Giesbertz, K J H
2015-08-07
A theorem for the invertibility of arbitrary response functions is presented under the following conditions: the time dependence of the potentials should be Laplace transformable and the initial state should be a ground state, though it might be degenerate. This theorem provides a rigorous foundation for all density-functional-like theories in the time-dependent linear response regime. Especially for time-dependent one-body reduced density matrix (1RDM) functional theory, this is an important step forward, since a solid foundation has currently been lacking. The theorem is equally valid for static response functions in the non-degenerate case, so can be used to characterize the uniqueness of the potential in the ground state version of the corresponding density-functional-like theory. Such a classification of the uniqueness of the non-local potential in ground state 1RDM functional theory has been lacking for decades. With the aid of presented invertibility theorem presented here, a complete classification of the non-uniqueness of the non-local potential in 1RDM functional theory can be given for the first time.
Nonlinear response from transport theory and quantum field theory at finite temperature
NASA Astrophysics Data System (ADS)
Carrington, M. E.; Defu, Hou; Kobes, R.
2001-07-01
We study the nonlinear response in weakly coupled hot φ4 theory. We obtain an expression for a quadratic shear viscous response coefficient using two different formalisms: transport theory and response theory. The transport theory calculation is done by assuming a local equilibrium form for the distribution function and expanding in the gradient of the local four dimensional velocity field. By performing a Chapman-Enskog expansion on the Boltzmann equation we obtain a hierarchy of equations for the coefficients of the expanded distribution function. To do the response theory calculation we use Zubarev's techniques in nonequilibrium statistical mechanics to derive a generalized Kubo formula. Using this formula allows us to obtain the quadratic shear viscous response from the three-point retarded Green function of the viscous shear stress tensor. We use the closed time path formalism of real time finite temperature field theory to show that this three-point function can be calculated by writing it as an integral equation involving a four-point vertex. This four-point vertex can in turn be obtained from an integral equation which represents the resummation of an infinite series of ladder and extended-ladder diagrams. The connection between transport theory and response theory is made when we show that the integral equation for this four-point vertex has exactly the same form as the equation obtained from the Boltzmann equation for the coefficient of the quadratic term of the gradient expansion of the distribution function. We conclude that calculating the quadratic shear viscous response using transport theory and keeping terms that are quadratic in the gradient of the velocity field in the Chapman-Enskog expansion of the Boltzmann equation is equivalent to calculating the quadratic shear viscous response from response theory using the next-to-linear response Kubo formula, with a vertex given by an infinite resummation of ladder and extended-ladder diagrams.
ERIC Educational Resources Information Center
Fukuhara, Hirotaka; Kamata, Akihito
2011-01-01
A differential item functioning (DIF) detection method for testlet-based data was proposed and evaluated in this study. The proposed DIF model is an extension of a bifactor multidimensional item response theory (MIRT) model for testlets. Unlike traditional item response theory (IRT) DIF models, the proposed model takes testlet effects into…
The effect of stimulus strength on the speed and accuracy of a perceptual decision.
Palmer, John; Huk, Alexander C; Shadlen, Michael N
2005-05-02
Both the speed and the accuracy of a perceptual judgment depend on the strength of the sensory stimulation. When stimulus strength is high, accuracy is high and response time is fast; when stimulus strength is low, accuracy is low and response time is slow. Although the psychometric function is well established as a tool for analyzing the relationship between accuracy and stimulus strength, the corresponding chronometric function for the relationship between response time and stimulus strength has not received as much consideration. In this article, we describe a theory of perceptual decision making based on a diffusion model. In it, a decision is based on the additive accumulation of sensory evidence over time to a bound. Combined with simple scaling assumptions, the proportional-rate and power-rate diffusion models predict simple analytic expressions for both the chronometric and psychometric functions. In a series of psychophysical experiments, we show that this theory accounts for response time and accuracy as a function of both stimulus strength and speed-accuracy instructions. In particular, the results demonstrate a close coupling between response time and accuracy. The theory is also shown to subsume the predictions of Piéron's Law, a power function dependence of response time on stimulus strength. The theory's analytic chronometric function allows one to extend theories of accuracy to response time.
Linear-response time-dependent density-functional theory with pairing fields.
Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-05-14
Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.
What Information Theory Says About Best Response and About Binding Contracts
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2004-01-01
Product Distribution (PD) theory is the information-theoretic extension of conventional full- rationality game theory to bounded rational games. Here PD theory is used to investigate games in which the players use bounded rational best-response strategies. This investigation illuminates how to determine the optimal organization chart for a corporation, or more generally how to order the sequence of moves of the players / employees so as to optimize an overall objective function. It is then shown that in the continuum-time limit, bounded rational best response games result in a variant of the replicator dynamics of evolutionary game theory. This variant is then investigated for team games, in which the players share the same utility function, by showing that such continuum- limit bounded rational best response is identical to Newton-Raphson iterative optimization of the shared utility function. Next PD theory is used to investigate changing the coordinate system of the game, i.e., changing the mapping from the joint move of the players to the arguments in the utility functions. Such a change couples those arguments, essentially by making each players move be an offered binding contract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, David N.; Asher, Jason C.; Fischer, Sean A.
2017-01-01
Threemeso-substituted tetrapyridyl porphyrins (free base, Ni(ii), and Cu(ii)) were investigated for their optical limiting (OL) capabilities using real-time (RT-), linear-response (LR-), and quadratic-response (QR-) time-dependent density functional theory (TDDFT) methods.
Normal theory procedures for calculating upper confidence limits (UCL) on the risk function for continuous responses work well when the data come from a normal distribution. However, if the data come from an alternative distribution, the application of the normal theory procedure...
Linear response theory for annealing of radiation damage in semiconductor devices
NASA Technical Reports Server (NTRS)
Litovchenko, Vitaly
1988-01-01
A theoretical study of the radiation/annealing response of MOS ICs is described. Although many experiments have been performed in this field, no comprehensive theory dealing with radiation/annealing response has been proposed. Many attempts have been made to apply linear response theory, but no theoretical foundation has been presented. The linear response theory outlined here is capable of describing a broad area of radiation/annealing response phenomena in MOS ICs, in particular, both simultaneous irradiation and annealing, as well as short- and long-term annealing, including the case when annealing is nearing completion. For the first time, a simple procedure is devised to determine the response function from experimental radiation/annealing data. In addition, this procedure enables us to study the effect of variable temperature and dose rate, effects which are of interest in spaceflight. In the past, the shift in threshold potential due to radiation/annealing has usually been assumed to depend on one variable: the time lapse between an impulse dose and the time of observation. While such a suggestion of uniformity in time is certainly true for a broad range of radiation annealing phenomena, it may not hold for some ranges of the variables of interest (temperature, dose rate, etc.). A response function is projected which is dependent on two variables: the time of observation and the time of the impulse dose. This dependence on two variables allows us to extend the theory to the treatment of a variable dose rate. Finally, the linear theory is generalized to the case in which the response is nonlinear with impulse dose, but is proportional to some impulse function of dose. A method to determine both the impulse and response functions is presented.
Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1997-01-01
This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Theodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.
Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1997-01-01
This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Tbeodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modem three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.
Person Response Functions and the Definition of Units in the Social Sciences
ERIC Educational Resources Information Center
Engelhard, George, Jr.; Perkins, Aminah F.
2011-01-01
Humphry (this issue) has written a thought-provoking piece on the interpretation of item discrimination parameters as scale units in item response theory. One of the key features of his work is the description of an item response theory (IRT) model that he calls the logistic measurement function that combines aspects of two traditions in IRT that…
ERIC Educational Resources Information Center
Hospers, J. Mirjam Boeschen; Smits, Niels; Smits, Cas; Stam, Mariska; Terwee, Caroline B.; Kramer, Sophia E.
2016-01-01
Purpose: We reevaluated the psychometric properties of the Amsterdam Inventory for Auditory Disability and Handicap (AIADH; Kramer, Kapteyn, Festen, & Tobi, 1995) using item response theory. Item response theory describes item functioning along an ability continuum. Method: Cross-sectional data from 2,352 adults with and without hearing…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron
We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.
Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron
2016-06-08
We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.
Improving measurement of injection drug risk behavior using item response theory.
Janulis, Patrick
2014-03-01
Recent research highlights the multiple steps to preparing and injecting drugs and the resultant viral threats faced by drug users. This research suggests that more sensitive measurement of injection drug HIV risk behavior is required. In addition, growing evidence suggests there are gender differences in injection risk behavior. However, the potential for differential item functioning between genders has not been explored. To explore item response theory as an improved measurement modeling technique that provides empirically justified scaling of injection risk behavior and to examine for potential gender-based differential item functioning. Data is used from three studies in the National Institute on Drug Abuse's Criminal Justice Drug Abuse Treatment Studies. A two-parameter item response theory model was used to scale injection risk behavior and logistic regression was used to examine for differential item functioning. Item fit statistics suggest that item response theory can be used to scale injection risk behavior and these models can provide more sensitive estimates of risk behavior. Additionally, gender-based differential item functioning is present in the current data. Improved measurement of injection risk behavior using item response theory should be encouraged as these models provide increased congruence between construct measurement and the complexity of injection-related HIV risk. Suggestions are made to further improve injection risk behavior measurement. Furthermore, results suggest direct comparisons of composite scores between males and females may be misleading and future work should account for differential item functioning before comparing levels of injection risk behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx; Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340; Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dualmore » descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.« less
Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.
NASA Astrophysics Data System (ADS)
Natarajan, Sundararajan
2014-12-01
The main objectives of the paper are to (1) present an overview of nonlocal integral elasticity and Aifantis gradient elasticity theory and (2) discuss the application of partition of unity methods to study the response of low-dimensional structures. We present different choices of approximation functions for gradient elasticity, namely Lagrange intepolants, moving least-squares approximants and non-uniform rational B-splines. Next, we employ these approximation functions to study the response of nanobeams based on Euler-Bernoulli and Timoshenko theories as well as to study nanoplates based on first-order shear deformation theory. The response of nanobeams and nanoplates is studied using Eringen's nonlocal elasticity theory. The influence of the nonlocal parameter, the beam and the plate aspect ratio and the boundary conditions on the global response is numerically studied. The influence of a crack on the axial vibration and buckling characteristics of nanobeams is also numerically studied.
ERIC Educational Resources Information Center
Bilir, Mustafa Kuzey
2009-01-01
This study uses a new psychometric model (mixture item response theory-MIMIC model) that simultaneously estimates differential item functioning (DIF) across manifest groups and latent classes. Current DIF detection methods investigate DIF from only one side, either across manifest groups (e.g., gender, ethnicity, etc.), or across latent classes…
ERIC Educational Resources Information Center
Tay, Louis; Vermunt, Jeroen K.; Wang, Chun
2013-01-01
We evaluate the item response theory with covariates (IRT-C) procedure for assessing differential item functioning (DIF) without preknowledge of anchor items (Tay, Newman, & Vermunt, 2011). This procedure begins with a fully constrained baseline model, and candidate items are tested for uniform and/or nonuniform DIF using the Wald statistic.…
In your eyes: does theory of mind predict impaired life functioning in bipolar disorder?
Purcell, Amanda L; Phillips, Mary; Gruber, June
2013-12-01
Deficits in emotion perception and social functioning are strongly implicated in bipolar disorder (BD). Examining theory of mind (ToM) may provide one potential mechanism to explain observed socio-emotional impairments in this disorder. The present study prospectively investigated the relationship between theory of mind performance and life functioning in individuals diagnosed with BD compared to unipolar depression and healthy control groups. Theory of mind (ToM) performance was examined in 26 individuals with remitted bipolar I disorder (BD), 29 individuals with remitted unipolar depression (UD), and 28 healthy controls (CTL) using a well-validated advanced theory of mind task. Accuracy and response latency scores were calculated from the task. Life functioning was measured during a 12 month follow-up session. No group differences for ToM accuracy emerged. However, the BD group exhibited significantly shorter response times than the UD and CTL groups. Importantly, quicker response times in the BD group predicted greater life functioning impairment at a 12-month follow-up, even after controlling for baseline symptoms. The stimuli were static representations of emotional states and do not allow for evaluating the appropriateness of context during emotional communication; due to sample size, neither specific comorbidities nor medication effects were analyzed for the BD and UD groups; preliminary status of theory of mind as a construct. Results suggest that quickened socio-emotional decision making may represent a risk factor for future functional impairment in BD. Copyright © 2013 Elsevier B.V. All rights reserved.
A Comparison of Linking and Concurrent Calibration under the Graded Response Model.
ERIC Educational Resources Information Center
Kim, Seock-Ho; Cohen, Allan S.
Applications of item response theory to practical testing problems including equating, differential item functioning, and computerized adaptive testing, require that item parameter estimates be placed onto a common metric. In this study, two methods for developing a common metric for the graded response model under item response theory were…
ERIC Educational Resources Information Center
Tay, Louis; Huang, Qiming; Vermunt, Jeroen K.
2016-01-01
In large-scale testing, the use of multigroup approaches is limited for assessing differential item functioning (DIF) across multiple variables as DIF is examined for each variable separately. In contrast, the item response theory with covariate (IRT-C) procedure can be used to examine DIF across multiple variables (covariates) simultaneously. To…
Role of Partner Novelty in Sexual Functioning: A Review.
Morton, Heather; Gorzalka, Boris B
2015-01-01
This review investigates whether sexual desire and arousal decline in response to partner familiarity, increase in response to partner novelty, and show differential responding in men and women. These questions were considered through the perspective of two leading evolutionary theories regarding human mating strategies: sexual strategies theory and attachment fertility theory. The hypotheses emerging from these theories were evaluated through a critical analysis of several areas of research including habituation of arousal to erotic stimuli, preferences regarding number of sexual partners, the effect of long-term monogamous relationships on sexual arousal and desire, and prevalence and risk factors associated with extradyadic behavior. The current literature best supports the predictions made by sexual strategies theory in that sexual functioning has evolved to promote short-term mating. Sexual arousal and desire appear to decrease in response to partner familiarity and increase in response to partner novelty in men and women. Evidence to date suggests this effect may be greater in men.
Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond
NASA Astrophysics Data System (ADS)
Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei
2017-12-01
Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.
The Adaptive Calibration Model of stress responsivity
Ellis, Bruce J.; Shirtcliff, Elizabeth A.
2010-01-01
This paper presents the Adaptive Calibration Model (ACM), an evolutionary-developmental theory of individual differences in the functioning of the stress response system. The stress response system has three main biological functions: (1) to coordinate the organism’s allostatic response to physical and psychosocial challenges; (2) to encode and filter information about the organism’s social and physical environment, mediating the organism’s openness to environmental inputs; and (3) to regulate the organism’s physiology and behavior in a broad range of fitness-relevant areas including defensive behaviors, competitive risk-taking, learning, attachment, affiliation and reproductive functioning. The information encoded by the system during development feeds back on the long-term calibration of the system itself, resulting in adaptive patterns of responsivity and individual differences in behavior. Drawing on evolutionary life history theory, we build a model of the development of stress responsivity across life stages, describe four prototypical responsivity patterns, and discuss the emergence and meaning of sex differences. The ACM extends the theory of biological sensitivity to context (BSC) and provides an integrative framework for future research in the field. PMID:21145350
On the subsystem formulation of linear-response time-dependent DFT.
Pavanello, Michele
2013-05-28
A new and thorough derivation of linear-response subsystem time-dependent density functional theory (TD-DFT) is presented and analyzed in detail. Two equivalent derivations are presented and naturally yield self-consistent subsystem TD-DFT equations. One reduces to the subsystem TD-DFT formalism of Neugebauer [J. Chem. Phys. 126, 134116 (2007)]. The other yields Dyson type equations involving three types of subsystem response functions: coupled, uncoupled, and Kohn-Sham. The Dyson type equations for subsystem TD-DFT are derived here for the first time. The response function formalism reveals previously hidden qualities and complications of subsystem TD-DFT compared with the regular TD-DFT of the supersystem. For example, analysis of the pole structure of the subsystem response functions shows that each function contains information about the electronic spectrum of the entire supersystem. In addition, comparison of the subsystem and supersystem response functions shows that, while the correlated response is subsystem additive, the Kohn-Sham response is not. Comparison with the non-subjective partition DFT theory shows that this non-additivity is largely an artifact introduced by the subjective nature of the density partitioning in subsystem DFT.
How "ought" exceeds but implies "can": Description and encouragement in moral judgment.
Turri, John
2017-11-01
This paper tests a theory about the relationship between two important topics in moral philosophy and psychology. One topic is the function of normative language, specifically claims that one "ought" to do something. Do these claims function to describe moral responsibilities, encourage specific behavior, or both? The other topic is the relationship between saying that one "ought" to do something and one's ability to do it. In what respect, if any, does what one "ought" to do exceed what one "can" do? The theory tested here has two parts: (1) "ought" claims function to both describe responsibilities and encourage people to fulfill them (the dual-function hypothesis); (2) the two functions relate differently to ability, because the encouragement function is limited by the person's ability, but the descriptive function is not (the interaction hypothesis). If this theory is correct, then in one respect "ought implies can" is false because people have responsibilities that exceed their abilities. But in another respect "ought implies can" is legitimate because it is not worthwhile to encourage people to do things that exceed their ability. Results from two behavioral experiments support the theory that "ought" exceeds but implies "can." Results from a third experiment provide further evidence regarding an "ought" claim's primary function and how contextual features can affect the interpretation of its functions. Copyright © 2017 Elsevier B.V. All rights reserved.
A complete second-order theory for the unsteady flow about an airfoil due to a periodic gust
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Atassi, H.
1976-01-01
A uniformly valid second-order theory is developed for calculating the unsteady incompressible flow that occurs when an airfoil is subjected to a convected sinusoidal gust. Explicit formulas for the airfoil response functions (i.e., fluctuating lift) are given. The theory accounts for the effect of the distortion of the gust by the steady-state potential flow around the airfoil, and this effect is found to have an important influence on the response functions. A number of results relevant to the general theory of the scattering of vorticity waves by solid objects are also presented.
Campus Stalking: Theoretical Implications and Responses
ERIC Educational Resources Information Center
Scott, Joel H.; Cooper, Dianne L.
2011-01-01
The problem of campus stalking requires uniting several departments to develop a response plan reflective of the comprehensive nature of campus stalking. This article highlights how research on stalking, stalking theories, and related environmental theories support the formation of a cross-functional team to develop a multifaceted response to this…
Higher-Order Theory for Functionally Graded Materials
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.
1999-01-01
This paper presents the full generalization of the Cartesian coordinate-based higher-order theory for functionally graded materials developed by the authors during the past several years. This theory circumvents the problematic use of the standard micromechanical approach, based on the concept of a representative volume element, commonly employed in the analysis of functionally graded composites by explicitly coupling the local (microstructural) and global (macrostructural) responses. The theoretical framework is based on volumetric averaging of the various field quantities, together with imposition of boundary and interfacial conditions in an average sense between the subvolumes used to characterize the composite's functionally graded microstructure. The generalization outlined herein involves extension of the theoretical framework to enable the analysis of materials characterized by spatially variable microstructures in three directions. Specialization of the generalized theoretical framework to previously published versions of the higher-order theory for materials functionally graded in one and two directions is demonstrated. In the applications part of the paper we summarize the major findings obtained with the one-directional and two-directional versions of the higher-order theory. The results illustrate both the fundamental issues related to the influence of microstructure on microscopic and macroscopic quantities governing the response of composites and the technologically important applications. A major issue addressed herein is the applicability of the classical homogenization schemes in the analysis of functionally graded materials. The technologically important applications illustrate the utility of functionally graded microstructures in tailoring the response of structural components in a variety of applications involving uniform and gradient thermomechanical loading.
A Multidimensional Ideal Point Item Response Theory Model for Binary Data
ERIC Educational Resources Information Center
Maydeu-Olivares, Albert; Hernandez, Adolfo; McDonald, Roderick P.
2006-01-01
We introduce a multidimensional item response theory (IRT) model for binary data based on a proximity response mechanism. Under the model, a respondent at the mode of the item response function (IRF) endorses the item with probability one. The mode of the IRF is the ideal point, or in the multidimensional case, an ideal hyperplane. The model…
Dynamic Structure Factor: An Introduction
NASA Astrophysics Data System (ADS)
Sturm, K.
1993-02-01
The doubly differential cross-section for weak inelastic scattering of waves or particles by manybody systems is derived in Born approximation and expressed in terms of the dynamic structure factor according to van Hove. The application of this very general scheme to scattering of neutrons, x-rays and high-energy electrons is discussed briefly. The dynamic structure factor, which is the space and time Fourier transform of the density-density correlation function, is a property of the many-body system independent of the external probe and carries information on the excitation spectrum of the system. The relation of the electronic structure factor to the density-density response function defined in linear-response theory is shown using the fluctuation-dissipation theorem. This is important for calculations, since the response function can be calculated approximately from the independent-particle response function in self-consistent field approximations, such as the random-phase approximation or the local-density approximation of the density functional theory. Since the density-density response function also determines the dielectric function, the dynamic structure can be expressed by the dielectric function.
Curchod, Basile F E; Penfold, Thomas J; Rothlisberger, Ursula; Tavernelli, Ivano
2013-01-01
The implementation of local control theory using nonadiabatic molecular dynamics within the framework of linear-response time-dependent density functional theory is discussed. The method is applied to study the photoexcitation of lithium fluoride, for which we demonstrate that this approach can efficiently generate a pulse, on-the-fly, able to control the population transfer between two selected electronic states. Analysis of the computed control pulse yields insights into the photophysics of the process identifying the relevant frequencies associated to the curvature of the initial and final state potential energy curves and their energy differences. The limitations inherent to the use of the trajectory surface hopping approach are also discussed.
Theory of Mind and Central Coherence in Adults with High-Functioning Autism or Asperger Syndrome
ERIC Educational Resources Information Center
Beaumont, Renae; Newcombe, Peter
2006-01-01
The study investigated theory of mind and central coherence abilities in adults with high-functioning autism (HFA) or Asperger syndrome (AS) using naturalistic tasks. Twenty adults with HFA/AS correctly answered significantly fewer theory of mind questions than 20 controls on a forced-choice response task. On a narrative task, there were no…
ERIC Educational Resources Information Center
Flowers, Claudia P.; Raju, Nambury S.; Oshima, T. C.
Current interest in the assessment of measurement equivalence emphasizes two methods of analysis, linear, and nonlinear procedures. This study simulated data using the graded response model to examine the performance of linear (confirmatory factor analysis or CFA) and nonlinear (item-response-theory-based differential item function or IRT-Based…
Ziegler, Tom; Krykunov, Mykhaylo
2010-08-21
It is well known that time-dependent density functional theory (TD-DFT) based on standard gradient corrected functionals affords both a quantitative and qualitative incorrect picture of charge transfer transitions between two spatially separated regions. It is shown here that the well known failure can be traced back to the use of linear response theory. Further, it is demonstrated that the inclusion of higher order terms readily affords a qualitatively correct picture even for simple functionals based on the local density approximation. The inclusion of these terms is done within the framework of a newly developed variational approach to excitation energies called constrained variational density functional theory (CV-DFT). To second order [CV(2)-DFT] this theory is identical to adiabatic TD-DFT within the Tamm-Dancoff approximation. With inclusion of fourth order corrections [CV(4)-DFT] it affords a qualitative correct description of charge transfer transitions. It is finally demonstrated that the relaxation of the ground state Kohn-Sham orbitals to first order in response to the change in density on excitation together with CV(4)-DFT affords charge transfer excitations in good agreement with experiment. The new relaxed theory is termed R-CV(4)-DFT. The relaxed scheme represents an effective way in which to introduce double replacements into the description of single electron excitations, something that would otherwise require a frequency dependent kernel.
A generalized functional response for predators that switch between multiple prey species.
van Leeuwen, E; Brännström, Å; Jansen, V A A; Dieckmann, U; Rossberg, A G
2013-07-07
We develop a theory for the food intake of a predator that can switch between multiple prey species. The theory addresses empirical observations of prey switching and is based on the behavioural assumption that a predator tends to continue feeding on prey that are similar to the prey it has consumed last, in terms of, e.g., their morphology, defences, location, habitat choice, or behaviour. From a predator's dietary history and the assumed similarity relationship among prey species, we derive a general closed-form multi-species functional response for describing predators switching between multiple prey species. Our theory includes the Holling type II functional response as a special case and makes consistent predictions when populations of equivalent prey are aggregated or split. An analysis of the derived functional response enables us to highlight the following five main findings. (1) Prey switching leads to an approximate power-law relationship between ratios of prey abundance and prey intake, consistent with experimental data. (2) In agreement with empirical observations, the theory predicts an upper limit of 2 for the exponent of such power laws. (3) Our theory predicts deviations from power-law switching at very low and very high prey-abundance ratios. (4) The theory can predict the diet composition of a predator feeding on multiple prey species from diet observations for predators feeding only on pairs of prey species. (5) Predators foraging on more prey species will show less pronounced prey switching than predators foraging on fewer prey species, thus providing a natural explanation for the known difficulties of observing prey switching in the field. Copyright © 2013 Elsevier Ltd. All rights reserved.
Equal Area Logistic Estimation for Item Response Theory
NASA Astrophysics Data System (ADS)
Lo, Shih-Ching; Wang, Kuo-Chang; Chang, Hsin-Li
2009-08-01
Item response theory (IRT) models use logistic functions exclusively as item response functions (IRFs). Applications of IRT models require obtaining the set of values for logistic function parameters that best fit an empirical data set. However, success in obtaining such set of values does not guarantee that the constructs they represent actually exist, for the adequacy of a model is not sustained by the possibility of estimating parameters. In this study, an equal area based two-parameter logistic model estimation algorithm is proposed. Two theorems are given to prove that the results of the algorithm are equivalent to the results of fitting data by logistic model. Numerical results are presented to show the stability and accuracy of the algorithm.
Smillie, Luke D; Dalgleish, Len I; Jackson, Chris J
2007-04-01
According to Gray's (1973) Reinforcement Sensitivity Theory (RST), a Behavioral Inhibition System (BIS) and a Behavioral Activation System (BAS) mediate effects of goal conflict and reward on behavior. BIS functioning has been linked with individual differences in trait anxiety and BAS functioning with individual differences in trait impulsivity. In this article, it is argued that behavioral outputs of the BIS and BAS can be distinguished in terms of learning and motivation processes and that these can be operationalized using the Signal Detection Theory measures of response-sensitivity and response-bias. In Experiment 1, two measures of BIS-reactivity predicted increased response-sensitivity under goal conflict, whereas one measure of BAS-reactivity predicted increased response-sensitivity under reward. In Experiment 2, two measures of BIS-reactivity predicted response-bias under goal conflict, whereas a measure of BAS-reactivity predicted motivation response-bias under reward. In both experiments, impulsivity measures did not predict criteria for BAS-reactivity as traditionally predicted by RST.
2013-10-01
Velozo’s research focus is on the development of functional outcome measures using Rasch measurement theory. Dr. Velozo’s research team has...functional outcome measures using Rasch measurement theory. Dr. Velozo’s research team has developed computerized adaptive measurement of physical
Consequences of Ignoring Guessing when Estimating the Latent Density in Item Response Theory
ERIC Educational Resources Information Center
Woods, Carol M.
2008-01-01
In Ramsay-curve item response theory (RC-IRT), the latent variable distribution is estimated simultaneously with the item parameters. In extant Monte Carlo evaluations of RC-IRT, the item response function (IRF) used to fit the data is the same one used to generate the data. The present simulation study examines RC-IRT when the IRF is imperfectly…
Different Approaches to Covariate Inclusion in the Mixture Rasch Model
ERIC Educational Resources Information Center
Li, Tongyun; Jiao, Hong; Macready, George B.
2016-01-01
The present study investigates different approaches to adding covariates and the impact in fitting mixture item response theory models. Mixture item response theory models serve as an important methodology for tackling several psychometric issues in test development, including the detection of latent differential item functioning. A Monte Carlo…
NASA Astrophysics Data System (ADS)
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-03-01
We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.
Boeschen Hospers, J Mirjam; Smits, Niels; Smits, Cas; Stam, Mariska; Terwee, Caroline B; Kramer, Sophia E
2016-04-01
We reevaluated the psychometric properties of the Amsterdam Inventory for Auditory Disability and Handicap (AIADH; Kramer, Kapteyn, Festen, & Tobi, 1995) using item response theory. Item response theory describes item functioning along an ability continuum. Cross-sectional data from 2,352 adults with and without hearing impairment, ages 18-70 years, were analyzed. They completed the AIADH in the web-based prospective cohort study "Netherlands Longitudinal Study on Hearing." A graded response model was fitted to the AIADH data. Category response curves, item information curves, and the standard error as a function of self-reported hearing ability were plotted. The graded response model showed a good fit. Item information curves were most reliable for adults who reported having hearing disability and less reliable for adults with normal hearing. The standard error plot showed that self-reported hearing ability is most reliably measured for adults reporting mild up to moderate hearing disability. This is one of the few item response theory studies on audiological self-reports. All AIADH items could be hierarchically placed on the self-reported hearing ability continuum, meaning they measure the same construct. This provides a promising basis for developing a clinically useful computerized adaptive test, where item selection adapts to the hearing ability of individuals, resulting in efficient assessment of hearing disability.
Dynamical influence processes on networks: general theory and applications to social contagion.
Harris, Kameron Decker; Danforth, Christopher M; Dodds, Peter Sheridan
2013-08-01
We study binary state dynamics on a network where each node acts in response to the average state of its neighborhood. By allowing varying amounts of stochasticity in both the network and node responses, we find different outcomes in random and deterministic versions of the model. In the limit of a large, dense network, however, we show that these dynamics coincide. We construct a general mean-field theory for random networks and show this predicts that the dynamics on the network is a smoothed version of the average response function dynamics. Thus, the behavior of the system can range from steady state to chaotic depending on the response functions, network connectivity, and update synchronicity. As a specific example, we model the competing tendencies of imitation and nonconformity by incorporating an off-threshold into standard threshold models of social contagion. In this way, we attempt to capture important aspects of fashions and societal trends. We compare our theory to extensive simulations of this "limited imitation contagion" model on Poisson random graphs, finding agreement between the mean-field theory and stochastic simulations.
Haberman, Shelby J; Sinharay, Sandip; Chon, Kyong Hee
2013-07-01
Residual analysis (e.g. Hambleton & Swaminathan, Item response theory: principles and applications, Kluwer Academic, Boston, 1985; Hambleton, Swaminathan, & Rogers, Fundamentals of item response theory, Sage, Newbury Park, 1991) is a popular method to assess fit of item response theory (IRT) models. We suggest a form of residual analysis that may be applied to assess item fit for unidimensional IRT models. The residual analysis consists of a comparison of the maximum-likelihood estimate of the item characteristic curve with an alternative ratio estimate of the item characteristic curve. The large sample distribution of the residual is proved to be standardized normal when the IRT model fits the data. We compare the performance of our suggested residual to the standardized residual of Hambleton et al. (Fundamentals of item response theory, Sage, Newbury Park, 1991) in a detailed simulation study. We then calculate our suggested residuals using data from an operational test. The residuals appear to be useful in assessing the item fit for unidimensional IRT models.
Functional differentiability in time-dependent quantum mechanics.
Penz, Markus; Ruggenthaler, Michael
2015-03-28
In this work, we investigate the functional differentiability of the time-dependent many-body wave function and of derived quantities with respect to time-dependent potentials. For properly chosen Banach spaces of potentials and wave functions, Fréchet differentiability is proven. From this follows an estimate for the difference of two solutions to the time-dependent Schrödinger equation that evolve under the influence of different potentials. Such results can be applied directly to the one-particle density and to bounded operators, and present a rigorous formulation of non-equilibrium linear-response theory where the usual Lehmann representation of the linear-response kernel is not valid. Further, the Fréchet differentiability of the wave function provides a new route towards proving basic properties of time-dependent density-functional theory.
What plant hydraulics can tell us about responses to climate-change droughts.
Sperry, John S; Love, David M
2015-07-01
Climate change exposes vegetation to unusual drought, causing declines in productivity and increased mortality. Drought responses are hard to anticipate because canopy transpiration and diffusive conductance (G) respond to drying soil and vapor pressure deficit (D) in complex ways. A growing database of hydraulic traits, combined with a parsimonious theory of tree water transport and its regulation, may improve predictions of at-risk vegetation. The theory uses the physics of flow through soil and xylem to quantify how canopy water supply declines with drought and ceases by hydraulic failure. This transpiration 'supply function' is used to predict a water 'loss function' by assuming that stomatal regulation exploits transport capacity while avoiding failure. Supply-loss theory incorporates root distribution, hydraulic redistribution, cavitation vulnerability, and cavitation reversal. The theory efficiently defines stomatal responses to D, drying soil, and hydraulic vulnerability. Driving the theory with climate predicts drought-induced loss of plant hydraulic conductance (k), canopy G, carbon assimilation, and productivity. Data lead to the 'chronic stress hypothesis' wherein > 60% loss of k increases mortality by multiple mechanisms. Supply-loss theory predicts the climatic conditions that push vegetation over this risk threshold. The theory's simplicity and predictive power encourage testing and application in large-scale modeling. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits.
Sperry, John S; Wang, Yujie; Wolfe, Brett T; Mackay, D Scott; Anderegg, William R L; McDowell, Nate G; Pockman, William T
2016-11-01
Ecosystem models have difficulty predicting plant drought responses, partially from uncertainty in the stomatal response to water deficits in soil and atmosphere. We evaluate a 'supply-demand' theory for water-limited stomatal behavior that avoids the typical scaffold of empirical response functions. The premise is that canopy water demand is regulated in proportion to threat to supply posed by xylem cavitation and soil drying. The theory was implemented in a trait-based soil-plant-atmosphere model. The model predicted canopy transpiration (E), canopy diffusive conductance (G), and canopy xylem pressure (P canopy ) from soil water potential (P soil ) and vapor pressure deficit (D). Modeled responses to D and P soil were consistent with empirical response functions, but controlling parameters were hydraulic traits rather than coefficients. Maximum hydraulic and diffusive conductances and vulnerability to loss in hydraulic conductance dictated stomatal sensitivity and hence the iso- to anisohydric spectrum of regulation. The model matched wide fluctuations in G and P canopy across nine data sets from seasonally dry tropical forest and piñon-juniper woodland with < 26% mean error. Promising initial performance suggests the theory could be useful in improving ecosystem models. Better understanding of the variation in hydraulic properties along the root-stem-leaf continuum will simplify parameterization. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
An introduction to Item Response Theory and Rasch Analysis of the Eating Assessment Tool (EAT-10).
Kean, Jacob; Brodke, Darrel S; Biber, Joshua; Gross, Paul
2018-03-01
Item response theory has its origins in educational measurement and is now commonly applied in health-related measurement of latent traits, such as function and symptoms. This application is due in large part to gains in the precision of measurement attributable to item response theory and corresponding decreases in response burden, study costs, and study duration. The purpose of this paper is twofold: introduce basic concepts of item response theory and demonstrate this analytic approach in a worked example, a Rasch model (1PL) analysis of the Eating Assessment Tool (EAT-10), a commonly used measure for oropharyngeal dysphagia. The results of the analysis were largely concordant with previous studies of the EAT-10 and illustrate for brain impairment clinicians and researchers how IRT analysis can yield greater precision of measurement.
Structure of a viscoplastic theory
NASA Technical Reports Server (NTRS)
Freed, Alan D.
1988-01-01
The general structure of a viscoplastic theory is developed from physical and thermodynamical considerations. The flow equation is of classical form. The dynamic recovery approach is shown to be superior to the hardening function approach for incorporating nonlinear strain hardening into the material response through the evolutionary equation for back stress. A novel approach for introducing isotropic strain hardening into the theory is presented, which results in a useful simplification. In particular, the limiting stress for the kinematic saturation of state (not the drag stress) is the chosen scalar-valued state variable. The resulting simplification is that there is no coupling between dynamic and thermal recovery terms in each evolutionary equation. The derived theory of viscoplasticity has the structure of a two-surface plasticity theory when the response is plasticlike, and the structure of a Bailey-Orowan creep theory when the response is creeplike.
ERIC Educational Resources Information Center
Woods, Carol M.; Thissen, David
2006-01-01
The purpose of this paper is to introduce a new method for fitting item response theory models with the latent population distribution estimated from the data using splines. A spline-based density estimation system provides a flexible alternative to existing procedures that use a normal distribution, or a different functional form, for the…
Rasch Measurement and Item Banking: Theory and Practice.
ERIC Educational Resources Information Center
Nakamura, Yuji
The Rasch Model is an item response theory, one parameter model developed that states that the probability of a correct response on a test is a function of the difficulty of the item and the ability of the candidate. Item banking is useful for language testing. The Rasch Model provides estimates of item difficulties that are meaningful,…
Item Response Theory Models for Wording Effects in Mixed-Format Scales
ERIC Educational Resources Information Center
Wang, Wen-Chung; Chen, Hui-Fang; Jin, Kuan-Yu
2015-01-01
Many scales contain both positively and negatively worded items. Reverse recoding of negatively worded items might not be enough for them to function as positively worded items do. In this study, we commented on the drawbacks of existing approaches to wording effect in mixed-format scales and used bi-factor item response theory (IRT) models to…
Romaniello, P; de Boeij, P L
2005-04-22
We included relativistic effects in the formulation of the time-dependent current-density-functional theory for the calculation of linear response properties of metals [P. Romaniello and P. L. de Boeij, Phys. Rev. B (to be published)]. We treat the dominant scalar-relativistic effects using the zeroth-order regular approximation in the ground-state density-functional theory calculations, as well as in the time-dependent response calculations. The results for the dielectric function of gold calculated in the spectral range of 0-10 eV are compared with experimental data reported in literature and recent ellipsometric measurements. As well known, relativistic effects strongly influence the color of gold. We find that the onset of interband transitions is shifted from around 3.5 eV, obtained in a nonrelativistic calculation, to around 1.9 eV when relativity is included. With the inclusion of the scalar-relativistic effects there is an overall improvement of both real and imaginary parts of the dielectric function over the nonrelativistic ones. Nevertheless some important features in the absorption spectrum are not well reproduced, but can be explained in terms of spin-orbit coupling effects. The remaining deviations are attributed to the underestimation of the interband gap (5d-6sp band gap) in the local-density approximation and to the use of the adiabatic local-density approximation in the response calculation.
ERIC Educational Resources Information Center
van Gaal, Simon; Ridderinkhof, K. Richard; van den Wildenberg, Wery P. M.; Lamme, Victor A. F.
2009-01-01
Theories about the functional relevance of consciousness commonly posit that higher order cognitive control functions, such as response inhibition, require consciousness. To test this assertion, the authors designed a masked stop-signal paradigm to examine whether response inhibition could be triggered and initiated by masked stop signals, which…
Feedback Functions, Optimization, and the Relation of Response Rate to Reinforcer Rate
ERIC Educational Resources Information Center
Soto, Paul L.; McDowell, Jack J.; Dallery, Jesse
2006-01-01
The present experiment arranged a series of inverted U-shaped feedback functions relating reinforcer rate to response rate to test whether responding was consistent with an optimization account or with a one-to-one relation of response rate to reinforcer rate such as linear system theory's rate equation or Herrnstein's hyperbola. Reinforcer rate…
ERIC Educational Resources Information Center
Willoughby, Michael T.; Wirth, R. J.; Blair, Clancy B.
2011-01-01
This study demonstrates the merits of evaluating a newly developed battery of executive function tasks, designed for use in early childhood, from the perspective of item response theory (IRT). The battery was included in the 48-month assessment of the Family Life Project, a prospective longitudinal study of 1292 children oversampled from…
Assessment of Differential Item Functioning under Cognitive Diagnosis Models: The DINA Model Example
ERIC Educational Resources Information Center
Li, Xiaomin; Wang, Wen-Chung
2015-01-01
The assessment of differential item functioning (DIF) is routinely conducted to ensure test fairness and validity. Although many DIF assessment methods have been developed in the context of classical test theory and item response theory, they are not applicable for cognitive diagnosis models (CDMs), as the underlying latent attributes of CDMs are…
Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao
2017-09-21
To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.
Shabaev, Andrew; Lambrakos, Samuel G; Bernstein, Noam; Jacobs, Verne L; Finkenstadt, Daniel
2011-04-01
We have developed a general framework for numerical simulation of various types of scenarios that can occur for the detection of improvised explosive devices (IEDs) through the use of excitation using incident electromagnetic waves. A central component model of this framework is an S-matrix representation of a multilayered composite material system. Each layer of the system is characterized by an average thickness and an effective electric permittivity function. The outputs of this component are the reflectivity and the transmissivity as functions of frequency and angle of the incident electromagnetic wave. The input of the component is a parameterized analytic-function representation of the electric permittivity as a function of frequency, which is provided by another component model of the framework. The permittivity function is constructed by fitting response spectra calculated using density functional theory (DFT) and parameter adjustment according to any additional information that may be available, e.g., experimentally measured spectra or theory-based assumptions concerning spectral features. A prototype simulation is described that considers response characteristics for THz excitation of the high explosive β-HMX. This prototype simulation includes a description of a procedure for calculating response spectra using DFT as input to the Smatrix model. For this purpose, the DFT software NRLMOL was adopted. © 2011 Society for Applied Spectroscopy
Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen
2014-09-09
The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation.
The Application of Fourteenth Amendment Norms to Private Colleges and Universities.
ERIC Educational Resources Information Center
Thigpen, Richard
1982-01-01
Examines various theories that courts have used in applying Fourteenth Amendment criteria to nonpublic colleges and universities. Specifically examined are the agency theory for state actions; the public responsibility, government function,and stae involvement doctrines; the theory of permissive norms; and the concept of natural justice.…
Sensitivity, Functional Analysis, and Behavior Genetics: A Response to Freeman et al.
ERIC Educational Resources Information Center
Reiss, Steven; Havercamp, Susan M.
1999-01-01
Sensitivity theory divides the causes of challenging behavior into three categories, aberrant contingencies, aberrant environments, and aberrant motivation. This paper replies to criticism that sensitivity theory is circular and unsupported by empirical evidence by reporting on studies that support the theory and rejecting the idea that…
NASA Astrophysics Data System (ADS)
Song, Y.; Yao, Q.; Wang, G.; Yang, X.; Mayes, M. A.
2017-12-01
Increasing evidences is indicating that soil organic matter (SOM) decomposition and stabilization process is a continuum process and controlled by both microbial functions and their interaction with minerals (known as the microbial efficiency-matrix stabilization theory (MEMS)). Our metagenomics analysis of soil samples from both P-deficit and P-fertilization sites in Panama has demonstrated that community-level enzyme functions could adapt to maximize the acquisition of limiting nutrients and minimize energy demand for foraging (known as the optimal foraging theory). This optimization scheme can mitigate the imbalance of C/P ratio between soil substrate and microbial community and relieve the P limitation on microbial carbon use efficiency over the time. Dynamic allocation of multiple enzyme groups and their interaction with microbial/substrate stoichiometry has rarely been considered in biogeochemical models due to the difficulties in identifying microbial functional groups and quantifying the change in enzyme expression in response to soil nutrient availability. This study aims to represent the omics-informed optimal foraging theory in the Continuum Microbial ENzyme Decomposition model (CoMEND), which was developed to represent the continuum SOM decomposition process following the MEMS theory. The SOM pools in the model are classified based on soil chemical composition (i.e. Carbohydrates, lignin, N-rich SOM and P-rich SOM) and the degree of SOM depolymerization. The enzyme functional groups for decomposition of each SOM pool and N/P mineralization are identified by the relative composition of gene copy numbers. The responses of microbial activities and SOM decomposition to nutrient availability are simulated by optimizing the allocation of enzyme functional groups following the optimal foraging theory. The modeled dynamic enzyme allocation in response to P availability is evaluated by the metagenomics data measured from P addition and P-deficit soil samples in Panama sites.The implementation of dynamic enzyme allocation in response to nutrient availability in the CoMEND model enables us to capture the varying microbial C/P ratio and soil carbon dynamics in response to shifting nutrient constraints over time in tropical soils.
Conceptual change and preschoolers' theory of mind: evidence from load-force adaptation.
Sabbagh, Mark A; Hopkins, Sydney F R; Benson, Jeannette E; Flanagan, J Randall
2010-01-01
Prominent theories of preschoolers' theory of mind development have included a central role for changing or adapting existing conceptual structures in response to experiences. Because of the relatively protracted timetable of theory of mind development, it has been difficult to test this assumption about the role of adaptation directly. To gain evidence that cognitive adaptation is particularly important for theory of mind development, we sought to determine whether individual differences in cognitive adaptation in a non-social domain predicted preschoolers' theory of mind development. Twenty-five preschoolers were tested on batteries of theory of mind tasks, executive functioning tasks, and on their ability to adapt their lifting behavior to smoothly lift an unexpectedly heavy object. Results showed that children who adapted their lifting behavior more rapidly performed better on theory of mind tasks than those who adapted more slowly. These findings held up when age and performance on the executive functioning battery were statistically controlled. Although preliminary, we argue that this relation is attributable to individual differences in children's domain general abilities to efficiently change existing conceptual structures in response to experience. Copyright © 2010 Elsevier Ltd. All rights reserved.
A Membrane Model from Implicit Elasticity Theory
Freed, A. D.; Liao, J.; Einstein, D. R.
2014-01-01
A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal-energy function. The theory utilizes Biot’s (1939) definitions for stress and strain that, in 1-dimension, are the stress/strain measures adopted by Fung (1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from a porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly non-linear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model. PMID:24282079
Lischner, Johannes; Arias, T A
2010-02-11
We present an accurate free-energy functional for liquid water written in terms of a set of effective potential fields in which fictitious noninteracting water molecules move. The functional contains an exact expression of the entropy of noninteracting molecules and thus provides an ideal starting point for the inclusion of complex intermolecular interactions which depend on the orientation of the interacting molecules. We show how an excess free-energy functional can be constructed to reproduce the following properties of water: the dielectric response; the experimental site-site correlation functions; the surface tension; the bulk modulus of the liquid and the variation of this modulus with pressure; the density of the liquid and the vapor phase; and liquid-vapor coexistence. As a demonstration, we present results for the application of this theory to the behavior of liquid water in a parallel plate capacitor. In particular, we make predictions for the dielectric response of water in the nonlinear regime, finding excellent agreement with known data.
Local representation of the electronic dielectric response function
Lu, Deyu; Ge, Xiaochuan
2015-12-11
We present a local representation of the electronic dielectric response function, based on a spatial partition of the dielectric response into contributions from each occupied Wannier orbital using a generalized density functional perturbation theory. This procedure is fully ab initio, and therefore allows us to rigorously define local metrics, such as “bond polarizability,” on Wannier centers. We show that the locality of the bare response function is determined by the locality of three quantities: Wannier functions of the occupied manifold, the density matrix, and the Hamiltonian matrix. Furthermore, in systems with a gap, the bare dielectric response is exponentially localized,more » which supports the physical picture of the dielectric response function as a collection of interacting local responses that can be captured by a tight-binding model.« less
Framing anomaly in the effective theory of the fractional quantum Hall effect.
Gromov, Andrey; Cho, Gil Young; You, Yizhi; Abanov, Alexander G; Fradkin, Eduardo
2015-01-09
We consider the geometric part of the effective action for the fractional quantum Hall effect (FQHE). It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions. In the lowest order in gradients, the linear response generating functional includes Chern-Simons, Wen-Zee, and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and contributes to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses for non-Abelian FQH states.
Theory of mind and central coherence in adults with high-functioning autism or Asperger syndrome.
Beaumont, Renae; Newcombe, Peter
2006-07-01
The study investigated theory of mind and central coherence abilities in adults with high-functioning autism (HFA) or Asperger syndrome (AS) using naturalistic tasks. Twenty adults with HFA/AS correctly answered significantly fewer theory of mind questions than 20 controls on a forced-choice response task. On a narrative task, there were no differences in the proportion of mental state words between the two groups, although the participants with HFA/AS were less inclined to provide explanations for characters' mental states. No between-group differences existed on the central coherence questions of the forced-choice response task, and the participants with HFA/AS included an equivalent proportion of explanations for non-mental state phenomena in their narratives as did controls. These results support the theory of mind deficit account of autism spectrum disorders, and suggest that difficulties in mental state attribution cannot be exclusively attributed to weak central coherence.
ERIC Educational Resources Information Center
Çokluk, Ömay; Gül, Emrah; Dogan-Gül, Çilem
2016-01-01
The study aims to examine whether differential item function is displayed in three different test forms that have item orders of random and sequential versions (easy-to-hard and hard-to-easy), based on Classical Test Theory (CTT) and Item Response Theory (IRT) methods and bearing item difficulty levels in mind. In the correlational research, the…
ERIC Educational Resources Information Center
Blau, Judith R.; And Others
Traditional theoretical explanations for the rate of expansion of educational institutions have included the "organizational ecology" model of new foundings as a function of population density, the "institutional theory" argument that foundings are responsive to societal/consumer demand, and theories of political economy which describe foundings…
An Introduction to Multilinear Formula Score Theory. Measurement Series 84-4.
ERIC Educational Resources Information Center
Levine, Michael V.
Formula score theory (FST) associates each multiple choice test with a linear operator and expresses all of the real functions of item response theory as linear combinations of the operator's eigenfunctions. Hard measurement problems can then often be reformulated as easier, standard mathematical problems. For example, the problem of estimating…
What Information Theory Says about Bounded Rational Best Response
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2005-01-01
Probability Collectives (PC) provides the information-theoretic extension of conventional full-rationality game theory to bounded rational games. Here an explicit solution to the equations giving the bounded rationality equilibrium of a game is presented. Then PC is used to investigate games in which the players use bounded rational best-response strategies. Next it is shown that in the continuum-time limit, bounded rational best response games result in a variant of the replicator dynamics of evolutionary game theory. It is then shown that for team (shared-payoff) games, this variant of replicator dynamics is identical to Newton-Raphson iterative optimization of the shared utility function.
Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity.
Just, Marcel Adam; Keller, Timothy A; Malave, Vicente L; Kana, Rajesh K; Varma, Sashank
2012-04-01
The underconnectivity theory of autism attributes the disorder to lower anatomical and functional systems connectivity between frontal and more posterior cortical processing. Here we review evidence for the theory and present a computational model of an executive functioning task (Tower of London) implementing the assumptions of underconnectivity. We make two modifications to a previous computational account of performance and brain activity in typical individuals in the Tower of London task (Newman et al., 2003): (1) the communication bandwidth between frontal and parietal areas was decreased and (2) the posterior centers were endowed with more executive capability (i.e., more autonomy, an adaptation is proposed to arise in response to the lowered frontal-posterior bandwidth). The autism model succeeds in matching the lower frontal-posterior functional connectivity (lower synchronization of activation) seen in fMRI data, as well as providing insight into behavioral response time results. The theory provides a unified account of how a neural dysfunction can produce a neural systems disorder and a psychological disorder with the widespread and diverse symptoms of autism. Copyright © 2012 Elsevier Ltd. All rights reserved.
Autism as a neural systems disorder: A theory of frontal-posterior underconnectivity
Just, Marcel Adam; Keller, Timothy A.; Malave, Vicente L.; Kana, Rajesh K.; Varma, Sashank
2012-01-01
The underconnectivity theory of autism attributes the disorder to lower anatomical and functional systems connectivity between frontal and more posterior cortical processing. Here we review evidence for the theory and present a computational model of an executive functioning task (Tower of London) implementing the assumptions of underconnectivity. We make two modifications to a previous computational account of performance and brain activity in typical individuals in the Tower of London task (Newman et al., 2003): (1) the communication bandwidth between frontal and parietal areas was decreased and (2) the posterior centers were endowed with more executive capability (i.e., more autonomy, an adaptation is proposed to arise in response to the lowered frontal-posterior bandwidth). The autism model succeeds in matching the lower frontal-posterior functional connectivity (lower synchronization of activation) seen in fMRI data, as well as providing insight into behavioral response time results. The theory provides a unified account of how a neural dysfunction can produce a neural systems disorder and a psychological disorder with the widespread and diverse symptoms of autism. PMID:22353426
ERIC Educational Resources Information Center
Suthakaran, V.
2012-01-01
In this response, the author addresses Hansen's (2012) call for the counseling profession to substitute science with humanities as its primary ideology. The author uses Epstein's (1994) cognitive-experiential self-theory to show that an equal appreciation for science and humanities is more congruent with a holistic humanistic vision for…
Assessing the Utility of Item Response Theory Models: Differential Item Functioning.
