Sample records for functional role played

  1. Development of the Contextual Assessment of Social Skills (CASS): A Role Play Measure of Social Skill for Individuals with High-Functioning Autism

    ERIC Educational Resources Information Center

    Ratto, Allison B.; Turner-Brown, Lauren; Rupp, Betty M.; Mesibov, Gary B.; Penn, David L.

    2011-01-01

    This study piloted a role play assessment of conversational skills for adolescents and young adults with high-functioning autism/Asperger syndrome (HFA/AS). Participants completed two semi-structured role plays, in which social context was manipulated by changing the confederate's level of interest in the conversation. Participants' social…

  2. Aquaporins in the eye: Expression, function, and roles in ocular disease☆

    PubMed Central

    Schey, Kevin L.; Wang, Zhen; Wenke, Jamie L.; Qi, Ying

    2015-01-01

    Background All thirteen known mammalian aquaporins have been detected in the eye. Moreover, aquaporins have been identified as playing essential roles in ocular functions ranging from maintenance of lens and corneal transparency to production of aqueous humor to maintenance of cellular homeostasis and regulation of signal transduction in the retina. Scope of review This review summarizes the expression and known functions of ocular aquaporins and discusses their known and potential roles in ocular diseases. Major conclusions Aquaporins play essential roles in all ocular tissues. Remarkably, not all aquaporin function as a water permeable channel and the functions of many aquaporins in ocular tissues remain unknown. Given their vital roles in maintaining ocular function and their roles in disease, aquaporins represent potential targets for future therapeutic development. General significance Since aquaporins play key roles in ocular physiology, an understanding of these functions is important to improving ocular health and treating diseases of the eye. It is likely that future therapies for ocular diseases will rely on modulation of aquaporin expression and/or function. This article is part of a Special Issue entitled Aquaporins. PMID:24184915

  3. Leisure Today--the Many Faces of Play.

    ERIC Educational Resources Information Center

    Hudson, Susan D.; And Others

    1995-01-01

    This series of papers examines the role of play from various angles, discussing play as an essential human function and universal experience, the role of play in developing cultural values and awareness, a symbolic interactionist view of play, early therapeutic recreation specialists, and the direction of commercialized play. (SM)

  4. The Role of Functional and Perceptual Attributes: Evidence from Picture Naming in Dementia

    ERIC Educational Resources Information Center

    Harley, Trevor A.; Grant, Fiona

    2004-01-01

    We examined the performance of a group of people with moderately severe Alzheimer's type dementia on a naming task. We found that functional information plays an important role in determining naming performance on both living and non-living things. Perceptual information may play some role in naming living things. We also found some evidence that…

  5. E-learning Constructive Role Plays for EFL Learners in China's Tertiary Education

    ERIC Educational Resources Information Center

    Shen, Lin; Suwanthep, Jitpanat

    2011-01-01

    Recently, speaking has played an increasingly important role in second/foreign language settings. However, in many Chinese universities, EFL students rarely communicate in English with other people effectively. The existing behavioristic role plays on New Horizon College English (NHCE) e-learning do not function successfully in supplementing EFL…

  6. Friendships, Friend-Wrecks and Autism: Phenomenological Study

    ERIC Educational Resources Information Center

    Worrell, Carolyn

    2017-01-01

    This descriptive phenomenological study identified the functional role friendships play in the lives of seven emerging adults with High Functioning Autism Spectrum Disorders. The development of friendships play a vital role in the emotional state of emerging adults. Victimization is prevalent among individuals with an Autism Spectrum Disorder, so…

  7. Preschoolers' Free Play--Connections with Emotional and Social Functioning

    ERIC Educational Resources Information Center

    Veiga, Guida; Neto, Carlos; Rieffe, Carolien

    2016-01-01

    Play has an important role in various aspects of children's development. However, time for free play has declined substantially over the last decades. To date, few studies have focused on the relationship between opportunities for free play and children's social functioning. The aims of this study are to examine whether children´s free play is…

  8. The liver in regulation of iron homeostasis.

    PubMed

    Rishi, Gautam; Subramaniam, V Nathan

    2017-09-01

    The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body's metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism. Copyright © 2017 the American Physiological Society.

  9. Insulin: its Role in the Central Control of Reproduction

    PubMed Central

    Sliwowska, Joanna H.; Fergani, Chrysanthi; Gawałek, Monika; Skowronska, Bogda; Fichna, Piotr; Lehman, Michael N.

    2014-01-01

    Insulin has long been recognized as a key regulator of energy homeostasis via its actions at the level of the brain, but in addition, plays a role in regulating neural control of reproduction. In this review, we consider and compare evidence from animal models demonstrating a role for insulin for physiological control of reproduction by effects on GnRH/LH secretion. We also review the role that insulin plays in prenatal programming of adult reproduction, and consider specific candidate neurons in the adult hypothalamus by which insulin may act to regulate reproductive function. Finally, we review clinical evidence of the role that insulin may play in adult human fertility and reproductive disorders. Overall, while insulin appears to have a significant impact on reproductive neuroendocrine function, there are many unanswered questions regarding its precise sites and mechanisms of action, and their impact on developing and adult reproductive neuroendocrine function. PMID:24874777

  10. Insulin: its role in the central control of reproduction.

    PubMed

    Sliwowska, Joanna H; Fergani, Chrysanthi; Gawałek, Monika; Skowronska, Bogda; Fichna, Piotr; Lehman, Michael N

    2014-06-22

    Insulin has long been recognized as a key regulator of energy homeostasis via its actions at the level of the brain, but in addition, plays a role in regulating neural control of reproduction. In this review, we consider and compare evidence from animal models demonstrating a role for insulin for physiological control of reproduction by effects on GnRH/LH secretion. We also review the role that insulin plays in prenatal programming of adult reproduction, and consider specific candidate neurons in the adult hypothalamus by which insulin may act to regulate reproductive function. Finally, we review clinical evidence of the role that insulin may play in adult human fertility and reproductive disorders. Overall, while insulin appears to have a significant impact on reproductive neuroendocrine function, there are many unanswered questions regarding its precise sites and mechanisms of action, and their impact on developing and adult reproductive neuroendocrine function. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. More Than Cholesterol Transporters: Lipoprotein Receptors in CNS Function and Neurodegeneration

    PubMed Central

    Lane-Donovan, Courtney E.; Philips, Gary T.; Herz, Joachim

    2014-01-01

    Members of the low-density lipoprotein (LDL) receptor gene family have a diverse set of biological functions that transcend lipid metabolism. Lipoprotein receptors have broad effects in both the developing and adult brain and participate in synapse development, cargo trafficking, and signal transduction. In addition, several family members play key roles in Alzheimer's disease pathogenesis and neurodegeneration. This review summarizes our current understanding of the role lipoprotein receptors play in CNS function and AD pathology, with a special emphasis on amyloid-independent roles in endocytosis and synaptic dysfunction. PMID:25144875

  12. Dynamic Processes in Network Goods: Modeling, Analysis and Applications

    ERIC Educational Resources Information Center

    Paothong, Arnut

    2013-01-01

    The network externality function plays a very important role in the study of economic network industries. Moreover, the consumer group dynamic interactions coupled with network externality concept is going to play a dominant role in the network goods in the 21st century. The existing literature is stemmed on a choice of externality function with…

  13. Role of theory of mind and executive function in explaining social intelligence: a structural equation modeling approach.

    PubMed

    Yeh, Zai-Ting

    2013-01-01

    Social intelligence is the ability to understand others and the social context effectively and thus to interact with people successfully. Research has suggested that the theory of mind (ToM) and executive function may play important roles in explaining social intelligence. The specific aim of the present study was to test with structural equation modeling (SEM) the hypothesis that performance on ToM tasks is more associated with social intelligence in the elderly than is performance on executive functions. One hundred and seventy-seven participants (age 56-96) completed ToM, executive function, and other basic cognition tasks, and were rated with social intelligence scales. The SEM results showed that ToM and executive function were strongly correlated (0.54); however, only the path coefficient from ToM to social intelligence, and not from executive function, was significant (0.37). ToM performance, but not executive function, was strongly correlated with social intelligence among elderly individuals. ToM and executive function might play different roles in social behavior during normal aging; however, based on the present results, it is possible that ToM might play an important role in social intelligence.

  14. Statistical Model for Predicting Roles and Effects in Learning Community

    ERIC Educational Resources Information Center

    Chang, Chih-Kai; Chen, Gwo-Dong; Wang, Chin-Yeh

    2011-01-01

    Functional roles may explain the learning performance of groups. Detecting a functional role is critical for promoting group learning performance in computer-supported collaborative learning environments. However, it is not easy for teachers to identify the functional roles played by students in a web-based learning group, or the relationship…

  15. Reclaiming "Old" Literacies in the New Literacy Information Age: The Functional Literacies of the Mediated Workstation

    ERIC Educational Resources Information Center

    Shepherd, Ryan; Goggin, Peter

    2012-01-01

    For many writing faculty, electronic or digital literacies may not play an overtly significant role in their course designs and teaching practices, but these literacies still play a significant role in how students write. Whether or not writing teachers want to accept it, functional computer literacies are an important aspect of teaching writing.…

  16. Benefits of Simulation and Role-Playing to Teach Performance of Functional Assessments.

    PubMed

    Trail Ross, Mary Ellen; Otto, Dorothy A; Stewart Helton, Anne

    The use of simulation is an innovative teaching strategy that has proven to be valuable in nursing education. This article describes the benefits of a simulation lab involving faculty role-play to teach baccalaureate nursing students how to properly assess the functional status of older adults. Details about the simulation lab, which involved functional assessments of two elderly community-dwelling residents, are presented, along with student and faculty evaluations of this teaching modality.

  17. The role of high level play as a predictor social functioning in autism.

    PubMed

    Manning, Margaret M; Wainwright, Laurel D

    2010-05-01

    Play and social abilities of a group of children diagnosed with high functioning autism were compared to a second group diagnosed with a variety of developmental language disorders (DLD). The children with autism engaged in fewer acts of high level play. The children with autism also had significantly lower social functioning than the DLD group early in the play session; however, these differences were no longer apparent by the end of the play session. In addition, a significant association existed between play and social functioning regardless of diagnosis. This suggests that play may act as a current indicator of social ability while providing an arena for social skills practice.

  18. Phosphatidic acid and neurotransmission

    PubMed Central

    Raben, Daniel M.; Barber, Casey N.

    2016-01-01

    Lipids play a vital role in the health and functioning of neurons and interest in the physiological role of neuronal lipids is certainly increasing. One neuronal function in which neuronal lipids appears to play key roles in neurotransmission. Our understanding of the role of lipids in the synaptic vesicle cycle and neurotransmitter release is becoming increasingly more important. Much of the initial research in this area has highlighted the major roles played by the phosphoinositides (PtdIns), diacylglycerol (DAG), and phosphatidic acid (PtdOH). Of these, PtdOH has not received as much attention as the other lipids although its role and metabolism appears to be extremely important. This lipid has been shown to play a role in modulating both exocytosis and endocytosis although its precise role in either process is not well defined. The currently evidence suggest this lipid likely participates in key processes by altering membrane architecture necessary for membrane fusion, mediating the penetration of membrane proteins, serving as a precursor for other important SV cycling lipids, or activating essential enzymes. In this review, we address the sources of PtdOH, the enzymes involved in its production, the regulation of these enzymes, and its potential roles in neurotransmission in the central nervous system. PMID:27671966

  19. NK cell recruitment and exercise: Potential immunotherapeutic role of shear stress and endothelial health.

    PubMed

    Evans, William

    2017-11-01

    Positive cancer patient outcomes, including increased time to recurrent events, have been associated with increased counts and function of natural killer (NK) cells. NK cell counts and function are elevated following acute exercise, and the generally accepted mechanism of increased recruitment suggests that binding of epinephrine releases NK cells from endothelial tissue via decreases in adhesion molecules following. I propose that blood flow-induced shear stress may also play a role in NK cell recruitment from the endothelium. Additionally, shear stress may play a role in improving NK cell function by decreasing oxidative stress. The relationship between shear stress and NK cell count and function can be tested by utilizing exercise and local heating with cuff inflation. If shear stress does play an important role, NK cell count and function will be improved in the non-cuffed exercise group, but not the cuffed limb. This paper will explore the mechanisms potentially explaining exercise-induced improvements in NK cell count and function, and propose a model for investigating these mechanisms. This mechanistic insight could aid in providing a novel, safe, relatively inexpensive, and non-invasive target for immunotherapy in cancer patients. Copyright © 2017. Published by Elsevier Ltd.

  20. Structure-function relationships in the evolutionary framework of spermine oxidase.

    PubMed

    Cervelli, Manuela; Salvi, Daniele; Polticelli, Fabio; Amendola, Roberto; Mariottini, Paolo

    2013-06-01

    Spermine oxidase is a FAD-dependent enzyme that specifically oxidizes spermine, and plays a central role in the highly regulated catabolism of polyamines in vertebrates. The spermine oxidase substrate is specifically spermine, a tetramine that plays mandatory roles in several cell functions, such as DNA synthesis, cellular proliferation, modulation of ion channels function, cellular signalling, nitric oxide synthesis and inhibition of immune responses. The oxidative products of spermine oxidase activity are spermidine, H2O2 and the aldehyde 3-aminopropanal that spontaneously turns into acrolein. In this study the reconstruction of the phylogenetic relationships among spermine oxidase proteins from different vertebrate taxa allowed to infer their molecular evolutionary history, and assisted in elucidating the conservation of structural and functional properties of this enzyme family. The amino acid residues, which have been hypothesized or demonstrated to play a pivotal role in the enzymatic activity, and substrate specificity are here analysed to obtain a comprehensive and updated view of the structure-function relationships in the evolution of spermine oxidase.

  1. Psychometric Characteristics of Role-Play Assessments of Social Skill in Schizophrenia

    ERIC Educational Resources Information Center

    Bellack, Alan S.; Brown, Clayton H.; Thomas-Lohrman, Shannon

    2006-01-01

    There is an extensive literature documenting that people with schizophrenia have marked impairments in social role functioning and social skill. One of the most widely employed strategies for assessing social skill has been role-play tests: simulated social interactions that are videotaped for subsequent behavioral coding. There has been…

  2. Consensus Paper: The Cerebellum's Role in Movement and Cognition

    PubMed Central

    Koziol, Leonard F.; Budding, Deborah; Andreasen, Nancy; D'Arrigo, Stefano; Bulgheroni, Sara; Imamizu, Hiroshi; Ito, Masao; Manto, Mario; Marvel, Cherie; Parker, Krystal; Pezzulo, Giovanni; Ramnani, Narender; Riva, Daria; Schmahmann, Jeremy; Vandervert, Larry; Yamazaki, Tadashi

    2014-01-01

    While the cerebellum's role in motor function is well recognized, the nature of its concurrent role in cognitive function remains considerably less clear. The current consensus paper gathers diverse views on a variety of important roles played by the cerebellum across a range of cognitive and emotional functions. This paper considers the cerebellum in relation to neurocognitive development, language function, working memory, executive function, and the development of cerebellar internal control models and reflects upon some of the ways in which better understanding the cerebellum's status as a “supervised learning machine” can enrich our ability to understand human function and adaptation. As all contributors agree that the cerebellum plays a role in cognition, there is also an agreement that this conclusion remains highly inferential. Many conclusions about the role of the cerebellum in cognition originate from applying known information about cerebellar contributions to the coordination and quality of movement. These inferences are based on the uniformity of the cerebellum's compositional infrastructure and its apparent modular organization. There is considerable support for this view, based upon observations of patients with pathology within the cerebellum. PMID:23996631

  3. Mechanics of vimentin intermediate filaments

    NASA Technical Reports Server (NTRS)

    Wang, Ning; Stamenovic, Dimitrijie

    2002-01-01

    It is increasingly evident that the cytoskeleton of living cells plays important roles in mechanical and biological functions of the cells. Here we focus on the contribution of intermediate filaments (IFs) to the mechanical behaviors of living cells. Vimentin, a major structural component of IFs in many cell types, is shown to play an important role in vital mechanical and biological functions such as cell contractility, migration, stiffness, stiffening, and proliferation.

  4. Class I and class II major histocompatibility molecules play a role in bone marrow-derived macrophage development

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Simske, S. J.; Beharka, A. A.; Balch, S.; Luttges, M. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Class I and class II major histocompatibility complex (MHC) molecules play significant roles in T cell development and immune function. We show that MHCI- and MHCII-deficient mice have low numbers of macrophage precursors and circulating monocytes, as well as abnormal bone marrow cell colony-stimulating factor type 1 secretion and bone composition. We suggest that MHCI and MHCII molecules play a significant role in macrophage development.

  5. Play and the older child: developmental and clinical opportunities.

    PubMed

    Meersand, Pamela

    2009-01-01

    This paper examines the meaning and function of pretend play in older children. First, a review of the widely accepted developmental sequences, growth-promoting potential, and analytic uses of play for younger children is provided. Then the possible role for play in later childhood is explored through the presentation of Sarah, a twelve-year-old girl in analysis, whose play appeared to provide both clinical and developmental benefits. The suggestion is made to soften the existing developmental line for play in order to allow for its role with preadolescent children.

  6. Playing in "Trelis Weyr": Investigating Collaborative Practices in a "Dragons of Pern" Role-Play-Game Forum

    ERIC Educational Resources Information Center

    Alley, Kathleen M.

    2013-01-01

    This descriptive case study examined adolescents' and emerging adults' literate and social practices within the context of a role-play-game (RPG) forum, investigating the ways participants read and collaboratively composed within this space. As a researcher, I was interested in how this space functioned and how the interactions between…

  7. Chronic disorders of consciousness: role of neuroimaging

    NASA Astrophysics Data System (ADS)

    Kremneva, E.; Sergeev, D.; Zmeykina, E.; Legostaeva, L.; Piradov, M.

    2017-08-01

    Chronic disorders of consciousness are clinically challenging conditions, and advanced methods of imaging for better understanding of diagnosis and prognosis are needed. Recent functional neuroradiological studies utilizing PET and fMRI demonstrated that besides widespread neuronal loss disruption of interconnection between certain cortical networks after the injury may also play the leading role in the development of behaviourally assessed unresponsiveness. Functional and structural connectivity, evaluated by neuroimaging approaches, may correlate with clinical status and may also play prognostic role. Integration of data from various diagnostic modalities is needed for further progress in this area.

  8. Phosphatidic acid and neurotransmission.

    PubMed

    Raben, Daniel M; Barber, Casey N

    2017-01-01

    Lipids play a vital role in the health and functioning of neurons and interest in the physiological role of neuronal lipids is certainly increasing. One neuronal function in which neuronal lipids appears to play key roles in neurotransmission. Our understanding of the role of lipids in the synaptic vesicle cycle and neurotransmitter release is becoming increasingly more important. Much of the initial research in this area has highlighted the major roles played by the phosphoinositides (PtdIns), diacylglycerol (DAG), and phosphatidic acid (PtdOH). Of these, PtdOH has not received as much attention as the other lipids although its role and metabolism appears to be extremely important. This lipid has been shown to play a role in modulating both exocytosis and endocytosis although its precise role in either process is not well defined. The currently evidence suggest this lipid likely participates in key processes by altering membrane architecture necessary for membrane fusion, mediating the penetration of membrane proteins, serving as a precursor for other important SV cycling lipids, or activating essential enzymes. In this review, we address the sources of PtdOH, the enzymes involved in its production, the regulation of these enzymes, and its potential roles in neurotransmission in the central nervous system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function.

    PubMed

    Lenz, Kathryn M; Nelson, Lars H

    2018-01-01

    Innate immune cells play a well-documented role in the etiology and disease course of many brain-based conditions, including multiple sclerosis, Alzheimer's disease, traumatic brain and spinal cord injury, and brain cancers. In contrast, it is only recently becoming clear that innate immune cells, primarily brain resident macrophages called microglia, are also key regulators of brain development. This review summarizes the current state of knowledge regarding microglia in brain development, with particular emphasis on how microglia during development are distinct from microglia later in life. We also summarize the effects of early life perturbations on microglia function in the developing brain, the role that biological sex plays in microglia function, and the potential role that microglia may play in developmental brain disorders. Finally, given how new the field of developmental neuroimmunology is, we highlight what has yet to be learned about how innate immune cells shape the development of brain and behavior.

  10. Species Pool Functional Diversity Plays a Hidden Role in Generating β-Diversity.

    PubMed

    Patrick, Christopher J; Brown, Bryan L

    2018-05-01

    Functional trait diversity is used as a way to infer mechanistic processes that drive community assembly. While functional diversity within communities is often viewed as a response variable, here we present and test a framework for how functional diversity among taxa in the regional species pool drives the assembly of communities among habitats. We predicted that species pool functional diversity should work with environmental heterogeneity to drive β-diversity. We tested these predictions by modeling empirical patterns in invertebrate communities from 570 streams in 52 watersheds. Our analysis of the field data provided strong support for the inclusion of both functional diversity and environmental heterogeneity in the models, and our predictions were supported when the community was analyzed all together. However, analyses within individual functional feeding guilds revealed strong context dependency in the relative importance of functional diversity, γ-richness, and environmental heterogeneity to β-diversity. We interpret the results to mean that functional diversity can play an important role in driving β-diversity; however, within guilds the nature of interspecific interactions and species pool size complicate the relationship. Future research should test this conceptual model across different ecosystems and in experimental settings using metacommunity mesocosms to enhance our understanding of the role that functional variation plays in generating spatial biodiversity patterns.

  11. On whether mirror neurons play a significant role in processing affective prosody.

    PubMed

    Ramachandra, Vijayachandra

    2009-02-01

    Several behavioral and neuroimaging studies have indicated that both right and left cortical structures and a few subcortical ones are involved in processing affective prosody. Recent investigations have shown that the mirror neuron system plays a crucial role in several higher-level functions such as empathy, theory of mind, language, etc., but no studies so far link the mirror neuron system with affective prosody. In this paper is a speculation that the mirror neuron system, which serves as a common neural substrate for different higher-level functions, may play a significant role in processing affective prosody via its connections with the limbic lobe. Actual research must apply electrophysiological and neuroimaging techniques to assess whether the mirror neuron systems underly affective prosody in humans.

  12. Hyaluronic acid: its role in voice.

    PubMed

    Ward, P Daniel; Thibeault, Susan L; Gray, Steven D

    2002-09-01

    The extracellular matrix (ECM), once regarded simply as a structural scaffold, is now recognized as an important modulator of cellular behavior and function. One component that plays a prominent role in this process is hyaluronic acid (HA)--a molecule found in many different tissues. Research into the roles of HA indicates that it plays a key role in tissue viscosity, shock absorption, and space filling. Specifically, research into the role of HA in laryngology indicates that it has profound effects on the structure and viscosity of vocal folds. This article provides an introduction to the structure and biological functions of HA and its importance in voice. In addition, an overview of the pharmaceutical applications of HA is discussed.

  13. Wnt/β-Catenin Signaling in Liver Development, Homeostasis, and Pathobiology

    PubMed Central

    Russell, Jacquelyn O.; Monga, Satdarshan P.

    2018-01-01

    The liver is an organ that performs a multitude of functions, and its health is pertinent and indispensable to survival. Thus, the cellular and molecular machinery driving hepatic functions is of utmost relevance. The Wnt signaling pathway is one such signaling cascade that enables hepatic homeostasis and contributes to unique hepatic attributes such as metabolic zonation and regeneration. The Wnt/β-catenin pathway plays a role in almost every facet of liver biology. Furthermore, its aberrant activation is also a hallmark of various hepatic pathologies. In addition to its signaling function, β-catenin also plays a role at adherens junctions. Wnt/β-catenin signaling also influences the function of many different cell types. Due to this myriad of functions, Wnt/β-catenin signaling is complex, context-dependent, and highly regulated. In this review, we discuss the Wnt/β-catenin signaling pathway, its role in cell-cell adhesion and liver function, and the cell type–specific roles of Wnt/β-catenin signaling as it relates to liver physiology and pathobiology. PMID:29125798

  14. Leptin and the brain: influences on brain development, cognitive functioning and psychiatric disorders.

    PubMed

    Farr, Olivia M; Tsoukas, Michael A; Mantzoros, Christos S

    2015-01-01

    Receptors of leptin, the prototypical adipokine, are expressed throughout the cortex and several other areas of the brain. Although typically studied for its role in energy intake and expenditure, leptin plays a critical role in many other neurocognitive processes and interacts with various other hormones and neurotransmitters to perform these functions. Here, we review the literature on how leptin influences brain development, neural degradation, Alzheimer's disease, psychiatric disorders, and more complicated cognitive functioning and feeding behaviors. We also discuss modulators of leptin and the leptin receptor as they relate to normal cognitive functioning and may mediate some of the actions of leptin in the brain. Although we are beginning to better understand the critical role leptin plays in normal cognitive functioning, there is much to be discovered. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Cognitive Adequacy in Structural-Functional Theories of Language

    ERIC Educational Resources Information Center

    Butler, Christopher S.

    2008-01-01

    This paper discusses the role played by cognition in three linguistic theories which may be labelled as "structural-functional": Functional (Discourse) Grammar, Role and Reference Grammar and Systemic Functional Grammar. It argues that if we are to achieve true cognitive adequacy, we must go well beyond the grammar itself to include the processes…

  16. From Embryonic Development to Human Diseases: The Functional Role of Caveolae/Caveolin

    PubMed Central

    Sohn, Jihee; Brick, Rachel M.; Tuan, Rocky S.

