael

    1991-01-01

    The renormalization group is applied to compute anisotropic corrections to the scalar eddy diffusivity representation of turbulent diffusion of a passive scalar. The corrections are linear in the mean velocity gradients. All model constants are computed theoretically. A form of the theory valid at arbitrary Reynolds number is derived. The theory applies only when convection of the velocity-scalar correlation can be neglected. A ratio of diffusivity components, found experimentally to have a nearly constant value in a variety of shear flows, is computed theoretically for flows in a certain state of equilibrium. The theoretical value is well within the fairly narrow range of experimentally observed values. Theoretical predictions of this diffusivity ratio are also compared with data from experiments and direct numerical simulations of homogeneous shear flows with constant velocity and scalar gradients.

  5. Renormalization group analysis of the Reynolds stress transport equation

    NASA Technical Reports Server (NTRS)

    Rubinstein, R.; Barton, J. M.

    1992-01-01

    The pressure velocity correlation and return to isotropy term in the Reynolds stress transport equation are analyzed using the Yakhot-Orszag renormalization group. The perturbation series for the relevant correlations, evaluated to lowest order in the epsilon-expansion of the Yakhot-Orszag theory, are infinite series in tensor product powers of the mean velocity gradient and its transpose. Formal lowest order Pade approximations to the sums of these series produce a fast pressure strain model of the form proposed by Launder, Reece, and Rodi, and a return to isotropy model of the form proposed by Rotta. In both cases, the model constant are computed theoretically. The predicted Reynolds stress ratios in simple shear flows are evaluated and compared with experimental data. The possibility is discussed of driving higher order nonlinear models by approximating the sums more accurately.

  6. Renormalization Group for nonlinear oscillators in the absence of linear restoring force

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Bhattacharjee, J. K.

    2010-09-01

    Perturbative Renormalization Group (RG) has been very useful in probing periodic orbits in two-dimensional dynamical systems (Sarkar A., Bhattacharjee J. K., Chakraborty S. and Banerjee D., arXiv:1005.2858v1 (2010)). The method relies on finding a linear center, around which perturbation analysis is done. However it is not obvious as to how systems devoid of any linear terms may be approached using this method. We propose here how RG can be done even in the absence of linear terms. We successfully apply the method to extract correct results for a variant of the second-order Riccati equation. In this variant the periodic orbit disappears as a parameter is varied. Our RG captures this disappearance correctly. We have also applied the technique successfully on the force-free Van der Pol-Duffing oscillator.

  7. Renormalization group methods for the Reynolds stress transport equations

    NASA Technical Reports Server (NTRS)

    Rubinstein, R.

    1992-01-01

    The Yakhot-Orszag renormalization group is used to analyze the pressure gradient-velocity correlation and return to isotropy terms in the Reynolds stress transport equations. The perturbation series for the relevant correlations, evaluated to lowest order in the epsilon-expansion of the Yakhot-Orszag theory, are infinite series in tensor product powers of the mean velocity gradient and its transpose. Formal lowest order Pade approximations to the sums of these series produce a rapid pressure strain model of the form proposed by Launder, Reece, and Rodi, and a return to isotropy model of the form proposed by Rotta. In both cases, the model constants are computed theoretically. The predicted Reynolds stress ratios in simple shear flows are evaluated and compared with experimental data. The possibility is discussed of deriving higher order nonlinear models by approximating the sums more accurately. The Yakhot-Orszag renormalization group provides a systematic procedure for deriving turbulence models. Typical applications have included theoretical derivation of the universal constants of isotropic turbulence theory, such as the Kolmogorov constant, and derivation of two equation models, again with theoretically computed constants and low Reynolds number forms of the equations. Recent work has applied this formalism to Reynolds stress modeling, previously in the form of a nonlinear eddy viscosity representation of the Reynolds stresses, which can be used to model the simplest normal stress effects. The present work attempts to apply the Yakhot-Orszag formalism to Reynolds stress transport modeling.

  8. On the effective field theory of intersecting D3-branes

    NASA Astrophysics Data System (ADS)

    Abbaspur, Reza

    2018-05-01

    We study the effective field theory of two intersecting D3-branes with one common dimension along the lines recently proposed in ref. [1]. We introduce a systematic way of deriving the classical effective action to arbitrary orders in perturbation theory. Using a proper renormalization prescription to handle logarithmic divergencies arising at all orders in the perturbation series, we recover the first order renormalization group equation of ref. [1] plus an infinite set of higher order equations. We show the consistency of the higher order equations with the first order one and hence interpret the first order result as an exact RG flow equation in the classical theory.

  9. Ab initio excited states from the in-medium similarity renormalization group

    NASA Astrophysics Data System (ADS)

    Parzuchowski, N. M.; Morris, T. D.; Bogner, S. K.

    2017-04-01

    We present two new methods for performing ab initio calculations of excited states for closed-shell systems within the in-medium similarity renormalization group (IMSRG) framework. Both are based on combining the IMSRG with simple many-body methods commonly used to target excited states, such as the Tamm-Dancoff approximation (TDA) and equations-of-motion (EOM) techniques. In the first approach, a two-step sequential IMSRG transformation is used to drive the Hamiltonian to a form where a simple TDA calculation (i.e., diagonalization in the space of 1 p 1 h excitations) becomes exact for a subset of eigenvalues. In the second approach, EOM techniques are applied to the IMSRG ground-state-decoupled Hamiltonian to access excited states. We perform proof-of-principle calculations for parabolic quantum dots in two dimensions and the closed-shell nuclei 16O and 22O. We find that the TDA-IMSRG approach gives better accuracy than the EOM-IMSRG when calculations converge, but it is otherwise lacking the versatility and numerical stability of the latter. Our calculated spectra are in reasonable agreement with analogous EOM-coupled-cluster calculations. This work paves the way for more interesting applications of the EOM-IMSRG approach to calculations of consistently evolved observables such as electromagnetic strength functions and nuclear matrix elements, and extensions to nuclei within one or two nucleons of a closed shell by generalizing the EOM ladder operator to include particle-number nonconserving terms.

  10. Effects of renormalizing the chiral SU(2) quark-meson model

    NASA Astrophysics Data System (ADS)

    Zacchi, Andreas; Schaffner-Bielich, Jürgen

    2018-04-01

    We investigate the restoration of chiral symmetry at finite temperature in the SU(2) quark-meson model, where the mean field approximation is compared to the renormalized version for quarks and mesons. In a combined approach at finite temperature, all the renormalized versions show a crossover transition. The inclusion of different renormalization scales leave the order parameter and the mass spectra nearly untouched but strongly influence the thermodynamics at low temperatures and around the phase transition. We find unphysical results for the renormalized version of mesons and the combined one.

  11. Modeling of the gate-controlled Kondo effect at carbon point defects in graphene

    NASA Astrophysics Data System (ADS)

    May, Daniel; Lo, Po-Wei; Deltenre, Kira; Henke, Anika; Mao, Jinhai; Jiang, Yuhang; Li, Guohong; Andrei, Eva Y.; Guo, Guang-Yu; Anders, Frithjof B.

    2018-04-01

    We study the magnetic properties in the vicinity of a single carbon defect in a monolayer of graphene. We include the unbound σ orbital and the vacancy-induced bound π state in an effective two-orbital single-impurity model. The local magnetic moments are stabilized by the Coulomb interaction as well as a significant ferromagnetic Hund's rule coupling between the orbitals predicted by a density functional theory calculation. A hybridization between the orbitals and the Dirac fermions is generated by the curvature of the graphene sheet in the vicinity of the vacancy. We present results for the local spectral function calculated using Wilson's numerical renormalization group approach for a realistic graphene band structure and find three different regimes depending on the filling, the controlling chemical potential, and the hybridization strength. These different regions are characterized by different magnetic properties. The calculated spectral functions qualitatively agree with recent scanning tunneling spectra on graphene vacancies.

  12. Renormalized Hamiltonian for a peptide chain: Digitalizing the protein folding problem

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Colubri, Andrés

    2000-05-01

    A renormalized Hamiltonian for a flexible peptide chain is derived to generate the long-time limit dynamics compatible with a coarsening of torsional conformation space. The renormalization procedure is tailored taking into account the coarse graining imposed by the backbone torsional constraints due to the local steric hindrance and the local backbone-side-group interactions. Thus, the torsional degrees of freedom for each residue are resolved modulo basins of attraction in its so-called Ramachandran map. This Ramachandran renormalization (RR) procedure is implemented so that the chain is energetically driven to form contact patterns as their respective collective topological constraints are fulfilled within the coarse description. In this way, the torsional dynamics are digitalized and become codified as an evolving pattern in a binary matrix. Each accepted Monte Carlo step in a canonical ensemble simulation is correlated with the real mean first passage time it takes to reach the destination coarse topological state. This real-time correlation enables us to test the RR dynamics by comparison with experimentally probed kinetic bottlenecks along the dominant folding pathway. Such intermediates are scarcely populated at any given time, but they determine the kinetic funnel leading to the active structure. This landscape region is reached through kinetically controlled steps needed to overcome the conformational entropy of the random coil. The results are specialized for the bovine pancreatic trypsin inhibitor, corroborating the validity of our method.

  13. Impact of saturation on the polariton renormalization in III-nitride based planar microcavities

    NASA Astrophysics Data System (ADS)

    Rossbach, Georg; Levrat, Jacques; Feltin, Eric; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas

    2013-10-01

    It has been widely observed that an increasing carrier density in a strongly coupled semiconductor microcavity (MC) alters the dispersion of cavity polaritons, below and above the condensation threshold. The interacting nature of cavity polaritons stems from their excitonic fraction being intrinsically subject to Coulomb interactions and the Pauli-blocking principle at high carrier densities. By means of injection-dependent photoluminescence studies performed nonresonantly on a GaN-based MC at various temperatures, it is shown that already below the condensation threshold saturation effects generally dominate over any energy variation in the excitonic resonance. This observation is in sharp contrast to the usually assumed picture in strongly coupled semiconductor MCs, where the impact of saturation is widely neglected. These experimental findings are confirmed by tracking the exciton emission properties of the bare MC active medium and those of a high-quality single GaN quantum well up to the Mott density. The systematic investigation of renormalization up to the polariton condensation threshold as a function of lattice temperature and exciton-cavity photon detuning is strongly hampered by photonic disorder. However, when overcoming the latter by averaging over a larger spot size, a behavior in agreement with a saturation-dominated polariton renormalization is revealed. Finally, a comparison with other inorganic material systems suggests that for correctly reproducing polariton renormalization, exciton saturation effects should be taken into account systematically.

  14. Symmetries for Light-Front Quantization of Yukawa Model with Renormalization

    NASA Astrophysics Data System (ADS)

    Żochowski, Jan; Przeszowski, Jerzy A.

    2017-12-01

    In this work we discuss the Yukawa model with the extra term of self-interacting scalar field in D=1+3 dimensions. We present the method of derivation the light-front commutators and anti-commutators from the Heisenberg equations induced by the kinematical generating operator of the translation P+. Mentioned Heisenberg equations are the starting point for obtaining this algebra of the (anti-) commutators. Some discrepancies between existing and proposed method of quantization are revealed. The Lorentz and the CPT symmetry, together with some features of the quantum theory were applied to obtain the two-point Wightman function for the free fermions. Moreover, these Wightman functions were computed especially without referring to the Fock expansion. The Gaussian effective potential for the Yukawa model was found in the terms of the Wightman functions. It was regularized by the space-like point-splitting method. The coupling constants within the model were redefined. The optimum mass parameters remained regularization independent. Finally, the Gaussian effective potential was renormalized.

  15. Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions

    NASA Astrophysics Data System (ADS)

    Werth, A.; Kopietz, P.; Tsyplyatyev, O.

    2018-05-01

    We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equations based on two-point correlation functions does not produce any unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order 1 /T expansions.

  16. Assessing notions of denormalization and renormalization of smoking in light of e-cigarette regulation.

    PubMed

    Sæbø, Gunnar; Scheffels, Janne

    2017-11-01

    The rationale for 'denormalization' of smoking in tobacco policies has been challenged by the emergence of e-cigarettes and the need to regulate e-cigarette use and promotion. Our aim is to assess the research status on e-cigarettes' contribution to 'renormalization' of smoking and to clarify how renormalization of smoking can be appraised at the conceptual and empirical level. Combining conceptual analysis and narrative review, the paper brings out three dimensions of denormalization/renormalization of smoking ('unacceptability/acceptability'; 'invisibility/visibility'; 'phasing out behaviour/maintaining behaviour') and an inherent duality of the e-cigarette as a smoking-like device and a smoking alternative. These analytical dimensions are applied qualitatively to consider the literature identified by searching the Web of Science database for 'e-cigarettes AND renormalization' (and variants thereof). Theoretically, normative changes in smoking acceptability, increased visibility of e-cigarettes and use, and observations of actual use (prevalence, dual use, gateway) can all be applied to illustrate processes of renormalization. However, only acceptability measures and user measures can be said to be empirical tests of renormalization effects. Visibility measures are only based on logical assumptions of a possible renormalization; they are not in themselves indicative of any "real" renormalization effects and can just as well be understood as possible consequences of normalization of e-cigarettes. Just as a downward trend in smoking prevalence is the litmus test of whether denormalization policy works, stagnating or rising smoking prevalence should be the main empirical indicator of renormalization. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The use of effective variables in high energy physics

    NASA Astrophysics Data System (ADS)

    Baumgart, Matthew Todd

    In high energy physics, we often gain by systematically reducing the formal description of a physical system or the data sets that come from particle colliders. Converting the naive, original setup results in a more useful set of couplings, fields, or observables, which we call effective variables. This thesis considers several examples of them: We take a φ4 scalar field theory and renormalize it according to the equations of Wilsonian exact renormalization group. Whatever the initial setup of the theory, this results in an infinite number of operators. We demonstrate a procedure to remove all interaction terms except for the quartic. We find its coupling has the same one-loop beta-function as obtained from standard renormalization group. We also examine the relationship between little Higgs and 5d composite models with identical symmetries. By performing an "extreme" deconstruction, one can reduce any warped composite model to a little Higgs theory on a handful of sites. We find that the finiteness of the Higgs potential in 5d is due to the same collective symmetry breaking as in the little Higgs. We compare a 4d and 5d model with the same symmetry to the data. We see that the 5d model has difficulty meeting several constraints simultaneously. By contrast, the Minimal Moose with custodial symmetry is viable in a large region of its parameter space. Finally, we turn our attentions to the hadron collider environment. In the context of SUSY extended by U(1)', production of an initial Z' gauge boson gives us an additional kinematic constraint. We use this to implement a novel method to measure all of the superpartner masses involved in its decay. For certain final states with two invisible particles, one can construct kinematic observables bounded above by parent particle masses. Additionally, we study other effects of extending the MSSM by a Z '. The production cross-section of sleptons is enhanced over the MSSM, so the discovery potential for sleptons is greatly increased. The flavor and charge information in the resulting slepton decay provides a useful handle on the identity of the LSP.