ERIC Educational Resources Information Center
Scheuneman, Janice Dowd
The current status of item response theory (IRT) is discussed. Several IRT methods exist for assessing whether an item is biased. Focus is on methods proposed by L. M. Rudner (1975), F. M. Lord (1977), D. Thissen et al. (1988) and R. L. Linn and D. Harnisch (1981). Rudner suggested a measure of the area lying between the two item characteristic…
NASA Astrophysics Data System (ADS)
Constantin, Lucian A.; Fabiano, Eduardo; Della Sala, Fabio
2018-05-01
Orbital-free density functional theory (OF-DFT) promises to describe the electronic structure of very large quantum systems, being its computational cost linear with the system size. However, the OF-DFT accuracy strongly depends on the approximation made for the kinetic energy (KE) functional. To date, the most accurate KE functionals are nonlocal functionals based on the linear-response kernel of the homogeneous electron gas, i.e., the jellium model. Here, we use the linear-response kernel of the jellium-with-gap model to construct a simple nonlocal KE functional (named KGAP) which depends on the band-gap energy. In the limit of vanishing energy gap (i.e., in the case of metals), the KGAP is equivalent to the Smargiassi-Madden (SM) functional, which is accurate for metals. For a series of semiconductors (with different energy gaps), the KGAP performs much better than SM, and results are close to the state-of-the-art functionals with sophisticated density-dependent kernels.
Toward a Responsibility-Catering Prioritarian Ethical Theory of Risk.
Wikman-Svahn, Per; Lindblom, Lars
2018-03-05
Standard tools used in societal risk management such as probabilistic risk analysis or cost-benefit analysis typically define risks in terms of only probabilities and consequences and assume a utilitarian approach to ethics that aims to maximize expected utility. The philosopher Carl F. Cranor has argued against this view by devising a list of plausible aspects of the acceptability of risks that points towards a non-consequentialist ethical theory of societal risk management. This paper revisits Cranor's list to argue that the alternative ethical theory responsibility-catering prioritarianism can accommodate the aspects identified by Cranor and that the elements in the list can be used to inform the details of how to view risks within this theory. An approach towards operationalizing the theory is proposed based on a prioritarian social welfare function that operates on responsibility-adjusted utilities. A responsibility-catering prioritarian ethical approach towards managing risks is a promising alternative to standard tools such as cost-benefit analysis.
Determination of a response function of a thermocouple using a short acoustic pulse.
Tashiro, Yusuke; Biwa, Tetsushi; Yazaki, Taichi
2007-04-01
This paper reports on an experimental technique to determine a response function of a thermocouple using a short acoustic pulse wave. A pulse of 10 ms is generated in a tube filled with 1 bar helium gas. The temperature is measured using the thermocouple. The reference temperature is deduced from the measured pressure on the basis of a laminar oscillating flow theory. The response function of the thermocouple is obtained as a function of frequency below 50 Hz through a comparison between the measured and reference temperatures.
Dopamine Reward Prediction Error Responses Reflect Marginal Utility
Stauffer, William R.; Lak, Armin; Schultz, Wolfram
2014-01-01
Summary Background Optimal choices require an accurate neuronal representation of economic value. In economics, utility functions are mathematical representations of subjective value that can be constructed from choices under risk. Utility usually exhibits a nonlinear relationship to physical reward value that corresponds to risk attitudes and reflects the increasing or decreasing marginal utility obtained with each additional unit of reward. Accordingly, neuronal reward responses coding utility should robustly reflect this nonlinearity. Results In two monkeys, we measured utility as a function of physical reward value from meaningful choices under risk (that adhered to first- and second-order stochastic dominance). The resulting nonlinear utility functions predicted the certainty equivalents for new gambles, indicating that the functions’ shapes were meaningful. The monkeys were risk seeking (convex utility function) for low reward and risk avoiding (concave utility function) with higher amounts. Critically, the dopamine prediction error responses at the time of reward itself reflected the nonlinear utility functions measured at the time of choices. In particular, the reward response magnitude depended on the first derivative of the utility function and thus reflected the marginal utility. Furthermore, dopamine responses recorded outside of the task reflected the marginal utility of unpredicted reward. Accordingly, these responses were sufficient to train reinforcement learning models to predict the behaviorally defined expected utility of gambles. Conclusions These data suggest a neuronal manifestation of marginal utility in dopamine neurons and indicate a common neuronal basis for fundamental explanatory constructs in animal learning theory (prediction error) and economic decision theory (marginal utility). PMID:25283778
Fransson, Thomas; Saue, Trond; Norman, Patrick
2016-05-10
The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition energies being equal to 1.46, 1.50, 1.38, and 0.89 eV.
Open-Ended Recursive Approach for the Calculation of Multiphoton Absorption Matrix Elements
2015-01-01
We present an implementation of single residues for response functions to arbitrary order using a recursive approach. Explicit expressions in terms of density-matrix-based response theory for the single residues of the linear, quadratic, cubic, and quartic response functions are also presented. These residues correspond to one-, two-, three- and four-photon transition matrix elements. The newly developed code is used to calculate the one-, two-, three- and four-photon absorption cross sections of para-nitroaniline and para-nitroaminostilbene, making this the first treatment of four-photon absorption in the framework of response theory. We find that the calculated multiphoton absorption cross sections are not very sensitive to the size of the basis set as long as a reasonably large basis set with diffuse functions is used. The choice of exchange–correlation functional, however, significantly affects the calculated cross sections of both charge-transfer transitions and other transitions, in particular, for the larger para-nitroaminostilbene molecule. We therefore recommend the use of a range-separated exchange–correlation functional in combination with the augmented correlation-consistent double-ζ basis set aug-cc-pVDZ for the calculation of multiphoton absorption properties. PMID:25821415
Rise and fall of the two visual systems theory.
Rossetti, Yves; Pisella, Laure; McIntosh, Robert D
2017-06-01
Among the many dissociations describing the visual system, the dual theory of two visual systems, respectively dedicated to perception and action, has yielded a lot of support. There are psychophysical, anatomical and neuropsychological arguments in favor of this theory. Several behavioral studies that used sensory and motor psychophysical parameters observed differences between perceptive and motor responses. The anatomical network of the visual system in the non-human primate was very readily organized according to two major pathways, dorsal and ventral. Neuropsychological studies, exploring optic ataxia and visual agnosia as characteristic deficits of these two pathways, led to the proposal of a functional double dissociation between visuomotor and visual perceptual functions. After a major wave of popularity that promoted great advances, particularly in knowledge of visuomotor functions, the guiding theory is now being reconsidered. Firstly, the idea of a double dissociation between optic ataxia and visual form agnosia, as cleanly separating visuomotor from visual perceptual functions, is no longer tenable; optic ataxia does not support a dissociation between perception and action and might be more accurately viewed as a negative image of action blindsight. Secondly, dissociations between perceptive and motor responses highlighted in the framework of this theory concern a very elementary level of action, even automatically guided action routines. Thirdly, the very rich interconnected network of the visual brain yields few arguments in favor of a strict perception/action dissociation. Overall, the dissociation between motor function and perceptive function explored by these behavioral and neuropsychological studies can help define an automatic level of action organization deficient in optic ataxia and preserved in action blindsight, and underlines the renewed need to consider the perception-action circle as a functional ensemble. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi.
Hoeksema, Jason D; Chaudhary, V Bala; Gehring, Catherine A; Johnson, Nancy Collins; Karst, Justine; Koide, Roger T; Pringle, Anne; Zabinski, Catherine; Bever, James D; Moore, John C; Wilson, Gail W T; Klironomos, John N; Umbanhowar, James
2010-03-01
Ecology Letters (2010) 13: 394-407 Abstract Mycorrhizal fungi influence plant growth, local biodiversity and ecosystem function. Effects of the symbiosis on plants span the continuum from mutualism to parasitism. We sought to understand this variation in symbiotic function using meta-analysis with information theory-based model selection to assess the relative importance of factors in five categories: (1) identity of the host plant and its functional characteristics, (2) identity and type of mycorrhizal fungi (arbuscular mycorrhizal vs. ectomycorrhizal), (3) soil fertility, (4) biotic complexity of the soil and (5) experimental location (laboratory vs. field). Across most subsets of the data, host plant functional group and N-fertilization were surprisingly much more important in predicting plant responses to mycorrhizal inoculation ('plant response') than other factors. Non-N-fixing forbs and woody plants and C(4) grasses responded more positively to mycorrhizal inoculation than plants with N-fixing bacterial symbionts and C(3) grasses. In laboratory studies of the arbuscular mycorrhizal symbiosis, plant response was more positive when the soil community was more complex. Univariate analyses supported the hypothesis that plant response is most positive when plants are P-limited rather than N-limited. These results emphasize that mycorrhizal function depends on both abiotic and biotic context, and have implications for plant community theory and restoration ecology.
NASA Astrophysics Data System (ADS)
Wang, Yuewu; Wu, Dafang
2016-10-01
Dynamic response of an axially functionally graded (AFG) beam under thermal environment subjected to a moving harmonic load is investigated within the frameworks of classical beam theory (CBT) and Timoshenko beam theory (TBT). The Lagrange method is employed to derive the equations of thermal buckling for AFG beam, and then with the critical buckling temperature as a parameter the Newmark-β method is adopted to evaluate the dynamic response of AFG beam under thermal environments. Admissible functions denoting transverse displacement are expressed in simple algebraic polynomial forms. Temperature-dependency of material constituent is considered. The rule of mixture (Voigt model) and Mori-Tanaka (MT) scheme are used to evaluate the beam's effective material properties. A ceramic-metal AFG beam with immovable boundary condition is considered as numerical illustration to show the thermal effects on the dynamic behaviors of the beam subjected to a moving harmonic load.
Neural field theory of perceptual echo and implications for estimating brain connectivity
NASA Astrophysics Data System (ADS)
Robinson, P. A.; Pagès, J. C.; Gabay, N. C.; Babaie, T.; Mukta, K. N.
2018-04-01
Neural field theory is used to predict and analyze the phenomenon of perceptual echo in which random input stimuli at one location are correlated with electroencephalographic responses at other locations. It is shown that this echo correlation (EC) yields an estimate of the transfer function from the stimulated point to other locations. Modal analysis then explains the observed spatiotemporal structure of visually driven EC and the dominance of the alpha frequency; two eigenmodes of similar amplitude dominate the response, leading to temporal beating and a line of low correlation that runs from the crown of the head toward the ears. These effects result from mode splitting and symmetry breaking caused by interhemispheric coupling and cortical folding. It is shown how eigenmodes obtained from functional magnetic resonance imaging experiments can be combined with temporal dynamics from EC or other evoked responses to estimate the spatiotemporal transfer function between any two points and hence their effective connectivity.
Single-particle energies and density of states in density functional theory
NASA Astrophysics Data System (ADS)
van Aggelen, H.; Chan, G. K.-L.
2015-07-01
Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.
Höfener, Sebastian; Gomes, André Severo Pereira; Visscher, Lucas
2012-01-28
In this article, we present a consistent derivation of a density functional theory (DFT) based embedding method which encompasses wave-function theory-in-DFT (WFT-in-DFT) and the DFT-based subsystem formulation of response theory (DFT-in-DFT) by Neugebauer [J. Neugebauer, J. Chem. Phys. 131, 084104 (2009)] as special cases. This formulation, which is based on the time-averaged quasi-energy formalism, makes use of the variation Lagrangian techniques to allow the use of non-variational (in particular: coupled cluster) wave-function-based methods. We show how, in the time-independent limit, we naturally obtain expressions for the ground-state DFT-in-DFT and WFT-in-DFT embedding via a local potential. We furthermore provide working equations for the special case in which coupled cluster theory is used to obtain the density and excitation energies of the active subsystem. A sample application is given to demonstrate the method. © 2012 American Institute of Physics
Diagrammatic expansion for positive density-response spectra: Application to the electron gas
NASA Astrophysics Data System (ADS)
Uimonen, A.-M.; Stefanucci, G.; Pavlyukh, Y.; van Leeuwen, R.
2015-03-01
In a recent paper [Phys. Rev. B 90, 115134 (2014), 10.1103/PhysRevB.90.115134] we put forward a diagrammatic expansion for the self-energy which guarantees the positivity of the spectral function. In this work we extend the theory to the density-response function. We write the generic diagram for the density-response spectrum as the sum of "partitions." In a partition the original diagram is evaluated using time-ordered Green's functions on the left half of the diagram, antitime-ordered Green's functions on the right half of the diagram, and lesser or greater Green's function gluing the two halves. As there exists more than one way to cut a diagram in two halves, to every diagram corresponds more than one partition. We recognize that the most convenient diagrammatic objects for constructing a theory of positive spectra are the half-diagrams. Diagrammatic approximations obtained by summing the squares of half-diagrams do indeed correspond to a combination of partitions which, by construction, yield a positive spectrum. We develop the theory using bare Green's functions and subsequently extend it to dressed Green's functions. We further prove a connection between the positivity of the spectral function and the analytic properties of the polarizability. The general theory is illustrated with several examples and then applied to solve the long-standing problem of including vertex corrections without altering the positivity of the spectrum. In fact already the first-order vertex diagram, relevant to the study of gradient expansion, Friedel oscillations, etc., leads to spectra which are negative in certain frequency domain. We find that the simplest approximation to cure this deficiency is given by the sum of the zeroth-order bubble diagram, the first-order vertex diagram, and a partition of the second-order ladder diagram. We evaluate this approximation in the three-dimensional homogeneous electron gas and show the positivity of the spectrum for all frequencies and densities.
Dopamine reward prediction error responses reflect marginal utility.
Stauffer, William R; Lak, Armin; Schultz, Wolfram
2014-11-03
Optimal choices require an accurate neuronal representation of economic value. In economics, utility functions are mathematical representations of subjective value that can be constructed from choices under risk. Utility usually exhibits a nonlinear relationship to physical reward value that corresponds to risk attitudes and reflects the increasing or decreasing marginal utility obtained with each additional unit of reward. Accordingly, neuronal reward responses coding utility should robustly reflect this nonlinearity. In two monkeys, we measured utility as a function of physical reward value from meaningful choices under risk (that adhered to first- and second-order stochastic dominance). The resulting nonlinear utility functions predicted the certainty equivalents for new gambles, indicating that the functions' shapes were meaningful. The monkeys were risk seeking (convex utility function) for low reward and risk avoiding (concave utility function) with higher amounts. Critically, the dopamine prediction error responses at the time of reward itself reflected the nonlinear utility functions measured at the time of choices. In particular, the reward response magnitude depended on the first derivative of the utility function and thus reflected the marginal utility. Furthermore, dopamine responses recorded outside of the task reflected the marginal utility of unpredicted reward. Accordingly, these responses were sufficient to train reinforcement learning models to predict the behaviorally defined expected utility of gambles. These data suggest a neuronal manifestation of marginal utility in dopamine neurons and indicate a common neuronal basis for fundamental explanatory constructs in animal learning theory (prediction error) and economic decision theory (marginal utility). Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Operant Variability and Voluntary Action
ERIC Educational Resources Information Center
Neuringer, Allen; Jensen, Greg
2010-01-01
A behavior-based theory identified 2 characteristics of voluntary acts. The first, extensively explored in operant-conditioning experiments, is that voluntary responses produce the reinforcers that control them. This bidirectional relationship--in which reinforcer depends on response and response on reinforcer--demonstrates the functional nature…
Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide.
Adhikari, Puja; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Steinmetz, Nicole F; Podgornik, Rudolf; Ching, Wai-Yim
2014-07-08
Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.
A recipe for free-energy functionals of polarizable molecular fluids
NASA Astrophysics Data System (ADS)
Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Arias, T. A.
2014-04-01
Classical density-functional theory is the most direct approach to equilibrium structures and free energies of inhomogeneous liquids, but requires the construction of an approximate free-energy functional for each liquid of interest. We present a general recipe for constructing functionals for small-molecular liquids based only on bulk experimental properties and ab initio calculations of a single solvent molecule. This recipe combines the exact free energy of the non-interacting system with fundamental measure theory for the repulsive contribution and a weighted density functional for the short-ranged attractive interactions. We add to these ingredients a weighted polarization functional for the long-range correlations in both the rotational and molecular-polarizability contributions to the dielectric response. We also perform molecular dynamics calculations for the free energy of cavity formation and the high-field dielectric response, and show that our free-energy functional adequately describes these properties (which are key for accurate solvation calculations) for all three solvents in our study: water, chloroform, and carbon tetrachloride.
Using Data Augmentation and Markov Chain Monte Carlo for the Estimation of Unfolding Response Models
ERIC Educational Resources Information Center
Johnson, Matthew S.; Junker, Brian W.
2003-01-01
Unfolding response models, a class of item response theory (IRT) models that assume a unimodal item response function (IRF), are often used for the measurement of attitudes. Verhelst and Verstralen (1993)and Andrich and Luo (1993) independently developed unfolding response models by relating the observed responses to a more common monotone IRT…
Dynamics of polymers: A mean-field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, Glenn H.; Materials Research Laboratory, University of California, Santa Barbara, California 93106; Department of Materials, University of California, Santa Barbara, California 93106
2014-02-28
We derive a general mean-field theory of inhomogeneous polymer dynamics; a theory whose form has been speculated and widely applied, but not heretofore derived. Our approach involves a functional integral representation of a Martin-Siggia-Rose (MSR) type description of the exact many-chain dynamics. A saddle point approximation to the generating functional, involving conditions where the MSR action is stationary with respect to a collective density field ρ and a conjugate MSR response field ϕ, produces the desired dynamical mean-field theory. Besides clarifying the proper structure of mean-field theory out of equilibrium, our results have implications for numerical studies of polymer dynamicsmore » involving hybrid particle-field simulation techniques such as the single-chain in mean-field method.« less
A Membrane Model from Implicit Elasticity Theory. Application to Visceral Pleura
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freed, Alan D.; Liao, Jun; Einstein, Daniel R.
2013-11-27
A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal energy function. The theory utilizes Biot’s (Lond Edinb Dublin Philos Mag J Sci 27:468–489, 1939) definitions for stress and strain that, in one-dimension, are the stress/strain measures adopted by Fung (Am J Physiol 28:1532–1544, 1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from amore » porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly nonlinear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model.« less
Senn, Florian; Krykunov, Mykhaylo
2015-10-22
For the polyacenes series from naphthalene to hexacene, we present the vertical singlet excitation energies 1 (1)La and 1 (1)Lb, as well as the first triplet excitation energies obtained by the all-order constricted variational density functional theory with orbital relaxation (R-CV(∞)-DFT). R-CV(∞)-DFT is a further development of variational density functional theory (CV(∞)-DFT), which has already been successfully applied for the calculation of the vertical singlet excitation energies (1)La and (1)Lb for polyacenes,15 and we show that one obtains consistent excitation energies using the local density approximation as a functional for singlet as well as for triplet excitations when going beyond the linear response theory. Furthermore, we apply self-consistent field density functional theory (ΔSCF-DFT) and compare the obtained excitation energies for the first triplet excitations T1, where, due to the character of the transition, ΔSCF-DFT and R-CV(∞)-DFT become numerically equivalent, and for the singlet excitations 1 (1)La and 1 (1)Lb, where the two methods differ.
Fransson, Thomas; Burdakova, Daria; Norman, Patrick
2016-05-21
X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems.
Theory of correlation in a network with synaptic depression
NASA Astrophysics Data System (ADS)
Igarashi, Yasuhiko; Oizumi, Masafumi; Okada, Masato
2012-01-01
Synaptic depression affects not only the mean responses of neurons but also the correlation of response variability in neural populations. Although previous studies have constructed a theory of correlation in a spiking neuron model by using the mean-field theory framework, synaptic depression has not been taken into consideration. We expanded the previous theoretical framework in this study to spiking neuron models with short-term synaptic depression. On the basis of this theory we analytically calculated neural correlations in a ring attractor network with Mexican-hat-type connectivity, which was used as a model of the primary visual cortex. The results revealed that synaptic depression reduces neural correlation, which could be beneficial for sensory coding. Furthermore, our study opens the way for theoretical studies on the effect of interaction change on the linear response function in large stochastic networks.
Marfeo, Elizabeth E.; Ni, Pengsheng; Bogusz, Kara; Meterko, Mark; McDonough, Christine M.; Chan, Leighton; Rasch, Elizabeth K.; Brandt, Diane E.; Jette, Alan M.
2014-01-01
Objectives To use item response theory (IRT) data simulations to construct and perform initial psychometric testing of a newly developed instrument, the Social Security Administration Behavioral Health Function (SSA-BH) instrument, that aims to assess behavioral health functioning relevant to the context of work. Design Cross-sectional survey followed by item response theory (IRT) calibration data simulations Setting Community Participants A sample of individuals applying for SSA disability benefits, claimants (N=1015), and a normative comparative sample of US adults (N=1000) Interventions None. Main Outcome Measure Social Security Administration Behavioral Health Function (SSA-BH) measurement instrument Results Item response theory analyses supported the unidimensionality of four SSA-BH scales: Mood and Emotions (35 items), Self-Efficacy (23 items), Social Interactions (6 items), and Behavioral Control (15 items). All SSA-BH scales demonstrated strong psychometric properties including reliability, accuracy, and breadth of coverage. High correlations of the simulated 5- or 10- item CATs with the full item bank indicated robust ability of the CAT approach to comprehensively characterize behavioral health function along four distinct dimensions. Conclusions Initial testing and evaluation of the SSA-BH instrument demonstrated good accuracy, reliability, and content coverage along all four scales. Behavioral function profiles of SSA claimants were generated and compared to age and sex matched norms along four scales: Mood and Emotions, Behavioral Control, Social Interactions, and Self-Efficacy. Utilizing the CAT based approach offers the ability to collect standardized, comprehensive functional information about claimants in an efficient way, which may prove useful in the context of the SSA’s work disability programs. PMID:23542404
Neural Responses to Heartbeats in the Default Network Encode the Self in Spontaneous Thoughts.
Babo-Rebelo, Mariana; Richter, Craig G; Tallon-Baudry, Catherine
2016-07-27
The default network (DN) has been consistently associated with self-related cognition, but also to bodily state monitoring and autonomic regulation. We hypothesized that these two seemingly disparate functional roles of the DN are functionally coupled, in line with theories proposing that selfhood is grounded in the neural monitoring of internal organs, such as the heart. We measured with magnetoencephalograhy neural responses evoked by heartbeats while human participants freely mind-wandered. When interrupted by a visual stimulus at random intervals, participants scored the self-relatedness of the interrupted thought. They evaluated their involvement as the first-person perspective subject or agent in the thought ("I"), and on another scale to what degree they were thinking about themselves ("Me"). During the interrupted thought, neural responses to heartbeats in two regions of the DN, the ventral precuneus and the ventromedial prefrontal cortex, covaried, respectively, with the "I" and the "Me" dimensions of the self, even at the single-trial level. No covariation between self-relatedness and peripheral autonomic measures (heart rate, heart rate variability, pupil diameter, electrodermal activity, respiration rate, and phase) or alpha power was observed. Our results reveal a direct link between selfhood and neural responses to heartbeats in the DN and thus directly support theories grounding selfhood in the neural monitoring of visceral inputs. More generally, the tight functional coupling between self-related processing and cardiac monitoring observed here implies that, even in the absence of measured changes in peripheral bodily measures, physiological and cognitive functions have to be considered jointly in the DN. The default network (DN) has been consistently associated with self-processing but also with autonomic regulation. We hypothesized that these two functions could be functionally coupled in the DN, inspired by theories according to which selfhood is grounded in the neural monitoring of internal organs. Using magnetoencephalography, we show that heartbeat-evoked responses (HERs) in the DN covary with the self-relatedness of ongoing spontaneous thoughts. HER amplitude in the ventral precuneus covaried with the "I" self-dimension, whereas HER amplitude in the ventromedial prefrontal cortex encoded the "Me" self-dimension. Our experimental results directly support theories rooting selfhood in the neural monitoring of internal organs. We propose a novel functional framework for the DN, where self-processing is coupled with physiological monitoring. Copyright © 2016 Babo-Rebelo et al.
Neural Responses to Heartbeats in the Default Network Encode the Self in Spontaneous Thoughts
Babo-Rebelo, Mariana; Richter, Craig G.
2016-01-01
The default network (DN) has been consistently associated with self-related cognition, but also to bodily state monitoring and autonomic regulation. We hypothesized that these two seemingly disparate functional roles of the DN are functionally coupled, in line with theories proposing that selfhood is grounded in the neural monitoring of internal organs, such as the heart. We measured with magnetoencephalograhy neural responses evoked by heartbeats while human participants freely mind-wandered. When interrupted by a visual stimulus at random intervals, participants scored the self-relatedness of the interrupted thought. They evaluated their involvement as the first-person perspective subject or agent in the thought (“I”), and on another scale to what degree they were thinking about themselves (“Me”). During the interrupted thought, neural responses to heartbeats in two regions of the DN, the ventral precuneus and the ventromedial prefrontal cortex, covaried, respectively, with the “I” and the “Me” dimensions of the self, even at the single-trial level. No covariation between self-relatedness and peripheral autonomic measures (heart rate, heart rate variability, pupil diameter, electrodermal activity, respiration rate, and phase) or alpha power was observed. Our results reveal a direct link between selfhood and neural responses to heartbeats in the DN and thus directly support theories grounding selfhood in the neural monitoring of visceral inputs. More generally, the tight functional coupling between self-related processing and cardiac monitoring observed here implies that, even in the absence of measured changes in peripheral bodily measures, physiological and cognitive functions have to be considered jointly in the DN. SIGNIFICANCE STATEMENT The default network (DN) has been consistently associated with self-processing but also with autonomic regulation. We hypothesized that these two functions could be functionally coupled in the DN, inspired by theories according to which selfhood is grounded in the neural monitoring of internal organs. Using magnetoencephalography, we show that heartbeat-evoked responses (HERs) in the DN covary with the self-relatedness of ongoing spontaneous thoughts. HER amplitude in the ventral precuneus covaried with the “I” self-dimension, whereas HER amplitude in the ventromedial prefrontal cortex encoded the “Me” self-dimension. Our experimental results directly support theories rooting selfhood in the neural monitoring of internal organs. We propose a novel functional framework for the DN, where self-processing is coupled with physiological monitoring. PMID:27466329
Solvatochromic shifts from coupled-cluster theory embedded in density functional theory
NASA Astrophysics Data System (ADS)
Höfener, Sebastian; Gomes, André Severo Pereira; Visscher, Lucas
2013-09-01
Building on the framework recently reported for determining general response properties for frozen-density embedding [S. Höfener, A. S. P. Gomes, and L. Visscher, J. Chem. Phys. 136, 044104 (2012)], 10.1063/1.3675845, in this work we report a first implementation of an embedded coupled-cluster in density-functional theory (CC-in-DFT) scheme for electronic excitations, where only the response of the active subsystem is taken into account. The formalism is applied to the calculation of coupled-cluster excitation energies of water and uracil in aqueous solution. We find that the CC-in-DFT results are in good agreement with reference calculations and experimental results. The accuracy of calculations is mainly sensitive to factors influencing the correlation treatment (basis set quality, truncation of the cluster operator) and to the embedding treatment of the ground-state (choice of density functionals). This allows for efficient approximations at the excited state calculation step without compromising the accuracy. This approximate scheme makes it possible to use a first principles approach to investigate environment effects with specific interactions at coupled-cluster level of theory at a cost comparable to that of calculations of the individual subsystems in vacuum.
NASA Astrophysics Data System (ADS)
Ragavendran, K.; Sherwood, Daniel; Emmanuel, Bosco
2009-02-01
Density functional theory is used to understand the response of the transition metal-oxygen octahedra in Li xMn 2O 4 and Li xNi 0.5Mn 1.5O 4 to lithium intercalation and de-intercalation. Electronic structure computations on these compounds for x=0, 0.5 and 1 indicate that the 3d DOS of Mn is almost unaffected to variations in x. On the other hand, the oxygen 2p-DOS and to a lesser extent Ni 3d DOS are found to be sensitive to perturbation. The observations are explained on the grounds of self-regulating response, characteristic of systems having localized d states that communicate with a covalent manifold.
Semi-empirical and phenomenological instrument functions for the scanning tunneling microscope
NASA Astrophysics Data System (ADS)
Feuchtwang, T. E.; Cutler, P. H.; Notea, A.
1988-08-01
Recent progress in the development of a convenient algorithm for the determination of a quantitative local density of states (LDOS) of the sample, from data measured in the STM, is reviewd. It is argued that the sample LDOS strikes a good balance between the information content of a surface characteristic and effort required to obtain it experimentally. Hence, procedures to determine the sample LDOS as directly and as tip-model independently as possible are emphasized. The solution of the STM's "inverse" problem in terms of novel versions of the instrument (or Green) function technique is considered in preference to the well known, more direct solutions. Two types of instrument functions are considered: Approximations of the basic tip-instrument function obtained from the transfer Hamiltonian theory of the STM-STS. And, phenomenological instrument functions devised as a systematic scheme for semi-empirical first order corrections of "ideal" models. The instrument function, in this case, describes the corrections as the response of an independent component of the measuring apparatus inserted between the "ideal" instrument and the measured data. This linear response theory of measurement is reviewed and applied. A procedure for the estimation of the consistency of the model and the systematic errors due to the use of an approximate instrument function is presented. The independence of the instrument function techniques from explicit microscopic models of the tip is noted. The need for semi-empirical, as opposed to strictly empirical or analytical determination of the instrument function is discussed. The extension of the theory to the scanning tunneling spectrometer is noted, as well as its use in a theory of resolution.
Eşsizoğlu, Altan; Köşger, Ferdi; Akarsu, Ferdane Özlem; Özaydin, Özer; Güleç, Gülcan
2017-06-01
The aims of the current study are to investigate the relationship between selective attention, response inhibition, and cognitive flexibility that are among executive functions and sociocognitive and socioperceptual theory of mind (ToM) functions and also to investigate whether selective attention, response inhibition, and cognitive flexibility are predictive factors for ToM functions in patients with schizophrenia. Forty-seven patients diagnosed with schizophrenia and a control group consisting of 42 individuals were administered demographic information form, Wisconsin card sorting test (WCST), Stroop test, Eye test, Hinting test. Positive and negative syndrome scale was applied to the schizophrenia group. In comparison to the control group, the schizophrenia group performed significantly worse on Eyes test and Hinting test. Eyes Test score and age, WCST perseverative error scores were significantly negatively correlated; education and WCST categories achieved scores were significantly positively correlated in patients with schizophrenia. Age and cognitive flexibility were found to predict the Eyes test score in patients with schizophrenia. ToM functions that are important in maintaining socioperceptual functioning are closely related with cognitive flexibility, and impairment in cognitive flexibility may predict the ToM functions in patients with schizophrenia.
ERIC Educational Resources Information Center
Dreisbach, Gesine; Fischer, Rico
2012-01-01
Theories of human action control deal with the question of how cognitive control is dynamically adjusted to task demands. The conflict monitoring theory of anterior cingulate (ACC) function suggests that the ACC monitors for response conflicts in the ongoing processing stream thereby triggering the mobilization of cognitive control. Alternatively,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rüger, Robert, E-mail: rueger@scm.com; Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam; Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig
2016-05-14
We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of twomore » compared to TD-DFTB.« less
Mathematical modeling of the aerodynamic characteristics in flight dynamics
NASA Technical Reports Server (NTRS)
Tobak, M.; Chapman, G. T.; Schiff, L. B.
1984-01-01
Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated.
Application of information theory to the design of line-scan imaging systems
NASA Technical Reports Server (NTRS)
Huck, F. O.; Park, S. K.; Halyo, N.; Stallman, S.
1981-01-01
Information theory is used to formulate a single figure of merit for assessing the performance of line scan imaging systems as a function of their spatial response (point spread function or modulation transfer function), sensitivity, sampling and quantization intervals, and the statistical properties of a random radiance field. Computational results for the information density and efficiency (i.e., the ratio of information density to data density) are intuitively satisfying and compare well with experimental and theoretical results obtained by earlier investigators concerned with the performance of TV systems.
Individual differences in regulatory focus predict neural response to reward.
Scult, Matthew A; Knodt, Annchen R; Hanson, Jamie L; Ryoo, Minyoung; Adcock, R Alison; Hariri, Ahmad R; Strauman, Timothy J
2017-08-01
Although goal pursuit is related to both functioning of the brain's reward circuits and psychological factors, the literatures surrounding these concepts have often been separate. Here, we use the psychological construct of regulatory focus to investigate individual differences in neural response to reward. Regulatory focus theory proposes two motivational orientations for personal goal pursuit: (1) promotion, associated with sensitivity to potential gain, and (2) prevention, associated with sensitivity to potential loss. The monetary incentive delay task was used to manipulate reward circuit function, along with instructional framing corresponding to promotion and prevention in a within-subject design. We observed that the more promotion oriented an individual was, the lower their ventral striatum response to gain cues. Follow-up analyses revealed that greater promotion orientation was associated with decreased ventral striatum response even to no-value cues, suggesting that promotion orientation may be associated with relatively hypoactive reward system function. The findings are also likely to represent an interaction between the cognitive and motivational characteristics of the promotion system with the task demands. Prevention orientation did not correlate with ventral striatum response to gain cues, supporting the discriminant validity of regulatory focus theory. The results highlight a dynamic association between individual differences in self-regulation and reward system function.
Item Response Theory and Health Outcomes Measurement in the 21st Century
Hays, Ron D.; Morales, Leo S.; Reise, Steve P.
2006-01-01
Item response theory (IRT) has a number of potential advantages over classical test theory in assessing self-reported health outcomes. IRT models yield invariant item and latent trait estimates (within a linear transformation), standard errors conditional on trait level, and trait estimates anchored to item content. IRT also facilitates evaluation of differential item functioning, inclusion of items with different response formats in the same scale, and assessment of person fit and is ideally suited for implementing computer adaptive testing. Finally, IRT methods can be helpful in developing better health outcome measures and in assessing change over time. These issues are reviewed, along with a discussion of some of the methodological and practical challenges in applying IRT methods. PMID:10982088
The Information Function for the One-Parameter Logistic Model: Is it Reliability?
ERIC Educational Resources Information Center
Doran, Harold C.
2005-01-01
The information function is an important statistic in item response theory (IRT) applications. Although the information function is often described as the IRT version of reliability, it differs from the classical notion of reliability from a critical perspective: replication. This article first explores the information function for the…
Cross-Cultural Validation of the Quality of Life in Hand Eczema Questionnaire (QOLHEQ).
Ofenloch, Robert F; Oosterhaven, Jart A F; Susitaival, Päivikki; Svensson, Åke; Weisshaar, Elke; Minamoto, Keiko; Onder, Meltem; Schuttelaar, Marie Louise A; Bulbul Baskan, Emel; Diepgen, Thomas L; Apfelbacher, Christian
2017-07-01
The Quality of Life in Hand Eczema Questionnaire (QOLHEQ) is the only instrument assessing disease-specific health-related quality of life in patients with hand eczema. It is available in eight language versions. In this study we assessed if the items of different language versions of the QOLHEQ yield comparable values across countries. An international multicenter study was conducted with participating centers in Finland, Germany, Japan, The Netherlands, Sweden, and Turkey. Methods of item response theory were applied to each subscale to assess differential item functioning for items among countries. Overall, 662 hand eczema patients were recruited into the study. Single items were removed or split according to the item response theory model by country to resolve differential item functioning. After this adjustment, none of the four subscales of the QOLHEQ showed significant misfit to the item response theory model (P < 0.01), and a Person Separation Index of greater than 0.7 showed good internal consistency for each subscale. By adapting the scoring of the QOLHEQ using the methods of item response theory, it was possible to obtain QOLHEQ values that are comparable across countries. Cross-cultural variations in the interpretation of single items were resolved. The QOLHEQ is now ready to be used in international studies assessing the health-related quality of life impact of hand eczema. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Cognitive Diagnostic Attribute-Level Discrimination Indices
ERIC Educational Resources Information Center
Henson, Robert; Roussos, Louis; Douglas, Jeff; He, Xuming
2008-01-01
Cognitive diagnostic models (CDMs) model the probability of correctly answering an item as a function of an examinee's attribute mastery pattern. Because estimation of the mastery pattern involves more than a continuous measure of ability, reliability concepts introduced by classical test theory and item response theory do not apply. The cognitive…
Are Teacher Course Evaluations Biased against Faculty That Teach Quantitative Methods Courses?
ERIC Educational Resources Information Center
Royal, Kenneth D.; Stockdale, Myrah R.
2015-01-01
The present study investigated graduate students' responses to teacher/course evaluations (TCE) to determine if students' responses were inherently biased against faculty who teach quantitative methods courses. Item response theory (IRT) and Differential Item Functioning (DIF) techniques were utilized for data analysis. Results indicate students…
NASA Astrophysics Data System (ADS)
Berland, K.; Einstein, T. L.; Hyldgaard, P.
2012-01-01
The response of the Cu(111) Shockley surface state to an external electrical field is characterized by combining a density-functional theory calculation for a slab geometry with an analysis of the Kohn-Sham wave functions. Our analysis is facilitated by a decoupling of the Kohn-Sham states via a rotation in Hilbert space. We find that the surface state displays isotropic dispersion, quadratic until the Fermi wave vector but with a significant quartic contribution beyond. We calculate the shift in energetic position and effective mass of the surface state for an electrical field perpendicular to the Cu(111) surface; the response is linear over a broad range of field strengths. We find that charge transfer occurs beyond the outermost copper atoms and that accumulation of electrons is responsible for a quarter of the screening of the electrical field. This allows us to provide well converged determinations of the field-induced changes in the surface state for a moderate number of layers in the slab geometry.
A succession of theories: purging redundancy from disturbance theory.
Pulsford, Stephanie A; Lindenmayer, David B; Driscoll, Don A
2016-02-01
The topics of succession and post-disturbance ecosystem recovery have a long and convoluted history. There is extensive redundancy within this body of theory, which has resulted in confusion, and the links among theories have not been adequately drawn. This review aims to distil the unique ideas from the array of theory related to ecosystem change in response to disturbance. This will help to reduce redundancy, and improve communication and understanding between researchers. We first outline the broad range of concepts that have developed over the past century to describe community change in response to disturbance. The body of work spans overlapping succession concepts presented by Clements in 1916, Egler in 1954, and Connell and Slatyer in 1977. Other theories describing community change include state and transition models, biological legacy theory, and the application of functional traits to predict responses to disturbance. Second, we identify areas of overlap of these theories, in addition to highlighting the conceptual and taxonomic limitations of each. In aligning each of these theories with one another, the limited scope and relative inflexibility of some theories becomes apparent, and redundancy becomes explicit. We identify a set of unique concepts to describe the range of mechanisms driving ecosystem responses to disturbance. We present a schematic model of our proposed synthesis which brings together the range of unique mechanisms that were identified in our review. The model describes five main mechanisms of transition away from a post-disturbance community: (i) pulse events with rapid state shifts; (ii) stochastic community drift; (iii) facilitation; (iv) competition; and (v) the influence of the initial composition of a post-disturbance community. In addition, stabilising processes such as biological legacies, inhibition or continuing disturbance may prevent a transition between community types. Integrating these six mechanisms with the functional trait approach is likely to improve the predictive capacity of disturbance theory. Finally, we complement our discussion of theory with a case study which emphasises that many post-disturbance theories apply simultaneously to the same ecosystem. Using the well-studied mountain ash (Eucalyptus regnans) forests of south-eastern Australia, we illustrate phenomena that align with six of the theories described in our model of rationalised disturbance theory. We encourage further work to improve our schematic model, increase coverage of disturbance-related theory, and to show how the model may link to, or integrate with, other domains of ecological theory. © 2014 Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Silaev, M. A.
2018-06-01
We develop a theory based on the formalism of quasiclassical Green's functions to study the spin dynamics in superfluid ^3He. First, we derive kinetic equations for the spin-dependent distribution function in the bulk superfluid reproducing the results obtained earlier without quasiclassical approximation. Then, we consider spin dynamics near the surface of fully gapped ^3He-B-phase taking into account spin relaxation due to the transitions in the spectrum of localized fermionic states. The lifetimes of longitudinal and transverse spin waves are calculated taking into account the Fermi-liquid corrections which lead to a crucial modification of fermionic spectrum and spin responses.
Thermospheric dynamics - A system theory approach
NASA Technical Reports Server (NTRS)
Codrescu, M.; Forbes, J. M.; Roble, R. G.
1990-01-01
A system theory approach to thermospheric modeling is developed, based upon a linearization method which is capable of preserving nonlinear features of a dynamical system. The method is tested using a large, nonlinear, time-varying system, namely the thermospheric general circulation model (TGCM) of the National Center for Atmospheric Research. In the linearized version an equivalent system, defined for one of the desired TGCM output variables, is characterized by a set of response functions that is constructed from corresponding quasi-steady state and unit sample response functions. The linearized version of the system runs on a personal computer and produces an approximation of the desired TGCM output field height profile at a given geographic location.
Mokkath, Junais Habeeb
2017-12-20
Using first-principles time-dependent density functional theory calculations, we investigate the shape-anisotropy effects on the optical response of a spherical aluminium nanoparticle subjected to a stretching process in different directions. Progressively increased stretching in one direction resulted in prolate spheroid (nanorice) geometries and produced a couple of well-distinguishable dominant peaks together with some satellite peaks in the UV-visible region of the electromagnetic spectrum. On the other hand, progressively increased stretching in two directions caused multiple peaks to appear in the UV-visible region of the electromagnetic spectrum. We believe that our findings can be beneficial for the emerging and potentially far-reaching field of aluminum plasmonics.
Quasiparticle interference in multiband superconductors with strong coupling
NASA Astrophysics Data System (ADS)
Dutt, A.; Golubov, A. A.; Dolgov, O. V.; Efremov, D. V.
2017-08-01
We develop a theory of the quasiparticle interference (QPI) in multiband superconductors based on the strong-coupling Eliashberg approach within the Born approximation. In the framework of this theory, we study dependencies of the QPI response function in the multiband superconductors with the nodeless s -wave superconductive order parameter. We pay special attention to the difference in the quasiparticle scattering between the bands having the same and opposite signs of the order parameter. We show that at the momentum values close to the momentum transfer between two bands, the energy dependence of the quasiparticle interference response function has three singularities. Two of these correspond to the values of the gap functions and the third one depends on both the gaps and the transfer momentum. We argue that only the singularity near the smallest band gap may be used as a universal tool to distinguish between the s++ and s± order parameters. The robustness of the sign of the response function peak near the smaller gap value, irrespective of the change in parameters, in both the symmetry cases is a promising feature that can be harnessed experimentally.
ACIRF user's guide: Theory and examples
NASA Astrophysics Data System (ADS)
Dana, Roger A.
1989-12-01
Design and evaluation of radio frequency systems that must operate through ionospheric disturbances resulting from high altitude nuclear detonations requires an accurate channel model. This model must include the effects of high gain antennas that may be used to receive the signals. Such a model can then be used to construct realizations of the received signal for use in digital simulations of trans-ionospheric links or for use in hardware channel simulators. The FORTRAN channel model ACIRF (Antenna Channel Impulse Response Function) generates random realizations of the impulse response function at the outputs of multiple antennas. This user's guide describes the FORTRAN program ACIRF (version 2.0) that generates realizations of channel impulse response functions at the outputs of multiple antennas with arbitrary beamwidths, pointing angles, and relatives positions. This channel model is valid under strong scattering conditions when Rayleigh fading statistics apply. Both frozen-in and turbulent models for the temporal fluctuations are included in this version of ACIRF. The theory of the channel model is described and several examples are given.
Boisdenghien, Zino; Fias, Stijn; Van Alsenoy, Christian; De Proft, Frank; Geerlings, Paul
2014-07-28
Most of the work done on the linear response kernel χ(r,r') has focussed on its atom-atom condensed form χAB. Our previous work [Boisdenghien et al., J. Chem. Theory Comput., 2013, 9, 1007] was the first effort to truly focus on the non-condensed form of this function for closed (sub)shell atoms in a systematic fashion. In this work, we extend our method to the open shell case. To simplify the plotting of our results, we average our results to a symmetrical quantity χ(r,r'). This allows us to plot the linear response kernel for all elements up to and including argon and to investigate the periodicity throughout the first three rows in the periodic table and in the different representations of χ(r,r'). Within the context of Spin Polarized Conceptual Density Functional Theory, the first two-dimensional plots of spin polarized linear response functions are presented and commented on for some selected cases on the basis of the atomic ground state electronic configurations. Using the relation between the linear response kernel and the polarizability we compare the values of the polarizability tensor calculated using our method to high-level values.
Pastore, Mariachiara; Assfeld, Xavier; Mosconi, Edoardo; Monari, Antonio; Etienne, Thibaud
2017-07-14
We report a theoretical study on the analysis of the relaxed one-particle difference density matrix characterizing the passage from the ground to the excited state of a molecular system, as obtained from time-dependent density functional theory. In particular, this work aims at using the physics contained in the so-called Z-vector, which differentiates between unrelaxed and relaxed difference density matrices to analyze excited states' nature. For this purpose, we introduce novel quantum-mechanical quantities, based on the detachment/attachment methodology, for analysing the Z-vector transformation for different molecules and density functional theory functionals. A derivation pathway of these novel descriptors is reported, involving a numerical integration to be performed in the Euclidean space on the density functions. This topological analysis is then applied to two sets of chromophores, and the correlation between the level of theory and the behavior of our descriptors is properly rationalized. In particular, the effect of range-separation on the relaxation amplitude is discussed. The relaxation term is finally shown to be system-specific (for a given level of theory) and independent of the number of electrons (i.e., the relaxation amplitude is not simply the result of a collective phenomenon).
An investigation into social information processing in young people with Asperger syndrome.
Flood, Andrea Mary; Julian Hare, Dougal; Wallis, Paul
2011-09-01
Deficits in social functioning are a core feature of autistic spectrum disorders (ASD), being linked to various cognitive and developmental factors, but there has been little attempt to draw on normative models of social cognition to understand social behaviour in ASD. The current study explored the utility of Crick and Dodge's (1994) information processing model to studying social cognition in ASD, and examined associations between social information processing patterns, theory of mind skills and social functioning. A matched-group design compared young people with Asperger syndrome with typically developing peers, using a social information processing interview previously designed for this purpose. The Asperger syndrome group showed significantly different patterns of information processing at the intent attribution, response generation and response evaluation stages of the information processing model. Theory of mind skills were found to be significantly associated with parental ratings of peer problems in the Asperger syndrome group but not with parental ratings of pro-social behaviour, with only limited evidence of an association between social information processing and measures of theory of mind and social functioning. Overall, the study supports the use of normative social information processing approaches to understanding social functioning in ASD.
Plasmonic resonances of nanoparticles from large-scale quantum mechanical simulations
NASA Astrophysics Data System (ADS)
Zhang, Xu; Xiang, Hongping; Zhang, Mingliang; Lu, Gang
2017-09-01
Plasmonic resonance of metallic nanoparticles results from coherent motion of its conduction electrons, driven by incident light. For the nanoparticles less than 10 nm in diameter, localized surface plasmonic resonances become sensitive to the quantum nature of the conduction electrons. Unfortunately, quantum mechanical simulations based on time-dependent Kohn-Sham density functional theory are computationally too expensive to tackle metal particles larger than 2 nm. Herein, we introduce the recently developed time-dependent orbital-free density functional theory (TD-OFDFT) approach which enables large-scale quantum mechanical simulations of plasmonic responses of metallic nanostructures. Using TD-OFDFT, we have performed quantum mechanical simulations to understand size-dependent plasmonic response of Na nanoparticles and plasmonic responses in Na nanoparticle dimers and trimers. An outlook of future development of the TD-OFDFT method is also presented.
Electronic Structure, Dielectric Response, and Surface Charge Distribution of RGD (1FUV) Peptide
Adhikari, Puja; Wen, Amy M.; French, Roger H.; Parsegian, V. Adrian; Steinmetz, Nicole F.; Podgornik, Rudolf; Ching, Wai-Yim
2014-01-01
Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor. PMID:25001596
A molecular Debye-Huckel theory of solvation in polar fluids: An extension of the Born model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Tiejun; Song, Xueyu
A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated inmore » a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. In conclusion, our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.« less
A molecular Debye-Huckel theory of solvation in polar fluids: An extension of the Born model
Xiao, Tiejun; Song, Xueyu
2017-12-06
A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated inmore » a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. In conclusion, our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.« less
A molecular Debye-Hückel theory of solvation in polar fluids: An extension of the Born model
NASA Astrophysics Data System (ADS)
Xiao, Tiejun; Song, Xueyu
2017-12-01
A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated in a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. Our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.
A molecular Debye-Hückel theory of solvation in polar fluids: An extension of the Born model.
Xiao, Tiejun; Song, Xueyu
2017-12-07
A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated in a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. Our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.
Shen, Minxue; Cui, Yuanwu; Hu, Ming; Xu, Linyong
2017-01-13
The study aimed to validate a scale to assess the severity of "Yin deficiency, intestine heat" pattern of functional constipation based on the modern test theory. Pooled longitudinal data of 237 patients with "Yin deficiency, intestine heat" pattern of constipation from a prospective cohort study were used to validate the scale. Exploratory factor analysis was used to examine the common factors of items. A multidimensional item response model was used to assess the scale with the presence of multidimensionality. The Cronbach's alpha ranged from 0.79 to 0.89, and the split-half reliability ranged from 0.67 to 0.79 at different measurements. Exploratory factor analysis identified two common factors, and all items had cross factor loadings. Bidimensional model had better goodness of fit than the unidimensional model. Multidimensional item response model showed that the all items had moderate to high discrimination parameters. Parameters indicated that the first latent trait signified intestine heat, while the second trait characterized Yin deficiency. Information function showed that items demonstrated highest discrimination power among patients with moderate to high level of disease severity. Multidimensional item response theory provides a useful and rational approach in validating scales for assessing the severity of patterns in traditional Chinese medicine.
Acousto-exciton interaction in a gas of 2D indirect dipolar excitons in the presence of disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalev, V. M.; Chaplik, A. V., E-mail: chaplik@isp.nsc.ru
2016-03-15
A theory for the linear and quadratic responses of a 2D gas of indirect dipolar excitons to an external surface acoustic wave perturbation in the presence of a static random potential is considered. The theory is constructed both for high temperatures, definitely greater than the exciton gas condensation temperature, and at zero temperature by taking into account the Bose–Einstein condensation effects. The particle Green functions, the density–density correlation function, and the quadratic response function are calculated by the “cross” diagram technique. The results obtained are used to calculate the absorption of Rayleigh surface waves and the acoustic exciton gas dragmore » by a Rayleigh wave. The damping of Bogoliubov excitations in an exciton condensate due to theirs scattering by a random potential has also been determined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attarian Shandiz, M., E-mail: mohammad.attarianshandiz@mail.mcgill.ca; Gauvin, R.
The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy wasmore » modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.« less
Flexoelectricity from density-functional perturbation theory
NASA Astrophysics Data System (ADS)
Stengel, Massimiliano
2013-11-01
We derive the complete flexoelectric tensor, including electronic and lattice-mediated effects, of an arbitrary insulator in terms of the microscopic linear response of the crystal to atomic displacements. The basic ingredient, which can be readily calculated from first principles in the framework of density-functional perturbation theory, is the quantum-mechanical probability current response to a long-wavelength acoustic phonon. Its second-order Taylor expansion in the wave vector q around the Γ (q=0) point in the Brillouin zone naturally yields the flexoelectric tensor. At order one in q we recover Martin's theory of piezoelectricity [Martin, Phys. Rev. B 5, 1607 (1972)], thus providing an alternative derivation thereof. To put our derivations on firm theoretical grounds, we perform a thorough analysis of the nonanalytic behavior of the dynamical matrix and other response functions in a vicinity of Γ. Based on this analysis, we find that there is an ambiguity in the specification of the “zero macroscopic field” condition in the flexoelectric case; such arbitrariness can be related to an analytic band-structure term, in close analogy to the theory of deformation potentials. As a by-product, we derive a rigorous generalization of the Cochran-Cowley formula [Cochran and Cowley, J. Phys. Chem. Solids 23, 447 (1962)] to higher orders in q. This can be of great utility in building reliable atomistic models of electromechanical phenomena, as well as for improving the accuracy of the calculation of phonon dispersion curves. Finally, we discuss the physical interpretation of the various contributions to the flexoelectric response, either in the static or dynamic regime, and we relate our findings to earlier theoretical works on the subject.