    2017-01-01

    Caveolae, an almost ubiquitous, structural component of the plasma membrane, play a critical role in many functions essential for proper cell function, including membrane trafficking, signal transduction, extracellular matrix remodeling, and tissue regeneration. Three main types of caveolin proteins have been identified from caveolae since the discovery of caveolin-1 in the early 1990s. All three (Cav-1, Cav-2, and Cav-3) play crucial roles in mammalian physiology, and can effect pathogenesis in a wide range of human diseases. While many biological activities of caveolins have been uncovered since its discovery, their role and regulation in embryonic develop remain largely poorly understood, although there is increasing evidence that caveolins may be linked to lung and brain birth defects. Further investigations are clearly needed to decipher how caveolae/caveolins mediate cellular functions and activities of normal embryogenesis and how their perturbations contribute to developmental disorders. PMID:26991990

  17. Didactic Model--Bridging a Concept with Phenomena

    ERIC Educational Resources Information Center

    Shternberg, Beba; Yerushalmy, Michal

    2004-01-01

    The article focuses on a specific method of constructing the concept of function. The core of this method is a didactic model that plays two roles together--on the one hand a role of a model of the concept of function and on the other hand a role of a model of physical phenomena that functions can represent. This synergy of modeling situations and…

  18. The Ecology of Role Play: Intentionality and Cultural Evolution

    ERIC Educational Resources Information Center

    Papadopoulou, Marianna

    2012-01-01

    This study examines the evolutionary function of children's pretence. The everyday, cultural environment that children engage with is of a highly complex structure. Human adaptation, thus, becomes, by analogy, an equally complex process that requires the development of life skills. Whilst in role play children engage in "mimesis" and…

  19. A Copyright Primer for Small Undergraduate Libraries

    ERIC Educational Resources Information Center

    Cottrell, Terry

    2010-01-01

    Campus librarians play a central role in conversations revolving around copyright compliance. The sheer volume of information provided within library physical and virtual spaces affirms the role libraries play in current copyright debates. Regardless of the function of librarians on any particular campus, it is important to confront the myriad of…

  20. Role Played Self-Disclosure as a Function of Liking and Knowing

    ERIC Educational Resources Information Center

    Critelli, Joseph W.; And Others

    1976-01-01

    Examines the effects of liking and knowing on self-disclosure using both self-report and observational measures, obtains separate measures of personal and impersonal self-disclosure, and assesses the utility of the role-playing paradigm for revealing orderly relationships among self-disclosure variables. (Author/RK)

  1. Functional integrity of the habenula is necessary for social play behaviour in rats

    PubMed Central

    van Kerkhof, Linda W. M.; Damsteegt, Ruth; Trezza, Viviana; Voorn, Pieter; Vanderschuren, Louk J. M. J.

    2013-01-01

    During post-weaning development, a marked increase in peer–peer interactions is observed in all mammals, including humans, which is signified by the abundance of social play behaviour. Social play is highly rewarding, and known to be modulated through monoaminergic neurotransmission. Recently, the habenula has received widespread attention because of its role in the regulation of monoaminergic neurotransmission as well as in a variety of emotional and cognitive functions. Therefore, in the present study, we investigated the involvement of the habenula in social play behaviour. Using the neuronal activity maker c-fos, we showed that the habenula was activated after 24 h of social isolation in adolescent rats, and that a subsequent social play interaction reduced c-fos activity in the medial part of the lateral habenula. This suggested that habenula activity modulated the aversive properties of social isolation, which was alleviated by the positive effects of social play. Furthermore, after functional inactivation of the habenula, using a mixture of the GABA receptor agonists baclofen and muscimol, social play behaviour was markedly reduced, whereby responsiveness to play solicitation was more sensitive to habenula inactivation than play solicitation itself. Together, our data indicated an important role for the habenula in the processing of positive (i.e. social play behaviour) and negative (i.e. social isolation) social information in adolescent rats. Altered habenula function might therefore be related to the social impairments in childhood and adolescent psychiatric disorders such as autism, attention deficit/hyperactivity disorder and early-onset schizophrenia. PMID:24103016

  2. Ecosystem functions including soil organic carbon, total nitrogen and available potassium are crucial for vegetation recovery.

    PubMed

    Qiu, Kaiyang; Xie, Yingzhong; Xu, Dongmei; Pott, Richard

    2018-05-15

    The effects of biodiversity on ecosystem functions have been extensively studied, but little is known about the effects of ecosystem functions on biodiversity. This knowledge is important for understanding biodiversity-ecosystem functioning relationships. Desertification reversal is a significant global challenge, but the factors that play key roles in this process remain unclear. Here, using data sampled from areas undergoing desertification reversal, we identify the dominant soil factors that play a role in vegetation recovery with ordinary least squares and structural equation modelling. We found that ecosystem functions related to the cycling of soil carbon (organic C, SOC), nitrogen (total N, TN), and potassium (available K, AK) had the most substantial effects on vegetation recovery. The effects of these ecosystem functions were simultaneously influenced by the soil clay, silt and coarse sand fractions and the soil water content. Our findings suggest that K plays a critical role in ecosystem functioning and is a limiting factor in desertification reversal. Our results provide a scientific basis for desertification reversal. Specifically, we found that plant biodiversity may be regulated by N, phosphorus (P) and K cycling. Collectively, biodiversity may respond to ecosystem functions, the conservation and enhancement of which can promote the recovery of vegetation.

  3. The value of eutherian-marsupial comparisons for understanding the function of glucocorticoids in female mammal reproduction.

    PubMed

    Fanson, Kerry V; Parrott, Marissa L

    2015-11-01

    This article is part of a Special Issue "SBN 2014". Chronic stress is known to inhibit female reproductive function. Consequently, it is often assumed that glucocorticoid (GC) concentrations should be negatively correlated with reproductive success because of the role they play in stress physiology. In contrast, a growing body of evidence indicates that GCs play an active role in promoting reproductive function. It is precisely because GCs are so integral to the entire process that disruptions to adrenal activity have negative consequences for reproduction. The goal of this paper is to draw attention to the increasing evidence showing that increases in adrenal activity are important for healthy female reproduction. Furthermore, we outline several hypotheses about the functional role(s) that GCs may play in mediating reproduction and argue that comparative studies between eutherian and marsupial mammals, which exhibit some pronounced differences in reproductive physiology, may be particularly useful for testing different hypotheses about the functional role of GCs in reproduction. Much of our current thinking about GCs and reproduction comes from research involving stress-induced levels of GCs and has led to broad assumptions about the effects of GCs on reproduction. Unfortunately, this has left a gaping hole in our knowledge about basal GC levels and how they may influence reproductive function, thereby preventing a broader understanding of adrenal physiology and obscuring potential solutions for reproductive dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The importance of surface functional groups in the adsorption of copper onto walnut shell derived activated carbon.

    PubMed

    Xie, Ruzhen; Jin, Yan; Chen, Yao; Jiang, Wenju

    2017-12-01

    In this study, activated carbon (AC) was prepared from walnut shell using chemical activation. The surface chemistry of the prepared AC was modified by introducing or blocking certain functional groups, and the role of the different functional groups involved in the copper uptake was investigated. The structural and chemical heterogeneity of the produced carbons are characterized by Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, Boehm titration method and N 2 /77 K adsorption isotherm analysis. The equilibrium and the kinetics of copper adsorption onto AC were studied. The results demonstrated that the functional groups on AC played an important role in copper uptake. Among various surface functional groups, the oxygen-containing group was found to play a critical role in the copper uptake, and oxidation is the most effective way to improve Cu (II) adsorption onto AC. Ion-exchange was identified to be the dominant mechanism in the copper uptake by AC. Some other types of interactions, like complexation, were also proven to be involved in the adsorption process, while physical force was found to play a small role in the copper uptake. The regeneration of copper-loaded AC and the recovery of copper were also studied to evaluate the reusability of the oxidized AC.

  5. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity.

    PubMed

    Dyer, Adam H; Vahdatpour, Cyrus; Sanfeliu, Albert; Tropea, Daniela

    2016-06-14

    Insulin-Like Growth Factor 1 (IGF-1) is a phylogenetically ancient neurotrophic hormone with crucial roles to play in CNS development and maturation. Recently, IGF-1 has been shown to have potent effects on cellular neuroplasticity. Neuroplasticty refers to the adaptive changes made by the CNS in the face of changing functional demands and is crucial in processes such as learning and memory. IGF-1, signaling through its glycoprotein receptor (IGF-1R), and canonical signaling pathways such as the PI3K-Akt and Ras-Raf-MAP pathways, has potent effects on cellular neuroplasticity in the CNS. In the present review, the role of IGF-1 in brain development is reviewed, followed by a detailed discussion of the role played by IGF in cellular neuroplasticity in the CNS. Findings from models of perturbed and reparative plasticity detailing the role played by IGF-1 are discussed, followed by the electrophysiological, structural and functional evidence supporting this role. Finally, the post-lesion and post-injury roles played by IGF-1 are briefly evaluated. We discuss the putative neurobiology underlying these changes, reviewing recent evidence and highlighting areas for further research. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Are 50-khz calls used as play signals in the playful interactions of rats? III. The effects of devocalization on play with unfamiliar partners as juveniles and as adults.

    PubMed

    Kisko, Theresa M; Euston, David R; Pellis, Sergio M

    2015-04-01

    When playing, rats emit 50-kHz calls which may function as play signals. A previous study using devocalized rats provides support for the hypothesis that 50-kHz function to promote and maintain playful interactions (Kisko et al., 2015). However, in that study, all pairs were cage mates and familiar with each other's playful tendencies that could have attenuated the role of play signals. The present study uses unfamiliar pairs to eliminate any chance for such attenuation. Four hypotheses about how 50-kHz calls could act as play signals were tested, that (1) they maintain the playful mood of the partner, (2) they are used to locate partners, (3) they attract play partners and (4) they reduce the risk of playful encounters from escalating to serious fights. Predictions arising from the first three hypotheses, tested in juveniles, were not supported, suggesting that, for juveniles, 50-kHz calls are not facilitating playful interactions as play signals. The fourth hypothesis, however, was supported in adults, but not in juveniles, in that unfamiliar adult males were more likely to escalate playful encounters into serious fights when one partner was devocalized. These findings suggest that vocalizations at most have a minor role in juvenile play but serve a more central role in modulating adult interactions between strangers, allowing for the tactical mitigation of the risk of aggression. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Glutaredoxins Grx4 and Grx3 of Saccharomyces cerevisiae play a role in actin dynamics through their Trx domains, which contributes to oxidative stress resistance.

    PubMed

    Pujol-Carrion, Nuria; de la Torre-Ruiz, Maria Angeles

    2010-12-01

    Grx3 and Grx4 are two monothiol glutaredoxins of Saccharomyces cerevisiae that have previously been characterized as regulators of Aft1 localization and therefore of iron homeostasis. In this study, we present data showing that both Grx3 and Grx4 have new roles in actin cytoskeleton remodeling and in cellular defenses against oxidative stress caused by reactive oxygen species (ROS) accumulation. The Grx4 protein plays a unique role in the maintenance of actin cable integrity, which is independent of its role in the transcriptional regulation of Aft1. Grx3 plays an additive and redundant role, in combination with Grx4, in the organization of the actin cytoskeleton, both under normal conditions and in response to external oxidative stress. Each Grx3 and Grx4 protein contains a thioredoxin domain sequence (Trx), followed by a glutaredoxin domain (Grx). We performed functional analyses of each of the two domains and characterized different functions for them. Each of the two Grx domains plays a role in ROS detoxification and cell viability. However, the Trx domain of each Grx4 and Grx3 protein acts independently of its respective Grx domain in a novel function that involves the polarization of the actin cytoskeleton, which also determines cell resistance against oxidative conditions. Finally, we present experimental evidence demonstrating that Grx4 behaves as an antioxidant protein increasing cell survival under conditions of oxidative stress.

  8. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Yoon Sun; Jung, Hye Jin; Seok, Seung Hyeok

    2013-04-19

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levelsmore » in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.« less

  9. Assessing the Functional Role of Leptin in Energy Homeostasis and the Stress Response in Vertebrates

    PubMed Central

    Deck, Courtney A.; Honeycutt, Jamie L.; Cheung, Eugene; Reynolds, Hannah M.; Borski, Russell J.

    2017-01-01

    Leptin is a pleiotropic hormone that plays a critical role in regulating appetite, energy metabolism, growth, stress, and immune function across vertebrate groups. In mammals, it has been classically described as an adipostat, relaying information regarding energy status to the brain. While retaining poor sequence conservation with mammalian leptins, teleostean leptins elicit a number of similar regulatory properties, although current evidence suggests that it does not function as an adipostat in this group of vertebrates. Teleostean leptin also exhibits functionally divergent properties, however, possibly playing a role in glucoregulation similar to what is observed in lizards. Further, leptin has been recently implicated as a mediator of immune function and the endocrine stress response in teleosts. Here, we provide a review of leptin physiology in vertebrates, with a particular focus on its actions and regulatory properties in the context of stress and the regulation of energy homeostasis. PMID:28439255

  10. Regulation of Endothelial Barrier Function by Cyclic Nucleotides: The Role of Phosphodiesterases

    PubMed Central

    Surapisitchat, James

    2014-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction. PMID:21695641

  11. Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases.

    PubMed

    Surapisitchat, James; Beavo, Joseph A

    2011-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.

  12. Middle School Principals' Perceptions of Middle School Counselors' Roles and Functions

    ERIC Educational Resources Information Center

    Zalaquett, Carlos P.; Chatters, Seriashia J.

    2012-01-01

    The findings of this study expand current knowledge regarding principals' perceptions of school counselors. School principals play a key role in school counselors hiring or dismissal, and their perceptions of school counselors' roles and functions may influence their decisions. Reflecting on their views may also assist school principals in…

  13. Roles High School Principals Play in Establishing a Successful Character Education Initiative

    ERIC Educational Resources Information Center

    Francom, Jacob A.

    2016-01-01

    Principal leadership is crucial to the success of a high school character education initiative. The purpose of this qualitative grounded theory research was to identify the roles that high school principals play in developing, implementing, and sustaining a high functioning character education program. Data were collected through interviews and…

  14. An Atlas of Academic Practice in Digital Times

    ERIC Educational Resources Information Center

    Decuypere, Mathias; Simons, Maarten

    2014-01-01

    In the current literature on the university it is generally accepted that processes of digitization play an important role regarding both the daily functioning of the university as an institution and the academics that give shape to it. This article contributes to our understanding of the role that digitization plays in contemporary academic…

  15. Ultrafast electronic dynamics driven by nuclear motion

    NASA Astrophysics Data System (ADS)

    Vendrell, Oriol

    2016-05-01

    The transfer of electrical charge on a microscopic scale plays a fundamental role in chemistry, in biology, and in technological applications. In this contribution, we will discuss situations in which nuclear motion plays a central role in driving the electronic dynamics of photo-excited or photo-ionized molecular systems. In particular, we will explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we will illustrate how the double hole can be transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. We thank the Hamburg Centre for Ultrafast Imaging and the Volkswagen Foundation for financial support.

  16. Regulation of Intestinal Epithelial Cells Properties and Functions by Amino Acids.

    PubMed

    Kong, Shanshan; Zhang, Yanhui H; Zhang, Weiqiang

    2018-01-01

    Intestinal epithelial cells (IECs) line the surface of intestinal epithelium, where they play important roles in the digestion of food, absorption of nutrients, and protection of the human body from microbial infections, and others. Dysfunction of IECs can cause diseases. The development, maintenance, and functions of IECs are strongly influenced by external nutrition, such as amino acids. Amino acids play important roles in regulating the properties and functions of IECs. In this article, we briefly reviewed the current understanding of the roles of amino acids in the regulation of IECs' properties and functions in physiological state, including in IECs homeostasis (differentiation, proliferation, and renewal), in intestinal epithelial barrier structure and functions, and in immune responses. We also summarized some important findings on the effects of amino acids supplementation (e.g., glutamine and arginine) in restoring IECs' and intestine functions in some diseased states. These findings will further our understanding of the important roles of amino acids in the homeostasis of IECs and could potentially help identify novel targets and reagents for the therapeutic interventions of diseases associated with dysfunctional IECs.

  17. JPRS Report China

    DTIC Science & Technology

    1988-02-18

    only 3 percent; by 1900 it exceeded 20 percent. On the other hand, there has been a fundamental change in the status, role , function, nature, and...groups should be actively developed and play leading roles in the city system. In the industrial age, JPRS-CAR-88-005 18 February 1988 ECONOMIC new...commodity economy. The law of value plays a regulatory role . The market mechanism is an important mechanism that regulates social reproduction

  18. Functional integrity of the habenula is necessary for social play behaviour in rats.

    PubMed

    van Kerkhof, Linda W M; Damsteegt, Ruth; Trezza, Viviana; Voorn, Pieter; Vanderschuren, Louk J M J

    2013-11-01

    During post-weaning development, a marked increase in peer-peer interactions is observed in mammals, including humans, which is signified by the abundance of social play behaviour. Social play is highly rewarding, and known to be modulated through monoaminergic neurotransmission. Recently, the habenula has received widespread attention because of its role in the regulation of monoaminergic neurotransmission as well as in a variety of emotional and cognitive functions. Therefore, in the present study, we investigated the involvement of the habenula in social play behaviour. Using the neuronal activity maker c-fos, we showed that the habenula was activated after 24 h of social isolation in adolescent rats, and that a subsequent social play interaction reduced c-fos activity in the medial part of the lateral habenula. This suggested that habenula activity modulated the aversive properties of social isolation, which was alleviated by the positive effects of social play. Furthermore, after functional inactivation of the habenula, using a mixture of the GABA receptor agonists baclofen and muscimol, social play behaviour was markedly reduced, whereby responsiveness to play solicitation was more sensitive to habenula inactivation than play solicitation itself. Together, our data indicate an important role for the habenula in the processing of positive (i.e., social play behaviour) and negative (i.e., social isolation) social information in adolescent rats. Altered habenula function might therefore be related to the social impairments in childhood and adolescent psychiatric disorders such as autism, attention deficit/hyperactivity disorder and early-onset schizophrenia. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Development of the Contextual Assessment of Social Skills (CASS): a role play measure of social skill for individuals with high-functioning autism.

    PubMed

    Ratto, Allison B; Turner-Brown, Lauren; Rupp, Betty M; Mesibov, Gary B; Penn, David L

    2011-09-01

    This study piloted a role play assessment of conversational skills for adolescents and young adults with high-functioning autism/Asperger syndrome (HFA/AS). Participants completed two semi-structured role plays, in which social context was manipulated by changing the confederate's level of interest in the conversation. Participants' social behavior was rated via a behavioral coding system, and performance was compared across contexts and groups. An interaction effect was found for several items, whereby control participants showed significant change across context, while participants with HFA/AS showed little or no change. Total change across contexts was significantly correlated with related social constructs and significantly predicted ASD. The findings are discussed in terms of the potential utility of the CASS in the evaluation of social skill.

  20. Tolerance of Frogs among High School Students: Influences of Disgust and Culture

    ERIC Educational Resources Information Center

    Prokop, Pavol; Medina-Jerez, William; Coleman, Joy; Fancovicová, Jana; Özel, Murat; Fedor, Peter

    2016-01-01

    Amphibians play an important role in the functioning of ecosystems and some of them inhabit human gardens where they can successfully reproduce. The decline of amphibian diversity worldwide suggests that people may play a crucial role in their survival. We conducted a cross-cultural study on high school students' tolerance of frogs in Chile,…

  1. Intra-articular pressures and joint mechanics: should we pay attention to effusion in knee osteoarthritis?

    PubMed

    Rutherford, Derek James

    2014-09-01

    What factors play a role to ensure a knee joint does what it should given the demands of moving through the physical environment? This paper aims to probe the hypothesis that intra-articular joint pressures, once a topic of interest, have been left aside in contemporary frameworks in which we now view knee joint function. The focus on ligamentous deficiencies and the chondrocentric view of osteoarthritis, while important, have left little attention to the consideration of other factors that can impair joint function across the lifespan. Dynamic knee stability is required during every step we take. While there is much known about the role that passive structures and muscular activation play in maintaining a healthy knee joint, this framework does not account for the role that intra-articular joint pressures may have in providing joint stability during motion and how these factors interact. Joint injuries invariably result in some form of intra-articular fluid accumulation. Ultimately, it may be how the knee mechanically responds to this fluid, of which pressure plays a significant role that provides the mechanisms for continued function. Do joint pressures provide an important foundation for maintaining knee function? This hypothesis is unique and argues that we are missing an important piece of the puzzle when attempting to understand implications that joint injury and disease have for joint function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway

    PubMed Central

    Matsunaga, Mayu; Takeda, Taka-aki

    2017-01-01

    More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review. PMID:29048339

  3. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway.

    PubMed

    Kambe, Taiho; Matsunaga, Mayu; Takeda, Taka-Aki

    2017-10-19

    More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review.

  4. The structure and function of Alzheimer's gamma secretase enzyme complex.

    PubMed

    Krishnaswamy, Sudarsan; Verdile, Giuseppe; Groth, David; Kanyenda, Limbikani; Martins, Ralph N

    2009-01-01

    The production and accumulation of the beta amyloid protein (Abeta) is a key event in the cascade of oxidative and inflammatory processes that characterizes Alzheimer's disease (AD). A multi-subunit enzyme complex, referred to as gamma (gamma) secretase, plays a pivotal role in the generation of Abeta from its parent molecule, the amyloid precursor protein (APP). Four core components (presenilin, nicastrin, aph-1, and pen-2) interact in a high-molecular-weight complex to perform intramembrane proteolysis on a number of membrane-bound proteins, including APP and Notch. Inhibitors and modulators of this enzyme have been assessed for their therapeutic benefit in AD. However, although these agents reduce Abeta levels, the majority have been shown to have severe side effects in pre-clinical animal studies, most likely due to the enzymes role in processing other proteins involved in normal cellular function. Current research is directed at understanding this enzyme and, in particular, at elucidating the roles that each of the core proteins plays in its function. In addition, a number of interacting proteins that are not components of gamma-secretase also appear to play important roles in modulating enzyme activity. This review will discuss the structural and functional complexity of the gamma-secretase enzyme and the effects of inhibiting its activity.

  5. An emerging role for p21-activated kinases (Paks) in viral infections.

    PubMed

    Van den Broeke, Celine; Radu, Maria; Chernoff, Jonathan; Favoreel, Herman W

    2010-03-01

    p21-activated protein kinases (Paks) are cytosolic serine/threonine protein kinases that act as effectors for small (p21) GTPases of the Cdc42 and Rac families. It has long been established that Paks play a major role in a host of vital cellular functions such as proliferation, survival and motility, and abnormal Pak function is associated with a number of human diseases. Here, we discuss emerging evidence that these enzymes also play a major role in the entry, replication and spread of many important pathogenic human viruses, including HIV. Careful assessment of the potential role of Paks in antiviral immunity will be pivotal to evaluate thoroughly the potential of agents that inhibit Pak as a new class of anti-viral therapeutics.

  6. High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review.

    PubMed

    Subczynski, Witold K; Pasenkiewicz-Gierula, Marta; Widomska, Justyna; Mainali, Laxman; Raguz, Marija

    2017-12-01

    Lipid composition determines membrane properties, and cholesterol plays a major role in this determination as it regulates membrane fluidity and permeability, as well as induces the formation of coexisting phases and domains in the membrane. Biological membranes display a very diverse lipid composition, the lateral organization of which plays a crucial role in regulating a variety of membrane functions. We hypothesize that, during biological evolution, membranes with a particular cholesterol content were selected to perform certain functions in the cells of eukaryotic organisms. In this review, we discuss the major membrane properties induced by cholesterol, and their relationship to certain membrane functions.

  7. Using NMR spectroscopy to elucidate the role of molecular motions in enzyme function

    PubMed Central

    Lisi, George P.; Loria, J. Patrick

    2015-01-01

    Conformational motions play an essential role in enzyme function, often facilitating the formation of enzyme-substrate complexes and/or product release. Although considerable debate remains regarding the role of molecular motions in the conversion of enzymatic substrates to products, numerous examples have found motions to be crucial for optimization of enzyme scaffolds, effective substrate binding, and product dissociation. Conformational fluctuations are often rate-limiting to enzyme catalysis, primarily through product release, with the chemical reaction occurring much more quickly. As a result, the direct involvement of motions at various stages along the enzyme reaction coordinate remains largely unknown and untested. In the following review, we describe the use of solution NMR techniques designed to probe various timescales of molecular motions and detail examples in which motions play a role in propagating catalytic effects from the active site and directly participate in essential aspects of enzyme function. PMID:26952190

  8. Mitochondrial Ubiquitin Ligase in Cardiovascular Disorders.

    PubMed

    Yu, Tao; Zhang, Yinfeng; Li, Pei-Feng

    2017-01-01

    Mitochondrial dynamics play a critical role in cellular responses and physiological process. However, their dysregulation leads to a functional degradation, which results in a diverse array of common disorders, including cardiovascular disease. In this background, the mitochondrial ubiquitin ligase has been attracting substantial research interest in recent years. Mitochondrial ubiquitin ligase is localized in the mitochondrial outer membrane, where it plays an essential role in the regulation of mitochondrial dynamics and apoptosis. In this chapter, we provide a comprehensive overview of the functions of mitochondrial ubiquitin ligases identified hitherto, with a special focus on cardiovascular disorders.

  9. A combined gene expression and functional study reveals the crosstalk between N-Myc and differentiation-inducing microRNAs in neuroblastoma cells

    PubMed Central

    Zhao, Zhenze; Ma, Xiuye; Shelton, Spencer D.; Sung, Derek C.; Li, Monica; Hernandez, Daniel; Zhang, Maggie; Losiewicz, Michael D.; Chen, Yidong; Pertsemlidis, Alexander; Yu, Xiaojie; Liu, Yuanhang; Du, Liqin

    2016-01-01

    MYCN amplification is the most common genetic alteration in neuroblastoma and plays a critical role in neuroblastoma tumorigenesis. MYCN regulates neuroblastoma cell differentiation, which is one of the mechanisms underlying its oncogenic function. We recently identified a group of differentiation-inducing microRNAs. Given the demonstrated inter-regulation between MYCN and microRNAs, we speculated that MYCN and the differentiation-inducing microRNAs might form an interaction network to control the differentiation of neuroblastoma cells. In this study, we found that eight of the thirteen differentiation-inducing microRNAs, miR-506-3p, miR-124-3p, miR-449a, miR-34a-5p, miR-449b-5p, miR-103a-3p, miR-2110 and miR-34b-5p, inhibit N-Myc expression by either directly targeting the MYCN 3′UTR or through indirect regulations. Further investigation showed that both MYCN-dependent and MYCN-independent pathways play roles in mediating the differentiation-inducing function of miR-506-3p and miR-449a, two microRNAs that dramatically down-regulate MYCN expression. On the other hand, we found that N-Myc inhibits the expression of multiple differentiation-inducing microRNAs, suggesting that these miRNAs play a role in mediating the function of MYCN. In examining the published dataset collected from clinical neuroblastoma specimens, we found that expressions of two miRNAs, miR-137 and miR-2110, were significantly anti-correlated with MYCN mRNA levels, suggesting their interactions with MYCN play a clinically-relevant role in maintaining the MYCN and miRNA expression levels in neuroblastoma. Our findings altogether suggest that MYCN and differentiation-inducing miRNAs form an interaction network that play an important role in neuroblastoma tumorigenesis through regulating cell differentiation. PMID:27764804

  10. A combined gene expression and functional study reveals the crosstalk between N-Myc and differentiation-inducing microRNAs in neuroblastoma cells.