  18. Nonlinear relativistic plasma resonance: Renormalization group approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metelskii, I. I., E-mail: metelski@lebedev.ru; Kovalev, V. F., E-mail: vfkvvfkv@gmail.com; Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru

    An analytical solution to the nonlinear set of equations describing the electron dynamics and electric field structure in the vicinity of the critical density in a nonuniform plasma is constructed using the renormalization group approach with allowance for relativistic effects of electron motion. It is demonstrated that the obtained solution describes two regimes of plasma oscillations in the vicinity of the plasma resonance— stationary and nonstationary. For the stationary regime, the spatiotemporal and spectral characteristics of the resonantly enhanced electric field are investigated in detail and the effect of the relativistic nonlinearity on the spatial localization of the energy ofmore » the plasma relativistic field is considered. The applicability limits of the obtained solution, which are determined by the conditions of plasma wave breaking in the vicinity of the resonance, are established and analyzed in detail for typical laser and plasma parameters. The applicability limits of the earlier developed nonrelativistic theories are refined.« less

  19. Ground states of linear rotor chains via the density matrix renormalization group

    NASA Astrophysics Data System (ADS)

    Iouchtchenko, Dmitri; Roy, Pierre-Nicholas

    2018-04-01

    In recent years, experimental techniques have enabled the creation of ultracold optical lattices of molecules and endofullerene peapod nanomolecular assemblies. It was previously suggested that the rotor model resulting from the placement of dipolar linear rotors in one-dimensional lattices at low temperature has a transition between ordered and disordered phases. We use the density matrix renormalization group (DMRG) to compute ground states of chains of up to 100 rotors and provide further evidence of the phase transition in the form of a diverging entanglement entropy. We also propose two methods and present some first steps toward rotational spectra of such molecular assemblies using DMRG. The present work showcases the power of DMRG in this new context of interacting molecular rotors and opens the door to the study of fundamental questions regarding criticality in systems with continuous degrees of freedom.

  20. A state interaction spin-orbit coupling density matrix renormalization group method

    NASA Astrophysics Data System (ADS)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2016-06-01

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4]3-, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.

  1. Oscillators: Old and new perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Jayanta K.; Roy, Jyotirmoy

    We consider some of the well known oscillators in literature which are known to exhibit interesting effects of nonlinearity. We review the Lindstedt-Poincare technique for dealing with with the nonlinear effects and then go on to introduce the relevance of the renormalization group for the oscillator following the pioneering work of Chen et al. It is pointed out that the traditional Lindstedt-Poincare and the renormalization group techniques have operational connections. We use this to find an unexpected mode softening in the double pendulum. This mode softening prompted us to look for chaos in the double pendulum at low energies-energies thatmore » are just sufficient to allow the outer pendulum to rotate (the double pendulum is known to be chaotic at high energies-energies that are greater than that needed to make both pendulums to rotate). The emergence of the chaos is strongly dependent on initial conditions.« less

  2. Numerical renormalization group method for entanglement negativity at finite temperature

    NASA Astrophysics Data System (ADS)

    Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.

    2018-04-01

    We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.

  3. Renormalization group theory for percolation in time-varying networks.

    PubMed

    Karschau, Jens; Zimmerling, Marco; Friedrich, Benjamin M

    2018-05-22

    Motivated by multi-hop communication in unreliable wireless networks, we present a percolation theory for time-varying networks. We develop a renormalization group theory for a prototypical network on a regular grid, where individual links switch stochastically between active and inactive states. The question whether a given source node can communicate with a destination node along paths of active links is equivalent to a percolation problem. Our theory maps the temporal existence of multi-hop paths on an effective two-state Markov process. We show analytically how this Markov process converges towards a memoryless Bernoulli process as the hop distance between source and destination node increases. Our work extends classical percolation theory to the dynamic case and elucidates temporal correlations of message losses. Quantification of temporal correlations has implications for the design of wireless communication and control protocols, e.g. in cyber-physical systems such as self-organized swarms of drones or smart traffic networks.

  4. Development of a recursion RNG-based turbulence model

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Vahala, George; Thangam, S.

    1993-01-01

    Reynolds stress closure models based on the recursion renormalization group theory are developed for the prediction of turbulent separated flows. The proposed model uses a finite wavenumber truncation scheme to account for the spectral distribution of energy. In particular, the model incorporates effects of both local and nonlocal interactions. The nonlocal interactions are shown to yield a contribution identical to that from the epsilon-renormalization group (RNG), while the local interactions introduce higher order dispersive effects. A formal analysis of the model is presented and its ability to accurately predict separated flows is analyzed from a combined theoretical and computational stand point. Turbulent flow past a backward facing step is chosen as a test case and the results obtained based on detailed computations demonstrate that the proposed recursion -RNG model with finite cut-off wavenumber can yield very good predictions for the backstep problem.

  5. Renormalization group equation analysis of a pseudoscalar portal dark matter model

    NASA Astrophysics Data System (ADS)

    Ghorbani, Karim

    2017-10-01

    We investigate the vacuum stability and perturbativity of a pseudoscalar portal dark matter (DM) model with a Dirac DM candidate, through the renormalization group equation analysis at one-loop order. The model has a particular feature which can evade the direct detection upper bounds measured by XENON100 and even that from planned experiment XENON1T. We first find the viable regions in the parameter space which will give rise to correct DM relic density and comply with the constraints from Higgs physics. We show that for a given mass of the pseudoscalar, the mixing angle plays no significant role in the running of the couplings. Then we study the running of the couplings for various pseudoscalar masses at mixing angle θ =6^\\circ , and find the scale of validity in terms of the dark coupling, {λ }d. Depending on our choice of the cutoff scale, the resulting viable parameter space will be determined.

  6. Staggered Orbital Currents in the Half-Filled Two-Leg Ladder

    NASA Astrophysics Data System (ADS)

    Fjaerestad, J. O.; Marston, Brad; Sudbo, A.

    2002-03-01

    We present strong analytical and numerical evidence for the existence of a staggered flux (SF) phase in the half-filled two-leg ladder, with true long-range order in the counter-circulating currents. Using abelian bosonization with a careful treatment of the Klein factors, we show that a certain phase of the half-filled ladder, previously identified as having spin-Peierls order, instead exhibits staggered orbital currents with no dimerization.(J. O. Fjærestad and J. B. Marston, cond- mat/0107094.) This result, combined with a weak-coupling renormalization-group analysis, implies that the SF phase exists in a region of the phase diagram of the half-filled t-U-V-J ladder. Using the density-matrix renormalization-group (DMRG) approach generalized to complex-valued wavefunctions, we demonstrate that the SF phase exhibits robust currents at intermediate values of the interaction strengths.

  7. Mutual information, neural networks and the renormalization group

    NASA Astrophysics Data System (ADS)

    Koch-Janusz, Maciej; Ringel, Zohar

    2018-06-01

    Physical systems differing in their microscopic details often display strikingly similar behaviour when probed at macroscopic scales. Those universal properties, largely determining their physical characteristics, are revealed by the powerful renormalization group (RG) procedure, which systematically retains `slow' degrees of freedom and integrates out the rest. However, the important degrees of freedom may be difficult to identify. Here we demonstrate a machine-learning algorithm capable of identifying the relevant degrees of freedom and executing RG steps iteratively without any prior knowledge about the system. We introduce an artificial neural network based on a model-independent, information-theoretic characterization of a real-space RG procedure, which performs this task. We apply the algorithm to classical statistical physics problems in one and two dimensions. We demonstrate RG flow and extract the Ising critical exponent. Our results demonstrate that machine-learning techniques can extract abstract physical concepts and consequently become an integral part of theory- and model-building.

  8. Stiffening of fluid membranes due to thermal undulations: density-matrix renormalization-group study.

    PubMed

    Nishiyama, Yoshihiro

    2002-12-01

    It has been considered that the effective bending rigidity of fluid membranes should be reduced by thermal undulations. However, recent thorough investigation by Pinnow and Helfrich revealed the significance of measure factors for the partition sum. Accepting the local curvature as a statistical measure, they found that fluid membranes are stiffened macroscopically. In order to examine this remarkable idea, we performed extensive ab initio simulations for a fluid membrane. We set up a transfer matrix that is diagonalized by means of the density-matrix renormalization group. Our method has an advantage, in that it allows us to survey various statistical measures. As a consequence, we found that the effective bending rigidity flows toward strong coupling under the choice of local curvature as a statistical measure. On the contrary, for other measures such as normal displacement and tilt angle, we found a clear tendency toward softening.

  9. Renormalizability of the gradient flow in the 2D O(N) non-linear sigma model

    NASA Astrophysics Data System (ADS)

    Makino, Hiroki; Suzuki, Hiroshi

    2015-03-01

    It is known that the gauge field and its composite operators evolved by the Yang-Mills gradient flow are ultraviolet (UV) finite without any multiplicative wave function renormalization. In this paper, we prove that the gradient flow in the 2D O(N) non-linear sigma model possesses a similar property: The flowed N-vector field and its composite operators are UV finite without multiplicative wave function renormalization. Our proof in all orders of perturbation theory uses a (2+1)-dimensional field theoretical representation of the gradient flow, which possesses local gauge invariance without gauge field. As an application of the UV finiteness of the gradient flow, we construct the energy-momentum tensor in the lattice formulation of the O(N) non-linear sigma model that automatically restores the correct normalization and the conservation law in the continuum limit.

  10. A field theoretic generalization of Hajicek and Kuchar's quantization scheme in 3+1 canonical quantum gravity

    NASA Astrophysics Data System (ADS)

    Melas, Evangelos

    2011-07-01

    The 3+1 (canonical) decomposition of all geometries admitting two-dimensional space-like surfaces is exhibited as a generalization of a previous work. A proposal, consisting of a specific re-normalization Assumption and an accompanying Requirement, which has been put forward in the 2+1 case is now generalized to 3+1 dimensions. This enables the canonical quantization of these geometries through a generalization of Kuchař's quantization scheme in the case of infinite degrees of freedom. The resulting Wheeler-deWitt equation is based on a re-normalized manifold parameterized by three smooth scalar functionals. The entire space of solutions to this equation is analytically given, a fact that is entirely new to the present case. This is made possible by exploiting the freedom left by the imposition of the Requirement and contained in the third functional.

  11. Electric Dipole Moment Results from lattice QCD

    NASA Astrophysics Data System (ADS)

    Dragos, Jack; Luu, Thomas; Shindler, Andrea; de Vries, Jordy

    2018-03-01

    We utilize the gradient flow to define and calculate electric dipole moments induced by the strong QCD θ-term and the dimension-6 Weinberg operator. The gradient flow is a promising tool to simplify the renormalization pattern of local operators. The results of the nucleon electric dipole moments are calculated on PACS-CS gauge fields (available from the ILDG) using Nf = 2+1, of discrete size 323×64 and spacing a ≃ 0.09 fm. These gauge fields use a renormalization-group improved gauge action and a nonperturbatively O(a) improved clover quark action at β = 1.90, with cSW = 1.715. The calculation is performed at pion masses of mπ ≃ 411, 701 MeV.

  12. Renormalization group invariant of lepton Yukawa couplings

    NASA Astrophysics Data System (ADS)

    Tsuyuki, Takanao

    2015-04-01

    By using quark Yukawa matrices only, we can construct renormalization invariants that are exact at the one-loop level in the standard model. One of them, Iq, is accidentally consistent with unity, even though quark masses are strongly hierarchical. We calculate a lepton version of the invariant Il for Dirac and Majorana neutrino cases and find that Il can also be close to unity. For the Dirac neutrino and inverted hierarchy case, if the lightest neutrino mass is 3.0 meV to 8.8 meV, an equality Iq=Il can be satisfied. These invariants are not changed even if new particles couple to the standard model particles, as long as those couplings are generation independent.

  13. Scheme Variations of the QCD Coupling and Hadronic τ Decays

    NASA Astrophysics Data System (ADS)

    Boito, Diogo; Jamin, Matthias; Miravitllas, Ramon

    2016-10-01

    The quantum chromodynamics (QCD) coupling αs is not a physical observable of the theory, since it depends on conventions related to the renormalization procedure. We introduce a definition of the QCD coupling, denoted by α^s, whose running is explicitly renormalization scheme invariant. The scheme dependence of the new coupling α^s is parametrized by a single parameter C , related to transformations of the QCD scale Λ . It is demonstrated that appropriate choices of C can lead to substantial improvements in the perturbative prediction of physical observables. As phenomenological applications, we study e+e- scattering and decays of the τ lepton into hadrons, both being governed by the QCD Adler function.

  14. Renormalization of the weak hadronic current in the nuclear medium

    NASA Astrophysics Data System (ADS)

    Siiskonen, T.; Hjorth-Jensen, M.; Suhonen, J.

    2001-05-01

    The renormalization of the weak charge-changing hadronic current as a function of the reaction energy release is studied at the nucleonic level. We have calculated the average quenching factors for each type of current (vector, axial vector, and induced pseudoscalar). The obtained quenching in the axial vector part is, at zero momentum transfer, 19% for the 1s0d shell and 23% in the 1p0f shell. We have extended the calculations also to heavier systems such as 56Ni and 100Sn, where we obtain stronger quenchings, 44% and 59%, respectively. Gamow-Teller-type transitions are discussed, along with the higher-order matrix elements. The quenching factors are constant up to roughly 60 MeV momentum transfer. Therefore the use of energy-independent quenching factors in beta decay is justified. We also found that going beyond the zeroth and first order operators (in inverse nucleon mass) does not give any substantial contribution. The extracted renormalization to the ratio CP/CA at q=100 MeV is -3.5%, -7.1%, -28.6%, and +8.7% for mass 16, 40, 56, and 100, respectively.