NASA Astrophysics Data System (ADS)
Foster, Kerwin Crayton
The fractional quantum Hall effect (FQHE) occurs when a two-dimensional electron gas is placed in a strong magnetic field at low temperatures. When this effect occurs the Hall resistance, RH, defined to be the Hall voltage divided by the current, is quantized, with RH = (1/nu)h/ e2 where nu = p/q is the Landau level filling fraction; and p and q are relatively prime integers. For almost all observed FQHE states, q is odd with one notable exception: the nu = 5/2 FQHE state. Understanding the nature of this incompressible even-denominator state is one of the central questions in the theory of the FQHE and is the subject of this Dissertation. We use a powerful theoretical tool for studying the FQHE: composite fermion theory. Composite fermions can be viewed as electrons bound to an even number of magnetic flux quanta. Jain has shown that the FQHE for electrons can be viewed as an integer quantum Hall effect (p = 1) for composite fermions. More recently, Halperin, Lee and Read developed a successful theory of the compressible nu = 1/2 state using composite fermions. There is now compelling theoretical evidence that the 5/2 state is a so-called Moore-Read state---a state which can be viewed as a spin-polarized p-wave superconductor of composite fermions. We have developed a semi-phenomenological description of this state by modifying the Halperin-Lee-Read theory, adding a p-wave pairing interaction between composite fermions by hand. The electromagnetic response functions for the resulting superconducting state of composite fermions are then calculated. We show that these response functions exhibit the expected BCS 'coherence factor' effects, such as the Hebel-Slichter peak. Using the composite fermion response functions, we then calculate the corresponding electronic response functions using Chern-Simons theory. We find that in the electronic response, the most striking coherence factor effects (e.g., the Hebel-Slichter peak) are strongly suppressed. However, the low-temperature o = 2Delta threshold behavior does show clear coherence factor effects. Finally, we use our model to predict the wave-vector and frequency dependence of the longitudinal conductivity, sigmaxx( q, o), which can be measured in surface-acoustic-wave propagation experiments.
Improving traditional balancing methods for high-speed rotors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, J.; Cao, Y.
1996-01-01
This paper introduces frequency response functions, analyzes the relationships between the frequency response functions and influence coefficients theoretically, and derives corresponding mathematical equations for high-speed rotor balancing. The relationships between the imbalance masses on the rotor and frequency response functions are also analyzed based upon the modal balancing method, and the equations related to the static and dynamic imbalance masses and the frequency response function are obtained. Experiments on a high-speed rotor balancing rig were performed to verify the theory, and the experimental data agree satisfactorily with the analytical solutions. The improvement on the traditional balancing method proposed in thismore » paper will substantially reduce the number of rotor startups required during the balancing process of rotating machinery.« less
Brader, J M; Siebenbürger, M; Ballauff, M; Reinheimer, K; Wilhelm, M; Frey, S J; Weysser, F; Fuchs, M
2010-12-01
Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in good agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscillatory spectroscopy.
Darwinian Theory, Functionalism, and the First American Psychological Revolution
ERIC Educational Resources Information Center
Green, Christopher D.
2009-01-01
American functionalist psychology constituted an effort to model scientific psychology on the successes of English evolutionary theory. In part it was a response to the stagnation of Wundt's psychological research program, which had been grounded in German experimental physiology. In part it was an attempt to make psychology more appealing within…
Cluster Analysis for Cognitive Diagnosis: Theory and Applications
ERIC Educational Resources Information Center
Chiu, Chia-Yi; Douglas, Jeffrey A.; Li, Xiaodong
2009-01-01
Latent class models for cognitive diagnosis often begin with specification of a matrix that indicates which attributes or skills are needed for each item. Then by imposing restrictions that take this into account, along with a theory governing how subjects interact with items, parametric formulations of item response functions are derived and…
ERIC Educational Resources Information Center
Goldman, Zachary W.; Goodboy, Alan K.
2014-01-01
Guided by broaden-and-build theory and emotional response theory, we examined college students' emotional outcomes in the classroom (i.e., emotional interest, emotional support, emotion work, emotional valence) as a function of teacher confirmation (i.e., responding to questions, demonstrating interest, teaching style). Participants were 159…
Emotional Resonance Deficits in Autistic Children
ERIC Educational Resources Information Center
Grecucci, Alessandro; Brambilla, Paolo; Siugzdaite, Roma; Londero, Danielle; Fabbro, Franco; Rumiati, Raffaella Ida
2013-01-01
According to some theories imitation, defined as an action resonance mechanism, is deficient in autism. In contrast, other theories (e.g., the "top down control of imitation" hypothesis) state that the problem is not in imitation per se but in the way social cues modulate imitative responses. In this study, 15 high-functioning children with autism…
A Novel Method for Characterizing the Impact Response of Functionally Graded Plates
2008-09-01
Dennis [88], Ugural [125], Soedel [119], and Reddy [100] for complete 35 development of the theory from first principles. Only the equations and...Woinowsky-Krieger. Theory of Plates and Shells. McGraw-Hill Book Co., New York, NY, second edition, 1959. 125. Ugural , A. C. Stresses in Plates and
Signal detection with criterion noise: applications to recognition memory.
Benjamin, Aaron S; Diaz, Michael; Wee, Serena
2009-01-01
A tacit but fundamental assumption of the theory of signal detection is that criterion placement is a noise-free process. This article challenges that assumption on theoretical and empirical grounds and presents the noisy decision theory of signal detection (ND-TSD). Generalized equations for the isosensitivity function and for measures of discrimination incorporating criterion variability are derived, and the model's relationship with extant models of decision making in discrimination tasks is examined. An experiment evaluating recognition memory for ensembles of word stimuli revealed that criterion noise is not trivial in magnitude and contributes substantially to variance in the slope of the isosensitivity function. The authors discuss how ND-TSD can help explain a number of current and historical puzzles in recognition memory, including the inconsistent relationship between manipulations of learning and the isosensitivity function's slope, the lack of invariance of the slope with manipulations of bias or payoffs, the effects of aging on the decision-making process in recognition, and the nature of responding in remember-know decision tasks. ND-TSD poses novel, theoretically meaningful constraints on theories of recognition and decision making more generally, and provides a mechanism for rapprochement between theories of decision making that employ deterministic response rules and those that postulate probabilistic response rules.
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.
1995-01-01
A recently developed micromechanical theory for the thermoelastic response of functionally graded composites with nonuniform fiber spacing in the through-thickness direction is further extended to enable analysis of material architectures characterized by arbitrarily nonuniform fiber spacing in two directions. In contrast to currently employed micromechanical approaches applied to functionally graded materials, which decouple the local and global effects by assuming the existence of a representative volume element at every point within the composite, the new theory explicitly couples the local and global effects. The analytical development is based on volumetric averaging of the various field quantities, together with imposition of boundary and interfacial conditions in an average sense. Results are presented that illustrate the capability of the derived theory to capture local stress gradients at the free edge of a laminated composite plate due to the application of a uniform temperature change. It is further shown that it is possible to reduce the magnitude of these stress concentrations by a proper management of the microstructure of the composite plies near the free edge. Thus by an appropriate tailoring of the microstructure it is possible to reduce or prevent the likelihood of delamination at free edges of standard composite laminates.
Thirty Years of Nonparametric Item Response Theory.
ERIC Educational Resources Information Center
Molenaar, Ivo W.
2001-01-01
Discusses relationships between a mathematical measurement model and its real-world applications. Makes a distinction between large-scale data matrices commonly found in educational measurement and smaller matrices found in attitude and personality measurement. Also evaluates nonparametric methods for estimating item response functions and…
Transfer function modeling of damping mechanisms in viscoelastic plates
NASA Technical Reports Server (NTRS)
Slater, J. C.; Inman, D. J.
1991-01-01
This work formulates a method for the modeling of material damping characteristics in plates. The Sophie German equation of classical plate theory is modified to incorporate hysteresis effects represented by complex stiffness using the transfer function approach proposed by Golla and Hughes, (1985). However, this procedure is not limited to this representation. The governing characteristic equation is decoupled through separation of variables, yielding a solution similar to that of undamped classical plate theory, allowing solution of the steady state as well as the transient response problem.
Serenity: A subsystem quantum chemistry program.
Unsleber, Jan P; Dresselhaus, Thomas; Klahr, Kevin; Schnieders, David; Böckers, Michael; Barton, Dennis; Neugebauer, Johannes
2018-05-15
We present the new quantum chemistry program Serenity. It implements a wide variety of functionalities with a focus on subsystem methodology. The modular code structure in combination with publicly available external tools and particular design concepts ensures extensibility and robustness with a focus on the needs of a subsystem program. Several important features of the program are exemplified with sample calculations with subsystem density-functional theory, potential reconstruction techniques, a projection-based embedding approach and combinations thereof with geometry optimization, semi-numerical frequency calculations and linear-response time-dependent density-functional theory. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Cutrona, Carolyn E; Russell, Daniel W
2017-02-01
Adult attachment theory provides guidance for providing optimal social support in intimate relationships. According to attachment theory, facilitating autonomy (secure base support) sometimes is more important than providing nurturance (safe haven support). In addition, it is important that couples celebrate one another's triumphs and successes (another form of secure base support). A key construct that explains the development of attachment is responsiveness to the individual's needs. Support that is delivered in a responsive manner (i.e., that leads the individual to feel understood, validated, and cared for) is more likely to enhance the relationship and less likely to damage self-esteem than assistance that is not responsive. A responsive exchange is more likely if emotion dysregulation can be prevented. Attachment theory offers explanations for why people vary in their effectiveness at emotion regulation. Appropriate emotion regulation is more likely if disclosures of current difficulties can be made in a way that is not defensive or accusatory, an ability that varies as a function of attachment orientation. Attachment theory also offers guidance regarding the optimal forms of social support for specific individuals. All these insights from adult attachment theory can be integrated into interventions to help couples become more effective support providers. Copyright © 2016 Elsevier Ltd. All rights reserved.
The brain may know more than cognitive theory can tell us: a reply to Ted Parks.
Dresp, B; Spillmann, L
2001-01-01
In reply to Parks' interpretation of Rock's cognitive theory of illusory figures, we maintain our point of view that such a theory has limited heuristic and explanatory power because it fails to predict subjects' responses in psychophysical tasks. As a result, the theoretical framework defended by Parks is not appropriate for suggesting candidate mechanisms of brain-behaviour function that could underly the phenomenal emergence of such figures.
Differential item functioning magnitude and impact measures from item response theory models.
Kleinman, Marjorie; Teresi, Jeanne A
2016-01-01
Measures of magnitude and impact of differential item functioning (DIF) at the item and scale level, respectively are presented and reviewed in this paper. Most measures are based on item response theory models. Magnitude refers to item level effect sizes, whereas impact refers to differences between groups at the scale score level. Reviewed are magnitude measures based on group differences in the expected item scores and impact measures based on differences in the expected scale scores. The similarities among these indices are demonstrated. Various software packages are described that provide magnitude and impact measures, and new software presented that computes all of the available statistics conveniently in one program with explanations of their relationships to one another.
Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry.
Domingo, Luis R
2016-09-30
A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.
Ding, Xiao Pan; Wu, Si Jia; Liu, Jiangang; Fu, Genyue; Lee, Kang
2017-09-21
The present study examined how different brain regions interact with each other during spontaneous honest vs. dishonest communication. More specifically, we took a complex network approach based on the graph-theory to analyze neural response data when children are spontaneously engaged in honest or dishonest acts. Fifty-nine right-handed children between 7 and 12 years of age participated in the study. They lied or told the truth out of their own volition. We found that lying decreased both the global and local efficiencies of children's functional neural network. This finding, for the first time, suggests that lying disrupts the efficiency of children's cortical network functioning. Further, it suggests that the graph theory based network analysis is a viable approach to study the neural development of deception.
“UTILIZING” SIGNAL DETECTION THEORY
Lynn, Spencer K.; Barrett, Lisa Feldman
2014-01-01
What do inferring what a person is thinking or feeling, deciding to report a symptom to your doctor, judging a defendant’s guilt, and navigating a dimly lit room have in common? They involve perceptual uncertainty (e.g., a scowling face might indicate anger or concentration, which engender different appropriate responses), and behavioral risk (e.g., a cost to making the wrong response). Signal detection theory describes these types of decisions. In this tutorial we show how, by incorporating the economic concept of utility, signal detection theory serves as a model of optimal decision making, beyond its common use as an analytic method. This utility approach to signal detection theory highlights potentially enigmatic influences of perceptual uncertainty on measures of decision-making performance (accuracy and optimality) and on behavior (a functional relationship between bias and sensitivity). A “utilized” signal detection theory offers the possibility of expanding the phenomena that can be understood within a decision-making framework. PMID:25097061
A modular approach for item response theory modeling with the R package flirt.
Jeon, Minjeong; Rijmen, Frank
2016-06-01
The new R package flirt is introduced for flexible item response theory (IRT) modeling of psychological, educational, and behavior assessment data. flirt integrates a generalized linear and nonlinear mixed modeling framework with graphical model theory. The graphical model framework allows for efficient maximum likelihood estimation. The key feature of flirt is its modular approach to facilitate convenient and flexible model specifications. Researchers can construct customized IRT models by simply selecting various modeling modules, such as parametric forms, number of dimensions, item and person covariates, person groups, link functions, etc. In this paper, we describe major features of flirt and provide examples to illustrate how flirt works in practice.
The Effects of Number Theory Study on High School Students' Metacognition and Mathematics Attitudes
ERIC Educational Resources Information Center
Miele, Anthony M.
2014-01-01
The purpose of this study was to determine how the study of number theory might affect high school students' metacognitive functioning, mathematical curiosity, and/or attitudes towards mathematics. The study utilized questionnaire and/or interview responses of seven high school students from New York City and 33 high school students from Dalian,…
The Grammar of the Human Life Process: John Dewey's New Theory of Language
ERIC Educational Resources Information Center
Harris, Fred
2012-01-01
Dewey proposed a new theory of language, in which the form (such as symbols) and content of language are not separated. The content of language includes the physical aspects of the world, which are purely quantitative: the life process, which involves functional responses to qualities, and the human life process, which involves the conscious…
Context Processing and Cognitive Control in Children and Young Adults
ERIC Educational Resources Information Center
Lorsbach, Thomas C.; Reimer, Jason F.
2008-01-01
T. S. Braver and colleagues (e.g., T. S. Braver, J. D. Cohen, & D. M. Barch, 2002) have provided a theory of cognitive control that focuses on the role of context processing. According to their theory, an underlying context-processing mechanism is responsible for the cognitive control functions of attention, inhibition, and working memory. In the…
Critical assessment of density functional theory for computing vibrational (hyper)polarizabilities
NASA Astrophysics Data System (ADS)
Zaleśny, R.; Bulik, I. W.; Mikołajczyk, M.; Bartkowiak, W.; Luis, J. M.; Kirtman, B.; Avramopoulos, A.; Papadopoulos, M. G.
2012-12-01
Despite undisputed success of the density functional theory (DFT) in various branches of chemistry and physics, an application of the DFT for reliable predictions of nonlinear optical properties of molecules has been questioned a decade ago. As it was shown by Champagne, et al. [1, 2, 3] most conventional DFT schemes were unable to qualitatively predict the response of conjugated oligomers to a static electric field. Long-range corrected (LRC) functionals, like LC-BLYP or CAM-B3LYP, have been proposed to alleviate this deficiency. The reliability of LRC functionals for evaluating molecular (hyper)polarizabilities is studied for various groups of organic systems, with a special focus on vibrational corrections to the electric properties.
Thinking about false belief: it's not just what children say, but how long it takes them to say it.
Atance, Cristina M; Bernstein, Daniel M; Meltzoff, Andrew N
2010-08-01
We examined 240 children's (3.5-, 4.5-, and 5.5-year-olds) latency to respond to questions on a battery of false-belief tasks. Response latencies exhibited a significant cross-over interaction as a function of age and response type (correct vs. incorrect). 3.5-year-olds'incorrect latencies were faster than their correct latencies, whereas the opposite pattern emerged for 4.5- and 5.5-year-olds. Although these results are most consistent with conceptual change theories of false-belief reasoning, no extant theory fully accounts for our data pattern. We argue that response latency data provide new information about underlying cognitive processes in theory of mind reasoning, and can shed light on concept acquisition more broadly. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Lambert, Michael Canute; Ferguson, Gail M; Rowan, George T
2016-03-01
Cross-national study of adolescents' psychological adjustment requires measures that permit reliable and valid assessment across informants and nations, but such measures are virtually nonexistent. Item-response-theory-based linking is a promising yet underutilized methodological procedure that permits more accurate assessment across informants and nations. To demonstrate this procedure, the Resilience Scale of the Behavioral Assessment for Children of African Heritage (Lambert et al., 2005) was administered to 250 African American and 294 Jamaican nonreferred adolescents and their caregivers. Multiple items without significant differential item functioning emerged, allowing scale linking across informants and nations. Calibrating item parameters via item response theory linking can permit cross-informant cross-national assessment of youth. (c) 2016 APA, all rights reserved).
Stress-stress correlator in ϕ 4 theory: poles or a cut?
NASA Astrophysics Data System (ADS)
Moore, Guy D.
2018-05-01
We explore the analytical properties of the traceless stress tensor 2-point function at zero momentum and small frequency (relevant for shear viscosity and hydrodynamic response) in hot, weakly coupled λ ϕ 4 theory. We show that, rather than one or a small number of poles, the correlator has a cut along the negative imaginary frequency axis. We briefly discuss this result's relevance for constructing 2'nd order hydrodynamic models of hot relativistic field theories.
Refinement of Timoshenko Beam Theory for Composite and Sandwich Beams Using Zigzag Kinematics
NASA Technical Reports Server (NTRS)
Tessler, Alexander; DiSciuva, Marco; Gherlone, Marco
2007-01-01
A new refined theory for laminated-composite and sandwich beams that contains the kinematics of the Timoshenko Beam Theory as a proper baseline subset is presented. This variationally consistent theory is derived from the virtual work principle and employs a novel piecewise linear zigzag function that provides a more realistic representation of the deformation states of transverse shear flexible beams than other similar theories. This new zigzag function is unique in that it vanishes at the top and bottom bounding surfaces of a beam. The formulation does not enforce continuity of the transverse shear stress across the beam s cross-section, yet is robust. Two major shortcomings that are inherent in the previous zigzag theories, shear-force inconsistency and difficulties in simulating clamped boundary conditions, and that have greatly limited the utility of these previous theories are discussed in detail. An approach that has successfully resolved these shortcomings is presented herein. This new theory can be readily extended to plate and shell structures, and should be useful for obtaining accurate estimates of structural response of laminated composites.
Spencer, Ricky-John; Van Dyke, James U; Thompson, Michael B
2016-10-01
Ecological traps are threats to organisms, and exist in a range of biological systems. A subset of ecological trap theory is the "ethological trap," whereby behaviors canalized by past natural selection become traps when environments change rapidly. Invasive predators are major threats to imperiled species and their ability to exploit canalized behaviors of naive prey is particularly important for the establishment of the predator and the decline of the native prey. Our study uses ecological theory to demonstrate that invasive predator controls require shifts in management priorities. Total predation rate (i.e., total response) is the product of both the functional response and numerical response of predators to prey. Functional responses are the changes in the rate of prey consumption by individual predators, relative to prey abundance. Numerical responses are the aggregative rates of prey consumption by all predators relative to prey density, which change with predator density via reproduction or migration, in response to changes in prey density. Traditional invasive predator management methods focus on reducing predator populations, and thus manage for numerical responses. These management efforts fail to manage for functional responses, and may not eliminate impacts of highly efficient individual predators. We explore this problem by modeling the impacts of functional and numerical responses of invasive foxes depredating imperiled Australian turtle nests. Foxes exhibit exceptionally efficient functional responses. A single fox can destroy >95% of turtle nests in a nesting area, which eliminates juvenile recruitment. In this case, the ethological trap is the "Arribada" nesting strategy, an emergent behavior whereby most turtles in a population nest simultaneously in the same nesting grounds. Our models show that Arribada nesting events do not oversaturate foxes, and small numbers of foxes depredate all of the nests in a given Arribada. Widely scattering nests may reduce fox predation rates, but the long generation times of turtles combined with their rapid recent decline suggests that evolutionary responses in nesting strategy may be unlikely. Our study demonstrates that reducing populations of highly efficient invasive predators is insufficient for preserving native prey species. Instead, management must reduce individual predator efficiency, independent of reducing predator population size. © 2016 by the Ecological Society of America.
ERIC Educational Resources Information Center
Magis, David
2015-01-01
The purpose of this note is to study the equivalence of observed and expected (Fisher) information functions with polytomous item response theory (IRT) models. It is established that observed and expected information functions are equivalent for the class of divide-by-total models (including partial credit, generalized partial credit, rating…
Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum
NASA Astrophysics Data System (ADS)
Rips, Ilya
2017-01-01
Decay of the metastable state is analyzed within the quantum Kramers model in the weak-to-intermediate dissipation regime. The decay kinetics in this regime is determined by energy exchange between the unstable mode and the stable modes of thermal bath. In our previous paper [Phys. Rev. A 42, 4427 (1990), 10.1103/PhysRevA.42.4427], Grabert's perturbative approach to well dynamics in the case of the discrete bath [Phys. Rev. Lett. 61, 1683 (1988), 10.1103/PhysRevLett.61.1683] has been extended to account for the second order terms in the classical equations of motion (EOM) for the stable modes. Account of the secular terms reduces EOM for the stable modes to those of the forced oscillator with the time-dependent frequency (TDF oscillator). Analytic expression for the characteristic function of energy loss of the unstable mode has been derived in terms of the generating function of the transition probabilities for the quantum forced TDF oscillator. In this paper, the approach is further developed and applied to the case of the continuous frequency spectrum of the bath. The spectral density functions of the bath of stable modes are expressed in terms of the dissipative properties (the friction function) of the original bath. They simplify considerably for the one-dimensional systems, when the density of phonon states is constant. Explicit expressions for the fourth order corrections to the linear response theory result for the characteristic function of the energy loss and its cumulants are obtained for the particular case of the cubic potential with Ohmic (Markovian) dissipation. The range of validity of the perturbative approach in this case is determined (γ /ωb<0.26 ), which includes the turnover region. The dominant correction to the linear response theory result is associated with the "work function" and leads to reduction of the average energy loss and its dispersion. This reduction increases with the increasing dissipation strength (up to ˜10 % ) within the range of validity of the approach. We have also calculated corrections to the depopulation factor and the escape rate for the quantum and for the classical Kramers models. Results for the classical escape rate are in very good agreement with the numerical simulations for high barriers. The results can serve as an additional proof of the robustness and accuracy of the linear response theory.
Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum.
Rips, Ilya
2017-01-01
Decay of the metastable state is analyzed within the quantum Kramers model in the weak-to-intermediate dissipation regime. The decay kinetics in this regime is determined by energy exchange between the unstable mode and the stable modes of thermal bath. In our previous paper [Phys. Rev. A 42, 4427 (1990)PLRAAN1050-294710.1103/PhysRevA.42.4427], Grabert's perturbative approach to well dynamics in the case of the discrete bath [Phys. Rev. Lett. 61, 1683 (1988)PRLTAO0031-900710.1103/PhysRevLett.61.1683] has been extended to account for the second order terms in the classical equations of motion (EOM) for the stable modes. Account of the secular terms reduces EOM for the stable modes to those of the forced oscillator with the time-dependent frequency (TDF oscillator). Analytic expression for the characteristic function of energy loss of the unstable mode has been derived in terms of the generating function of the transition probabilities for the quantum forced TDF oscillator. In this paper, the approach is further developed and applied to the case of the continuous frequency spectrum of the bath. The spectral density functions of the bath of stable modes are expressed in terms of the dissipative properties (the friction function) of the original bath. They simplify considerably for the one-dimensional systems, when the density of phonon states is constant. Explicit expressions for the fourth order corrections to the linear response theory result for the characteristic function of the energy loss and its cumulants are obtained for the particular case of the cubic potential with Ohmic (Markovian) dissipation. The range of validity of the perturbative approach in this case is determined (γ/ω_{b}<0.26), which includes the turnover region. The dominant correction to the linear response theory result is associated with the "work function" and leads to reduction of the average energy loss and its dispersion. This reduction increases with the increasing dissipation strength (up to ∼10%) within the range of validity of the approach. We have also calculated corrections to the depopulation factor and the escape rate for the quantum and for the classical Kramers models. Results for the classical escape rate are in very good agreement with the numerical simulations for high barriers. The results can serve as an additional proof of the robustness and accuracy of the linear response theory.
Donati, Maria Anna; Chiesi, Francesca; Izzo, Viola A; Primi, Caterina
2017-01-01
As there is a lack of evidence attesting the equivalent item functioning across genders for the most employed instruments used to measure pathological gambling in adolescence, the present study was aimed to test the gender invariance of the Gambling Behavior Scale for Adolescents (GBS-A), a new measurement tool to assess the severity of Gambling Disorder (GD) in adolescents. The equivalence of the items across genders was assessed by analyzing Differential Item Functioning within an Item Response Theory framework. The GBS-A was administered to 1,723 adolescents, and the graded response model was employed. The results attested the measurement equivalence of the GBS-A when administered to male and female adolescent gamblers. Overall, findings provided evidence that the GBS-A is an effective measurement tool of the severity of GD in male and female adolescents and that the scale was unbiased and able to relieve truly gender differences. As such, the GBS-A can be profitably used in educational interventions and clinical treatments with young people.
Thibodeau, Michel A; Leonard, Rachel C; Abramowitz, Jonathan S; Riemann, Bradley C
2015-12-01
The Dimensional Obsessive-Compulsive Scale (DOCS) is a promising measure of obsessive-compulsive disorder (OCD) symptoms but has received minimal psychometric attention. We evaluated the utility and reliability of DOCS scores. The study included 832 students and 300 patients with OCD. Confirmatory factor analysis supported the originally proposed four-factor structure. DOCS total and subscale scores exhibited good to excellent internal consistency in both samples (α = .82 to α = .96). Patient DOCS total scores reduced substantially during treatment (t = 16.01, d = 1.02). DOCS total scores discriminated between students and patients (sensitivity = 0.76, 1 - specificity = 0.23). The measure did not exhibit gender-based differential item functioning as tested by Mantel-Haenszel chi-square tests. Expected response options for each item were plotted as a function of item response theory and demonstrated that DOCS scores incrementally discriminate OCD symptoms ranging from low to extremely high severity. Incremental differences in DOCS scores appear to represent unbiased and reliable differences in true OCD symptom severity. © The Author(s) 2014.
NASA Technical Reports Server (NTRS)
Stein, Manuel; Sydow, P. Daniel; Librescu, Liviu
1990-01-01
Buckling and postbuckling results are presented for compression-loaded simply-supported aluminum plates and composite plates with a symmetric lay-up of thin + or - 45 deg plies composed of many layers. Buckling results for aluminum plates of finite length are given for various length-to-width ratios. Asymptotes to the curves based on buckling results give N(sub xcr) for plates of infinite length. Postbuckling results for plates with transverse shearing flexibility are compared to results from classical theory for various width-to-thickness ratios. Characteristic curves indicating the average longitudinal direct stress resultant as a function of the applied displacements are calculated based on four different theories: Classical von Karman theory using the Kirchoff assumptions, first-order shear deformation theory, higher-order shear deformation theory, and 3-D flexibility theory. Present results indicate that the 3-D flexibility theory gives the lowest buckling loads. The higher-order shear deformation theory has fewer unknowns than the 3-D flexibility theory but does not take into account through-the-thickness effects. The figures presented show that small differences occur in the average longitudinal direct stress resultants from the four theories that are functions of applied end-shortening displacement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parry, W.E.
1973-01-01
An introduction is given to techniques used in the many-body problem, and a reference book is given for those techniques. Sevcral different formulations of the techniques, and their interrelations, are discussed, to prepare the reader for the published literature. Examples are taken mostly from the physics of solids, fluids and plasmas. Second quantization, perturbation theory, Green functions and correlation functions, examples in the use of diagrammatic perturbation theory, the equation of motion method, magnetism (the drone-fermion representation), linear response and transport processes, niany- body systems at zero temperature, the variational principle and pair-wave approximation. (UK)
A unified theory of bone healing and nonunion: BHN theory.
Elliott, D S; Newman, K J H; Forward, D P; Hahn, D M; Ollivere, B; Kojima, K; Handley, R; Rossiter, N D; Wixted, J J; Smith, R M; Moran, C G
2016-07-01
This article presents a unified clinical theory that links established facts about the physiology of bone and homeostasis, with those involved in the healing of fractures and the development of nonunion. The key to this theory is the concept that the tissue that forms in and around a fracture should be considered a specific functional entity. This 'bone-healing unit' produces a physiological response to its biological and mechanical environment, which leads to the normal healing of bone. This tissue responds to mechanical forces and functions according to Wolff's law, Perren's strain theory and Frost's concept of the "mechanostat". In response to the local mechanical environment, the bone-healing unit normally changes with time, producing different tissues that can tolerate various levels of strain. The normal result is the formation of bone that bridges the fracture - healing by callus. Nonunion occurs when the bone-healing unit fails either due to mechanical or biological problems or a combination of both. In clinical practice, the majority of nonunions are due to mechanical problems with instability, resulting in too much strain at the fracture site. In most nonunions, there is an intact bone-healing unit. We suggest that this maintains its biological potential to heal, but fails to function due to the mechanical conditions. The theory predicts the healing pattern of multifragmentary fractures and the observed morphological characteristics of different nonunions. It suggests that the majority of nonunions will heal if the correct mechanical environment is produced by surgery, without the need for biological adjuncts such as autologous bone graft. Cite this article: Bone Joint J 2016;98-B:884-91. ©2016 The British Editorial Society of Bone & Joint Surgery.
Vibration responses of h-BN sheet to charge doping and external strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Wei; Yang, Yu; Zheng, Fawei
2013-12-07
Based on density functional theory and density functional perturbation theory calculations, we systematically investigate the vibration responses of h-BN sheet to charge doping and external strains. It is found that under hole doping, the phonon frequencies of the ZO and TO branches at different wave vector q shift linearly with different slopes. Under electron doping, although the phonon frequencies shift irregularly, the shifting values are different at different phonon wave vectors. Interestingly, we find that external strain can restrain the irregular vibration responses of h-BN sheet to electron doping. The critical factor is revealed to be the relative position ofmore » the nearly free electron and boron p{sub z} states of h-BN sheet. Under external strains, the vibration responses of h-BN sheet are also found to be highly dependent on the phonon branches. Different vibration modes at different q points are revealed to be responsible for the vibration responses of h-BN sheet to charge doping and external strain. Our results point out a new way to detect the doping or strain status of h-BN sheet by measuring the vibration frequencies at different wave vector.« less
ERIC Educational Resources Information Center
Wei, Tianlan; Chesnut, Steven R.; Barnard-Brak, Lucy; Stevens, Tara; Olivárez, Arturo, Jr.
2014-01-01
As the United States has begun to lag behind other developed countries in performance on mathematics and science, researchers have sought to explain this with theories of teaching, knowledge, and motivation. We expand this examination by further analyzing a measure of interest that has been linked to student performance in mathematics and…
Tse, Chun-Yu; Long-Yin, Yip; Lui, Troby Ka-Yan; Xiao, Xue-Zhen; Wang, Yang; Chu, Winnie Chiu Wing; Parks, Nathan Allen; Chan, Sandra Sau-Man; Neggers, Sebastiaan Franciscus Wijnandus
2018-06-18
Current theories of pre-attentive deviant detection postulate that before the Superior Temporal Cortex (STC) detects a change, the Inferior Frontal Cortex (IFC) engages in stimulus analysis, which is particularly critical for ambiguous deviations (e.g., deviant preceded by a short train of standards). These theories rest on the assumption that IFC and STC are functionally connected, which has only been supported by correlational brain imaging studies. We examined this functional connectivity assumption by applying Transcranial Magnetic Stimulation (TMS) to disrupt IFC function, while measuring the later STC mismatch response with the event-related optical signal (EROS). EROS can localize brain activity in both spatial and temporal dimensions via measurement of optical property changes associated with neuronal activity, and is inert to the electromagnetic interference produced by TMS. Specifically, the STC mismatch response at 120-180 ms elicited by a deviant preceded by a short standard train when IFC TMS was applied at 80 ms was compared with the STC mismatch responses in temporal control (TMS with 200 ms delay), spatial control (sham TMS at vertex), auditory control (TMS pulse noise only), and cognitive control (deviant preceded by a long standard train) conditions. The STC mismatch response to deviants preceded by the short train was abolished by TMS of the IFC at 80 ms, while the STC responses remained intact in all other control conditions. These results confirm the involvement of the IFC in the STC mismatch response and support a functional connection between IFC and STC. Copyright © 2018. Published by Elsevier Inc.
Ramsay-Curve Differential Item Functioning
ERIC Educational Resources Information Center
Woods, Carol M.
2011-01-01
Differential item functioning (DIF) occurs when an item on a test, questionnaire, or interview has different measurement properties for one group of people versus another, irrespective of true group-mean differences on the constructs being measured. This article is focused on item response theory based likelihood ratio testing for DIF (IRT-LR or…
Energy dependence of the response of lithium fluoride TLD rods in high energy electron fields.
Holt, J G; Edelstein, G R; Clark, T E
1975-07-01
The energy dependence of lithium fluoride dosemeters is a complicated function of energy as well as of cavity size. In the application of TLD to charged particle dosimetry, a cavity perturbation effect may exist even though the ratios of the mass stopping powers are constant over the energies encountered. This effect was investigated for lithium fluoride rods in electron fields ranging in energy from 2-5 to 20 MeV. A 13% change of TL response per unit of absorbed dose was measured over that energy range. A semi-empirical theory was developed to account for the cavity effect, using Burlin cavity theory as a starting point. The agreement between theory and measurement is satisfactory.
Profile-likelihood Confidence Intervals in Item Response Theory Models.
Chalmers, R Philip; Pek, Jolynn; Liu, Yang
2017-01-01
Confidence intervals (CIs) are fundamental inferential devices which quantify the sampling variability of parameter estimates. In item response theory, CIs have been primarily obtained from large-sample Wald-type approaches based on standard error estimates, derived from the observed or expected information matrix, after parameters have been estimated via maximum likelihood. An alternative approach to constructing CIs is to quantify sampling variability directly from the likelihood function with a technique known as profile-likelihood confidence intervals (PL CIs). In this article, we introduce PL CIs for item response theory models, compare PL CIs to classical large-sample Wald-type CIs, and demonstrate important distinctions among these CIs. CIs are then constructed for parameters directly estimated in the specified model and for transformed parameters which are often obtained post-estimation. Monte Carlo simulation results suggest that PL CIs perform consistently better than Wald-type CIs for both non-transformed and transformed parameters.
Morozov, Andrew; Petrovskii, Sergei
2013-01-01
Understanding of complex trophic interactions in ecosystems requires correct descriptions of the rate at which predators consume a variety of different prey species. Field and laboratory data on multispecies communities are rarely sufficient and usually cannot provide an unambiguous test for the theory. As a result, the conventional way of constructing a multi-prey functional response is speculative, and often based on assumptions that are difficult to verify. Predator responses allowing for prey selectivity and active switching are thought to be more biologically relevant compared to the standard proportion-based consumption. However, here we argue that the functional responses with switching may not be applicable to communities with a broad spectrum of resource types. We formulate a set of general rules that a biologically sound parameterization of a predator functional response should satisfy, and show that all existing formulations for the multispecies response with prey selectivity and switching fail to do so. Finally, we propose a universal framework for parameterization of a multi-prey functional response by combining patterns of food selectivity and proportion-based feeding. PMID:24086356
Excitation spectra of retinal by multiconfiguration pair-density functional theory.
Dong, Sijia S; Gagliardi, Laura; Truhlar, Donald G
2018-03-07
Retinal is the chromophore in proteins responsible for vision. The absorption maximum of retinal is sensitive to mutations of the protein. However, it is not easy to predict the absorption spectrum of retinal accurately, and questions remain even after intensive investigation. Retinal poses a challenge for Kohn-Sham density functional theory (KS-DFT) because of the charge transfer character in its excitations, and it poses a challenge for wave function theory because the large size of the molecule makes multiconfigurational perturbation theory methods expensive. In this study, we demonstrate that multiconfiguration pair-density functional theory (MC-PDFT) provides an efficient way to predict the vertical excitation energies of 11-Z retinal, and it reproduces the experimentally determined absorption band widths and peak positions better than complete active space second-order perturbation theory (CASPT2). The consistency between complete active space self-consistent field (CASSCF) and KS-DFT dipole moments is demonstrated to be a useful criterion in selecting the active space. We also found that the nature of the terminal groups and the conformations of retinal play a significant role in the absorption spectrum. By considering a thermal distribution of conformations, we predict an absorption spectrum of retinal that is consistent with the experimental gas-phase spectrum. The location of the absorption peak and the spectral broadening based on MC-PDFT calculations agree better with experiments than those of CASPT2.
Yanai, Takeshi; Fann, George I.; Beylkin, Gregory; ...
2015-02-25
Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using amore » numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H 2, Be, N 2, H 2O, and C 2H 4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.« less
Shortcuts to adiabaticity from linear response theory
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-23
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less
FDE-vdW: A van der Waals inclusive subsystem density-functional theory.
Kevorkyants, Ruslan; Eshuis, Henk; Pavanello, Michele
2014-07-28
We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation-dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method. We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.
FDE-vdW: A van der Waals inclusive subsystem density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevorkyants, Ruslan; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu; Eshuis, Henk
2014-07-28
We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation–dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method.more » We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.« less
Modern control techniques in active flutter suppression using a control moment gyro
NASA Technical Reports Server (NTRS)
Buchek, P. M.
1974-01-01
Development of organized synthesis techniques, using concepts of modern control theory was studied for the design of active flutter suppression systems for two and three-dimensional lifting surfaces, utilizing a control moment gyro (CMG) to generate the required control torques. Incompressible flow theory is assumed, with the unsteady aerodynamic forces and moments for arbitrary airfoil motion obtained by using the convolution integral based on Wagner's indicial lift function. Linear optimal control theory is applied to find particular optimal sets of gain values which minimize a quadratic performance function. The closed loop system's response to impulsive gust disturbances and the resulting control power requirements are investigated, and the system eigenvalues necessary to minimize the maximum value of control power are determined.
Caricato, Marco
2018-04-07
We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.
NASA Astrophysics Data System (ADS)
Caricato, Marco
2018-04-01
We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.
Venables, Noah C; Hall, Jason R; Yancey, James R; Patrick, Christopher J
2015-05-01
The Two-Process theory of psychopathy posits that distinct etiological mechanisms contribute to the condition: (a) a weakness in defensive (fear) reactivity related to affective-interpersonal features, and (b) impaired cognitive-executive functioning, marked by reductions in brain responses such as P3, related to impulsive-antisocial features. The current study examined relations between psychopathy factors and electrocortical response to emotional and neutral pictures in male offenders (N = 139) assessed using the Psychopathy Checklist-Revised (PCL-R). Impulsive-antisocial features of the PCL-R (Factor 2) were associated with reduced amplitude of earlier P3 brain response to pictures regardless of valence, whereas the affective-interpersonal dimension (Factor 1) was associated specifically with reductions in late positive potential response to aversive pictures. Findings provide further support for the Two-Process theory and add to a growing body of evidence linking the impulsive-antisocial facet of psychopathy to the broader construct of externalizing proneness. Findings are discussed in terms of current initiatives directed at incorporating neuroscientific concepts into psychopathology classification. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Venables, Noah C.; Hall, Jason R.; Yancey, James R.; Patrick, Christopher J.
2014-01-01
The Two-Process theory of psychopathy posits distinct etiological mechanisms contribute to the disorder: 1) a weakness in defensive (fear) reactivity related to affective-interpersonal features, and 2) impaired cognitive-executive functioning, marked by reductions in brain responses such as P3, related to impulsive-antisocial features. The current study examined relations between psychopathy factors and electrocortical response to emotional and neutral pictures in male offenders (N=139) assessed using the Psychopathy Checklist-Revised (PCL-R). Impulsive-antisocial features of the PCL-R (Factor 2) were associated with reduced amplitude of earlier P3 brain response to pictures regardless of valence, whereas the affective-interpersonal dimension (Factor 1) was associated specifically with reductions in late positive potential response to aversive pictures. Findings provide further support for the Two-Process theory and add to a growing body of evidence linking the impulsive-antisocial facet of psychopathy to the broader construct of externalizing proneness. Findings are discussed in terms of current initiatives directed at incorporating neuroscientific concepts into psychopathology classification. PMID:25603361
Item Response Theory Using Hierarchical Generalized Linear Models
ERIC Educational Resources Information Center
Ravand, Hamdollah
2015-01-01
Multilevel models (MLMs) are flexible in that they can be employed to obtain item and person parameters, test for differential item functioning (DIF) and capture both local item and person dependence. Papers on the MLM analysis of item response data have focused mostly on theoretical issues where applications have been add-ons to simulation…
A Bayesian Semiparametric Item Response Model with Dirichlet Process Priors
ERIC Educational Resources Information Center
Miyazaki, Kei; Hoshino, Takahiro
2009-01-01
In Item Response Theory (IRT), item characteristic curves (ICCs) are illustrated through logistic models or normal ogive models, and the probability that examinees give the correct answer is usually a monotonically increasing function of their ability parameters. However, since only limited patterns of shapes can be obtained from logistic models…
ERIC Educational Resources Information Center
Delmendo, Xeres; Borrero, John C.; Beauchamp, Kenneth L.; Francisco, Monica T.
2009-01-01
We conducted preference assessments with 4 typically developing children to identify potential reinforcers and assessed the reinforcing efficacy of those stimuli. Next, we tested two predictions of economic theory: that overall consumption (reinforcers obtained) would decrease as the unit price (response requirement per reinforcer) increased and…
ERIC Educational Resources Information Center
Reiling, Denise M.
2002-01-01
Analyzed the counterintuitive affective response Old Order Amish youth make to unique cultural prescriptions for adolescent deviance (constructed by adult Amish culture). Interview data supported the basic principles of Terror Management Theory in an unexpected, indirect fashion. Rather than functioning as a specialized cultural-anxiety buffer…
Subsystem real-time time dependent density functional theory.
Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele
2015-04-21
We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.
The mGluR theory of fragile X mental retardation.
Bear, Mark F; Huber, Kimberly M; Warren, Stephen T
2004-07-01
Many of the diverse functional consequences of activating group 1 metabotropic glutamate receptors require translation of pre-existing mRNA near synapses. One of these consequences is long-term depression (LTD) of transmission at hippocampal synapses. Loss of fragile X mental retardation protein (FMRP), the defect responsible for fragile X syndrome in humans, increases LTD in mouse hippocampus. This finding is consistent with the growing evidence that FMRP normally functions as a repressor of translation of specific mRNAs. Here we present a theory that can account for diverse neurological and psychiatric aspects of fragile X syndrome, based on the assumption that many of the protein-synthesis-dependent functions of metabotropic receptors are exaggerated in fragile X syndrome. The theory suggests new directions for basic research as well as novel therapeutic approaches for the treatment of humans with fragile X, the most frequent inherited cause of mental retardation and an identified cause of autism.
ERIC Educational Resources Information Center
Culpepper, Steven Andrew
2013-01-01
A classic topic in the fields of psychometrics and measurement has been the impact of the number of scale categories on test score reliability. This study builds on previous research by further articulating the relationship between item response theory (IRT) and classical test theory (CTT). Equations are presented for comparing the reliability and…
An Application of the Rasch Measurement Theory to an Assessment of Geometric Thinking Levels
ERIC Educational Resources Information Center
Stols, Gerrit; Long, Caroline; Dunne, Tim
2015-01-01
The purpose of this study is to apply the Rasch model to investigate both the Van Hiele theory for geometric development and an associated test. In terms of the test, the objective is to investigate the functioning of a classic 25-item instrument designed to identify levels of geometric proficiency. The dataset of responses by 244 students (106…
Item Response Theory Applied to Factors Affecting the Patient Journey Towards Hearing Rehabilitation
Chenault, Michelene; Berger, Martijn; Kremer, Bernd; Anteunis, Lucien
2016-01-01
To develop a tool for use in hearing screening and to evaluate the patient journey towards hearing rehabilitation, responses to the hearing aid rehabilitation questionnaire scales aid stigma, pressure, and aid unwanted addressing respectively hearing aid stigma, experienced pressure from others; perceived hearing aid benefit were evaluated with item response theory. The sample was comprised of 212 persons aged 55 years or more; 63 were hearing aid users, 64 with and 85 persons without hearing impairment according to guidelines for hearing aid reimbursement in the Netherlands. Bias was investigated relative to hearing aid use and hearing impairment within the differential test functioning framework. Items compromising model fit or demonstrating differential item functioning were dropped. The aid stigma scale was reduced from 6 to 4, the pressure scale from 7 to 4, and the aid unwanted scale from 5 to 4 items. This procedure resulted in bias-free scales ready for screening purposes and application to further understand the help-seeking process of the hearing impaired. PMID:28028428
Steca, Patrizia; Monzani, Dario; Greco, Andrea; Chiesi, Francesca; Primi, Caterina
2015-06-01
This study is aimed at testing the measurement properties of the Life Orientation Test-Revised (LOT-R) for the assessment of dispositional optimism by employing item response theory (IRT) analyses. The LOT-R was administered to a large sample of 2,862 Italian adults. First, confirmatory factor analyses demonstrated the theoretical conceptualization of the construct measured by the LOT-R as a single bipolar dimension. Subsequently, IRT analyses for polytomous, ordered response category data were applied to investigate the items' properties. The equivalence of the items across gender and age was assessed by analyzing differential item functioning. Discrimination and severity parameters indicated that all items were able to distinguish people with different levels of optimism and adequately covered the spectrum of the latent trait. Additionally, the LOT-R appears to be gender invariant and, with minor exceptions, age invariant. Results provided evidence that the LOT-R is a reliable and valid measure of dispositional optimism. © The Author(s) 2014.
Mahapatra, Ajit Kumar; Maji, Rajkishor; Maiti, Kalipada; Adhikari, Susanta Sekhar; Das Mukhopadhyay, Chitrangada; Mandal, Debasish
2014-01-07
A new BODIPY-azaindole based fluorescent sensor 1 was designed and synthesized as a new colorimetric and ratiometric fluorescent chemosensor for fluoride. The binding and sensing abilities of sensor 1 towards various anions were studied by absorption, emission and (1)H NMR titration spectroscopies. The spectral responses of 1 to fluoride in acetonitrile-water were studied: an approximately 69 nm red shift in absorption and ratiometric fluorescent response was observed. The striking light yellow to deep brown color change in ambient light and green to blue emission color change are thought to be due to the deprotonation of the indole moiety of the azaindole fluorophore. From the changes in the absorption, fluorescence, and (1)H NMR titration spectra, proton-transfer mechanisms were deduced. Density function theory and time-dependent density function theory calculations were conducted to rationalize the optical response of the sensor. Results were supported by confocal fluorescence imaging and MTT assay of live cells.
Effect Size Measures for Differential Item Functioning in a Multidimensional IRT Model
ERIC Educational Resources Information Center
Suh, Youngsuk
2016-01-01
This study adapted an effect size measure used for studying differential item functioning (DIF) in unidimensional tests and extended the measure to multidimensional tests. Two effect size measures were considered in a multidimensional item response theory model: signed weighted P-difference and unsigned weighted P-difference. The performance of…
ERIC Educational Resources Information Center
Karalunas, Sarah L.; Huang-Pollock, Cynthia L.
2011-01-01
Although motivation and cognition are often examined separately, recent theory suggests that a delay-averse motivational style may negatively impact development of executive functions (EFs), such as working memory (WM) and response inhibition (RI) for children with Attention Deficit Hyperactivity Disorder (ADHD; Sonuga-Barke, 2002). This model…
Differential Item Functioning: Its Consequences. Research Report. ETS RR-10-01
ERIC Educational Resources Information Center
Lee, Yi-Hsuan; Zhang, Jinming
2010-01-01
This report examines the consequences of differential item functioning (DIF) using simulated data. Its impact on total score, item response theory (IRT) ability estimate, and test reliability was evaluated in various testing scenarios created by manipulating the following four factors: test length, percentage of DIF items per form, sample sizes of…
An Alternative Methodology for Creating Parallel Test Forms Using the IRT Information Function.
ERIC Educational Resources Information Center
Ackerman, Terry A.
The purpose of this paper is to report results on the development of a new computer-assisted methodology for creating parallel test forms using the item response theory (IRT) information function. Recently, several researchers have approached test construction from a mathematical programming perspective. However, these procedures require…
[Determinism and Freedom of Choice in the Brain Functioning].
Ivanitsky, A M
2015-01-01
The problem is considered whether the brain response is completely determined by the stimulus and the personal experience or in some cases the brain is free to choose its behavioral response to achieve the desired goal. The attempt is made to approach to this important philosophical problem basing on modern knowledge about the brain. The paper consists of four parts. In the first part the theoretical views about the free choice problem solving are considered, including views about the freedom of choice as a useful illusion, the hypothesis on appliance of quantum mechanics laws to the brain functioning and the theory of mentalism. In other tree parts consequently the more complicated brain functions such as choice reaction, thinking and creation are analyzed. The general conclusion is that the possibility of quite unpredictable, but sometimes very effective decisions increases when the brain functions are more and more complicated. This fact can be explained with two factors: increasing stochasticity of the brain processes and the role of top-down determinations from mental to neural levels, according to the theory of mentalism.
2012-10-24
geometric arrangement of the atoms in a chemical system , at the maximal peak of the energy surface separating reactants from products . In the...Sonnenberg, M. Hada, M. Ehara, K. Toyota , R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda , O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery... using DFT. The calculation of ground state resonance structure is for the construction of parameterized dielectric response functions for excitation
1987-10-13
AD-A±95 686 PHOTOIONIZATION OF ATOMS AND IONS: APPLICATION OF III TIME-DEPENDENT RESPONSE..(U) NAVAL RESEARCH LAB WASHINGTON DC U GUPTA ET AL. 13 OCT...on revere if ncemy and idmntify by block number) FIELD GROUP SUBGROUP Photoionization Density functional Atoms Time dependent 1 S. (Continue on...reverse if necenary and identify by block numnbw) The photoionization cross-section of several atoms (AT, Xe, Rn, Cs) and ions (Ne-like Ar, H-like and Li
Time dependent density functional calculation of plasmon response in clusters
NASA Astrophysics Data System (ADS)
Wang, Feng; Zhang, Feng-Shou; Eric, Suraud
2003-02-01
We have introduced a theoretical scheme for the efficient description of the optical response of a cluster based on the time-dependent density functional theory. The practical implementation is done by means of the fully fledged time-dependent local density approximation scheme, which is solved directly in the time domain without any linearization. As an example we consider the simple Na2 cluster and compute its surface plasmon photoabsorption cross section, which is in good agreement with the experiments.