    PubMed

    Zhao, Zhenze; Ma, Xiuye; Shelton, Spencer D; Sung, Derek C; Li, Monica; Hernandez, Daniel; Zhang, Maggie; Losiewicz, Michael D; Chen, Yidong; Pertsemlidis, Alexander; Yu, Xiaojie; Liu, Yuanhang; Du, Liqin

    2016-11-29

    MYCN amplification is the most common genetic alteration in neuroblastoma and plays a critical role in neuroblastoma tumorigenesis. MYCN regulates neuroblastoma cell differentiation, which is one of the mechanisms underlying its oncogenic function. We recently identified a group of differentiation-inducing microRNAs. Given the demonstrated inter-regulation between MYCN and microRNAs, we speculated that MYCN and the differentiation-inducing microRNAs might form an interaction network to control the differentiation of neuroblastoma cells. In this study, we found that eight of the thirteen differentiation-inducing microRNAs, miR-506-3p, miR-124-3p, miR-449a, miR-34a-5p, miR-449b-5p, miR-103a-3p, miR-2110 and miR-34b-5p, inhibit N-Myc expression by either directly targeting the MYCN 3'UTR or through indirect regulations. Further investigation showed that both MYCN-dependent and MYCN-independent pathways play roles in mediating the differentiation-inducing function of miR-506-3p and miR-449a, two microRNAs that dramatically down-regulate MYCN expression. On the other hand, we found that N-Myc inhibits the expression of multiple differentiation-inducing microRNAs, suggesting that these miRNAs play a role in mediating the function of MYCN. In examining the published dataset collected from clinical neuroblastoma specimens, we found that expressions of two miRNAs, miR-137 and miR-2110, were significantly anti-correlated with MYCN mRNA levels, suggesting their interactions with MYCN play a clinically-relevant role in maintaining the MYCN and miRNA expression levels in neuroblastoma. Our findings altogether suggest that MYCN and differentiation-inducing miRNAs form an interaction network that play an important role in neuroblastoma tumorigenesis through regulating cell differentiation.

  11. New fronts emerge in the influenza cytokine storm.

    PubMed

    Guo, Xi-Zhi J; Thomas, Paul G

    2017-07-01

    Influenza virus is a significant pathogen in humans and animals with the ability to cause extensive morbidity and mortality. Exuberant immune responses induced following infection have been described as a "cytokine storm," associated with excessive levels of proinflammatory cytokines and widespread tissue damage. Recent studies have painted a more complex picture of cytokine networks and their contributions to clinical outcomes. While many cytokines clearly inflict immunopathology, others have non-pathological delimited roles in sending alarm signals, facilitating viral clearance, and promoting tissue repair, such as the IL-33-amphiregulin axis, which plays a key role in resolving some types of lung damage. Recent literature suggests that type 2 cytokines, traditionally thought of as not involved in anti-influenza immunity, may play an important regulatory role. Here, we discuss the diverse roles played by cytokines after influenza infection and highlight new, serene features of the cytokine storm, while highlighting the specific functions of relevant cytokines that perform unique immune functions and may have applications for influenza therapy.

  12. "We Should Be Playing, Not Talking": Play, Self-Agency and Moving towards Depressive Moments

    ERIC Educational Resources Information Center

    Poynton, Margaret

    2012-01-01

    This paper describes the use of play in the psychotherapy of a latency child from a severely traumatised background. It considers the meaning of play in relation to the role of the psychotherapist and to psychotherapeutic technique and explores its functions in terms of the child's development. The paper documents the psychotherapist's learning…

  13. Effectiveness of Adaptive Pretend Play on Affective Expression and Imagination of Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Hsieh, Hsieh-Chun

    2012-01-01

    Purpose: Children with cerebral palsy (CP) have difficulty participating in role-pretending activities. The concept of adaptive play makes play accessible by modifying play materials for different needs or treatment goals for children with CP. This study examines the affective expressions and imagination in children with CP as a function of…

  14. Development of the Cellular Immune System of Drosophila Requires the Membrane Attack Complex/Perforin-Like Protein Torso-Like.

    PubMed

    Forbes-Beadle, Lauren; Crossman, Tova; Johnson, Travis K; Burke, Richard; Warr, Coral G; Whisstock, James C

    2016-10-01

    Pore-forming members of the membrane attack complex/perforin-like (MACPF) protein superfamily perform well-characterized roles as mammalian immune effectors. For example, complement component 9 and perforin function to directly form pores in the membrane of Gram-negative pathogens or virally infected/transformed cells, respectively. In contrast, the only known MACPF protein in Drosophila melanogaster, Torso-like, plays crucial roles during development in embryo patterning and larval growth. Here, we report that in addition to these functions, Torso-like plays an important role in Drosophila immunity. However, in contrast to a hypothesized effector function in, for example, elimination of Gram-negative pathogens, we find that torso-like null mutants instead show increased susceptibility to certain Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis We further show that this deficit is due to a severely reduced number of circulating immune cells and, as a consequence, an impaired ability to phagocytose bacterial particles. Together these data suggest that Torso-like plays an important role in controlling the development of the Drosophila cellular immune system. Copyright © 2016 by the Genetics Society of America.

  15. Play, ADHD, and the Construction of the Social Brain: Should the First Class Each Day Be Recess?

    ERIC Educational Resources Information Center

    Panksepp, Jaak

    2008-01-01

    Because of the role of play in the epigenetic construction of social brain functions, the young of all mammalian species need su?fficient play. For the same reason, the nature of that play becomes an important social policy issue for early childhood development and education. Animal research on this topic indicates that play can facilitate the…

  16. An epigenetic view of developmental diseases: new targets, new therapies.

    PubMed

    Xie, Pei; Zang, Li-Qun; Li, Xue-Kun; Shu, Qiang

    2016-08-01

    Function of epigenetic modifications is one of the most competitive fields in life science. Over the past several decades, it has been revealed that epigenetic modifications play essential roles in development and diseases including developmental diseases. In the present review, we summarize the recent progress about the function of epigenetic regulation, especially DNA and RNA modifications in developmental diseases. Original research articles and literature reviews published in PubMed-indexed journals. DNA modifications including methylation and demethylation can regulate gene expression, and are involved in development and multiple diseases including Rett syndrome, Autism spectrum disorders, congenital heart disease and cancer, etc. RNA methylation and demethylation play important roles in RNA processing, reprogramming, circadian, and neuronal activity, and then modulate development. DNA and RNA modifications play important roles in development and diseases through regulating gene expression. Epigenetic components could serve as novel targets for the treatment of developmental diseases.

  17. Short and long-term soy diet vs. casein protects liver steatosis independent of the arginine content

    USDA-ARS?s Scientific Manuscript database

    Non-alcoholic fatty liver disease (NAFLD), the major cause of abnormal liver function, is often associated with obesity. Arginine (ARG) plays a role in modulating body weight/fat, but there are limited data as to the role that ARG may play in soy protein’s ability to protect from liver steatosis. Th...

  18. Dynamic Testing of Gifted and Average-Ability Children's Analogy Problem Solving: Does Executive Functioning Play a Role?

    ERIC Educational Resources Information Center

    Vogelaar, Bart; Bakker, Merel; Hoogeveen, Lianne; Resing, Wilma C. M.

    2017-01-01

    In this study, dynamic testing principles were applied to examine progression of analogy problem solving, the roles that cognitive flexibility and metacognition play in children's progression as well as training benefits, and instructional needs of 7- to 8-year-old gifted and average-ability children. Utilizing a pretest training posttest control…

  19. An aPPARent Functional Consequence in Skeletal Muscle Physiology via Peroxisome Proliferator-Activated Receptors.

    PubMed

    Phua, Wendy Wen Ting; Wong, Melissa Xin Yu; Liao, Zehuan; Tan, Nguan Soon

    2018-05-10

    Skeletal muscle comprises 30⁻40% of the total body mass and plays a central role in energy homeostasis in the body. The deregulation of energy homeostasis is a common underlying characteristic of metabolic syndrome. Over the past decades, peroxisome proliferator-activated receptors (PPARs) have been shown to play critical regulatory roles in skeletal muscle. The three family members of PPAR have overlapping roles that contribute to the myriad of processes in skeletal muscle. This review aims to provide an overview of the functions of different PPAR members in energy homeostasis as well as during skeletal muscle metabolic disorders, with a particular focus on human and relevant mouse model studies.

  20. An aPPARent Functional Consequence in Skeletal Muscle Physiology via Peroxisome Proliferator-Activated Receptors

    PubMed Central

    Phua, Wendy Wen Ting; Wong, Melissa Xin Yu; Liao, Zehuan

    2018-01-01

    Skeletal muscle comprises 30–40% of the total body mass and plays a central role in energy homeostasis in the body. The deregulation of energy homeostasis is a common underlying characteristic of metabolic syndrome. Over the past decades, peroxisome proliferator-activated receptors (PPARs) have been shown to play critical regulatory roles in skeletal muscle. The three family members of PPAR have overlapping roles that contribute to the myriad of processes in skeletal muscle. This review aims to provide an overview of the functions of different PPAR members in energy homeostasis as well as during skeletal muscle metabolic disorders, with a particular focus on human and relevant mouse model studies. PMID:29747466

  1. Subcellular Relocalization and Positive Selection Play Key Roles in the Retention of Duplicate Genes of Populus Class III Peroxidase Family[W][OPEN

    PubMed Central

    Ren, Lin-Ling; Liu, Yan-Jing; Liu, Hai-Jing; Qian, Ting-Ting; Qi, Li-Wang; Wang, Xiao-Ru; Zeng, Qing-Yin

    2014-01-01

    Gene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions. A particular challenge is to understand how this diversity arises and whether positive selection plays a role. In this study, we reconstructed the evolutionary history of the class III peroxidase (PRX) genes from the Populus trichocarpa genome. PRXs are plant-specific enzymes that play important roles in cell wall metabolism and in response to biotic and abiotic stresses. We found that two large tandem-arrayed clusters of PRXs evolved from an ancestral cell wall type PRX to vacuole type, followed by tandem duplications and subsequent functional specification. Substitution models identified seven positively selected sites in the vacuole PRXs. These positively selected sites showed significant effects on the biochemical functions of the enzymes. We also found that positive selection acts more frequently on residues adjacent to, rather than directly at, a critical active site of the enzyme, and on flexible regions rather than on rigid structural elements of the protein. Our study provides new insights into the adaptive molecular evolution of plant enzyme families. PMID:24934172

  2. The roles of Microphthalmia Transcription Factor and pigmentation in melanoma

    PubMed Central

    Hsiao, Jennifer J; Fisher, David E

    2014-01-01

    MITF and pigmentation play important roles in both normal melanocyte and transformed melanoma cell biology. MITF is regulated by many pathways and it also regulates many targets, some of which are still being discovered and functionally validated. MITF is involved in a wide range of processes in melanocytes, including pigment synthesis and lineage survival. Pigmentation itself plays an important role as the interface between genetic and environmental factors that contribute to melanoma. PMID:25111671

  3. Probiotics promote endocytic allergen degradation in gut epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Chun-Hua; Liu, Zhi-Qiang; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barriermore » function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.« less

  4. The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity.

    PubMed

    Wang, Dashan

    2018-06-01

    The aim of this paper is to clarify the critical role of GPCR signaling in T cell immunity. The G protein-coupled receptors (GPCRs) are the most common targets in current pharmaceutical industry, and represent the largest and most versatile family of cell surface communicating molecules. GPCRs can be activated by a diverse array of ligands including neurotransmitters, chemokines as well as sensory stimuli. Therefore, GPCRs are involved in many key cellular and physiological processes, such as sense of light, taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion. In recent years, GPCRs have been found to play an important role in immune system. T cell is an important type of immune cell, which plays a central role in cell-mediated immunity. A variety of GPCRs and their signaling mediators (RGS proteins, GRKs and β-arrestin) have been found to express in T cells and involved T cell-mediated immunity. We will summarize the role of GPCR signaling and their regulatory molecules in T cell activation, homeostasis and function in this article. GPCR signaling plays an important role in T cell activation, homeostasis and function. GPCR signaling is critical in regulating T cell immunity.

  5. Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties

    PubMed Central

    Fessart, Delphine; Domblides, Charlotte; Avril, Tony; Eriksson, Leif A; Begueret, Hugues; Pineau, Raphael; Malrieux, Camille; Dugot-Senant, Nathalie; Lucchesi, Carlo; Chevet, Eric; Delom, Frederic

    2016-01-01

    The extracellular matrix (ECM) plays an instrumental role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues during morphogenesis. Here, we show that the Endoplasmic Reticulum (ER)-resident protein anterior gradient-2 (AGR2), a soluble protein-disulfide isomerase involved in ER protein folding and quality control, is secreted and interacts with the ECM. Extracellular AGR2 (eAGR2) is a microenvironmental regulator of epithelial tissue architecture, which plays a role in the preneoplastic phenotype and contributes to epithelial tumorigenicity. Indeed, eAGR2, is secreted as a functionally active protein independently of its thioredoxin-like domain (CXXS) and of its ER-retention domain (KTEL), and is sufficient, by itself, to promote the acquisition of invasive and metastatic features. Therefore, we conclude that eAGR2 plays an extracellular role independent of its ER function and we elucidate this gain-of-function as a novel and unexpected critical ECM microenvironmental pro-oncogenic regulator of epithelial morphogenesis and tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.13887.001 PMID:27240165

  6. Brain activation during the spot the differences game.

    PubMed

    Fukuba, Eiji; Kitagaki, Hajime; Wada, Akihiko; Uchida, Kouji; Hara, Shinji; Hayashi, Takafumi; Oda, Kazushige; Uchida, Nobue

    2009-01-01

    Spot the Differences is a simple and popular game in which an observer compares a pair of similar pictures to detect the differences between them. Functional activation of the brain while playing this game has not been investigated. We used functional magnetic resonance imaging to investigate the main cortical regions involved in playing this game and compared the sites of cortical activation between a session of playing the game and a session of viewing 2 identical pictures. The right posterior parietal cortex showed more activation during game playing, and cortical activation volume correlated with game-playing accuracy. This cortical region may play an important role in awareness of differences between 2 similar pictures.

  7. Eos is redundant for T regulatory cell function, but plays an important role in IL-2 and Th17 production by CD4+ T conventional cells

    PubMed Central

    Rieder, Sadiye Amcaoglu; Metidji, Amina; Glass, Deborah Dacek; Thornton, Angela M.; Ikeda, Tohru; Morgan, Bruce A.; Shevach, Ethan M.

    2015-01-01

    Eos is a transcription factor that belongs to the Ikaros family of transcription factors. Eos has been reported to be a T regulatory cell (Treg) signature gene, to play a critical role in Treg suppressor functions, and to maintain Treg stability. We have utilized mice with a global deficiency of Eos to re-examine the role of Eos expression in both Treg and T conventional (Tconv) cells. Treg from Eos deficient (Eos−/−) mice developed normally, displayed a normal Treg phenotype, and exhibited normal suppressor function in vitro. Eos−/− Treg were as effective as Treg from wild type (WT) mice in suppression of inflammation in a model of inflammatory bowel disease. Bone marrow (BM) from Eos−/− mice was as effective as BM from WT mice in controlling T cell activation when used to reconstitute immunodeficient mice in the presence of Scurfy fetal liver cells. Surprisingly, Eos was expressed in activated Tconv cells and was required for IL-2 production, CD25 expression and proliferation in vitro by CD4+ Tconv cells. Eos−/− mice developed more severe Experimental Autoimmune Encephalomyelitis than WT mice, displayed increased numbers of effector T cells in the periphery and CNS, and amplified IL-17 production. In conclusion, our studies are not consistent with a role for Eos in Treg development and function, but demonstrate that Eos plays an important role in the activation and differentiation of Tconv cells. PMID:26062998

  8. Competitive versus Cooperative Exergame Play for African American Adolescents' Executive Function Skills: Short-Term Effects in a Long-Term Training Intervention

    ERIC Educational Resources Information Center

    Staiano, Amanda E.; Abraham, Anisha A.; Calvert, Sandra L.

    2012-01-01

    Exergames are videogames that require gross motor activity, thereby combining gaming with physical activity. This study examined the role of competitive versus cooperative exergame play on short-term changes in executive function skills, following a 10-week exergame training intervention. Fifty-four low-income overweight and obese African American…

  9. Functional Amyloids in Reproduction.

    PubMed

    Hewetson, Aveline; Do, Hoa Quynh; Myers, Caitlyn; Muthusubramanian, Archana; Sutton, Roger Bryan; Wylie, Benjamin J; Cornwall, Gail A

    2017-06-29

    Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.

  10. Executive functions in morality, religion, and paranormal beliefs.

    PubMed

    Wain, Omar; Spinella, Marcello

    2007-01-01

    Moral, religious, and paranormal beliefs share some degree of overlap and play important roles in guiding peoples' behavior. Although partly cultural phenomena, they also have neurobiological components based on functional neuroimaging studies and research in clinical populations. Because all three show relationships to prefrontal system functioning, the current study examined whether they related to executive functions as measured by the Executive Function Inventory in a community sample. As in previous research, religious beliefs related positively to both moral attitudes and paranormal beliefs. Moral attitudes, however, did not relate to paranormal beliefs. Paranormal beliefs related inversely to impulse control and organization, whereas small positive correlations occurred between traditional religious beliefs, impulse control, and empathy. Moral attitudes, on the other hand, showed consistent positive correlations with all executive functions measured, independent of demographic influences. These findings concordantly support that prefrontal systems play a role in morality, religion, and paranormal beliefs.

  11. Advanced Team Decision Making: A Developmental Model

    DTIC Science & Technology

    1992-08-03

    role - right wing, center, goalie - but as they set up plays and bring the STRONG puck down the ice, those individuals begin to function TEAM... pulled the team member’s attention away from assigned work - Unwise use of a member’s expertise in designating roles or functions In these cases, advanced

  12. Critical requirement for the Wiskott-Aldrich syndrome protein in Th2 effector function

    USDA-ARS?s Scientific Manuscript database

    The Wiskott-Aldrich syndrome protein (WASp) regulates actin polymerization via activation of Arp2/3 and plays a role in the dynamics of the immunological synapse. How these events influence subsequent gene expression and effector function is unclear. We studied the role of WASp in CD4+ T cell effe...

  13. Case Management and the Integration of Services: How Service Delivery Systems Shape Case Management.

    ERIC Educational Resources Information Center

    Moore, Stephen

    1992-01-01

    Notes that primary role that case management plays in coordination of services is determined by level of service integration and by level of resources in service delivery system. Describes conditions under which case management serves as mechanism for rationing services, marketing function, brokering function, or development role. Discusses…

  14. Education and Federalism: Doctrinal, Functional, and Strategic Views.

    ERIC Educational Resources Information Center

    Elmore, Richard F.

    A number of basic questions exist about the nature of the federal system, about the role education plays in that system, and about how that role should be expressed in policy. This paper examines the doctrinal, functional, and strategic meanings of the term "federalism." The author argues, first, that there is no doctrinal support for…

  15. Delineation of the function of a major gamma delta T cell subset during infection.

    PubMed

    Andrew, Elizabeth M; Newton, Darren J; Dalton, Jane E; Egan, Charlotte E; Goodwin, Stewart J; Tramonti, Daniela; Scott, Philip; Carding, Simon R

    2005-08-01

    Gammadelta T cells play important but poorly defined roles in pathogen-induced immune responses and in preventing chronic inflammation and pathology. A major obstacle to defining their function is establishing the degree of functional redundancy and heterogeneity among gammadelta T cells. Using mice deficient in Vgamma1+ T cells which are a major component of the gammadelta T cell response to microbial infection, a specific immunoregulatory role for Vgamma1+ T cells in macrophage and gammadelta T cell homeostasis during infection has been established. By contrast, Vgamma1+ T cells play no significant role in pathogen containment or eradication and cannot protect mice from immune-mediated pathology. Pathogen-elicited Vgamma1+ T cells also display different functional characteristics at different stages of the host response to infection that involves unique and different populations of Vgamma1+ T cells. These findings, therefore, identify distinct and nonoverlapping roles for gammadelta T cell subsets in infection and establish the complexity and adaptability of a single population of gammadelta T cells in the host response to infection that is not predetermined, but is, instead, shaped by environmental factors.

  16. Mechanisms and function of autophagy in intestinal disease.

    PubMed

    Lassen, Kara G; Xavier, Ramnik J

    2018-01-01

    The discovery of numerous genetic variants in the human genome that are associated with inflammatory bowel disease (IBD) has revealed critical pathways that play important roles in intestinal homeostasis. These genetic studies have identified a critical role for macroautophagy/autophagy and more recently, lysosomal function, in maintaining the intestinal barrier and mucosal homeostasis. This review highlights recent work on the functional characterization of IBD-associated human genetic variants in cell type-specific functions for autophagy.

  17. Analyzing Members' Motivations to Participate in Role-Playing and Self-Expression Based Virtual Communities

    NASA Astrophysics Data System (ADS)

    Lee, Young Eun; Saharia, Aditya

    With the rapid growth of computer mediated communication technologies in the last two decades, various types of virtual communities have emerged. Some communities provide a role playing arena, enabled by avatars, while others provide an arena for expressing and promoting detailed personal profiles to enhance their offline social networks. Due to different focus of these virtual communities, different factors motivate members to participate in these communities. In this study, we examine differences in members’ motivations to participate in role-playing versus self-expression based virtual communities. To achieve this goal, we apply the Wang and Fesenmaier (2004) framework, which explains members’ participation in terms of their functional, social, psychological, and hedonic needs. The primary contributions of this study are two folds: First, it demonstrates differences between role-playing and self-expression based communities. Second, it provides a comprehensive framework describing members’ motivation to participate in virtual communities.

  18. Using NMR spectroscopy to elucidate the role of molecular motions in enzyme function.

    PubMed

    Lisi, George P; Loria, J Patrick

    2016-02-01

    Conformational motions play an essential role in enzyme function, often facilitating the formation of enzyme-substrate complexes and/or product release. Although considerable debate remains regarding the role of molecular motions in the conversion of enzymatic substrates to products, numerous examples have found motions to be crucial for optimization of enzyme scaffolds, effective substrate binding, and product dissociation. Conformational fluctuations are often rate-limiting to enzyme catalysis, primarily through product release, with the chemical reaction occurring much more quickly. As a result, the direct involvement of motions at various stages along the enzyme reaction coordinate remains largely unknown and untested. In the following review, we describe the use of solution NMR techniques designed to probe various timescales of molecular motions and detail examples in which motions play a role in propagating catalytic effects from the active site and directly participate in essential aspects of enzyme function. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. RhoA/Rho-Kinase in the Cardiovascular System.

    PubMed

    Shimokawa, Hiroaki; Sunamura, Shinichiro; Satoh, Kimio

    2016-01-22

    Twenty years ago, Rho-kinase was identified as an important downstream effector of the small GTP-binding protein, RhoA. Thereafter, a series of studies demonstrated the important roles of Rho-kinase in the cardiovascular system. The RhoA/Rho-kinase pathway is now widely known to play important roles in many cellular functions, including contraction, motility, proliferation, and apoptosis, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Furthermore, the important role of Rho-kinase has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. Cyclophilin A is secreted by vascular smooth muscle cells and inflammatory cells and activated platelets in a Rho-kinase-dependent manner, playing important roles in a wide range of cardiovascular diseases. Thus, the RhoA/Rho-kinase pathway plays crucial roles under both physiological and pathological conditions and is an important therapeutic target in cardiovascular medicine. Recently, functional differences between ROCK1 and ROCK2 have been reported in vitro. ROCK1 is specifically cleaved by caspase-3, whereas granzyme B cleaves ROCK2. However, limited information is available on the functional differences and interactions between ROCK1 and ROCK2 in the cardiovascular system in vivo. Herein, we will review the recent advances about the importance of RhoA/Rho-kinase in the cardiovascular system. © 2016 American Heart Association, Inc.

  20. ROLE OF TYROSINE-SULFATED PROTEINS IN RETINAL STRUCTURE AND FUNCTION

    PubMed Central

    Kanan, Y.; Al-Ubaidi, M.R.