  15. Renormalization of the Lattice Heavy Quark Classical Velocity

    NASA Astrophysics Data System (ADS)

    Mandula, Jeffrey E.; Ogilvie, Michael C.

    1996-03-01

    In the lattice formulation of the Heavy Quark Effective Theory (LHQET), the "classical velocity" v becomes renormalized. The origin of this renormalization is the reduction of Lorentz (or O(4)) invariance to (hyper)cubic invariance. The renormalization is finite and depends on the form of the decretization of the reduced heavy quark Dirac equation. For the Forward Time — Centered Space discretization, the renormalization is computed both perturbatively, to one loop, and non-perturbatively using two ensembles of lattices, one at β = 5.7 and the other at β = 6.1 The estimates agree, and indicate that for small classical velocities, ν→ is reduced by about 25-30%.

  16. Probing baryogenesis through the Higgs boson self-coupling

    NASA Astrophysics Data System (ADS)

    Reichert, M.; Eichhorn, A.; Gies, H.; Pawlowski, J. M.; Plehn, T.; Scherer, M. M.

    2018-04-01

    The link between a modified Higgs self-coupling and the strong first-order phase transition necessary for baryogenesis is well explored for polynomial extensions of the Higgs potential. We broaden this argument beyond leading polynomial expansions of the Higgs potential to higher polynomial terms and to nonpolynomial Higgs potentials. For our quantitative analysis we resort to the functional renormalization group, which allows us to evolve the full Higgs potential to higher scales and finite temperature. In all cases we find that a strong first-order phase transition manifests itself in an enhancement of the Higgs self-coupling by at least 50%, implying that such modified Higgs potentials should be accessible at the LHC.

  17. Scale-setting, flavor dependence, and chiral symmetry restoration

    DOE PAGES

    Binosi, D; Roberts, Craig D.; Rodriguez-Quintero, J.

    2017-06-13

    Here, we determine the flavor dependence of the renormalization-group-invariant running interaction through judicious use of both unquenched Dyson-Schwinger equation and lattice results for QCD’s gauge-sector two-point functions. An important step is the introduction of a physical scale setting procedure that enables a realistic expression of the effect of different numbers of active quark flavours on the interaction. Using this running interaction in concert with a well constrained class of dressed–gluon-quark vertices, we estimate the critical number of active lighter-quarks above which dynamical chiral symmetry breaking becomes impossible: n cr f ≈ 9; and hence in whose neighborhood QCD is plausiblymore » a conformal theory.« less

  18. Critical behavior and dimension crossover of pion superfluidity

    NASA Astrophysics Data System (ADS)

    Wang, Ziyue; Zhuang, Pengfei

    2016-09-01

    We investigate the critical behavior of pion superfluidity in the framework of the functional renormalization group (FRG). By solving the flow equations in the SU(2) linear sigma model at finite temperature and isospin density, and making comparison with the fixed point analysis of a general O (N ) system with continuous dimension, we find that the pion superfluidity is a second order phase transition subject to an O (2 ) universality class with a dimension crossover from dc=4 to dc=3 . This phenomenon provides a concrete example of dimension reduction in thermal field theory. The large-N expansion gives a temperature independent critical exponent β and agrees with the FRG result only at zero temperature.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, T. Maurice; Robinson, Neil J.; Tsvelik, Alexei M.

    Here, the high-temperature normal state of the unconventional cuprate superconductors has resistivity linear in temperature T, which persists to values well beyond the Mott-Ioffe-Regel upper bound. At low temperatures, within the pseudogap phase, the resistivity is instead quadratic in T, as would be expected from Fermi liquid theory. Developing an understanding of these normal phases of the cuprates is crucial to explain the unconventional superconductivity. We present a simple explanation for this behavior, in terms of the umklapp scattering of electrons. This fits within the general picture emerging from functional renormalization group calculations that spurred the Yang-Rice-Zhang ansatz: Umklapp scatteringmore » is at the heart of the behavior in the normal phase.« less

  20. On a realization of { β}-expansion in QCD

    NASA Astrophysics Data System (ADS)

    Mikhailov, S. V.

    2017-04-01

    We suggest a simple algebraic approach to fix the elements of the { β}-expansion for renormalization group invariant quantities, which uses additional degrees of freedom. The approach is discussed in detail for N2LO calculations in QCD with the MSSM gluino — an additional degree of freedom. We derive the formulae of the { β}-expansion for the nonsinglet Adler D-function and Bjorken polarized sum rules in the actual N3LO within this quantum field theory scheme with the MSSM gluino and the scheme with the second additional degree of freedom. We discuss the properties of the { β}-expansion for higher orders considering the N4LO as an example.

  1. Time evolution and dynamical phase transitions at a critical time in a system of one-dimensional bosons after a quantum quench.

    PubMed

    Mitra, Aditi

    2012-12-28

    A renormalization group approach is used to show that a one-dimensional system of bosons subject to a lattice quench exhibits a finite-time dynamical phase transition where an order parameter within a light cone increases as a nonanalytic function of time after a critical time. Such a transition is also found for a simultaneous lattice and interaction quench where the effective scaling dimension of the lattice becomes time dependent, crucially affecting the time evolution of the system. Explicit results are presented for the time evolution of the boson interaction parameter and the order parameter for the dynamical transition as well as for more general quenches.

  2. mr: A C++ library for the matching and running of the Standard Model parameters

    NASA Astrophysics Data System (ADS)

    Kniehl, Bernd A.; Pikelner, Andrey F.; Veretin, Oleg L.

    2016-09-01

    We present the C++ program library mr that allows us to reliably calculate the values of the running parameters in the Standard Model at high energy scales. The initial conditions are obtained by relating the running parameters in the MS bar renormalization scheme to observables at lower energies with full two-loop precision. The evolution is then performed in accordance with the renormalization group equations with full three-loop precision. Pure QCD corrections to the matching and running are included through four loops. We also provide a Mathematica interface for this program library. Catalogue identifier: AFAI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFAI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 517613 No. of bytes in distributed program, including test data, etc.: 2358729 Distribution format: tar.gz Programming language: C++. Computer: IBM PC. Operating system: Linux, Mac OS X. RAM: 1 GB Classification: 11.1. External routines: TSIL [1], OdeInt [2], boost [3] Nature of problem: The running parameters of the Standard Model renormalized in the MS bar scheme at some high renormalization scale, which is chosen by the user, are evaluated in perturbation theory as precisely as possible in two steps. First, the initial conditions at the electroweak energy scale are evaluated from the Fermi constant GF and the pole masses of the W, Z, and Higgs bosons and the bottom and top quarks including the full two-loop threshold corrections. Second, the evolution to the high energy scale is performed by numerically solving the renormalization group evolution equations through three loops. Pure QCD corrections to the matching and running are included through four loops. Solution method: Numerical integration of analytic expressions Additional comments: Available for download from URL: http://apik.github.io/mr/. The MathLink interface is tested to work with Mathematica 7-9 and, with an additional flag, also with Mathematica 10 under Linux and with Mathematica 10 under Mac OS X. Running time: less than 1 second References: [1] S. P. Martin and D. G. Robertson, Comput. Phys. Commun. 174 (2006) 133-151 [hep-ph/0501132]. [2] K. Ahnert and M. Mulansky, AIP Conf. Proc. 1389 (2011) 1586-1589 [arxiv:1110.3397 [cs.MS

  3. Holography as a highly efficient renormalization group flow. I. Rephrasing gravity

    NASA Astrophysics Data System (ADS)

    Behr, Nicolas; Kuperstein, Stanislav; Mukhopadhyay, Ayan

    2016-07-01

    We investigate how the holographic correspondence can be reformulated as a generalization of Wilsonian renormalization group (RG) flow in a strongly interacting large-N quantum field theory. We first define a highly efficient RG flow as one in which the Ward identities related to local conservation of energy, momentum and charges preserve the same form at each scale. To achieve this, it is necessary to redefine the background metric and external sources at each scale as functionals of the effective single-trace operators. These redefinitions also absorb the contributions of the multitrace operators to these effective Ward identities. Thus, the background metric and external sources become effectively dynamical, reproducing the dual classical gravity equations in one higher dimension. Here, we focus on reconstructing the pure gravity sector as a highly efficient RG flow of the energy-momentum tensor operator, leaving the explicit constructive field theory approach for generating such RG flows to the second part of the work. We show that special symmetries of the highly efficient RG flows carry information through which we can decode the gauge fixing of bulk diffeomorphisms in the corresponding gravity equations. We also show that the highly efficient RG flow which reproduces a given classical gravity theory in a given gauge is unique provided the endpoint can be transformed to a nonrelativistic fixed point with a finite number of parameters under a universal rescaling. The results obtained here are used in the second part of this work, where we do an explicit field-theoretic construction of the RG flow and obtain the dual classical gravity theory.

  4. Threshold and flavor effects in the renormalization group equations of the MSSM. II. Dimensionful couplings

    NASA Astrophysics Data System (ADS)

    Box, Andrew D.; Tata, Xerxes

    2009-02-01

    We reexamine the one-loop renormalization group equations (RGEs) for the dimensionful parameters of the minimal supersymmetric standard model (MSSM) with broken supersymmetry, allowing for arbitrary flavor structure of the soft SUSY-breaking parameters. We include threshold effects by evaluating the β-functions in a sequence of (nonsupersymmetric) effective theories with heavy particles decoupled at the scale of their mass. We present the most general form for high-scale, soft SUSY-breaking parameters that obtains if we assume that the supersymmetry-breaking mechanism does not introduce new intergenerational couplings. This form, possibly amended to allow additional sources of flavor-violation, serves as a boundary condition for solving the RGEs for the dimensionful MSSM parameters. We then present illustrative examples of numerical solutions to the RGEs. We find that in a SUSY grand unified theory with the scale of SUSY scalars split from that of gauginos and higgsinos, the gaugino mass unification condition may be violated by O(10%). As another illustration, we show that in mSUGRA, the rate for the flavor-violating ttilde 1→c Ztilde 1 decay obtained using the complete RGE solution is smaller than that obtained using the commonly used “single-step” integration of the RGEs by a factor 10-25, and so may qualitatively change expectations for topologies from top-squark pair production at colliders. Together with the RGEs for dimensionless couplings presented in a companion paper, the RGEs in Appendix 2 of this paper form a complete set of one-loop MSSM RGEs that include threshold and flavor-effects necessary for two-loop accuracy.

  5. Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function.

    PubMed

    Saitow, Masaaki; Kurashige, Yuki; Yanai, Takeshi

    2013-07-28

    We report development of the multireference configuration interaction (MRCI) method that can use active space scalable to much larger size references than has previously been possible. The recent development of the density matrix renormalization group (DMRG) method in multireference quantum chemistry offers the ability to describe static correlation in a large active space. The present MRCI method provides a critical correction to the DMRG reference by including high-level dynamic correlation through the CI treatment. When the DMRG and MRCI theories are combined (DMRG-MRCI), the full internal contraction of the reference in the MRCI ansatz, including contraction of semi-internal states, plays a central role. However, it is thought to involve formidable complexity because of the presence of the five-particle rank reduced-density matrix (RDM) in the Hamiltonian matrix elements. To address this complexity, we express the Hamiltonian matrix using commutators, which allows the five-particle rank RDM to be canceled out without any approximation. Then we introduce an approximation to the four-particle rank RDM by using a cumulant reconstruction from lower-particle rank RDMs. A computer-aided approach is employed to derive the exceedingly complex equations of the MRCI in tensor-contracted form and to implement them into an efficient parallel computer code. This approach extends to the size-consistency-corrected variants of MRCI, such as the MRCI+Q, MR-ACPF, and MR-AQCC methods. We demonstrate the capability of the DMRG-MRCI method in several benchmark applications, including the evaluation of single-triplet gap of free-base porphyrin using 24 active orbitals.

  6. Site-occupation embedding theory using Bethe ansatz local density approximations

    NASA Astrophysics Data System (ADS)

    Senjean, Bruno; Nakatani, Naoki; Tsuchiizu, Masahisa; Fromager, Emmanuel

    2018-06-01

    Site-occupation embedding theory (SOET) is an alternative formulation of density functional theory (DFT) for model Hamiltonians where the fully interacting Hubbard problem is mapped, in principle exactly, onto an impurity-interacting (rather than a noninteracting) one. It provides a rigorous framework for combining wave-function (or Green function)-based methods with DFT. In this work, exact expressions for the per-site energy and double occupation of the uniform Hubbard model are derived in the context of SOET. As readily seen from these derivations, the so-called bath contribution to the per-site correlation energy is, in addition to the latter, the key density functional quantity to model in SOET. Various approximations based on Bethe ansatz and perturbative solutions to the Hubbard and single-impurity Anderson models are constructed and tested on a one-dimensional ring. The self-consistent calculation of the embedded impurity wave function has been performed with the density-matrix renormalization group method. It has been shown that promising results are obtained in specific regimes of correlation and density. Possible further developments have been proposed in order to provide reliable embedding functionals and potentials.

  7. Aspects of Galileon non-renormalization

    DOE PAGES

    Goon, Garrett; Hinterbichler, Kurt; Joyce, Austin; ...

    2016-11-18

    We discuss non-renormalization theorems applying to galileon field theories and their generalizations. Galileon theories are similar in many respects to other derivatively coupled effective field theories, including general relativity and P ( X) theories. In particular, these other theories also enjoy versions of non-renormalization theorems that protect certain operators against corrections from self-loops. Furthermore, we argue that the galileons are distinguished by the fact that they are not renormalized even by loops of other heavy fields whose couplings respect the galileon symmetry.

  8. Nonperturbative Renormalization Group Approach to Polymerized Membranes

    NASA Astrophysics Data System (ADS)

    Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique

    2014-03-01

    Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.