Stress Transmission within the Cell
Stamenović, Dimitrije; Wang, Ning
2014-01-01
An outstanding problem in cell biology is how cells sense mechanical forces and how those forces affect cellular functions. During past decades, it has become evident that the deformable cytoskeleton (CSK), an intracellular network of various filamentous biopolymers, provides a physical basis for transducing mechanical signals into biochemical responses. To understand how mechanical forces regulate cellular functions, it is necessary to first understand how the CSK develops mechanical stresses in response to applied forces, and how those stresses are propagated through the CSK where various signaling molecules are immobilized. New experimental techniques have been developed to quantify cytoskeletal mechanics, which together with new computational approaches have given rise to new theories and models for describing mechanics of living cells. In this article, we discuss current understanding of cell biomechanics by focusing on the biophysical mechanisms that are responsible for the development and transmission of mechanical stresses in the cell and their effect on cellular functions. We compare and contrast various theories and models of cytoskeletal mechanics, emphasizing common mechanisms that those theories are built upon, while not ignoring irreconcilable differences. We highlight most recent advances in the understanding of mechanotransduction in the cytoplasm of living cells and the central role of the cytoskeletal prestress in propagating mechanical forces along the cytoskeletal filaments to activate cytoplasmic enzymes. It is anticipated that advances in cell mechanics will help developing novel therapeutics to treat pulmonary diseases like asthma, pulmonary fibrosis, and chronic obstructive pulmonary disease. PMID:23737186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense; Olsen, Jógvan Magnus Haugaard
2015-03-21
We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory, molecular properties such as excitation energies and oscillator strengths can be obtained. The PE-MC-srDFT method and the additional terms required for linearmore » response have been implemented in a development version of DALTON. To benchmark the PE-MC-srDFT approach against the literature data, we have investigated the low-lying electronic excitations of acetone and uracil, both immersed in water solution. The PE-MC-srDFT results are consistent and accurate, both in terms of the calculated solvent shift and, unlike regular PE-MCSCF, also with respect to the individual absolute excitation energies. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality to CASSCF/CASPT2 benchmarks.« less
Functional dissociation of stimulus intensity encoding and predictive coding of pain in the insula
Geuter, Stephan; Boll, Sabrina; Eippert, Falk; Büchel, Christian
2017-01-01
The computational principles by which the brain creates a painful experience from nociception are still unknown. Classic theories suggest that cortical regions either reflect stimulus intensity or additive effects of intensity and expectations, respectively. By contrast, predictive coding theories provide a unified framework explaining how perception is shaped by the integration of beliefs about the world with mismatches resulting from the comparison of these beliefs against sensory input. Using functional magnetic resonance imaging during a probabilistic heat pain paradigm, we investigated which computations underlie pain perception. Skin conductance, pupil dilation, and anterior insula responses to cued pain stimuli strictly followed the response patterns hypothesized by the predictive coding model, whereas posterior insula encoded stimulus intensity. This novel functional dissociation of pain processing within the insula together with previously observed alterations in chronic pain offer a novel interpretation of aberrant pain processing as disturbed weighting of predictions and prediction errors. DOI: http://dx.doi.org/10.7554/eLife.24770.001 PMID:28524817
2005-01-01
An approach based on Skinner's (1957) theory of verbal behavior has been developed to understand and teach elementary communication skills to children with autism and developmental disabilities (Sundberg & Partington, 1998). However, few studies have directly examined the characteristics of emerging language in children with developmental disabilities. The purpose of this study was to develop and evaluate an assessment for identifying the elementary functions of vocal speech in children. Participants were 4 children with developmental disabilities, aged 6 years to 12 years, who exhibited at least one distinguishable vocal response (word or phrase) frequently in the natural environment. The assessment focused on three verbal operants delineated by Skinner (mand, tact, and intraverbal). One or more functions were identified for at least one vocal response of each child. Results suggested that this assessment would be useful for (a) evaluating Skinner's theory, (b) guiding decisions about language training for individual children, and (c) studying the nature of expressive language development in children with developmental disabilities. PMID:16270841
Lerman, Dorothea C; Parten, Mandy; Addison, Laura R; Vorndran, Christina M; Volkert, Valerie M; Kodak, Tiffany
2005-01-01
An approach based on Skinner's (1957) theory of verbal behavior has been developed to understand and teach elementary communication skills to children with autism and developmental disabilities (Sundberg & Partington, 1998). However, few studies have directly examined the characteristics of emerging language in children with developmental disabilities. The purpose of this study was to develop and evaluate an assessment for identifying the elementary functions of vocal speech in children. Participants were 4 children with developmental disabilities, aged 6 years to 12 years, who exhibited at least one distinguishable vocal response (word or phrase) frequently in the natural environment. The assessment focused on three verbal operants delineated by Skinner (mand, tact, and intraverbal). One or more functions were identified for at least one vocal response of each child. Results suggested that this assessment would be useful for (a) evaluating Skinner's theory, (b) guiding decisions about language training for individual children, and (c) studying the nature of expressive language development in children with developmental disabilities.
Mehrkash, Milad; Azhari, Mojtaba; Mirdamadi, Hamid Reza
2014-01-01
The importance of elastic wave propagation problem in plates arises from the application of ultrasonic elastic waves in non-destructive evaluation of plate-like structures. However, precise study and analysis of acoustic guided waves especially in non-homogeneous waveguides such as functionally graded plates are so complicated that exact elastodynamic methods are rarely employed in practical applications. Thus, the simple approximate plate theories have attracted much interest for the calculation of wave fields in FGM plates. Therefore, in the current research, the classical plate theory (CPT), first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT) are used to obtain the transient responses of flexural waves in FGM plates subjected to transverse impulsive loadings. Moreover, comparing the results with those based on a well recognized hybrid numerical method (HNM), we examine the accuracy of the plate theories for several plates of various thicknesses under excitations of different frequencies. The material properties of the plate are assumed to vary across the plate thickness according to a simple power-law distribution in terms of volume fractions of constituents. In all analyses, spatial Fourier transform together with modal analysis are applied to compute displacement responses of the plates. A comparison of the results demonstrates the reliability ranges of the approximate plate theories for elastic wave propagation analysis in FGM plates. Furthermore, based on various examples, it is shown that whenever the plate theories are used within the appropriate ranges of plate thickness and frequency content, solution process in wave number-time domain based on modal analysis approach is not only sufficient but also efficient for finding the transient waveforms in FGM plates. Copyright © 2013 Elsevier B.V. All rights reserved.
Dufour, Nicholas; Redcay, Elizabeth; Young, Liane; Mavros, Penelope L.; Moran, Joseph M.; Triantafyllou, Christina; Gabrieli, John D. E.; Saxe, Rebecca
2013-01-01
Reading about another person’s beliefs engages ‘Theory of Mind’ processes and elicits highly reliable brain activation across individuals and experimental paradigms. Using functional magnetic resonance imaging, we examined activation during a story task designed to elicit Theory of Mind processing in a very large sample of neurotypical (N = 462) individuals, and a group of high-functioning individuals with autism spectrum disorders (N = 31), using both region-of-interest and whole-brain analyses. This large sample allowed us to investigate group differences in brain activation to Theory of Mind tasks with unusually high sensitivity. There were no differences between neurotypical participants and those diagnosed with autism spectrum disorder. These results imply that the social cognitive impairments typical of autism spectrum disorder can occur without measurable changes in the size, location or response magnitude of activity during explicit Theory of Mind tasks administered to adults. PMID:24073267
Particle-hole symmetry and composite fermions in fractional quantum Hall states
NASA Astrophysics Data System (ADS)
Nguyen, Dung Xuan; Golkar, Siavash; Roberts, Matthew M.; Son, Dam Thanh
2018-05-01
We study fractional quantum Hall states at filling fractions in the Jain sequences using the framework of composite Dirac fermions. Synthesizing previous work, we write an effective field theory consistent with all symmetry requirements, including Galilean invariance and particle-hole symmetry. Employing a Fermi-liquid description, we demonstrate the appearance of the Girvin-Macdonald-Platzman algebra and compute the dispersion relation of neutral excitations and various response functions. Our results satisfy requirements of particle-hole symmetry. We show that while the dispersion relation obtained from the modified random-phase approximation (MRPA) of the Halperin-Lee-Read (HLR) theory is particle-hole symmetric, correlation functions obtained from this scheme are not. The results of the Dirac theory are shown to be consistent with the Haldane bound on the projected structure factor, while those of the MPRA of the HLR theory violate it.
Dufour, Nicholas; Redcay, Elizabeth; Young, Liane; Mavros, Penelope L; Moran, Joseph M; Triantafyllou, Christina; Gabrieli, John D E; Saxe, Rebecca
2013-01-01
Reading about another person's beliefs engages 'Theory of Mind' processes and elicits highly reliable brain activation across individuals and experimental paradigms. Using functional magnetic resonance imaging, we examined activation during a story task designed to elicit Theory of Mind processing in a very large sample of neurotypical (N = 462) individuals, and a group of high-functioning individuals with autism spectrum disorders (N = 31), using both region-of-interest and whole-brain analyses. This large sample allowed us to investigate group differences in brain activation to Theory of Mind tasks with unusually high sensitivity. There were no differences between neurotypical participants and those diagnosed with autism spectrum disorder. These results imply that the social cognitive impairments typical of autism spectrum disorder can occur without measurable changes in the size, location or response magnitude of activity during explicit Theory of Mind tasks administered to adults.
Time-dependent density functional theory description of total photoabsorption cross sections
NASA Astrophysics Data System (ADS)
Tenorio, Bruno Nunes Cabral; Nascimento, Marco Antonio Chaer; Rocha, Alexandre Braga
2018-02-01
The time-dependent version of the density functional theory (TDDFT) has been used to calculate the total photoabsorption cross section of a number of molecules, namely, benzene, pyridine, furan, pyrrole, thiophene, phenol, naphthalene, and anthracene. The discrete electronic pseudo-spectra, obtained in a L2 basis set calculation were used in an analytic continuation procedure to obtain the photoabsorption cross sections. The ammonia molecule was chosen as a model system to compare the results obtained with TDDFT to those obtained with the linear response coupled cluster approach in order to make a link with our previous work and establish benchmarks.
McDowell, J J; Wood, H M
1984-03-01
Eight human subjects pressed a lever on a range of variable-interval schedules for 0.25 cent to 35.0 cent per reinforcement. Herrnstein's hyperbola described seven of the eight subjects' response-rate data well. For all subjects, the y-asymptote of the hyperbola increased with increasing reinforcer magnitude and its reciprocal was a linear function of the reciprocal of reinforcer magnitude. These results confirm predictions made by linear system theory; they contradict formal properties of Herrnstein's account and of six other mathematical accounts of single-alternative responding.
McDowell, J. J; Wood, Helena M.
1984-01-01
Eight human subjects pressed a lever on a range of variable-interval schedules for 0.25¢ to 35.0¢ per reinforcement. Herrnstein's hyperbola described seven of the eight subjects' response-rate data well. For all subjects, the y-asymptote of the hyperbola increased with increasing reinforcer magnitude and its reciprocal was a linear function of the reciprocal of reinforcer magnitude. These results confirm predictions made by linear system theory; they contradict formal properties of Herrnstein's account and of six other mathematical accounts of single-alternative responding. PMID:16812366
NASA Astrophysics Data System (ADS)
Sherlin, Y. Sheeba; Vijayakumar, T.; Roy, S. D. D.; Jayakumar, V. S.
2018-05-01
Molecular geometry of Parkinson's drug 2-(3,4-Dihydroxyphenyl)ethylamine hydrochloride (Dopamine, DA) has been evaluated and compared with experimental XRD data. Molecular docking and vibrational spectral analysis of DA have been carried out using FT-Raman and FT-IR spectra aided by Density Functional Theory at B3LYP/6-311++G(d,p). The present investigation deals with the analysis of structural and spectral features responsible for drug activities, nature of hydrogen bonding interactions of the molecule and the correlation of Parkinson's nature with its molecular structural features.
NASA Technical Reports Server (NTRS)
Michalopoulos, C. D.
1974-01-01
Optimal control theory is applied to analyze the transient response of discrete linear systems to forcing functions with unknown time dependence but having known bounds. Particular attention is given to forcing functions which include: (1) maximum displacement of any given mass element, (2) maximum relative displacement of any two adjacent masses, and (3) maximum acceleration of a given mass. Linear mechanical systems with an arbitrary number of degrees of freedom and only one forcing function acting are considered. In the general case, the desired forcing function is found to be a function that switches from the upper-to-lower bound and vice-versa at certain moments of time. A general procedure for finding such switching times is set forth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less
Sundararaman, Ravishankar; Goddard, William A; Arias, Tomas A
2017-03-21
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.
Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.
2017-03-16
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less
Response variance in functional maps: neural darwinism revisited.
Takahashi, Hirokazu; Yokota, Ryo; Kanzaki, Ryohei
2013-01-01
The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population.
Response Variance in Functional Maps: Neural Darwinism Revisited
Takahashi, Hirokazu; Yokota, Ryo; Kanzaki, Ryohei
2013-01-01
The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population. PMID:23874733
Theory of plasmonic effects in nonlinear optics: the case of graphene
NASA Astrophysics Data System (ADS)
Rostami, Habib; Katsnelson, Mikhail I.; Polini, Marco; Mikhail I. Katsnelson Collaboration; Habib Rostami; Marco Polini Collaboration
The nonlinear optical properties of two-dimensional electronic systems are beginning to attract considerable interest both in the theoretical and experimental sectors. Recent experiments on the nonlinear optical properties of graphene reveal considerably strong third harmonic generation and four-wave mixing of this single-atomic-layer electronic system. We develop a large-N theory of electron-electron interaction corrections to multi-legged Feynman diagrams describing second- and third-order nonlinear response functions. Our theory is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order nonlinear response functions of an interacting two-dimensional gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved. This work was supported by Fondazione Istituto Italiano di Tecnologia, the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore, and the ERC Advanced Grant 338957 FEMTO/NANO (M.I.K.).
First-principles simulations of doping-dependent mesoscale screening of adatoms in graphene
NASA Astrophysics Data System (ADS)
Mostofi, Arash; Corsetti, Fabiano; Wong, Dillon; Crommie, Michael; Lischner, Johannes
Adsorbed atoms and molecules play an important role in controlling and tuning the functional properties of 2D materials. Understanding and predicting this phenomenon from theory is challenging because of the need to capture both the local chemistry of the adsorbate-substrate interaction and its complex interplay with the long-range screening response of the substrate. To address this challenge, we have developed a first-principles multi-scale approach that combines linear-scaling density-functional theory, continuum screening theory and large-scale tight-binding simulations. Focussing on the case of a calcium adatom on graphene, we draw comparison between the effect of (i) non-linearity, (ii) intraband and interband transitions, and (iii) the exchange-correlation potential, thus providing insight into the relative importance of these different factors on the screening response. We also determine the charge transfer from the adatom to the graphene substrate (the key parameter used in continuum screening models), showing it to be significantly larger than previous estimates. AM and FC acknowledge support of the EPSRC under Grant EP/J015059/1, and JL under Grant EP/N005244/1.
Semiclassical Path Integral Calculation of Nonlinear Optical Spectroscopy.
Provazza, Justin; Segatta, Francesco; Garavelli, Marco; Coker, David F
2018-02-13
Computation of nonlinear optical response functions allows for an in-depth connection between theory and experiment. Experimentally recorded spectra provide a high density of information, but to objectively disentangle overlapping signals and to reach a detailed and reliable understanding of the system dynamics, measurements must be integrated with theoretical approaches. Here, we present a new, highly accurate and efficient trajectory-based semiclassical path integral method for computing higher order nonlinear optical response functions for non-Markovian open quantum systems. The approach is, in principle, applicable to general Hamiltonians and does not require any restrictions on the form of the intrasystem or system-bath couplings. This method is systematically improvable and is shown to be valid in parameter regimes where perturbation theory-based methods qualitatively breakdown. As a test of the methodology presented here, we study a system-bath model for a coupled dimer for which we compare against numerically exact results and standard approximate perturbation theory-based calculations. Additionally, we study a monomer with discrete vibronic states that serves as the starting point for future investigation of vibronic signatures in nonlinear electronic spectroscopy.
Neural response to reward anticipation under risk is nonlinear in probabilities.
Hsu, Ming; Krajbich, Ian; Zhao, Chen; Camerer, Colin F
2009-02-18
A widely observed phenomenon in decision making under risk is the apparent overweighting of unlikely events and the underweighting of nearly certain events. This violates standard assumptions in expected utility theory, which requires that expected utility be linear (objective) in probabilities. Models such as prospect theory have relaxed this assumption and introduced the notion of a "probability weighting function," which captures the key properties found in experimental data. This study reports functional magnetic resonance imaging (fMRI) data that neural response to expected reward is nonlinear in probabilities. Specifically, we found that activity in the striatum during valuation of monetary gambles are nonlinear in probabilities in the pattern predicted by prospect theory, suggesting that probability distortion is reflected at the level of the reward encoding process. The degree of nonlinearity reflected in individual subjects' decisions is also correlated with striatal activity across subjects. Our results shed light on the neural mechanisms of reward processing, and have implications for future neuroscientific studies of decision making involving extreme tails of the distribution, where probability weighting provides an explanation for commonly observed behavioral anomalies.
Differential item functioning analysis of the Vanderbilt Expertise Test for cars.
Lee, Woo-Yeol; Cho, Sun-Joo; McGugin, Rankin W; Van Gulick, Ana Beth; Gauthier, Isabel
2015-01-01
The Vanderbilt Expertise Test for cars (VETcar) is a test of visual learning for contemporary car models. We used item response theory to assess the VETcar and in particular used differential item functioning (DIF) analysis to ask if the test functions the same way in laboratory versus online settings and for different groups based on age and gender. An exploratory factor analysis found evidence of multidimensionality in the VETcar, although a single dimension was deemed sufficient to capture the recognition ability measured by the test. We selected a unidimensional three-parameter logistic item response model to examine item characteristics and subject abilities. The VETcar had satisfactory internal consistency. A substantial number of items showed DIF at a medium effect size for test setting and for age group, whereas gender DIF was negligible. Because online subjects were on average older than those tested in the lab, we focused on the age groups to conduct a multigroup item response theory analysis. This revealed that most items on the test favored the younger group. DIF could be more the rule than the exception when measuring performance with familiar object categories, therefore posing a challenge for the measurement of either domain-general visual abilities or category-specific knowledge.
A signal detection-item response theory model for evaluating neuropsychological measures.
Thomas, Michael L; Brown, Gregory G; Gur, Ruben C; Moore, Tyler M; Patt, Virginie M; Risbrough, Victoria B; Baker, Dewleen G
2018-02-05
Models from signal detection theory are commonly used to score neuropsychological test data, especially tests of recognition memory. Here we show that certain item response theory models can be formulated as signal detection theory models, thus linking two complementary but distinct methodologies. We then use the approach to evaluate the validity (construct representation) of commonly used research measures, demonstrate the impact of conditional error on neuropsychological outcomes, and evaluate measurement bias. Signal detection-item response theory (SD-IRT) models were fitted to recognition memory data for words, faces, and objects. The sample consisted of U.S. Infantry Marines and Navy Corpsmen participating in the Marine Resiliency Study. Data comprised item responses to the Penn Face Memory Test (PFMT; N = 1,338), Penn Word Memory Test (PWMT; N = 1,331), and Visual Object Learning Test (VOLT; N = 1,249), and self-report of past head injury with loss of consciousness. SD-IRT models adequately fitted recognition memory item data across all modalities. Error varied systematically with ability estimates, and distributions of residuals from the regression of memory discrimination onto self-report of past head injury were positively skewed towards regions of larger measurement error. Analyses of differential item functioning revealed little evidence of systematic bias by level of education. SD-IRT models benefit from the measurement rigor of item response theory-which permits the modeling of item difficulty and examinee ability-and from signal detection theory-which provides an interpretive framework encompassing the experimentally validated constructs of memory discrimination and response bias. We used this approach to validate the construct representation of commonly used research measures and to demonstrate how nonoptimized item parameters can lead to erroneous conclusions when interpreting neuropsychological test data. Future work might include the development of computerized adaptive tests and integration with mixture and random-effects models.
Evidence for an expectancy-based theory of avoidance behaviour.
Declercq, Mieke; De Houwer, Jan; Baeyens, Frank
2008-01-01
In most studies on avoidance learning, participants receive an aversive unconditioned stimulus after a warning signal is presented, unless the participant performs a particular response. Lovibond (2006) recently proposed a cognitive theory of avoidance learning, according to which avoidance behaviour is a function of both Pavlovian and instrumental conditioning. In line with this theory, we found that avoidance behaviour was based on an integration of acquired knowledge about, on the one hand, the relation between stimuli and, on the other hand, the relation between behaviour and stimuli.
Dynamic kinetic energy potential for orbital-free density functional theory.
Neuhauser, Daniel; Pistinner, Shlomo; Coomar, Arunima; Zhang, Xu; Lu, Gang
2011-04-14
A dynamic kinetic energy potential (DKEP) is developed for time-dependent orbital-free (TDOF) density function theory applications. This potential is constructed to affect only the dynamical (ω ≠ 0) response of an orbital-free electronic system. It aims at making the orbital-free simulation respond in the same way as that of a noninteracting homogenous electron gas (HEG), as required by a correct kinetic energy, therefore enabling extension of the success of orbital-free density functional theory in the static case (e.g., for embedding and description of processes in bulk materials) to dynamic processes. The potential is constructed by expansions of terms, each of which necessitates only simple time evolution (concurrent with the TDOF evolution) and a spatial convolution at each time-step. With 14 such terms a good fit is obtained to the response of the HEG at a large range of frequencies, wavevectors, and densities. The method is demonstrated for simple jellium spheres, approximating Na(9)(+) and Na(65)(+) clusters. It is applicable both to small and large (even ultralarge) excitations and the results converge (i.e., do not blow up) as a function of time. An extension to iterative frequency-resolved extraction is briefly outlined, as well as possibly numerically simpler expansions. The approach could also be extended to fit, instead of the HEG susceptibility, either an experimental susceptibility or a theoretically derived one for a non-HEG system. The DKEP potential should be a powerful tool for embedding a dynamical system described by a more accurate method (such as time-dependent density functional theory, TDDFT) in a large background described by TDOF with a DKEP potential. The type of expansions used and envisioned should be useful for other approaches, such as memory functionals in TDDFT. Finally, an appendix details the formal connection between TDOF and TDDFT.
Global, Local, and Graphical Person-Fit Analysis Using Person-Response Functions
ERIC Educational Resources Information Center
Emons, Wilco H. M.; Sijtsma, Klaas; Meijer, Rob R.
2005-01-01
Person-fit statistics test whether the likelihood of a respondent's complete vector of item scores on a test is low given the hypothesized item response theory model. This binary information may be insufficient for diagnosing the cause of a misfitting item-score vector. The authors propose a comprehensive methodology for person-fit analysis in the…
ERIC Educational Resources Information Center
Dai, Yunyun
2013-01-01
Mixtures of item response theory (IRT) models have been proposed as a technique to explore response patterns in test data related to cognitive strategies, instructional sensitivity, and differential item functioning (DIF). Estimation proves challenging due to difficulties in identification and questions of effect size needed to recover underlying…
McDowell, J J; Wood, H M
1985-01-01
Four human subjects worked on all combinations of five variable-interval schedules and five reinforcer magnitudes ( cent/reinforcer) in each of two phases of the experiment. In one phase the force requirement on the operandum was low (1 or 11 N) and in the other it was high (25 or 146 N). Estimates of Herrnstein's kappa were obtained at each reinforcer magnitude. The results were: (1) response rate was more sensitive to changes in reinforcement rate at the high than at the low force requirement, (2) kappa increased from the beginning to the end of the magnitude range for all subjects at both force requirements, (3) the reciprocal of kappa was a linear function of the reciprocal of reinforcer magnitude for seven of the eight data sets, and (4) the rate of change of kappa was greater at the high than at the low force requirement by an order of magnitude or more. The second and third findings confirm predictions made by linear system theory, and replicate the results of an earlier experiment (McDowell & Wood, 1984). The fourth finding confirms a further prediction of the theory and supports the theory's interpretation of conflicting data on the constancy of Herrnstein's kappa.
McDowell, J. J; Wood, Helena M.
1985-01-01
Four human subjects worked on all combinations of five variable-interval schedules and five reinforcer magnitudes (¢/reinforcer) in each of two phases of the experiment. In one phase the force requirement on the operandum was low (1 or 11 N) and in the other it was high (25 or 146 N). Estimates of Herrnstein's κ were obtained at each reinforcer magnitude. The results were: (1) response rate was more sensitive to changes in reinforcement rate at the high than at the low force requirement, (2) κ increased from the beginning to the end of the magnitude range for all subjects at both force requirements, (3) the reciprocal of κ was a linear function of the reciprocal of reinforcer magnitude for seven of the eight data sets, and (4) the rate of change of κ was greater at the high than at the low force requirement by an order of magnitude or more. The second and third findings confirm predictions made by linear system theory, and replicate the results of an earlier experiment (McDowell & Wood, 1984). The fourth finding confirms a further prediction of the theory and supports the theory's interpretation of conflicting data on the constancy of Herrnstein's κ. PMID:16812408
Form factors for dark matter capture by the Sun in effective theories
NASA Astrophysics Data System (ADS)
Catena, Riccardo; Schwabe, Bodo
2015-04-01
In the effective theory of isoscalar and isovector dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle, 8 isotope-dependent nuclear response functions can be generated in the dark matter scattering by nuclei. We compute the 8 nuclear response functions for the 16 most abundant elements in the Sun, i.e. H, 3He, 4He, 12C, 14N, 16O, 20Ne, 23Na, 24Mg, 27Al, 28Si, 32S, 40Ar, 40Ca, 56Fe, and 59Ni, through numerical shell model calculations. We use our response functions to compute the rate of dark matter capture by the Sun for all isoscalar and isovector dark matter-nucleon effective interactions, including several operators previously considered for dark matter direct detection only. We study in detail the dependence of the capture rate on specific dark matter-nucleon interaction operators, and on the different elements in the Sun. We find that a so far neglected momentum dependent dark matter coupling to the nuclear vector charge gives a larger contribution to the capture rate than the constant spin-dependent interaction commonly included in dark matter searches at neutrino telescopes. Our investigation lays the foundations for model independent analyses of dark matter induced neutrino signals from the Sun. The nuclear response functions obtained in this study are listed in analytic form in an appendix, ready to be used in other projects.
Gust response of commercial jet aircraft including effects of autopilot operation
NASA Technical Reports Server (NTRS)
Goldberg, J. H.
1982-01-01
A simplified theory of aircraft vertical acceleration gust response based on a model including pitch, vertical displacement and control motions due to autopilot operation is presented. High-order autopilot transfer functions are utilized for improved accuracy in the determination of the overall response characteristics. Four representative commercial jet aircraft were studied over a wide range of operating conditions and comparisons of individual responses are given. It is shown that autopilot operation relative to the controls fixed case causes response attenuation of from 10 percent to approximately 25 percent depending on flight condition and increases in crossing number up to 30 percent, with variations between aircraft of from 5 percent to 10 percent, in general, reflecting the differences in autopilot design. A detailed computer program description and listing of the calculation procedure suitable for the general application of the theory to any airplane autopilot combination is also included.
Optical response tuning in nanorod-on-semicontinous film systems: A computational study
NASA Astrophysics Data System (ADS)
Mokkath, Junais Habeeb
2018-01-01
Strongly confined and intense optical fields within the plasmonic metal nanocavities show outstanding potential for a wide range of functionalities in nanophotonics. Using time dependent density functional theory calculations, we investigate the optical response evolution as a function of the gap separation distances in nanorod-on-film systems comprised of a nanorod (NR) made of Al or Na on top of an Al film. Huge optical field modulations emerged in the chemically distinct Na NR - Al film system in comparison to the Al NR - Al film system, indicating the vital role of metals involved. We further study the optical response modifications by placing a conducting molecule in the gap region, finding strong spectral modulations via through-molecule electron tunneling.
A functional neuroimaging review of obesity, appetitive hormones and ingestive behavior.
Burger, Kyle S; Berner, Laura A
2014-09-01
Adequate energy intake is vital for the survival of humans and is regulated by complex homeostatic and hedonic mechanisms. Supported by functional MRI (fMRI) studies that consistently demonstrate differences in brain response as a function of weight status during exposure to appetizing food stimuli, it has been posited that hedonically driven food intake contributes to weight gain and obesity maintenance. These food reward theories of obesity are reliant on the notion that the aberrant brain response to food stimuli relates directly to ingestive behavior, specifically, excess food intake. Importantly, functioning of homeostatic neuroendocrine regulators of food intake, such as leptin and ghrelin, are impacted by weight status. Thus, data from studies that evaluate the effect on weight status on brain response to food may be a result of differences in neuroendocrine functioning and/or behavior. In the present review, we examine the influence of weight and weight change, exogenous administration of appetitive hormones, and ingestive behavior on BOLD response to food stimuli. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Dimitrov, Dimiter M.
2017-01-01
This article offers an approach to examining differential item functioning (DIF) under its item response theory (IRT) treatment in the framework of confirmatory factor analysis (CFA). The approach is based on integrating IRT- and CFA-based testing of DIF and using bias-corrected bootstrap confidence intervals with a syntax code in Mplus.
ERIC Educational Resources Information Center
Gomez, Rapson
2012-01-01
Objective: Generalized partial credit model, which is based on item response theory (IRT), was used to test differential item functioning (DIF) for the "Diagnostic and Statistical Manual of Mental Disorders" (4th ed.), inattention (IA), and hyperactivity/impulsivity (HI) symptoms across boys and girls. Method: To accomplish this, parents completed…
Stepwise Analysis of Differential Item Functioning Based on Multiple-Group Partial Credit Model.
ERIC Educational Resources Information Center
Muraki, Eiji
1999-01-01
Extended an Item Response Theory (IRT) method for detection of differential item functioning to the partial credit model and applied the method to simulated data using a stepwise procedure. Then applied the stepwise DIF analysis based on the multiple-group partial credit model to writing trend data from the National Assessment of Educational…
Effects of Differential Item Functioning on Examinees' Test Performance and Reliability of Test
ERIC Educational Resources Information Center
Lee, Yi-Hsuan; Zhang, Jinming
2017-01-01
Simulations were conducted to examine the effect of differential item functioning (DIF) on measurement consequences such as total scores, item response theory (IRT) ability estimates, and test reliability in terms of the ratio of true-score variance to observed-score variance and the standard error of estimation for the IRT ability parameter. The…
Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth
2015-08-11
We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.
Conceptual DFT: the chemical relevance of higher response functions.
Geerlings, P; De Proft, F
2008-06-07
In recent years conceptual density functional theory offered a perspective for the interpretation/prediction of experimental/theoretical reactivity data on the basis of a series of response functions to perturbations in the number of electrons and/or external potential. This approach has enabled the sharp definition and computation, from first principles, of a series of well-known but sometimes vaguely defined chemical concepts such as electronegativity and hardness. In this contribution, a short overview of the shortcomings of the simplest, first order response functions is illustrated leading to a description of chemical bonding in a covalent interaction in terms of interacting atoms or groups, governed by electrostatics with the tendency to polarize bonds on the basis of electronegativity differences. The second order approach, well known until now, introduces the hardness/softness and Fukui function concepts related to polarizability and frontier MO theory, respectively. The introduction of polarizability/softness is also considered in a historical perspective in which polarizability was, with some exceptions, mainly put forward in non covalent interactions. A particular series of response functions, arising when the changes in the external potential are solely provoked by changes in nuclear configurations (the "R-analogues") are also systematically considered. The main part of the contribution is devoted to third order response functions which, at first sight, may be expected not to yield chemically significant information, as turns out to be for the hyperhardness. A counterexample is the dual descriptor and its R analogue, the initial hardness response, which turns out to yield a firm basis to regain the Woodward-Hoffmann rules for pericyclic reactions based on a density-only basis, i.e. without involving the phase, sign, symmetry of the wavefunction. Even the second order nonlinear response functions are shown possibly to bear interesting information, e.g. on the local and global polarizability. Its derivatives may govern the influence of charge on the polarizability, the R-analogues being the nuclear Fukui function and the quadratic and cubic force constants. Although some of the higher order derivatives may be difficult to evaluate a comparison with the energy expansion used in spectroscopy in terms of nuclear displacements, nuclear magnetic moments, electric and magnetic fields leads to the conjecture that, certainly cross terms may contain new, intricate information for understanding chemical reactivity.
Kinetic theory for strongly coupled Coulomb systems
NASA Astrophysics Data System (ADS)
Dufty, James; Wrighton, Jeffrey
2018-01-01
The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.
Gatzke-Kopp, Lisa M.; Beauchaine, Theodore P.; Shannon, Katherine E.; Chipman, Jane; Fleming, Andrew P.; Crowell, Sheila E.; Liang, Olivia; Aylward, Elizabeth; Johnson, L. Clark
2009-01-01
Opposing theories of striatal hyper- and hypodopaminergic functioning have been suggested in the pathophysiology of externalizing behavior disorders. To test these competing theories, the authors used functional MRI to evaluate neural activity during a simple reward task in 12- to 16-year-old boys with attention-deficit/hyperactivity disorder and/or conduct disorder (n = 19) and in controls with no psychiatric condition (n = 11). The task proceeded in blocks during which participants received either (a) monetary incentives for correct responses or (b) no rewards for correct responses. Controls exhibited striatal activation only during reward, shifting to anterior cingulate activation during nonreward. In contrast, externalizing adolescents exhibited striatal activation during both reward and nonreward. Externalizing psychopathology appears to be characterized by deficits in processing the omission of predicted reward, which may render behaviors that are acquired through environmental contingencies difficult to extinguish when those contingencies change. PMID:19222326
Friese, Daniel H; Ringholm, Magnus; Gao, Bin; Ruud, Kenneth
2015-10-13
We present theory, implementation, and applications of a recursive scheme for the calculation of single residues of response functions that can treat perturbations that affect the basis set. This scheme enables the calculation of nonlinear light absorption properties to arbitrary order for other perturbations than an electric field. We apply this scheme for the first treatment of two-photon circular dichroism (TPCD) using London orbitals at the Hartree-Fock level of theory. In general, TPCD calculations suffer from the problem of origin dependence, which has so far been solved by using the velocity gauge for the electric dipole operator. This work now enables comparison of results from London orbital and velocity gauge based TPCD calculations. We find that the results from the two approaches both exhibit strong basis set dependence but that they are very similar with respect to their basis set convergence.
Nonlinear responses of chiral fluids from kinetic theory
NASA Astrophysics Data System (ADS)
Hidaka, Yoshimasa; Pu, Shi; Yang, Di-Lun
2018-01-01
The second-order nonlinear responses of inviscid chiral fluids near local equilibrium are investigated by applying the chiral kinetic theory (CKT) incorporating side-jump effects. It is shown that the local equilibrium distribution function can be nontrivially introduced in a comoving frame with respect to the fluid velocity when the quantum corrections in collisions are involved. For the study of anomalous transport, contributions from both quantum corrections in anomalous hydrodynamic equations of motion and those from the CKT and Wigner functions are considered under the relaxation-time (RT) approximation, which result in anomalous charge Hall currents propagating along the cross product of the background electric field and the temperature (or chemical-potential) gradient and of the temperature and chemical-potential gradients. On the other hand, the nonlinear quantum correction on the charge density vanishes in the classical RT approximation, which in fact satisfies the matching condition given by the anomalous equation obtained from the CKT.
Rinkevicius, Zilvinas; Li, Xin; Sandberg, Jaime A R; Mikkelsen, Kurt V; Ågren, Hans
2014-03-11
We introduce a density functional theory/molecular mechanical approach for computation of linear response properties of molecules in heterogeneous environments, such as metal surfaces or nanoparticles embedded in solvents. The heterogeneous embedding environment, consisting from metallic and nonmetallic parts, is described by combined force fields, where conventional force fields are used for the nonmetallic part and capacitance-polarization-based force fields are used for the metallic part. The presented approach enables studies of properties and spectra of systems embedded in or placed at arbitrary shaped metallic surfaces, clusters, or nanoparticles. The capability and performance of the proposed approach is illustrated by sample calculations of optical absorption spectra of thymidine absorbed on gold surfaces in an aqueous environment, where we study how different organizations of the gold surface and how the combined, nonadditive effect of the two environments is reflected in the optical absorption spectrum.
A description of the mechanical behavior of composite solid propellants based on molecular theory
NASA Technical Reports Server (NTRS)
Landel, R. F.
1976-01-01
Both the investigation and the representation of the stress-strain response (including rupture) of gum and filled elastomers can be based on a simple functional statement. Internally consistent experiments are used to sort out the effects of time, temperature, strain and crosslink density on gum rubbers. All effects are readily correlated and shown to be essentially independent of the elastomer when considered in terms of non-dimensionalized stress, strain and time. A semiquantitative molecular theory is developed to explain this result. The introduction of fillers modifies the response, but, guided by the framework thus provided, their effects can be readily accounted for.
Chiral effective theory of dark matter direct detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishara, Fady; Brod, Joachim; Grinstein, Benjamin
2017-02-01
We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces.more » Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.« less
On the formulation of the aerodynamic characteristics in aircraft dynamics
NASA Technical Reports Server (NTRS)
Tobak, M.; Schiff, L. B.
1976-01-01
The theory of functionals is used to reformulate the notions of aerodynamic indicial functions and superposition. Integral forms for the aerodynamic response to arbitrary motions are derived that are free of dependence on a linearity assumption. Simplifications of the integral forms lead to practicable nonlinear generalizations of the linear superpositions and stability derivative formulations. Applied to arbitrary nonplanar motions, the generalization yields a form for the aerodynamic response that can be compounded of the contributions from a limited number of well-defined characteristic motions, in principle reproducible in the wind tunnel. Further generalizations that would enable the consideration of random fluctuations and multivalued aerodynamic responses are indicated.
Electromagnetic response of C 12 : A first-principles calculation
Lovato, A.; Gandolfi, S.; Carlson, J.; ...
2016-08-15
Here, the longitudinal and transverse electromagnetic response functions ofmore » $$^{12}$$C are computed in a ``first-principles'' Green's function Monte Carlo calculation, based on realistic two- and three-nucleon interactions and associated one- and two-body currents. We find excellent agreement between theory and experiment and, in particular, no evidence for the quenching of measured versus calculated longitudinal response. This is further corroborated by a re-analysis of the Coulomb sum rule, in which the contributions from the low-lying $$J^\\pi\\,$$=$$\\, 2^+$$, $0^+$ (Hoyle), and $4^+$ states in $$^{12}$$C are accounted for explicitly in evaluating the total inelastic strength.« less
Catastrophe theory: What it is—Why it exists—How it works
NASA Astrophysics Data System (ADS)
Gilmore, Robert
1996-06-01
Push on something. It will move. Push a little bit harder and it will move a little bit more. But occasionally a little extra push will produce an extra large response. Such extra responses are called ``catastrophes.'' This kind of behavior is summarized by the phrase ``... the straw that broke the camel's back.'' Situations in which a gradually increasing force leads to a gradually increasing response, followed by a sudden catastrophic jump to a qualitatively different state, are all too common. They are seen, for example, in the collapse of a bridge, dam, or building; the loss of stability of an aircraft or ship; phase transitions in fluids or solids; ignition of a laser; sudden changes in the earth's climate. In each of the instances above, and very many others besides, it is possible to see a smooth response and a discontinuous response to a smoothly changing force. It might seem that ``Every smooth response is the same, each discontinuous response is discontinuous in its own fashion.'' In fact, every smooth process is conveniently described by a linear response function or tensor. However, it is not true that every discontinuity is different. Discontinuities are described by mathematical functions called catastrophe functions. Only a relatively small number of such functions exist. These have been extensively studied. They can be constructed for any physical system. The simplest of these have been studied extensively. The result is that only a handful of different types of discontinuities are typically encountered, and each of these exhibits a characteristic set of properties. A parallel realization that a relatively small number of features characterizes the complex behavior exhibited by nonlinear dynamical systems (sets of ordinary differential equations) has catalyzed the rapid growth of interest in such systems in the last two decades. In the following sections we describe catastrophe theory. In particular, we describe what it is, why it exists, and how it works.
Dissociating response conflict and error likelihood in anterior cingulate cortex.
Yeung, Nick; Nieuwenhuis, Sander
2009-11-18
Neuroimaging studies consistently report activity in anterior cingulate cortex (ACC) in conditions of high cognitive demand, leading to the view that ACC plays a crucial role in the control of cognitive processes. According to one prominent theory, the sensitivity of ACC to task difficulty reflects its role in monitoring for the occurrence of competition, or "conflict," between responses to signal the need for increased cognitive control. However, a contrasting theory proposes that ACC is the recipient rather than source of monitoring signals, and that ACC activity observed in relation to task demand reflects the role of this region in learning about the likelihood of errors. Response conflict and error likelihood are typically confounded, making the theories difficult to distinguish empirically. The present research therefore used detailed computational simulations to derive contrasting predictions regarding ACC activity and error rate as a function of response speed. The simulations demonstrated a clear dissociation between conflict and error likelihood: fast response trials are associated with low conflict but high error likelihood, whereas slow response trials show the opposite pattern. Using the N2 component as an index of ACC activity, an EEG study demonstrated that when conflict and error likelihood are dissociated in this way, ACC activity tracks conflict and is negatively correlated with error likelihood. These findings support the conflict-monitoring theory and suggest that, in speeded decision tasks, ACC activity reflects current task demands rather than the retrospective coding of past performance.
Weck, Philippe F.; Kim, Eunja
2016-09-12
The structure–property relationships of bulk CeO 2 and Ce 2O 3 have been investigated using AM05 and PBEsol exchange–correlation functionals within the frameworks of Hubbard-corrected density functional theory (DFT+ U) and density functional perturbation theory (DFPT+ U). Compared with conventional PBE+ U, RPBE+ U, PW91+ U and LDA+ U functionals, AM05+ U and PBEsol+ U describe experimental crystalline parameters and properties of CeO 2 and Ce 2O 3 with superior accuracy, especially when + U is chosen close to its value derived by the linear-response approach. Lastly, the present findings call for a reexamination of some of the problematic oxidemore » materials featuring strong f- and d-electron correlation using AM05+ U and PBEsol+ U.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weck, Philippe F.; Kim, Eunja
The structure–property relationships of bulk CeO 2 and Ce 2O 3 have been investigated using AM05 and PBEsol exchange–correlation functionals within the frameworks of Hubbard-corrected density functional theory (DFT+ U) and density functional perturbation theory (DFPT+ U). Compared with conventional PBE+ U, RPBE+ U, PW91+ U and LDA+ U functionals, AM05+ U and PBEsol+ U describe experimental crystalline parameters and properties of CeO 2 and Ce 2O 3 with superior accuracy, especially when + U is chosen close to its value derived by the linear-response approach. Lastly, the present findings call for a reexamination of some of the problematic oxidemore » materials featuring strong f- and d-electron correlation using AM05+ U and PBEsol+ U.« less
Wave functions of symmetry-protected topological phases from conformal field theories
NASA Astrophysics Data System (ADS)
Scaffidi, Thomas; Ringel, Zohar
2016-03-01
We propose a method for analyzing two-dimensional symmetry-protected topological (SPT) wave functions using a correspondence with conformal field theories (CFTs) and integrable lattice models. This method generalizes the CFT approach for the fractional quantum Hall effect wherein the wave-function amplitude is written as a many-operator correlator in the CFT. Adopting a bottom-up approach, we start from various known microscopic wave functions of SPTs with discrete symmetries and show how the CFT description emerges at large scale, thereby revealing a deep connection between group cocycles and critical, sometimes integrable, models. We show that the CFT describing the bulk wave function is often also the one describing the entanglement spectrum, but not always. Using a plasma analogy, we also prove the existence of hidden quasi-long-range order for a large class of SPTs. Finally, we show how response to symmetry fluxes is easily described in terms of the CFT.
Mezzalira, Jean C; Bonnet, Olivier J F; Carvalho, Paulo C de F; Fonseca, Lidiane; Bremm, Carolina; Mezzalira, Carlos C; Laca, Emilio A
2017-09-01
The functional response (i.e. the relationship between consumers' intake rate and resource density) is central in plant-herbivore interactions. Its shape and the biological processes leading to it have significant implications for both foraging theory and ecology of grazing systems. A type IV functional response (i.e. dome-shaped relationship) of short-term intake rate of dry matter (intake while grazing) has rarely been reported for large herbivores and the conditions that can lead to it are poorly understood. We report a type IV functional response observed in heifers grazing monocultures of Cynodon sp. and Avena strigosa. The mechanisms and consequences of this type of functional response for grazed system dynamics are discussed. Intake rate was higher at intermediate than at short or tall sward heights in both grass species. The type IV functional response resulted from changes in bite mass instead of a longer time needed to encounter and process bites. Thus, the decrease of intake rate of dry matter in tall swards is not explained by a shift from process 3 (potential bites are concentrated and apparent) to process 2 (potential bites are apparent but dispersed, Spalinger & Hobbs 1992). Bite mass was smaller in tall than in intermediate swards due to a reduction of bite volume possibly caused by the greater proportion of stem and sheath acting as a physical barrier to bite formation. It is generally accepted that potential bites are abundant and apparent in most grassland and meadow systems, as they were in the present experiments. Therefore, a type IV response of intake rate not directly related to digestive constraints may determine the dynamics of intake and defoliation under a much larger set of conditions than previously thought. These results have implications for foraging theory and stability of grazing systems. For example, if animals prefer patches of intermediate stature that yield the highest intake rate, grazing should lead to the widely observed bimodal distribution of plant mass per unit area, even when tall patches are not of significantly lower digestive quality than the pasture average. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Many-body theory of electrical, thermal and optical response of molecular heterojunctions
NASA Astrophysics Data System (ADS)
Bergfield, Justin Phillip
In this work, we develop a many-body theory of electronic transport through single molecule junctions based on nonequilibrium Green's functions (NEGFs). The central quantity of this theory is the Coulomb self-energy matrix of the junction SigmaC. SigmaC is evaluated exactly in the sequential-tunneling limit, and the correction due to finite lead-molecule tunneling is evaluated using a conserving approximation based on diagrammatic perturbation theory on the Keldysh contour. In this way, tunneling processes are included to infinite order, meaning that any approximation utilized is a truncation in the physical processes considered rather than in the order of those processes. Our theory reproduces the key features of both the Coulomb blockade and coherent transport regimes simultaneously in a single unified theory. Nonperturbative effects of intramolecular correlations are included, which are necessary to accurately describe the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap, essential for a quantitative theory of transport. This work covers four major topics related to transport in single-molecule junctions. First, we use our many-body theory to calculate the nonlinear electrical response of the archetypal Au-1,4-benzenedithiol-Au junction and find irregularly shaped 'molecular diamonds' which have been experimentally observed in some larger molecules but which are inaccessible to existing theoretical approaches. Next, we extend our theory to include heat transport and develop an exact expression for the heat current in an interacting nanostructure. Using this result, we discover that quantum coherence can strongly enhance the thermoelectric response of a device, a result with a number of technological applications. We then develop the formalism to include multi-orbital lead-molecule contacts and multi-channel leads, both of which strongly affect the observable transport. Lastly, we include a dynamic screening correction to Sigma C and investigate the optoelectric response of several molecular junctions.
Nonequilibrium landscape theory of neural networks.
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-11-05
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.
Nonequilibrium landscape theory of neural networks
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-01-01
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451
2011-05-03
18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Dr. Tommy W. Hawkins a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE...branching using Rice-Ramsperger-Kassel-Marcus (RRKM) theory, 18 and finally to the analysis of inter-conversions of primary decomposition products...theory, 18 was employed to examine the properties of the reactant, intermediate complex and transition states as a function of the total internal energy
Amide I vibrational circular dichroism of dipeptide: Conformation dependence and fragment analysis
NASA Astrophysics Data System (ADS)
Choi, Jun-Ho; Cho, Minhaeng
2004-03-01
The amide I vibrational circular dichroic response of alanine dipeptide analog (ADA) was theoretically investigated and the density functional theory calculation and fragment analysis results are presented. A variety of vibrational spectroscopic properties, local and normal mode frequencies, coupling constant, dipole, and rotational strengths, are calculated by varying two dihedral angles determining the three-dimensional ADA conformation. Considering two monopeptide fragments separately, we show that the amide I vibrational circular dichroism of the ADA can be quantitatively predicted. For several representative conformations of the model ADA, vibrational circular dichroism spectra are calculated by using both the density functional theory calculation and fragment analysis methods.
Tao, Jianmin; Tretiak, Sergei; Zhu, Jian-Xin
2010-01-01
With technological advances, light-emitting conjugated oligomers and polymers have become competitive candidates in the commercial market of light-emitting diodes for display and other technologies, due to the ultralow cost, light weight, and flexibility. Prediction of excitation energies of these systems plays a crucial role in the understanding of their optical properties and device design. In this review article, we discuss the calculation of excitation energies with time-dependent density functional theory, which is one of the most successful methods in the investigation of the dynamical response of molecular systems to external perturbation, owing to its high computational efficiency.
Surface loading of a viscoelastic earth-I. General theory
NASA Astrophysics Data System (ADS)
Tromp, Jeroen; Mitrovica, Jerry X.
1999-06-01
We present a new normal-mode formalism for computing the response of an aspherical, self-gravitating, linear viscoelastic earth model to an arbitrary surface load. The formalism makes use of recent advances in the theory of the Earth's free oscillations, and is based upon an eigenfunction expansion methodology, rather than the tradi-tional Love-number approach to surface-loading problems. We introduce a surface-load representation theorem analogous to Betti's reciprocity relation in seismology. Taking advantage of this theorem and the biorthogonality of the viscoelastic modes, we determine the complete response to a surface load in the form of a Green's function. We also demonstrate that each viscoelastic mode has its own unique energy partitioning, which can be used to characterize it. In subsequent papers, we apply the theory to spherically symmetric and aspherical earth models.
Combining item response theory with multiple imputation to equate health assessment questionnaires.
Gu, Chenyang; Gutman, Roee
2017-09-01
The assessment of patients' functional status across the continuum of care requires a common patient assessment tool. However, assessment tools that are used in various health care settings differ and cannot be easily contrasted. For example, the Functional Independence Measure (FIM) is used to evaluate the functional status of patients who stay in inpatient rehabilitation facilities, the Minimum Data Set (MDS) is collected for all patients who stay in skilled nursing facilities, and the Outcome and Assessment Information Set (OASIS) is collected if they choose home health care provided by home health agencies. All three instruments or questionnaires include functional status items, but the specific items, rating scales, and instructions for scoring different activities vary between the different settings. We consider equating different health assessment questionnaires as a missing data problem, and propose a variant of predictive mean matching method that relies on Item Response Theory (IRT) models to impute unmeasured item responses. Using real data sets, we simulated missing measurements and compared our proposed approach to existing methods for missing data imputation. We show that, for all of the estimands considered, and in most of the experimental conditions that were examined, the proposed approach provides valid inferences, and generally has better coverages, relatively smaller biases, and shorter interval estimates. The proposed method is further illustrated using a real data set. © 2016, The International Biometric Society.
Lensing-induced morphology changes in CMB temperature maps in modified gravity theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munshi, D.; Coles, P.; Hu, B.
2016-04-01
Lensing of the Cosmic Microwave Background (CMB) changes the morphology of pattern of temperature fluctuations, so topological descriptors such as Minkowski Functionals can probe the gravity model responsible for the lensing. We show how the recently introduced two-to-two and three-to-one kurt-spectra (and their associated correlation functions), which depend on the power spectrum of the lensing potential, can be used to probe modified gravity theories such as f ( R ) theories of gravity and quintessence models. We also investigate models based on effective field theory, which include the constant-Ω model, and low-energy Hořava theories. Estimates of the cumulative signal-to-noise formore » detection of lensing-induced morphology changes, reaches O(10{sup 3}) for the future planned CMB polarization mission COrE{sup +}. Assuming foreground removal is possible to ℓ{sub max}=3000, we show that many modified gravity theories can be rejected with a high level of significance, making this technique comparable in power to galaxy weak lensing or redshift surveys. These topological estimators are also useful in distinguishing lensing from other scattering secondaries at the level of the four-point function or trispectrum. Examples include the kinetic Sunyaev-Zel'dovich (kSZ) effect which shares, with lensing, a lack of spectral distortion. We also discuss the complication of foreground contamination from unsubtracted point sources.« less
Cigarette craving is associated with blunted reward processing in nicotine-dependent smokers.
Peechatka, Alyssa L; Whitton, Alexis E; Farmer, Stacey L; Pizzagalli, Diego A; Janes, Amy C
2015-10-01
Dysfunctional reward processing leading to the undervaluation of non-drug rewards is hypothesized to play a crucial role in nicotine dependence. However, it is unclear if blunted reward responsivity and the desire to use nicotine are directly linked after a brief period of abstinence. Such an association would suggest that individuals with reduced reward responsivity may be at increased risk to experience nicotine craving. Reward function was evaluated with a probabilistic reward task (PRT), which measures reward responsivity to monetary incentives. To identify whether smoking status influenced reward function, PRT performance was compared between non-depressed, nicotine-dependent smokers and non-smokers. Within smokers, correlations were conducted to determine if blunted reward responsivity on the PRT was associated with increased nicotine craving. Time since last nicotine exposure was standardized to 4h for all smokers. Smokers and non-smokers did not differ in reward responsivity on the PRT. However, within smokers, a significant negative correlation was found between reward responsivity and intensity of nicotine craving. The current findings show that, among smokers, the intensity of nicotine craving is linked to lower sensitivity to non-drug rewards. This finding is in line with prior theories that suggest reward dysfunction in some clinical populations (e.g., depressive disorders, schizophrenia) may facilitate nicotine use. The current study expands on such theories by indicating that sub-clinical variations in reward function are related to motivation for nicotine use. Identifying smokers who show blunted sensitivity to non-drug rewards may help guide treatments aimed at mitigating the motivation to smoke. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Conceptualizing the Organizational Role of Technical Communicators: A Systems Approach.