    2014-01-01

    The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins’ tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases. PMID:25819460

  1. Is SOD1 loss of function involved in amyotrophic lateral sclerosis?

    PubMed Central

    Saccon, Rachele A.; Bunton-Stasyshyn, Rosie K. A.; Fisher, Elizabeth M.C.; Fratta, Pietro

    2013-01-01

    Mutations in the gene superoxide dismutase 1 (SOD1) are causative for familial forms of the neurodegenerative disease amyotrophic lateral sclerosis. When the first SOD1 mutations were identified they were postulated to give rise to amyotrophic lateral sclerosis through a loss of function mechanism, but experimental data soon showed that the disease arises from a—still unknown—toxic gain of function, and the possibility that loss of function plays a role in amyotrophic lateral sclerosis pathogenesis was abandoned. Although loss of function is not causative for amyotrophic lateral sclerosis, here we re-examine two decades of evidence regarding whether loss of function may play a modifying role in SOD1–amyotrophic lateral sclerosis. From analysing published data from patients with SOD1–amyotrophic lateral sclerosis, we find a marked loss of SOD1 enzyme activity arising from almost all mutations. We continue to examine functional data from all Sod1 knockout mice and we find obvious detrimental effects within the nervous system with, interestingly, some specificity for the motor system. Here, we bring together historical and recent experimental findings to conclude that there is a possibility that SOD1 loss of function may play a modifying role in amyotrophic lateral sclerosis. This likelihood has implications for some current therapies aimed at knocking down the level of mutant protein in patients with SOD1–amyotrophic lateral sclerosis. Finally, the wide-ranging phenotypes that result from loss of function indicate that SOD1 gene sequences should be screened in diseases other than amyotrophic lateral sclerosis. PMID:23687121

  2. TOPBP1Dpb11 plays a conserved role in homologous recombination DNA repair through the coordinated recruitment of 53BP1Rad9

    PubMed Central

    Sims, Jennie Rae; Freire, Raimundo

    2017-01-01

    Genome maintenance and cancer suppression require homologous recombination (HR) DNA repair. In yeast and mammals, the scaffold protein TOPBP1Dpb11 has been implicated in HR, although its precise function and mechanism of action remain elusive. In this study, we show that yeast Dpb11 plays an antagonistic role in recombination control through regulated protein interactions. Dpb11 mediates opposing roles in DNA end resection by coordinating both the stabilization and exclusion of Rad9 from DNA lesions. The Mec1 kinase promotes the pro-resection function of Dpb11 by mediating its interaction with the Slx4 scaffold. Human TOPBP1Dpb11 engages in interactions with the anti-resection factor 53BP1 and the pro-resection factor BRCA1, suggesting that TOPBP1 also mediates opposing functions in HR control. Hyperstabilization of the 53BP1–TOPBP1 interaction enhances the recruitment of 53BP1 to nuclear foci in the S phase, resulting in impaired HR and the accumulation of chromosomal aberrations. Our results support a model in which TOPBP1Dpb11 plays a conserved role in mediating a phosphoregulated circuitry for the control of recombinational DNA repair. PMID:28228534

  3. Comparative Genomics and Reverse Genetics Analysis Reveal Indispensable Functions of the Serine Acetyltransferase Gene Family in Arabidopsis[W][OA

    PubMed Central

    Watanabe, Mutsumi; Mochida, Keiichi; Kato, Tomohiko; Tabata, Satoshi; Yoshimoto, Naoko; Noji, Masaaki; Saito, Kazuki

    2008-01-01

    Ser acetyltransferase (SERAT), which catalyzes O-acetyl-Ser (OAS) formation, plays a key role in sulfur assimilation and Cys synthesis. Despite several studies on SERATs from various plant species, the in vivo function of multiple SERAT genes in plant cells remains unaddressed. Comparative genomics studies with the five genes of the SERAT gene family in Arabidopsis thaliana indicated that all three Arabidopsis SERAT subfamilies are conserved across five plant species with available genome sequences. Single and multiple knockout mutants of all Arabidopsis SERAT gene family members were analyzed. All five quadruple mutants with a single gene survived, with three mutants showing dwarfism. However, the quintuple mutant lacking all SERAT genes was embryo-lethal. Thus, all five isoforms show functional redundancy in vivo. The developmental and compartment-specific roles of each SERAT isoform were also demonstrated. Mitochondrial SERAT2;2 plays a predominant role in cellular OAS formation, while plastidic SERAT2;1 contributes less to OAS formation and subsequent Cys synthesis. Three cytosolic isoforms, SERAT1;1, SERAT3;1, and SERAT3;2, may play a major role during seed development. Thus, the evolutionally conserved SERAT gene family is essential in cellular processes, and the substrates and products of SERAT must be exchangeable between the cytosol and organelles. PMID:18776059

  4. Salt, chloride, bleach, and innate host defense

    PubMed Central

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  5. Salt, chloride, bleach, and innate host defense.

    PubMed

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.

  6. A compensatory role for declarative memory in neurodevelopmental disorders.

    PubMed

    Ullman, Michael T; Pullman, Mariel Y

    2015-04-01

    Most research on neurodevelopmental disorders has focused on their abnormalities. However, what remains intact may also be important. Increasing evidence suggests that declarative memory, a critical learning and memory system in the brain, remains largely functional in a number of neurodevelopmental disorders. Because declarative memory remains functional in these disorders, and because it can learn and retain numerous types of information, functions, and tasks, this system should be able to play compensatory roles for multiple types of impairments across the disorders. Here, we examine this hypothesis for specific language impairment, dyslexia, autism spectrum disorder, Tourette syndrome, and obsessive-compulsive disorder. We lay out specific predictions for the hypothesis and review existing behavioral, electrophysiological, and neuroimaging evidence. Overall, the evidence suggests that declarative memory indeed plays compensatory roles for a range of impairments across all five disorders. Finally, we discuss diagnostic, therapeutic and other implications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A compensatory role for declarative memory in neurodevelopmental disorders

    PubMed Central

    Ullman, Michael T.; Pullman, Mariel Y.

    2015-01-01

    Most research on neurodevelopmental disorders has focused on their abnormalities. However, what remains intact may also be important. Increasing evidence suggests that declarative memory, a critical learning and memory system in the brain, remains largely functional in a number of neurodevelopmental disorders. Because declarative memory remains functional, and because this system can learn and retain numerous types of information, functions, and tasks, it should be able to play compensatory roles for multiple types of impairments across the disorders. Here, we examine this hypothesis for specific language impairment, dyslexia, autism spectrum disorder, Tourette syndrome, and obsessive-compulsive disorder. We lay out specific predictions for the hypothesis and review existing behavioral, electrophysiological, and neuroimaging evidence. Overall, the evidence suggests that declarative memory indeed plays compensatory roles for a range of impairments across all five disorders. Finally, we discuss diagnostic, therapeutic and other implications. PMID:25597655

  8. Oxidant/Antioxidant Balance in Animal Nutrition and Health: The Role of Protein Oxidation

    PubMed Central

    Celi, Pietro; Gabai, Gianfranco

    2015-01-01

    This review examines the role that oxidative stress (OS), and protein oxidation in particular, plays in nutrition, metabolism, and health of farm animals. The route by which redox homeostasis is involved in some important physiological functions and the implications of the impairment of oxidative status on animal health and diseases is also examined. Proteins have various and, at the same time, unique biological functions and their oxidation can result in structural changes and various functional modifications. Protein oxidation seems to be involved in pathological conditions, such as respiratory diseases and parasitic infection; however, some studies also suggest that protein oxidation plays a crucial role in the regulation of important physiological functions, such as reproduction, nutrition, metabolism, lactation, gut health, and neonatal physiology. As the characterization of the mechanisms by which OS may influence metabolism and health is attracting considerable scientific interest, the aim of this review is to present veterinary scientists and clinicians with various aspects of oxidative damage to proteins. PMID:26664975

  9. The Role of Make-Believe Play in the Development of Executive Function: Status of Research and Future Directions

    ERIC Educational Resources Information Center

    Berk, Laura E.; Meyers, Adena B.

    2013-01-01

    The authors discuss the association between make-believe play and the development of executive-function (EF) skills in young children. Some forty years ago, Lev S. Vygotsky first proposed that make-believe fosters the development of symbolic thought and self-regulation. Since then, a small body of research has produced evidence of an association…

  10. Conceptualization and Operationalization of Executive Function

    ERIC Educational Resources Information Center

    Baggetta, Peter; Alexander, Patricia A.

    2016-01-01

    Executive function is comprised of different behavioral and cognitive elements and is considered to play a significant role in learning and academic achievement. Educational researchers frequently study the construct. However, because of its complexity functionally, the research on executive function can at times be both confusing and…

  11. Multivalent Peptidomimetic Conjugates as Inhibitors of Androgen Receptor Function in Therapy Resistant Prostate Cancer

    DTIC Science & Technology

    2016-10-01

    hormones that play a critical role in stimulating prostate cancer growth . Androgens activate a protein called the androgen receptor (AR), which...5-15 3 1. INTRODUCTION: Androgens are hormones that play a critical role in stimulating prostate cancer growth . Androgens...regulates genes involved in cell growth . Although powerful anti-androgen drugs can be administered to block AR action and have been used successfully to

  12. Learning by Reading for Robust Reasoning in Intelligent Agents

    DTIC Science & Technology

    2018-04-24

    SUPPLEMENTARY NOTES 14. ABSTRACT Our hypotheses are that analogical processing plays multiple roles in enabling machines to learn by reading, and that...systems). Our overall hypotheses are that analogical processing plays multiple roles in learning by reading, and that qualitative representations provide...from reading this text? Narrative function can be seen as a kind of communication act, but the idea goes a bit beyond that. Communication acts are

  13. [Progress in the study on mammalian diacylgycerol acyltransgerase (DGAT) gene and its biological function].

    PubMed

    Wang, Yan; Xu, Heng-Yong; Zhu, Qing

    2007-10-01

    Diacylglycerol acyltransferase (DGAT; EC 2.3.1.20) is a microsomal enzyme that plays a central role in the metabolism of cellular glycerolipids. DGAT catalyzes the final step in triacylglycerol (TAG) biosynthesis by converting diacylgycerol (DAG) and fatty acyl-coenzyme A (CoA) into triacylglycero1. DGAT plays a fundamental role in the metabolism of cellular diacylglycerol and is important in higher eukaryotes for physiologic processes involving triacylglycerol metabolism such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, and lactation. Therefore, DGAT is not only an key factor for control triglycerides and fatty acids, but also may play a key modulatory role in animal fat deposition.

  14. The Drosophila divalent metal ion transporter Malvolio is required in dopaminergic neurons for feeding decisions

    PubMed Central

    Søvik, Eirik; LaMora, Angela; Seehra, Gurpreet; Barron, Andrew B.; Duncan, Jennifer G.; Ben-Shahar, Yehuda

    2017-01-01

    Members of the Natural resistance-associated macrophage protein (NRAMP) family are evolutionarily-conserved metal ion transporters that play an essential role in regulating intracellular divalent cation homeostasis in both prokaryotes and eukaryotes. Malvolio (Mvl), the sole NRAMP family member in insects, plays a role in food choice behaviors in Drosophila and other species. However, the specific physiological and cellular processes that require the action of Mvl for appropriate feeding decisions remain elusive. Here we demonstrate that normal food choice requires Mvl function specifically in the dopaminergic system, and can be rescued by supplementing food with manganese. Collectively, our data indicate that the action of the Mvl transporter affects food choice behavior via the regulation of dopaminergic innervation of the mushroom bodies, a principle brain region associated with decision making in insects. Our studies suggest that the homeostatic regulation of the intra-neuronal levels of divalent cations plays an important role in the development and function of the dopaminergic system and associated behaviors. PMID:28220999

  15. Soil organic matter as sole indicator of soil degradation

    Treesearch

    S.E. Obalum; G.U. Chibuike; S. Peth; Ying Ouyang

    2017-01-01

    Soil organic matter (SOM) is known to play vital roles in the maintenance and improvement of many soil properties and processes. These roles, which largely influence soil functions, are a pool of specific contributions of different components of SOM. The soil functions, in turn, normally define the level of soil degradation, viewed as quantifiable temporal changes in a...

  16. Context-Specific Trophic and Functional Ecology of Fishes of Small Stream Ecosystems in the Ouachita National Forest

    Treesearch

    William J. Matthews; A. Maria Miller-Lemke; Melvin L. Warren; Donna Cobb; Jeffery G. Stewart; Betty Crump; Frances P. Gelwick

    2004-01-01

    Abstract - Fish play diverse and important roles in stream ecosystems, but details about ecosystem effects are poorly known for many freshwater fish species. A requisite first step to understanding functional roles of individual species is information on their trophic ecology in the context of particular environmental settings. Stomach contents were...

  17. What Health-Related Functions Are Regulated by the Nervous System?

    MedlinePlus

    ... What health-related functions are regulated by the nervous system? The nervous system plays a role in nearly every aspect of ... feeling emotions. Functions that are regulated by the nervous system include (but are not limited to): Brain growth ...

  18. Physiological functioning of the ear and masking

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The physiological functions of the ear and the role masking plays in speech communication are examined. Topics under investigation include sound analysis of the ear, the aural reflex, and various types of noise masking.

  19. The Functional Impact of the Intestinal Microbiome on Mucosal Immunity and Systemic Autoimmunity

    PubMed Central

    Longman, Randy S.; Littman, Dan R.

    2016-01-01

    Purpose of Review This review will highlight recent advances functionally linking the gut microbiome with mucosal and systemic immune cell activation potentially underlying autoimmunity. Recent Findings Dynamic interactions between the gut microbiome and environmental cues (including diet and medicines) shape the effector potential of the microbial organ. Key bacteria and viruses have emerged, that, in defined microenvironments, play a critical role in regulating effector lymphocyte functions. The coordinated interactions between these different microbial kingdoms—including bacteria, helminths, and viruses (termed transkingdom interactions)—play a critical role in shaping immunity. Emerging strategies to identify immunologically-relevant microbes with the potential to regulate immune cell functions both at mucosal sites and systemically will likely define key diagnostic and therapeutic targets. Summary The microbiome constitutes a critical microbial organ with coordinated interactions that shape host immunity. PMID:26002030

  20. Density functional study of molecular interactions in secondary structures of proteins.

    PubMed

    Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki

    2016-01-01

    Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.

  1. The evolving neurobiology of gut feelings.

    PubMed

    Mayer, E A; Naliboff, B; Munakata, J

    2000-01-01

    The bi-directional communication between limbic regions and the viscera play a central role in the generation and expression of emotional responses and associated emotional feelings. The response of different viscera to distinct, emotion-specific patterns of autonomic output is fed back to the brain, in particular to the cingulofrontal convergence region. Even though this process unfolds largely without conscious awareness, it plays an important role in emotional function and may influence rational decision making in the healthy individual. Alterations in this bi-directional process such as peripheral pathologies within the gut or alterations at the brain level may explain the close association between certain affective disorders and functional visceral syndromes.

  2. Context-dependent consumer control in New England tidal wetlands.

    PubMed

    Moore, Alexandria

    2018-01-01

    Recent studies in coastal wetlands have indicated that consumers may play an important role in regulating large-scale ecosystem processes. Predator removal experiments have shown significant differences in above-ground biomass production in the presence of higher level consumers, or predators. These results indicate that predators play an important role in regulating biomass production, but the extent to which this regulation impacts additional ecosystem functions, such as nutrient cycling and organic matter accumulation, is unclear. This study evaluated the impact that consumers have on large-scale ecosystem processes within southern New England tidal wetlands and contributes to the general understanding of trophic control in these systems. I established enclosure cages within three coastal wetlands and manipulated the presence of green crab predators to assess how trophic interactions affect ecosystem functions. Findings suggest that although these consumers may exert some top-down effects, other environmental factors, such as other consumers not studied here or bottom-up interactions, may variably play a larger role in the maintenance of ecosystem processes within the region. These results indicate that the loss of top-down control as an important mechanism influencing ecosystem functions may not hold for all wetlands along the full extent of the New England coastline.

  3. Context-dependent consumer control in New England tidal wetlands

    PubMed Central

    2018-01-01

    Recent studies in coastal wetlands have indicated that consumers may play an important role in regulating large-scale ecosystem processes. Predator removal experiments have shown significant differences in above-ground biomass production in the presence of higher level consumers, or predators. These results indicate that predators play an important role in regulating biomass production, but the extent to which this regulation impacts additional ecosystem functions, such as nutrient cycling and organic matter accumulation, is unclear. This study evaluated the impact that consumers have on large-scale ecosystem processes within southern New England tidal wetlands and contributes to the general understanding of trophic control in these systems. I established enclosure cages within three coastal wetlands and manipulated the presence of green crab predators to assess how trophic interactions affect ecosystem functions. Findings suggest that although these consumers may exert some top-down effects, other environmental factors, such as other consumers not studied here or bottom-up interactions, may variably play a larger role in the maintenance of ecosystem processes within the region. These results indicate that the loss of top-down control as an important mechanism influencing ecosystem functions may not hold for all wetlands along the full extent of the New England coastline. PMID:29771961

  4. Possible roles of platelet-derived microparticles in atherosclerosis.

    PubMed

    Wang, Zhi-Ting; Wang, Zi; Hu, Yan-Wei

    2016-05-01

    Platelets and platelet-derived microparticles (PMPs) play important roles in cardiovascular diseases, especially atherosclerosis. Continued research has revealed that PMPs have numerous functions in atherosclerosis, not only in thrombosis formation, but also by induction of inflammation. PMPs also induce formation of foam cells. Recent evidence strongly indicates a significant role of PMPs in atherosclerosis. Here, current research on the function of PMPs in atherosclerosis is reviewed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Functional characterization of the role of rpfA in Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa coordinates virulence in grapevines via quorum sensing signal molecules that are regulated and synthesized by the rpf gene cluster (regulation of pathogenicity factors). rpfA encodes aconitate hydratase and could play a regulator role involved in virulence. To elucidate the role o...

  6. UnPAKing RUNX3 functions-Both sides of the coin.

    PubMed

    Kumar, Arun; Sundaram, Sandhya; Rayala, Suresh K; Venkatraman, Ganesh

    2017-06-19

    Post translational modifications of RUNX3 have been shown to play an important role in directing RUNX3 functions. In this review we highlight the phosphorylation dependent functions of RUNX3 as regulated by PAK1 and its implications on tumorigenesis.

  7. Executive Functions in Learning Processes: Do They Benefit from Physical Activity?

    ERIC Educational Resources Information Center

    Barenberg, Jonathan; Berse, Timo; Dutke, Stephan

    2011-01-01

    As executive functions play an essential role in learning processes, approaches capable of enhancing executive functioning are of particular interest to educational psychology. Recently, the hypothesis has been advanced that executive functioning may benefit from changes in neurobiological processes induced by physical activity. The present…

  8. AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants.

    PubMed

    Nakaminami, Kentaro; Okamoto, Masanori; Higuchi-Takeuchi, Mieko; Yoshizumi, Takeshi; Yamaguchi, Yube; Fukao, Yoichiro; Shimizu, Minami; Ohashi, Chihiro; Tanaka, Maho; Matsui, Minami; Shinozaki, Kazuo; Seki, Motoaki; Hanada, Kousuke

    2018-05-29

    Peptides encoded by small coding genes play an important role in plant development, acting in a similar manner as phytohormones. Few hormone-like peptides, however, have been shown to play a role in abiotic stress tolerance. In the current study, 17 Arabidopsis genes coding for small peptides were found to be up-regulated in response to salinity stress. To identify peptides leading salinity stress tolerance, we generated transgenic Arabidopsis plants overexpressing these small coding genes and assessed survivability and root growth under salinity stress conditions. Results indicated that 4 of the 17 overexpressed genes increased salinity stress tolerance. Further studies focused on AtPROPEP3 , which was the most highly up-regulated gene under salinity stress. Treatment of plants with synthetic peptides encoded by AtPROPEP3 revealed that a C-terminal peptide fragment (AtPep3) inhibited the salt-induced bleaching of chlorophyll in seedlings. Conversely, knockdown AtPROPEP3 transgenic plants exhibited a hypersensitive phenotype under salinity stress, which was complemented by the AtPep3 peptide. This functional AtPep3 peptide region overlaps with an AtPep3 elicitor peptide that is related to the immune response of plants. Functional analyses with a receptor mutant of AtPep3 revealed that AtPep3 was recognized by the PEPR1 receptor and that it functions to increase salinity stress tolerance in plants. Collectively, these data indicate that AtPep3 plays a significant role in both salinity stress tolerance and immune response in Arabidopsis .

  9. Emotion and Theory of Mind in Schizophrenia-Investigating the Role of the Cerebellum.

    PubMed

    Mothersill, Omar; Knee-Zaska, Charlotte; Donohoe, Gary

    2016-06-01

    Social cognitive dysfunction, including deficits in facial emotion recognition and theory of mind, is a core feature of schizophrenia and more strongly predicts functional outcome than neurocognition alone. Although traditionally considered to play an important role in motor coordination, the cerebellum has been suggested to play a role in emotion processing and theory of mind, and also shows structural and functional abnormalities in schizophrenia. The aim of this systematic review was to investigate the specific role of the cerebellum in emotion and theory of mind deficits in schizophrenia using previously published functional neuroimaging studies. PubMed and PsycINFO were used to search for all functional neuroimaging studies reporting altered cerebellum activity in schizophrenia patients during emotion processing or theory of mind tasks, published until December 2014. Overall, 14 functional neuroimaging studies were retrieved. Most emotion studies reported lower cerebellum activity in schizophrenia patients relative to healthy controls. In contrast, the theory of mind studies reported mixed findings. Altered activity was observed across several posterior cerebellar regions involved in emotion and cognition. Weaker cerebellum activity in schizophrenia patients relative to healthy controls during emotion processing may contribute to blunted affect and reduced ability to recognise emotion in others. This research could be expanded by examining the relationship between cerebellum function, symptomatology and behaviour, and examining cerebellum functional connectivity in patients during emotion and theory of mind tasks.

  10. Young Mothers' Play with Their Toddlers: Individual Variability as a Function of Psychosocial Factors

    ERIC Educational Resources Information Center

    Driscoll, Joan Riley; Easterbrooks, M. Ann

    2007-01-01

    There is no one style of parenting which characterizes young mothers as a group. In addition, life circumstances play an important role in shaping maternal behaviour. The aim of this study was to identify patterns of maternal play behaviour and contextual (social and personal) factors associated with these different patterns. In this study, 107…

  11. Language Ability and Verbal and Nonverbal Executive Functioning in Deaf Students Communicating in Spoken English

    ERIC Educational Resources Information Center

    Remine, Maria D.; Care, Esther; Brown, P. Margaret

    2008-01-01

    The internal use of language during problem solving is considered to play a key role in executive functioning. This role provides a means for self-reflection and self-questioning during the formation of rules and plans and a capacity to control and monitor behavior during problem-solving activity. Given that increasingly sophisticated language is…

  12. At the Intersection of Attention and Memory: The Mechanistic Role of the Posterior Parietal Lobe in Working Memory

    ERIC Educational Resources Information Center

    Berryhill, Marian E.; Chein, Jason; Olson, Ingrid R.

    2011-01-01

    Portions of the posterior parietal cortex (PPC) play a role in working memory (WM) yet the precise mechanistic function of this region remains poorly understood. The "pure storage" hypothesis proposes that this region functions as a short-lived modality-specific memory store. Alternatively, the "internal attention" hypothesis proposes that the PPC…

  13. Computer-supported games and role plays in teaching water management

    NASA Astrophysics Data System (ADS)

    Hoekstra, A. Y.

    2012-08-01

    There is an increasing demand for an interdisciplinary approach in teaching water management. Computer-supported games and role plays offer the potential of creating an environment in which different disciplines come together and in which students are challenged to develop integrated understanding. Two examples are discussed. The River Basin Game is a common-pool resource game in which participants experience the risk of over-abstractions of water in a river basin and learn how this risk relates to the complexity of the system, the conflict between individual and group optimums and the difficulty in achieving good cooperation. The Globalization of Water Role Play makes participants familiar with the global dimension of water management by letting them experience how national governments can integrate considerations of water scarcity and domestic water productivities into decisions on international trade in commodities like food, cotton and bio-energy. The two examples illustrate that play sessions inspire participants to think about the functioning of systems as a whole and to develop good cooperative courses of action, whereby both uncertainties about the system and the presence of different values and perspectives among participants play a role.

  14. The roles of the olivocerebellar pathway in motor learning and motor control. A consensus paper

    PubMed Central

    Lang, Eric J.; Apps, Richard; Bengtsson, Fredrik; Cerminara, Nadia L.; De Zeeuw, Chris I.; Ebner, Timothy J.; Heck, Detlef H.; Jaeger, Dieter; Jörntell, Henrik; Kawato, Mitsuo; Otis, Thomas S.; Ozyildirim, Ozgecan; Popa, Laurentiu S.; Reeves, Alexander M.B.; Schweighofer, Nicolas; Sugihara, Izumi; Xiao, Jianqiang

    2016-01-01

    For many decades the predominant view in the cerebellar field has been that the olivocerebellar system's primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum, and might also play a role in development. We then consider the potential problems and benefits of its having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, variable complex spike waveform) make it more or less suitable for one or the other of these functions, and why its having a dual role makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest it has the potential to act in both the motor learning and motor control functions of the cerebellum. PMID:27193702

  15. The Role of Departmental Leadership for Professional Learning Communities

    ERIC Educational Resources Information Center

    Vanblaere, Bénédicte; Devos, Geert

    2018-01-01

    Purpose: Department heads play a pivotal role in the functioning of departments in secondary schools. However, quantitative research about the role of departmental leadership for the development of professional learning communities (PLCs) in subject departments in secondary schools remains scarce. As PLCs are seen as promising contexts for…

  16. The Eosinophil in Infection.

    PubMed

    Ravin, Karen A; Loy, Michael

    2016-04-01

    First described by Paul Ehrlich in 1879, who noted its characteristic staining by acidophilic dyes, for many years, the eosinophil was considered to be an end-effector cell associated with helminth infections and a cause of tissue damage. Over the past 30 years, research has helped to elucidate the complexity of the eosinophil's function and establish its role in host defense and immunity. Eosinophils express an array of ligand receptors which play a role in cell growth, adhesion, chemotaxis, degranulation, and cell-to-cell interactions. They play a role in activation of complement via both classical and alternative pathways. Eosinophils synthesize, store and secrete cytokines, chemokines, and growth factors. They can process antigen, stimulate T cells, and promote humoral responses by interacting with B cells. Eosinophils can function as antigen presenting cells and can regulate processes associated with both T1 and T2 immunity. Although long known to play a role in defense against helminth organisms, the interactions of eosinophils with these parasites are now recognized to be much more complex. In addition, their interaction with other pathogens continues to be investigated. In this paper, we review the eosinophil's unique biology and structure, including its characteristic granules and the effects of its proteins, our developing understanding of its role in innate and adaptive immunity and importance in immunomodulation, and the part it plays in defense against parasitic, viral, fungal and bacterial infections. Rather than our worst enemy, the eosinophil may, in fact, be one of the most essential components in host defense and immunity.

  17. Unique roles of glucagon and glucagon-like peptides: Parallels in understanding the functions of adipokinetic hormones in stress responses in insects.