  9. Type 0 open string amplitudes and the tensionless limit

    NASA Astrophysics Data System (ADS)

    Rojas, Francisco

    2014-12-01

    The sum over planar multiloop diagrams in the NS + sector of type 0 open strings in flat spacetime has been proposed by Thorn as a candidate to resolve nonperturbative issues of gauge theories in the large N limit. With S U (N ) Chan-Paton factors, the sum over planar open string multiloop diagrams describes the 't Hooft limit N →∞ with N gs2 held fixed. By including only planar diagrams in the sum the usual mechanism for the cancellation of loop divergences (which occurs, for example, among the planar and Möbius strip diagrams by choosing a specific gauge group) is not available and a renormalization procedure is needed. In this article the renormalization is achieved by suspending total momentum conservation by an amount p ≡∑ i n ki≠0 at the level of the integrands in the integrals over the moduli and analytically continuing them to p =0 at the very end. This procedure has been successfully tested for the 2 and 3 gluon planar loop amplitudes by Thorn. Gauge invariance is respected and the correct running of the coupling in the limiting gauge field theory was also correctly obtained. In this article we extend those results in two directions. First, we generalize the renormalization method to an arbitrary n -gluon planar loop amplitude giving full details for the 4-point case. One of our main results is to provide a fully renormalized amplitude which is free of both UV and the usual spurious divergences leaving only the physical singularities in it. Second, using the complete renormalized amplitude, we extract the high-energy scattering regime at fixed angle (tensionless limit). Apart from obtaining the usual exponential falloff at high energies, we compute the full dependence on the scattering angle which shows the existence of a smooth connection between the Regge and hard scattering regimes.

  10. Infinities in Quantum Field Theory and in Classical Computing: Renormalization Program

    NASA Astrophysics Data System (ADS)

    Manin, Yuri I.

    Introduction. The main observable quantities in Quantum Field Theory, correlation functions, are expressed by the celebrated Feynman path integrals. A mathematical definition of them involving a measure and actual integration is still lacking. Instead, it is replaced by a series of ad hoc but highly efficient and suggestive heuristic formulas such as perturbation formalism. The latter interprets such an integral as a formal series of finite-dimensional but divergent integrals, indexed by Feynman graphs, the list of which is determined by the Lagrangian of the theory. Renormalization is a prescription that allows one to systematically "subtract infinities" from these divergent terms producing an asymptotic series for quantum correlation functions. On the other hand, graphs treated as "flowcharts", also form a combinatorial skeleton of the abstract computation theory. Partial recursive functions that according to Church's thesis exhaust the universe of (semi)computable maps are generally not everywhere defined due to potentially infinite searches and loops. In this paper I argue that such infinities can be addressed in the same way as Feynman divergences. More details can be found in [9,10].

  11. Fractional Stochastic Field Theory

    NASA Astrophysics Data System (ADS)

    Honkonen, Juha

    2018-02-01

    Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.

  12. On the robustness of the primordial power spectrum in renormalized Higgs inflation

    NASA Astrophysics Data System (ADS)

    Bezrukov, Fedor; Pauly, Martin; Rubio, Javier

    2018-02-01

    We study the cosmological consequences of higher-dimensional operators respecting the asymptotic symmetries of the tree-level Higgs inflation action. The main contribution of these operators to the renormalization group enhanced potential is localized in a compact field range, whose upper limit is close to the end of inflation. The spectrum of primordial fluctuations in the so-called universal regime turns out to be almost insensitive to radiative corrections and in excellent agreement with the present cosmological data. However, higher-dimensional operators can play an important role in critical Higgs inflation scenarios containing a quasi-inflection point along the inflationary trajectory. The interplay of radiative corrections with this quasi-inflection point may translate into a sizable modification of the inflationary observables.

  13. Short-range correlations in carbon-12, oxygen-16, and neon-20: Intrinsic properties

    NASA Technical Reports Server (NTRS)

    Braley, R. C.; Ford, W. F.; Becker, R. L.; Patterson, M. R.

    1972-01-01

    The Brueckner-Hartree-Fock (BHF) method has been applied to nuclei whose intrinsic structure is nonspherical. Reaction matrix elements were calculated as functions of starting energy for the Hamada-Johnston interaction using the Pauli operator appropriate to O-16 and a shifted oscillator spectrum for virtual excited states. Binding energies, single particle energies, radii, and shape deformations of the intrinsic state, in ordinary as well as renormalized BHF, are discussed and compared with previous HF studies and with experiment when possible. Results are presented for C-12, 0-16 and Ne-20. It is found that the binding energies and radii are too small, but that separation energies are well reproduced when the renormalized theory is used.

  14. Non-perturbative determination of cV, ZV and ZS/ZP in Nf = 3 lattice QCD

    NASA Astrophysics Data System (ADS)

    Heitger, Jochen; Joswig, Fabian; Vladikas, Anastassios; Wittemeier, Christian

    2018-03-01

    We report on non-perturbative computations of the improvement coefficient cV and the renormalization factor ZV of the vector current in three-flavour O(a) improved lattice QCD with Wilson quarks and tree-level Symanzik improved gauge action. To reduce finite quark mass effects, our improvement and normalization conditions exploit massive chiral Ward identities formulated in the Schrödinger functional setup, which also allow deriving a new method to extract the ratio ZS/ZP of scalar to pseudoscalar renormalization constants. We present preliminary results of a numerical evaluation of ZV and cV along a line of constant physics with gauge couplings corresponding to lattice spacings of about 0:09 fm and below, relevant for phenomenological applications.

  15. Algorithms for tensor network renormalization

    NASA Astrophysics Data System (ADS)

    Evenbly, G.

    2017-01-01

    We discuss in detail algorithms for implementing tensor network renormalization (TNR) for the study of classical statistical and quantum many-body systems. First, we recall established techniques for how the partition function of a 2 D classical many-body system or the Euclidean path integral of a 1 D quantum system can be represented as a network of tensors, before describing how TNR can be implemented to efficiently contract the network via a sequence of coarse-graining transformations. The efficacy of the TNR approach is then benchmarked for the 2 D classical statistical and 1 D quantum Ising models; in particular the ability of TNR to maintain a high level of accuracy over sustained coarse-graining transformations, even at a critical point, is demonstrated.

  16. The large-N Yang-Mills S matrix is ultraviolet finite, but the large-N QCD S matrix is only renormalizable

    NASA Astrophysics Data System (ADS)

    Bochicchio, Marco

    2017-03-01

    Yang-Mills (YM) theory and QCD are known to be renormalizable, but not ultraviolet (UV) finite, order by order, in perturbation theory. It is a fundamental question whether YM theory or QCD is UV finite, or only renormalizable, order by order, in the large-N 't Hooft or Veneziano expansions. We demonstrate that the renormalization group (RG) and asymptotic freedom imply that in 't Hooft large-N expansion the S matrix in YM theory is UV finite, while in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massless QCD is renormalizable but not UV finite. By the same argument, the large-N N =1 supersymmetry (SUSY) YM S matrix is UV finite as well. Besides, we demonstrate that, in both 't Hooft and Veneziano large-N expansions, the correlators of local gauge-invariant operators, as opposed to the S matrix, are renormalizable but, in general, not UV finite, either in YM theory and N =1 SUSY YM theory or a fortiori in massless QCD. Moreover, we compute explicitly the counterterms that arise from renormalizing the 't Hooft and Veneziano expansions by deriving in confining massless QCD-like theories a low-energy theorem of the Novikov-Shifman-Vainshtein-Zakharov type that relates the log derivative with respect to the gauge coupling of a k -point correlator, or the log derivative with respect to the RG-invariant scale, to a (k +1 )-point correlator with the insertion of Tr F2 at zero momentum. Finally, we argue that similar results hold in the large-N limit of a vast class of confining massive QCD-like theories, provided a renormalization scheme exists—as, for example, MS ¯ —in which the beta function is not dependent on the masses. Specifically, in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massive QCD and massive N =1 SUSY QCD is renormalizable but not UV finite.

  17. Nonperturbative evaluation for anomalous dimension in 2-dimensional O (3 ) sigma model

    NASA Astrophysics Data System (ADS)

    Calle Jimenez, Sergio; Oka, Makoto; Sasaki, Kiyoshi

    2018-06-01

    We nonperturbatively calculate the wave-function renormalization in the two-dimensional O (3 ) sigma model. It is evaluated in a box with a finite spatial extent. We determine the anomalous dimension in the finite-volume scheme through an analysis of the step-scaling function. Results are compared with a perturbative evaluation, and reasonable behavior is observed.

  18. Critical behavior of two- and three-dimensional ferromagnetic and antiferromagnetic spin-ice systems using the effective-field renormalization group technique

    NASA Astrophysics Data System (ADS)

    Garcia-Adeva, Angel J.; Huber, David L.

    2001-07-01

    In this work we generalize and subsequently apply the effective-field renormalization-group (EFRG) technique to the problem of ferro- and antiferromagnetically coupled Ising spins with local anisotropy axes in geometrically frustrated geometries (kagomé and pyrochlore lattices). In this framework, we calculate the various ground states of these systems and the corresponding critical points. Excellent agreement is found with exact and Monte Carlo results. The effects of frustration are discussed. As pointed out by other authors, it turns out that the spin-ice model can be exactly mapped to the standard Ising model, but with effective interactions of the opposite sign to those in the original Hamiltonian. Therefore, the ferromagnetic spin ice is frustrated and does not order. Antiferromagnetic spin ice (in both two and three dimensions) is found to undergo a transition to a long-range-ordered state. The thermal and magnetic critical exponents for this transition are calculated. It is found that the thermal exponent is that of the Ising universality class, whereas the magnetic critical exponent is different, as expected from the fact that the Zeeman term has a different symmetry in these systems. In addition, the recently introduced generalized constant coupling method is also applied to the calculation of the critical points and ground-state configurations. Again, a very good agreement is found with exact, Monte Carlo, and renormalization-group calculations for the critical points. Incidentally, we show that the generalized constant coupling approach can be regarded as the lowest-order limit of the EFRG technique, in which correlations outside a frustrated unit are neglected, and scaling is substituted by strict equality of the thermodynamic quantities.

  19. Holography for Schrödinger backgrounds

    NASA Astrophysics Data System (ADS)

    Guica, Monica; Skenderis, Kostas; Taylor, Marika; van Rees, Balt C.

    2011-02-01

    We discuss holography for Schrödinger solutions of both topologically massive gravity in three dimensions and massive vector theories in ( d + 1) dimensions. In both cases the dual field theory can be viewed as a d-dimensional conformal field theory (two dimensional in the case of TMG) deformed by certain operators that respect the Schrödinger symmetry. These operators are irrelevant from the viewpoint of the relativistic conformal group but they are exactly marginal with respect to the non-relativistic conformal group. The spectrum of linear fluctuations around the background solutions corresponds to operators that are labeled by their scaling dimension and the lightcone momentum k v . We set up the holographic dictionary and compute 2-point functions of these operators both holographically and in field theory using conformal perturbation theory and find agreement. The counterterms needed for holographic renormalization are non-local in the v lightcone direction.

  20. Competing phases, phase separation, and coexistence in the extended one-dimensional bosonic Hubbard model

    DOE PAGES

    Batrouni, G. G.; Rousseau, V. G.; Scalettar, R. T.; ...

    2014-11-17

    Here, we study the phase diagram of the one-dimensional bosonic Hubbard model with contact (U) and near neighbor (V ) interactions focusing on the gapped Haldane insulating (HI) phase which is characterized by an exotic nonlocal order parameter. The parameter regime (U, V and μ) where this phase exists and how it competes with other phases such as the supersolid (SS) phase, is incompletely understood. We use the Stochastic Green Function quantum Monte Carlo algorithm as well as the density matrix renormalization group to map out the phase diagram. The HI exists only at = 1, the SS phase existsmore » for a very wide range of parameters (including commensurate fillings) and displays power law decay in the one body Green function were our main conclusions. Additionally, we show that at fixed integer density, the system exhibits phase separation in the (U, V ) plane.« less

  1. Volume dependence of baryon number cumulants and their ratios

    DOE PAGES

    Almási, Gábor A.; Pisarski, Robert D.; Skokov, Vladimir V.

    2017-03-17

    Here, we explore the influence of finite-volume effects on cumulants of baryon/quark number fluctuations in a nonperturbative chiral model. In order to account for soft modes, we use the functional renormalization group in a finite volume, using a smooth regulator function in momentum space. We compare the results for a smooth regulator with those for a sharp (or Litim) regulator, and show that in a finite volume, the latter produces spurious artifacts. In a finite volume there are only apparent critical points, about which we compute the ratio of the fourth- to the second-order cumulant of quark number fluctuations. Finally,more » when the volume is sufficiently small the system has two apparent critical points; as the system size decreases, the location of the apparent critical point can move to higher temperature and lower chemical potential.« less

  2. Crossover from attractive to repulsive Casimir forces and vice versa.

    PubMed

    Schmidt, Felix M; Diehl, H W

    2008-09-05

    Systems described by an O(n) symmetrical varphi;{4} Hamiltonian are considered in a d-dimensional film geometry at their bulk critical points. The critical Casimir forces between the film's boundary planes B_{j}, j=1,2, are investigated as functions of film thickness L for generic symmetry-preserving boundary conditions partial differential_{n}phi=c[over composite function]_{j}phi. The L-dependent part of the reduced excess free energy per cross-sectional area takes the scaling form f_{res} approximately D(c_{1}L;{Phi/nu},c_{2}L;{Phi/nu})/L;{d-1} when d<4, where c_{i} are scaling fields associated with the variables c[over composite function]_{i} and Phi is a surface crossover exponent. Explicit two-loop renormalization group results for the function D(c_{1},c_{2}) at d=4- dimensions are presented. These show that (i) the Casimir force can have either sign, depending on c_{1} and c_{2}, and (ii) for appropriate choices of the enhancements c[over composite function]_{j}, crossovers from attraction to repulsion and vice versa occur as L increases.

  3. Limit cycles and conformal invariance

    NASA Astrophysics Data System (ADS)

    Fortin, Jean-François; Grinstein, Benjamín; Stergiou, Andreas

    2013-01-01

    There is a widely held belief that conformal field theories (CFTs) require zero beta functions. Nevertheless, the work of Jack and Osborn implies that the beta functions are not actually the quantites that decide conformality, but until recently no such behavior had been exhibited. Our recent work has led to the discovery of CFTs with nonzero beta functions, more precisely CFTs that live on recurrent trajectories, e.g., limit cycles, of the beta-function vector field. To demonstrate this we study the S function of Jack and Osborn. We use Weyl consistency conditions to show that it vanishes at fixed points and agrees with the generator Q of limit cycles on them. Moreover, we compute S to third order in perturbation theory, and explicitly verify that it agrees with our previous determinations of Q. A byproduct of our analysis is that, in perturbation theory, unitarity and scale invariance imply conformal invariance in four-dimensional quantum field theories. Finally, we study some properties of these new, "cyclic" CFTs, and point out that the a-theorem still governs the asymptotic behavior of renormalization-group flows.