ERIC Educational Resources Information Center
Harrison, Teresa M.; Debs, Mary Beth
1988-01-01
Uses a systems approach to organizational theory to argue that technical communicators function as "boundary spanners," who make sense of and disseminate information required for coordination between organizational groups, and for effective responses to the environment. (JAD)
Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity.
Costa, Rui Ponte; Padamsey, Zahid; D'Amour, James A; Emptage, Nigel J; Froemke, Robert C; Vogels, Tim P
2017-09-27
Long-term modifications of neuronal connections are critical for reliable memory storage in the brain. However, their locus of expression-pre- or postsynaptic-is highly variable. Here we introduce a theoretical framework in which long-term plasticity performs an optimization of the postsynaptic response statistics toward a given mean with minimal variance. Consequently, the state of the synapse at the time of plasticity induction determines the ratio of pre- and postsynaptic modifications. Our theory explains the experimentally observed expression loci of the hippocampal and neocortical synaptic potentiation studies we examined. Moreover, the theory predicts presynaptic expression of long-term depression, consistent with experimental observations. At inhibitory synapses, the theory suggests a statistically efficient excitatory-inhibitory balance in which changes in inhibitory postsynaptic response statistics specifically target the mean excitation. Our results provide a unifying theory for understanding the expression mechanisms and functions of long-term synaptic transmission plasticity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Event-related near-infrared spectroscopy detects conflict in the motor cortex in a Stroop task.
Szűcs, Dénes; Killikelly, Clare; Cutini, Simone
2012-10-05
The Stroop effect is one of the most popular models of conflict processing in neuroscience and psychology. The response conflict theory of the Stroop effect explains decreased performance in the incongruent condition of Stroop tasks by assuming that the task-relevant and the task-irrelevant stimulus features elicit conflicting response tendencies. However, to date, there is not much explicit neural evidence supporting this theory. Here we used functional near-infrared imaging (fNIRS) to examine whether conflict at the level of the motor cortex can be detected in the incongruent relative to the congruent condition of a Stroop task. Response conflict was determined by comparing the activity of the hemisphere ipsilateral to the response hand in the congruent and incongruent conditions. First, results provided explicit hemodynamic evidence supporting the response conflict theory of the Stroop effect: there was greater motor cortex activation in the hemisphere ipsilateral to the response hand in the incongruent than in the congruent condition during the initial stage of the hemodynamic response. Second, as fNIRS is still a relatively novel technology, it is methodologically significant that our data shows that fNIRS is able to detect a brief and transient increase in hemodynamic activity localized to the motor cortex, which in this study is related to subthreshold motor response activation. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saad, Yousef
2014-03-19
The master project under which this work is funded had as its main objective to develop computational methods for modeling electronic excited-state and optical properties of various nanostructures. The specific goals of the computer science group were primarily to develop effective numerical algorithms in Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TDDFT). There were essentially four distinct stated objectives. The first objective was to study and develop effective numerical algorithms for solving large eigenvalue problems such as those that arise in Density Functional Theory (DFT) methods. The second objective was to explore so-called linear scaling methods ormore » Methods that avoid diagonalization. The third was to develop effective approaches for Time-Dependent DFT (TDDFT). Our fourth and final objective was to examine effective solution strategies for other problems in electronic excitations, such as the GW/Bethe-Salpeter method, and quantum transport problems.« less
Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.
Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon
2018-04-05
The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.
ERIC Educational Resources Information Center
Drabinová, Adéla; Martinková, Patrícia
2017-01-01
In this article we present a general approach not relying on item response theory models (non-IRT) to detect differential item functioning (DIF) in dichotomous items with presence of guessing. The proposed nonlinear regression (NLR) procedure for DIF detection is an extension of method based on logistic regression. As a non-IRT approach, NLR can…
ERIC Educational Resources Information Center
Wang, Wen-Chung
2004-01-01
Scale indeterminacy in analysis of differential item functioning (DIF) within the framework of item response theory can be resolved by imposing 3 anchor item methods: the equal-mean-difficulty method, the all-other anchor item method, and the constant anchor item method. In this article, applicability and limitations of these 3 methods are…
Item response theory analyses of the Delis-Kaplan Executive Function System card sorting subtest.
Spencer, Mercedes; Cho, Sun-Joo; Cutting, Laurie E
2018-02-02
In the current study, we examined the dimensionality of the 16-item Card Sorting subtest of the Delis-Kaplan Executive Functioning System assessment in a sample of 264 native English-speaking children between the ages of 9 and 15 years. We also tested for measurement invariance for these items across age and gender groups using item response theory (IRT). Results of the exploratory factor analysis indicated that a two-factor model that distinguished between verbal and perceptual items provided the best fit to the data. Although the items demonstrated measurement invariance across age groups, measurement invariance was violated for gender groups, with two items demonstrating differential item functioning for males and females. Multigroup analysis using all 16 items indicated that the items were more effective for individuals whose IRT scale scores were relatively high. A single-group explanatory IRT model using 14 non-differential item functioning items showed that for perceptual ability, females scored higher than males and that scores increased with age for both males and females; for verbal ability, the observed increase in scores across age differed for males and females. The implications of these findings are discussed.
Primary motor cortex functionally contributes to language comprehension: An online rTMS study.
Vukovic, Nikola; Feurra, Matteo; Shpektor, Anna; Myachykov, Andriy; Shtyrov, Yury
2017-02-01
Among various questions pertinent to grounding human cognitive functions in a neurobiological substrate, the association between language and motor brain structures is a particularly debated one in neuroscience and psychology. While many studies support a broadly distributed model of language and semantics grounded, among other things, in the general modality-specific systems, theories disagree as to whether motor and sensory cortex activity observed during language processing is functional or epiphenomenal. Here, we assessed the role of motor areas in linguistic processing by investigating the responses of 28 healthy volunteers to different word types in semantic and lexical decision tasks, following repetitive transcranial magnetic stimulation (rTMS) of primary motor cortex. We found that early rTMS (delivered within 200ms of word onset) produces a left-lateralised and meaning-specific change in reaction speed, slowing down behavioural responses to action-related words, and facilitating abstract words - an effect present only during semantic, but not lexical, decision. We interpret these data in light of action-perception theory of language, bolstering the claim that motor cortical areas play a functional role in language comprehension. Copyright © 2017 Elsevier Ltd. All rights reserved.
Refined Zigzag Theory for Laminated Composite and Sandwich Plates
NASA Technical Reports Server (NTRS)
Tessler, Alexander; DiSciuva, Marco; Gherlone, Marco
2009-01-01
A refined zigzag theory is presented for laminated-composite and sandwich plates that includes the kinematics of first-order shear deformation theory as its baseline. The theory is variationally consistent and is derived from the virtual work principle. Novel piecewise-linear zigzag functions that provide a more realistic representation of the deformation states of transverse-shear-flexible plates than other similar theories are used. The formulation does not enforce full continuity of the transverse shear stresses across the plate s thickness, yet is robust. Transverse-shear correction factors are not required to yield accurate results. The theory is devoid of the shortcomings inherent in the previous zigzag theories including shear-force inconsistency and difficulties in simulating clamped boundary conditions, which have greatly limited the accuracy of these theories. This new theory requires only C(sup 0)-continuous kinematic approximations and is perfectly suited for developing computationally efficient finite elements. The theory should be useful for obtaining relatively efficient, accurate estimates of structural response needed to design high-performance load-bearing aerospace structures.
Anelone, Anet J N; Spurgeon, Sarah K
2016-01-01
Experimental and mathematical studies in immunology have revealed that the dynamics of the programmed T cell response to vigorous infection can be conveniently modelled using a sigmoidal or a discontinuous immune response function. This paper hypothesizes strong synergies between this existing work and the dynamical behaviour of engineering systems with a variable structure control (VSC) law. These findings motivate the interpretation of the immune system as a variable structure control system. It is shown that dynamical properties as well as conditions to analytically assess the transition from health to disease can be developed for the specific T cell response from the theory of variable structure control. In particular, it is shown that the robustness properties of the specific T cell response as observed in experiments can be explained analytically using a VSC perspective. Further, the predictive capacity of the VSC framework to determine the T cell help required to overcome chronic Lymphocytic Choriomeningitis Virus (LCMV) infection is demonstrated. The findings demonstrate that studying the immune system using variable structure control theory provides a new framework for evaluating immunological dynamics and experimental observations. A modelling and simulation tool results with predictive capacity to determine how to modify the immune response to achieve healthy outcomes which may have application in drug development and vaccine design.
NASA Astrophysics Data System (ADS)
Barati, Mohammad Reza
2017-11-01
Up to now, nonlocal strain gradient theory (NSGT) is broadly applied to examine free vibration, static bending and buckling of nanobeams. This theory captures nonlocal stress field effects together with the microstructure-dependent strain gradient effects. In this study, forced vibrations of NSGT nanobeams on elastic substrate subjected to moving loads are examined. The nanobeam is made of functionally graded material (FGM) with even and uneven porosity distributions inside the material structure. The graded material properties with porosities are described by a modified power-law model. Dynamic deflection of the nanobeam is obtained via Galerkin and inverse Laplace transform methods. The importance of nonlocal parameter, strain gradient parameter, moving load velocity, porosity volume fraction, type of porosity distribution and elastic foundation on forced vibration behavior of nanobeams are discussed.
Unique magnetic and thermoelectric properties of chemically functionalized narrow carbon polymers.
Zberecki, K; Wierzbicki, M; Swirkowicz, R; Barnaś, J
2017-02-01
We analyze magnetic, transport and thermoelectric properties of narrow carbon polymers, which are chemically functionalized with nitroxide groups. Numerical calculations of the electronic band structure and the corresponding transmission function are based on density functional theory. Transport and thermoelectric parameters are calculated in the linear response regime, with particular interest in charge and spin thermopowers (charge and spin Seebeck effects). Such nanoribbons are shown to have thermoelectric properties described by large thermoelectric efficiency, which makes these materials promising from the application point of view.
NASA Astrophysics Data System (ADS)
Amiri-Sharifi, S.; Ali-Akbari, M.; Kishani-Farahani, A.; Shafie, N.
2016-08-01
We exploit the AdS/CFT correspondence to investigate thermalization in an N = 2 strongly coupled gauge theory including massless fundamental matter (quark). More precisely, we consider the response of a zero temperature state of the gauge theory under influence of an external electric field which leads to a time-dependent current. The holographic dual of the above set-up is given by introducing a time-dependent electric field on the probe D7-brane embedded in an AdS5 ×S5 background. In the dual gravity theory an apparent horizon forms on the brane which, according to AdS/CFT dictionary, is the counterpart of the thermalization process in the gauge theory side. We classify different functions for time-dependent electric field and study their effect on the apparent horizon formation. In the case of pulse functions, where the electric field varies from zero to zero, apart from non-equilibrium phase, we observe the formation of two separate apparent horizons on the brane. This means that the state of the gauge theory experiences two different temperature regimes during its time evolution.
Time-dependent mean-field theory for x-ray near-edge spectroscopy
NASA Astrophysics Data System (ADS)
Bertsch, G. F.; Lee, A. J.
2014-02-01
We derive equations of motion for calculating the near-edge x-ray absorption spectrum in molecules and condensed matter, based on a two-determinant approximation and Dirac's variational principle. The theory provides an exact solution for the linear response when the Hamiltonian or energy functional has only diagonal interactions in some basis. We numerically solve the equations to compare with the Mahan-Nozières-De Dominicis theory of the edge singularity in metallic conductors. Our extracted power-law exponents are similar to those of the analytic theory, but are not in quantitative agreement. The calculational method can be readily generalized to treat Kohn-Sham Hamiltonians with electron-electron interactions derived from correlation-exchange potentials.
Directive and incentive functions of affective action consequences: an ideomotor approach.
Eder, Andreas B; Rothermund, Klaus; De Houwer, Jan; Hommel, Bernhard
2015-07-01
Five experiments examined whether affective consequences become associated with the responses producing them and whether anticipations of positive and negative action outcomes influence action control differently. In a learning phase, one response produced pleasant and another response unpleasant visual effects. In a subsequent test phase, the same actions were carried out in response to a neutral feature of affective stimuli. Results showed that responses were faster when the irrelevant valence of the response cue matched the valence of the response outcome, but only when the responses still produced outcomes. These results suggest that affective action consequences have a directive function in that they facilitate the selection of the associated response over other responses, even when the response outcome is unpleasant (Experiment 4A). Results of another experiment showed that affective action consequences can also have an incentive function in that responses with pleasant outcomes are generally facilitated relative to responses with unpleasant outcomes. However, this motivational effect was seen only in a free-choice test (Experiment 5). The results suggest that behavioral impulses induced by ideomotor processes are constrained by the motivational evaluation of the anticipated action outcome. A model that integrates motivational factors into ideomotor theory is presented.
Terahertz absorption of lysozyme in solution
NASA Astrophysics Data System (ADS)
Martin, Daniel R.; Matyushov, Dmitry V.
2017-08-01
Absorption of radiation by solution is described by its frequency-dependent dielectric function and can be viewed as a specific application of the dielectric theory of solutions. For ideal solutions, the dielectric boundary-value problem separates the polar response into the polarization of the void in the liquid, created by the solute, and the response of the solute dipole. In the case of a protein as a solute, protein nuclear dynamics do not project on significant fluctuations of the dipole moment in the terahertz domain of frequencies and the protein dipole can be viewed as dynamically frozen. Absorption of radiation then reflects the interfacial polarization. Here we apply an analytical theory and computer simulations to absorption of radiation by an ideal solution of lysozyme. Comparison with the experiment shows that Maxwell electrostatics fails to describe the polarization of the protein-water interface and the "Lorentz void," which does not anticipate polarization of the interface by the external field (no surface charges), better represents the data. An analytical theory for the slope of the solution absorption against the volume fraction of the solute is formulated in terms of the cavity field response function. It is calculated from molecular dynamics simulations in good agreement with the experiment. The protein hydration shell emerges as a separate sub-ensemble, which, collectively, is not described by the standard electrostatics of dielectrics.
Bacci, Elizabeth D; Staniewska, Dorota; Coyne, Karin S; Boyer, Stacey; White, Leigh Ann; Zach, Neta; Cedarbaum, Jesse M
2016-01-01
Our objective was to examine dimensionality and item-level performance of the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) across time using classical and modern test theory approaches. Confirmatory factor analysis (CFA) and Item Response Theory (IRT) analyses were conducted using data from patients with amyotrophic lateral sclerosis (ALS) Pooled Resources Open-Access ALS Clinical Trials (PRO-ACT) database with complete ALSFRS-R data (n = 888) at three time-points (Time 0, Time 1 (6-months), Time 2 (1-year)). Results demonstrated that in this population of 888 patients, mean age was 54.6 years, 64.4% were male, and 93.7% were Caucasian. The CFA supported a 4* individual-domain structure (bulbar, gross motor, fine motor, and respiratory domains). IRT analysis within each domain revealed misfitting items and overlapping item response category thresholds at all time-points, particularly in the gross motor and respiratory domain items. Results indicate that many of the items of the ALSFRS-R may sub-optimally distinguish among varying levels of disability assessed by each domain, particularly in patients with less severe disability. Measure performance improved across time as patient disability severity increased. In conclusion, modifications to select ALSFRS-R items may improve the instrument's specificity to disability level and sensitivity to treatment effects.
Differential item functioning analysis of the Vanderbilt Expertise Test for cars
Lee, Woo-Yeol; Cho, Sun-Joo; McGugin, Rankin W.; Van Gulick, Ana Beth; Gauthier, Isabel
2015-01-01
The Vanderbilt Expertise Test for cars (VETcar) is a test of visual learning for contemporary car models. We used item response theory to assess the VETcar and in particular used differential item functioning (DIF) analysis to ask if the test functions the same way in laboratory versus online settings and for different groups based on age and gender. An exploratory factor analysis found evidence of multidimensionality in the VETcar, although a single dimension was deemed sufficient to capture the recognition ability measured by the test. We selected a unidimensional three-parameter logistic item response model to examine item characteristics and subject abilities. The VETcar had satisfactory internal consistency. A substantial number of items showed DIF at a medium effect size for test setting and for age group, whereas gender DIF was negligible. Because online subjects were on average older than those tested in the lab, we focused on the age groups to conduct a multigroup item response theory analysis. This revealed that most items on the test favored the younger group. DIF could be more the rule than the exception when measuring performance with familiar object categories, therefore posing a challenge for the measurement of either domain-general visual abilities or category-specific knowledge. PMID:26418499
Stability of Mixed-Strategy-Based Iterative Logit Quantal Response Dynamics in Game Theory
Zhuang, Qian; Di, Zengru; Wu, Jinshan
2014-01-01
Using the Logit quantal response form as the response function in each step, the original definition of static quantal response equilibrium (QRE) is extended into an iterative evolution process. QREs remain as the fixed points of the dynamic process. However, depending on whether such fixed points are the long-term solutions of the dynamic process, they can be classified into stable (SQREs) and unstable (USQREs) equilibriums. This extension resembles the extension from static Nash equilibriums (NEs) to evolutionary stable solutions in the framework of evolutionary game theory. The relation between SQREs and other solution concepts of games, including NEs and QREs, is discussed. Using experimental data from other published papers, we perform a preliminary comparison between SQREs, NEs, QREs and the observed behavioral outcomes of those experiments. For certain games, we determine that SQREs have better predictive power than QREs and NEs. PMID:25157502
Shen, Minxue; Hu, Ming; Sun, Zhenqiu
2017-01-01
Objectives To develop and validate brief scales to measure common emotional and behavioural problems among adolescents in the examination-oriented education system and collectivistic culture of China. Setting Middle schools in Hunan province. Participants 5442 middle school students aged 11–19 years were sampled. 4727 valid questionnaires were collected and used for validation of the scales. The final sample included 2408 boys and 2319 girls. Primary and secondary outcome measures The tools were assessed by the item response theory, classical test theory (reliability and construct validity) and differential item functioning. Results Four scales to measure anxiety, depression, study problem and sociality problem were established. Exploratory factor analysis showed that each scale had two solutions. Confirmatory factor analysis showed acceptable to good model fit for each scale. Internal consistency and test–retest reliability of all scales were above 0.7. Item response theory showed that all items had acceptable discrimination parameters and most items had appropriate difficulty parameters. 10 items demonstrated differential item functioning with respect to gender. Conclusions Four brief scales were developed and validated among adolescents in middle schools of China. The scales have good psychometric properties with minor differential item functioning. They can be used in middle school settings, and will help school officials to assess the students’ emotional/behavioural problems. PMID:28062469
Form factors for dark matter capture by the Sun in effective theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catena, Riccardo; Schwabe, Bodo
2015-04-24
In the effective theory of isoscalar and isovector dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle, 8 isotope-dependent nuclear response functions can be generated in the dark matter scattering by nuclei. We compute the 8 nuclear response functions for the 16 most abundant elements in the Sun, i.e. H, {sup 3}He, {sup 4}He, {sup 12}C, {sup 14}N, {sup 16}O, {sup 20}Ne, {sup 23}Na, {sup 24}Mg, {sup 27}Al, {sup 28}Si, {sup 32}S, {sup 40}Ar, {sup 40}Ca, {sup 56}Fe, and {sup 59}Ni, through numerical shell model calculations. We use our response functions to compute the rate of dark mattermore » capture by the Sun for all isoscalar and isovector dark matter-nucleon effective interactions, including several operators previously considered for dark matter direct detection only. We study in detail the dependence of the capture rate on specific dark matter-nucleon interaction operators, and on the different elements in the Sun. We find that a so far neglected momentum dependent dark matter coupling to the nuclear vector charge gives a larger contribution to the capture rate than the constant spin-dependent interaction commonly included in dark matter searches at neutrino telescopes. Our investigation lays the foundations for model independent analyses of dark matter induced neutrino signals from the Sun. The nuclear response functions obtained in this study are listed in analytic form in an appendix, ready to be used in other projects.« less
Fractional compartmental models and multi-term Mittag-Leffler response functions.
Verotta, Davide
2010-04-01
Systems of fractional differential equations (SFDE) have been increasingly used to represent physical and control system, and have been recently proposed for use in pharmacokinetics (PK) by (J Pharmacokinet Pharmacodyn 36:165-178, 2009) and (J Phamacokinet Pharmacodyn, 2010). We contribute to the development of a theory for the use of SFDE in PK by, first, further clarifying the nature of systems of FDE, and in particular point out the distinction and properties of commensurate versus non-commensurate ones. The second purpose is to show that for both types of systems, relatively simple response functions can be derived which satisfy the requirements to represent single-input/single-output PK experiments. The response functions are composed of sums of single- (for commensurate) or two-parameters (for non-commensurate) Mittag-Leffler functions, and establish a direct correspondence with the familiar sums of exponentials used in PK.
El-Kady, Ihab F.; Reinke, Charles M.
2017-07-18
The topology of the elements of a metamaterial can be engineered from its desired electromagnetic constitutive tensor using an inverse group theory method. Therefore, given a desired electromagnetic response and a generic metamaterial elemental design, group theory is applied to predict the various ways that the element can be arranged in three dimensions to produce the desired functionality. An optimizer can then be applied to an electromagnetic modeling tool to fine tune the values of the electromagnetic properties of the resulting metamaterial topology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Peter H., E-mail: yoonp@umd.edu; School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701
2015-09-15
A previous paper [P. H. Yoon, “Kinetic theory of turbulence for parallel propagation revisited: Formal results,” Phys. Plasmas 22, 082309 (2015)] revisited the second-order nonlinear kinetic theory for turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field, in which the original work according to Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] was refined, following the paper by Gaelzer et al. [Phys. Plasmas 22, 032310 (2015)]. The main finding involved the dimensional correction pertaining to discrete-particle effects in Yoon and Fang's theory. However, the final result was presented in terms of formal linear and nonlinear susceptibility response functions. Inmore » the present paper, the formal equations are explicitly written down for the case of low-to-intermediate frequency regime by making use of approximate forms for the response functions. The resulting equations are sufficiently concrete so that they can readily be solved by numerical means or analyzed by theoretical means. The derived set of equations describe nonlinear interactions of quasi-parallel modes whose frequency range covers the Alfvén wave range to ion-cyclotron mode, but is sufficiently lower than the electron cyclotron mode. The application of the present formalism may range from the nonlinear evolution of whistler anisotropy instability in the high-beta regime, and the nonlinear interaction of electrons with whistler-range turbulence.« less
Yau, David T W; Wong, May C M; Lam, K F; McGrath, Colman
2015-08-19
Four-factor structure of the two 8-item short forms of Child Perceptions Questionnaire CPQ11-14 (RSF:8 and ISF:8) has been confirmed. However, the sum scores are typically reported in practice as a proxy of Oral health-related Quality of Life (OHRQoL), which implied a unidimensional structure. This study first assessed the unidimensionality of 8-item short forms of CPQ11-14. Item response theory (IRT) was employed to offer an alternative and complementary approach of validation and to overcome the limitations of classical test theory assumptions. A random sample of 649 12-year-old school children in Hong Kong was analyzed. Unidimensionality of the scale was tested by confirmatory factor analysis (CFA), principle component analysis (PCA) and local dependency (LD) statistic. Graded response model was fitted to the data. Contribution of each item to the scale was assessed by item information function (IIF). Reliability of the scale was assessed by test information function (TIF). Differential item functioning (DIF) across gender was identified by Wald test and expected score functions. Both CPQ11-14 RSF:8 and ISF:8 did not deviate much from the unidimensionality assumption. Results from CFA indicated acceptable fit of the one-factor model. PCA indicated that the first principle component explained >30 % of the total variation with high factor loadings for both RSF:8 and ISF:8. Almost all LD statistic <10 indicated the absence of local dependency. Flat and low IIFs were observed in the oral symptoms items suggesting little contribution of information to the scale and item removal caused little practical impact. Comparing the TIFs, RSF:8 showed slightly better information than ISF:8. In addition to oral symptoms items, the item "Concerned with what other people think" demonstrated a uniform DIF (p < 0.001). The expected score functions were not much different between boys and girls. Items related to oral symptoms were not informative to OHRQoL and deletion of these items is suggested. The impact of DIF across gender on the overall score was minimal. CPQ11-14 RSF:8 performed slightly better than ISF:8 in measurement precision. The 6-item short forms suggested by IRT validation should be further investigated to ensure their robustness, responsiveness and discriminative performance.
Dopamine and extinction: A convergence of theory with fear and reward circuitry
Abraham, Antony D.; Neve, Kim A.; Lattal, K. Matthew
2014-01-01
Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine’s function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes. PMID:24269353
Dopamine and extinction: a convergence of theory with fear and reward circuitry.
Abraham, Antony D; Neve, Kim A; Lattal, K Matthew
2014-02-01
Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes. Copyright © 2013 Elsevier Inc. All rights reserved.
Analyzing Test-Taking Behavior: Decision Theory Meets Psychometric Theory.
Budescu, David V; Bo, Yuanchao
2015-12-01
We investigate the implications of penalizing incorrect answers to multiple-choice tests, from the perspective of both test-takers and test-makers. To do so, we use a model that combines a well-known item response theory model with prospect theory (Kahneman and Tversky, Prospect theory: An analysis of decision under risk, Econometrica 47:263-91, 1979). Our results reveal that when test-takers are fully informed of the scoring rule, the use of any penalty has detrimental effects for both test-takers (they are always penalized in excess, particularly those who are risk averse and loss averse) and test-makers (the bias of the estimated scores, as well as the variance and skewness of their distribution, increase as a function of the severity of the penalty).
ERIC Educational Resources Information Center
Carroll, Daniel J.; Riggs, Kevin J.; Apperly, Ian A.; Graham, Kate; Geoghegan, Ceara
2012-01-01
A total of 69 preschool children were tested on measures of false belief understanding (the Unexpected Transfer task), inhibitory control (the Grass/Snow task), and strategic reasoning (the Windows task). For each task, children indicated their response either by pointing with their index finger or by using a nonstandard response mode (pointing…
Space-time models based on random fields with local interactions
NASA Astrophysics Data System (ADS)
Hristopulos, Dionissios T.; Tsantili, Ivi C.
2016-08-01
The analysis of space-time data from complex, real-life phenomena requires the use of flexible and physically motivated covariance functions. In most cases, it is not possible to explicitly solve the equations of motion for the fields or the respective covariance functions. In the statistical literature, covariance functions are often based on mathematical constructions. In this paper, we propose deriving space-time covariance functions by solving “effective equations of motion”, which can be used as statistical representations of systems with diffusive behavior. In particular, we propose to formulate space-time covariance functions based on an equilibrium effective Hamiltonian using the linear response theory. The effective space-time dynamics is then generated by a stochastic perturbation around the equilibrium point of the classical field Hamiltonian leading to an associated Langevin equation. We employ a Hamiltonian which extends the classical Gaussian field theory by including a curvature term and leads to a diffusive Langevin equation. Finally, we derive new forms of space-time covariance functions.
NASA Astrophysics Data System (ADS)
Gönülateş, Emre; Kortemeyer, Gerd
2017-04-01
Homework is an important component of most physics courses. One of the functions it serves is to provide meaningful formative assessment in preparation for examinations. However, correlations between homework and examination scores tend to be low, likely due to unproductive student behavior such as copying and random guessing of answers. In this study, we attempt to model these two counterproductive learner behaviors within the framework of Item Response Theory in order to provide an ability measurement that strongly correlates with examination scores. We find that introducing additional item parameters leads to worse predictions of examination grades, while introducing additional learner traits is a more promising approach.
Pilot dynamics for instrument approach tasks: Full panel multiloop and flight director operations
NASA Technical Reports Server (NTRS)
Weir, D. H.; Mcruer, D. T.
1972-01-01
Measurements and interpretations of single and mutiloop pilot response properties during simulated instrument approach are presented. Pilot subjects flew Category 2-like ILS approaches in a fixed base DC-8 simulaton. A conventional instrument panel and controls were used, with simulated vertical gust and glide slope beam bend forcing functions. Reduced and interpreted pilot describing functions and remmant are given for pitch attitude, flight director, and multiloop (longitudinal) control tasks. The response data are correlated with simultaneously recorded eye scanning statistics, previously reported in NASA CR-1535. The resulting combined response and scanning data and their interpretations provide a basis for validating and extending the theory of manual control displays.
NASA Technical Reports Server (NTRS)
Rodal, J. J. A.; Witmer, E. A.
1979-01-01
A method of analysis for thin structures that incorporates finite strain, elastic-plastic, strain hardening, time dependent material behavior implemented with respect to a fixed configuration and is consistently valid for finite strains and finite rotations is developed. The theory is formulated systematically in a body fixed system of convected coordinates with materially embedded vectors that deform in common with continuum. Tensors are considered as linear vector functions and use is made of the dyadic representation. The kinematics of a deformable continuum is treated in detail, carefully defining precisely all quantities necessary for the analysis. The finite strain theory developed gives much better predictions and agreement with experiment than does the traditional small strain theory, and at practically no additional cost. This represents a very significant advance in the capability for the reliable prediction of nonlinear transient structural responses, including the reliable prediction of strains large enough to produce ductile metal rupture.
A Danger-Theory-Based Immune Network Optimization Algorithm
Li, Tao; Xiao, Xin; Shi, Yuanquan
2013-01-01
Existing artificial immune optimization algorithms reflect a number of shortcomings, such as premature convergence and poor local search ability. This paper proposes a danger-theory-based immune network optimization algorithm, named dt-aiNet. The danger theory emphasizes that danger signals generated from changes of environments will guide different levels of immune responses, and the areas around danger signals are called danger zones. By defining the danger zone to calculate danger signals for each antibody, the algorithm adjusts antibodies' concentrations through its own danger signals and then triggers immune responses of self-regulation. So the population diversity can be maintained. Experimental results show that the algorithm has more advantages in the solution quality and diversity of the population. Compared with influential optimization algorithms, CLONALG, opt-aiNet, and dopt-aiNet, the algorithm has smaller error values and higher success rates and can find solutions to meet the accuracies within the specified function evaluation times. PMID:23483853
Outlines of a multiple trace theory of temporal preparation.
Los, Sander A; Kruijne, Wouter; Meeter, Martijn
2014-01-01
We outline a new multiple trace theory of temporal preparation (MTP), which accounts for behavior in reaction time (RT) tasks in which the participant is presented with a warning stimulus (S1) followed by a target stimulus (S2) that requires a speeded response. The theory assumes that during the foreperiod (FP; the S1-S2 interval) inhibition is applied to prevent premature response, while a wave of activation occurs upon the presentation of S2. On each trial, these actions are stored in a separate memory trace, which, jointly with earlier formed memory traces, starts contributing to preparation on subsequent trials. We show that MTP accounts for classic effects in temporal preparation, including mean RT-FP functions observed under a variety of FP distributions and asymmetric sequential effects. We discuss the advantages of MTP over other accounts of these effects (trace-conditioning and hazard-based explanations) and suggest a critical experiment to empirically distinguish among them.
Stochastic P-bifurcation and stochastic resonance in a noisy bistable fractional-order system
NASA Astrophysics Data System (ADS)
Yang, J. H.; Sanjuán, Miguel A. F.; Liu, H. G.; Litak, G.; Li, X.
2016-12-01
We investigate the stochastic response of a noisy bistable fractional-order system when the fractional-order lies in the interval (0, 2]. We focus mainly on the stochastic P-bifurcation and the phenomenon of the stochastic resonance. We compare the generalized Euler algorithm and the predictor-corrector approach which are commonly used for numerical calculations of fractional-order nonlinear equations. Based on the predictor-corrector approach, the stochastic P-bifurcation and the stochastic resonance are investigated. Both the fractional-order value and the noise intensity can induce an stochastic P-bifurcation. The fractional-order may lead the stationary probability density function to turn from a single-peak mode to a double-peak mode. However, the noise intensity may transform the stationary probability density function from a double-peak mode to a single-peak mode. The stochastic resonance is investigated thoroughly, according to the linear and the nonlinear response theory. In the linear response theory, the optimal stochastic resonance may occur when the value of the fractional-order is larger than one. In previous works, the fractional-order is usually limited to the interval (0, 1]. Moreover, the stochastic resonance at the subharmonic frequency and the superharmonic frequency are investigated respectively, by using the nonlinear response theory. When it occurs at the subharmonic frequency, the resonance may be strong and cannot be ignored. When it occurs at the superharmonic frequency, the resonance is weak. We believe that the results in this paper might be useful for the signal processing of nonlinear systems.
ERIC Educational Resources Information Center
French, Brian F.; Gotch, Chad M.
2013-01-01
The Brigance Comprehensive Inventory of Basic Skills-II (CIBS-II) is a diagnostic battery intended for children in grades 1st through 6th. The aim of this study was to test for item invariance, or differential item functioning (DIF), of the CIBS-II across sex in the standardization sample through the use of item response theory DIF detection…
Petrillo, Jennifer; Cano, Stefan J; McLeod, Lori D; Coon, Cheryl D
2015-01-01
To provide comparisons and a worked example of item- and scale-level evaluations based on three psychometric methods used in patient-reported outcome development-classical test theory (CTT), item response theory (IRT), and Rasch measurement theory (RMT)-in an analysis of the National Eye Institute Visual Functioning Questionnaire (VFQ-25). Baseline VFQ-25 data from 240 participants with diabetic macular edema from a randomized, double-masked, multicenter clinical trial were used to evaluate the VFQ at the total score level. CTT, RMT, and IRT evaluations were conducted, and results were assessed in a head-to-head comparison. Results were similar across the three methods, with IRT and RMT providing more detailed diagnostic information on how to improve the scale. CTT led to the identification of two problematic items that threaten the validity of the overall scale score, sets of redundant items, and skewed response categories. IRT and RMT additionally identified poor fit for one item, many locally dependent items, poor targeting, and disordering of over half the response categories. Selection of a psychometric approach depends on many factors. Researchers should justify their evaluation method and consider the intended audience. If the instrument is being developed for descriptive purposes and on a restricted budget, a cursory examination of the CTT-based psychometric properties may be all that is possible. In a high-stakes situation, such as the development of a patient-reported outcome instrument for consideration in pharmaceutical labeling, however, a thorough psychometric evaluation including IRT or RMT should be considered, with final item-level decisions made on the basis of both quantitative and qualitative results. Copyright © 2015. Published by Elsevier Inc.
Di Remigio, Roberto; Beerepoot, Maarten T P; Cornaton, Yann; Ringholm, Magnus; Steindal, Arnfinn Hykkerud; Ruud, Kenneth; Frediani, Luca
2016-12-21
The study of high-order absorption properties of molecules is a field of growing importance. Quantum-chemical studies can help design chromophores with desirable characteristics. Given that most experiments are performed in solution, it is important to devise a cost-effective strategy to include solvation effects in quantum-chemical studies of these properties. We here present an open-ended formulation of self-consistent field (SCF) response theory for a molecular solute coupled to a polarizable continuum model (PCM) description of the solvent. Our formulation relies on the open-ended, density matrix-based quasienergy formulation of SCF response theory of Thorvaldsen, et al., [J. Chem. Phys., 2008, 129, 214108] and the variational formulation of the PCM, as presented by Lipparini et al., [J. Chem. Phys., 2010, 133, 014106]. Within the PCM approach to solvation, the mutual solute-solvent polarization is represented by means of an apparent surface charge (ASC) spread over the molecular cavity defining the solute-solvent boundary. In the variational formulation, the ASC is an independent, variational degree of freedom. This allows us to formulate response theory for molecular solutes in the fixed-cavity approximation up to arbitrary order and with arbitrary perturbation operators. For electric dipole perturbations, pole and residue analyses of the response functions naturally lead to the identification of excitation energies and transition moments. We document the implementation of this approach in the Dalton program package using a recently developed open-ended response code and the PCMSolver libraries and present results for one-, two-, three-, four- and five-photon absorption processes of three small molecules in solution.
Multicategorical Spline Model for Item Response Theory.
ERIC Educational Resources Information Center
Abrahamowicz, Michal; Ramsay, James O.
1992-01-01
A nonparametric multicategorical model for multiple-choice data is proposed as an extension of the binary spline model of J. O. Ramsay and M. Abrahamowicz (1989). Results of two Monte Carlo studies illustrate the model, which approximates probability functions by rational splines. (SLD)
NASA Astrophysics Data System (ADS)
Cai, Jianhua
2017-05-01
The time-frequency analysis method represents signal as a function of time and frequency, and it is considered a powerful tool for handling arbitrary non-stationary time series by using instantaneous frequency and instantaneous amplitude. It also provides a possible alternative to the analysis of the non-stationary magnetotelluric (MT) signal. Based on the Hilbert-Huang transform (HHT), a time-frequency analysis method is proposed to obtain stable estimates of the magnetotelluric response function. In contrast to conventional methods, the response function estimation is performed in the time-frequency domain using instantaneous spectra rather than in the frequency domain, which allows for imaging the response parameter content as a function of time and frequency. The theory of the method is presented and the mathematical model and calculation procedure, which are used to estimate response function based on HHT time-frequency spectrum, are discussed. To evaluate the results, response function estimates are compared with estimates from a standard MT data processing method based on the Fourier transform. All results show that apparent resistivities and phases, which are calculated from the HHT time-frequency method, are generally more stable and reliable than those determined from the simple Fourier analysis. The proposed method overcomes the drawbacks of the traditional Fourier methods, and the resulting parameter minimises the estimation bias caused by the non-stationary characteristics of the MT data.
Influence of Material Distribution on Impact Resistance of Hybrid Composites
NASA Technical Reports Server (NTRS)
Abatan, Ayu; Hu, Hurang
1998-01-01
Impact events occur in a wide variety of circumstances. A typical example is a bullet impacting a target made of composite material. These impact events produce time-varying loads on a structure that can result in damage. As a first step to understanding the damage resistance issue in composite laminates, an accurate prediction of the transient response during an impact event is necessary. The analysis of dynamic loadings on laminated composite plates has undergone considerable development recently. Rayleigh-Ritz energy method was used to determine the impact response of laminated plates. The impact response of composite plates using shear deformation plate theory was analyzed. In recent work a closed-form solution was obtained for a rectangular plate with four edges simply supported subjected to a center impact load using classical plate theory. The problem was further investigated and the analysis results compared of both classical plate theory and shear deformation theory, and found that classical plate theory predicts very accurate results for the range of small deformations considered. In this study, the influence of cross sectional material distribution on the comparative impact responses of hybrid metal laminates subjected to low and medium velocity impacts is investigated. A simple linear model to evaluate the magnitude of the impact load is proposed first, and it establishes a relation between the impact velocity and the impact force. Then a closed-form solution for impact problem is presented. The results were compared with the finite element analysis results. For an 11 layer-hybrid laminate, the impact response as a function of material distribution in cross-section is presented. With equal areal weight, the effect of the number of laminate layers on the impact resistance is also investigated. Finally, the significance of the presented results is discussed.
Optical pulse response of a fibre ring resonator
NASA Astrophysics Data System (ADS)
Pandian, G. S.; Seraji, Faramarz E.
1991-06-01
This article presents the optical pulse response analysis of a fiber ring resonator. It is shown that several interesting functions, namely optical pulse generation, and equalization of fiber dispersion can be realized by using the resonator. The theory is presented in an easy to understand manner, by first considering the steady-state response. The results of the transient pulse response are explained in relation to the steady state results. The results related to optical pulse shaping will be of interest to the future when coherent optical pulse and switching circuits will become available.
A threshold theory of the humor response.
Epstein, Robert; Joker, Veronica R
2007-01-01
The humor response has long been considered mysterious, and it is given relatively little attention in modern experimental psychology, in spite of the fact that numerous studies suggest that it has substantial benefits for mood and health. Existing theories of humor fail to account for some of the most basic humor phenomena. On most occasions when a humor response occurs, certain verbal or visual stimuli (the "setup" stimuli, which function as an establishing operation) must precede a critical stimulus (such as a "punch line" or the final panel or critical feature of a cartoon), which then occasions a sudden "revelation" or "understanding"; this revelation is often accompanied by the humor response. We suggest that the setup stimuli increase the strength of the revelatory response to a point just below the threshold of awareness and that the critical stimulus, properly designed and timed, edges the revelatory response to a point just above threshold. We also suggest that it is this threshold phenomenon that produces most instances of the humor response. We discuss these issues in the context of some notable humor of Carl Rogers and B. F. Skinner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zagorodny, A.; Weiland, J.
2009-05-15
The problem of derivation of the kinetic equations for inhomogeneous plasma in an external magnetic field is considered. The Fokker-Planck-type equations with the non-Markovian kinetic coefficients are proposed. In the time-local limit (small correlation times with respect to the distribution function relaxation time) the relations obtained recover the results known from the appropriate quasilinear theory and the Dupree-Weinstock theory of plasma turbulence. Kinetic calculations of the dielectric response function are also performed with regard to the influence of turbulent fields on particle motion. The equations proposed are used to describe zonal flow generation and to estimate the diffusion coefficient formore » saturated turbulence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovato, A.; Gandolfi, S.; Carlson, J.
Here, the longitudinal and transverse electromagnetic response functions ofmore » $$^{12}$$C are computed in a ``first-principles'' Green's function Monte Carlo calculation, based on realistic two- and three-nucleon interactions and associated one- and two-body currents. We find excellent agreement between theory and experiment and, in particular, no evidence for the quenching of measured versus calculated longitudinal response. This is further corroborated by a re-analysis of the Coulomb sum rule, in which the contributions from the low-lying $$J^\\pi\\,$$=$$\\, 2^+$$, $0^+$ (Hoyle), and $4^+$ states in $$^{12}$$C are accounted for explicitly in evaluating the total inelastic strength.« less
Edjolo, Arlette; Proust-Lima, Cécile; Delva, Fleur; Dartigues, Jean-François; Pérès, Karine
2016-02-15
We aimed to describe the hierarchical structure of Instrumental Activities of Daily Living (IADL) and basic Activities of Daily Living (ADL) and trajectories of dependency before death in an elderly population using item response theory methodology. Data were obtained from a population-based French cohort study, the Personnes Agées QUID (PAQUID) Study, of persons aged ≥65 years at baseline in 1988 who were recruited from 75 randomly selected areas in Gironde and Dordogne. We evaluated IADL and ADL data collected at home every 2-3 years over a 24-year period (1988-2012) for 3,238 deceased participants (43.9% men). We used a longitudinal item response theory model to investigate the item sequence of 11 IADL and ADL combined into a single scale and functional trajectories adjusted for education, sex, and age at death. The findings confirmed the earliest losses in IADL (shopping, transporting, finances) at the partial limitation level, and then an overlapping of concomitant IADL and ADL, with bathing and dressing being the earliest ADL losses, and finally total losses for toileting, continence, eating, and transferring. Functional trajectories were sex-specific, with a benefit of high education that persisted until death in men but was only transient in women. An in-depth understanding of this sequence provides an early warning of functional decline for better adaptation of medical and social care in the elderly. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Stability of boundary layer flow based on energy gradient theory
NASA Astrophysics Data System (ADS)
Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong
2018-05-01
The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.
Nonlinear response of a harmonic diatomic molecule: Algebraic nonperturbative calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Recamier, Jose; Mochan, W. Luis; Maytorena, Jesus A.
2005-08-15
Even harmonic molecules display a nonlinear behavior when driven by an inhomogeneous field. We calculate the response of single harmonic molecules to a monochromatic time and space dependent electric field E(r,t) of frequency {omega} employing exact algebraic methods. We evaluate the responses at the fundamental frequency {omega} and at successive harmonics 2{omega}, 3{omega}, etc., as a function of the intensity and of the frequency of the field and compare the results with those of first and second order perturbation theory.
Kratz, Anna L; Schilling, Stephen G; Goesling, Jenna; Williams, David A
2015-06-01
Pain is often the focus of research and clinical care in fibromyalgia (FM); however, cognitive dysfunction is also a common, distressing, and disabling symptom in FM. Current efforts to address this problem are limited by the lack of a comprehensive, valid measure of subjective cognitive dysfunction in FM that is easily interpretable, accessible, and brief. The purpose of this study was to leverage cognitive functioning item banks that were developed as part of the Patient Reported Outcomes Measurement Information System (PROMIS) to devise a 10-item short form measure of cognitive functioning for use in FM. In study 1, a nationwide (U.S.) sample of 1,035 adults with FM (age range = 18-82, 95.2% female) completed 2 cognitive item pools. Factor analyses and item response theory analyses were used to identify dimensionality and optimally performing items. A recommended 10-item measure, called the Multidimensional Inventory of Subjective Cognitive Impairment (MISCI) was created. In study 2, 232 adults with FM completed the MISCI and a legacy measure of cognitive functioning that is used in FM clinical trials, the Multiple Ability Self-Report Questionnaire (MASQ). The MISCI showed excellent internal reliability, low ceiling/floor effects, and good convergent validity with the MASQ (r = -.82). This paper presents the MISCI, a 10-item measure of cognitive dysfunction in FM, developed through classical test theory and item response theory. This brief but comprehensive measure shows evidence of excellent construct validity through large correlations with a lengthy legacy measure of cognitive functioning. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.
Revisiting Boundary Perturbation Theory for Inhomogeneous Transport Problems
Favorite, Jeffrey A.; Gonzalez, Esteban
2017-03-10
Adjoint-based first-order perturbation theory is applied again to boundary perturbation problems. Rahnema developed a perturbation estimate that gives an accurate first-order approximation of a flux or reaction rate within a radioactive system when the boundary is perturbed. When the response of interest is the flux or leakage current on the boundary, the Roussopoulos perturbation estimate has long been used. The Rahnema and Roussopoulos estimates differ in one term. Our paper shows that the Rahnema and Roussopoulos estimates can be derived consistently, using different responses, from a single variational functional (due to Gheorghiu and Rahnema), resolving any apparent contradiction. In analyticmore » test problems, Rahnema’s estimate and the Roussopoulos estimate produce exact first derivatives of the response of interest when appropriately applied. We also present a realistic, nonanalytic test problem.« less
Universality of fast quenches from the conformal perturbation theory
NASA Astrophysics Data System (ADS)
Dymarsky, Anatoly; Smolkin, Michael
2018-01-01
We consider global quantum quenches, a protocol when a continuous field theoretic system in the ground state is driven by a homogeneous time-dependent external interaction. When the typical inverse time scale of the interaction is much larger than all relevant scales except for the UV-cutoff the system's response exhibits universal scaling behavior. We provide both qualitative and quantitative explanations of this universality and argue that physics of the response during and shortly after the quench is governed by the conformal perturbation theory around the UV fixed point. We proceed to calculate the response of one and two-point correlation functions confirming and generalizing universal scalings found previously. Finally, we discuss late time behavior after the quench and argue that all local quantities will equilibrate to their thermal values specified by an excess energy acquired by the system during the quench.
Intelligent polymeric micelles: development and application as drug delivery for docetaxel.
Li, Yimu; Zhang, Hui; Zhai, Guang-Xi
2017-04-01
Recent years, docetaxel (DTX)-loaded intelligent polymeric micelles have been regarded as a promising vehicle for DTX for the reason that compared with conventional DTX-loaded micelles, DTX-loaded intelligent micelles not only preserve the basic functions of micelles such as DTX solubilization, enhanced accumulation in tumor tissue, and improved bioavailability and biocompatibility of DTX, but also possess other new properties, for instance, tumor-specific DTX delivery and series of responses to endogenous or exogenous stimulations. In this paper, basic theories and action mechanism of intelligent polymeric micelles are discussed in detail, especially the related theories of DTX-loaded stimuli-responsive micelles. The relevant examples of stimuli-responsive DTX-loaded micelles are also provided in this paper to sufficiently illustrate the advantages of relevant technology for the clinical application of anticancer drug, especially for the medical application of DTX.
Force spectroscopy of biomolecular folding and binding: theory meets experiment
NASA Astrophysics Data System (ADS)
Dudko, Olga
2015-03-01
Conformational transitions in biological macromolecules usually serve as the mechanism that brings biomolecules into their working shape and enables their biological function. Single-molecule force spectroscopy probes conformational transitions by applying force to individual macromolecules and recording their response, or ``mechanical fingerprints,'' in the form of force-extension curves. However, how can we decode these fingerprints so that they reveal the kinetic barriers and the associated timescales of a biological process? I will present an analytical theory of the mechanical fingerprints of macromolecules. The theory is suitable for decoding such fingerprints to extract the barriers and timescales. The application of the theory will be illustrated through recent studies on protein-DNA interactions and the receptor-ligand complexes involved in blood clot formation.
Sullivan-Bolyai, Susan; Johnson, Kimberly; Cullen, Karen; Hamm, Terry; Bisordi, Jean; Blaney, Kathleen; Maguire, Laura; Melkus, Gail
2014-01-01
Parents become emotionally upset when learning their child has Type 1 Diabetes, yet they are expected to quickly learn functional diabetes management. The purpose of this article is to describe the application of Self-Regulation theory to guide a family-focused education intervention using human patient simulation to enhance the initial education of parents in diabetes management. A brief description is provided of the intervention framed by Self-Regulation theory. Based on the literature, we describe the educational vignettes used based on Self-Regulation in the randomized controlled trial entitled Parent Education Through Simulation-Diabetes. Examples of theory-in-practice will be illustrated by parental learning responses to this alternative educational innovation. PMID:25365286
Theory of fiber-optic, evanescent-wave spectroscopy and sensors
NASA Astrophysics Data System (ADS)
Messica, A.; Greenstein, A.; Katzir, A.
1996-05-01
A general theory for fiber-optic, evanescent-wave spectroscopy and sensors is presented for straight, uncladded, step-index, multimode fibers. A three-dimensional model is formulated within the framework of geometric optics. The model includes various launching conditions, input and output end-face Fresnel transmission losses, multiple Fresnel reflections, bulk absorption, and evanescent-wave absorption. An evanescent-wave sensor response is analyzed as a function of externally controlled parameters such as coupling angle, f number, fiber length, and diameter. Conclusions are drawn for several experimental apparatuses.
Casida, Mark E; Huix-Rotllant, Miquel
2016-01-01
In their famous paper, Kohn and Sham formulated a formally exact density-functional theory (DFT) for the ground-state energy and density of a system of N interacting electrons, albeit limited at the time by certain troubling representability questions. As no practical exact form of the exchange-correlation (xc) energy functional was known, the xc-functional had to be approximated, ideally by a local or semilocal functional. Nowadays, however, the realization that Nature is not always so nearsighted has driven us up Perdew's Jacob's ladder to find increasingly nonlocal density/wavefunction hybrid functionals. Time-dependent (TD-) DFT is a younger development which allows DFT concepts to be used to describe the temporal evolution of the density in the presence of a perturbing field. Linear response (LR) theory then allows spectra and other information about excited states to be extracted from TD-DFT. Once again the exact TD-DFT xc-functional must be approximated in practical calculations and this has historically been done using the TD-DFT adiabatic approximation (AA) which is to TD-DFT very similar to what the local density approximation (LDA) is to conventional ground-state DFT. Although some of the recent advances in TD-DFT focus on what can be done within the AA, others explore ways around the AA. After giving an overview of DFT, TD-DFT, and LR-TD-DFT, this chapter focuses on many-body corrections to LR-TD-DFT as one way to build hybrid density-functional/wavefunction methodology for incorporating aspects of nonlocality in time not present in the AA.
Psychoanalysis, artistic obsession, and artistic motivation: the study of pathography.