    PubMed

    Bednářová, Andrea; Kodrík, Dalibor; Krishnan, Natraj

    2013-01-01

    Glucagon is conventionally regarded as a hormone, counter regulatory in function to insulin and plays a critical anti-hypoglycemic role by maintaining glucose homeostasis in both animals and humans. Glucagon performs this function by increasing hepatic glucose output to the blood by stimulating glycogenolysis and gluconeogenesis in response to starvation. Additionally it plays a homeostatic role by decreasing glycogenesis and glycolysis in tandem to try and maintain optimal glucose levels. To perform this action, it also increases energy expenditure which is contrary to what one would expect and has actions which are unique and not entirely in agreement with its role in protection from hypoglycemia. Interestingly, glucagon-like peptides (GLP-1 and GLP-2) from the major fragment of proglucagon (in non-mammalian vertebrates, as well as in mammals) may also modulate response to stress in addition to their other physiological actions. These unique modes of action occur in response to psychological, metabolic and other stress situations and mirror the role of adipokinetic hormones (AKHs) in insects which perform a similar function. The findings on the anti-stress roles of glucagon and glucagon-like peptides in mammalian and non-mammalian vertebrates may throw light on the multiple stress responsive mechanisms which operate in a concerted manner under regulation by AKH in insects thus functioning as a stress responsive hormone while also maintaining organismal homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. `Sex' – It's not only Women's Work: A Case for Refocusing on the Functional Role that Sex Plays in Work for both Women and Men

    PubMed Central

    Uretsky, Elanah

    2014-01-01

    Mention of the term sex work often invokes images of marginalized women at risk for HIV infection. Such images, however, are counterintuitive to the functional role intended by the movement that spawned use of the terms `sex work' and `sex worker'. This article looks at the sexual practices of men in urban China to argue for a return to a functional definition of `sex work', which was originally meant to legitimize the role sex plays in work. The progenitors of this movement intended to use `sex work' as a means to legitimize sex as an income generating activity for women involved in prostitution. I show that sex can also serve a functional role in the work-related duties of men seeking economic and political success in contemporary urban China. Men in China utilize sex as one way for demonstrating the loyalty necessary to access state-owned and controlled resources in a market economy governed under a Leninist system. Overall the article demonstrates that reclaiming perception of sex work as a functional rather than behavioral category can expand its use for preventing HIV among the broad subset of people who engage in sex as part of their work. PMID:25642103

  19. `Sex' - It's not only Women's Work: A Case for Refocusing on the Functional Role that Sex Plays in Work for both Women and Men.

    PubMed

    Uretsky, Elanah

    2015-01-01

    Mention of the term sex work often invokes images of marginalized women at risk for HIV infection. Such images, however, are counterintuitive to the functional role intended by the movement that spawned use of the terms `sex work' and `sex worker'. This article looks at the sexual practices of men in urban China to argue for a return to a functional definition of `sex work', which was originally meant to legitimize the role sex plays in work. The progenitors of this movement intended to use `sex work' as a means to legitimize sex as an income generating activity for women involved in prostitution. I show that sex can also serve a functional role in the work-related duties of men seeking economic and political success in contemporary urban China. Men in China utilize sex as one way for demonstrating the loyalty necessary to access state-owned and controlled resources in a market economy governed under a Leninist system. Overall the article demonstrates that reclaiming perception of sex work as a functional rather than behavioral category can expand its use for preventing HIV among the broad subset of people who engage in sex as part of their work.

  20. Human spleen and red blood cells

    NASA Astrophysics Data System (ADS)

    Pivkin, Igor; Peng, Zhangli; Karniadakis, George; Buffet, Pierre; Dao, Ming

    2016-11-01

    Spleen plays multiple roles in the human body. Among them is removal of old and altered red blood cells (RBCs), which is done by filtering cells through the endothelial slits, small micron-sized openings. There is currently no experimental technique available that allows us to observe RBC passage through the slits. It was previously noticed that people without a spleen have less deformable red blood cells, indicating that the spleen may play a role in defining the size and shape of red blood cells. We used detailed RBC model implemented within the Dissipative Particle Dynamics (DPD) simulation framework to study the filter function of the spleen. Our results demonstrate that spleen indeed plays major role in defining the size and shape of the healthy human red blood cells.

  1. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections

    PubMed Central

    Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan

    2015-01-01

    Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters. PMID:25714877

  2. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections.

    PubMed

    Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan

    2015-01-01

    Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters.

  3. An RRM-containing mei2-like MCT1 plays a negative role in the seed germination and seedling growth of Arabidopsis thaliana in the presence of ABA.

    PubMed

    Gu, Lili; Jung, Hyun Ju; Kwak, Kyung Jin; Dinh, Sy Nguyen; Kim, Yeon-Ok; Kang, Hunseung

    2016-12-01

    Despite an increasing understanding of the essential role of the Mei2 gene encoding an RNA-binding protein (RBP) in premeiotic DNA synthesis and meiosis in yeasts and animals, the functional roles of the mei2-like genes in plant growth and development are largely unknown. Contrary to other mei2-like RBPs that contain three RNA-recognition motifs (RRMs), the mei2 C-terminal RRM only (MCT) is unique in that it harbors only the last C-terminal RRM. Although MCTs have been implicated to play important roles in plants, their functional roles in stress responses as well as plant growth and development are still unknown. Here, we investigated the expression and functional role of MCT1 (At1g37140) in plant response to abscisic acid (ABA). Confocal analysis of MCT1-GFP-expressing plants revealed that MCT1 is localized to the nucleus. The transcript level of MCT1 was markedly increased upon ABA treatment. Analysis of MCT1-overexpressing transgenic Arabidopsis plants and artificial miRNA-mediated mct1 knockdown mutants demonstrated that MCT1 inhibited seed germination and cotyledon greening of Arabidopsis plants under ABA. The transcript levels of ABA signaling-related genes, such as ABI3, ABI4, and ABI5, were markedly increased in the MCT1-overexpressing transgenic plant. Collectively, these results suggest that ABA-upregulated MCT1 plays a negative role in Arabidopsis seed germination and seedling growth under ABA by modulating the expression of ABA signaling-related genes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Overlapping Role of Dynamin Isoforms in Synaptic Vesicle Endocytosis

    PubMed Central

    Raimondi, Andrea; Ferguson, Shawn M.; Lou, Xuelin; Armbruster, Moritz; Paradise, Summer; Giovedi, Silvia; Messa, Mirko; Kono, Nao; Takasaki, Junko; Cappello, Valentina; O’Toole, Eileen; Ryan, Timothy A.; De Camilli, Pietro

    2011-01-01

    The existence of neuron specific endocytic protein isoforms raises questions about their importance for specialized neuronal functions. Dynamin, a GTPase implicated in the fission reaction of endocytosis, is encoded by three genes, two of which, dynamin 1 and 3, are highly expressed in neurons. We show that dynamin 3, thought to play a predominantly postsynaptic role, has a major presynaptic function. While lack of dynamin 3 does not produce an overt phenotype in mice, it worsens the dynamin 1 KO phenotype, leading to perinatal lethality and a more severe defect in activity-dependent synaptic vesicle endocytosis. Thus, dynamin 1 and 3, which together account for the overwhelming majority of brain dynamin, cooperate in supporting optimal rates of synaptic vesicle endocytosis. Persistence of synaptic transmission in their absence indicates that if dynamin plays essential functions in neurons, such functions can be achieved by the very low levels of dynamin 2. PMID:21689597

  5. Aquaporin structure-function relationships: water flow through plant living cells.

    PubMed

    Zhao, Chang-Xing; Shao, Hong-Bo; Chu, Li-Ye

    2008-04-01

    Plant aquaporins play an important role in water uptake and movement-an aquaporin that opens and closes a gate that regulates water movement in and out of cells. Some plant aquaporins also play an important role in response to water stress. Since their discovery, advancing knowledge of their structures and properties led to an understanding of the basic features of the water transport mechanism and increased illumination to water relations. Meanwhile, molecular and functional characterization of aquaporins has revealed the significance of their regulation in response to the adverse environments such as salinity and drought. This paper reviews the structure, species diversity, physiology function, regulation of plant aquaporins, and the relations between environmental factors and plant aquaporins. Complete understanding of aquaporin function and regulation is to integrate those mechanisms in time and space and to well regulate the permeation of water across biological membranes under changing environmental and developmental conditions.

  6. CD4 on CD8+ T cells directly enhances effector function and is a target for HIV infection

    NASA Astrophysics Data System (ADS)

    Kitchen, Scott G.; Jones, Nicole R.; Laforge, Stuart; Whitmire, Jason K.; Vu, Bien-Aimee; Galic, Zoran; Brooks, David G.; Brown, Stephen J.; Kitchen, Christina M. R.; Zack, Jerome A.

    2004-06-01

    Costimulation of purified CD8+ T lymphocytes induces de novo expression of CD4, suggesting a previously unrecognized function for this molecule in the immune response. Here, we report that the CD4 molecule plays a direct role in CD8+ T cell function by modulating expression of IFN- and Fas ligand, two important CD8+ T cell effector molecules. CD4 expression also allows infection of CD8 cells by HIV, which results in down-regulation of the CD4 molecule and impairs the induction of IFN-, Fas ligand, and the cytotoxic responses of activated CD8+ T cells. Thus, the CD4 molecule plays a direct role in CD8 T cell function, and infection of these cells by HIV provides an additional reservoir for the virus and also may contribute to the immunodeficiency seen in HIV disease.

  7. Mental health issues in the workplace: a case for a new managerial approach.

    PubMed

    Dunnagan, T; Peterson, M; Haynes, G

    2001-12-01

    Anger, stress, and depression in the workplace are growing concerns among management. Traditionally, health outcomes have functioned under the realm of workplace health professionals. This study assessed whether a traditional worksite health promotion program had an impact on mental health factors. The results suggested that worksite health promotion programs play a limited role in ameliorating work-related mental health outcomes. Rather, management must play a greater role in addressing workplace stress, anger, and depression.

  8. MhYTP1 and MhYTP2 from Apple Confer Tolerance to Multiple Abiotic Stresses in Arabidopsis thaliana

    PubMed Central

    Wang, Na; Guo, Tianli; Wang, Ping; Sun, Xun; Shao, Yun; Jia, Xin; Liang, Bowen; Gong, Xiaoqing; Ma, Fengwang

    2017-01-01

    The first YTH domain-containing RNA binding protein (YTP) was found in rat, where it was related to oxidative stress. Unlike characterizations in yeast and animals, functions of plant YTPs are less clear. Malus hupehensis (Pamp.) Rehd. YTP1 and YTP2 (MhYTP1 and MhYTP2) are known to be active in leaf senescence and fruit ripening. However, no research has been published about their roles in stress responses. Here, we investigate the stress-related functions of MhYTP1 and MhYTP2 in Arabidopsis thaliana. Both of the two genes participated in salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) signaling and play roles in plant responses to oxidative stress, chilling, high temperature, high salinity, and mannitol induced physiological drought stress. Moreover, MhYTP1 plays leading roles in SA and ABA signaling, and MhYTP2 plays leading roles in JA signaling and oxidative stress responses. These results will fill a gap in our knowledge about plant YTPs and stress responses and provide a foundation for future attempts to improve stress tolerance in apple. PMID:28824695

  9. Quantitative structure-property relationships for chemical functional use and weight fractions in consumer articles

    EPA Science Inventory

    Chemical functional use -- the functional role a chemical plays in processes or products -- may be a useful heuristic for predicting human exposure potential in that it comprises information about the compound's likely physical properties and the product formulations or articles ...

  10. Understanding the interpersonal impact of trauma: contributions of PTSD and depression.

    PubMed

    Beck, J Gayle; Grant, DeMond M; Clapp, Joshua D; Palyo, Sarah A

    2009-05-01

    To build on the growing literature on interpersonal relationships among individuals with PTSD, this study examined the separate influences of PTSD symptoms and depression on functioning with friends, romantic partners, and family. To examine the influence of measurement, both interviewer-rated assessment of interpersonal functioning and self-reported assessment of perceived social support were included. The sample included 109 community members who sought help for mental health problems in the aftermath of a serious motor vehicle accident. Building on previous research, hierarchical regression models were used to examine the impact of re-experiencing, avoidance, emotional numbing, and hyperarousal on relationship functioning, followed by depression. Results suggest that assessment modality makes a difference in understanding factors contributing to interpersonal strain. When assessed by an interviewer, depression seems to play a larger role in interpersonal strain, relative to PTSD symptoms. When assessed via self-reported perceived social support, weaker associations were observed, which highlighted the role of emotional numbing. Results are discussed in light of the possible role that PTSD comorbidity with depression plays in interpersonal functioning following a traumatic event, with implications for future research.

  11. [The role of physical therapy in the treatment of female sexual dysfunction].

    PubMed

    Rosenbaum, Talli Y; Ben-Dror, Inbal

    2009-09-01

    Healthy sexual function requires physical, mental, and emotional well-being. Physical presentations that may limit sexual activity include decreased mobility, alterations in sensation, decreased genital circulation and pain. Physical therapists play an important role in facilitating optimal sexual function by providing treatment to restore function, improve mobility and relieve pain. This article illustrates, through four case reports, the importance of physiotherapy in the multidisciplinary approach to the treatment of female sexual dysfunction.

  12. The Caenorhabditis elegans Ephrin EFN-4 Functions Non-cell Autonomously with Heparan Sulfate Proteoglycans to Promote Axon Outgrowth and Branching

    PubMed Central

    Schwieterman, Alicia A.; Steves, Alyse N.; Yee, Vivian; Donelson, Cory J.; Bentley, Melissa R.; Santorella, Elise M.; Mehlenbacher, Taylor V.; Pital, Aaron; Howard, Austin M.; Wilson, Melissa R.; Ereddia, Danielle E.; Effrein, Kelsie S.; McMurry, Jonathan L.; Ackley, Brian D.; Chisholm, Andrew D.; Hudson, Martin L.

    2016-01-01

    The Eph receptors and their cognate ephrin ligands play key roles in many aspects of nervous system development. These interactions typically occur within an individual tissue type, serving either to guide axons to their terminal targets or to define boundaries between the rhombomeres of the hindbrain. We have identified a novel role for the Caenorhabditis elegans ephrin EFN-4 in promoting primary neurite outgrowth in AIY interneurons and D-class motor neurons. Rescue experiments reveal that EFN-4 functions non-cell autonomously in the epidermis to promote primary neurite outgrowth. We also find that EFN-4 plays a role in promoting ectopic axon branching in a C. elegans model of X-linked Kallmann syndrome. In this context, EFN-4 functions non-cell autonomously in the body-wall muscle and in parallel with HS modification genes and HSPG core proteins. This is the first report of an epidermal ephrin providing a developmental cue to the nervous system. PMID:26645816

  13. Adenosine A1-Dopamine D1 Receptor Heteromers Control the Excitability of the Spinal Motoneuron.

    PubMed

    Rivera-Oliver, Marla; Moreno, Estefanía; Álvarez-Bagnarol, Yocasta; Ayala-Santiago, Christian; Cruz-Reyes, Nicole; Molina-Castro, Gian Carlo; Clemens, Stefan; Canela, Enric I; Ferré, Sergi; Casadó, Vicent; Díaz-Ríos, Manuel

    2018-05-24

    While the role of the ascending dopaminergic system in brain function and dysfunction has been a subject of extensive research, the role of the descending dopaminergic system in spinal cord function and dysfunction is just beginning to be understood. Adenosine plays a key role in the inhibitory control of the ascending dopaminergic system, largely dependent on functional complexes of specific subtypes of adenosine and dopamine receptors. Combining a selective destabilizing peptide strategy with a proximity ligation assay and patch-clamp electrophysiology in slices from male mouse lumbar spinal cord, the present study demonstrates the existence of adenosine A 1 -dopamine D 1 receptor heteromers in the spinal motoneuron by which adenosine tonically inhibits D 1 receptor-mediated signaling. A 1 -D 1 receptor heteromers play a significant control of the motoneuron excitability, represent main targets for the excitatory effects of caffeine in the spinal cord and can constitute new targets for the pharmacological therapy after spinal cord injury, motor aging-associated disorders and restless legs syndrome.

  14. The Relations between Students' Anxiety and Interest in Playing an Online Game

    ERIC Educational Resources Information Center

    Hong, Jon-Chao; Hwang, Ming-Yueh; Hsu, Tsui-Fang; Chen, Yu-Ju

    2012-01-01

    In this modern and technologically dependent society, people seek to improve human performance, get higher productivity and increase user satisfaction with technologies. In Chinese society, Chinese Idiom learning plays an important role in vocabulary learning which cultural and social functions are involved. Therefore, an online game named…

  15. Children's Teaching Skills: The Role of Theory of Mind and Executive Function

    ERIC Educational Resources Information Center

    Davis-Unger, Angela C.; Carlson, Stephanie M.

    2008-01-01

    Teaching others effectively may rely on knowledge about the mind as well as self-control processes. The goal of this investigation was to explore the role of theory of mind (ToM) and executive function (EF) in children's developing teaching skills. Children 3.5-5.5 years of age (N = 82) were asked to teach a confederate learner how to play a board…

  16. Chapter 11.18 - Neuroendocrine Control of Female Reproduction.

    EPA Science Inventory

    The hypothalamus and pituitary are known to play roles in reproductive function. A growing body of evidence indicates that environmental toxicants can alter female reproductive function by disrupting hypothalamic control of the pituitary and subsequently the endocrine control of ...

  17. Does the Gut Microbiota Contribute to Obesity? Going beyond the Gut Feeling

    PubMed Central

    Aguirre, Marisol; Venema, Koen

    2015-01-01

    Increasing evidence suggests that gut microbiota is an environmental factor that plays a crucial role in obesity. However, the aetiology of obesity is rather complex and depends on different factors. Furthermore, there is a lack of consensus about the exact role that this microbial community plays in the host. The aim of this review is to present evidence about what has been characterized, compositionally and functionally, as obese gut microbiota. In addition, the different reasons explaining the so-far unclear role are discussed considering evidence from in vitro, animal and human studies. PMID:27682087

  18. The Role of Broca's Area in Sentence Comprehension

    ERIC Educational Resources Information Center

    Rogalsky, Corianne; Hickok, Gregory

    2011-01-01

    The role of Broca's area in sentence processing has been debated for the last 30 years. A central and still unresolved issue is whether Broca's area plays a specific role in some aspect of syntactic processing (e.g., syntactic movement, hierarchical structure building) or whether it serves a more general function on which sentence processing…

  19. Drosophila divalent metal ion transporter Malvolio is required in dopaminergic neurons for feeding decisions.

    PubMed

    Søvik, E; LaMora, A; Seehra, G; Barron, A B; Duncan, J G; Ben-Shahar, Y

    2017-06-01

    Members of the natural resistance-associated macrophage protein (NRAMP) family are evolutionarily conserved metal ion transporters that play an essential role in regulating intracellular divalent cation homeostasis in both prokaryotes and eukaryotes. Malvolio (Mvl), the sole NRAMP family member in insects, plays a role in food choice behaviors in Drosophila and other species. However, the specific physiological and cellular processes that require the action of Mvl for appropriate feeding decisions remain elusive. Here, we show that normal food choice requires Mvl function specifically in the dopaminergic system, and can be rescued by supplementing food with manganese. Collectively, our data indicate that the action of the Mvl transporter affects food choice behavior via the regulation of dopaminergic innervation of the mushroom bodies, a principle brain region associated with decision-making in insects. Our studies suggest that the homeostatic regulation of the intraneuronal levels of divalent cations plays an important role in the development and function of the dopaminergic system and associated behaviors. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. Impaired insula functional connectivity associated with persistent pain perception in patients with complex regional pain syndrome

    PubMed Central

    Jang, Joon Hwan; Lee, Do-Hyeong; Lee, Kyung-Jun; Lee, Won Joon; Moon, Jee Youn; Kim, Yong Chul

    2017-01-01

    Given that the insula plays a contributory role in the perception of chronic pain, we examined the resting-state functional connectivity between the insular cortex and other brain regions to investigate neural underpinnings of persisting perception of background pain in patients with complex regional pain syndrome (CRPS). A total of 25 patients with CRPS and 25 matched healthy controls underwent functional magnetic resonance imaging at rest. With the anterior and posterior insular cortices as seed regions, we compared the strength of the resting-state functional connectivity between the two groups. Functional connectivity between the anterior and posterior insular cortices and the postcentral and inferior frontal gyri, cingulate cortices was reduced in patients with CRPS compared with controls. Additionally, greater reductions in functional connectivity between the anterior insula and right postcentral gyrus were associated with more severe sensory pain in patients with CRPS (short-form McGill Pain Questionnaire sensory subscores, r = -.517, P = .023). The present results imply a possible role of the insula in aberrant processing of pain information in patients with CRPS. The findings suggest that a functional derangement of the connection between one of the somatosensory cortical functions of perception and one of the insular functions of awareness can play a significant role in the persistent experience of regional pain that is not confined to a specific nerve territory. PMID:28692702

  1. Mechanism of the coupling of diazonium to single-walled carbon nanotubes and its consequences.

    PubMed

    Schmidt, Grégory; Gallon, Salomé; Esnouf, Stéphane; Bourgoin, Jean-Philippe; Chenevier, Pascale

    2009-01-01

    On the tube: The coupling of diazonium ions onto single-walled carbon nanotubes is shown to proceed through a radical chain reaction by kinetic analysis of the absorption peak drop (see picture). Radical species are also revealed by ESR. Metallic (m) nanotubes play a special catalytic role in the functionalization of semiconducting (sc) nanotubes.Due to its simplicity and versatility, diazonium coupling is the most widely used method for carbon nanotube (CNT) functionalization to increase CNT processability and add new functionalities. Yet, its mechanism is so far mostly unknown. Herein, we use kinetic analysis to shed light on this complex mechanism. A free-radical chain reaction is revealed by absorption spectroscopy and ESR. Metallic CNTs are shown to play an unexpected catalytic role. The step determining the selectivity towards metallic CNTs is identified by a Hammett correlation. A mechanistic model is proposed that predicts reactivity and selectivity as a function of diazonium electrophilicity and metallic-to-semiconducting CNT ratio, thus opening perspectives of controlled high-yield functionalization and purification.

  2. DNA is structured as a linear "jigsaw puzzle" in the genomes of Arabidopsis, rice, and budding yeast.

    PubMed

    Liu, Yun-Hua; Zhang, Meiping; Wu, Chengcang; Huang, James J; Zhang, Hong-Bin

    2014-01-01

    Knowledge of how a genome is structured and organized from its constituent elements is crucial to understanding its biology and evolution. Here, we report the genome structuring and organization pattern as revealed by systems analysis of the sequences of three model species, Arabidopsis, rice and yeast, at the whole-genome and chromosome levels. We found that all fundamental function elements (FFE) constituting the genomes, including genes (GEN), DNA transposable elements (DTE), retrotransposable elements (RTE), simple sequence repeats (SSR), and (or) low complexity repeats (LCR), are structured in a nonrandom and correlative manner, thus leading to a hypothesis that the DNA of the species is structured as a linear "jigsaw puzzle". Furthermore, we showed that different FFE differ in their importance in the formation and evolution of the DNA jigsaw puzzle structure between species. DTE and RTE play more important roles than GEN, LCR, and SSR in Arabidopsis, whereas GEN and RTE play more important roles than LCR, SSR, and DTE in rice. The genes having multiple recognized functions play more important roles than those having single functions. These results provide useful knowledge necessary for better understanding genome biology and evolution of the species and for effective molecular breeding of rice.

  3. The Nuclear Receptor Corepressor Has Organizational Effects within the Developing Amygdala on Juvenile Social Play and Anxiety-Like Behavior

    PubMed Central

    Jessen, Heather M.; Kolodkin, Mira H.; Bychowski, Meaghan E.; Auger, Catherine J.; Auger, Anthony P.

    2010-01-01

    Nuclear receptor function on DNA is regulated by the balanced recruitment of coregulatory complexes. Recruited proteins that increase gene expression are called coactivators, and those that decrease gene expression are called corepressors. Little is known about the role of corepressors, such as nuclear receptor corepressor (NCoR), on the organization of behavior. We used real-time PCR to show that NCoR mRNA levels are sexually dimorphic, that females express higher levels of NCoR mRNA within the developing amygdala and hypothalamus, and that NCoR mRNA levels are reduced by estradiol treatment. To investigate the functional role of NCoR on juvenile social behavior, we infused small interfering RNA targeted against NCoR within the developing rat amygdala and assessed the enduring impact on juvenile social play behavior, sociability, and anxiety-like behavior. As expected, control males exhibited higher levels of juvenile social play than control females. Reducing NCoR expression during development further increased juvenile play in males only. Interestingly, decreased NCoR expression within the developing amygdala had lasting effects on increasing juvenile anxiety-like behavior in males and females. These data suggest that the corepressor NCoR functions to blunt sex differences in juvenile play behavior, a sexually dimorphic and hormone-dependent behavior, and appears critical for appropriate anxiety-like behavior in juvenile males and females. PMID:20051490

  4. The nuclear receptor corepressor has organizational effects within the developing amygdala on juvenile social play and anxiety-like behavior.

    PubMed

    Jessen, Heather M; Kolodkin, Mira H; Bychowski, Meaghan E; Auger, Catherine J; Auger, Anthony P

    2010-03-01

    Nuclear receptor function on DNA is regulated by the balanced recruitment of coregulatory complexes. Recruited proteins that increase gene expression are called coactivators, and those that decrease gene expression are called corepressors. Little is known about the role of corepressors, such as nuclear receptor corepressor (NCoR), on the organization of behavior. We used real-time PCR to show that NCoR mRNA levels are sexually dimorphic, that females express higher levels of NCoR mRNA within the developing amygdala and hypothalamus, and that NCoR mRNA levels are reduced by estradiol treatment. To investigate the functional role of NCoR on juvenile social behavior, we infused small interfering RNA targeted against NCoR within the developing rat amygdala and assessed the enduring impact on juvenile social play behavior, sociability, and anxiety-like behavior. As expected, control males exhibited higher levels of juvenile social play than control females. Reducing NCoR expression during development further increased juvenile play in males only. Interestingly, decreased NCoR expression within the developing amygdala had lasting effects on increasing juvenile anxiety-like behavior in males and females. These data suggest that the corepressor NCoR functions to blunt sex differences in juvenile play behavior, a sexually dimorphic and hormone-dependent behavior, and appears critical for appropriate anxiety-like behavior in juvenile males and females.