  4. Repeated Structural Imaging Reveals Nonlinear Progression of Experience-Dependent Volume Changes in Human Motor Cortex.

    PubMed

    Wenger, Elisabeth; Kühn, Simone; Verrel, Julius; Mårtensson, Johan; Bodammer, Nils Christian; Lindenberger, Ulman; Lövdén, Martin

    2017-05-01

    Evidence for experience-dependent structural brain change in adult humans is accumulating. However, its time course is not well understood, as intervention studies typically consist of only 2 imaging sessions (before vs. after training). We acquired up to 18 structural magnetic resonance images over a 7-week period while 15 right-handed participants practiced left-hand writing and drawing. After 4 weeks, we observed increases in gray matter of both left and right primary motor cortices relative to a control group; 3 weeks later, these differences were no longer reliable. Time-series analyses revealed that gray matter in the primary motor cortices expanded during the first 4 weeks and then partially renormalized, in particular in the right hemisphere, despite continued practice and increasing task proficiency. Similar patterns of expansion followed by partial renormalization are also found in synaptogenesis, cortical map plasticity, and maturation, and may qualify as a general principle of structural plasticity. Research on human brain plasticity needs to encompass more than 2 measurement occasions to capture expansion and potential renormalization processes over time. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Renormalization scheme dependence of the two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM.

    PubMed

    Borowka, S; Hahn, T; Heinemeyer, S; Heinrich, G; Hollik, W

    Reaching a theoretical accuracy in the prediction of the lightest MSSM Higgs-boson mass, [Formula: see text], at the level of the current experimental precision requires the inclusion of momentum-dependent contributions at the two-loop level. Recently two groups presented the two-loop QCD momentum-dependent corrections to [Formula: see text] (Borowka et al., Eur Phys J C 74(8):2994, 2014; Degrassi et al., Eur Phys J C 75(2):61, 2015), using a hybrid on-shell-[Formula: see text] scheme, with apparently different results. We show that the differences can be traced back to a different renormalization of the top-quark mass, and that the claim in Ref. Degrassi et al. (Eur Phys J C 75(2):61, 2015) of an inconsistency in Ref. Borowka et al. (Eur Phys J C 74(8):2994, 2014) is incorrect. We furthermore compare consistently the results for [Formula: see text] obtained with the top-quark mass renormalized on-shell and [Formula: see text]. The latter calculation has been added to the FeynHiggs package and can be used to estimate missing higher-order corrections beyond the two-loop level.

  6. Scale-invariant feature extraction of neural network and renormalization group flow

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi; Shiba, Shotaro; Yokoo, Sumito

    2018-05-01

    Theoretical understanding of how a deep neural network (DNN) extracts features from input images is still unclear, but it is widely believed that the extraction is performed hierarchically through a process of coarse graining. It reminds us of the basic renormalization group (RG) concept in statistical physics. In order to explore possible relations between DNN and RG, we use the restricted Boltzmann machine (RBM) applied to an Ising model and construct a flow of model parameters (in particular, temperature) generated by the RBM. We show that the unsupervised RBM trained by spin configurations at various temperatures from T =0 to T =6 generates a flow along which the temperature approaches the critical value Tc=2.2 7 . This behavior is the opposite of the typical RG flow of the Ising model. By analyzing various properties of the weight matrices of the trained RBM, we discuss why it flows towards Tc and how the RBM learns to extract features of spin configurations.

  7. Renormalization group equations and the Lifshitz point in noncommutative Landau-Ginsburg theory

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Hong; Wu, Yong-Shi

    2002-02-01

    A one-loop renormalization group (RG) analysis is performed for noncommutative Landau-Ginsburg theory in an arbitrary dimension. We adopt a modern version of the Wilsonian RG approach, in which a shell integration in momentum space bypasses the potential IR singularities due to UV-IR mixing. The momentum-dependent trigonometric factors in interaction vertices, characteristic of noncommutative geometry, are marginal under RG transformations, and their marginality is preserved at one loop. A negative Θ-dependent anomalous dimension is discovered as a novel effect of the UV-IR mixing. We also found a noncommutative Wilson-Fisher (NCWF) fixed point in less than four dimensions. At large noncommutativity, a momentum space instability is induced by quantum fluctuations, and a consequential first-order phase transition is identified together with a Lifshitz point in the phase diagram. In the vicinity of the Lifshitz point, we introduce two critical exponents νm and βk, whose values are determined to be 1/4 and 1/2, respectively, at mean-field level.

  8. An integral-factorized implementation of the driven similarity renormalization group second-order multireference perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannon, Kevin P.; Li, Chenyang; Evangelista, Francesco A., E-mail: francesco.evangelista@emory.edu

    2016-05-28

    We report an efficient implementation of a second-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT2) [C. Li and F. A. Evangelista, J. Chem. Theory Comput. 11, 2097 (2015)]. Our implementation employs factorized two-electron integrals to avoid storage of large four-index intermediates. It also exploits the block structure of the reference density matrices to reduce the computational cost to that of second-order Møller–Plesset perturbation theory. Our new DSRG-MRPT2 implementation is benchmarked on ten naphthyne isomers using basis sets up to quintuple-ζ quality. We find that the singlet-triplet splittings (Δ{sub ST}) of the naphthyne isomers strongly depend onmore » the equilibrium structures. For a consistent set of geometries, the Δ{sub ST} values predicted by the DSRG-MRPT2 are in good agreements with those computed by the reduced multireference coupled cluster theory with singles, doubles, and perturbative triples.« less

  9. The density matrix renormalization group algorithm on kilo-processor architectures: Implementation and trade-offs

    NASA Astrophysics Data System (ADS)

    Nemes, Csaba; Barcza, Gergely; Nagy, Zoltán; Legeza, Örs; Szolgay, Péter

    2014-06-01

    In the numerical analysis of strongly correlated quantum lattice models one of the leading algorithms developed to balance the size of the effective Hilbert space and the accuracy of the simulation is the density matrix renormalization group (DMRG) algorithm, in which the run-time is dominated by the iterative diagonalization of the Hamilton operator. As the most time-dominant step of the diagonalization can be expressed as a list of dense matrix operations, the DMRG is an appealing candidate to fully utilize the computing power residing in novel kilo-processor architectures. In the paper a smart hybrid CPU-GPU implementation is presented, which exploits the power of both CPU and GPU and tolerates problems exceeding the GPU memory size. Furthermore, a new CUDA kernel has been designed for asymmetric matrix-vector multiplication to accelerate the rest of the diagonalization. Besides the evaluation of the GPU implementation, the practical limits of an FPGA implementation are also discussed.

  10. Asymptotically free theory with scale invariant thermodynamics

    NASA Astrophysics Data System (ADS)

    Ferrari, Gabriel N.; Kneur, Jean-Loïc; Pinto, Marcus Benghi; Ramos, Rudnei O.

    2017-12-01

    A recently developed variational resummation technique, incorporating renormalization group properties consistently, has been shown to solve the scale dependence problem that plagues the evaluation of thermodynamical quantities, e.g., within the framework of approximations such as in the hard-thermal-loop resummed perturbation theory. This method is used in the present work to evaluate thermodynamical quantities within the two-dimensional nonlinear sigma model, which, apart from providing a technically simpler testing ground, shares some common features with Yang-Mills theories, like asymptotic freedom, trace anomaly and the nonperturbative generation of a mass gap. The present application confirms that nonperturbative results can be readily generated solely by considering the lowest-order (quasiparticle) contribution to the thermodynamic effective potential, when this quantity is required to be renormalization group invariant. We also show that when the next-to-leading correction from the method is accounted for, the results indicate convergence, apart from optimally preserving, within the approximations here considered, the sought-after scale invariance.

  11. Full Quantum Dynamics Simulation of a Realistic Molecular System Using the Adaptive Time-Dependent Density Matrix Renormalization Group Method.

    PubMed

    Yao, Yao; Sun, Ke-Wei; Luo, Zhen; Ma, Haibo

    2018-01-18

    The accurate theoretical interpretation of ultrafast time-resolved spectroscopy experiments relies on full quantum dynamics simulations for the investigated system, which is nevertheless computationally prohibitive for realistic molecular systems with a large number of electronic and/or vibrational degrees of freedom. In this work, we propose a unitary transformation approach for realistic vibronic Hamiltonians, which can be coped with using the adaptive time-dependent density matrix renormalization group (t-DMRG) method to efficiently evolve the nonadiabatic dynamics of a large molecular system. We demonstrate the accuracy and efficiency of this approach with an example of simulating the exciton dissociation process within an oligothiophene/fullerene heterojunction, indicating that t-DMRG can be a promising method for full quantum dynamics simulation in large chemical systems. Moreover, it is also shown that the proper vibronic features in the ultrafast electronic process can be obtained by simulating the two-dimensional (2D) electronic spectrum by virtue of the high computational efficiency of the t-DMRG method.

  12. Wilsonian Renormalization Group and the Lippmann-Schwinger Equation with a Multitude of Cutoff Parameters

    NASA Astrophysics Data System (ADS)

    Epelbaum, E.; Gegelia, J.; Meißner, Ulf-G.

    2018-03-01

    The Wilsonian renormalization group approach to the Lippmann-Schwinger equation with a multitude of cutoff parameters is introduced. A system of integro-differential equations for the cutoff-dependent potential is obtained. As an illustration, a perturbative solution of these equations with two cutoff parameters for a simple case of an S-wave low-energy potential in the form of a Taylor series in momenta is obtained. The relevance of the obtained results for the effective field theory approach to nucleon-nucleon scattering is discussed. Supported in part by BMBF under Grant No. 05P2015 - NUSTAR R&D), DFG and NSFC through Funds Provided to the Sino- German CRC 110 “Symmetries and the Emergence of Structure in QCD”, National Natural Science Foundation of China under Grant No. 11621131001, DFG Grant No. TRR110, the Georgian Shota Rustaveli National Science Foundation (grant FR/417/6-100/14) and the CAS President’s International Fellowship Initiative (PIFI) under Grant No. 2017VMA0025

  13. A state interaction spin-orbit coupling density matrix renormalization group method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe{submore » 2}S{sub 2}(SCH{sub 3}){sub 4}]{sup 3−}, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.« less

  14. Algorithmic-Reducibility = Renormalization-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') Replacing CRUTCHES!!!: Gauss Modular/Clock-Arithmetic Congruences = Signal X Noise PRODUCTS..

    NASA Astrophysics Data System (ADS)

    Siegel, J.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Cook-Levin computational-"complexity"(C-C) algorithmic-equivalence reduction-theorem reducibility equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited with Gauss modular/clock-arithmetic/model congruences = signal X noise PRODUCT reinterpretation. Siegel-Baez FUZZYICS=CATEGORYICS(SON of ``TRIZ''): Category-Semantics(C-S) tabular list-format truth-table matrix analytics predicts and implements "noise"-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics(1987)]-Sipser[Intro. Theory Computation(1997) algorithmic C-C: "NIT-picking" to optimize optimization-problems optimally(OOPO). Versus iso-"noise" power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, this "NIT-picking" is "noise" power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-"science" algorithmic C-C models: Turing-machine, finite-state-models/automata, are identified as early-days once-workable but NOW ONLY LIMITING CRUTCHES IMPEDING latter-days new-insights!!!

  15. Renormalization group approach to symmetry protected topological phases

    NASA Astrophysics Data System (ADS)

    van Nieuwenburg, Evert P. L.; Schnyder, Andreas P.; Chen, Wei

    2018-04-01

    A defining feature of a symmetry protected topological phase (SPT) in one dimension is the degeneracy of the Schmidt values for any given bipartition. For the system to go through a topological phase transition separating two SPTs, the Schmidt values must either split or cross at the critical point in order to change their degeneracies. A renormalization group (RG) approach based on this splitting or crossing is proposed, through which we obtain an RG flow that identifies the topological phase transitions in the parameter space. Our approach can be implemented numerically in an efficient manner, for example, using the matrix product state formalism, since only the largest first few Schmidt values need to be calculated with sufficient accuracy. Using several concrete models, we demonstrate that the critical points and fixed points of the RG flow coincide with the maxima and minima of the entanglement entropy, respectively, and the method can serve as a numerically efficient tool to analyze interacting SPTs in the parameter space.

  16. Global phase diagram of the spinless Falicov-Kimball model in d = 3 : renormalization-group theory

    NASA Astrophysics Data System (ADS)

    Sariyer, Ozan S.; Hinczewski, Michael; Berker, A. Nihat

    2011-03-01

    The global phase diagram of the spinless Falicov-Kimball model in d = 3 spatial dimensions is obtained by renormalization-group theory. This global phase diagram exhibits five distinct phases. Four of these phases are charge-ordered (CO) phases, in which the system forms two sublattices with different electron densities. The phase boundaries are second order, except for an intermediate interaction regime, where a first-order phase boundary between two CO phases occurs. The first-order phase boundary is delimited by special bicritical points. The cross-sections of the global phase diagram with respect to the chemical potentials of the localized and mobile electrons, at all representative interaction and hopping strengths, are calculated and exhibit three distinct topologies. The phase diagrams with respect to electron densities are also calculated. This research was supported by the Alexander von Humboldt Foundation, the Scientific and Technological Research Council of Turkey (TÜBITAK), and the Academy of Sciences of Turkey.

  17. Renormalization group scale-setting from the action—a road to modified gravity theories

    NASA Astrophysics Data System (ADS)

    Domazet, Silvije; Štefančić, Hrvoje

    2012-12-01

    The renormalization group (RG) corrected gravitational action in Einstein-Hilbert and other truncations is considered. The running scale of the RG is treated as a scalar field at the level of the action and determined in a scale-setting procedure recently introduced by Koch and Ramirez for the Einstein-Hilbert truncation. The scale-setting procedure is elaborated for other truncations of the gravitational action and applied to several phenomenologically interesting cases. It is shown how the logarithmic dependence of the Newton's coupling on the RG scale leads to exponentially suppressed effective cosmological constant and how the scale-setting in particular RG-corrected gravitational theories yields the effective f(R) modified gravity theories with negative powers of the Ricci scalar R. The scale-setting at the level of the action at the non-Gaussian fixed point in Einstein-Hilbert and more general truncations is shown to lead to universal effective action quadratic in the Ricci tensor.