Kemler, David S
2014-02-01
A modern assessment of Freud's conceptualization of the creative process focusing on drives, ego psychology, and object relation theory is presented. 40 artists and musicians were interviewed employing 13 open-ended questions to provoke responses historically associated with the theoretical conceptualizations of Freud and post-Freudian theory related to the creative process. Creative process was defined as internal object relations that motivate the external connection between artist and the creative work. Measured responses concerning purpose and understanding; motivation before, during, and after performance; obstacles in performance; and needs through the creative process were assessed. Cluster analysis segregated the participants into high, medium, and low agreement groups based on similarity of responses. A multivariate stepwise regression revealed four questions (enlightenment, drives, obstacles, and ought self discrepancies) accounted for 83.9% of the variance. A post hoc discriminant function analysis identified 82.5% of the population to their correct groups. The findings support Spitz's (2005) suggestion that we regard "drives, ego psychology, and object relation theory not as separate approaches but as parts of a whole with varying stresses or accents" (p. 503).
Effects of response preference on resistance to change.
Ringdahl, Joel E; Berg, Wendy K; Wacker, David P; Crook, Kayla; Molony, Maggie A; Vargo, Kristina K; Neurnberger, Jodi E; Zabala, Karla; Taylor, Christopher J
2018-01-01
Treatments based on differential reinforcement of alternative behavior, such as functional communication training, are widely used. Research regarding the maintenance of related treatment effects is limited. Nevin and Wacker (2013) provided a conceptual framework, rooted in behavioral momentum theory, for the study of treatment maintenance that addressed two components: (a) reemergence of problem behavior, and (b) continued expression of appropriate behavior. In the few studies on this topic, focus has been on variables impacting the reemergence of problem behavior, with fewer studies evaluating the persistence of appropriate behavior. Given the findings from applied research related to functional communication training, variables related to response topography, such as response preference, may impact this aspect of maintenance. In the current study, the impact of response preference on persistence was evaluated in the context of functional communication training for individuals who did not exhibit problem behavior (Experiment 1) and for individuals with a history of reinforcement for problem behavior (Experiment 2). High-preferred mands were more persistent than low-preferred mands. These findings suggest that response related variables, such as response preference, impact response persistence and further suggest that response related variables should be considered when developing interventions such as functional communication training. © 2018 Society for the Experimental Analysis of Behavior.
Action theory within the structural view.
Rangell, L
1989-01-01
This paper presents a summary of a cohesive theme coursing through a group of selected papers written by the author over four decades. Purpose, intention, choice and decision are seen as firmly anchored within structural metapsychological theory. These constitute a cohesive and operative psychoanalytic theory of action, which Hartmann stated did not exist within psychoanalytic theory. The exposure and inclusion of this unconscious series of intrapsychic events obviates the need for many alternative theories which have been erected to give a place to these very functions. Unconscious decision, ego will and volition, the unconscious initiation and execution of action, operate during waking life, with as complete and complex secondary process mentation as secondary revision organizes the final shape and contents of a dream during sleep. These conceptual changes and advances have important psychosociolegal implications. Man not only does not know why he acts; he also does not always know that he acts. The mainstream itself is not monolithic and has also resisted the development of many of these advances. Factors responsible for this lag or block are adduced, which include anti-scientism or intellectuality, as well as, most importantly, a resistance to an increase of responsibility and accountability.
A New Functional Health Literacy Scale for Japanese Young Adults Based on Item Response Theory.
Tsubakita, Takashi; Kawazoe, Nobuo; Kasano, Eri
2017-03-01
Health literacy predicts health outcomes. Despite concerns surrounding the health of Japanese young adults, to date there has been no objective assessment of health literacy in this population. This study aimed to develop a Functional Health Literacy Scale for Young Adults (funHLS-YA) based on item response theory. Each item in the scale requires participants to choose the most relevant term from 3 choices in relation to a target item, thus assessing objective rather than perceived health literacy. The 20-item scale was administered to 1816 university students and 1751 responded. Cronbach's α coefficient was .73. Difficulty and discrimination parameters of each item were estimated, resulting in the exclusion of 1 item. Some items showed different difficulty parameters for male and female participants, reflecting that some aspects of health literacy may differ by gender. The current 19-item version of funHLS-YA can reliably assess the objective health literacy of Japanese young adults.
Bowness, Paul
2015-01-01
Possession of the human leukocyte antigen (HLA) class I molecule B27 is strongly associated with ankylosing spondylitis (AS), but the pathogenic role of HLA-B27 is unknown. Two broad theories most likely explain the role of HLA-B27 in AS pathogenesis. The first is based on the natural immunological function of HLA-B27 of presenting antigenic peptides to cytotoxic T cells. Thus, HLA-B27-restricted immune responses to self-antigens, or arthritogenic peptides, might drive immunopathology. B27 can also "behave badly," misfolding during assembly and leading to endoplasmic reticulum stress and autophagy responses. β2m-free B27 heavy chain structures including homodimers (B272) can also be expressed at the cell surface following endosomal recycling of cell surface heterotrimers. Cell surface free heavy chains and B272 bind to innate immune receptors on T, NK, and myeloid cells with proinflammatory effects. This review describes the natural function of HLA-B27, its disease associations, and the current theories as to its pathogenic role.
Langer, Michelle M.; Hill, Cheryl D.; Thissen, David; Burwinkle, Tasha M.; Varni, James W.; DeWalt, Darren A.
2008-01-01
Objective To demonstrate the value of item response theory (IRT) and differential item functioning (DIF) methods in examining a health-related quality of life (HRQOL) measure in children and adolescents. Study Design and Setting This illustration uses data from 5,429 children using the four subscales of the PedsQL™ 4.0 Generic Core Scales. The IRT model-based likelihood ratio test was used to detect and evaluate DIF between healthy children and children with a chronic condition. Results DIF was detected for a majority of items but cancelled out at the total test score level due to opposing directions of DIF. Post-hoc analysis indicated that this pattern of results may be due to multidimensionality. We discuss issues in detecting and handling DIF. Conclusion This paper describes how to perform DIF analyses in validating a questionnaire to ensure that scores have equivalent meaning across subgroups. It offers insight into ways information gained through the analysis can be used to evaluate an existing scale. PMID:18226750
Zero-field magnetic response functions in Landau levels
Gao, Yang; Niu, Qian
2017-01-01
We present a fresh perspective on the Landau level quantization rule; that is, by successively including zero-field magnetic response functions at zero temperature, such as zero-field magnetization and susceptibility, the Onsager’s rule can be corrected order by order. Such a perspective is further reinterpreted as a quantization of the semiclassical electron density in solids. Our theory not only reproduces Onsager’s rule at zeroth order and the Berry phase and magnetic moment correction at first order but also explains the nature of higher-order corrections in a universal way. In applications, those higher-order corrections are expected to curve the linear relation between the level index and the inverse of the magnetic field, as already observed in experiments. Our theory then provides a way to extract the correct value of Berry phase as well as the magnetic susceptibility at zero temperature from Landau level fan diagrams in experiments. Moreover, it can be used theoretically to calculate Landau levels up to second-order accuracy for realistic models. PMID:28655849
Sound waves and flexural mode dynamics in two-dimensional crystals
NASA Astrophysics Data System (ADS)
Michel, K. H.; Scuracchio, P.; Peeters, F. M.
2017-09-01
Starting from a Hamiltonian with anharmonic coupling between in-plane acoustic displacements and out-of-plane (flexural) modes, we derived coupled equations of motion for in-plane displacements correlations and flexural mode density fluctuations. Linear response theory and time-dependent thermal Green's functions techniques are applied in order to obtain different response functions. As external perturbations we allow for stresses and thermal heat sources. The displacement correlations are described by a Dyson equation where the flexural density distribution enters as an additional perturbation. The flexural density distribution satisfies a kinetic equation where the in-plane lattice displacements act as a perturbation. In the hydrodynamic limit this system of coupled equations is at the basis of a unified description of elastic and thermal phenomena, such as isothermal versus adiabatic sound motion and thermal conductivity versus second sound. The general theory is formulated in view of application to graphene, two-dimensional h-BN, and 2H-transition metal dichalcogenides and oxides.
Self-stimulatory behavior and perceptual reinforcement.
Lovaas, I; Newsom, C; Hickman, C
1987-01-01
Self-stimulatory behavior is repetitive, stereotyped, functionally autonomous behavior seen in both normal and developmentally disabled populations, yet no satisfactory theory of its development and major characteristics has previously been offered. We present here a detailed hypothesis of the acquisition and maintenance of self-stimulatory behavior, proposing that the behaviors are operant responses whose reinforcers are automatically produced interoceptive and exteroceptive perceptual consequences. The concept of perceptual stimuli and reinforcers, the durability of self-stimulatory behaviors, the sensory extinction effect, the inverse relationship between self-stimulatory and other behaviors, the blocking effect of self-stimulatory behavior on new learning, and response substitution effects are discussed in terms of the hypothesis. Support for the hypothesis from the areas of sensory reinforcement and sensory deprivation is also reviewed. Limitations of major alternative theories are discussed, along with implications of the perceptual reinforcement hypothesis for the treatment of excessive self-stimulatory behavior and for theoretical conceptualizations of functionally related normal and pathological behaviors. PMID:3583964
Responses in large-scale structure
NASA Astrophysics Data System (ADS)
Barreira, Alexandre; Schmidt, Fabian
2017-06-01
We introduce a rigorous definition of general power-spectrum responses as resummed vertices with two hard and n soft momenta in cosmological perturbation theory. These responses measure the impact of long-wavelength perturbations on the local small-scale power spectrum. The kinematic structure of the responses (i.e., their angular dependence) can be decomposed unambiguously through a ``bias'' expansion of the local power spectrum, with a fixed number of physical response coefficients, which are only a function of the hard wavenumber k. Further, the responses up to n-th order completely describe the (n+2)-point function in the squeezed limit, i.e. with two hard and n soft modes, which one can use to derive the response coefficients. This generalizes previous results, which relate the angle-averaged squeezed limit to isotropic response coefficients. We derive the complete expression of first- and second-order responses at leading order in perturbation theory, and present extrapolations to nonlinear scales based on simulation measurements of the isotropic response coefficients. As an application, we use these results to predict the non-Gaussian part of the angle-averaged matter power spectrum covariance CovNGl=0(k1,k2), in the limit where one of the modes, say k2, is much smaller than the other. Without any free parameters, our model results are in very good agreement with simulations for k2 lesssim 0.06 h Mpc-1, and for any k1 gtrsim 2k2. The well-defined kinematic structure of the power spectrum response also permits a quick evaluation of the angular dependence of the covariance matrix. While we focus on the matter density field, the formalism presented here can be generalized to generic tracers such as galaxies.
A Solution to the Fundamental Linear Fractional Order Differential Equation
NASA Technical Reports Server (NTRS)
Hartley, Tom T.; Lorenzo, Carl F.
1998-01-01
This paper provides a solution to the fundamental linear fractional order differential equation, namely, (sub c)d(sup q, sub t) + ax(t) = bu(t). The impulse response solution is shown to be a series, named the F-function, which generalizes the normal exponential function. The F-function provides the basis for a qth order "fractional pole". Complex plane behavior is elucidated and a simple example, the inductor terminated semi- infinite lossy line, is used to demonstrate the theory.
Guido, Ciro A; Jacquemin, Denis; Adamo, Carlo; Mennucci, Benedetta
2015-12-08
We critically analyze the performances of continuum solvation models when coupled to time-dependent density functional theory (TD-DFT) to predict solvent effects on both absorption and emission energies of chromophores in solution. Different polarization schemes of the polarizable continuum model (PCM), such as linear response (LR) and three different state specific (SS) approaches, are considered and compared. We show the necessity of introducing a SS model in cases where large electron density rearrangements are involved in the excitations, such as charge-transfer transitions in both twisted and quadrupolar compounds, and underline the very delicate interplay between the selected polarization method and the chosen exchange-correlation functional. This interplay originates in the different descriptions of the transition and ground/excited state multipolar moments by the different functionals. As a result, the choice of both the DFT functional and the solvent polarization scheme has to be consistent with the nature of the studied electronic excitation.
2005-01-01
Mand functions for two stimuli (A1 and A2) were trained for 3 children with autism and were then incorporated into two related conditional discriminations (A1-B1/A2 -B2 and B1-C1/B2-C2). Tests were conducted to probe for a derived transfer of mand response functions from A1 and A2 to C1 and C2, respectively. When 1 participant failed to demonstrate derived transfer of mand response functions, transfer training using exemplars was conducted. When participants had demonstrated derived transfer of mand functions, the X1 and X2 tokens that were employed as reinforcers for mand responses were incorporated into two conditional discriminations (X1-Y1/X2-Y2 and Y1-Z1/Y2-Z2). Tests were conducted for derived transfer of reinforcing functions. Finally, tests were conducted to determine if the participants would demonstrate derived manding for the derived reinforcers (present C1 and C2 to mand for Z1 and Z2, respectively). Derived transfer of functions was observed when the sequence of training and testing was reversed (i.e., training and testing reinforcing functions before mand response functions) and when only minimal instructions were provided. PMID:16463526
NASA Technical Reports Server (NTRS)
Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.
1980-01-01
Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.
NASA Astrophysics Data System (ADS)
Bendine, K.; Boukhoulda, F. B.; Nouari, M.; Satla, Z.
2016-12-01
This paper reports on a study of active vibration control of functionally graded beams with upper and lower surface-bonded piezoelectric layers. The model is based on higher-order shear deformation theory and implemented using the finite element method (FEM). The proprieties of the functionally graded beam (FGB) are graded along the thickness direction. The piezoelectric actuator provides a damping effect on the FGB by means of a velocity feedback control algorithm. A Matlab program has been developed for the FGB model and compared with ANSYS APDL. Using Newmark's method numerical solutions are obtained for the dynamic equations of FGB with piezoelectric layers. Numerical results show the effects of the constituent volume fraction and the influence the feedback control gain on the frequency and dynamic response of FGBs.
Item response theory and the measurement of motor behavior.
Safrit, M J; Cohen, A S; Costa, M G
1989-12-01
Item response theory (IRT) has been the focus of intense research and development activity in educational and psychological measurement during the past decade. Because this theory can provide more precise information about test items than other theories usually used in measuring motor behavior, the application of IRT in physical education and exercise science merits investigation. In IRT, the difficulty level of each item (e.g., trial or task) can be estimated and placed on the same scale as the ability of the examinee. Using this information, the test developer can determine the ability levels at which the test functions best. Equating the scores of individuals on two or more items or tests can be handled efficiently by applying IRT. The precision of the identification of performance standards in a mastery test context can be enhanced, as can adaptive testing procedures. In this tutorial, several potential benefits of applying IRT to the measurement of motor behavior were described. An example is provided using bowling data and applying the graded-response form of the Rasch IRT model. The data were calibrated and the goodness of fit was examined. This analysis is described in a step-by-step approach. Limitations to using an IRT model with a test consisting of repeated measures were noted.
A Refined Zigzag Beam Theory for Composite and Sandwich Beams
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Sciuva, Marco Di; Gherlone, Marco
2009-01-01
A new refined theory for laminated composite and sandwich beams that contains the kinematics of the Timoshenko Beam Theory as a proper baseline subset is presented. This variationally consistent theory is derived from the virtual work principle and employs a novel piecewise linear zigzag function that provides a more realistic representation of the deformation states of transverse-shear flexible beams than other similar theories. This new zigzag function is unique in that it vanishes at the top and bottom bounding surfaces of a beam. The formulation does not enforce continuity of the transverse shear stress across the beam s cross-section, yet is robust. Two major shortcomings that are inherent in the previous zigzag theories, shear-force inconsistency and difficulties in simulating clamped boundary conditions, and that have greatly limited the utility of these previous theories are discussed in detail. An approach that has successfully resolved these shortcomings is presented herein. Exact solutions for simply supported and cantilevered beams subjected to static loads are derived and the improved modelling capability of the new zigzag beam theory is demonstrated. In particular, extensive results for thick beams with highly heterogeneous material lay-ups are discussed and compared with corresponding results obtained from elasticity solutions, two other zigzag theories, and high-fidelity finite element analyses. Comparisons with the baseline Timoshenko Beam Theory are also presented. The comparisons clearly show the improved accuracy of the new, refined zigzag theory presented herein over similar existing theories. This new theory can be readily extended to plate and shell structures, and should be useful for obtaining relatively low-cost, accurate estimates of structural response needed to design an important class of high-performance aerospace structures.
RESISTANCE TO EXTINCTION AND RELAPSE IN COMBINED STIMULUS CONTEXTS
Podlesnik, Christopher A; Bai, John Y. H; Elliffe, Douglas
2012-01-01
Reinforcing an alternative response in the same context as a target response reduces the rate of occurrence but increases the persistence of that target response. Applied researchers who use such techniques to decrease the rate of a target problem behavior risk inadvertently increasing the persistence of the same problem behavior. Behavioral momentum theory asserts that the increased persistence is a function of the alternative reinforcement enhancing the Pavlovian relation between the target stimulus context and reinforcement. A method showing promise for reducing the persistence-enhancing effects of alternative reinforcement is to train the alternative response in a separate stimulus context before combining with the target stimulus in extinction. The present study replicated previous findings using pigeons by showing that combining an “alternative” richer VI schedule (96 reinforcers/hr) with a “target” leaner VI schedule (24 reinforcers/hr) reduced resistance to extinction of target responding compared with concurrent training of the alternative and target responses (totaling 120 reinforcers/hr). We also found less relapse with a reinstatement procedure following extinction with separate-context training, supporting previous findings that training conditions similarly influence both resistance to extinction and relapse. Finally, combining the alternative stimulus context was less disruptive to target responding previously trained in the concurrent schedule, relative to combining with the target response trained alone. Overall, the present findings suggest the technique of combining stimulus contexts associated with alternative responses with those associated with target responses disrupts target responding. Furthermore, the effectiveness of this disruption is a function of training context of reinforcement for target responding, consistent with assertions of behavioral momentum theory. PMID:23008521
Psychometric properties of the Triarchic Psychopathy Measure: An item response theory approach.
Shou, Yiyun; Sellbom, Martin; Xu, Jing
2018-05-01
There is cumulative evidence for the cross-cultural validity of the Triarchic Psychopathy Measure (TriPM; Patrick, 2010) among non-Western populations. Recent studies using correlational and regression analyses show promising construct validity of the TriPM in Chinese samples. However, little is known about the efficiency of items in TriPM in assessing the proposed latent traits. The current study evaluated the psychometric properties of the Chinese TriPM at the item level using item response theory analyses. It also examined the measurement invariance of the TriPM between the Chinese and the U.S. student samples by applying differential item functioning analyses under the item response theory framework. The results supported the unidimensional nature of the Disinhibition and Meanness scales. Both scales had a greater level of precision in the respective underlying constructs at the positive ends. The two scales, however, had several items that were weakly associated with their respective latent traits in the Chinese student sample. Boldness, on the other hand, was found to be multidimensional, and reflected a more normally distributed range of variation. The examination of measurement bias via differential item functioning analyses revealed that a number of items of the TriPM were not equivalent across the Chinese and the U.S. Some modification and adaptation of items might be considered for improving the precision of the TriPM for Chinese participants. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Localizing Pain Matrix and Theory of Mind networks with both verbal and non-verbal stimuli.
Jacoby, Nir; Bruneau, Emile; Koster-Hale, Jorie; Saxe, Rebecca
2016-02-01
Functional localizer tasks allow researchers to identify brain regions in each individual's brain, using a combination of anatomical and functional constraints. In this study, we compare three social cognitive localizer tasks, designed to efficiently identify regions in the "Pain Matrix," recruited in response to a person's physical pain, and the "Theory of Mind network," recruited in response to a person's mental states (i.e. beliefs and emotions). Participants performed three tasks: first, the verbal false-belief stories task; second, a verbal task including stories describing physical pain versus emotional suffering; and third, passively viewing a non-verbal animated movie, which included segments depicting physical pain and beliefs and emotions. All three localizers were efficient in identifying replicable, stable networks in individual subjects. The consistency across tasks makes all three tasks viable localizers. Nevertheless, there were small reliable differences in the location of the regions and the pattern of activity within regions, hinting at more specific representations. The new localizers go beyond those currently available: first, they simultaneously identify two functional networks with no additional scan time, and second, the non-verbal task extends the populations in whom functional localizers can be applied. These localizers will be made publicly available. Copyright © 2015 Elsevier Inc. All rights reserved.
Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W; Wu, John Z
2013-11-25
The relationship between the vibration transmissibility and driving-point response functions (DPRFs) of the human body is important for understanding vibration exposures of the system and for developing valid models. This study identified their theoretical relationship and demonstrated that the sum of the DPRFs can be expressed as a linear combination of the transmissibility functions of the individual mass elements distributed throughout the system. The relationship is verified using several human vibration models. This study also clarified the requirements for reliably quantifying transmissibility values used as references for calibrating the system models. As an example application, this study used the developed theory to perform a preliminary analysis of the method for calibrating models using both vibration transmissibility and DPRFs. The results of the analysis show that the combined method can theoretically result in a unique and valid solution of the model parameters, at least for linear systems. However, the validation of the method itself does not guarantee the validation of the calibrated model, because the validation of the calibration also depends on the model structure and the reliability and appropriate representation of the reference functions. The basic theory developed in this study is also applicable to the vibration analyses of other structures.
Spin-lattice relaxation-rate anomaly at structural phase transitions
NASA Astrophysics Data System (ADS)
Levanyuk, A. P.; Minyukov, S. A.; Etrillard, J.; Toudic, B.
1997-12-01
The theory of spin-lattice relaxation (SLR)-rate anomaly at structural phase transitions proposed about 30 years ago is reconsidered taking into account that knowledge about the relevant lattice response functions has changed considerably. We use both the results of previous authors and perform original calculations of the response functions when it is necessary. We consider displacive systems and use the perturbation theory to treat the lattice anharmonicities in a broad temperature region whenever possible. Some comments about the order-disorder systems are made as well. The possibility of linear coupling of the order parameter and the resonance frequency is always assumed. It is found that in the symmetrical phase the anomaly is due to the one-phonon processes, the anomalous part being proportional to either (T-Tc)-1 or (T-Tc)-1/2 depending on some condition on the soft-mode dispersion. In both cases the value of the SLR rate at the boundary of applicabity of the theory (close to the phase transition) is estimated to be 102-103 times more than the typical value of the SLR rate in an ideal crystal. An essential specific feature of the nonsymmetrical phase is appearance of third-order anharmonicities that are well known to lead to a low-frequency dispersion of the order-parameter damping constant. We have found that this constant exhibits, in addition, a strong wave-vector dispersion, so that the damping constant determing the SLR rate is quite different from that at zero wave vector. In the case of two-component order parameter the damping constant for the component with nonzero equilibrium value is different from that for the other component, the difference is of the same order of magnitude as the damping constants themselves. In the case of the incommensurate phase a part of the mentioned third-order anharmonicity is responsible for longitudinal-transversal interaction that is well known to influence the static longitudinal response function. We calculate as well the dynamic response function to find that for the SLR calculations the imaginary part is of main importance. Due to this interaction the longitudinal SLR rate acquires a dependence on the Larmor frequency. This dependence is however, fairly weak: a logarithmic one. The implications of the obtained results for interpretation of the experimental data on SLR in incommensurate phase are discussed as well.
NASA Astrophysics Data System (ADS)
Chen, Chung-De
2018-04-01
In this paper, a distributed parameter electromechanical model for bimorph piezoelectric energy harvesters based on the refined zigzag theory (RZT) is developed. In this model, the zigzag function is incorporated into the axial displacement, and the zigzag distribution of the displacement between the adjacent layers of the bimorph structure can be considered. The governing equations, including three equations of motions and one equation of circuit, are derived using Hamilton’s principle. The natural frequency, its corresponding modal function and the steady state response of the base excitation motion are given in exact forms. The presented results are benchmarked with the finite element method and two beam theories, the first-order shear deformation theory and the classical beam theory. Comparing examples shows that the RZT provides predictions of output voltage and generated power at high accuracy, especially for the case of a soft middle layer. Variation of the parameters, such as the beam thickness, excitation frequencies and the external electrical loads, is investigated and its effects on the performance of the energy harvesters are studied by using the RZT developed in this paper. Based on this refined theory, analysts and engineers can capture more details on the electromechanical behavior of piezoelectric harvesters.
Perera, Subashan; Nace, David A; Resnick, Neil M; Greenspan, Susan L
2017-04-11
The Nursing Home Physical Performance Test (NHPPT) was developed to measure function among nursing home residents using sit-to-stand, scooping applesauce, face washing, dialing phone, putting on sweater, and ambulating tasks. Using item response theory, we explore its measurement characteristics at item level and opportunities for improvements. We used data from long-term care women. We fitted a graded response model, estimated parameters, and constructed probability and information curves. We identified items to be targeted toward lower and higher functioning persons to increase the range of abilities to which the instrument is applicable. We revised the scoring by making sit-to-stand and sweater items harder and dialing phone easier. We examined changes to concurrent validity with activities of daily living (ADL), frailty, and cognitive function. Participants were 86 years old, had more than three comorbidities, and a NHPPT of 19.4. All items had high discrimination and were targeted toward the lower middle range of performance continuum. After revision, sit-to-stand and sweater items demonstrated greater discrimination among the higher functioning and/or greater spread of thresholds for response categories. The overall test showed discrimination over a wider range of individuals. Concurrent validity correlation improved from 0.60 to 0.68 for instrumental ADL and explained variability (R2) from 22% to 36% for frailty. NHPPT has good measurement characteristics at the item level. NHPPT can be improved, implemented in computerized adaptive testing, and combined with self-report for greater utility, but a definitive study is needed. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dynamics of modularity of neural activity in the brain during development
NASA Astrophysics Data System (ADS)
Deem, Michael; Chen, Man
2014-03-01
Theory suggests that more modular systems can have better response functions at short times. This theory suggests that greater cognitive performance may be achieved for more modular neural activity, and that modularity of neural activity may, therefore, likely increase with development in children. We study the relationship between age and modularity of brain neural activity in developing children. The value of modularity calculated from fMRI data is observed to increase during childhood development and peak in young adulthood. We interpret these results as evidence of selection for plasticity in the cognitive function of the human brain. We present a model to illustrate how modularity can provide greater cognitive performance at short times and enhance fast, low-level, automatic cognitive processes. Conversely, high-level, effortful, conscious cognitive processes may not benefit from modularity. We use quasispecies theory to predict how the average modularity evolves with age, given a fitness function extracted from the model. We suggest further experiments exploring the effect of modularity on cognitive performance and suggest that modularity may be a potential biomarker for injury, rehabilitation, or disease.
Principal shapes and squeezed limits in the effective field theory of large scale structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertolini, Daniele; Solon, Mikhail P., E-mail: dbertolini@lbl.gov, E-mail: mpsolon@lbl.gov
2016-11-01
We apply an orthogonalization procedure on the effective field theory of large scale structure (EFT of LSS) shapes, relevant for the angle-averaged bispectrum and non-Gaussian covariance of the matter power spectrum at one loop. Assuming natural-sized EFT parameters, this identifies a linear combination of EFT shapes—referred to as the principal shape—that gives the dominant contribution for the whole kinematic plane, with subdominant combinations suppressed by a few orders of magnitude. For the covariance, our orthogonal transformation is in excellent agreement with a principal component analysis applied to available data. Additionally we find that, for both observables, the coefficients of themore » principal shapes are well approximated by the EFT coefficients appearing in the squeezed limit, and are thus measurable from power spectrum response functions. Employing data from N-body simulations for the growth-only response, we measure the single EFT coefficient describing the angle-averaged bispectrum with Ο (10%) precision. These methods of shape orthogonalization and measurement of coefficients from response functions are valuable tools for developing the EFT of LSS framework, and can be applied to more general observables.« less
NASA Astrophysics Data System (ADS)
Martin, Alexandre; Torrent, Marc; Caracas, Razvan
2015-03-01
A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).
Bugaiska, Aurélia; Clarys, David; Jarry, Caroline; Taconnat, Laurence; Tapia, Géraldine; Vanneste, Sandrine; Isingrini, Michel
2007-12-01
This study was designed to investigate the effects of aging on consciousness in recognition memory, using the Remember/Know/Guess procedure (Gardiner, J. M., & Richarson-Klavehn, A. (2000). Remembering and Knowing. In E. Tulving & F. I. M. Craik (Eds.), The Oxford Handbook of Memory. Oxford University Press.). In recognition memory, older participants report fewer occasions on which recognition is accompanied by recollection of the original encoding context. Two main hypotheses were tested: the speed mediation hypothesis (Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 3, 403-428) and the executive-aging hypothesis (West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272-292). A group of young and a group of older adults took a recognition test in which they classified their responses according to Gardiner, J. M., & Richarson-Klavehn, A. (2000). Remembering and Knowing. In E. Tulving & F. I. M. Craik (Eds.), The Oxford Handbook of Memory. Oxford University Press. remember-know-guess paradigm. Subsequently, participants completed processing speed and executive function tests. The results showed that among the older participants, R responses decreased, but K responses did not. Moreover, a hierarchical regression analysis supported the view that the effect of age in recollection experience is determined by frontal lobe integrity and not by diminution of processing speed.
Can quantum transition state theory be defined as an exact t = 0+ limit?
NASA Astrophysics Data System (ADS)
Jang, Seogjoo; Voth, Gregory A.
2016-02-01
The definition of the classical transition state theory (TST) as a t → 0+ limit of the flux-side time correlation function relies on the assumption that simultaneous measurement of population and flux is a well defined physical process. However, the noncommutativity of the two measurements in quantum mechanics makes the extension of such a concept to the quantum regime impossible. For this reason, quantum TST (QTST) has been generally accepted as any kind of quantum rate theory reproducing the TST in the classical limit, and there has been a broad consensus that no unique QTST retaining all the properties of TST can be defined. Contrary to this widely held view, Hele and Althorpe (HA) [J. Chem. Phys. 138, 084108 (2013)] recently suggested that a true QTST can be defined as the exact t → 0+ limit of a certain kind of quantum flux-side time correlation function and that it is equivalent to the ring polymer molecular dynamics (RPMD) TST. This work seeks to question and clarify certain assumptions underlying these suggestions and their implications. First, the time correlation function used by HA as a starting expression is not related to the kinetic rate constant by virtue of linear response theory, which is the first important step in relating a t = 0+ limit to a physically measurable rate. Second, a theoretical analysis calls into question a key step in HA's proof which appears not to rely on an exact quantum mechanical identity. The correction of this makes the true t = 0+ limit of HA's QTST different from the RPMD-TST rate expression, but rather equal to the well-known path integral quantum transition state theory rate expression for the case of centroid dividing surface. An alternative quantum rate expression is then formulated starting from the linear response theory and by applying a recently developed formalism of real time dynamics of imaginary time path integrals [S. Jang, A. V. Sinitskiy, and G. A. Voth, J. Chem. Phys. 140, 154103 (2014)]. It is shown that the t → 0+ limit of the new rate expression vanishes in the exact quantum limit.
Principles and Concepts for Information and Communication Technology Design.
ERIC Educational Resources Information Center
Adams, Ray; Langdon, Patrick
2003-01-01
This article presents a theory for evaluating information and communication technology design for individuals with disabilities. Simplex 1 evaluates designs in five zones: sensory and input zone; output zone; abstract working memory; long-term memory; and central executive functioning. Simplex 2 evaluates feedback, emotional responses, cognitive…
Monotonic and Nonmonotonic Lag Effects in Paired-Associate and Recognition Memory Paradigms
ERIC Educational Resources Information Center
Glenberg, Arthur M.
1976-01-01
Three experiments are reported investigating the relationship between response recall and the spacing of repetitions as a function of the retention interval. The results of the experiments support the theory which emphasizes the nature of the cues available for retrieval. (Author/RM)
System Response Manipulation using Arrays of Subordinate Resonators: Theory and Applications
NASA Astrophysics Data System (ADS)
Glean, Aldo A. J.
The dynamic response of a resonant structure can be significantly altered by the attachment of an array of substantially smaller resonators. This dissertation presents the theory governing these subordinate oscillator arrays (SOAs) and explores four major applications of using the arrays. The first application is related to vibration suppression. Numerical optimization was used to obtain SOA properties that minimize the settling time of a primary resonator subjected to an impulse. This minimization was conducted for system characteristics including the overall bandwidth of the array, the ratio of total array mass to primary resonator mass, and distributions of array properties. It is shown that the minimum settling time is a function of bandwidth and added mass within the SOA. The second application introduces a novel method of chemical vapor detection using SOA elements that are functionalized to bond with a specific chemical species. Numerical simulations were used to relate mass adsorbed to changes in the time-domain response of the system. It is shown that increasing the number of sensing elements increases sensitivity and reduces errors in mass predictions due to mass adsorption variability while having fewer sensing elements increases signal-to-noise ratio. The third application is also concerned with chemical vapor detection. Numerical simulation was used to explore the changes in system resonant frequencies and normal mode shapes in response to adsorption of mass on a single array element, in arrays in which each element has a distinct resonant frequency. It is shown that the degree of inter-element coupling is proportional to the ratio of the mass of the elements to the primary resonator mass. Inter-element coupling was also found to increase linearly with decreasing system resonance spacing up to a maximum value that depends on the mass ratio. The final application is an experimental validation of SOA theory by application to an acoustic system. The third resonance of a standing wave tube is transformed into a bandpass response using an array of small Helmholtz resonators. This experimental work demonstrates that the SOA theory can be applied analogous systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabacchi, G; Hutter, J; Mundy, C
2005-04-07
A combined linear response--frozen electron density model has been implemented in a molecular dynamics scheme derived from an extended Lagrangian formalism. This approach is based on a partition of the electronic charge distribution into a frozen region described by Kim-Gordon theory, and a response contribution determined by the instaneous ionic configuration of the system. The method is free from empirical pair-potentials and the parameterization protocol involves only calculations on properly chosen subsystems. They apply this method to a series of alkali halides in different physical phases and are able to reproduce experimental structural and thermodynamic properties with an accuracy comparablemore » to Kohn-Sham density functional calculations.« less
The role of Area 10 (BA10) in human multitasking and in social cognition: a lesion study.
Roca, María; Torralva, Teresa; Gleichgerrcht, Ezequiel; Woolgar, Alexandra; Thompson, Russell; Duncan, John; Manes, Facundo
2011-11-01
A role for rostral prefrontal cortex (BA10) has been proposed in multitasking, in particular, the selection and maintenance of higher order internal goals while other sub-goals are being performed. BA10 has also been implicated in the ability to infer someone else's feelings and thoughts, often referred to as theory of mind. While most of the data to support these views come from functional neuroimaging studies, lesion studies are scant. In the present study, we compared the performance of a group of frontal patients whose lesions involved BA10, a group of frontal patients whose lesions did not affect this area (nonBA10), and a group of healthy controls on tests requiring multitasking and complex theory of mind judgments. Only the group with lesions involving BA10 showed deficits on multitasking and theory of mind tasks when compared with control subjects. NonBA10 patients performed more poorly than controls on an executive function screening tool, particularly on measures of response inhibition and abstract reasoning, suggesting that theory of mind and multitasking deficits following lesions to BA10 cannot be explained by a general worsening of executive function. In addition, we searched for correlations between performance and volume of damage within different subregions of BA10. Significant correlations were found between multitasking performance and volume of damage in right lateral BA10, and between theory of mind and total BA10 lesion volume. These findings stress the potential pivotal role of BA10 in higher order cognitive functions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hong, Quan Nha; Coutu, Marie-France; Berbiche, Djamal
2017-01-01
The Work Role Functioning Questionnaire (WRFQ) was developed to assess workers' perceived ability to perform job demands and is used to monitor presenteeism. Still few studies on its validity can be found in the literature. The purpose of this study was to assess the items and factorial composition of the Canadian French version of the WRFQ (WRFQ-CF). Two measurement approaches were used to test the WRFQ-CF: Classical Test Theory (CTT) and non-parametric Item Response Theory (IRT). A total of 352 completed questionnaires were analyzed. A four-factor and three-factor model models were tested and shown respectively good fit with 14 items (Root Mean Square Error of Approximation (RMSEA) = 0.06, Standardized Root Mean Square Residual (SRMR) = 0.04, Bentler Comparative Fit Index (CFI) = 0.98) and with 17 items (RMSEA = 0.059, SRMR = 0.048, CFI = 0.98). Using IRT, 13 problematic items were identified, of which 9 were common with CTT. This study tested different models with fewer problematic items found in a three-factor model. Using a non-parametric IRT and CTT for item purification gave complementary results. IRT is still scarcely used and can be an interesting alternative method to enhance the quality of a measurement instrument. More studies are needed on the WRFQ-CF to refine its items and factorial composition.
On the Complexity of Item Response Theory Models.
Bonifay, Wes; Cai, Li
2017-01-01
Complexity in item response theory (IRT) has traditionally been quantified by simply counting the number of freely estimated parameters in the model. However, complexity is also contingent upon the functional form of the model. We examined four popular IRT models-exploratory factor analytic, bifactor, DINA, and DINO-with different functional forms but the same number of free parameters. In comparison, a simpler (unidimensional 3PL) model was specified such that it had 1 more parameter than the previous models. All models were then evaluated according to the minimum description length principle. Specifically, each model was fit to 1,000 data sets that were randomly and uniformly sampled from the complete data space and then assessed using global and item-level fit and diagnostic measures. The findings revealed that the factor analytic and bifactor models possess a strong tendency to fit any possible data. The unidimensional 3PL model displayed minimal fitting propensity, despite the fact that it included an additional free parameter. The DINA and DINO models did not demonstrate a proclivity to fit any possible data, but they did fit well to distinct data patterns. Applied researchers and psychometricians should therefore consider functional form-and not goodness-of-fit alone-when selecting an IRT model.
Resilience and vulnerability to a natural hazard: A mathematical framework based on viability theory
NASA Astrophysics Data System (ADS)
Rougé, Charles; Mathias, Jean-Denis; Deffuant, Guillaume
2013-04-01
This deals with the response of a coupled human and natural system (CHANS) to a natural hazard by using the concepts of resilience and vulnerability within the mathematical framework of viability theory. This theory applies to time-evolving systems such as CHANS and assumes that their desirable properties can be defined as a subset of their state space. Policies can also apply to influence the dynamics of such systems: viability theory aims at finding the policies which keep the properties of a controlled dynamical system for so long as no disturbance hits it. The states of the system such that the properties are guaranteed constitute what is called the viability kernel. This viability framework has been extended to describe the response to a perturbation such as a natural hazard. Resilience describes the capacity of the CHANS to recover by getting back in the viability kernel, where its properties are guaranteed until the onset of the next major event. Defined for a given controlled trajectory that the system may take after the event ends, resilience is (a) whether the system comes back to the viability kernel within a given budget such as a time constraint, but also (b) a decreasing function of vulnerability. Computed for a given trajectory as well, vulnerability is a measure of the consequence of violating a property. We propose a family of functions from which cost functions and other vulnerability indicators can be derived for a certain trajectory. There can be several vulnerability functions, representing for instance social, economic or ecological vulnerability, and each representing the violation of an associated property, but these functions need to be ultimately aggregated as a single indicator. Computing the resilience and vulnerability of a trajectory enables the viability framework to describe the response of both deterministic and stochastic systems to hazards. In the deterministic case, there is only one response trajectory for a given action policy, and methods exist to find the actions which yield the most resilient trajectory, namely the least vulnerable trajectory for which recovery is complete. In the stochastic case however, there is a range of possible trajectories. Statistics can be derived from the probability distribution of the resilience and vulnerability of the trajectories. Dynamic programming methods can then yield either the policies that maximize the probability of being resilient by achieving recovery within a given time horizon, or these which minimize a given vulnerability statistic. These objectives are different and can be in contradiction, so that trade-offs may have to be considered between them. The approach is illustrated in both the deterministic and stochastic cases through a simple model of lake eutrophication, for which the desirable ecological properties of the lake conflict with the economic interest of neighboring farmers.
Delayed excitatory and inhibitory feedback shape neural information transmission
NASA Astrophysics Data System (ADS)
Chacron, Maurice J.; Longtin, André; Maler, Leonard
2005-11-01
Feedback circuitry with conduction and synaptic delays is ubiquitous in the nervous system. Yet the effects of delayed feedback on sensory processing of natural signals are poorly understood. This study explores the consequences of delayed excitatory and inhibitory feedback inputs on the processing of sensory information. We show, through numerical simulations and theory, that excitatory and inhibitory feedback can alter the firing frequency response of stochastic neurons in opposite ways by creating dynamical resonances, which in turn lead to information resonances (i.e., increased information transfer for specific ranges of input frequencies). The resonances are created at the expense of decreased information transfer in other frequency ranges. Using linear response theory for stochastically firing neurons, we explain how feedback signals shape the neural transfer function for a single neuron as a function of network size. We also find that balanced excitatory and inhibitory feedback can further enhance information tuning while maintaining a constant mean firing rate. Finally, we apply this theory to in vivo experimental data from weakly electric fish in which the feedback loop can be opened. We show that it qualitatively predicts the observed effects of inhibitory feedback. Our study of feedback excitation and inhibition reveals a possible mechanism by which optimal processing may be achieved over selected frequency ranges.
Nguyen Dinh, Duc; Nguyen, Pham Dinh
2017-01-01
Based on the classical shell theory, the linear dynamic response of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations subjected to dynamic loads is presented. The truncated conical shells are reinforced by single-walled carbon nanotubes (SWCNTs) that vary according to the linear functions of the shell thickness. The motion equations are solved by the Galerkin method and the fourth-order Runge–Kutta method. In numerical results, the influences of geometrical parameters, elastic foundations, natural frequency parameters, and nanotube volume fraction of FG-CNTRC truncated conical shells are investigated. The proposed results are validated by comparing them with those of other authors. PMID:29057821
Spectral functions of strongly correlated extended systems via an exact quantum embedding
NASA Astrophysics Data System (ADS)
Booth, George H.; Chan, Garnet Kin-Lic
2015-04-01
Density matrix embedding theory (DMET) [Phys. Rev. Lett. 109, 186404 (2012), 10.1103/PhysRevLett.109.186404], introduced an approach to quantum cluster embedding methods whereby the mapping of strongly correlated bulk problems to an impurity with finite set of bath states was rigorously formulated to exactly reproduce the entanglement of the ground state. The formalism provided similar physics to dynamical mean-field theory at a tiny fraction of the cost but was inherently limited by the construction of a bath designed to reproduce ground-state, static properties. Here, we generalize the concept of quantum embedding to dynamic properties and demonstrate accurate bulk spectral functions at similarly small computational cost. The proposed spectral DMET utilizes the Schmidt decomposition of a response vector, mapping the bulk dynamic correlation functions to that of a quantum impurity cluster coupled to a set of frequency-dependent bath states. The resultant spectral functions are obtained on the real-frequency axis, without bath discretization error, and allows for the construction of arbitrary dynamic correlation functions. We demonstrate the method on the one- (1D) and two-dimensional (2D) Hubbard model, where we obtain zero temperature and thermodynamic limit spectral functions, and show the trivial extension to two-particle Green's functions. This advance therefore extends the scope and applicability of DMET in condensed-matter problems as a computationally tractable route to correlated spectral functions of extended systems and provides a competitive alternative to dynamical mean-field theory for dynamic quantities.
Solvent-Induced Shift of Spectral Lines in Polar–Polarizable Solvents
Matyushov, Dmitry V.; Newton, Marshall D.
2017-03-09
Solvent-induced shift of optical transition lines is traditionally described by the Lippert- McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. Here we have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for themore » reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert- McRae equation equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, non-additive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. Finally, the main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.« less
Solvent-Induced Shift of Spectral Lines in Polar-Polarizable Solvents.
Matyushov, Dmitry V; Newton, Marshall D
2017-03-23
Solvent-induced shift of optical transition lines is traditionally described by the Lippert-McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. We have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived, and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for the reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert-McRae equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, nonadditive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. The main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.
Clinical Holistic Medicine: Metastatic Cancer
Ventegodt, Søren; Solheim, Elin; Saunte, Mads E.; Morad, Mohammed; Kandel, Isack; Merrick, Joav
2004-01-01
We believe that the consciousness-based/holistic medical toolbox has a serious additional offer to cancer patients and, as a consequence, designed a treatment for the patient with metastasized cancer. From a holistic perspective, cancer can be understood as a simple disturbance of the cells, arising from the tissue holding on to a trauma with strong emotional content. This is called “a blockage”, where the function of the cells is allocated from their original function in the tissue to a function of holding emotions. We hope to be able not only to improve the quality of life, but also to improve survival and in some cases even induce spontaneous remission of the metastasized cancer. This paper describes how work with a patient with metastasized cancer can be done in the holistic clinical practice in 14 days on an individual basis, helping the patient to recover her human character, purpose of life, coherence, and will to live, thus improving quality of life and possibly also survival time. The holistic therapeutic work includes (1) teaching existential theory, (2) working with life perspective and philosophy of life, (3) helping the patient to acknowledge the state of the disease and the feelings connected to it, and finally (4) getting the patient into the holistic state of healing: (a) feeling old repressed emotions, (b) understanding why she got sick from a holistic point of view, and finally (c) letting go of the negative beliefs and decisions that made her sick according to the holistic theory of nongenetic diseases. The theory of the human character, the quality of life theories, the holistic theory of cancer, the holistic process theory of healing, the theory of (Antonovsky) coherence, and the life mission theory are the most important theories for the patient to find hope and mobilize the will to fight the cancer and survive. The patient went through the following phases: (1) finding the purpose of life and hidden resources; (2) confronting denial; (3) taking responsibility for being very ill; (4) severe existential crises with no wish to live while still fighting; (5) integration of many repressed feelings and negative decisions thus rehabilitating character; (6) confronting lack of intimacy and trust in others and this way rehabilitating the ability to love; (7) rehabilitating the will to live, breaking through and falling in love with life; (8) assuming responsibility for the social relations; and sometimes (9) quality of life is improved radically with indications of spontaneous remission of the liver tumors. PMID:15523565
NASA Astrophysics Data System (ADS)
Cheng, C. M.; Peng, Z. K.; Zhang, W. M.; Meng, G.
2017-03-01
Nonlinear problems have drawn great interest and extensive attention from engineers, physicists and mathematicians and many other scientists because most real systems are inherently nonlinear in nature. To model and analyze nonlinear systems, many mathematical theories and methods have been developed, including Volterra series. In this paper, the basic definition of the Volterra series is recapitulated, together with some frequency domain concepts which are derived from the Volterra series, including the general frequency response function (GFRF), the nonlinear output frequency response function (NOFRF), output frequency response function (OFRF) and associated frequency response function (AFRF). The relationship between the Volterra series and other nonlinear system models and nonlinear problem solving methods are discussed, including the Taylor series, Wiener series, NARMAX model, Hammerstein model, Wiener model, Wiener-Hammerstein model, harmonic balance method, perturbation method and Adomian decomposition. The challenging problems and their state of arts in the series convergence study and the kernel identification study are comprehensively introduced. In addition, a detailed review is then given on the applications of Volterra series in mechanical engineering, aeroelasticity problem, control engineering, electronic and electrical engineering.
Mumbardó-Adam, C; Guàrdia-Olmos, J; Giné, C; Raley, S K; Shogren, K A
2018-04-01
A new measure of self-determination, the Self-Determination Inventory: Student Report (Spanish version), has recently been adapted and empirically validated in Spanish language. As it is the first instrument intended to measure self-determination in youth with and without disabilities, there is a need to further explore and strengthen its psychometric analysis based on item response patterns. Through item response theory approach, this study examined item observed distributions across the essential characteristics of self-determination. The results demonstrated satisfactory to excellent item functioning patterns across characteristics, particularly within agentic action domains. Increased variability across items was also found within action-control beliefs dimensions, specifically within the self-realisation subdomain. These findings further support the instrument's psychometric properties and outline future research directions. © 2017 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Klein, R.
1972-01-01
A set of specially prepared digital tapes is reported which contain synchronized measurements of pilot scanning behavior, control response, and vehicle response obtained during instrument landing system approaches made in a fixed-base DC-8 transport simulator. The objective of the master tape is to provide a common data base which can be used by the research community to test theories, models, and methods for describing and analyzing control/display relations and interactions. The experimental conditions and tasks used to obtain the data and the detailed format of the tapes are described. Conventional instrument panel and controls were used, with simulated vertical gust and glide slope beam bend forcing functions. Continuous pilot eye fixations and scan traffic on the panel were measured. Both flight director and standard localizer/glide slope types of approaches were made, with both fixed and variable instrument range sensitivities.
Shea, B J; Routh, D K; Cottrell, N B; Brecht, J M
1973-04-01
The behavior of preadolescent and adolescent boys, rated as aggressive and nonaggressive, was examined to test predictions from Bandura and Walters' social-learning theory and from Weiss and Miller's punishment model of audience-observation effects. The subjects were given a bogus motor task, actually insoluble, with help available on each trial. For half the subjects, help was given through the mediation of a social agent; for the rest, help was on a nonsocial, mechanically mediated basis. The groups for whom help was socially mediated made fewer help-seeking responses and decreased the number of such responses over successive trial blocks. The predictions from Bandura and Walters' theory were not supported, since neither age nor degree of aggressiveness had an effect on help-seeking responses. The results were, however, consistent with the punishment model of audience effects.
Beller Lectureship Talk: Active response of biological cells to mechanical stress
NASA Astrophysics Data System (ADS)
Safran, Samuel
2009-03-01
Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. We present a simple and generic theoretical model for the active response of biological cells to mechanical stress. The theory includes cell activity and mechanical forces as well as random forces as factors that determine the polarizability that relates cell orientation to stress. This allows us to explain the puzzling observation of parallel (or sometimes random) alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency and compare the theory with recent experiments. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material distinguishes cells whose activity is controlled by stress from those controlled by strain. We have extended the theory to generalize the treatment of elastic inclusions in solids to ''living'' inclusions (cells) whose active polarizability, analogous to the polarizability of non-living matter, results in the feedback of cellular forces that develop in response to matrix stresses. We use this to explain recent observations of the non-monotonic dependence of stress-fiber polarization in stem cells on matrix rigidity. These findings provide a mechanical correlate for the existence of an optimal substrate elasticity for cell differentiation and function. [3pt] *In collaboration with R. De (Brown University), Y. Biton (Weizmann Institute), and A. Zemel (Hebrew University) and the experimental groups: Max Planck Institute, Stuttgart: S. Jungbauer, R. Kemkemer, J. Spatz; University of Pennsylvania: A. Brown, D. Discher, F. Rehfeldt.
NASA Astrophysics Data System (ADS)
Röpke, G.
2018-01-01
One of the fundamental problems in physics that are not yet rigorously solved is the statistical mechanics of nonequilibrium processes. An important contribution to describing irreversible behavior starting from reversible Hamiltonian dynamics was given by D. N. Zubarev, who invented the method of the nonequilibrium statistical operator. We discuss this approach, in particular, the extended von Neumann equation, and as an example consider the electrical conductivity of a system of charged particles. We consider the selection of the set of relevant observables. We show the relation between kinetic theory and linear response theory. Using thermodynamic Green's functions, we present a systematic treatment of correlation functions, but the convergence needs investigation. We compare different expressions for the conductivity and list open questions.
NASA Astrophysics Data System (ADS)
Darancet, Pierre; Ferretti, Andrea; Mayou, Didier; Olevano, Valerio
2007-03-01
We present an ab initio approach to electronic transport in nanoscale systems which includes electronic correlations through the GW approximation. With respect to Landauer approaches based on density-functional theory (DFT), we introduce a physical quasiparticle electronic-structure into a non-equilibrium Green's function theory framework. We use an equilibrium non-selfconsistent G^0W^0 self-energy considering both full non-hermiticity and dynamical effects. The method is applied to a real system, a gold mono-atomic chain. With respect to DFT results, the conductance profile is modified and reduced by to the introduction of diffusion and loss-of-coherence effects. The linear response conductance characteristic appear to be in agreement with experimental results.
A Multidimensional Ideal Point Item Response Theory Model for Binary Data.
Maydeu-Olivares, Albert; Hernández, Adolfo; McDonald, Roderick P
2006-12-01
We introduce a multidimensional item response theory (IRT) model for binary data based on a proximity response mechanism. Under the model, a respondent at the mode of the item response function (IRF) endorses the item with probability one. The mode of the IRF is the ideal point, or in the multidimensional case, an ideal hyperplane. The model yields closed form expressions for the cell probabilities. We estimate and test the goodness of fit of the model using only information contained in the univariate and bivariate moments of the data. Also, we pit the new model against the multidimensional normal ogive model estimated using NOHARM in four applications involving (a) attitudes toward censorship, (b) satisfaction with life, (c) attitudes of morality and equality, and (d) political efficacy. The normal PDF model is not invariant to simple operations such as reverse scoring. Thus, when there is no natural category to be modeled, as in many personality applications, it should be fit separately with and without reverse scoring for comparisons.