  5. Rac1-PAK2 pathway is essential for zebrafish heart regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Xiangwen; He, Quanze; Li, Guobao

    P-21 activated kinases, or PAKs, are serine–threonine kinases that play important roles in diverse heart functions include heart development, cardiovascular development and function in a range of models; however, the mechanisms by which PAKs mediate heart regeneration are unknown. Here, we demonstrate that PAK2 and PAK4 expression is induced in cardiomyocytes and vessels, respectively, following zebrafish heart injury. Inhibition of PAK2 and PAK4 using a specific small molecule inhibitor impedes cardiomyocyte proliferation/dedifferentiation and cardiovascular regeneration, respectively. Cdc42 is specifically expressed in the ventricle and may function upstream of PAK2 but not PAK4 under normal conditions and that cardiomyocyte proliferentation duringmore » heart regeneration relies on Rac1-mediated activation of Pak2. Our results indicate that PAKs play a key role in heart regeneration.« less

  6. Access management research and awareness program : phase IV final report

    DOT National Transportation Integrated Search

    1999-11-01

    Access management involves balancing the dual roles that roadways must play - through travel and access to property and economic activity. When these roles are not in proper balance, the result is a roadway system that functions sub-optimally. The Io...

  7. Microbial functional diversity plays an important role in the degradation of polyhydroxybutyrate (PHB) in soil.

    PubMed

    Dey, Samrat; Tribedi, Prosun

    2018-03-01

    Towards bioremediation of recalcitrant materials like synthetic polymer, soil has been recognized as a traditional site for disposal and subsequent degradation as some microorganisms in soil can degrade the polymer in a non-toxic, cost-effective, and environment friendly way. Microbial functional diversity is a constituent of biodiversity that includes wide range of metabolic activities that can influence numerous aspects of ecosystem functioning like ecosystem stability, nutrient availability, ecosystem dynamics, etc. Thus, in the current study, we assumed that microbial functional diversity could play an important role in polymer degradation in soil. To verify this hypothesis, we isolated soil from five different sites of landfill and examined several microbiological parameters wherein we observed a significant variation in heterotrophic microbial count as well as microbial activities among the soil microcosms tested. Multivariate analysis (principle component analysis) based on the carbon sources utilization pattern revealed that soil microcosms showed different metabolic patterns suggesting the variable distribution of microorganisms among the soil microcosms tested. Since microbial functional diversity depends on both microbial richness and evenness, Shannon diversity index was determined to measure microbial richness and Gini coefficient was determined to measure microbial evenness. The tested soil microcosms exhibited variation in both microbial richness and evenness suggesting the considerable difference in microbial functional diversity among the tested microcosms. We then measured polyhydroxybutyrate (PHB) degradation in soil microcosms after desired period of incubation of PHB in soil wherein we found that soil microcosms having higher functional diversity showed enhanced PHB degradation and soil microcosms having lower functional diversity showed reduced PHB degradation. We also noticed that all the tested soil microcosms showed similar pattern in both microbial functional diversity and PHB degradation suggesting a strong positive correlation ( r  = 0.95) between microbial functional diversity and PHB degradation. Thus, the results demonstrate that microbial functional diversity plays an important role in PHB degradation in soil by exhibiting versatile microbial metabolic potentials that lead to the enhanced degradation of PHB.

  8. The female player does not exist: gender identity relates to differences in player motivations and play styles.

    PubMed

    Poels, Karolien; De Cock, Nele; Malliet, Steven

    2012-11-01

    This study addresses the female player of massively multiplayer online (role-playing) games and investigates how gender identity (GI), indicating a person's identification with characteristics that are traditionally defined as masculine or feminine, can be used to explain playing patterns within the female gender group. Results from an online survey (n=466) show that females' player motivations and play styles vary as a function of their GI, indicating that it is a relevant and additional predictor of play behavior and confirming that female play behavior cannot be generalized based on stereotypical male/female conceptions.

  9. Contralateral Masking in Bilateral Cochlear Implant Patients: A Model of Medial Olivocochlear Function Loss

    PubMed Central

    Aronoff, Justin M.; Padilla, Monica; Fu, Qian-Jie; Landsberger, David M.

    2015-01-01

    Contralateral masking is the phenomenon where a masker presented to one ear affects the ability to detect a signal in the opposite ear. For normal hearing listeners, contralateral masking results in masking patterns that are both sharper and dramatically smaller in magnitude than ipsilateral masking. The goal of this study was to investigate whether medial olivocochlear (MOC) efferents are needed for the sharpness and relatively small magnitude of the contralateral masking function. To do this, bilateral cochlear implant patients were tested because, by directly stimulating the auditory nerve, cochlear implants circumvent the effects of the MOC efferents. The results indicated that, as with normal hearing listeners, the contralateral masking function was sharper than the ipsilateral masking function. However, although there was a reduction in the magnitude of the contralateral masking function compared to the ipsilateral masking function, it was relatively modest. This is in sharp contrast to the results of normal hearing listeners where the magnitude of the contralateral masking function is greatly reduced. These results suggest that MOC function may not play a large role in the sharpness of the contralateral masking function but may play a considerable role in the magnitude of the contralateral masking function. PMID:25798581

  10. Symbiodinium—Invertebrate Symbioses and the Role of Metabolomics

    PubMed Central

    Gordon, Benjamin R.; Leggat, William

    2010-01-01

    Symbioses play an important role within the marine environment. Among the most well known of these symbioses is that between coral and the photosynthetic dinoflagellate, Symbiodinium spp. Understanding the metabolic relationships between the host and the symbiont is of the utmost importance in order to gain insight into how this symbiosis may be disrupted due to environmental stressors. Here we summarize the metabolites related to nutritional roles, diel cycles and the common metabolites associated with the invertebrate-Symbiodinium relationship. We also review the more obscure metabolites and toxins that have been identified through natural products and biomarker research. Finally, we discuss the key role that metabolomics and functional genomics will play in understanding these important symbioses. PMID:21116405

  11. Uridine Nucleoside Thiation: Gas-Phase Structures and Energetics

    NASA Astrophysics Data System (ADS)

    Hamlow, Lucas; Lee, Justin; Rodgers, M. T.; Berden, Giel; Oomens, Jos

    2016-06-01

    The naturally occurring thiated uridine nucleosides, 4-thiouridine (s4Urd) and 2-thiouridine (s2Urd), play important roles in the function and analysis of a variety of RNAs. 2-Thiouridine and its C5 modified analogues are commonly found in tRNAs and are believed to play an important role in codon recognition possibly due to their different structure, which has been shown by NMR to be predominantly C3'-endo. 2-Thiouridine may also play an important role in facilitating nonenzymatic RNA replication and transcription. 4-Thiouridine is a commonly used photoactivatable crosslinker that is often used to study RNA-RNA and RNA-protein cross-linking behavior. Differences in the base pairing between uracil and 4-thiouracil with adenine and guanine are an important factor in their role as a cross linker. The photoactivity of s4Urd may also aid in preventing near-UV lethality in cells. An understanding of their intrinsic structure in the gas-phase may help further elucidate the roles these modified nucleosides play in the regulation of RNAs. In this work, infrared multiple photon dissociation (IRMPD) action spectra of the protonated forms of s2Urd and s4Urd were collected in the IR fingerprint region. Structural information is determined by comparison with theoretical linear IR spectra generated from density functional theory calculations using molecular modeling to generate low-energy candidate structures. Present results are compared with analogous results for the protonated forms of uridine and 2'-deoxyuridine as well as solution phase NMR data and crystal structures.

  12. The role of WOX genes in flower development

    PubMed Central

    Costanzo, Enrico; Trehin, Christophe; Vandenbussche, Michiel

    2014-01-01

    Background WOX (Wuschel-like homeobOX) genes form a family of plant-specific HOMEODOMAIN transcription factors, the members of which play important developmental roles in a diverse range of processes. WOX genes were first identified as determining cell fate during embryo development, as well as playing important roles in maintaining stem cell niches in the plant. In recent years, new roles have been identified in plant architecture and organ development, particularly at the flower level. Scope In this review, the role of WOX genes in flower development and flower architecture is highlighted, as evidenced from data obtained in the last few years. The roles played by WOX genes in different species and different flower organs are compared, and differential functional recruitment of WOX genes during flower evolution is considered. Conclusions This review compares available data concerning the role of WOX genes in flower and organ architecture among different species of angiosperms, including representatives of monocots and eudicots (rosids and asterids). These comparative data highlight the usefulness of the WOX gene family for evo–devo studies of floral development. PMID:24973416

  13. IG20/MADD Plays a Critical Role in Glucose-Induced Insulin Secretion

    PubMed Central

    Li, Liang-cheng; Wang, Yong; Carr, Ryan; Haddad, Christine Samir; Li, Ze; Qian, Lixia; Oberholzer, Jose; Maker, Ajay V.; Wang, Qian; Prabhakar, Bellur S.

    2014-01-01

    Pancreatic β-cell dysfunction is a common feature of type 2 diabetes. Earlier, we had cloned IG20 cDNA from a human insulinoma and had shown that IG20/MADD can encode six different splice isoforms that are differentially expressed and have unique functions, but its role in β-cell function was unexplored. To investigate the role of IG20/MADD in β-cell function, we generated conditional knockout (KMA1ko) mice. Deletion of IG20/MADD in β-cells resulted in hyperglycemia and glucose intolerance associated with reduced and delayed glucose-induced insulin production. KMA1ko β-cells were able to process insulin normally but had increased insulin accumulation and showed a severe defect in glucose-induced insulin release. These findings indicated that IG20/MADD plays a critical role in glucose-induced insulin release from β-cells and that its functional disruption can cause type 2 diabetes. The clinical relevance of these findings is highlighted by recent reports of very strong association of the rs7944584 single nucleotide polymorphism (SNP) of IG20/MADD with fasting hyperglycemia/diabetes. Thus, IG20/MADD could be a therapeutic target for type 2 diabetes, particularly in those with the rs7944584 SNP. PMID:24379354

  14. HTR1B as a risk profile maker in psychiatric disorders: a review through motivation and memory.

    PubMed

    Drago, Antonio; Alboni, Silvia; Brunello, Nicoletta; Nicoletta, Brunello; De Ronchi, Diana; Serretti, Alessandro

    2010-01-01

    Serotonin receptor 1B (HTR1B) is involved in the regulation of the serotonin system, playing different roles in specific areas of the brain. We review the characteristics of the gene coding for HTR1B, its product and the functional role of HTR1B in the neural networks involved in motivation and memory; the central role played by HTR1B in these functions is thoroughly depicted and show HTR1B to be a candidate modulator of the mnemonic and motivationally related symptoms in psychiatric illnesses. In order to challenge this assessment, we analyze how and how much the genetic variations located in the gene that codes for HTR1B impacts on the psychiatric phenotypes by reviewing the literature on this topic. We gathered partial evidence arising from genetic association studies, which suggests that HTR1B plays a relevant role in substance-related and obsessive compulsive disorders. On the other hand, no solid evidence for other psychiatric disorders was found. This finding is quite striking because of the heavy impairment of motivation and of mnemonic-related functions (for example, recall bias) that characterize major psychiatric disorders. The possible reasons for the contrast between the prime relevance of HTR1B in regulating memory and motivation and the limited evidence brought by genetic association studies in humans are discussed, and some suggestions for possible future directions are provided.

  15. A role for the PDZ-binding domain of the coxsackie B virus and adenovirus receptor (CAR) in cell adhesion and growth.

    PubMed

    Excoffon, Katherine J D Ashbourne; Hruska-Hageman, Alesia; Klotz, Michael; Traver, Geri L; Zabner, Joseph

    2004-09-01

    The coxsackie and adenovirus receptor (CAR) plays a role in viral infection, maintenance of the junction adhesion complex in polarized epithelia, and modulation of cellular growth properties. As a viral receptor, the C-terminus appears to play no role indicating that the major function of CAR is to tether the virus to the cell. By contrast, the C-terminus is known to play a role in cellular localization and probably has a significant function in CAR-mediated adhesion and cell growth properties. We hypothesized that the CAR PDZ (PSD-95/Disc-large/ZO-1) binding motif interacts with PDZ-domain-containing proteins to modulate the cellular phenotype. CAR was modified by deleting the last four amino acids (CARDeltaGSIV) and evaluated for cell-cell adhesion in polarized primary human airway epithelia and growth characteristics in stably transfected L-cells. Although ablation of the CAR PDZ-binding motif did not affect adenoviral infection, it did have a significant effect both on cell-cell adhesion and on cell growth. Expression of CARDeltaGSIV failed to increase the transepithelial resistance in polarized epithelia to the same degree as wild-type CAR and failed to act as a growth modulator in L-cells. Furthermore, we provide evidence for three new CAR interacting partners, including MAGI-1b, PICK1 and PSD-95. CAR appears to interact with several distinct PDZ-domain-containing proteins and may exert its biological function through these interactions.

  16. Functional role of AMP-activated protein kinase in the heart during exercise.

    PubMed

    Musi, Nicolas; Hirshman, Michael F; Arad, Michael; Xing, Yanqiu; Fujii, Nobuharu; Pomerleau, Jason; Ahmad, Ferhaan; Berul, Charles I; Seidman, Jon G; Tian, Rong; Goodyear, Laurie J

    2005-04-11

    AMP-activated protein kinase (AMPK) plays a critical role in maintaining energy homeostasis and cardiac function during ischemia in the heart. However, the functional role of AMPK in the heart during exercise is unknown. We examined whether acute exercise increases AMPK activity in mouse hearts and determined the significance of these increases by studying transgenic (TG) mice expressing a cardiac-specific dominant-negative (inactivating) AMPKalpha2 subunit. Exercise increased cardiac AMPKalpha2 activity in the wild type mice but not in TG. We found that inactivation of AMPK did not result in abnormal ATP and glycogen consumption during exercise, cardiac function assessed by heart rhythm telemetry and stress echocardiography, or in maximal exercise capacity.

  17. Arabidopsis CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor.

    PubMed

    Wang, Feifei; Wang, Lijuan; Qiao, Longfei; Chen, Jiacai; Pappa, Maria Belen; Pei, Haixia; Zhang, Tao; Chang, Caren; Dong, Chun-Hai

    2017-11-01

    The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane-bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor-interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi-fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1-1 and etr1-2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis. © 2017 Institute of Botany, Chinese Academy of Sciences.

  18. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell.

    PubMed

    Kagan, Herbert M; Li, Wande

    2003-03-01

    Lysyl oxidase (LO) plays a critical role in the formation and repair of the extracellular matrix (ECM) by oxidizing lysine residues in elastin and collagen, thereby initiating the formation of covalent crosslinkages which stabilize these fibrous proteins. Its catalytic activity depends upon both its copper cofactor and a unique carbonyl cofactor and has been shown to extend to a variety of basic globular proteins, including histone H1. Although the three-dimensional structure of LO has yet to be determined, the present treatise offers hypotheses based upon its primary sequence, which may underlie the prominent electrostatic component of its unusual substrate specificity as well as the catalysis-suppressing function of the propeptide domain of prolysyl oxidase. Recent studies have demonstrated that LO appears to function within the cell in a manner, which strongly modifies cellular activity. Newly discovered LO-like proteins also likely play unique roles in biology. Copyright 2002 Wiley-Liss, Inc.

  19. Brain glucose sensing, glucokinase and neural control of metabolism and islet function.

    PubMed

    Ogunnowo-Bada, E O; Heeley, N; Brochard, L; Evans, M L

    2014-09-01

    It is increasingly apparent that the brain plays a central role in metabolic homeostasis, including the maintenance of blood glucose. This is achieved by various efferent pathways from the brain to periphery, which help control hepatic glucose flux and perhaps insulin-stimulated insulin secretion. Also, critically important for the brain given its dependence on a constant supply of glucose as a fuel--emergency counter-regulatory responses are triggered by the brain if blood glucose starts to fall. To exert these control functions, the brain needs to detect rapidly and accurately changes in blood glucose. In this review, we summarize some of the mechanisms postulated to play a role in this and examine the potential role of the low-affinity hexokinase, glucokinase, in the brain as a key part of some of this sensing. We also discuss how these processes may become altered in diabetes and related metabolic diseases. © 2014 John Wiley & Sons Ltd.

  20. Brain glucose sensing, glucokinase and neural control of metabolism and islet function

    PubMed Central

    Ogunnowo-Bada, E O; Heeley, N; Brochard, L; Evans, M L

    2014-01-01

    It is increasingly apparent that the brain plays a central role in metabolic homeostasis, including the maintenance of blood glucose. This is achieved by various efferent pathways from the brain to periphery, which help control hepatic glucose flux and perhaps insulin-stimulated insulin secretion. Also, critically important for the brain given its dependence on a constant supply of glucose as a fuel – emergency counter-regulatory responses are triggered by the brain if blood glucose starts to fall. To exert these control functions, the brain needs to detect rapidly and accurately changes in blood glucose. In this review, we summarize some of the mechanisms postulated to play a role in this and examine the potential role of the low-affinity hexokinase, glucokinase, in the brain as a key part of some of this sensing. We also discuss how these processes may become altered in diabetes and related metabolic diseases. PMID:25200293

  1. Histamine regulation of pancreatitis and pancreatic cancer: a review of recent findings

    PubMed Central

    Francis, Taylor; Graf, Allyson; Hodges, Kyle; Kennedy, Lindsey; Hargrove, Laura; Price, Mattie; Kearney, Kate

    2013-01-01

    The pancreas is a dynamic organ that performs a multitude of functions within the body. Diseases that target the pancreas, like pancreatitis and pancreatic cancer, are devastating and often fatal to the suffering patient. Histamine and histamine receptors (H1-H4HRs) have been found to play a critical role in biliary diseases. Accordingly, the biliary tract and the pancreas share similarities with regards to morphological, phenotypical and functional features and disease progression, studies related the role of H1-H4HRs in pancreatic diseases are important. In this review, we have highlighted the role that histamine, histidine decarboxylase (HDC), histamine receptors and mast cells (the main source of histamine in the body) play during both pancreatitis and pancreatic cancer. The objective of the review is to demonstrate that histamine and histamine signaling may be a potential therapeutic avenue towards treatment strategies for pancreatic diseases. PMID:24570946

  2. PHANTASTICA regulates leaf polarity and petiole identity in Medicago truncatula

    PubMed Central

    Ge, Liangfa; Chen, Rujin

    2014-01-01

    Establishment of proper polarities along the adaxial-abaxial, proximodistal, and medial-lateral axes is a critical step for the expansion of leaves from leaf primordia. It has been shown that the MYB domain protein, ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (collectively named ARP) plays an important role in this process. Loss of function of ARP leads to severe leaf polarity defects, such as abaxialized or needle-like leaves. In addition to its role in leaf polarity establishment, we have recently shown that the Medicago truncatula ARP gene, MtPHAN, also plays a role in leaf petiole identity regulation. We show that a mutation of MtPHAN results in petioles acquiring characteristics of the motor organ, pulvinus, including small epidermal cells with extensive cell surface modifications and altered vascular tissue development. Taken together, our results reveal a previously unidentified function of ARP in leaf development. PMID:24603499

  3. Chloroplast in Plant-Virus Interaction

    PubMed Central

    Zhao, Jinping; Zhang, Xian; Hong, Yiguo; Liu, Yule

    2016-01-01

    In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction. PMID:27757106

  4. New developments in functional medical textiles and their mechanism of action

    USDA-ARS?s Scientific Manuscript database

    Functional medical textiles are undergoing a revolution in structural design. Medical textiles as non-implantables, implantables, and extracorporeals, are playing central roles in healthcare improvements enhancing and prolonging the quality of life. Developments in the design of materials that funct...

  5. Effects of Environmental Toxicants on the Neuroendocrine Control of Female Reproduction

    EPA Science Inventory

    The hypothalamus and pituitary are known to play key roles in reproductive function. A growing body of evidence indicates that environmental toxicants can alter female reproductive function by disrupting hypothalamic control of the pituitary and subsequently, the endocrine contro...

  6. Acidic Ca2+ stores in neurodegeneration

    PubMed Central

    Lloyd-Evans, Emyr

    2017-01-01

    Lysosomes have emerged in the last decade as an immensely important intracellular site of Ca2+ storage and signalling. More recently there has been an increase in the number of new ion channels found to be functional on lysosomes and the potential roles that these signalling pathways might play in fundamental cellular processes are being uncovered. Defects in lysosomal function have been shown to result in changes in lysosomal Ca2+ homeostasis and ultimately can result in cell death. Several neurodegenerative diseases, from rare lysosomal storage diseases through to more common diseases of ageing, have recently been identified as having alterations in lysosomal Ca2+ homeostasis that may play an important role in neuronal excitotoxicity and ultimately cell death. This review will critically summarise these recent findings. PMID:28593104

  7. Lymphoid microenvironments and innate lymphoid cells in the gut.

    PubMed

    Pearson, Claire; Uhlig, Holm H; Powrie, Fiona

    2012-06-01

    Gut-associated lymphoid tissue (GALT) is a sensor region for luminal content and plays an important role in lymphoid maturation, activation and differentiation. It comprises isolated and aggregated lymphoid follicles, cryptopatches (CPs) and tertiary lymphoid tissue. Innate lymphoid cells (ILCs) play a central role within GALT. Prenatal GALT development is dependent on ILC lymphoid-inducer function. Postnatally, these cells rapidly respond to commensal and pathogenic intestinal bacteria, parasites and food components by polarized cytokine production [such as interleukin (IL)-22, IL-17 or IL-13] and further contribute to GALT formation and function. Here, we discuss how ILCs shape lymphoid intestinal microenvironments and act as amplifier cells for innate and adaptive immune responses. Copyright © 2012. Published by Elsevier Ltd.

  8. Ontogenetic Trajectories of Chimpanzee Social Play: Similarities with Humans

    PubMed Central

    Cordoni, Giada; Palagi, Elisabetta

    2011-01-01

    Social play, a widespread phenomenon in mammals, is a multifunctional behavior, which can have many different roles according to species, sex, age, relationship quality between playmates, group membership, context, and habitat. Play joins and cuts across a variety of disciplines leading directly to inquiries relating to individual developmental changes and species adaptation, thus the importance of comparative studies appears evident. Here, we aim at proposing a possible ontogenetic pathway of chimpanzee play (Pan troglodytes) and contrast our data with those of human play. Chimpanzee play shows a number of changes from infancy to juvenility. Particularly, solitary and social play follows different developmental trajectories. While solitary play peaks in infancy, social play does not show any quantitative variation between infancy and juvenility but shows a strong qualitative variation in complexity, asymmetry, and playmate choice. Like laughter in humans, the playful expressions in chimpanzees (at the different age phases) seem to have a role in advertising cooperative dispositions and intentions thus increasing the likelihood of engaging in solid social relationships. In conclusion, in chimpanzees, as in humans, both play behavior and the signals that accompany play serve multiple functions according to the different age phases. PMID:22110630

  9. Ontogenetic trajectories of chimpanzee social play: similarities with humans.

    PubMed

    Cordoni, Giada; Palagi, Elisabetta

    2011-01-01

    Social play, a widespread phenomenon in mammals, is a multifunctional behavior, which can have many different roles according to species, sex, age, relationship quality between playmates, group membership, context, and habitat. Play joins and cuts across a variety of disciplines leading directly to inquiries relating to individual developmental changes and species adaptation, thus the importance of comparative studies appears evident. Here, we aim at proposing a possible ontogenetic pathway of chimpanzee play (Pan troglodytes) and contrast our data with those of human play. Chimpanzee play shows a number of changes from infancy to juvenility. Particularly, solitary and social play follows different developmental trajectories. While solitary play peaks in infancy, social play does not show any quantitative variation between infancy and juvenility but shows a strong qualitative variation in complexity, asymmetry, and playmate choice. Like laughter in humans, the playful expressions in chimpanzees (at the different age phases) seem to have a role in advertising cooperative dispositions and intentions thus increasing the likelihood of engaging in solid social relationships. In conclusion, in chimpanzees, as in humans, both play behavior and the signals that accompany play serve multiple functions according to the different age phases.

  10. Information Assurance Alignment: A Study of Performance Impacts

    ERIC Educational Resources Information Center

    Ghezal, Said

    2011-01-01

    The positive effect on performance of the alignment between a business strategy and its different functional strategies has a wide support in the literature. As an emerging functional area, information assurance has come to play a strategic role by providing all departments and functions across an organization with a reliable, safe, and efficient…

  11. Effect of a nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    USDA-ARS?s Scientific Manuscript database

    Nicotinic acetylcholine receptors (nAChR) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChR located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The...