  18. Non-Fermi-liquid behavior in nonequilibrium transport through Co-doped Au chains connected to fourfold symmetric leads

    NASA Astrophysics Data System (ADS)

    Di Napoli, S.; Roura-Bas, P.; Weichselbaum, Andreas; Aligia, A. A.

    2014-09-01

    We calculate the differential conductance as a function of temperature and bias voltage, G (T,V), through Au monatomic chains with a substitutional Co atom as a magnetic impurity, connected to a fourfold symmetric lead. The system was recently proposed as a possible scenario for observation of the overscreened Kondo physics. Stretching the chain, the system could be tuned through a quantum critical point (QCP) with three different regimes: overscreened, underscreened, and non-Kondo phases. We present calculations of the impurity spectral function by using the numerical renormalization group for the three different regimes characterizing the QCP. Nontrivial behavior of the spectral function is reported near the QCP. Comparison with results using the noncrossing approximation (NCA) shows that the latter is reliable in the overscreened regime, when the anisotropy is larger than the Kondo temperature. For these parameters, which correspond to realistic previous estimates, G (T,V) calculated within NCA exhibits clear signatures of the non-Fermi-liquid behavior within the overscreened regime.

  19. Finite-temperature dynamics of the Mott insulating Hubbard chain

    NASA Astrophysics Data System (ADS)

    Nocera, Alberto; Essler, Fabian H. L.; Feiguin, Adrian E.

    2018-01-01

    We study the dynamical response of the half-filled one-dimensional Hubbard model for a range of interaction strengths U and temperatures T by a combination of numerical and analytical techniques. Using time-dependent density matrix renormalization group computations we find that the single-particle spectral function undergoes a crossover to a spin-incoherent Luttinger liquid regime at temperatures T ˜J =4 t2/U for sufficiently large U >4 t . At smaller values of U and elevated temperatures the spectral function is found to exhibit two thermally broadened bands of excitations, reminiscent of what is found in the Hubbard-I approximation. The dynamical density-density response function is shown to exhibit a finite-temperature resonance at low frequencies inside the Mott gap, with a physical origin similar to the Villain mode in gapped quantum spin chains. We complement our numerical computations by developing an analytic strong-coupling approach to the low-temperature dynamics in the spin-incoherent regime.

  20. Pairing of one-dimensional Bose-Fermi mixtures with unequal masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzi, Matteo; Max Planck Institut fuer QuantenOptik, Hans Kopfermann Strasse 1, D-85748 Garching; Imambekov, Adilet

    We have considered one-dimensional Bose-Fermi mixture with equal densities and unequal masses using numerical density matrix renormalization group. For the mass ratio of K-Rb mixture and attraction between bosons and fermions, we determined the phase diagram. For weak boson-boson interactions, there is a direct transition between two-component Luttinger liquid and collapsed phases as the boson-fermion attraction is increased. For strong enough boson-boson interactions, we find an intermediate 'paired' phase, which is a single-component Luttinger liquid of composite particles. We investigated correlation functions of such a 'paired' phase, studied the stability of 'paired' phase to density imbalance, and discussed various experimentalmore » techniques which can be used to detect it.« less

  1. Large N critical exponents for the chiral Heisenberg Gross-Neveu universality class

    NASA Astrophysics Data System (ADS)

    Gracey, J. A.

    2018-05-01

    We compute the large N critical exponents η , ηϕ and 1 /ν in d dimensions in the chiral Heisenberg Gross-Neveu model to several orders in powers of 1 /N . For instance, the large N conformal bootstrap method is used to determine η at O (1 /N3) while the other exponents are computed to O (1 /N2). Estimates of the exponents for a phase transition in graphene are given which are shown to be commensurate with other approaches. In particular the behavior of the exponents in 2

  2. Transverse spin correlations of the random transverse-field Ising model

    NASA Astrophysics Data System (ADS)

    Iglói, Ferenc; Kovács, István A.

    2018-03-01

    The critical behavior of the random transverse-field Ising model in finite-dimensional lattices is governed by infinite disorder fixed points, several properties of which have already been calculated by the use of the strong disorder renormalization-group (SDRG) method. Here we extend these studies and calculate the connected transverse-spin correlation function by a numerical implementation of the SDRG method in d =1 ,2 , and 3 dimensions. At the critical point an algebraic decay of the form ˜r-ηt is found, with a decay exponent being approximately ηt≈2 +2 d . In d =1 the results are related to dimer-dimer correlations in the random antiferromagnetic X X chain and have been tested by numerical calculations using free-fermionic techniques.

  3. Integrability in heavy quark effective theory

    NASA Astrophysics Data System (ADS)

    Braun, Vladimir M.; Ji, Yao; Manashov, Alexander N.

    2018-06-01

    It was found that renormalization group equations in the heavy-quark effective theory (HQET) for the operators involving one effective heavy quark and light degrees of freedom are completely integrable in some cases and are related to spin chain models with the Hamiltonian commuting with the nondiagonal entry C( u) of the monodromy matrix. In this work we provide a more complete mathematical treatment of such spin chains in the QISM framework. We also discuss the relation of integrable models that appear in the HQET context with the large-spin limit of integrable models in QCD with light quarks. We find that the conserved charges and the "ground state" wave functions in HQET models can be obtained from the light-quark counterparts in a certain scaling limit.

  4. Analytical approximation schemes for solving exact renormalization group equations in the local potential approximation

    NASA Astrophysics Data System (ADS)

    Bervillier, C.; Boisseau, B.; Giacomini, H.

    2008-02-01

    The relation between the Wilson-Polchinski and the Litim optimized ERGEs in the local potential approximation is studied with high accuracy using two different analytical approaches based on a field expansion: a recently proposed genuine analytical approximation scheme to two-point boundary value problems of ordinary differential equations, and a new one based on approximating the solution by generalized hypergeometric functions. A comparison with the numerical results obtained with the shooting method is made. A similar accuracy is reached in each case. Both two methods appear to be more efficient than the usual field expansions frequently used in the current studies of ERGEs (in particular for the Wilson-Polchinski case in the study of which they fail).

  5. Equivalence of the O( n) vector ferromagnetic and antiferromagnetic models

    NASA Astrophysics Data System (ADS)

    Sousa, J. Ricardo de

    The effective-field renormalization group (EFRG) approach is used to find the Néel temperature ( TN) of the O( n) vector model with antiferromagnetic (AF) interaction. The EFRG method is illustrated by employing approximations in which clusters with one ( N‧=1) and two ( N=2) spins are used. The critical temperature TN is obtained as a function of component ( n) and coordination ( z) numbers. For all values of n and z we show that TN= Tc, where Tc is the Curie temperature for the ferromagnetic (F) case. As a comparison, the results of the quantum Heisenberg model ( n=3) with F and AF interactions are also presented, and we find that TN> Tc, which is different from the classical result Tc= TN.

  6. Superconformal quantum field theory in curved spacetime

    NASA Astrophysics Data System (ADS)

    de Medeiros, Paul; Hollands, Stefan

    2013-09-01

    By conformally coupling vector and hyper multiplets in Minkowski space, we obtain a class of field theories with extended rigid conformal supersymmetry on any Lorentzian 4-manifold admitting twistor spinors. We construct the conformal symmetry superalgebras which describe classical symmetries of these theories and derive an appropriate BRST operator in curved spacetime. In the process, we elucidate the general framework of cohomological algebra which underpins the construction. We then consider the corresponding perturbative quantum field theories. In particular, we examine the conditions necessary for conformal supersymmetries to be preserved at the quantum level, i.e. when the BRST operator commutes with the perturbatively defined S-matrix, which ensures superconformal invariance of amplitudes. To this end, we prescribe a renormalization scheme for time-ordered products that enter the perturbative S-matrix and show that such products obey certain Ward identities in curved spacetime. These identities allow us to recast the problem in terms of the cohomology of the BRST operator. Through a careful analysis of this cohomology, and of the renormalization group in curved spacetime, we establish precise criteria which ensure that all conformal supersymmetries are preserved at the quantum level. As a by-product, we provide a rigorous proof that the beta-function for such theories is one-loop exact. We also briefly discuss the construction of chiral rings and the role of non-perturbative effects in curved spacetime.

  7. One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Giustino, Feliciano

    2016-08-01

    Recently, Zacharias et al. [Phys. Rev. Lett. 115, 177401 (2015), 10.1103/PhysRevLett.115.177401] developed an ab initio theory of temperature-dependent optical absorption spectra and band gaps in semiconductors and insulators. In that work, the zero-point renormalization and the temperature dependence were obtained by sampling the nuclear wave functions using a stochastic approach. In the present work, we show that the stochastic sampling of Zacharias et al. can be replaced by fully deterministic supercell calculations based on a single optimal configuration of the atomic positions. We demonstrate that a single calculation is able to capture the temperature-dependent band-gap renormalization including quantum nuclear effects in direct-gap and indirect-gap semiconductors, as well as phonon-assisted optical absorption in indirect-gap semiconductors. In order to demonstrate this methodology, we calculate from first principles the temperature-dependent optical absorption spectra and the renormalization of direct and indirect band gaps in silicon, diamond, and gallium arsenide, and we obtain good agreement with experiment and with previous calculations. In this work we also establish the formal connection between the Williams-Lax theory of optical transitions and the related theories of indirect absorption by Hall, Bardeen, and Blatt, and of temperature-dependent band structures by Allen and Heine. The present methodology enables systematic ab initio calculations of optical absorption spectra at finite temperature, including both direct and indirect transitions. This feature will be useful for high-throughput calculations of optical properties at finite temperature and for calculating temperature-dependent optical properties using high-level theories such as G W and Bethe-Salpeter approaches.

  8. A surface complexation model of YREE sorption on Ulva lactuca in 0.05-5.0 M NaCl solutions

    NASA Astrophysics Data System (ADS)

    Zoll, Alison M.; Schijf, Johan

    2012-11-01

    We present distribution coefficients, log iKS, for the sorption of yttrium and the rare earth elements (YREEs) on BCR-279, a dehydrated tissue homogenate of a marine macroalga, Ulva lactuca, resembling materials featured in chemical engineering studies aimed at designing renewable biosorbents. Sorption experiments were conducted in NaCl solutions of different ionic strength (0.05, 0.5, and 5.0 M) at T = 25 °C over the pH range 2.7-8.5. Distribution coefficients based on separation of the dissolved and particulate phase by conventional filtration (<0.22 μm) were corrected for the effect of colloid-bound YREEs (>3 kDa) using an existing pH-dependent model. Colloid-corrected values were renormalized to free-cation concentrations by accounting for YREE hydrolysis and chloride complexation. At each ionic strength, the pH dependence of the renormalized values is accurately described with a non-electrostatic surface complexation model (SCM) that incorporates YREE binding to three monoprotic functional groups, previously characterized by alkalimetric titration, as well as binding of YREE-hydroxide complexes (MOH2+) to the least acidic one (pKa ∼ 9.5). In non-linear regressions of the distribution coefficients as a function of pH, each pKa was fixed at its reported value, while stability constants of the four YREE surface complexes were used as adjustable parameters. Data for a single fresh U. lactuca specimen in 0.5 M NaCl show generally the same pH-dependent behavior but a lower degree of sorption and were excluded from the regressions. Good linear free-energy relations (LFERs) between stability constants of the YREE-acetate and YREE-hydroxide solution complex and surface complexes with the first and third functional group, respectively, support their prior tentative identifications as carboxyl and phenol. A similar confirmation for the second group is precluded by insufficient knowledge of the stability of YREE-phosphate complexes and a perceived lack of YREE binding in 0.05 M NaCl; this issue awaits further study. The results indicate that SCMs can be successfully applied to sorbents as daunting as marine organic matter. Despite remnant challenges, for instance resolving the contributions of individual groups to the aggregate sorption signal, our approach helps formalize seaweed’s avowed promise as an ideal biomonitor or biofilter of metal pollution in environments ranging from freshwaters to brines by uncovering what chemical mechanisms underlie its pronounced affinity for YREEs and other surface-reactive elements.

  9. Classical closure theory and Lam's interpretation of epsilon-RNG

    NASA Technical Reports Server (NTRS)

    Zhou, YE

    1995-01-01

    Lam's phenomenological epsilon-renormalization group (RNG) model is quite different from the other members of that group. It does not make use of the correspondence principle and the epsilon-expansion procedure. We demonstrate that Lam's epsilon-RNG model is essentially the physical space version of the classical closure theory in spectral space and consider the corresponding treatment of the eddy viscosity and energy backscatter.

  10. Solar System and stellar tests of a quantum-corrected gravity

    NASA Astrophysics Data System (ADS)

    Zhao, Shan-Shan; Xie, Yi

    2015-09-01

    The renormalization group running of the gravitational constant has a universal form and represents a possible extension of general relativity. These renormalization group effects on general relativity will cause the running of the gravitational constant, and there exists a scale of renormalization α ν , which depends on the mass of an astronomical system and needs to be determined by observations. We test renormalization group effects on general relativity and obtain the upper bounds of α ν in the low-mass scales: the Solar System and five systems of binary pulsars. Using the supplementary advances of the perihelia provided by INPOP10a (IMCCE, France) and EPM2011 (IAA RAS, Russia) ephemerides, we obtain new upper bounds on α ν in the Solar System when the Lense-Thirring effect due to the Sun's angular momentum and the uncertainty of the Sun's quadrupole moment are properly taken into account. These two factors were absent in the previous work. We find that INPOP10a yields the upper bound as α ν =(0.3 ±2.8 )×10-20 while EPM2011 gives α ν =(-2.5 ±8.3 )×10-21. Both of them are tighter than the previous result by 4 orders of magnitude. Furthermore, based on the observational data sets of five systems of binary pulsars: PSR J 0737 -3039 , PSR B 1534 +12 , PSR J 1756 -2251 , PSR B 1913 +16 , and PSR B 2127 +11 C , the upper bound is found as α ν =(-2.6 ±5.1 )×10-17. From the bounds of this work at a low-mass scale and the ones at the mass scale of galaxies, we might catch an updated glimpse of the mass dependence of α ν , and it is found that our improvement of the upper bounds in the Solar System can significantly change the possible pattern of the relation between log |α ν | and log m from a linear one to a power law, where m is the mass of an astronomical system. This suggests that |α ν | needs to be suppressed more rapidly with the decrease of the mass of low-mass systems. It also predicts that |α ν | might have an upper limit in high-mass astrophysical systems, which can be tested in the future.