NASA Astrophysics Data System (ADS)
Qin, Yulin; Sohn, Myeong-Ho; Anderson, John R.; Stenger, V. Andrew; Fissell, Kate; Goode, Adam; Carter, Cameron S.
2003-04-01
Based on adaptive control of thought-rational (ACT-R), a cognitive architecture for cognitive modeling, researchers have developed an information-processing model to predict the blood oxygenation level-dependent (BOLD) response of functional MRI in symbol manipulation tasks. As an extension of this research, the current event-related functional MRI study investigates the effect of relatively extensive practice on the activation patterns of related brain regions. The task involved performing transformations on equations in an artificial algebra system. This paper shows that the base-level activation learning in the ACT-R theory can predict the change of the BOLD response in practice in a left prefrontal region reflecting retrieval of information. In contrast, practice has relatively little effect on the form of BOLD response in the parietal region reflecting imagined transformations to the equation or the motor region reflecting manual programming.
Doebel, Sabine; Zelazo, Philip David
2016-01-01
Engaging executive function often requires overriding a prepotent response in favor of a conflicting but adaptive one. Language may play a key role in this ability by supporting integrated representations of conflicting rules. We tested whether experience with contrastive language that could support such representations benefits executive function in 3-year-old children. Children who received brief experience with language highlighting contrast between objects, attributes, and actions showed greater executive function on two of three ‘conflict’ executive function tasks than children who received experience with contrasting stimuli only and children who read storybooks with the experimenter, controlling for baseline executive function. Experience with contrasting stimuli did not benefit executive function relative to reading books with the experimenter, indicating experience with contrastive language, rather than experience with contrast generally, was key. Experience with contrastive language also boosted spontaneous attention to contrast, consistent with improvements in representing contrast. These findings indicate a role for language in executive function that is consistent with the Cognitive Complexity and Control theory's key claim that coordinating conflicting rules is critical to overcoming perseveration, and suggest new ideas for testing theories of executive function. PMID:27658118
Doebel, Sabine; Zelazo, Philip David
2016-12-01
Engaging executive function often requires overriding a prepotent response in favor of a conflicting but adaptive one. Language may play a key role in this ability by supporting integrated representations of conflicting rules. We tested whether experience with contrastive language that could support such representations benefits executive function in 3-year-old children. Children who received brief experience with language highlighting contrast between objects, attributes, and actions showed greater executive function on two of three 'conflict' executive function tasks than children who received experience with contrasting stimuli only and children who read storybooks with the experimenter, controlling for baseline executive function. Experience with contrasting stimuli did not benefit executive function relative to reading books with the experimenter, indicating experience with contrastive language, rather than experience with contrast generally, was key. Experience with contrastive language also boosted spontaneous attention to contrast, consistent with improvements in representing contrast. These findings indicate a role for language in executive function that is consistent with the Cognitive Complexity and Control theory's key claim that coordinating conflicting rules is critical to overcoming perseveration, and suggest new ideas for testing theories of executive function. Copyright © 2016 Elsevier B.V. All rights reserved.
Quantum Fisher Information as a function response to a weak external perturbation
NASA Astrophysics Data System (ADS)
Rojas, Fernando; Maytorena, Jesus A.
The quantum fisher information (QFI) is known as a good indicator of entanglement in a multipartite systems. In this work we show that it can be treated as an induced response to an external field, in the same spirit of the usual linear response theory, with respect to a linear combination of observables of each subsystem. We derive an expression for a corresponding linear dynamical susceptibilitywhich contains relevant information about entanglement properties of a multipartite system. This approach is applied to investigate the hybrid entanglement in the driven Jaynes-Cummings model. The Fisher susceptibility response function is obtained and allows us to characterize the changes on quantum correlations between the qubit and photon states, in terms of the driving frequency, atom-field coupling, and temperature. We acknowledge financial support from DGAPA PAPPIT IN105717.
Badre, David; Wagner, Anthony D
2004-02-05
Prefrontal cortex (PFC) supports flexible behavior by mediating cognitive control, though the elemental forms of control supported by PFC remain a central debate. Dorsolateral PFC (DLPFC) is thought to guide response selection under conditions of response conflict or, alternatively, may refresh recently active representations within working memory. Lateral frontopolar cortex (FPC) may also adjudicate response conflict, though others propose that FPC supports higher order control processes such as subgoaling and integration. Anterior cingulate cortex (ACC) is hypothesized to upregulate response selection by detecting response conflict; it remains unclear whether ACC functions generalize beyond monitoring response conflict. The present fMRI experiment directly tested these competing theories regarding the functional roles of DLPFC, FPC, and ACC. Results reveal dissociable control processes in PFC, with mid-DLPFC selectively mediating resolution of response conflict and FPC further mediating subgoaling/integration. ACC demonstrated a broad sensitivity to control demands, suggesting a generalized role in modulating cognitive control.
Factor Structure and Reliability of Test Items for Saudi Teacher Licence Assessment
ERIC Educational Resources Information Center
Alsadaawi, Abdullah Saleh
2017-01-01
The Saudi National Assessment Centre administers the Computer Science Teacher Test for teacher certification. The aim of this study is to explore gender differences in candidates' scores, and investigate dimensionality, reliability, and differential item functioning using confirmatory factor analysis and item response theory. The confirmatory…
Likelihood-Ratio DIF Testing: Effects of Nonnormality
ERIC Educational Resources Information Center
Woods, Carol M.
2008-01-01
Differential item functioning (DIF) occurs when an item has different measurement properties for members of one group versus another. Likelihood-ratio (LR) tests for DIF based on item response theory (IRT) involve statistically comparing IRT models that vary with respect to their constraints. A simulation study evaluated how violation of the…
The Discriminating Power of Items that Measure More than One Dimension.
ERIC Educational Resources Information Center
Reckase, Mark D.
The work presented in this paper defined conceptually the concepts of multidimensional discrimination and information, derived mathematical expressions for the concepts for a particular multidimensional item response theory (IRT) model, and applied the concepts to actual test data. Multidimensional discrimination was defined as a function of the…
Applying Neurodevelopmental Theory to School-Based Drug Misuse Prevention during Adolescence
ERIC Educational Resources Information Center
Riggs, Nathaniel R.; Black, David S.; Ritt-Olson, Anamara
2014-01-01
Adolescence is characterized by incredible development in the prefrontal cortex of the brain, which is responsible for behavioral and emotional self-regulation, and higher order cognitive decision-making skills (that is, executive function). Typically late prefrontal cortical development and its integration with limbic areas of the brain…
IRTs of the ABCs: Children's Letter Name Acquisition
ERIC Educational Resources Information Center
Phillips, Beth M.; Piasta, Shayne B.; Anthony, Jason L.; Lonigan, Christopher J.; Francis, David J.
2012-01-01
We examined the developmental sequence of letter name knowledge acquisition by children from 2 to five years of age. Data from 2 samples representing diverse regions, ethnicity, and socioeconomic backgrounds (ns=1074 and 500) were analyzed using item response theory (IRT) and differential item functioning techniques. Results from factor analyses…
Effects of degeneracy and response function in a diffusion predator-prey model
NASA Astrophysics Data System (ADS)
Li, Shanbing; Wu, Jianhua; Dong, Yaying
2018-04-01
In this paper, we consider positive solutions of a diffusion predator-prey model with a degeneracy under the Dirichlet boundary conditions. We first obtain sufficient conditions of the existence of positive solutions by the Leray-Schauder degree theory, and then analyze the limiting behavior of positive solutions as the growth rate of the predator goes to infinity and the conversion rates of the predator goes to zero, respectively. It is shown that these results for Holling II response function (i.e. m > 0) reveal interesting contrast with that for the classical Lotka-Volterra predator-prey model (i.e. m = 0).
The Green's functions for peridynamic non-local diffusion.
Wang, L J; Xu, J F; Wang, J X
2016-09-01
In this work, we develop the Green's function method for the solution of the peridynamic non-local diffusion model in which the spatial gradient of the generalized potential in the classical theory is replaced by an integral of a generalized response function in a horizon. We first show that the general solutions of the peridynamic non-local diffusion model can be expressed as functionals of the corresponding Green's functions for point sources, along with volume constraints for non-local diffusion. Then, we obtain the Green's functions by the Fourier transform method for unsteady and steady diffusions in infinite domains. We also demonstrate that the peridynamic non-local solutions converge to the classical differential solutions when the non-local length approaches zero. Finally, the peridynamic analytical solutions are applied to an infinite plate heated by a Gauss source, and the predicted variations of temperature are compared with the classical local solutions. The peridynamic non-local diffusion model predicts a lower rate of variation of the field quantities than that of the classical theory, which is consistent with experimental observations. The developed method is applicable to general diffusion-type problems.
Orban, Pierre; Doyon, Julien; Petrides, Michael; Mennes, Maarten; Hoge, Richard; Bellec, Pierre
2015-01-01
Functional magnetic resonance imaging can measure distributed and subtle variations in brain responses associated with task performance. However, it is unclear whether the rich variety of responses observed across the brain is functionally meaningful and consistent across individuals. Here, we used a multivariate clustering approach that grouped brain regions into clusters based on the similarity of their task-evoked temporal responses at the individual level, and then established the spatial consistency of these individual clusters at the group level. We observed a stable pseudohierarchy of task-evoked networks in the context of a delayed sequential motor task, where the fractionation of networks was driven by a gradient of involvement in motor sequence preparation versus execution. In line with theories about higher-level cognitive functioning, this gradient evolved in a rostro-caudal manner in the frontal lobe. In addition, parcellations in the cerebellum and basal ganglia matched with known anatomical territories and fiber pathways with the cerebral cortex. These findings demonstrate that subtle variations in brain responses associated with task performance are systematic enough across subjects to define a pseudohierarchy of task-evoked networks. Such networks capture meaningful functional features of brain organization as shaped by a given cognitive context. PMID:24729172
Beauchaine, Theodore P.; Gatzke-Kopp, Lisa; Mead, Hilary K.
2007-01-01
In science, theories lend coherence to vast amounts of descriptive information. However, current diagnostic approaches in psychopathology are primarily atheoretical, emphasizing description over etiological mechanisms. We describe the importance of Polyvagal Theory toward understanding the etiology of emotion dysregulation, a hallmark of psychopathology. When combined with theories of social reinforcement and motivation, Polyvagal Theory specifies etiological mechanisms through which distinct patterns of psychopathology emerge. In this paper, we summarize three studies evaluating autonomic nervous system functioning in children with conduct problems, ages 4-18. At all age ranges, these children exhibit attenuated sympathetic nervous system responses to reward, suggesting deficiencies in approach motivation. By middle school, this reward insensitivity is met with inadequate vagal modulation of cardiac output, suggesting additional deficiencies in emotion regulation. We propose a biosocial developmental model of conduct problems in which inherited impulsivity is amplified through social reinforcement of emotional lability. Implications for early intervention are discussed. PMID:17045726
General relativity as the effective theory of GL(4,R) spontaneous symmetry breaking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomboulis, E. T.
2011-10-15
We assume a GL(4,R) space-time symmetry which is spontaneously broken to SO(3,1). We carry out the coset construction of the effective theory for the nonlinearly realized broken symmetry in terms of the Goldstone fields and matter fields transforming linearly under the unbroken Lorentz subgroup. We then identify functions of the Goldstone and matter fields that transform linearly also under the broken symmetry. Expressed in terms of these quantities the effective theory reproduces the vierbein formalism of general relativity with general coordinate invariance being automatically realized nonlinearly over GL(4,R). The coset construction makes no assumptions about any underlying theory that mightmore » be responsible for the assumed symmetry breaking. We give a brief discussion of the possibility of field theories with GL(4,R) rather than Lorentz space-time symmetry providing the underlying dynamics.« less
Beauchaine, Theodore P; Gatzke-Kopp, Lisa; Mead, Hilary K
2007-02-01
In science, theories lend coherence to vast amounts of descriptive information. However, current diagnostic approaches in psychopathology are primarily atheoretical, emphasizing description over etiological mechanisms. We describe the importance of Polyvagal Theory toward understanding the etiology of emotion dysregulation, a hallmark of psychopathology. When combined with theories of social reinforcement and motivation, Polyvagal Theory specifies etiological mechanisms through which distinct patterns of psychopathology emerge. In this paper, we summarize three studies evaluating autonomic nervous system functioning in children with conduct problems, ages 4-18. At all age ranges, these children exhibit attenuated sympathetic nervous system responses to reward, suggesting deficiencies in approach motivation. By middle school, this reward insensitivity is met with inadequate vagal modulation of cardiac output, suggesting additional deficiencies in emotion regulation. We propose a biosocial developmental model of conduct problems in which inherited impulsivity is amplified through social reinforcement of emotional lability. Implications for early intervention are discussed.
Cukras, Janusz; Kauczor, Joanna; Norman, Patrick; Rizzo, Antonio; Rikken, Geert L J A; Coriani, Sonia
2016-05-21
A computational protocol for magneto-chiral dichroism and magneto-chiral birefringence dispersion is presented within the framework of damped response theory, also known as complex polarization propagator theory, at the level of time-dependent Hartree-Fock and time-dependent density functional theory. Magneto-chiral dichroism and magneto-chiral birefringence spectra in the (resonant) frequency region below the first ionization threshold of R-methyloxirane and l-alanine are presented and compared with the corresponding results obtained for both the electronic circular dichroism and the magnetic circular dichroism. The additional information content yielded by the magneto-chiral phenomena, as well as their potential experimental detectability for the selected species, is discussed.
Eriksen, Janus J; Sauer, Stephan P A; Mikkelsen, Kurt V; Jensen, Hans J Aa; Kongsted, Jacob
2012-09-30
We investigate the effect of including a dynamic reaction field at the lowest possible ab inito wave function level of theory, namely the Hartree-Fock (HF) self-consistent field level within the polarizable embedding (PE) formalism. We formulate HF based PE within the linear response theory picture leading to the PE-random-phase approximation (PE-RPA) and bridge the expressions to a second-order polarization propagator approximation (SOPPA) frame such that dynamic reaction field contributions are included at the RPA level in addition to the static response described at the SOPPA level but with HF induced dipole moments. We conduct calculations on para-nitro-aniline and para-nitro-phenolate using said model in addition to dynamic PE-RPA and PE-CAM-B3LYP. We compare the results to recently published PE-CCSD data and demonstrate how the cost effective SOPPA-based model successfully recovers a great portion of the inherent PE-RPA error when the observable is the solvatochromic shift. We furthermore demonstrate that whenever the change in density resulting from the ground state-excited state electronic transition in the solute is not associated with a significant change in the electric field, dynamic response contributions formulated at the HF level of theory manage to capture the majority of the system response originating from derivative densities. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K.
2014-05-01
We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.
Exact image theory for the problem of dielectric/magnetic slab
NASA Technical Reports Server (NTRS)
Lindell, I. V.
1987-01-01
Exact image method, recently introduced for the exact solution of electromagnetic field problems involving homogeneous half spaces and microstrip-like geometries, is developed for the problem of homogeneous slab of dielectric and/or magnetic material in free space. Expressions for image sources, creating the exact reflected and transmitted fields, are given and their numerical evaluation is demonstrated. Nonradiating modes, guided by the slab and responsible for the loss of convergence of the image functions, are considered and extracted. The theory allows, for example, an analysis of finite ground planes in microstrip antenna structures.
Dipolar correlations and the dielectric permittivity of water.
Sharma, Manu; Resta, Raffaele; Car, Roberto
2007-06-15
The static dielectric properties of liquid and solid water are investigated within linear response theory in the context of ab initio molecular dynamics. Using maximally localized Wannier functions to treat the macroscopic polarization we formulate a first-principles, parameter-free, generalization of Kirkwood's phenomenological theory. Our calculated static permittivity is in good agreement with experiment. Two effects of the hydrogen bonds, i.e., a significant increase of the average local moment and a local alignment of the molecular dipoles, contribute in almost equal measure to the unusually large dielectric constant of water.
Item Response Theory analysis of Fagerström Test for Cigarette Dependence.
Svicher, Andrea; Cosci, Fiammetta; Giannini, Marco; Pistelli, Francesco; Fagerström, Karl
2018-02-01
The Fagerström Test for Cigarette Dependence (FTCD) and the Heaviness of Smoking Index (HSI) are the gold standard measures to assess cigarette dependence. However, FTCD reliability and factor structure have been questioned and HSI psychometric properties are in need of further investigations. The present study examined the psychometrics properties of the FTCD and the HSI via the Item Response Theory. The study was a secondary analysis of data collected in 862 Italian daily smokers. Confirmatory factor analysis was run to evaluate the dimensionality of FTCD. A Grade Response Model was applied to FTCD and HSI to verify the fit to the data. Both item and test functioning were analyzed and item statistics, Test Information Function, and scale reliabilities were calculated. Mokken Scale Analysis was applied to estimate homogeneity and Loevinger's coefficients were calculated. The FTCD showed unidimensionality and homogeneity for most of the items and for the total score. It also showed high sensitivity and good reliability from medium to high levels of cigarette dependence, although problems related to some items (i.e., items 3 and 5) were evident. HSI had good homogeneity, adequate item functioning, and high reliability from medium to high levels of cigarette dependence. Significant Differential Item Functioning was found for items 1, 4, 5 of the FTCD and for both items of HSI. HSI seems highly recommended in clinical settings addressed to heavy smokers while FTCD would be better used in smokers with a level of cigarette dependence ranging between low and high. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jahn, Danielle R; Dressel, Jeffrey A; Gavett, Brandon E; O'Bryant, Sid E
2015-01-01
The Executive Interview (EXIT25) is an effective measure of executive dysfunction, but may be inefficient due to the time it takes to complete 25 interview-based items. The current study aimed to examine psychometric properties of the EXIT25, with a specific focus on determining whether a briefer version of the measure could comprehensively assess executive dysfunction. The current study applied a graded response model (a type of item response theory model for polytomous categorical data) to identify items that were most closely related to the underlying construct of executive functioning and best discriminated between varying levels of executive functioning. Participants were 660 adults ages 40 to 96 years living in West Texas, who were recruited through an ongoing epidemiological study of rural health and aging, called Project FRONTIER. The EXIT25 was the primary measure examined. Participants also completed the Trail Making Test and Controlled Oral Word Association Test, among other measures, to examine the convergent validity of a brief form of the EXIT25. Eight items were identified that provided the majority of the information about the underlying construct of executive functioning; total scores on these items were associated with total scores on other measures of executive functioning and were able to differentiate between cognitively healthy, mildly cognitively impaired, and demented participants. In addition, cutoff scores were recommended based on sensitivity and specificity of scores. A brief, eight-item version of the EXIT25 may be an effective and efficient screening for executive dysfunction among older adults.
Quigley, Karen S.; Barrett, Lisa Feldman
2014-01-01
The consistency and specificity of autonomic nervous system (ANS) responses during emotional episodes remains a topic of debate with relevance for emotional concordance. We present a recent model of how mental states are constructed, the Conceptual Act Theory (CAT), and then review findings from existing meta-analyses and a qualitative review along with studies using pattern classification of multivariate ANS patterns to determine if there is across-study evidence for consistency and specificity of ANS responses during emotional episodes. We conclude that there is thus far minimal evidence for ANS response consistency and specificity across studies. We then review the current understanding of the functional and anatomical features of ANS including its efferent and afferent connections with the central nervous system, which suggests the need to reformulate how we conceptualize ANS response consistency and specificity. We conclude by showing how this reformulation is consistent with the CAT, and how we suggest the model to propose when we would and would not expect to see consistency and specificity in ANS responses, and concordance more generally, during emotional episodes. PMID:24388802
Magis, David
2014-11-01
In item response theory, the classical estimators of ability are highly sensitive to response disturbances and can return strongly biased estimates of the true underlying ability level. Robust methods were introduced to lessen the impact of such aberrant responses on the estimation process. The computation of asymptotic (i.e., large-sample) standard errors (ASE) for these robust estimators, however, has not yet been fully considered. This paper focuses on a broad class of robust ability estimators, defined by an appropriate selection of the weight function and the residual measure, for which the ASE is derived from the theory of estimating equations. The maximum likelihood (ML) and the robust estimators, together with their estimated ASEs, are then compared in a simulation study by generating random guessing disturbances. It is concluded that both the estimators and their ASE perform similarly in the absence of random guessing, while the robust estimator and its estimated ASE are less biased and outperform their ML counterparts in the presence of random guessing with large impact on the item response process. © 2013 The British Psychological Society.
Backreaction effects on nonequilibrium spectral function
NASA Astrophysics Data System (ADS)
Mendizabal, Sebastián; Rojas, Juan Cristobal
2017-07-01
We show how to compute the spectral function for a scalar theory in two different scenarios: one which disregards backreaction, i.e. the response of the environment to the external particle, and the other one where backreaction is considered. The calculation was performed using the Kadanoff-Baym equation through the Keldysh formalism. When backreaction is neglected, the spectral function is equal to the equilibrium one, which can be represented as a Breit-Wigner distribution. When backreaction is introduced we observed a damping in the spectral function of the thermal bath. Such behavior modifies the damping rate for particles created within the bath.
Architecture of PFC supports analogy, but PFC is not an analogy machine.
Speed, Ann
2010-06-01
In the preceding discussion paper, I proposed a theory of prefrontal cortical organization that was fundamentally intended to address the question: How does prefrontal cortex (PFC) support the various functions for which it seems to be selectively recruited? In so doing, I chose to focus on a particular function, analogy, that seems to have been largely ignored in the theoretical treatments of PFC, but that does underlie many other cognitive functions (Hofstadter, 2001 ; Holyoak & Thagard, 1997 ). At its core, this paper was intended to use analogy as a foundation for exploring one possibility for prefrontal function in general, although it is easy to see how the analogy-specific interpretation arises (as in the comment by Ibáñez). In an attempt to address this more foundational question, this response will step away from analogy as a focus, and will address first the various comments from the perspective of the initial motivation for developing this theory, and then specific issues raised by the commentators.
Optimization of constrained density functional theory
NASA Astrophysics Data System (ADS)
O'Regan, David D.; Teobaldi, Gilberto
2016-07-01
Constrained density functional theory (cDFT) is a versatile electronic structure method that enables ground-state calculations to be performed subject to physical constraints. It thereby broadens their applicability and utility. Automated Lagrange multiplier optimization is necessary for multiple constraints to be applied efficiently in cDFT, for it to be used in tandem with geometry optimization, or with molecular dynamics. In order to facilitate this, we comprehensively develop the connection between cDFT energy derivatives and response functions, providing a rigorous assessment of the uniqueness and character of cDFT stationary points while accounting for electronic interactions and screening. In particular, we provide a nonperturbative proof that stable stationary points of linear density constraints occur only at energy maxima with respect to their Lagrange multipliers. We show that multiple solutions, hysteresis, and energy discontinuities may occur in cDFT. Expressions are derived, in terms of convenient by-products of cDFT optimization, for quantities such as the dielectric function and a condition number quantifying ill definition in multiple constraint cDFT.
NASA Astrophysics Data System (ADS)
Czajka, Alina; Jeon, Sangyong
2017-06-01
In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.
The adsorption of NO, NH3, N2 on carbon surface: a density functional theory study.
Wang, Jiayong; Yang, Mo; Deng, Debing; Qiu, Shuxia
2017-08-11
To explore the adsorption mechanism of NO, NH 3 , N 2 on a carbon surface, and the effect of basic and acidic functional groups, density functional theory was employed to investigate the interactions between these molecules and carbon surfaces. Molecular electrostatic potential, Mulliken population analyses, reduced density gradient, and Mayer bond order analyses were used to clarify the adsorption mechanism. The results indicate that van der Waals interactions are responsible for N 2 physisorption, and N 2 is the least likely to adsorb on a carbon surface. Modification of carbon materials to decorate basic or acidic functional groups could enhance the NH 3 physisorption because of hydrogen bonding or electrostatic interactions, however, NO physisorption on a carbon surface is poor. Zig-zag sites are more reactive than armchair sites when these gas molecules absorb on the edge sites of carbon surface. Graphical abstract NH 3 , N 2 , NO adsortion on carbon surface.
Holloway, Ian W; Traube, Dorian E; Schrager, Sheree M; Tan, Diane; Dunlap, Shannon; Kipke, Michele D
2017-01-01
The present study addresses gaps in the literature related to theory development for young men who have sex with men (YMSM) sexual practices through the application and modification of Social Action Theory. Data come from the Healthy Young Men study (N = 526), which longitudinally tracked a diverse cohort of YMSM ages 18-24 to characterize risk and protective factors associated with drug use and sexual practices. Structural equation modeling examined the applicability of, and any necessary modifications to a YMSM-focused version of Social Action Theory. The final model displayed excellent fit (CFI = 0.955, TLI = 0.947, RMSEA = 0.037) and suggested concordance between social support and personal capacity for sexual health promotion. For YMSM, practicing health promotion and avoiding practices that may put them at risk for HIV was associated with both social isolation and psychological distress (β = -0.372, t = -4.601, p<0.001); psychological distress is an internalized response to environmental and cognitive factors and sexual practices are an externalized response. Results point to the utility of Social Action Theory as a useful model for understanding sexual practices among YMSM, the application of which shows health protective sexual practices are a function of sociocognitive factors that are influenced by environmental contexts. Social Action Theory can help prevention scientists better address the needs of this vulnerable population.
Reliability-Based Design Optimization of a Composite Airframe Component
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Coroneos, Rula; Patnaik, Surya N.
2011-01-01
A stochastic optimization methodology (SDO) has been developed to design airframe structural components made of metallic and composite materials. The design method accommodates uncertainties in load, strength, and material properties that are defined by distribution functions with mean values and standard deviations. A response parameter, like a failure mode, has become a function of reliability. The primitive variables like thermomechanical loads, material properties, and failure theories, as well as variables like depth of beam or thickness of a membrane, are considered random parameters with specified distribution functions defined by mean values and standard deviations.
Efficient quantum algorithm for computing n-time correlation functions.
Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E
2014-07-11
We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.
Item Response Theory Analyses of the Cambridge Face Memory Test (CFMT)
Cho, Sun-Joo; Wilmer, Jeremy; Herzmann, Grit; McGugin, Rankin; Fiset, Daniel; Van Gulick, Ana E.; Ryan, Katie; Gauthier, Isabel
2014-01-01
We evaluated the psychometric properties of the Cambridge face memory test (CFMT; Duchaine & Nakayama, 2006). First, we assessed the dimensionality of the test with a bi-factor exploratory factor analysis (EFA). This EFA analysis revealed a general factor and three specific factors clustered by targets of CFMT. However, the three specific factors appeared to be minor factors that can be ignored. Second, we fit a unidimensional item response model. This item response model showed that the CFMT items could discriminate individuals at different ability levels and covered a wide range of the ability continuum. We found the CFMT to be particularly precise for a wide range of ability levels. Third, we implemented item response theory (IRT) differential item functioning (DIF) analyses for each gender group and two age groups (Age ≤ 20 versus Age > 21). This DIF analysis suggested little evidence of consequential differential functioning on the CFMT for these groups, supporting the use of the test to compare older to younger, or male to female, individuals. Fourth, we tested for a gender difference on the latent facial recognition ability with an explanatory item response model. We found a significant but small gender difference on the latent ability for face recognition, which was higher for women than men by 0.184, at age mean 23.2, controlling for linear and quadratic age effects. Finally, we discuss the practical considerations of the use of total scores versus IRT scale scores in applications of the CFMT. PMID:25642930
2006-10-01
organisms that can either be in the lysogenic (latent) or lytic (active) state. If following its infection of E . coli , the λ-phage virus enters the...and unfolded proteins (b) in the heat shock response system . . . . . 31 3 Robust stability of the model of Heat Shock in E - coli ...stochastic reachability analysis, all in the context of two biologically motivated and functionally important systems: the heat shock response in E . coli and
Molecular Dynamics of Dense Fluids: Simulation-Theory Symbiosis
NASA Astrophysics Data System (ADS)
Yip, Sidney
35 years ago Berni J. Alder showed the Boltzmann-Enskog kinetic theory failed to adequately account for the viscosity of fluids near solid density as determined by molecular dynamics simulation. This work, along with other notable simulation findings, provided great stimulus to the statistical mechanical studies of transport phenomena, particularly in dealing with collective effects in the time correlation functions of liquids. An extended theoretical challenge that remains partially resolved at best is the shear viscosity of supercooled liquids. How can one give a unified explanation of the so-called fragile and strong characteristic temperature behavior, with implications for the dynamics of glass transition? In this tribute on the occasion of his 90th birthday symposium, we recount a recent study where simulation, combined with heuristic (transition-state) and first principles (linear response) theories, identifies the molecular mechanisms governing glassy-state relaxation. Such an interplay between simulation and theory is progress from the early days; instead of simulation challenging theory, now simulation and theory complement each other.
Pernal, Katarzyna
2012-05-14
Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other excitations is in general much better than that offered by TD-DFT-LDA or TD-DMFT-BB approximations if the range-separation parameter is properly chosen. The latter remains an open problem.
West, Robert; Braver, Todd
2009-01-01
Current theories are divided as to whether prospective memory (PM) involves primarily sustained processes such as strategic monitoring, or transient processes such as the retrieval of intentions from memory when a relevant cue is encountered. The current study examined the neural correlates of PM using a functional magnetic resonance imaging design that allows for the decomposition of brain activity into sustained and transient components. Performance of the PM task was primarily associated with sustained responses in a network including anterior prefrontal cortex (lateral Brodmann area 10), and these responses were dissociable from sustained responses associated with active maintenance in working memory. Additionally, the sustained responses in anterior prefrontal cortex correlated with faster response times for prospective responses. Prospective cues also elicited selective transient activity in a region of interest along the right middle temporal gyrus. The results support the conclusion that both sustained and transient processes contribute to efficient PM and provide novel constraints on the functional role of anterior PFC in higher-order cognition. PMID:18854581
Best Design for Multidimensional Computerized Adaptive Testing With the Bifactor Model
Seo, Dong Gi; Weiss, David J.
2015-01-01
Most computerized adaptive tests (CATs) have been studied using the framework of unidimensional item response theory. However, many psychological variables are multidimensional and might benefit from using a multidimensional approach to CATs. This study investigated the accuracy, fidelity, and efficiency of a fully multidimensional CAT algorithm (MCAT) with a bifactor model using simulated data. Four item selection methods in MCAT were examined for three bifactor pattern designs using two multidimensional item response theory models. To compare MCAT item selection and estimation methods, a fixed test length was used. The Ds-optimality item selection improved θ estimates with respect to a general factor, and either D- or A-optimality improved estimates of the group factors in three bifactor pattern designs under two multidimensional item response theory models. The MCAT model without a guessing parameter functioned better than the MCAT model with a guessing parameter. The MAP (maximum a posteriori) estimation method provided more accurate θ estimates than the EAP (expected a posteriori) method under most conditions, and MAP showed lower observed standard errors than EAP under most conditions, except for a general factor condition using Ds-optimality item selection. PMID:29795848
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, Liem X.; Schenter, Gregory K.
To enhance our understanding of the solvent exchange mechanism in liquid methanol, we report a systematic study of this process using molecular dynamics simulations. We use transition state theory, the Impey-Madden-McDonald method, the reactive flux method, and Grote-Hynes theory to compute the rate constants for this process. Solvent coupling was found to dominate, resulting in a significantly small transmission coefficient. We predict a positive activation volume for the methanol exchange process. The essential features of the dynamics of the system as well as the pressure dependence are recovered from a Generalized Langevin Equation description of the dynamics. We find thatmore » the dynamics and response to anharmonicity can be decomposed into two time regimes, one corresponding to short time response (< 0.1 ps) and long time response (> 5 ps). An effective characterization of the process results from launching dynamics from the planar hypersurface corresponding to Grote-Hynes theory. This results in improved numerical convergence of correlation functions. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
Yoosefian, Mehdi; Etminan, Nazanin
2018-06-01
We have designed a novel nanobiosensor for in silico detecting proteins based on leucine/Pd-loaded single-walled carbon nanotube matrix. Density functional theory at the B3LYP/6-31G (d) level of theory was realized to analyze the geometrical and electronic structure of the proposed nanobiosensor. The solvent effects were investigated using the Tomasi's polarized continuum model. Atoms-in-molecules theory was used to study the nature of interactions by calculating the electron density ρ(r) and Laplacian at the bond critical points. Natural bond orbital analysis was performed to achieve a deep understanding of the nature of the interactions. The biosensor has potential application for high sensitive and rapid response to protein due to the chemical adsorption of L-leucine amino acid onto Pd-loaded single-walled carbon nanotube and reactive functional groups that can incorporate in hydrogen binding, hydrophobic interactions and van der Waals forces with the protein surface in detection process.
Self-similar Theory of Wind-driven Sea
NASA Astrophysics Data System (ADS)
Zakharov, V. E.
2015-12-01
More than two dozens field experiments performed in the ocean and on the lakes show that the fetch-limited growth of dimensionless energy and dimensionless peak frequency is described by powerlike functions of the dimensionless fetch. Moreover, the exponents of these two functions are connected with a proper accuracy by the standard "magic relation", 10q-2p=1. Recent massive numerical experiments as far as experiments in wave tanks also confirm this magic relation. All these experimental facts can be interpreted in a framework of the following simple theory. The wind-driven sea is described by the "conservative" Hasselmann kinetic equation. The source terms, wind input and white-capping dissipation, play a secondary role in comparison with the nonlinear term Snl that is responsible for the four-wave resonant interaction. This equation has four-parameter family of self-similar solutions. The magic relation holds for all numbers of this family. This fact gives strong hope that development of self-consistent analytic theory of wind-driven sea is quite realizable task.
Desjarlais, Michael P.; Scullard, Christian R.; Benedict, Lorin X.; ...
2017-03-13
We compute electrical and thermal conductivities of hydrogen plasmas in the non-degenerate regime using Kohn-Sham Density Functional Theory (DFT) and an application of the Kubo- Greenwood response formula, and demonstrate that for thermal conductivity, the mean-field treatment of the electron-electron (e-e) interaction therein is insufficient to reproduce the weak-coupling limit obtained by plasma kinetic theories. An explicit e-e scattering correction to the DFT is posited by appealing to Matthiessen's Rule and the results of our computations of conductivities with the quantum Lenard-Balescu (QLB) equation. Further motivation of our correction is provided by an argument arising from the Zubarev quantum kineticmore » theory approach. Significant emphasis is placed on our efforts to produce properly converged results for plasma transport using Kohn-Sham DFT, so that an accurate assessment of the importance and efficacy of our e-e scattering corrections to the thermal conductivity can be made.« less
Comer, Clinton S; Harrison, Patti Kelly; Harrison, David W
2015-01-01
Arousal theory as discussed within the present paper refers to those mechanisms and neural systems involved in central nervous system activation and more specifically the systems involved in cortical activation. Historical progress in the evolution of arousal theory has led to a better understanding of the functional neural systems involved in arousal or activation processes and ultimately contributed much to our current theories of emotion. Despite evidence for the dynamic interplay between the left and right cerebral hemispheres, the concepts of cerebral balance and dynamic activation have been emphasized in the neuropsychological literature. A conceptual model is proposed herein that incorporates the unique contributions from multiple neuropsychological theories of arousal and emotion. It is argued that the cerebral hemispheres may play oppositional roles in emotion partially due to the differences in their functional specializations and in their persistence upon activation. In the presence of a threat or provocation, the right hemisphere may activate survival relevant responses partially derived from hemispheric specializations in arousal and emotional processing, including the mobilization of sympathetic drive to promote heightened blood pressure, heart rate, glucose mobilization and respiratory support necessary for the challenge. Oppositional processes and mechanisms are discussed, which may be relevant to the regulatory control over the survival response; however, the capacity of these systems is necessarily limited. A limited capacity mechanism is proposed, which is familiar within other physiological systems, including that providing for the prevention of muscular damage under exceptional demand. This capacity theory is proposed, wherein a link may be expected between exceptional stress within a neural system and damage to the neural system. These mechanisms are proposed to be relevant to emotion and emotional disorders. Discussion is provided on the possible role of currently applied therapeutic interventions for emotional disorders.
Nonadiabatic Dynamics for Electrons at Second-Order: Real-Time TDDFT and OSCF2.
Nguyen, Triet S; Parkhill, John
2015-07-14
We develop a new model to simulate nonradiative relaxation and dephasing by combining real-time Hartree-Fock and density functional theory (DFT) with our recent open-systems theory of electronic dynamics. The approach has some key advantages: it has been systematically derived and properly relaxes noninteracting electrons to a Fermi-Dirac distribution. This paper combines the new dissipation theory with an atomistic, all-electron quantum chemistry code and an atom-centered model of the thermal environment. The environment is represented nonempirically and is dependent on molecular structure in a nonlocal way. A production quality, O(N(3)) closed-shell implementation of our theory applicable to realistic molecular systems is presented, including timing information. This scaling implies that the added cost of our nonadiabatic relaxation model, time-dependent open self-consistent field at second order (OSCF2), is computationally inexpensive, relative to adiabatic propagation of real-time time-dependent Hartree-Fock (TDHF) or time-dependent density functional theory (TDDFT). Details of the implementation and numerical algorithm, including factorization and efficiency, are discussed. We demonstrate that OSCF2 approaches the stationary self-consistent field (SCF) ground state when the gap is large relative to k(b)T. The code is used to calculate linear-response spectra including the effects of bath dynamics. Finally, we show how our theory of finite-temperature relaxation can be used to correct ground-state DFT calculations.
Ordinary dielectric function of corundumlike α -Ga2O3 from 40 meV to 20 eV
NASA Astrophysics Data System (ADS)
Feneberg, Martin; Nixdorf, Jakob; Neumann, Maciej D.; Esser, Norbert; Artús, Lluis; Cuscó, Ramon; Yamaguchi, Tomohiro; Goldhahn, Rüdiger
2018-04-01
The linear optical response of metastable α -Ga2O3 is investigated by spectroscopic ellipsometry. We determine the ordinary dielectric function from lattice vibrations up to the vacuum ultraviolet spectral range at room temperature for a sample with a (0001 ) surface. Three out of four Eu infrared-active phonon modes are unambiguously determined, and their frequencies are in good agreement with density functional theory calculations. The dispersion of the refractive index in the visible and ultraviolet part of the spectrum is determined. High-energy interband transitions are characterized up to 20 eV . By comparison with the optical response of α -Al2O3 and with theoretical results, a tentative assignment of interband transitions is proposed.
HIV/AIDS knowledge among men who have sex with men: applying the item response theory.
Gomes, Raquel Regina de Freitas Magalhães; Batista, José Rodrigues; Ceccato, Maria das Graças Braga; Kerr, Lígia Regina Franco Sansigolo; Guimarães, Mark Drew Crosland
2014-04-01
To evaluate the level of HIV/AIDS knowledge among men who have sex with men in Brazil using the latent trait model estimated by Item Response Theory. Multicenter, cross-sectional study, carried out in ten Brazilian cities between 2008 and 2009. Adult men who have sex with men were recruited (n = 3,746) through Respondent Driven Sampling. HIV/AIDS knowledge was ascertained through ten statements by face-to-face interview and latent scores were obtained through two-parameter logistic modeling (difficulty and discrimination) using Item Response Theory. Differential item functioning was used to examine each item characteristic curve by age and schooling. Overall, the HIV/AIDS knowledge scores using Item Response Theory did not exceed 6.0 (scale 0-10), with mean and median values of 5.0 (SD = 0.9) and 5.3, respectively, with 40.7% of the sample with knowledge levels below the average. Some beliefs still exist in this population regarding the transmission of the virus by insect bites, by using public restrooms, and by sharing utensils during meals. With regard to the difficulty and discrimination parameters, eight items were located below the mean of the scale and were considered very easy, and four items presented very low discrimination parameter (< 0.34). The absence of difficult items contributed to the inaccuracy of the measurement of knowledge among those with median level and above. Item Response Theory analysis, which focuses on the individual properties of each item, allows measures to be obtained that do not vary or depend on the questionnaire, which provides better ascertainment and accuracy of knowledge scores. Valid and reliable scales are essential for monitoring HIV/AIDS knowledge among the men who have sex with men population over time and in different geographic regions, and this psychometric model brings this advantage.
Threshold and Beyond: Modeling The Intensity Dependence of Auditory Responses
2007-01-01
In many studies of auditory-evoked responses to low-intensity sounds, the response amplitude appears to increase roughly linearly with the sound level in decibels (dB), corresponding to a logarithmic intensity dependence. But the auditory system is assumed to be linear in the low-intensity limit. The goal of this study was to resolve the seeming contradiction. Based on assumptions about the rate-intensity functions of single auditory-nerve fibers and the pattern of cochlear excitation caused by a tone, a model for the gross response of the population of auditory nerve fibers was developed. In accordance with signal detection theory, the model denies the existence of a threshold. This implies that regarding the detection of a significant stimulus-related effect, a reduction in sound intensity can always be compensated for by increasing the measurement time, at least in theory. The model suggests that the gross response is proportional to intensity when the latter is low (range I), and a linear function of sound level at higher intensities (range III). For intensities in between, it is concluded that noisy experimental data may provide seemingly irrefutable evidence of a linear dependence on sound pressure (range II). In view of the small response amplitudes that are to be expected for intensity range I, direct observation of the predicted proportionality with intensity will generally be a challenging task for an experimenter. Although the model was developed for the auditory nerve, the basic conclusions are probably valid for higher levels of the auditory system, too, and might help to improve models for loudness at threshold. PMID:18008105
[Behavioral phenotypes: cognitive and emotional explanation].
Pérez-Alvarez, F; Timoneda-Gallart, C
We present a series of Behavioural phenotypes treated with neurocognitive and neuroemotional procedure. A sample of 26 cases were selected according to qualitative methodology from neuropediatric patients. The method was based on using the PASS theory of intelligence to approach the cognitive problem and the theory of masquerade behaviour as self-defence to solve the emotional problem. Both theories have neurological bases. DN:CAS battery was utilized for assessment of cognitive processes. On the other hand, analysis of cases was carried out doing data analysis with video recorder device. All cases were considered responder cases although in different degree. The responder was defined as the patient which reached better intellectual achievement with respect to cognitive function and which gave up, at least partially, masquerade Behaviour with respect to emotional function. The Behaviour of the Behavioural phenotypes has neurological rationale. The PASS theory and the planning, in particular, supported by prefrontal cortex justifies consistently some behaviours. The masquerade Behaviour theory is explained by the fear emotional response mechanism which means emotion is a cerebral processing with neurological rationale. The Behavioural phenotypes are Behaviours and every Behaviour can be explained by neurological reasons both cognitive and emotional reasons. So, they can be treated by a cognitive and emotional procedure understood in the light of the neurology.
ERIC Educational Resources Information Center
Murphy, Carol; Barnes-Holmes, Dermot; Barnes-Holmes, Yvonne
2005-01-01
Mand functions for two stimuli (A1 and A2) were trained for 3 children with autism and were then incorporated into two related conditional discriminations (A1-B1/A2 -B2 and B1-C1/B2-C2). Tests were conducted to probe for a derived transfer of mand response functions from Al and A2 to C1 and C2, respectively. When 1 participant failed to…
NASA Astrophysics Data System (ADS)
Berland, Kristian; Einstein, T. L.; Hyldgaard, Per
2012-02-01
To manipulate the Cu(111) partially-filled Shockley surface state, we study its response to an external fieldootnotetextKB, TLE, PH; arXiv 1109:6706 E and physisorbed PAHs and quinone molecules. We use density-functional theory calculations with periodic-boundary conditions. The van der Waals density functional version vdW-DF2 accounts for the molecular adsorption. The issue that the Kohn-Sham wave functions couple to both sides of the Cu slab is handled with a decoupling scheme based on a rotation in Hilbert space. A convergence study reveals that to obtain a proper Shockley surface state, 6 Cu layers is sufficient, while 15 is optimal. We use 6 layers for the response to the molecules and 15 to external field. We find that the surface state displays isotropic dispersion (up to order k^6), free-electron like until the Fermi wave vector but with a significant quartic component beyond. The shift in band minimum and effective mass depend linearly on E, with a smaller fractional change in the latter. Charge transfer occurs beyond the outermost copper atoms, and most of the screening is due to bulk electrons. We find that the molecular physisorption increases the band minimum, with the effect the of a quinone being much stronger than the corresponding PAH.
Cummings, Jorden A
2018-02-01
Child interpersonal trauma is associated with a host of negative outcomes, both concurrently and in adulthood. Parental responses following trauma can play an important role in modulating child responses, symptoms, and post-trauma functioning. However, parents themselves are also impacted after their child experiences trauma, reporting distress, psychopathology, concerns about the child's safety, changes in discipline and protectiveness, and feelings of blame. Most of this previous research, however, suffers from methodological limitations such as focusing on description and correlations, providing static "one shot" assessments of parenting after trauma, and relying mainly on results related to child sexual abuse. This project developed a comprehensive, explanatory theory of the dynamic process by which parenting changes in response to a range of child trauma, using a sample of parents whose children had experienced a range of interpersonal trauma types. Grounded theory analyses revealed a three-phase dynamic model of discontinuous transformation, in which parents experienced destabilization, recalibration, and re-stabilization of parenting practices in response to child trauma. Parents were focused on Protecting and Healing the child victim, often at the expense of their own needs. Most parents reached a phase of posttraumatic growth, labelled Thriving Recovery, but processes that hindered this recovery are also discussed. This study provides the first evidence that dynamic systems of change as well as vicarious posttraumatic growth can apply to parents of child trauma victims. Generating an explanatory theory provides important avenues for future research as well as interventions and services aimed at families who have experienced child trauma. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.
Hartogsohn, Ido
2016-12-01
Placebo response theory and set and setting theory are two fields which examine how non-biological factors shape the response to therapy. Both consider factors such as expectancy, preparation and beliefs to be crucial for understanding the extra-pharmacological processes which shape the response to drugs. Yet there are also fundamental differences between the two theories. Set and setting concerns itself with response to psychoactive drugs only; placebo theory relates to all therapeutic interventions. Placebo theory is aimed at medical professionals; set and setting theory is aimed at professionals and drug users alike. Placebo theory is primarily descriptive, describing how placebo acts; set and setting theory is primarily prescriptive, educating therapists and users on how to control and optimize the effects of drugs. This paper examines how placebo theory and set and setting theory can complement and benefit each other, broadening our understanding of how non-biological factors shape response to drugs and other treatment interventions. © The Author(s) 2016.
A Funny Thing Hapenned on the Way to the Future: Regenerating Our Academic Institutions.
ERIC Educational Resources Information Center
Robson, Kenneth
The development of modern planning theories and strategies, as applied to higher education, has been both contentious and inconsistent. Planning originated as a management function and responsibility, but by the 1960s, analysts, statisticians, and strategists were providing the rationales for the major planning decisions. The inflexibility of…
Bees Algorithm for Construction of Multiple Test Forms in E-Testing
ERIC Educational Resources Information Center
Songmuang, Pokpong; Ueno, Maomi
2011-01-01
The purpose of this research is to automatically construct multiple equivalent test forms that have equivalent qualities indicated by test information functions based on item response theory. There has been a trade-off in previous studies between the computational costs and the equivalent qualities of test forms. To alleviate this problem, we…
Applying Item Response Theory Modeling in Educational Research
ERIC Educational Resources Information Center
Le, Dai-Trang
2013-01-01
In an effort to understand how school boards in America's K-12 school system function, a research collaboration was undertaken among four agencies: the National School Boards Association, the Thomas B. Fordham Institute, the Iowa Association of School Boards, and the Wallace Foundation. These groups joined effort to conduct research on school…
ERIC Educational Resources Information Center
Baker, Kay M.
1996-01-01
Contextualizes the mathematical intelligence as revealed in the human tendencies, as supported by the extended family, and facilitated by choice within a responsive environment. Reviews the function of Montessori materials, including mathematical materials, and emphasizes that the personal intelligences are integral to all activities simply…
ERIC Educational Resources Information Center
Johnson, Katherine A.; Robertson, Ian H.; Barry, Edwina; Mulligan, Aisling; Daibhis, Aoife; Daly, Michael; Watchorn, Amy; Gill, Michael; Bellgrove, Mark A.
2008-01-01
Background: An important theory of attention suggests that there are three separate networks that execute discrete cognitive functions. The "alerting" network acquires and maintains an alert state, the "orienting" network selects information from sensory input and the "conflict" network resolves conflict that arises between potential responses.…
Associative Symmetry, Antisymmetry, and a Theory of Pigeons' Equivalence-Class Formation
ERIC Educational Resources Information Center
Urcuioli, Peter J.
2008-01-01
Five experiments assessed associative symmetry in pigeons. In Experiments 1A, 1B and 2, pigeons learned two-alternative symbolic matching with identical sample- and comparison-response requirements and with matching stimuli appearing in all possible locations. Despite controlling for the nature of the functional stimuli and insuring all requisite…
IRT-ZIP Modeling for Multivariate Zero-Inflated Count Data
ERIC Educational Resources Information Center
Wang, Lijuan
2010-01-01
This study introduces an item response theory-zero-inflated Poisson (IRT-ZIP) model to investigate psychometric properties of multiple items and predict individuals' latent trait scores for multivariate zero-inflated count data. In the model, two link functions are used to capture two processes of the zero-inflated count data. Item parameters are…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue
We present two efficient iterative algorithms for solving the linear response eigen- value problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into a product eigenvalue problem that is self-adjoint with respect to a K-inner product. This product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-innermore » product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. However, the other component of the eigenvector can be easily recovered in a postprocessing procedure. Therefore, the algorithms we present here are more efficient than existing algorithms that try to approximate both components of the eigenvectors simultaneously. The efficiency of the new algorithms is demonstrated by numerical examples.« less
The dynamics of a harvested predator-prey system with Holling type IV functional response.
Liu, Xinxin; Huang, Qingdao
2018-05-31
The paper aims to investigate the dynamical behavior of a predator-prey system with Holling type IV functional response in which both the species are subject to capturing. We mainly consider how the harvesting affects equilibria, stability, limit cycles and bifurcations in this system. We adopt the method of qualitative and quantitative analysis, which is based on the dynamical theory, bifurcation theory and numerical simulation. The boundedness of solutions, the existence and stability of equilibrium points of the system are further studied. Based on the Sotomayor's theorem, the existence of transcritical bifurcation and saddle-node bifurcation are derived. We use the normal form theorem to analyze the Hopf bifurcation. Simulation results show that the first Lyapunov coefficient is negative and a stable limit cycle may bifurcate. Numerical simulations are performed to make analytical studies more complete. This work illustrates that using the harvesting effort as control parameter can change the behaviors of the system, which may be useful for the biological management. Copyright © 2018 Elsevier B.V. All rights reserved.
Tran, N L; Bohrer, F I; Trogler, W C; Kummel, A C
2009-05-28
Density functional theory (DFT) simulations were used to determine the binding strength of 12 electron-donating analytes to the zinc metal center of a zinc phthalocyanine molecule (ZnPc monomer). The analyte binding strengths were compared to the analytes' enthalpies of complex formation with boron trifluoride (BF(3)), which is a direct measure of their electron donating ability or Lewis basicity. With the exception of the most basic analyte investigated, the ZnPc binding energies were found to correlate linearly with analyte basicities. Based on natural population analysis calculations, analyte complexation to the Zn metal of the ZnPc monomer resulted in limited charge transfer from the analyte to the ZnPc molecule, which increased with analyte-ZnPc binding energy. The experimental analyte sensitivities from chemiresistor ZnPc sensor data were proportional to an exponential of the binding energies from DFT calculations consistent with sensitivity being proportional to analyte coverage and binding strength. The good correlation observed suggests DFT is a reliable method for the prediction of chemiresistor metallophthalocyanine binding strengths and response sensitivities.
NASA Astrophysics Data System (ADS)
Berland, Kristian; Hyldgaard, Per; Einstein, T. L.