  12. CXCR4 in breast cancer: oncogenic role and therapeutic targeting

    PubMed Central

    Xu, Chao; Zhao, Hong; Chen, Haitao; Yao, Qinghua

    2015-01-01

    Chemokines are 8–12 kDa peptides that function as chemoattractant cytokines and are involved in cell activation, differentiation, and trafficking. Chemokines bind to specific G-protein-coupled seven-span transmembrane receptors. Chemokines play a fundamental role in the regulation of a variety of cellular, physiological, and developmental processes. Their aberrant expression can lead to a variety of human diseases including cancer. C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, is an alpha-chemokine receptor specific for stromal-derived-factor-1 (SDF-1 also called CXCL12). CXCR4 belongs to the superfamily of the seven transmembrane domain heterotrimeric G protein-coupled receptors and is functionally expressed on the cell surface of various types of cancer cells. CXCR4 also plays a role in the cell proliferation and migration of these cells. Recently, CXCR4 has been reported to play an important role in cell survival, proliferation, migration, as well as metastasis of several cancers including breast cancer. This review is mainly focused on the current knowledge of the oncogenic role and potential drugs that target CXCR4 in breast cancer. Additionally, CXCR4 proangiogenic molecular mechanisms will be reviewed. Strict biunivocal binding affinity and activation of CXCR4/CXCL12 complex make CXCR4 a unique molecular target for prevention and treatment of breast cancer. PMID:26356032

  13. Novel Functions of MicroRNA-17-92 Cluster in the Endocrine System.

    PubMed

    Wan, Shan; Chen, Xiang; He, Yuedong; Yu, Xijie

    2018-01-01

    MiR-17-92 cluster is coded by MIR17HG in chromosome 13, which is highly conserved in vertebrates. Published literatures have proved that miR-17-92 cluster critically regulates tumorigenesis and metastasis. Recent researches showed that the miR-17-92 cluster also plays novel functions in the endocrine system. To summarize recent findings on the physiological and pathological roles of miR-17-92 cluster in bone, lipid and glucose metabolisms. MiR-17-92 cluster plays significant regulatory roles in bone development and metabolism through regulating the differentiation and function of osteoblasts and osteoclasts. In addition, miR-17- 92 cluster is nearly involved in every aspect of lipid metabolism. Last but not the least, the miR-17-92 cluster is closely bound up with pancreatic beta cell function, development of type 1 diabetes and insulin resistance. However, whether miR-17-92 cluster is involved in the communication among bone, fat and glucose metabolisms remains unknown. Growing evidence indicates that miR-17-92 cluster plays significant roles in bone, lipid and glucose metabolisms through a variety of signaling pathways. Fully understanding its modulating mechanisms may necessarily facilitate to comprehend the clinical and molecule features of some metabolic disorders such as osteoporosis, arthrosclerosis and diabetes mellitus. It may provide new drug targets to prevent and cure these disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology.

    PubMed

    Turan, Belma; Tuncay, Erkan

    2017-11-12

    Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn 2+ . Although Zn 2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn 2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn 2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn 2+ -diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn 2+ in parallel to the discovery of subcellular localization of Zn 2+ -transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn 2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca 2+ dynamics. Cellular labile Zn 2+ is tightly regulated against its adverse effects through either Zn 2+ -transporters, Zn 2+ -binding molecules or Zn 2+ -sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn 2+ distribution in cardiomyocytes and how a remodeling of cellular Zn 2+ -homeostasis can be important in proper cell function with Zn 2+ -transporters under hyperglycemia. We also emphasize the recent investigations on Zn 2+ -transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes.

  15. Salicylic acid beyond defence: its role in plant growth and development.

    PubMed

    Rivas-San Vicente, Mariana; Plasencia, Javier

    2011-06-01

    In recent years salicylic acid (SA) has been the focus of intensive research due to its function as an endogenous signal mediating local and systemic plant defence responses against pathogens. It has also been found that SA plays a role during the plant response to abiotic stresses such as drought, chilling, heavy metal toxicity, heat, and osmotic stress. In this sense, SA appears to be, just like in mammals, an 'effective therapeutic agent' for plants. Besides this function during biotic and abiotic stress, SA plays a crucial role in the regulation of physiological and biochemical processes during the entire lifespan of the plant. The discovery of its targets and the understanding of its molecular modes of action in physiological processes could help in the dissection of the complex SA signalling network, confirming its important role in both plant health and disease. Here, the evidence that supports the role of SA during plant growth and development is reviewed by comparing experiments performed by exogenous application of SA with analysis of genotypes affected by SA levels and/or perception.

  16. The Primary Role of Fibrinogen-Related Proteins in Invertebrates Is Defense, Not Coagulation

    PubMed Central

    Hanington, Patrick C.; Zhang, Si-Ming

    2010-01-01

    In vertebrates, the conversion of fibrinogen into fibrin is an essential process that underlies the establishment of the supporting protein framework required for coagulation. In invertebrates, fibrinogen-domain-containing proteins play a role in the defense response generated against pathogens; however, they do not function in coagulation, suggesting that this role has been recently acquired. Molecules containing fibrinogen motifs have been identified in numerous invertebrate organisms, and most of these molecules known to date have been linked to defense. Moreover, recent genome projects of invertebrate animals have revealed surprisingly high numbers of fibrinogen-like loci in their genomes, suggesting important and perhaps diverse functions of fibrinogen-like proteins in invertebrates. The ancestral role of molecules containing fibrinogen-related domains (FReDs) with immunity is the focus of this review, with emphasis on specific FReDs called fibrinogen-related proteins (FREPs) identified from the schistosome-transmitting mollusc Biomphalaria glabrata. Herein, we outline the range of invertebrate organisms FREPs can be found in, and detail the roles these molecules play in defense and protection against infection. PMID:21063081

  17. [Biology and immunotherapy advance of interleukin 2 and interleukin 15-review].

    PubMed

    Chen, Guang-Hua; Wu, De-Pei

    2009-08-01

    IL-2 and IL-15 play an important roles in regulating the lymphocyte function and homeostasis. Advances in understanding of the cellular and molecular biology of IL-2 and IL-15 and their receptor complex have provided rationale to better utilize them to expand and activate immune effectors in patients with cancer. These two cytokines stimulate similar responses from lymphocytes in vitro, but play markedly distinct roles in lymphoid biology in vivo. Their distinct physiological functions can be ascribed to distinct signaling pathways initiated by distinct cytokine receptor subunits, differential expression patterns of their receptors. Recently, the discovery of a novel mechanism of IL-15 cytokine signaling, trans-presentation, has provided insights into the divergent ways of these cytokine function. Although their heterotrimeric receptors have two receptor subunits in common, these two cytokines have contrasting roles in adaptive immune responses. The unique role of interleukin 2 is in the elimination of self-reactive T cells to prevent autoimmunity. By contrast, interleukin 15 is dedicated to the prolonged maintenance of memory T-cell responses to pathogens. As discussed in this article, the biology of IL-2 and IL-15 two cytokines will affect the development of novel treatment for malignancies and autoimmune diseases.

  18. Sucrose metabolism gene families and their biological functions

    PubMed Central

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-01-01

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions. PMID:26616172

  19. Macrophages: contributors to allograft dysfunction, repair, or innocent bystanders?

    PubMed

    Mannon, Roslyn B

    2012-02-01

    Macrophages are members of the innate immune response. However, their role in the adaptive immune response is not known. The purpose of this review is to highlight our current understanding of macrophage structure and function and how they may participate in allograft injury. Studies in acute kidney injury models identify macrophages as key mediators of inflammatory injury, while more recent studies indicate that they may play a reparative role, depending on phenotype - M1 or M2 type macrophages. Mregs, generated in vitro, appear to have immune suppressive abilities and a unique phenotype. In solid-organ transplant, the emphasis of studies has been on acute or chronic injury. These data are derived from animal models using depletion of macrophages or antagonizing their activation and inflammatory responses. The relative contribution of macrophage phenotype in transplantation has not been explored. These studies suggest that macrophages play an injurious role in acute cellular allograft rejection, as well as in chronic injury. Infiltration of an allograft with macrophages is also associated with worse graft function and poor prognosis. Further studies are needed to understand the mechanisms of macrophage-mediated injury, explore their potential reparative role, and determine if they or their functional products are biomarkers of poor graft outcomes.

  20. OCTOPUS-LIKE 2, a novel player in Arabidopsis root and vascular development, reveals a key role for OCTOPUS family genes in root metaphloem sieve tube differentiation.

    PubMed

    Ruiz Sola, M Aguila; Coiro, Mario; Crivelli, Simona; Zeeman, Samuel C; Schmidt Kjølner Hansen, Signe; Truernit, Elisabeth

    2017-12-01

    Protophloem and metaphloem sieve tubes are essential for transporting carbohydrates and signalling molecules towards sink tissues. OCTOPUS (OPS) was previously identified as an important regulator of protophloem differentiation in Arabidopsis roots. Here, we investigated the role of OCTOPUS-LIKE 2 (OPL2), a gene homologous to OPS. OPL2 expression patterns were analysed, and functional equivalence of OPS and OPL2 was tested. Mutant and double mutant phenotypes were investigated. OPS and OPL2 displayed overlapping expression patterns and a high degree of functional overlap. A mutation in OPL2 revealed redundant functions of OPS and OPL2 in developmental processes in which OPS was known to play a role, notably cotyledon vascular patterning and protophloem development. Moreover, we also uncovered redundant roles for OPS and OPL2 in leaf vascular patterning and, most interestingly, metaphloem sieve tube differentiation. Our results reveal a novel OPS-like protein that, together with OPS, is an important regulator of vascular patterning, root growth and phloem development. OPS and OPL2 are the first genes identified that play a role in metaphloem sieve tube differentiation. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. Mechanotransduction in Endothelial Cells Studied with Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Chien, Shu

    2011-01-01

    Mechanotransduction involves the conversion of mechanical stimuli to intracellular signaling to modulate gene and protein expressions and hence cellular functions in endothelial cells, thus playing importance roles in the regulation of homeostasis in health and disease. The aim of this paper is to investigate the dynamics of mechanotransduction in endothelial cells by the use of fluorescent resonance energy transfer (FRET) to study the temporal and spatial activation of Src kinase and focal adhesion kinase, both of which play critical roles in many cellular processes. The results have contributed to the elucidation of the roles of these two important signaling molecules and their interactions in mediating mechanotransduction.

  2. The intrinsic circadian clock within the cardiomyocyte directly regulates myocardial gene expression, metabolism, and contractile function

    USDA-ARS?s Scientific Manuscript database

    Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology remains unknown. We hypothesized that circadian clock within the cardiomyocyte plays a role in regulating myocardia...

  3. The intrinsic circadian clock within the cardiomyocyte directly regulates myocardial gene expression, metabolism, and contractile function

    USDA-ARS?s Scientific Manuscript database

    Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology remains unknown. We hypothesized that the circadian clock within the cardiomyocyte plays a role in regulating myo...

  4. Myosin motor function: the ins and outs of actin-based membrane protrusions

    PubMed Central

    Nambiar, Rajalakshmi; McConnell, Russell E.

    2011-01-01

    Cells build plasma membrane protrusions supported by parallel bundles of F-actin to enable a wide variety of biological functions, ranging from motility to host defense. Filopodia, microvilli and stereocilia are three such protrusions that have been the focus of intense biological and biophysical investigation in recent years. While it is evident that actin dynamics play a significant role in the formation of these organelles, members of the myosin superfamily have also been implicated as key players in the maintenance of protrusion architecture and function. Based on a simple analysis of the physical forces that control protrusion formation and morphology, as well as our review of available data, we propose that myosins play two general roles within these structures: (1) as cargo transporters to move critical regulatory components toward distal tips and (2) as mediators of membrane-cytoskeleton adhesion. PMID:20107861

  5. The Extracellular δ-Domain is Essential for the Formation of CD81 Tetraspanin Webs

    PubMed Central

    Homsi, Yahya; Schloetel, Jan-Gero; Scheffer, Konstanze D.; Schmidt, Thomas H.; Destainville, Nicolas; Florin, Luise; Lang, Thorsten

    2014-01-01

    CD81 is a ubiquitously expressed member of the tetraspanin family. It forms large molecular platforms, so-called tetraspanin webs that play physiological roles in a variety of cellular functions and are involved in viral and parasite infections. We have investigated which part of the CD81 molecule is required for the formation of domains in the cell membranes of T-cells and hepatocytes. Surprisingly, we find that large CD81 platforms assemble via the short extracellular δ-domain, independent from a strong primary partner binding and from weak interactions mediated by palmitoylation. The δ-domain is also essential for the platforms to function during viral entry. We propose that, instead of stable binary interactions, CD81 interactions via the small δ-domain, possibly involving a dimerization step, play the key role in organizing CD81 into large tetraspanin webs and controlling its function. PMID:24988345

  6. Placental sulphate transport: a review of functional and molecular studies.

    PubMed

    Shennan, D B

    2012-08-01

    Sulphate is required by the feto-placental unit for a number of important conjugation and biosynthetic pathways. Functional studies performed several decades ago established that sulphate transport in human placental microvillus and basal membrane vesicles was mainly via a DIDS-sensitive anion-exchange mechanism. In contrast, no evidence was found for Na⁺-dependent transport. Studies performed using isolated human placental tissue confirmed anion-exchange as the main mechanism. More recently, molecular studies have established the presence of anion-exchange proteins which could play a role in transplacental sulphate movement. However, the presence of transcripts for NaS2 has been reported and has prompted the suggestion that Na⁺-sulphate cotransport may play an important role in maternal-fetal sulphate transport. This article reviews our present knowledge of placental sulphate transport, both functional and molecular, and attempts to form a model based on the available evidence. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. **1**5N-NMR INVESTIGATION OF HYDROXYLAMINE DERIVATIZED HUMIC SUBSTANCES.

    USGS Publications Warehouse

    Thorn, Kevin A.; Arterburn, Jeffrey B.; Mikita, Michael A.

    1986-01-01

    Humic substances are the most abundant naturally occurring refactory organic compounds in soils and water. They have a broad range of physical, chemical and physiological properties. In soils, humic substances contribute to the cation exchange capacity, help maintain the physical structure, and play a role in plant growth and nutrition. In aquatic systems, humic substances serve to regulate the levels of inorganic constituents, yield trihalomethanes upon chlorination, and transport or concentrate organic and inorganic pollutants. The oxygen containing functional groups of humic and fulvic acids are believed to play a key role in the chemical properties of humic substances. This study was undertaken to gain additional information on the specific types of oxygen functionalities in humic substances. Since the analysis of hydroxyl moieties had been earlier established, we focused our attention on the analysis of ketone and aldehyde functional groups in humic substances.

  8. The Role of Glia in Sleep Regulation and Function.

    PubMed

    Frank, Marcos G

    2018-01-28

    The cellular mechanisms governing the expression, regulation, and function of sleep are not entirely understood. The traditional view is that these mechanisms are neuronal. An alternative view is that glial brain cells may play important roles in these processes. Their ubiquity in the central nervous system makes them well positioned to modulate neuronal circuits that gate sleep and wake. Their ability to respond to chemical neuronal signals suggests that they form feedback loops with neurons that may globally regulate neuronal activity. Their potential role in detoxifying the brain, regulating neuronal metabolism, and promoting synaptic plasticity raises the intriguing possibility that glia mediate important functions ascribed to sleep.

  9. Divergent and convergent roles for insulin-like peptides in the worm, fly and mammalian nervous systems.

    PubMed

    Lau, Hiu E; Chalasani, Sreekanth H

    2014-09-01

    Insulin signaling plays a critical role in coupling external changes to animal physiology and behavior. Despite remarkable conservation in the insulin signaling pathway components across species, divergence in the mechanism and function of the signal is evident. Focusing on recent findings from C. elegans, D. melanogaster and mammals, we discuss the role of insulin signaling in regulating adult neuronal function and behavior. In particular, we describe the transcription-dependent and transcription-independent aspects of insulin signaling across these three species. Interestingly, we find evidence of diverse mechanisms underlying complex networks of peptide action in modulating nervous system function.

  10. Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles

    PubMed Central

    Ang, Swee Kim; Zhang, Mengqi; Lodi, Tiziana; Lu, Hui

    2014-01-01

    Erv1 (essential for respiration and viability 1), is an essential component of the MIA (mitochondrial import and assembly) pathway, playing an important role in the oxidative folding of mitochondrial intermembrane space proteins. In the MIA pathway, Mia40, a thiol oxidoreductase with a CPC motif at its active site, oxidizes newly imported substrate proteins. Erv1 a FAD-dependent thiol oxidase, in turn reoxidizes Mia40 via its N-terminal Cys30–Cys33 shuttle disulfide. However, it is unclear how the two shuttle cysteine residues of Erv1 relay electrons from the Mia40 CPC motif to the Erv1 active-site Cys130–Cys133 disulfide. In the present study, using yeast genetic approaches we showed that both shuttle cysteine residues of Erv1 are required for cell growth. In organelle and in vitro studies confirmed that both shuttle cysteine residues were indeed required for import of MIA pathway substrates and Erv1 enzyme function to oxidize Mia40. Furthermore, our results revealed that the two shuttle cysteine residues of Erv1 are functionally distinct. Although Cys33 is essential for forming the intermediate disulfide Cys33–Cys130′ and transferring electrons to the redox active-site directly, Cys30 plays two important roles: (i) dominantly interacts and receives electrons from the Mia40 CPC motif; and (ii) resolves the Erv1 Cys33–Cys130 intermediate disulfide. Taken together, we conclude that both shuttle cysteine residues are required for Erv1 function, and play complementary, but distinct, roles to ensure rapid turnover of active Erv1. PMID:24625320

  11. The Epidermal Growth Factor Receptor Critically Regulates Endometrial Function during Early Pregnancy

    PubMed Central

    Large, Michael J.; Wetendorf, Margeaux; Lanz, Rainer B.; Hartig, Sean M.; Creighton, Chad J.; Mancini, Michael A.; Kovanci, Ertug; Lee, Kuo-Fen; Threadgill, David W.; Lydon, John P.; Jeong, Jae-Wook; DeMayo, Francesco J.

    2014-01-01

    Infertility and adverse gynecological outcomes such as preeclampsia and miscarriage represent significant female reproductive health concerns. The spatiotemporal expression of growth factors indicates that they play an important role in pregnancy. The goal of this study is to define the role of the ERBB family of growth factor receptors in endometrial function. Using conditional ablation in mice and siRNA in primary human endometrial stromal cells, we identified the epidermal growth factor receptor (Egfr) to be critical for endometrial function during early pregnancy. While ablation of Her2 or Erbb3 led to only a modest reduction in litter size, mice lacking Egfr expression are severely subfertile. Pregnancy demise occurred shortly after blastocyst implantation due to defects in decidualization including decreased proliferation, cell survival, differentiation and target gene expression. To place Egfr in a genetic regulatory hierarchy, transcriptome analyses was used to compare the gene signatures from mice with conditional ablation of Egfr, wingless-related MMTV integration site 4 (Wnt4) or boneless morphogenic protein 2 (Bmp2); revealing that not only are Bmp2 and Wnt4 key downstream effectors of Egfr, but they also regulate distinct physiological functions. In primary human endometrial stromal cells, marker gene expression, a novel high content image-based approach and phosphokinase array analysis were used to demonstrate that EGFR is a critical regulator of human decidualization. Furthermore, inhibition of EGFR signaling intermediaries WNK1 and AKT1S1, members identified in the kinase array and previously unreported to play a role in the endometrium, also attenuate decidualization. These results demonstrate that EGFR plays an integral role in establishing the cellular context necessary for successful pregnancy via the activation of intricate signaling and transcriptional networks, thereby providing valuable insight into potential therapeutic targets. PMID:24945252

  12. ROCK inhibition abolishes the establishment of the aquiferous system in Ephydatia muelleri (Porifera, Demospongiae).

    PubMed

    Schenkelaars, Quentin; Quintero, Omar; Hall, Chelsea; Fierro-Constain, Laura; Renard, Emmanuelle; Borchiellini, Carole; Hill, April L

    2016-04-15

    The Rho associated coiled-coil protein kinase (ROCK) plays crucial roles in development across bilaterian animals. The fact that the Rho/Rock pathway is required to initiate epithelial morphogenesis and thus to establish body plans in bilaterians makes this conserved signaling pathway key for studying the molecular mechanisms that may control early development of basally branching metazoans. The purpose of this study was to evaluate whether or not the main components of this signaling pathway exist in sponges, and if present, to investigate the possible role of the regulatory network in an early branching non-bilaterian species by evaluating ROCK function during Ephydatia muelleri development. Molecular phylogenetic analyses and protein domain predictions revealed the existence of Rho/Rock components in all studied poriferan lineages. Binding assays revealed that both Y-27632 and GSK429286A are capable of inhibiting Em-ROCK activity in vitro. Treatment with both drugs leads to impairment of growth and formation of the basal pinacoderm layer in the developing sponge. Furthermore, inhibition of Em-Rock prevents the establishment of a functional aquiferous system, including the absence of an osculum. In contrast, no effect of ROCK inhibition was observed in juvenile sponges that already possess a fully developed and functional aquiferous system. Thus, the Rho/Rock pathway appears to be essential for the proper development of the freshwater sponge, and may play a role in various cell behaviors (e.g. cell proliferation, cell adhesion and cell motility). Taken together, these data are consistent with an ancestral function of Rho/Rock signaling in playing roles in early developmental processes and may provide a new framework to study the interaction between Wnt signaling and the Rho/Rock pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Covering Numbers for Semicontinuous Functions

    DTIC Science & Technology

    2016-04-29

    functions, epi-distance, Attouch-Wets topology, epi-convergence, epi-spline, approximation theory . Date: April 29, 2016 1 Introduction Covering numbers of...classes of functions play central roles in parts of information theory , statistics, and applications such as machine learning; see for example [26...probability theory because there the hypo-distance metrizes weak convergence of distribution functions on IRd, which obviously are usc [22]. Thus, as an

  14. The KATP channel in migraine pathophysiology: a novel therapeutic target for migraine.

    PubMed

    Al-Karagholi, Mohammad Al-Mahdi; Hansen, Jakob Møller; Severinsen, Johanne; Jansen-Olesen, Inger; Ashina, Messoud

    2017-08-23

    To review the distribution and function of K ATP channels, describe the use of K ATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. K ATP channels are widely present in the trigeminovascular system and play an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic K ATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that K ATP channel opening may cause headache, possibly due to vascular mechanisms. Whether K ATP channel openers can provoke migraine in migraine sufferers is not known. We suggest that K ATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target.

  15. Plant diversity and root traits benefit physical properties key to soil function in grasslands.

    PubMed

    Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D

    2016-09-01

    Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties. © 2016 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  16. C/EBPα deregulation as a paradigm for leukemogenesis.

    PubMed

    Pulikkan, J A; Tenen, D G; Behre, G

    2017-11-01

    Myeloid master regulator CCAAT enhancer-binding protein alpha (C/EBPα) is deregulated by multiple mechanisms in leukemia. Inhibition of C/EBPα function plays pivotal roles in leukemogenesis. While much is known about how C/EBPα orchestrates granulopoiesis, our understanding of molecular transformation events, the role(s) of cooperating mutations and clonal evolution during C/EBPα deregulation in leukemia remains elusive. In this review, we will summarize the latest research addressing these topics with special emphasis on CEBPA mutations. We conclude by describing emerging therapeutic strategies to restore C/EBPα function.

  17. Trends in sensorimotor research and countermeasures for exploration-class space flights.

    PubMed

    Shelhamer, Mark

    2015-01-01

    Research in the area of sensorimotor and neurovestibular function has played an important role in enabling human space flight. This role, however, is changing. One of the key aspects of sensorimotor function relevant to this role will build on its widespread connections with other physiological and psychological systems in the body. The firm knowledge base in this area can provide a strong platform to explore these interactions, which can also provide for the development of effective and efficient countermeasures to the deleterious effects of space flight.

  18. Pigment-Dispersing Factor Signaling and Circadian Rhythms in Insect Locomotor Activity

    PubMed Central

    Shafer, Orie T.; Yao, Zepeng

    2014-01-01

    Though expressed in relatively few neurons in insect nervous systems, pigment-dispersing factor (PDF) plays many roles in the control of behavior and physiology. PDF’s role in circadian timekeeping is its best-understood function and the focus of this review. Here we recount the isolation and characterization of insect PDFs, review the evidence that PDF acts as a circadian clock output factor, and discuss emerging models of how PDF functions within circadian clock neuron network of Drosophila, the species in which this peptide’s circadian roles are best understood. PMID:25386391

  19. The Role of Hellinger Processes in Mathematical Finance

    NASA Astrophysics Data System (ADS)

    Choulli, T.; Hurd, T. R.

    2001-09-01

    This paper illustrates the natural role that Hellinger processes can play in solving problems from ¯nance. We propose an extension of the concept of Hellinger process applicable to entropy distance and f-divergence distances, where f is a convex logarithmic function or a convex power function with general order q, 0 6= q < 1. These concepts lead to a new approach to Merton's optimal portfolio problem and its dual in general L¶evy markets.

  20. NK cell subsets in autoimmune diseases.

    PubMed

    Zhang, Cai; Tian, Zhigang

    2017-09-01

    Natural killer (NK) cells are lymphocytes of the innate immune system. They not only exert cell-mediated cytotoxicity against tumor cells or infected cells, but also play regulatory role through promoting or suppressing functions of other immune cells by secretion of cytokines and chemokines. However, overactivation or dysfunction of NK cells may be associated with pathogenesis of some diseases. NK cells are found to act as a two edged weapon and play opposite roles with both regulatory and inducer activity in autoimmune diseases. Though the precise mechanisms for the opposite effects of NK cells has not been fully elucidated, the importance of NK cells in autoimmune diseases might be associated with different NK cell subsets, different tissue microenvironment and different stages of corresponding diseases. The local tissue microenvironment, unique cellular interactions and different stages of corresponding diseases shape the properties and function of NK cells. In this review, we focus on recent research on the features and function of different NK cell subsets, particularly tissue-resident NK cells in different tissues, and their potential role in autoimmune diseases. Copyright © 2017. Published by Elsevier Ltd.

  1. Does Loneliness Necessarily Lead to a Decrease in Prosocial Behavior? The Roles of Gender and Situation.

    PubMed

    Huang, Heqing; Liu, Yanchun; Liu, Xiaocen

    2016-01-01

    Although, previous studies show overwhelming evidence that loneliness is negatively correlated with prosocial behavior, some theories and research have implied that under certain situations, loneliness plays a positive role in an individual's social functioning. The two studies reported in this article examined loneliness and its associations with prosocial behavior in Chinese adults using subjective reporting and experimental design. Study 1 examined 305 Chinese adults (175 males) using the Social and Emotional Loneliness Scale for Adults and the Prosocial Tendencies Measure to evaluate their loneliness and prosocial tendencies. The results showed that loneliness was negatively associated with all prosocial tendencies except the public prosocial tendency. Study 2 examined 177 Chinese adults (61 males) using an experimental design and found that only lonely women in public situations expressed a greater willingness to help. The results also suggest that loneliness may play a positive role in the social functioning of individuals under certain conditions. The function of loneliness and the implications of the association between loneliness and prosocial behavior are discussed.