  11. Renormalization of the inflationary perturbations revisited

    NASA Astrophysics Data System (ADS)

    Markkanen, Tommi

    2018-05-01

    In this work we clarify aspects of renormalization on curved backgrounds focussing on the potential ramifications on the amplitude of inflationary perturbations. We provide an alternate view of the often used adiabatic prescription by deriving a correspondence between the adiabatic subtraction terms and traditional renormalization. Specifically, we show how adiabatic subtraction can be expressed as a set of counter terms that are introduced by redefining the bare parameters of the action. Our representation of adiabatic subtraction then allows us to easily find other renormalization prescriptions differing only in the finite parts of the counter terms. As our main result, we present for quadratic inflation how one may consistently express the renormalization of the spectrum of perturbations from inflation as a redefinition of the bare cosmological constant and Planck mass such that the observable predictions coincide with the unrenormalized result.

  12. Minimally doubled fermions at one loop

    NASA Astrophysics Data System (ADS)

    Capitani, Stefano; Weber, Johannes; Wittig, Hartmut

    2009-10-01

    Minimally doubled fermions have been proposed as a cost-effective realization of chiral symmetry at non-zero lattice spacing. Using lattice perturbation theory at one loop, we study their renormalization properties. Specifically, we investigate the consequences of the breaking of hyper-cubic symmetry, which is a typical feature of this class of fermionic discretizations. Our results for the quark self-energy indicate that the four-momentum undergoes a renormalization which is linearly divergent. We also compute renormalization factors for quark bilinears, construct the conserved vector and axial-vector currents and verify that at one loop the renormalization factors of the latter are equal to one.

  13. Temperature and frequency dependent mean free paths of renormalized phonons in nonlinear lattices

    NASA Astrophysics Data System (ADS)

    Li, Nianbei; Liu, Junjie; Wu, Changqin; Li, Baowen

    2018-02-01

    Unraveling general properties of renormalized phonons are of fundamental relevance to the heat transport in the regime of strong nonlinearity. In this work, we directly study the temperature and frequency dependent mean free path (MFP) of renormalized phonons with the newly developed numerical tuning fork method. The typical 1D nonlinear lattices such as Fermi-Pasta-Ulam β lattice and {φ }4 lattice are investigated in detail. Interestingly, it is found that the MFPs are inversely proportional to the frequencies of renormalized phonons rather than the square of phonon frequencies predicted by existing phonon scattering theory.

  14. Entanglement entropy in a boundary impurity model.

    PubMed

    Levine, G C

    2004-12-31

    Boundary impurities are known to dramatically alter certain bulk properties of (1+1)-dimensional strongly correlated systems. The entanglement entropy of a zero temperature Luttinger liquid bisected by a single impurity is computed using a novel finite size scaling or bosonization scheme. For a Luttinger liquid of length 2L and UV cutoff epsilon, the boundary impurity correction (deltaSimp) to the logarithmic entanglement entropy (Sent proportional, variant lnL/epsilon scales as deltaSimp approximately yrlnL/epsilon, where yr is the renormalized backscattering coupling constant. In this way, the entanglement entropy within a region is related to scattering through the region's boundary. In the repulsive case (g<1), deltaSimp diverges (negatively) suggesting that the entropy vanishes. Our results are consistent with the recent conjecture that entanglement entropy decreases irreversibly along renormalization group flow.

  15. Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian

    NASA Astrophysics Data System (ADS)

    Buchalla, G.; Catà, O.; Celis, A.; Knecht, M.; Krause, C.

    2018-03-01

    Employing background-field method and super-heat-kernel expansion, we compute the complete one-loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson. Earlier results from purely scalar fluctuations are confirmed as a special case. We also recover the one-loop renormalization of the conventional Standard Model in the appropriate limit.

  16. Tensor renormalization group methods for spin and gauge models

    NASA Astrophysics Data System (ADS)

    Zou, Haiyuan

    The analysis of the error of perturbative series by comparing it to the exact solution is an important tool to understand the non-perturbative physics of statistical models. For some toy models, a new method can be used to calculate higher order weak coupling expansion and modified perturbation theory can be constructed. However, it is nontrivial to generalize the new method to understand the critical behavior of high dimensional spin and gauge models. Actually, it is a big challenge in both high energy physics and condensed matter physics to develop accurate and efficient numerical algorithms to solve these problems. In this thesis, one systematic way named tensor renormalization group method is discussed. The applications of the method to several spin and gauge models on a lattice are investigated. theoretically, the new method allows one to write an exact representation of the partition function of models with local interactions. E.g. O(N) models, Z2 gauge models and U(1) gauge models. Practically, by using controllable approximations, results in both finite volume and the thermodynamic limit can be obtained. Another advantage of the new method is that it is insensitive to sign problems for models with complex coupling and chemical potential. Through the new approach, the Fisher's zeros of the 2D O(2) model in the complex coupling plane can be calculated and the finite size scaling of the results agrees well with the Kosterlitz-Thouless assumption. Applying the method to the O(2) model with a chemical potential, new phase diagram of the models can be obtained. The structure of the tensor language may provide a new tool to understand phase transition properties in general.

  17. Exchange Coupling Interactions from the Density Matrix Renormalization Group and N-Electron Valence Perturbation Theory: Application to a Biomimetic Mixed-Valence Manganese Complex.

    PubMed

    Roemelt, Michael; Krewald, Vera; Pantazis, Dimitrios A

    2018-01-09

    The accurate description of magnetic level energetics in oligonuclear exchange-coupled transition-metal complexes remains a formidable challenge for quantum chemistry. The density matrix renormalization group (DMRG) brings such systems for the first time easily within reach of multireference wave function methods by enabling the use of unprecedentedly large active spaces. But does this guarantee systematic improvement in predictive ability and, if so, under which conditions? We identify operational parameters in the use of DMRG using as a test system an experimentally characterized mixed-valence bis-μ-oxo/μ-acetato Mn(III,IV) dimer, a model for the oxygen-evolving complex of photosystem II. A complete active space of all metal 3d and bridge 2p orbitals proved to be the smallest meaningful starting point; this is readily accessible with DMRG and greatly improves on the unrealistic metal-only configuration interaction or complete active space self-consistent field (CASSCF) values. Orbital optimization is critical for stabilizing the antiferromagnetic state, while a state-averaged approach over all spin states involved is required to avoid artificial deviations from isotropic behavior that are associated with state-specific calculations. Selective inclusion of localized orbital subspaces enables probing the relative contributions of different ligands and distinct superexchange pathways. Overall, however, full-valence DMRG-CASSCF calculations fall short of providing a quantitative description of the exchange coupling owing to insufficient recovery of dynamic correlation. Quantitatively accurate results can be achieved through a DMRG implementation of second order N-electron valence perturbation theory (NEVPT2) in conjunction with a full-valence metal and ligand active space. Perspectives for future applications of DMRG-CASSCF/NEVPT2 to exchange coupling in oligonuclear clusters are discussed.

  18. Role of fluctuations in random compressible systems at marginal dimensionality

    NASA Astrophysics Data System (ADS)

    Meissner, G.; Sasvári, L.; Tadić, B.

    1986-07-01

    In a unified treatment we have studied the role of fluctuations in uniaxial random systems at marginal dimensionality d*=4 with the n=1 component order parameter being coupled to elastic degrees of freedom. Depending on the ratio of the nonuniversal parameters of quenched disorder Δ0 and of elastic fluctuations v~0, a first- or second-order phase transition is found to occur, separated by a tricritical point. A complete account of critical properties and of macroscopic as well as of microscopic elastic stability is given for temperatures T>Tc. Universal singularities of thermodynamic functions are determined for t=(T-Tc)/Tc-->0 including the tricritical point: for v~0/Δ0>-2, they are the same as in a rigid random system; for v~0/Δ0=-2, they are different due to lattice compressibility being related, however, to the former by Fisher renormalization. Fluctuation corrections in one-loop approximation have been evaluated in a nonuniversal critical temperature range, tx<

  19. Construction of CASCI-type wave functions for very large active spaces.

    PubMed

    Boguslawski, Katharina; Marti, Konrad H; Reiher, Markus

    2011-06-14

    We present a procedure to construct a configuration-interaction expansion containing arbitrary excitations from an underlying full-configuration-interaction-type wave function defined for a very large active space. Our procedure is based on the density-matrix renormalization group (DMRG) algorithm that provides the necessary information in terms of the eigenstates of the reduced density matrices to calculate the coefficient of any basis state in the many-particle Hilbert space. Since the dimension of the Hilbert space scales binomially with the size of the active space, a sophisticated Monte Carlo sampling routine is employed. This sampling algorithm can also construct such configuration-interaction-type wave functions from any other type of tensor network states. The configuration-interaction information obtained serves several purposes. It yields a qualitatively correct description of the molecule's electronic structure, it allows us to analyze DMRG wave functions converged for the same molecular system but with different parameter sets (e.g., different numbers of active-system (block) states), and it can be considered a balanced reference for the application of a subsequent standard multi-reference configuration-interaction method.

  20. Comment on ``Time-Dependent Density-Matrix Renormalization Group: A Systematic Method for the Study of Quantum Many-Body Out-of-Equilibrium Systems''

    NASA Astrophysics Data System (ADS)

    Luo, H. G.; Xiang, T.; Wang, X. Q.

    2003-07-01

    A Comment on the Letter by

    M. A. Cazalilla and J. B. Marston, Phys. Rev. Lett.PRLTAO0031-9007 88, 256403 (2002)
    . The authors of the Letter offer a Reply.

  1. An Introduction to Computational Physics

    NASA Astrophysics Data System (ADS)

    Pang, Tao

    2010-07-01

    Preface to first edition; Preface; Acknowledgements; 1. Introduction; 2. Approximation of a function; 3. Numerical calculus; 4. Ordinary differential equations; 5. Numerical methods for matrices; 6. Spectral analysis; 7. Partial differential equations; 8. Molecular dynamics simulations; 9. Modeling continuous systems; 10. Monte Carlo simulations; 11. Genetic algorithm and programming; 12. Numerical renormalization; References; Index.

  2. The running coupling of the minimal sextet composite Higgs model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fodor, Zoltan; Holland, Kieran; Kuti, Julius

    We compute the renormalized running coupling of SU(3) gauge theory coupled to N f = 2 flavors of massless Dirac fermions in the 2-index-symmetric (sextet) representation. This model is of particular interest as a minimal realization of the strongly interacting composite Higgs scenario. A recently proposed finite volume gradient flow scheme is used. The calculations are performed at several lattice spacings with two different implementations of the gradient flow allowing for a controlled continuum extrapolation and particular attention is paid to estimating the systematic uncertainties. For small values of the renormalized coupling our results for the β-function agree with perturbation theory. For moderate couplings we observe a downward deviation relative to the 2-loop β-function but in the coupling range where the continuum extrapolation is fully under control we do not observe an infrared fixed point. The explored range includes the locations of the zero of the 3-loop and the 4-loop β-functions in themore » $$\\overline{MS}$$ scheme. The absence of a non-trivial zero in the β-function in the explored range of the coupling is consistent with our earlier findings based on hadronic observables, the chiral condensate and the GMOR relation. The present work is the first to report continuum non-perturbative results for the sextet model.« less

  3. Automatic calculation of supersymmetric renormalization group equations and loop corrections

    NASA Astrophysics Data System (ADS)

    Staub, Florian

    2011-03-01

    SARAH is a Mathematica package for studying supersymmetric models. It calculates for a given model the masses, tadpole equations and all vertices at tree-level. This information can be used by SARAH to write model files for CalcHep/ CompHep or FeynArts/ FormCalc. In addition, the second version of SARAH can derive the renormalization group equations for the gauge couplings, parameters of the superpotential and soft-breaking parameters at one- and two-loop level. Furthermore, it calculates the one-loop self-energies and the one-loop corrections to the tadpoles. SARAH can handle all N=1 SUSY models whose gauge sector is a direct product of SU(N) and U(1) gauge groups. The particle content of the model can be an arbitrary number of chiral superfields transforming as any irreducible representation with respect to the gauge groups. To implement a new model, the user has just to define the gauge sector, the particle, the superpotential and the field rotations to mass eigenstates. Program summaryProgram title: SARAH Catalogue identifier: AEIB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 97 577 No. of bytes in distributed program, including test data, etc.: 2 009 769 Distribution format: tar.gz Programming language: Mathematica Computer: All systems that Mathematica is available for Operating system: All systems that Mathematica is available for Classification: 11.1, 11.6 Nature of problem: A supersymmetric model is usually characterized by the particle content, the gauge sector and the superpotential. It is a time consuming process to obtain all necessary information for phenomenological studies from these basic ingredients. Solution method: SARAH calculates the complete Lagrangian for a given model whose gauge sector can be any direct product of SU(N) gauge groups. The chiral superfields can transform as any, irreducible representation with respect to these gauge groups and it is possible to handle an arbitrary number of symmetry breakings or particle rotations. Also the gauge fixing terms can be specified. Using this information, SARAH derives the mass matrices and Feynman rules at tree-level and generates model files for CalcHep/CompHep and FeynArts/FormCalc. In addition, it can calculate the renormalization group equations at one- and two-loop level and the one-loop corrections to the one- and two-point functions. Unusual features: SARAH just needs the superpotential and gauge sector as input and not the complete Lagrangian. Therefore, the complete implementation of new models is done in some minutes. Running time: Measured CPU time for the evaluation of the MSSM on an Intel Q8200 with 2.33 GHz. Calculating the complete Lagrangian: 12 seconds. Calculating all vertices: 75 seconds. Calculating the one- and two-loop RGEs: 50 seconds. Calculating the one-loop corrections: 7 seconds. Writing a FeynArts file: 1 second. Writing a CalcHep/CompHep file: 6 seconds. Writing the LaTeX output: 1 second.

  4. Renormalized dynamics of the Dean-Kawasaki model

    NASA Astrophysics Data System (ADS)

    Bidhoodi, Neeta; Das, Shankar P.