2011-03-01
We study the response of the Cu(111) Shockley surface state to an external electrical field E by combining a density-functional theory calculation for a finite slab geometry with an analysis of the Kohn-Sham wavefunctions to obtain a well-converged characterization. We find that the surface state displays isotropic dispersion, quadratic until the Fermi wave vector but with a significant quartic contribution beyond. We find that the shift in band minimum and effective mass depend linearly on E. Most change in electrostatic potential profile, and charge transfer occurs outside the outermost copper atoms, and most of the screening is due to bulk electrons. Our analysis is facilitated by a method used to decouple the Kohn-Sham states due to the finite slab geometry, using a rotation in Hilbert space. We discuss applications to tuning the Fermi wavelength and so the many patterns attributed to metallic surface states. Supported by (KB and PH) Swedish Vetenskapsrådet VR 621-2008-4346 and (TLE) NSF CHE 07-50334 & UMD MRSEC DMR 05-20471.
Answering the call: a tool that measures functional breast cancer literacy.
Williams, Karen Patricia; Templin, Thomas N; Hines, Resche D
2013-01-01
There is a need for health care providers and health care educators to ensure that the messages they communicate are understood. The purpose of this research was to test the reliability and validity, in a culturally diverse sample of women, of a revised Breast Cancer Literacy Assessment Tool (Breast-CLAT) designed to measure functional understanding of breast cancer in English, Spanish, and Arabic. Community health workers verbally administered the 35-item Breast-CLAT to 543 Black, Latina, and Arab American women. A confirmatory factor analysis using a 2-parameter item response theory model was used to test the proposed 3-factor Breast-CLAT (awareness, screening and knowledge, and prevention and control). The confirmatory factor analysis using a 2-parameter item response theory model had a good fit (TLI = .91, RMSEA = .04) to the proposed 3-factor structure. The total scale reliability ranged from .80 for Black participants to .73 for total culturally diverse sample. The three subscales were differentially predictive of family history of cancer. The revised Breast-CLAT scales demonstrated internal consistency reliability and validity in this multiethnic, community-based sample.
Gunzelmann, Glenn; Veksler, Bella
2018-03-01
Veksler and Gunzelmann (2018) argue that the vigilance decrement and the deleterious effects of sleep loss reflect functionally equivalent degradations in cognitive processing and performance. Our account is implemented in a cognitive architecture, where these factors produce breakdowns in goal-directed cognitive processing that we refer to as microlapses. Altmann (2018) raises a number of challenges to microlapses as a unified account of these deficits. Under scrutiny, however, the challenges do little to discredit the theory or conclusions in the original paper. In our response, we address the most serious challenges. In so doing, we provide additional support for the theory and mechanisms, and we highlight opportunities for extending their explanatory breadth. Copyright © 2018 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Kumari, K.; Oberheide, J.
2017-12-01
Nonmigrating tidal diagnostics of SABER temperature observations in the ionospheric dynamo region reveal a large amount of variability on time-scales of a few days to weeks. In this paper, we discuss the physical reasons for the observed short-term tidal variability using a novel approach based on Information theory and Bayesian statistics. We diagnose short-term tidal variability as a function of season, QBO, ENSO, and solar cycle and other drivers using time dependent probability density functions, Shannon entropy and Kullback-Leibler divergence. The statistical significance of the approach and its predictive capability is exemplified using SABER tidal diagnostics with emphasis on the responses to the QBO and solar cycle. Implications for F-region plasma density will be discussed.
Hayashi, Tomoyuki; Mukamel, Shaul
2006-11-21
The coherent nonlinear response of the entire amide line shapes of N-methyl acetamide to three infrared pulses is simulated using an electrostatic density functional theory map. Positive and negative cross peaks contain signatures of correlations between the fundamentals and the combination state. The amide I-A and I-III cross-peak line shapes indicate positive correlation and anticorrelation of frequency fluctuations, respectively. These can be ascribed to correlated hydrogen bonding at C[double bond]O and N-H sites. The amide I frequency is negatively correlated with the hydrogen bond on carbonyl C[double bond]O, whereas the amide A and III are negatively and positively correlated, respectively, with the hydrogen bond on amide N-H.
Integrative mental health care: from theory to practice, Part 2.
Lake, James
2008-01-01
Integrative approaches will lead to more accurate and different understandings of mental illness. Beneficial responses to complementary and alternative therapies provide important clues about the phenomenal nature of the human body in space-time and disparate biological, informational, and energetic factors associated with normal and abnormal psychological functioning. The conceptual framework of contemporary Western psychiatry includes multiple theoretical viewpoints, and there is no single best explanatory model of mental illness. Future theories of mental illness causation will not depend exclusively on empirical verification of strictly biological processes but will take into account both classically described biological processes and non-classical models, including complexity theory, resulting in more complete explanations of the characteristics and causes of symptoms and mechanisms of action that result in beneficial responses to treatments. Part 1 of this article examined the limitations of the theory and contemporary clinical methods employed in Western psychiatry and discussed implications of emerging paradigms in physics and the biological sciences for the future of psychiatry. In part 2, a practical methodology, for planning integrative assessment and treatment strategies in mental health care is proposed. Using this methodology the integrative management of moderate and severe psychiatric symptoms is reviewed in detail. As the conceptual framework of Western medicine evolves toward an increasingly integrative perspective, novel understanding of complex relationships between biological, informational, and energetic processes associated with normal psychological functioning and mental illness will lead to more effective integrative assessment and treatment strategies addressing the causes or meanings of symptoms at multiple hierarchic levels of body-brain-mind.
Integrative mental health care: from theory to practice, part 1.
Lake, James
2007-01-01
Integrative approaches will lead to more accurate and different understandings of mental illness. Beneficial responses to complementary and alternative therapies provide important clues about the phenomenal nature of the human body in space-time and disparate biological, informational, and energetic factors associated with normal and abnormal psychological functioning. The conceptual framework of contemporary Western psychiatry includes multiple theoretical viewpoints, and there is no single best explanatory model of mental illness. Future theories of mental illness causation will not depend exclusively on empirical verification of strictly biological processes but will take into account both classically described biological processes and non-classical models, including complexity theory, resulting in more complete explanations of the characteristics and causes of symptoms and mechanisms of action that result in beneficial responses to treatments. Part 1 of this article examines the limitations of the theory and contemporary clinical methods employed in Western psychiatry and discusses implications of emerging paradigms in physics and the biological sciences for the future of psychiatry. In part 2, a practical methodology for planning integrative assessment and treatment strategies in mental health care is proposed. Using this methodology the integrative management of moderate and severe psychiatric symptoms is reviewed in detail. As the conceptual framework of Western medicine evolves toward an increasingly integrative perspective, novel understandings of complex relationships between biological, informational, and energetic processes associated with normal psychological functioning and mental illness will lead to more effective integrative assessment and treatment strategies addressing the causes or meanings of symptoms at multiple hierarchic levels of body-brain-mind.
Recurrent, Robust and Scalable Patterns Underlie Human Approach and Avoidance
Kennedy, David N.; Lehár, Joseph; Lee, Myung Joo; Blood, Anne J.; Lee, Sang; Perlis, Roy H.; Smoller, Jordan W.; Morris, Robert; Fava, Maurizio
2010-01-01
Background Approach and avoidance behavior provide a means for assessing the rewarding or aversive value of stimuli, and can be quantified by a keypress procedure whereby subjects work to increase (approach), decrease (avoid), or do nothing about time of exposure to a rewarding/aversive stimulus. To investigate whether approach/avoidance behavior might be governed by quantitative principles that meet engineering criteria for lawfulness and that encode known features of reward/aversion function, we evaluated whether keypress responses toward pictures with potential motivational value produced any regular patterns, such as a trade-off between approach and avoidance, or recurrent lawful patterns as observed with prospect theory. Methodology/Principal Findings Three sets of experiments employed this task with beautiful face images, a standardized set of affective photographs, and pictures of food during controlled states of hunger and satiety. An iterative modeling approach to data identified multiple law-like patterns, based on variables grounded in the individual. These patterns were consistent across stimulus types, robust to noise, describable by a simple power law, and scalable between individuals and groups. Patterns included: (i) a preference trade-off counterbalancing approach and avoidance, (ii) a value function linking preference intensity to uncertainty about preference, and (iii) a saturation function linking preference intensity to its standard deviation, thereby setting limits to both. Conclusions/Significance These law-like patterns were compatible with critical features of prospect theory, the matching law, and alliesthesia. Furthermore, they appeared consistent with both mean-variance and expected utility approaches to the assessment of risk. Ordering of responses across categories of stimuli demonstrated three properties thought to be relevant for preference-based choice, suggesting these patterns might be grouped together as a relative preference theory. Since variables in these patterns have been associated with reward circuitry structure and function, they may provide a method for quantitative phenotyping of normative and pathological function (e.g., psychiatric illness). PMID:20532247
Finite-Temperature Relativistic Time-Blocking Approximation for Nuclear Strength Functions
NASA Astrophysics Data System (ADS)
Wibowo, Herlik; Litvinova, Elena
2017-09-01
This work presents an extension of the relativistic nuclear field theory (RNFT) developed throughout the last decade as an approach to the nuclear many-body problem, based on QHD meson-nucleon Lagrangian and relativistic field theory. The unique feature of RNFT is a consistent connection of the high-energy scale of heavy mesons, the medium-energy range of pion, and the low-energy domain of emergent collective vibrations (phonons). RNFT has demonstrated a very good performance in various nuclear structure calculations across the nuclear chart and, in particular, provides a consistent input for description of the two phases of r-process nucleosynthesis: neutron capture and beta decay. Further inclusion of finite temperature effects presented here allows for an extension of the method to highly excited compound nuclei. The covariant response theory in the relativistic time-blocking approximation (RTBA) is generalized for thermal effects, adopting the Matsubara Green's function formalism to the RNFT framework. The finite-temperature RTBA is implemented numerically to calculate multipole strength functions in medium-mass and heavy nuclei. The obtained results will be discussed in comparison to available experimental data and in the context of possible consequences for astrophysics.
A Unifying Theory of Biological Function.
van Hateren, J H
2017-01-01
A new theory that naturalizes biological function is explained and compared with earlier etiological and causal role theories. Etiological (or selected effects) theories explain functions from how they are caused over their evolutionary history. Causal role theories analyze how functional mechanisms serve the current capacities of their containing system. The new proposal unifies the key notions of both kinds of theories, but goes beyond them by explaining how functions in an organism can exist as factors with autonomous causal efficacy. The goal-directedness and normativity of functions exist in this strict sense as well. The theory depends on an internal physiological or neural process that mimics an organism's fitness, and modulates the organism's variability accordingly. The structure of the internal process can be subdivided into subprocesses that monitor specific functions in an organism. The theory matches well with each intuition on a previously published list of intuited ideas about biological functions, including intuitions that have posed difficulties for other theories.
Murray, Aja Louise; Allison, Carrie; Smith, Paula L; Baron-Cohen, Simon; Booth, Tom; Auyeung, Bonnie
2017-05-01
Diagnostic bias is a concern in autism spectrum conditions (ASC) where prevalence and presentation differ by sex. To ensure that females with ASC are not under-identified, it is important that ASC screening tools do not systematically underestimate autistic traits in females relative to males. We evaluated whether the AQ-10, a brief screen for ASC recommended by the National Institute of Clinical Excellence in cases of suspected ASC, exhibits such a bias. Using an item response theory approach, we evaluated differential item functioning and differential test functioning. We found that although individual items showed some sex bias, these biases at times favored males and at other times favored females. Thus, at the level of test scores the item-level biases cancelled out to give an unbiased overall score. Results support the continued use of the AQ-10 sum score in its current form; however, suggest that caution should be exercised when interpreting responses to individual items. The nature of the item level biases could serve as a guide for future research into how ASC affects males and females differently. Autism Res 2017, 10: 790-800. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Electron correlation and the self-interaction error of density functional theory
NASA Astrophysics Data System (ADS)
Polo, Victor; Kraka, Elfi; Cremer, Dieter
The self-interaction error (SIE) of commonly used DFT functionals has been systematically investigated by comparing the electron density distribution ρ( r ) generated by self-interaction corrected DFT (SIC-DFT) with a series of reference densities obtained by DFT or wavefunction theory (WFT) methods that cover typical electron correlation effects. Although the SIE of GGA functionals is considerably smaller than that of LDA functionals, it has significant consequences for the coverage of electron correlation effects at the DFT level of theory. The exchange SIE mimics long range (non-dynamic) pair correlation effects, and is responsible for the fact that the electron density of DFT exchange-only calculations resembles often that of MP4, MP2 or even CCSD(T) calculations. Changes in the electron density caused by SICDFT exchange are comparable with those that are associated with HF exchange. Correlation functionals contract the density towards the bond and the valence region, thus taking negative charge out of the van der Waals region where these effects are exaggerated by the influence of the SIE of the correlation functional. Hence, SIC-DFT leads in total to a relatively strong redistribution of negative charge from van der Waals, non-bonding, and valence regions of heavy atoms to the bond regions. These changes, although much stronger, resemble those obtained when comparing the densities of hybrid functionals such as B3LYP with the corresponding GGA functional BLYP. Hence, the balanced mixing of local and non-local exchange and correlation effects as it is achieved by hybrid functionals mimics SIC-DFT and can be considered as an economic way to include some SIC into standard DFT. However, the investigation shows also that the SIC-DFT description of molecules is unreliable because the standard functionals used were optimized for DFT including the SIE.
Timing in a Variable Interval Procedure: Evidence for a Memory Singularity
Matell, Matthew S.; Kim, Jung S.; Hartshorne, Loryn
2013-01-01
Rats were trained in either a 30s peak-interval procedure, or a 15–45s variable interval peak procedure with a uniform distribution (Exp 1) or a ramping probability distribution (Exp 2). Rats in all groups showed peak shaped response functions centered around 30s, with the uniform group having an earlier and broader peak response function and rats in the ramping group having a later peak function as compared to the single duration group. The changes in these mean functions, as well as the statistics from single trial analyses, can be better captured by a model of timing in which memory is represented by a single, average, delay to reinforcement compared to one in which all durations are stored as a distribution, such as the complete memory model of Scalar Expectancy Theory or a simple associative model. PMID:24012783
Age-related Neural Differences in Affiliation and Isolation
Beadle, Janelle N.; Yoon, Carolyn; Gutchess, Angela H.
2012-01-01
While previous aging studies have focused on particular components of social perception (e.g., theory of mind, self-referencing), little is known about age-related differences specifically for the neural basis of perception of affiliation and isolation. This study investigates age-related similarities and differences in the neural basis of affiliation and isolation. Participants viewed images of affiliation (groups engaged in social interaction), and isolation (lone individuals), as well as non-social stimuli (e.g., landscapes) while making pleasantness judgments and undergoing functional neuroimaging (BOLD fMRI). Results indicated age-related similarities in response to affiliation and isolation in recruitment of regions involved in theory of mind and self-referencing (e.g. temporal pole, medial prefrontal cortex). Yet, age-related differences also emerged in response to affiliation and isolation in regions implicated in theory of mind as well as self-referencing. Specifically, in response to isolation versus affiliation images, older adults showed greater recruitment than younger adults of the temporal pole, a region that is important for retrieval of personally-relevant memories utilized to understand others’ mental states. Furthermore, in response to images of affiliation versus isolation, older adults showed greater recruitment than younger adults of the precuneus, a region implicated in self-referencing. We suggest that age-related divergence in neural activation patterns underlying judgments of scenes depicting isolation versus affiliation may indicate that older adults’ theory of mind processes are driven by retrieval of isolation-relevant information. Moreover, older adults’ greater recruitment of the precuneus for affiliation versus isolation suggests that the positivity bias for emotional information may extend to social information involving affiliation. PMID:22371086
Phase space explorations in time dependent density functional theory
NASA Astrophysics Data System (ADS)
Rajam, Aruna K.
Time dependent density functional theory (TDDFT) is one of the useful tools for the study of the dynamic behavior of correlated electronic systems under the influence of external potentials. The success of this formally exact theory practically relies on approximations for the exchange-correlation potential which is a complicated functional of the co-ordinate density, non-local in space and time. Adiabatic approximations (such as ALDA), which are local in time, are most commonly used in the increasing applications of the field. Going beyond ALDA, has been proved difficult leading to mathematical inconsistencies. We explore the regions where the theory faces challenges, and try to answer some of them via the insights from two electron model systems. In this thesis work we propose a phase-space extension of the TDDFT. We want to answer the challenges the theory is facing currently by exploring the one-body phase-space. We give a general introduction to this theory and its mathematical background in the first chapter. In second chapter, we carryout a detailed study of instantaneous phase-space densities and argue that the functionals of distributions can be a better alternative to the nonlocality issue of the exchange-correlation potentials. For this we study in detail the interacting and the non-interacting phase-space distributions for Hookes atom model. The applicability of ALDA-based TDDFT for the dynamics in strongfields can become severely problematic due to the failure of single-Slater determinant picture.. In the third chapter, we analyze how the phase-space distributions can shine some light into this problem. We do a comparative study of Kohn-Sham and interacting phase-space and momentum distributions for single ionization and double ionization systems. Using a simple model of two-electron systems, we have showed that the momentum distribution computed directly from the exact KS system contains spurious oscillations: a non-classical description of the essentially classical two-electron dynamics. In Time dependent density matrix functional theory (TDDMFT), the evolution scheme of the 1RDM (first order reduced density matrix) contains second-order reduced density matrix (2RDM), which has to be expressed in terms of 1RDMs. Any non-correlated approximations (Hartree-Fock) for 2RDM would fail to capture the natural occupations of the system. In our fourth chapter, we show that by applying the quasi-classical and semi-classical approximations one can capture the natural occupations of the excited systems. We study a time-dependent Moshinsky atom model for this. The fifth chapter contains a comparative work on the existing non-local exchange-correlation kernels that are based on current density response frame work and the co-moving frame work. We show that the two approaches though coinciding with each other in linear response regime, actually turn out to be different in non-linear regime.
Extension of suboptimal control theory for flow around a square cylinder
NASA Astrophysics Data System (ADS)
Fujita, Yosuke; Fukagata, Koji
2017-11-01
We extend the suboptimal control theory to control of flow around a square cylinder, which has no point symmetry on the impulse response from the wall in contrast to circular cylinders and spheres previously studied. The cost functions examined are the pressure drag (J1), the friction drag (J2), the squared difference between target pressure and wall pressure (J3) and the time-averaged dissipation (J4). The control input is assumed to be continuous blowing and suction on the cylinder wall and the feedback sensors are assumued on the entire wall surface. The control law is derived so as to minimize the cost function under the constraint of linearized Navier-Stokes equation, and the impulse response field to be convolved with the instantaneous flow quanties are numerically obtained. The amplitide of control input is fixed so that the maximum blowing/suction velocity is 40% of the freestream velocity. When J2 is used as the cost function, the friction drag is reduced as expected but the mean drag is found to increase. In constast, when J1, J3, and J4 were used, the mean drag was found to decrease by 21%, 12%, and 22%, respectively; in addition, vortex shedding is suppressed, which leads to reduction of lift fluctuations.
Tsang, Siny; Schmidt, Karen M.; Vincent, Gina M.; Salekin, Randall T.; Moretti, Marlene M.; Odgers, Candice L.
2014-01-01
This study used an item response theory (IRT) model and a large adolescent sample of justice involved youth (N = 1,007, 38% female) to examine the item functioning of the Psychopathy Checklist – Youth Version (PCL: YV). Items that were most discriminating (or most sensitive to changes) of the latent trait (thought to be psychopathy) among adolescents included “Glibness/superficial charm”, “Lack of remorse”, and “Need for stimulation”, whereas items that were least discriminating included “Pathological lying”, “Failure to accept responsibility”, and “Lacks goals.” The items “Impulsivity” and “Irresponsibility” were the most likely to be rated high among adolescents, whereas “Parasitic lifestyle”, and “Glibness/superficial charm” were the most likely to be rated low. Evidence of differential item functioning (DIF) on four of the 13 items was found between boys and girls. “Failure to accept responsibility” and “Impulsivity” were endorsed more frequently to describe adolescent girls than boys at similar levels of the latent trait, and vice versa for “Grandiose sense of self-worth” and “Lacks goals.” The DIF findings suggest that four PCL: YV items function differently between boys and girls. PMID:25580672
How to test the threat-simulation theory.
Revonsuo, Antti; Valli, Katja
2008-12-01
Malcolm-Smith, Solms, Turnbull and Tredoux [Malcolm-Smith, S., Solms, M.,Turnbull, O., & Tredoux, C. (2008). Threat in dreams: An adaptation? Consciousness and Cognition, 17, 1281-1291.] have made an attempt to test the Threat-Simulation Theory (TST), a theory offering an evolutionary psychological explanation for the function of dreaming [Revonsuo, A. (2000a). The reinterpretation of dreams: An evolutionary hypothesis of the function of dreaming. Behavioral and Brain Sciences, 23(6), 877-901]. Malcolm-Smith et al. argue that empirical evidence from their own study as well as from some other studies in the literature does not support the main predictions of the TST: that threatening events are frequent and overrepresented in dreams, that exposure to real threats activates the threat-simulation system, and that dream threats contain realistic rehearsals of threat avoidance responses. Other studies, including our own, have come up with results and conclusions that are in conflict with those of Malcolm-Smith et al. In this commentary, we provide an analysis of the sources of these disagreements, and their implications to the TST. Much of the disagreement seems to stem from differing interpretations of the theory and, consequently, of differing methods to test it.
Cao, Yixiang; Hughes, Thomas; Giesen, Dave; Halls, Mathew D; Goldberg, Alexander; Vadicherla, Tati Reddy; Sastry, Madhavi; Patel, Bhargav; Sherman, Woody; Weisman, Andrew L; Friesner, Richard A
2016-06-15
We have developed and implemented pseudospectral time-dependent density-functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm-Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time-dependent density-functional theory with full linear response (PS-FLR-TDDFT) and within the Tamm-Dancoff approximation (PS-TDA-TDDFT) for G2 set molecules using B3LYP/6-31G*(*) show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS-FLR-TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS-FLR-TDDFT and best estimations demonstrate that the accuracy of both PS-FLR-TDDFT and PS-TDA-TDDFT. Calculations for a set of medium-sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6-31G(**) basis set show PS-TDA-TDDFT provides 19- to 34-fold speedups for Cn fullerenes with 450-1470 basis functions, 11- to 32-fold speedups for nanotubes with 660-3180 basis functions, and 9- to 16-fold speedups for organic molecules with 540-1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46-residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6-31G(**) basis set with up to 8100 basis functions show that PS-FLR-TDDFT CPU time scales as N(2.05) with the number of basis functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Gong, Liang; Hou, Zhenghua; Wang, Zan; He, Cancan; Yin, Yingying; Yuan, Yonggui; Zhang, Haisan; Lv, Luxian; Zhang, Hongxing; Xie, Chunming; Zhang, Zhijun
2018-01-01
Graph theoretical analyses have identified disrupted functional topological organization across the brain in patients with major depressive disorder (MDD). However, the relationship between brain topology and short-term treatment responses in patients with MDD remains unknown. Sixty-eight patients with MDD and 63 cognitively normal (CN) subjects were recruited at baseline and underwent resting-state functional magnetic resonance imaging scans. Graph theory analysis was used to examine group differences in the whole-brain functional topological properties. The association between altered brain topology and the early antidepressant response was examined. Patients with MDD showed lower normalized clustering coefficients, lower small-worldness scalars and increased nodal efficiencies in the default mode network and decreased nodal efficiencies in basal ganglia and hippocampal networks. In addition, the decreased nodal efficiency in left hippocampus was negatively correlated with depressive severity at baseline and positively correlated with changes in the depressive scores after two weeks of antidepressant treatment. The patients in the present study received different medications. These findings indicated that the altered brain functional topological organization in patients with MDD is associated with the treatment response in the early phase of medication. Therefore, brain topology assessments might be considered a useful and convenient predictor of short-term antidepressant responses. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tang, J.; Riley, W. J.
2017-12-01
Most existing soil carbon cycle models have modeled the moisture and temperature dependence of soil respiration using deterministic response functions. However, empirical data suggest abundant variability in both of these dependencies. We here use the recently developed SUPECA (Synthesizing Unit and Equilibrium Chemistry Approximation) theory and a published dynamic energy budget based microbial model to investigate how soil carbon decomposition responds to changes in soil moisture and temperature under the influence of organo-mineral interactions. We found that both the temperature and moisture responses are hysteretic and cannot be represented by deterministic functions. We then evaluate how the multi-scale variability in temperature and moisture forcing affect soil carbon decomposition. Our results indicate that when the model is run in scenarios mimicking laboratory incubation experiments, the often-observed temperature and moisture response functions can be well reproduced. However, when such response functions are used for model extrapolation involving more transient variability in temperature and moisture forcing (as found in real ecosystems), the dynamic model that explicitly accounts for hysteresis in temperature and moisture dependency produces significantly different estimations of soil carbon decomposition, suggesting there are large biases in models that do not resolve such hysteresis. We call for more studies on organo-mineral interactions to improve modeling of such hysteresis.
Item Response Modeling with Sum Scores
ERIC Educational Resources Information Center
Johnson, Timothy R.
2013-01-01
One of the distinctions between classical test theory and item response theory is that the former focuses on sum scores and their relationship to true scores, whereas the latter concerns item responses and their relationship to latent scores. Although item response theory is often viewed as the richer of the two theories, sum scores are still…
DC conductivities with momentum dissipation in Horndeski theories
Jiang, Wei-Jian; Liu, Hai-Shan; Lü, H.; ...
2017-07-17
In this paper, we consider two four-dimensional Horndeski-type gravity theories with scalar fields that give rise to solutions with momentum dissipation in the dual boundary theories. Firstly, we study Einstein-Maxwell theory with a Horndeski axion term and two additional free axions which are responsible for momentum dissipation. We construct static electrically charged AdS planar black hole solutions in this theory and calculate analytically the holographic DC conductivity of the dual field theory. We then generalize the results to include magnetic charge in the black hole solution. Secondly, we analyze Einstein-Maxwell theory with two Horndeski axions which are used for momentummore » dissipation. We obtain AdS planar black hole solutions in the theory and we calculate the holographic DC conductivity of the dual field theory. The theory has a critical point α+γΛ = 0, beyond which the kinetic terms of the Horndeski axions become ghost-like. The conductivity as a function of temperature behaves qualitatively like that of a conductor below the critical point, becoming semiconductor-like at the critical point. Beyond the critical point, the ghost-like nature of the Horndeski fields is associated with the onset of unphysical singular or negative conductivities. Some further generalisations of the above theories are considered also.« less
DC conductivities with momentum dissipation in Horndeski theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Wei-Jian; Liu, Hai-Shan; Lü, H.
In this paper, we consider two four-dimensional Horndeski-type gravity theories with scalar fields that give rise to solutions with momentum dissipation in the dual boundary theories. Firstly, we study Einstein-Maxwell theory with a Horndeski axion term and two additional free axions which are responsible for momentum dissipation. We construct static electrically charged AdS planar black hole solutions in this theory and calculate analytically the holographic DC conductivity of the dual field theory. We then generalize the results to include magnetic charge in the black hole solution. Secondly, we analyze Einstein-Maxwell theory with two Horndeski axions which are used for momentummore » dissipation. We obtain AdS planar black hole solutions in the theory and we calculate the holographic DC conductivity of the dual field theory. The theory has a critical point α+γΛ = 0, beyond which the kinetic terms of the Horndeski axions become ghost-like. The conductivity as a function of temperature behaves qualitatively like that of a conductor below the critical point, becoming semiconductor-like at the critical point. Beyond the critical point, the ghost-like nature of the Horndeski fields is associated with the onset of unphysical singular or negative conductivities. Some further generalisations of the above theories are considered also.« less
Fujita, Masahiko
2016-03-01
Lesions of the cerebellum result in large errors in movements. The cerebellum adaptively controls the strength and timing of motor command signals depending on the internal and external environments of movements. The present theory describes how the cerebellar cortex can control signals for accurate and timed movements. A model network of the cerebellar Golgi and granule cells is shown to be equivalent to a multiple-input (from mossy fibers) hierarchical neural network with a single hidden layer of threshold units (granule cells) that receive a common recurrent inhibition (from a Golgi cell). The weighted sum of the hidden unit signals (Purkinje cell output) is theoretically analyzed regarding the capability of the network to perform two types of universal function approximation. The hidden units begin firing as the excitatory inputs exceed the recurrent inhibition. This simple threshold feature leads to the first approximation theory, and the network final output can be any continuous function of the multiple inputs. When the input is constant, this output becomes stationary. However, when the recurrent unit activity is triggered to decrease or the recurrent inhibition is triggered to increase through a certain mechanism (metabotropic modulation or extrasynaptic spillover), the network can generate any continuous signals for a prolonged period of change in the activity of recurrent signals, as the second approximation theory shows. By incorporating the cerebellar capability of two such types of approximations to a motor system, in which learning proceeds through repeated movement trials with accompanying corrections, accurate and timed responses for reaching the target can be adaptively acquired. Simple models of motor control can solve the motor error vs. sensory error problem, as well as the structural aspects of credit (or error) assignment problem. Two physiological experiments are proposed for examining the delay and trace conditioning of eyelid responses, as well as saccade adaptation, to investigate this novel idea of cerebellar processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Enquist, B. J.
2016-12-01
The link between variation in species-specific traits - due to acclimation, adaptation, and how ecological communities assemble in time and space - and larger scale ecosystem processes is an important focus for global change research. Understanding such linkages requires synthesis of evolutionary, biogeograpahic, and biogeochemical approaches. Recent observations reveal several paradoxical patterns across ecosystems. Optimality principles provide a novel framework for generating numerous predictions for how ecosystems have and will reorganize and respond to climate change. Tropical elevation gradients are natural laboratories to assess how changing climate can ramify to influence tropical forest diversity and ecosystem functioning. We tested several new predictions from trait- and metabolic scaling theories by assessing the covariation between climate, traits, biomass and gross and net primary productivity (GPP and NPP) across tropical forest plots spanning elevation gradients. We measured multiple leaf physiological, morphological, and stoichiometric traits linked to variation in tree growth. Consistent with theory, observed decreases in NPP and GPP with temperature were best predicted by forest biomass, and scaled allometrically as predicted by theory but the effect of temperature was much less, characterized by a kinetic response much lower ( 0.1eV) than predicted ( 0.65eV). This is likely due to an observed exponential increase in the mean community leaf P:N ratio and photosynthetic nutrient use efficiency with decreases in temperature. Our results are consistent with predictions from Trait Driver Theory, where adaptive/acclamatory shifts in plant traits compensate for the kinetic effects of temperature on tree growth. Further, most of the traits measured showed significantly skewed trait distributions consistent with recent observations that observed shifts in species composition. The development of trait-based scaling theory provides a robust basis to predict how shifts in climate have and will influence functional composition and ecosystem functioning. Together, these results highlight the potential critical importance optimality principles for understanding the role of the biosphere within the integrated earth system.
Thermodynamic responses of electronic systems.
Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2017-09-07
We present how the framework of the temperature-dependent chemical reactivity theory can describe the panorama of different types of interactions between an electronic system and external reagents. The key reactivity indicators are responses of an appropriate state function (like the energy or grand potential) to the variables that determine the state of the system (like the number of electrons/chemical potential, external potential, and temperature). We also consider the response of the average electron density to appropriate perturbations. We present computable formulas for these reactivity indicators and discuss their chemical utility for describing electronic, electrostatic, and thermal changes associated with chemical processes.
Thermodynamic responses of electronic systems
NASA Astrophysics Data System (ADS)
Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto
2017-09-01
We present how the framework of the temperature-dependent chemical reactivity theory can describe the panorama of different types of interactions between an electronic system and external reagents. The key reactivity indicators are responses of an appropriate state function (like the energy or grand potential) to the variables that determine the state of the system (like the number of electrons/chemical potential, external potential, and temperature). We also consider the response of the average electron density to appropriate perturbations. We present computable formulas for these reactivity indicators and discuss their chemical utility for describing electronic, electrostatic, and thermal changes associated with chemical processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Y.J.; Castner, E.W. Jr.
1993-11-15
We have measured the ultrafast solvent relaxation of liquid ethylene glycol, triacetin, and water by means of femtosecond polarization spectroscopy, using optical-heterodyne-detected Raman-induced Kerr-effect spectroscopy. In the viscous liquids triacetin and ethylene glycol, femtosecond relaxation processes were resolved. Not surprisingly, the femtosecond nonlinear optical response of ethylene glycol is quite similar to that of water. Using the theory of Maroncelli, Kumar, and Papazyan, we transform the pure-nuclear solvent response into a dipolar-solvation correlation function for comparison with ultrafast electron-transfer reaction rates.
NASA Astrophysics Data System (ADS)
Chang, Yong Joon; Castner, Edward W., Jr.
1993-11-01
We have measured the ultrafast solvent relaxation of liquid ethylene glycol, triacetin, and water by means of femtosecond polarization spectroscopy, using optical-heterodyne-detected Raman-induced Kerr-effect spectroscopy. In the viscous liquids triacetin and ethylene glycol, femtosecond relaxation processes were resolved. Not surprisingly, the femtosecond nonlinear optical response of ethylene glycol is quite similar to that of water. Using the theory of Maroncelli, Kumar, and Papazyan, we transform the pure-nuclear solvent response into a dipolar-solvation correlation function for comparison with ultrafast electron-transfer reaction rates.
Social cognition and prefrontal hemodynamic responses during a working memory task in schizophrenia.
Pu, Shenghong; Nakagome, Kazuyuki; Yamada, Takeshi; Itakura, Masashi; Yamanashi, Takehiko; Yamada, Sayaka; Masai, Mieko; Miura, Akihiko; Yamauchi, Takahira; Satake, Takahiro; Iwata, Masaaki; Nagata, Izumi; Roberts, David L; Kaneko, Koichi
2016-03-01
Social cognition is an important determinant of functional impairment in schizophrenia, but its relationship with the prefrontal functional abnormalities associated with the condition is still unclear. The present study aimed to explore the relationship between social cognition and prefrontal function in patients with schizophrenia using 52-channel near-infrared spectroscopy (NIRS). Twenty-six patients with schizophrenia and 26 age-, gender-, and intelligence quotient-matched healthy controls (HCs) participated in the study. Hemodynamic responses in the prefrontal and superior temporal cortical regions were assessed during a working memory task using NIRS. Social cognition was assessed using the Social Cognition Screening Questionnaire (SCSQ). The observed hemodynamic responses were significantly reduced in the lateral prefrontal cortex (PFC), the frontopolar cortex, and temporal regions in subjects with schizophrenia compared to HCs. Additionally, lateral PFC hemodynamic responses assessed during the working memory task demonstrated a strong positive correlation with the SCSQ theory of mind (ToM) subscale score even after controlling for working memory performance. These results suggest that ToM integrity is closely related to lateral PFC functional abnormalities found in patients with schizophrenia. In addition, this study provides evidence to suggest that NIRS could be used to identify biomarkers of social cognition function in subjects with schizophrenia.
Beyond allostatic load: rethinking the role of stress in regulating human development.
Ellis, Bruce J; Del Giudice, Marco
2014-02-01
How do exposures to stress affect biobehavioral development and, through it, psychiatric and biomedical disorder? In the health sciences, the allostatic load model provides a widely accepted answer to this question: stress responses, while essential for survival, have negative long-term effects that promote illness. Thus, the benefits of mounting repeated biological responses to threat are traded off against costs to mental and physical health. The adaptive calibration model, an evolutionary-developmental theory of stress-health relations, extends this logic by conceptualizing these trade-offs as decision nodes in allocation of resources. Each decision node influences the next in a chain of resource allocations that become instantiated in the regulatory parameters of stress response systems. Over development, these parameters filter and embed information about key dimensions of environmental stress and support, mediating the organism's openness to environmental inputs, and function to regulate life history strategies to match those dimensions. Drawing on the adaptive calibration model, we propose that consideration of biological fitness trade-offs, as delineated by life history theory, is needed to more fully explain the complex relations between developmental exposures to stress, stress responsivity, behavioral strategies, and health. We conclude that the adaptive calibration model and allostatic load model are only partially complementary and, in some cases, support different approaches to intervention. In the long run, the field may be better served by a model informed by life history theory that addresses the adaptive role of stress response systems in regulating alternative developmental pathways.
Jordan, Pascal; Shedden-Mora, Meike C; Löwe, Bernd
2017-01-01
The Generalized Anxiety Disorder scale (GAD-7) is one of the most frequently used diagnostic self-report scales for screening, diagnosis and severity assessment of anxiety disorder. Its psychometric properties from the view of the Item Response Theory paradigm have rarely been investigated. We aimed to close this gap by analyzing the GAD-7 within a large sample of primary care patients with respect to its psychometric properties and its implications for scoring using Item Response Theory. Robust, nonparametric statistics were used to check unidimensionality of the GAD-7. A graded response model was fitted using a Bayesian approach. The model fit was evaluated using posterior predictive p-values, item information functions were derived and optimal predictions of anxiety were calculated. The sample included N = 3404 primary care patients (60% female; mean age, 52,2; standard deviation 19.2) The analysis indicated no deviations of the GAD-7 scale from unidimensionality and a decent fit of a graded response model. The commonly suggested ultra-brief measure consisting of the first two items, the GAD-2, was supported by item information analysis. The first four items discriminated better than the last three items with respect to latent anxiety. The information provided by the first four items should be weighted more heavily. Moreover, estimates corresponding to low to moderate levels of anxiety show greater variability. The psychometric validity of the GAD-2 was supported by our analysis.
Shedden-Mora, Meike C.; Löwe, Bernd
2017-01-01
Objective The Generalized Anxiety Disorder scale (GAD-7) is one of the most frequently used diagnostic self-report scales for screening, diagnosis and severity assessment of anxiety disorder. Its psychometric properties from the view of the Item Response Theory paradigm have rarely been investigated. We aimed to close this gap by analyzing the GAD-7 within a large sample of primary care patients with respect to its psychometric properties and its implications for scoring using Item Response Theory. Methods Robust, nonparametric statistics were used to check unidimensionality of the GAD-7. A graded response model was fitted using a Bayesian approach. The model fit was evaluated using posterior predictive p-values, item information functions were derived and optimal predictions of anxiety were calculated. Results The sample included N = 3404 primary care patients (60% female; mean age, 52,2; standard deviation 19.2) The analysis indicated no deviations of the GAD-7 scale from unidimensionality and a decent fit of a graded response model. The commonly suggested ultra-brief measure consisting of the first two items, the GAD-2, was supported by item information analysis. The first four items discriminated better than the last three items with respect to latent anxiety. Conclusion The information provided by the first four items should be weighted more heavily. Moreover, estimates corresponding to low to moderate levels of anxiety show greater variability. The psychometric validity of the GAD-2 was supported by our analysis. PMID:28771530
Modeling silicon diode energy response factors for use in therapeutic photon beams.
Eklund, Karin; Ahnesjö, Anders
2009-10-21
Silicon diodes have good spatial resolution, which makes them advantageous over ionization chambers for dosimetry in fields with high dose gradients. However, silicon diodes overrespond to low-energy photons, that are more abundant in scatter which increase with large fields and larger depths. We present a cavity-theory-based model for a general response function for silicon detectors at arbitrary positions within photon fields. The model uses photon and electron spectra calculated from fluence pencil kernels. The incident photons are treated according to their energy through a bipartition of the primary beam photon spectrum into low- and high-energy components. Primary electrons from the high-energy component are treated according to Spencer-Attix cavity theory. Low-energy primary photons together with all scattered photons are treated according to large cavity theory supplemented with an energy-dependent factor K(E) to compensate for energy variations in the electron equilibrium. The depth variation of the response for an unshielded silicon detector has been calculated for 5 x 5 cm(2), 10 x 10 cm(2) and 20 x 20 cm(2) fields in 6 and 15 MV beams and compared with measurements showing that our model calculates response factors with deviations less than 0.6%. An alternative method is also proposed, where we show that one can use a correlation with the scatter factor to determine the detector response of silicon diodes with an error of less than 3% in 6 MV and 15 MV photon beams.
An Impulse Based Substructuring approach for impact analysis and load case simulations
NASA Astrophysics Data System (ADS)
Rixen, Daniel J.; van der Valk, Paul L. C.
2013-12-01
In the present paper we outline the basic theory of assembling substructures for which the dynamics are described as Impulse Response Functions. The assembly procedure computes the time response of a system by evaluating per substructure the convolution product between the Impulse Response Functions and the applied forces, including the interface forces that are computed to satisfy the interface compatibility. We call this approach the Impulse Based Substructuring method since it transposes to the time domain the Frequency Based Substructuring approach. In the Impulse Based Substructuring technique the Impulse Response Functions of the substructures can be gathered either from experimental tests using a hammer impact or from time-integration of numerical submodels. In this paper the implementation of the method is outlined for the case when the impulse responses of the substructures are computed numerically. A simple bar example is shown in order to illustrate the concept. The Impulse Based Substructuring allows fast evaluation of impact response of a structure when the impulse response of its components is known. It can thus be used to efficiently optimize designs of consumer products by including impact behavior at the early stage of the design, but also for performing substructured simulations of complex structures such as offshore wind turbines.
Oude Voshaar, Martijn A H; Ten Klooster, Peter M; Glas, Cees A W; Vonkeman, Harald E; Taal, Erik; Krishnan, Eswar; Bernelot Moens, Hein J; Boers, Maarten; Terwee, Caroline B; van Riel, Piet L C M; van de Laar, Mart A F J
2015-12-01
To evaluate the content validity and measurement properties of the Patient-Reported Outcome Measurement Information System (PROMIS) physical function item bank and a 20-item short form in patients with RA in comparison with the HAQ disability index (HAQ-DI) and 36-item Short Form Health Survey (SF-36) physical functioning scale (PF-10). The content validity of the instruments was evaluated by linking their items to the International Classification of Functioning, Disability and Health (ICF) core set for RA. The measures were administered to 690 RA patients enrolled in the Dutch Rheumatoid Arthritis Monitoring registry. Measurement precision was evaluated using item response theory methods and construct validity was evaluated by correlating physical function scores with other clinical and patient-reported outcome measures. All 207 health concepts identified in the physical function measures referred to activities that are featured in the ICF. Twenty-three of 26 ICF RA core set domains are featured in the full PROMIS physical function item bank compared with 13 and 8 for the HAQ-DI and PF-10, respectively. As hypothesized, all three physical function instruments were highly intercorrelated (r 0.74-0.84), moderately correlated with disease activity measures (r 0.44-0.63) and weakly correlated with age (rs 0.07-0.14). Item response theory-based analysis revealed that a 20-item PROMIS physical function short form covered a wider range of physical function levels than the HAQ-DI or PF-10. The PROMIS physical function item bank demonstrated excellent measurement properties in RA. A content-driven 20-item short form may be a useful tool for assessing physical function in RA. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Single and double photoemission and generalizations
NASA Astrophysics Data System (ADS)
Pavlyukh, Yaroslav
2016-03-01
A unified diagrammatic treatment of single and double electron photoemission currents is presented. The irreducible lesser density-density response function is the starting point of these derivations. Diagrams for higher order processes in which several electrons are observed in coincidence can likewise be obtained. For physically relevant situations, in which the photoemission cross-section can be written as the Fermi Golden rule, the diagrams from the nonequilibrium Green's function approach can be put in direct correspondence with the diagrams of the scattering theory.
Black, Angela R; Cook, Jennifer L; Murry, Velma McBride; Cutrona, Carolyn E
2005-01-01
Ecological theory was used to explore the pathways through which intimate relationship quality influenced health functioning among rural, partnered African American women. Structural equation modeling was used to analyze data from 349 women in Georgia and Iowa. Women's intimate relationship quality was positively associated with their psychological and physical health functioning. Support from community residents moderated this link, which was strongest for women who felt most connected with their neighbors and for women who believed their neighborhood to have a sense of communal responsibility. Future research should identify other factors salient to health functioning among members of this population.
Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura
2015-08-11
The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.
Nazaries, Loïc; Pan, Yao; Bodrossy, Levente; Baggs, Elizabeth M.; Millard, Peter; Murrell, J. Colin
2013-01-01
Microbes play an essential role in ecosystem functions, including carrying out biogeochemical cycles, but are currently considered a black box in predictive models and all global biodiversity debates. This is due to (i) perceived temporal and spatial variations in microbial communities and (ii) lack of ecological theory explaining how microbes regulate ecosystem functions. Providing evidence of the microbial regulation of biogeochemical cycles is key for predicting ecosystem functions, including greenhouse gas fluxes, under current and future climate scenarios. Using functional measures, stable-isotope probing, and molecular methods, we show that microbial (community diversity and function) response to land use change is stable over time. We investigated the change in net methane flux and associated microbial communities due to afforestation of bog, grassland, and moorland. Afforestation resulted in the stable and consistent enhancement in sink of atmospheric methane at all sites. This change in function was linked to a niche-specific separation of microbial communities (methanotrophs). The results suggest that ecological theories developed for macroecology may explain the microbial regulation of the methane cycle. Our findings provide support for the explicit consideration of microbial data in ecosystem/climate models to improve predictions of biogeochemical cycles. PMID:23624469
The Green’s functions for peridynamic non-local diffusion
Wang, L. J.; Xu, J. F.
2016-01-01
In this work, we develop the Green’s function method for the solution of the peridynamic non-local diffusion model in which the spatial gradient of the generalized potential in the classical theory is replaced by an integral of a generalized response function in a horizon. We first show that the general solutions of the peridynamic non-local diffusion model can be expressed as functionals of the corresponding Green’s functions for point sources, along with volume constraints for non-local diffusion. Then, we obtain the Green’s functions by the Fourier transform method for unsteady and steady diffusions in infinite domains. We also demonstrate that the peridynamic non-local solutions converge to the classical differential solutions when the non-local length approaches zero. Finally, the peridynamic analytical solutions are applied to an infinite plate heated by a Gauss source, and the predicted variations of temperature are compared with the classical local solutions. The peridynamic non-local diffusion model predicts a lower rate of variation of the field quantities than that of the classical theory, which is consistent with experimental observations. The developed method is applicable to general diffusion-type problems. PMID:27713658
Item Response Theory Analysis of the Psychopathic Personality Inventory-Revised.
Eichenbaum, Alexander E; Marcus, David K; French, Brian F
2017-06-01
This study examined item and scale functioning in the Psychopathic Personality Inventory-Revised (PPI-R) using an item response theory analysis. PPI-R protocols from 1,052 college student participants (348 male, 704 female) were analyzed. Analyses were conducted on the 131 self-report items comprising the PPI-R's eight content scales, using a graded response model. Scales collected a majority of their information about respondents possessing higher than average levels of the traits being measured. Each scale contained at least some items that evidenced limited ability to differentiate between respondents with differing levels of the trait being measured. Moreover, 80 items (61.1%) yielded significantly different responses between men and women presumably possessing similar levels of the trait being measured. Item performance was also influenced by the scoring format (directly scored vs. reverse-scored) of the items. Overall, the results suggest that the PPI-R, despite identifying psychopathic personality traits in individuals possessing high levels of those traits, may not identify these traits equally well for men and women, and scores are likely influenced by the scoring format of the individual item and scale.
NASA Astrophysics Data System (ADS)
Zhang, Min; He, Weiyi
2018-06-01
Under the guidance of principal-agent theory and modular theory, the collaborative innovation of green technology-based companies, design contractors and project builders based on united agency will provide direction for the development of green construction supply chain in the future. After analyzing the existing independent agencies, this paper proposes the industry-university-research bilateral collaborative innovation network architecture and modularization with the innovative function of engineering design in the context of non-standard transformation interfaces, analyzes the innovation responsibility center, and gives some countermeasures and suggestions to promote the performance of bilateral cooperative innovation network.
NASA Astrophysics Data System (ADS)
Nayfeh, A. H.
1983-09-01
An analysis is presented of the response of multidegree-of-freedom systems with quadratic non-linearities to a harmonic parametric excitation in the presence of an internal resonance of the combination type ω3 ≈ ω2 + ω1, where the ωn are the linear natural frequencies of the systems. In the case of a fundamental resonance of the third mode (i.e., Ω ≈ω 3, where Ω is the frequency of the excitation), one can identify two critical values ζ 1 and ζ 2, where ζ 2 ⩾ ζ 1, of the amplitude F of the excitation. The value F = ζ2 corresponds to the transition from stable to unstable solutions. When F < ζ1, the motion decays to zero according to both linear and non-linear theories. When F > ζ2, the motion grows exponentially with time according to the linear theory but the non-linearity limits the motion to a finite amplitude steady state. The amplitude of the third mode, which is directly excited, is independent of F, whereas the amplitudes of the first and second modes, which are indirectly excited through the internal resonance, are functions of F. When ζ1 ⩽ F ⩽ ζ2, the motion decays or achieves a finite amplitude steady state depending on the initial conditions according to the non-linear theory, whereas it decays to zero according to the linear theory. This is an example of subcritical instability. In the case of a fundamental resonance of either the first or second mode, the trivial response is the only possible steady state. When F ⩽ ζ2, the motion decays to zero according to both linear and non-linear theories. When F > ζ2, the motion grows exponentially with time according to the linear theory but it is aperiodic according to the non-linear theory. Experiments are being planned to check these theoretical results.
A Scaling Model for the Anthropocene Climate Variability with Projections to 2100
NASA Astrophysics Data System (ADS)
Hébert, Raphael; Lovejoy, Shaun
2017-04-01
The determination of the climate sensitivity to radiative forcing is a fundamental climate science problem with important policy implications. We use a scaling model, with a limited set of parameters, which can directly calculate the forced globally-average surface air temperature response to anthropogenic and natural forcings. At timescales larger than an inner scale τ, which we determine as the ocean-atmosphere coupling scale at around 2 years, the global system responds, approximately, linearly, so that the variability may be decomposed into additive forced and internal components. The Ruelle response theory extends the classical linear response theory for small perturbations to systems far from equilibrium. Our model thus relates radiative forcings to a forced temperature response by convolution with a suitable Green's function, or climate response function. Motivated by scaling symmetries which allow for long range dependence, we assume a general scaling form, a scaling climate response function (SCRF) which is able to produce a wide range of responses: a power-law truncated at τ. This allows us to analytically calculate the climate sensitivity at different time scales, yielding a one-to-one relation from the transient climate response to the equilibrium climate sensitivity which are estimated, respectively, as 1.6+0.3-0.2K and 2.4+1.3-0.6K at the 90 % confidence level. The model parameters are estimated within a Bayesian framework, with a fractional Gaussian noise error model as the internal variability, from forcing series, instrumental surface temperature datasets and CMIP5 GCMs Representative Concentration Pathways (RCP) scenario runs. This observation based model is robust and projections for the coming century are made following the RCP scenario 2.6, 4.5 and 8.5, yielding in the year 2100, respectively : 1.5 +0.3)_{-0.2K, 2.3 ± 0.4 K and 4.0 ± 0.6 K at the 90 % confidence level. For comparison, the associated projections from a CMIP5 multi-model ensemble(MME) (32 models) are: 1.7 ± 0.8 K, 2.6 ± 0.8 K and 4.8 ± 1.3 K. Therefore, our projection uncertainty is less than half the structural uncertainty of this CMIP5 MME.
Raykov, Tenko; Marcoulides, George A
2016-04-01
The frequently neglected and often misunderstood relationship between classical test theory and item response theory is discussed for the unidimensional case with binary measures and no guessing. It is pointed out that popular item response models can be directly obtained from classical test theory-based models by accounting for the discrete nature of the observed items. Two distinct observational equivalence approaches are outlined that render the item response models from corresponding classical test theory-based models, and can each be used to obtain the former from the latter models. Similarly, classical test theory models can be furnished using the reverse application of either of those approaches from corresponding item response models.
Insider Threat and Information Security Management
NASA Astrophysics Data System (ADS)
Coles-Kemp, Lizzie; Theoharidou, Marianthi
The notion of insider has multiple facets. An organization needs to identify which ones to respond to. The selection, implementetion and maintenance of information security countermeasures requires a complex combination of organisational policies, functions and processes, which form Information Security Management. This chapter examines the role of current information security management practices in addressing the insider threat. Most approaches focus on frameworks for regulating insider behaviour and do not allow for the various cultural responses to the regulatory and compliance framework. Such responses are not only determined by enforcement of policies and awareness programs, but also by various psychological and organisational factors at an individual or group level. Crime theories offer techniques that focus on such cultural responses and can be used to enhance the information security management design. The chapter examines the applicability of several crime theories and concludes that they can contribute in providing additional controls and redesign of information security management processes better suited to responding to the insider threat.