    2015-07-01

    We study the model of a supercooled liquid for which the equation of motion for the coarse-grained density ρ (x ,t ) is the nonlinear diffusion equation originally proposed by Dean and Kawasaki, respectively, for Brownian and Newtonian dynamics of fluid particles. Using a Martin-Siggia-Rose (MSR) field theory we study the renormalization of the dynamics in a self-consistent form in terms of the so-called self-energy matrix Σ . The appropriate model for the renormalized dynamics involves an extended set of field variables {ρ ,θ } , linked through a nonlinear constraint. The latter incorporates, in a nonperturbative manner, the effects of an infinite number of density nonlinearities in the dynamics. We show that the contributing element of Σ which renormalizes the bare diffusion constant D0 to DR is same as that proposed by Kawasaki and Miyazima [Z. Phys. B Condens. Matter 103, 423 (1997), 10.1007/s002570050396]. DR sharply decreases with increasing density. We consider the likelihood of a ergodic-nonergodic (ENE) transition in the model beyond a critical point. The transition is characterized by the long-time limit of the density correlation freezing at a nonzero value. From our analysis we identify an element of Σ which arises from the above-mentioned nonlinear constraint and is key to the viability of the ENE transition. If this self-energy would be zero, then the model supports a sharp ENE transition with DR=0 as predicted by Kawasaki and Miyazima. With the full model having nonzero value for this self-energy, the density autocorrelation function decays to zero in the long-time limit. Hence the ENE transition is not supported in the model.

  5. Time Reparametrization Group and the Long Time Behavior in Quantum Glassy Systems

    NASA Astrophysics Data System (ADS)

    Kennett, Malcolm P.; Chamon, Claudio

    2001-02-01

    We study the long time dynamics of a quantum version of the Sherrington-Kirkpatrick model. Time reparametrizations of the dynamical equations have a parallel with renormalization group transformations; in this language the long time behavior of this model is controlled by a reparametrization group ( RpG) fixed point of the classical dynamics. The irrelevance of quantum terms in the dynamical equations in the aging regime explains the classical nature of the out of equilibrium fluctuation-dissipation relation.

  6. Numbers and functions in quantum field theory

    NASA Astrophysics Data System (ADS)

    Schnetz, Oliver

    2018-04-01

    We review recent results in the theory of numbers and single-valued functions on the complex plane which arise in quantum field theory. These results are the basis for a new approach to high-loop-order calculations. As concrete examples, we provide scheme-independent counterterms of primitive log-divergent graphs in ϕ4 theory up to eight loops and the renormalization functions β , γ , γm of dimensionally regularized ϕ4 theory in the minimal subtraction scheme up to seven loops.

  7. Statistical properties and correlation functions for drift waves

    NASA Technical Reports Server (NTRS)

    Horton, W.

    1986-01-01

    The dissipative one-field drift wave equation is solved using the pseudospectral method to generate steady-state fluctuations. The fluctuations are analyzed in terms of space-time correlation functions and modal probability distributions. Nearly Gaussian statistics and exponential decay of the two-time correlation functions occur in the presence of electron dissipation, while in the absence of electron dissipation long-lived vortical structures occur. Formulas from renormalized, Markovianized statistical turbulence theory are given in a local approximation to interpret the dissipative turbulence.

  8. Scaling Theory of Entanglement at the Many-Body Localization Transition.

    PubMed

    Dumitrescu, Philipp T; Vasseur, Romain; Potter, Andrew C

    2017-09-15

    We study the universal properties of eigenstate entanglement entropy across the transition between many-body localized (MBL) and thermal phases. We develop an improved real space renormalization group approach that enables numerical simulation of large system sizes and systematic extrapolation to the infinite system size limit. For systems smaller than the correlation length, the average entanglement follows a subthermal volume law, whose coefficient is a universal scaling function. The full distribution of entanglement follows a universal scaling form, and exhibits a bimodal structure that produces universal subleading power-law corrections to the leading volume law. For systems larger than the correlation length, the short interval entanglement exhibits a discontinuous jump at the transition from fully thermal volume law on the thermal side, to pure area law on the MBL side.

  9. Remarks on the Phase Transition in QCD

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    The significance of the question of the order of the phase transition in QCD, and recent evidence that real-world QCD is probably close to having a single second order transition as a function of temperature, is reviewed. Although this circumstance seems to remove the possibility that the QCD transition during the big bang might have had spectacular cosmological consequences, there is some good news: it allows highly non-trivial yet reliable quantitative predictions to be made for the behavior near the transition. These predictions can be tested in numerical simulations and perhaps even eventually in heavy ion collisions. The present paper is a very elementary discussion of the relevant concepts, meant to be an accessible introduction for those innocent of the renormalization group approach to critical phenomena and/or the details of QCD.

  10. Phase structure of the Polyakov-quark-meson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, B.-J.; Pawlowski, J. M.; Wambach, J.

    2007-10-01

    The relation between the deconfinement and chiral phase transition is explored in the framework of a Polyakov-loop-extended two-flavor quark-meson (PQM) model. In this model the Polyakov loop dynamics is represented by a background temporal gauge field which also couples to the quarks. As a novelty an explicit quark chemical potential and N{sub f}-dependence in the Polyakov loop potential is proposed by using renormalization group arguments. The behavior of the Polyakov loop as well as the chiral condensate as function of temperature and quark chemical potential is obtained by minimizing the grand canonical thermodynamic potential of the system. The effect ofmore » the Polyakov loop dynamics on the chiral phase diagram and on several thermodynamic bulk quantities is presented.« less

  11. Quantum Dynamics of Solitons in Strongly Interacting Systems on Optical Lattices

    NASA Astrophysics Data System (ADS)

    Rubbo, Chester; Balakrishnan, Radha; Reinhardt, William; Satija, Indubala; Rey, Ana; Manmana, Salvatore

    2012-06-01

    We present results of the quantum dynamics of solitons in XXZ spin-1/2 systems which in general can be derived from a system of spinless fermions or hard-core bosons (HCB) with nearest neighbor interaction on a lattice. A mean-field treatment using spin-coherent states revealed analytic solutions of both bright and dark solitons [1]. We take these solutions and apply a full quantum evolution using the adaptive time-dependent density matrix renormalization group method (adaptive t-DMRG), which takes into account the effect of strong correlations. We use local spin observables, correlations functions, and entanglement entropies as measures for the stability of these soliton solutions over the simulation times. [4pt] [1] R. Balakrishnan, I.I. Satija, and C.W. Clark, Phys. Rev. Lett. 103, 230403 (2009).

  12. Concepts and methods for describing critical phenomena in fluids

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Sengers, J. M. H. L.

    1977-01-01

    The predictions of theoretical models for a critical-point phase transistion in fluids, namely the classical equation with third-degree critical isotherm, that with fifth-degree critical isotherm, and the lattice gas, are reviewed. The renormalization group theory of critical phenomena and the hypothesis of universality of critical behavior supported by this theory are discussed as well as the nature of gravity effects and how they affect cricital-region experimentation in fluids. The behavior of the thermodynamic properties and the correlation function is formulated in terms of scaling laws. The predictions of these scaling laws and of the hypothesis of universality of critical behavior are compared with experimental data for one-component fluids and it is indicated how the methods can be extended to describe critical phenomena in fluid mixtures.

  13. Short-Time Dynamics of the Random n-Vector Model

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Li, Zhi-Bing; Fang, Hai; He, Shun-Shan; Situ, Shu-Ping

    2001-11-01

    Short-time critical behavior of the random n-vector model is studied by the theoretic renormalization-group approach. Asymptotic scaling laws are studied in a frame of the expansion in ɛ=4-d for n≠1 and {√ɛ} for n=1 respectively. In d<4, the initial slip exponents θ‧ for the order parameter and θ for the response function are calculated up to the second order in ɛ=4-d for n≠1 and {√ɛ} for n=1 at the random fixed point respectively. Our results show that the random impurities exert a strong influence on the short-time dynamics for d<4 and n

  14. Precision Mass Measurements of Cr-6358 : Nuclear Collectivity Towards the N =40 Island of Inversion

    NASA Astrophysics Data System (ADS)

    Mougeot, M.; Atanasov, D.; Blaum, K.; Chrysalidis, K.; Goodacre, T. Day; Fedorov, D.; Fedosseev, V.; George, S.; Herfurth, F.; Holt, J. D.; Lunney, D.; Manea, V.; Marsh, B.; Neidherr, D.; Rosenbusch, M.; Rothe, S.; Schweikhard, L.; Schwenk, A.; Seiffert, C.; Simonis, J.; Stroberg, S. R.; Welker, A.; Wienholtz, F.; Wolf, R. N.; Zuber, K.

    2018-06-01

    The neutron-rich isotopes Cr 58 - 63 were produced for the first time at the ISOLDE facility and their masses were measured with the ISOLTRAP spectrometer. The new values are up to 300 times more precise than those in the literature and indicate significantly different nuclear structure from the new mass-surface trend. A gradual onset of deformation is found in this proton and neutron midshell region, which is a gateway to the second island of inversion around N =40 . In addition to comparisons with density-functional theory and large-scale shell-model calculations, we present predictions from the valence-space formulation of the ab initio in-medium similarity renormalization group, the first such results for open-shell chromium isotopes.

  15. Holographic entanglement chemistry

    NASA Astrophysics Data System (ADS)

    Caceres, Elena; Nguyen, Phuc H.; Pedraza, Juan F.

    2017-05-01

    We use the Iyer-Wald formalism to derive an extended first law of entanglement that includes variations in the cosmological constant, Newton's constant and—in the case of higher-derivative theories—all the additional couplings of the theory. In Einstein gravity, where the number of degrees of freedom N2 of the dual field theory is a function of Λ and G , our approach allows us to vary N by keeping the field theory scale fixed or to vary the field theory scale by keeping N fixed. We also derive an extended first law of entanglement for Gauss-Bonnet and Lovelock gravity and show that in these cases all the extra variations reorganize nicely in terms of the central charges of the theory. Finally, we comment on the implications for renormalization group flows and c -theorems in higher dimensions.

  16. Dynamical Crossovers in Prethermal Critical States.

    PubMed

    Chiocchetta, Alessio; Gambassi, Andrea; Diehl, Sebastian; Marino, Jamir

    2017-03-31

    We study the prethermal dynamics of an interacting quantum field theory with an N-component order parameter and O(N) symmetry, suddenly quenched in the vicinity of a dynamical critical point. Depending on the initial conditions, the evolution of the order parameter, and of the response and correlation functions, can exhibit a temporal crossover between universal dynamical scaling regimes governed, respectively, by a quantum and a classical prethermal fixed point, as well as a crossover from a Gaussian to a non-Gaussian prethermal dynamical scaling. Together with a recent experiment, this suggests that quenches may be used in order to explore the rich variety of dynamical critical points occurring in the nonequilibrium dynamics of a quantum many-body system. We illustrate this fact by using a combination of renormalization group techniques and a nonperturbative large-N limit.

  17. Umklapp scattering as the origin of T -linear resistivity in the normal state of high- T c cuprate superconductors

    DOE PAGES

    Rice, T. Maurice; Robinson, Neil J.; Tsvelik, Alexei M.

    2017-12-11

    Here, the high-temperature normal state of the unconventional cuprate superconductors has resistivity linear in temperature T, which persists to values well beyond the Mott-Ioffe-Regel upper bound. At low temperatures, within the pseudogap phase, the resistivity is instead quadratic in T, as would be expected from Fermi liquid theory. Developing an understanding of these normal phases of the cuprates is crucial to explain the unconventional superconductivity. We present a simple explanation for this behavior, in terms of the umklapp scattering of electrons. This fits within the general picture emerging from functional renormalization group calculations that spurred the Yang-Rice-Zhang ansatz: Umklapp scatteringmore » is at the heart of the behavior in the normal phase.« less

  18. Robust d -wave pairing symmetry in multiorbital cobalt high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Li, Yinxiang; Han, Xinloong; Qin, Shengshan; Le, Congcong; Wang, Qiang-Hua; Hu, Jiangping

    2017-07-01

    The pairing symmetry of the cobalt high-temperature (high-Tc) superconductors formed by vertex-shared cation-anion tetrahedral complexes is studied by the methods of mean-field, random phase approximation (RPA), and functional renormalization-group (FRG) analyses. The results of all of these methods show that the dx2-y2 pairing symmetry is robustly favored near half filling. The RPA and FRG methods, which are valid in weak-interaction regions, predict that the superconducting state is also strongly orbital selective, namely, the dx2-y2 orbital that has the largest density near half filling among the three t2 g orbitals dominates superconducting pairing. These results suggest that these materials, if synthesized, can provide an indisputable test of the high-Tc pairing mechanism and the validity of different theoretical methods.

  19. Renormalization of the global quantum correlation and monogamy relation in the anisotropic Heisenberg XXZ model

    NASA Astrophysics Data System (ADS)

    Qin, Meng; Ren, Zhong-Zhou; Zhang, Xin

    2016-01-01

    In this study, the global quantum correlation, monogamy relation and quantum phase transition of the Heisenberg XXZ model are investigated by the method of quantum renormalization group. We obtain, analytically, the expressions of the global negativity, the global measurement-induced disturbance and the monogamy relation for the system. The result shows that for a three-site block state, the partial transpose of an asymmetric block can get stronger entanglement than that of the symmetric one. The residual entanglement and the difference of the monogamy relation of measurement-induced disturbance show a scaling behavior with the size of the system becoming large. Moreover, the monogamy nature of entanglement measured by negativity exists in the model, while the nonclassical correlation quantified by measurement-induced disturbance violates the monogamy relation and demonstrates polygamy.

  20. Numerical Evidence for a Phase Transition in 4D Spin-Foam Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Bahr, Benjamin; Steinhaus, Sebastian

    2016-09-01

    Building on recent advances in defining Wilsonian renormalization group (RG) flows, and the notion of scales in particular, for background-independent theories, we present a first investigation of the renormalization of the 4D spin-foam path integral for quantum gravity, both analytically and numerically. Focusing on a specific truncation of the model using a hypercubic lattice, we compute the RG flow and find strong indications for a phase transition, as well as an interesting interplay between the different observed phases and the (broken) diffeomorphism symmetry of the model. Most notably, it appears that the critical point between the phases, which is a fixed point of the RG flow, is precisely where broken diffeomorphism symmetry is restored, which suggests that it might allow us to define a continuum limit of the quantum gravity theory.

Top