  2. Does Loneliness Necessarily Lead to a Decrease in Prosocial Behavior? The Roles of Gender and Situation

    PubMed Central

    Huang, Heqing; Liu, Yanchun; Liu, Xiaocen

    2016-01-01

    Although, previous studies show overwhelming evidence that loneliness is negatively correlated with prosocial behavior, some theories and research have implied that under certain situations, loneliness plays a positive role in an individual's social functioning. The two studies reported in this article examined loneliness and its associations with prosocial behavior in Chinese adults using subjective reporting and experimental design. Study 1 examined 305 Chinese adults (175 males) using the Social and Emotional Loneliness Scale for Adults and the Prosocial Tendencies Measure to evaluate their loneliness and prosocial tendencies. The results showed that loneliness was negatively associated with all prosocial tendencies except the public prosocial tendency. Study 2 examined 177 Chinese adults (61 males) using an experimental design and found that only lonely women in public situations expressed a greater willingness to help. The results also suggest that loneliness may play a positive role in the social functioning of individuals under certain conditions. The function of loneliness and the implications of the association between loneliness and prosocial behavior are discussed. PMID:27695429

  3. DNA methylation in insects: on the brink of the epigenomic era.

    PubMed

    Glastad, K M; Hunt, Brendan G; Yi, S V; Goodisman, M A D

    2011-10-01

    DNA methylation plays an important role in gene regulation in animals. However, the evolution and function of DNA methylation has only recently emerged as the subject of widespread study in insects. In this review we profile the known distribution of DNA methylation systems across insect taxa and synthesize functional inferences from studies of DNA methylation in insects and vertebrates. Unlike vertebrate genomes, which tend to be globally methylated, DNA methylation is primarily targeted to genes in insects. Nevertheless, mounting evidence suggests that a specialized role exists for genic methylation in the regulation of transcription, and possibly mRNA splicing, in both insects and mammals. Investigations in several insect taxa further reveal that DNA methylation is preferentially targeted to ubiquitously expressed genes and may play a key role in the regulation of phenotypic plasticity. We suggest that insects are particularly amenable to advancing our understanding of the biological functions of DNA methylation, because insects are evolutionarily diverse, display several lineage-specific losses of DNA methylation and possess tractable patterns of DNA methylation in moderately sized genomes. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  4. Hydrolase treatments help unravel the function of intervessel pits in xylem hydraulics.

    PubMed

    Dusotoit-Coucaud, Anaïs; Brunel, Nicole; Tixier, Aude; Cochard, Hervé; Herbette, Stéphane

    2014-03-01

    Intervessel pits are structures that play a key role in the efficiency and safety functions of xylem hydraulics. However, little is known about the components of the pit membrane (PM) and their role in hydraulic functions, especially in resistance to cavitation. We tested the effect of commercial chemicals including a cellulase, a hemicellulase, a pectolyase, a proteinase and DTT on xylem hydraulic properties: vulnerability to cavitation (VC) and conductance. The effects were tested on branch segments from Fagus sylvatica (where the effects on pit structure were analyzed using TEM) and Populus tremula. Cellulose hydrolysis resulted in a sharp increase in VC and a significant increase in conductance, related to complete breakdown of the PM. Pectin hydrolysis also induced a sharp increase in VC but with no effect on conductance or pit structure observable by TEM. The other treatments with hemicellulase, proteinase or DTT showed no effect. This study brings evidence that cellulose and pectins are critical components underpinning VC, and that PM components may play distinct roles in the xylem hydraulic safety and efficiency. © 2013 Scandinavian Plant Physiology Society.

  5. Mast cells in airway diseases and interstitial lung disease.

    PubMed

    Cruse, Glenn; Bradding, Peter

    2016-05-05

    Mast cells are major effector cells of inflammation and there is strong evidence that mast cells play a significant role in asthma pathophysiology. There is also a growing body of evidence that mast cells contribute to other inflammatory and fibrotic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. This review discusses the role that mast cells play in airway diseases and highlights how mast cell microlocalisation within specific lung compartments and their cellular interactions are likely to be critical for their effector function in disease. Published by Elsevier B.V.

  6. The ApoE receptors Vldlr and Apoer2 in central nervous system function and disease.

    PubMed

    Lane-Donovan, Courtney; Herz, Joachim

    2017-06-01

    The LDL receptor (LDLR) family has long been studied for its role in cholesterol transport and metabolism; however, the identification of ApoE4, an LDLR ligand, as a genetic risk factor for late-onset Alzheimer's disease has focused attention on the role this receptor family plays in the CNS. Surprisingly, it was discovered that two LDLR family members, ApoE receptor 2 (Apoer2) and VLDL receptor (Vldlr), play key roles in brain development and adult synaptic plasticity, primarily by mediating Reelin signaling. This review focuses on Apoer2 and Vldlr signaling in the CNS and its role in human disease. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. The Role of the School Library: Reflections from Sweden

    ERIC Educational Resources Information Center

    Avery, Helen

    2014-01-01

    Libraries are critical learning spaces and may play a significant role in intercultural education initiatives, particularly in Sweden where the national curriculum ascribes central functions to libraries for learning activities. Unfortunately, the ways in which teachers and librarians may collaborate to leverage mutual resources is not fully…

  8. Functional comparison of three transformer gene introns regulating conditional female lethality

    USDA-ARS?s Scientific Manuscript database

    The trasformer gene plays a critical role in the sex determination pathways of many insects. We cloned two transformer gene introns from Anastrepha suspensa, the Caribbean fruit fly. These introns have sequences that putatively have a role in sex-specific splicing patterns that affect sex determinat...

  9. Sustainability in Recruitment and Selection: Building a Framework of Practices

    ERIC Educational Resources Information Center

    Jepsen, Denise M.; Grob, Suzanne

    2015-01-01

    Much has been written about the role of human resources professionals in creating sustainable organizations. However, despite recognition that organizational human resources functions have an important role to play in sustainability, researchers tend to focus on strategic issues and sustainability. This higher-order focus has often meant that…

  10. A conifer ABI3-interacting protein plays important roles during key transitions of the plant life cycle.

    PubMed

    Zeng, Ying; Zhao, Tiehan; Kermode, Allison R

    2013-01-01

    ABI3 (for ABSCISIC ACID INSENSITIVE3), a transcription factor of the abscisic acid signal transduction pathway, plays a major role during seed development, dormancy inception, and dormancy maintenance. This protein appears to also function in meristematic and vegetative plant tissues and under certain stress conditions. We have isolated the ABI3 gene ortholog (CnABI3) from yellow cedar (Callitropsis nootkatensis) and found that it was functionally similar to other ABI3 genes of angiosperms. Here, we report that using a yeast (Saccharomyces cerevisiae) two-hybrid approach, we have identified another protein of yellow cedar (CnAIP2; for CnABI3 INTERACTING PROTEIN2) that physically interacts with CnABI3. Functional analyses revealed that CnAIP2 plays important roles during key transitions in the plant life cycle: (1) CnAIP2 impaired seed development and reduced seed dormancy; (2) CnAIP2 promoted root development, particularly the initiation of lateral roots, and the CnAIP2 gene promoter was exquisitely auxin sensitive; and (3) CnAIP2 promoted the transition from vegetative growth to reproductive initiation (i.e. flowering). The nature of the effects of CnAIP2 on these processes and other evidence place CnAIP2 in the category of a "global" regulator, whose actions are antagonistic to those of ABI3.

  11. Global urban signatures of phenotypic change in animal and plant populations

    PubMed Central

    Correa, Cristian; Marzluff, John M.; Hendry, Andrew P.; Palkovacs, Eric P.; Hunt, Victoria M.; Apgar, Travis M.; Zhou, Yuyu

    2017-01-01

    Humans challenge the phenotypic, genetic, and cultural makeup of species by affecting the fitness landscapes on which they evolve. Recent studies show that cities might play a major role in contemporary evolution by accelerating phenotypic changes in wildlife, including animals, plants, fungi, and other organisms. Many studies of ecoevolutionary change have focused on anthropogenic drivers, but none of these studies has specifically examined the role that urbanization plays in ecoevolution or explicitly examined its mechanisms. This paper presents evidence on the mechanisms linking urban development patterns to rapid evolutionary changes for species that play important functional roles in communities and ecosystems. Through a metaanalysis of experimental and observational studies reporting more than 1,600 phenotypic changes in species across multiple regions, we ask whether we can discriminate an urban signature of phenotypic change beyond the established natural baselines and other anthropogenic signals. We then assess the relative impact of five types of urban disturbances including habitat modifications, biotic interactions, habitat heterogeneity, novel disturbances, and social interactions. Our study shows a clear urban signal; rates of phenotypic change are greater in urbanizing systems compared with natural and nonurban anthropogenic systems. By explicitly linking urban development to traits that affect ecosystem function, we can map potential ecoevolutionary implications of emerging patterns of urban agglomerations and uncover insights for maintaining key ecosystem functions upon which the sustainability of human well-being depends. PMID:28049817

  12. Global urban signatures of phenotypic change in animal and plant populations.

    PubMed

    Alberti, Marina; Correa, Cristian; Marzluff, John M; Hendry, Andrew P; Palkovacs, Eric P; Gotanda, Kiyoko M; Hunt, Victoria M; Apgar, Travis M; Zhou, Yuyu

    2017-08-22

    Humans challenge the phenotypic, genetic, and cultural makeup of species by affecting the fitness landscapes on which they evolve. Recent studies show that cities might play a major role in contemporary evolution by accelerating phenotypic changes in wildlife, including animals, plants, fungi, and other organisms. Many studies of ecoevolutionary change have focused on anthropogenic drivers, but none of these studies has specifically examined the role that urbanization plays in ecoevolution or explicitly examined its mechanisms. This paper presents evidence on the mechanisms linking urban development patterns to rapid evolutionary changes for species that play important functional roles in communities and ecosystems. Through a metaanalysis of experimental and observational studies reporting more than 1,600 phenotypic changes in species across multiple regions, we ask whether we can discriminate an urban signature of phenotypic change beyond the established natural baselines and other anthropogenic signals. We then assess the relative impact of five types of urban disturbances including habitat modifications, biotic interactions, habitat heterogeneity, novel disturbances, and social interactions. Our study shows a clear urban signal; rates of phenotypic change are greater in urbanizing systems compared with natural and nonurban anthropogenic systems. By explicitly linking urban development to traits that affect ecosystem function, we can map potential ecoevolutionary implications of emerging patterns of urban agglomerations and uncover insights for maintaining key ecosystem functions upon which the sustainability of human well-being depends.

  13. Different Expression Profiles Suggest Functional Differentiation Among Chemosensory Proteins in Nilaparvata lugens (Hemiptera: Delphacidae)

    PubMed Central

    Yang, Ke; He, Peng; Dong, Shuang-Lin

    2014-01-01

    Abstract Chemosensory proteins (CSPs) play various roles in insect physiology including olfaction and development. The brown planthopper, Nilaparvata lugens Stål , is one of the most notorious rice pests worldwide. The wing-from variation and annually long distance migration imply that olfaction would play a key role in N. lugens behavior. In this study, full-length cDNAs of nine CSPs were cloned by the rapid amplification of cDNA ends procedure, and their expression profiles were determined by the quantitative real-time Polymerase Chain Reaction (qPCR), with regard to developmental stage, wing-form, gender, and tissues of short-wing adult. These NlugCSP genes showed distinct expression patterns, indicating different roles they play. In particular, NlugCSP5 was long wing form biased and highly expressed in female wings among tissues; NlugCSP1 was mainly expressed in male adults and abdomen; NlugCSP7 was widely expressed in chemosensory tissues but little in the nonchemosensory abdomen. The function of NlugCSP7 in olfaction was further explored by the competitive fluorescence binding assay using the recombinant protein. However, the recombinant NlugCSP7 showed no obvious binding with all tested volatile compounds, suggesting that it may participate in physiological processes other than olfaction. Our results provide bases and some important clues for the function of NlugCSPs . PMID:25527582

  14. Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo

    PubMed Central

    Goody, Michelle F.; Kelly, Meghan W.; Lessard, Kevin N.; Khalil, Andre; Henry, Clarissa A.

    2010-01-01

    Cell-matrix adhesion complexes (CMACs) play fundamental roles during morphogenesis. Given the ubiquitous nature of CMACs and their roles in many cellular processes, one question is how specificity of CMAC function is modulated. The clearly defined cell behaviors that generate segmentally reiterated axial skeletal muscle during zebrafish development comprise an ideal system with which to investigate CMAC function during morphogenesis. We found that Nicotinamide riboside kinase 2b (Nrk2b) cell autonomously modulates the molecular composition of CMACs in vivo. Nrk2b is required for normal Laminin polymerization at the myotendinous junction (MTJ). In Nrk2b-deficient embryos, at MTJ loci where Laminin is not properly polymerized, muscle fibers elongate into adjacent myotomes and are abnormally long. In yeast and human cells, Nrk2 phosphorylates Nicotinamide Riboside and generates NAD+ through an alternative salvage pathway. Exogenous NAD+ treatment rescues MTJ development in Nrk2b-deficient embryos, but not in laminin mutant embryos. Both Nrk2b and Laminin are required for localization of Paxillin, but not β-Dystroglycan, to CMACs at the MTJ. Overexpression of Paxillin in Nrk2b-deficient embryos is sufficient to rescue MTJ integrity. Taken together, these data show that Nrk2b plays a specific role in modulating subcellular localization of discrete CMAC components that in turn play roles in musculoskeletal development. Furthermore, these data suggest that Nrk2b-mediated synthesis of NAD+ is functionally upstream of Laminin adhesion and Paxillin subcellular localization during MTJ development. These results indicate a previously unrecognized complexity to CMAC assembly in vivo and also elucidate a novel role for NAD+ during morphogenesis. PMID:20566368

  15. Knockout of the Na,K-ATPase α2-isoform in cardiac myocytes delays pressure overload-induced cardiac dysfunction

    PubMed Central

    Rindler, Tara N.; Lasko, Valerie M.; Nieman, Michelle L.; Okada, Motoi; Lorenz, John N.

    2013-01-01

    The α2-isoform of the Na,K-ATPase (α2) is the minor isoform of the Na,K-ATPase expressed in the cardiovascular system and is thought to play a critical role in the regulation of cardiovascular hemodynamics. However, the organ system/cell type expressing α2 that is required for this regulation has not been fully defined. The present study uses a heart-specific knockout of α2 to further define the tissue-specific role of α2 in the regulation of cardiovascular hemodynamics. To accomplish this, we developed a mouse model using the Cre/loxP system to generate a tissue-specific knockout of α2 in the heart using β-myosin heavy chain Cre. We have achieved a 90% knockout of α2 expression in the heart of the knockout mice. Interestingly, the heart-specific knockout mice exhibit normal basal cardiac function and systolic blood pressure, and in addition, these mice develop ACTH-induced hypertension in response to ACTH treatment similar to control mice. Surprisingly, the heart-specific knockout mice display delayed onset of cardiac dysfunction compared with control mice in response to pressure overload induced by transverse aortic constriction; however, the heart-specific knockout mice deteriorated to control levels by 9 wk post-transverse aortic constriction. These results suggest that heart expression of α2 does not play a role in the regulation of basal cardiovascular function or blood pressure; however, heart expression of α2 plays a role in the hypertrophic response to pressure overload. This study further emphasizes that the tissue localization of α2 determines its unique roles in the regulation of cardiovascular function. PMID:23436327

  16. NIDO, AMOP and vWD domains of MUC4 play synergic role in MUC4 mediated signaling

    PubMed Central

    Liu, Xian; Xie, Kun-Ling; Tang, Jie; Jiang, Kui-Rong; Gao, Wen-Tao; Tian, Lei; Zhang, Kai; Xu, Ze-Kuan; Miao, Yi

    2017-01-01

    MUC4 mucin is well known as an important potential target to overcome pancreatic cancer. Three unique domains (NIDO, AMOP, and vWD) with unclear roles only present in MUC4 but are not found in other membrane-bound mucins. Our previous studies first reported that its splice variant, MUC4/Y can be a model of MUC4 (MUC4 gene fragment is more than 30KB, too huge to clone and eukaryotic express) in pancreatic cancer. More importantly, based on MUC4/Y with the appropriate length of gene sequence, it is easy to construct the unique domain-lacking models of MUC4/Y (MUC4) for research. The present study focuses on investigation of the respective role of the unique NIDO, AMOP, and vWD domain or their synergistic effect on MUC4(MUC4/Y)-mediated functions and mechanisms by series of in vitro assays, sequence-based transcriptome analysis, validation of qRT-PCR & Western blot, and systematic comparative analysis. Our results demonstrate: 1) NIDO, AMOP, and vWD domain or their synergy play significant roles on MUC4/Y-mediated malignant function of pancreatic cancer, downstream of molecule mechanisms, particularly MUC4/Y-triggered malignancy-related positive feedback loops, respectively. 2) The synergistic roles of three unique domains on MUC4/Y-mediated functions and mechanisms are more prominent than the respective domain because the synergy of three domain plays the more remarkable effects on MUC4/Y-mediated signaling hub. Thus, to improve reversed effects of domain-lacking and break the synergism of domains will contribute to block MUC4/Y(MUC4) triggering various oncogenic signaling pathways. PMID:28060749

  17. NIDO, AMOP and vWD domains of MUC4 play synergic role in MUC4 mediated signaling.

    PubMed

    Zhu, Yi; Zhang, Jing-Jing; Peng, Yun-Peng; Liu, Xian; Xie, Kun-Ling; Tang, Jie; Jiang, Kui-Rong; Gao, Wen-Tao; Tian, Lei; Zhang, Kai; Xu, Ze-Kuan; Miao, Yi

    2017-02-07

    MUC4 mucin is well known as an important potential target to overcome pancreatic cancer. Three unique domains (NIDO, AMOP, and vWD) with unclear roles only present in MUC4 but are not found in other membrane-bound mucins. Our previous studies first reported that its splice variant, MUC4/Y can be a model of MUC4 (MUC4 gene fragment is more than 30KB, too huge to clone and eukaryotic express) in pancreatic cancer. More importantly, based on MUC4/Y with the appropriate length of gene sequence, it is easy to construct the unique domain-lacking models of MUC4/Y (MUC4) for research. The present study focuses on investigation of the respective role of the unique NIDO, AMOP, and vWD domain or their synergistic effect on MUC4(MUC4/Y)-mediated functions and mechanisms by series of in vitro assays, sequence-based transcriptome analysis, validation of qRT-PCR & Western blot, and systematic comparative analysis. Our results demonstrate: 1) NIDO, AMOP, and vWD domain or their synergy play significant roles on MUC4/Y-mediated malignant function of pancreatic cancer, downstream of molecule mechanisms, particularly MUC4/Y-triggered malignancy-related positive feedback loops, respectively. 2) The synergistic roles of three unique domains on MUC4/Y-mediated functions and mechanisms are more prominent than the respective domain because the synergy of three domain plays the more remarkable effects on MUC4/Y-mediated signaling hub. Thus, to improve reversed effects of domain-lacking and break the synergism of domains will contribute to block MUC4/Y(MUC4) triggering various oncogenic signaling pathways.

  18. An essential role for IL-2 receptor in regulatory T cell function

    PubMed Central

    Levine, Andrew G; Fan, Xiying; Klein, Ulf; Zheng, Ye; Gasteiger, Georg; Feng, Yongqiang; Fontenot, Jason D.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T (Treg) cells, expressing abundant amounts of the IL-2 receptor (IL-2R), are reliant on IL-2 produced by activated T cells. This feature implied a key role for a simple network based on IL-2 consumption by Treg cells in their suppressor function. However, congenital deficiency in IL-2R results in reduced expression of the Treg cell lineage specification factor Foxp3, confounding experimental efforts to understand the role of IL-2R expression and signaling in Treg suppressor function. Using genetic gain and loss of function approaches, we demonstrate that IL-2 capture is dispensable for control of CD4+ T cells, but is important for limiting CD8+ T cell activation, and that IL-2R dependent STAT5 transcription factor activation plays an essential role in Treg cell suppressor function separable from T cell receptor signaling. PMID:27595233

  19. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Fengxia; Zhang, Minjie; University of Chinese Academy of Sciences, Beijing 100049

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage.more » Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.« less

  20. Perspectives on the Genetic Architecture of Divergence in Body Shape in Sticklebacks

    PubMed Central

    Reid, Duncan T.; Peichel, Catherine L.

    2010-01-01

    The body shape of fishes encompasses a number of morphological traits that are intrinsically linked to functional systems and affect various measures of performance, including swimming, feeding, and avoiding predators. Changes in shape can allow a species to exploit a new ecological niche and can lead to ecological speciation. Body shape results from the integration of morphological, behavioral and physiological traits. It has been well established that functional interdependency among traits plays a large role in constraining the evolution of shape, affecting both the speed and the repeated evolution of particular body shapes. However, it is less clear what role genetic or developmental constraints might play in biasing the rate or direction of the evolution of body shape. Here, we suggest that the threespine stickleback (Gasterosteus aculeatus) is a powerful model system in which to address the extent to which genetic or developmental constraints play a role in the evolution of body shape in fishes. We review the existing data that begins to address these issues in sticklebacks and provide suggestions for future areas of research that will be particularly fruitful for illuminating the mechanisms that contribute to the evolution of body shape in fishes. PMID:21082067

  1. Plasma BDNF Is Reduced among Middle-Aged and Elderly Women with Impaired Insulin Function: Evidence of a Compensatory Mechanism

    ERIC Educational Resources Information Center

    Arentoft, Alyssa; Sweat, Victoria; Starr, Vanessa; Oliver, Stephen; Hassenstab, Jason; Bruehl, Hannah; Tirsi, Aziz; Javier, Elizabeth; McHugh, Pauline F.; Convit, Antonio

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) plays a regulatory role in neuronal differentiation and synaptic plasticity and has been linked to glucose regulation and cognition. Associations among plasma BDNF, cognition, and insulin function were explored. Forty-one participants with impaired insulin function (IIF), ranging from insulin resistance to…

  2. Executive Functions and Working Memory Behaviours in Children with a Poor Working Memory

    ERIC Educational Resources Information Center

    St. Clair-Thompson, Helen L.

    2011-01-01

    Previous research has suggested that working memory difficulties play an integral role in children's underachievement at school. However, working memory is just one of several executive functions. The extent to which problems in working memory extend to other executive functions is not well understood. In the current study 38 children with a poor…

  3. Brain Structure and Resting-State Functional Connectivity in University Professors with High Academic Achievement

    ERIC Educational Resources Information Center

    Li, Weiwei; Yang, Wenjing; Li, Wenfu; Li, Yadan; Wei, Dongtao; Li, Huimin; Qiu, Jiang; Zhang, Qinglin

    2015-01-01

    Creative persons play an important role in technical innovation and social progress. There is little research on the neural correlates with researchers with high academic achievement. We used a combined structural (regional gray matter volume, rGMV) and functional (resting-state functional connectivity analysis, rsFC) approach to examine the…

  4. Methods and Models for the Construction of Weakly Parallel Tests. Research Report 90-4.

    ERIC Educational Resources Information Center

    Adema, Jos J.

    Methods are proposed for the construction of weakly parallel tests, that is, tests with the same test information function. A mathematical programing model for constructing tests with a prespecified test information function and a heuristic for assigning items to tests such that their information functions are equal play an important role in the…

  5. Antibiotic production by soil bacteria: diversity, activity and natural functions

    USDA-ARS?s Scientific Manuscript database

    The living components of soils, the micro- and macrobiota, play an essential role in several life support functions as they enable soils to recycle nutrients, inactive contaminants, suppress plant pathogens and serve as a suitable substrate for plant growth. Beneficial bacteria occur naturally in s...

  6. Supplementing monosodium glutamate to partial enteral nutrition slows gastric emptying in preterm pigs

    USDA-ARS?s Scientific Manuscript database

    Emerging evidence suggests that free glutamate may play a functional role in modulating gastroduodenal motor function. We hypothesized that supplementing monosodium glutamate (MSG) to partial enteral nutrition stimulates gastric emptying in preterm pigs. Ten-day-old preterm, parenterally fed pigs re...

  7. Family Functioning and Adolescent Psychological Maladjustment: The Mediating Role of Coping Strategies.

    PubMed

    Francisco, Rita; Loios, Sara; Pedro, Marta

    2016-10-01

    This study aims to analyze the mediating role of coping strategies in the relationship between family functioning and youth maladjustment. A community sample of 341 adolescents (M = 15.11 years old; SD = 1.71) completed self-report measures about such variables. Results showed that a perception of an inadequate family functioning was associated with the use of maladaptive coping strategies, as well as with youth psychological maladjustment. The results also revealed that rumination and support-seeking mediated the relationship between family functioning and internalizing behavior, and hostile expression of feelings played a mediating role between family functioning and externalizing behavior. No gender differences were found in the relationship between variables. This study emphasizes the importance of coping strategies used by adolescents to understand the relationship between family functioning and youth psychological maladjustment.

  8. Roles and responsibilities: theoretical issues in the definition of consultation liaison psychiatry.

    PubMed

    Agich, G J

    1985-05-01

    Central to much medical ethical analysis is the concept of the role of the physician. While this concept plays an important role in medical ethics, its function is largely tacit. The present paper attempts to bring the concept of a social role to prominence by focusing on an historically recent and rather richly contextured role, namely, that of consultation liaison psychiatry. Since my intention is primarily theoretical, I largely ignore the empirical studies which purport to develop the detailed functioning of the role. My limited intent is to draw attention to the theoretical complexity of the consultation liaison role as an example of the general relevance of role concepts to medical ethics. For this reason, consultation liaison psychiatry will function as an illustration of fundamental concepts of medical ethics rather than as a subject of analysis in its own right. Similarly, the concept of the social role will be developed only as is necessary to explore the general relationship between the consultation liaison role and ethical analysis.

  9. Friend or foe: Endoplasmic reticulum protein 29 (ERp29) in epithelial cancer

    PubMed Central

    Chen, Shaohua; Zhang, Daohai

    2015-01-01

    The endoplasmic reticulum (ER) protein 29 (ERp29) is a molecular chaperone that plays a critical role in protein secretion from the ER in eukaryotic cells. Recent studies have also shown that ERp29 plays a role in cancer. It has been demonstrated that ERp29 is inversely associated with primary tumor development and functions as a tumor suppressor by inducing cell growth arrest in breast cancer. However, ERp29 has also been reported to promote epithelial cell morphogenesis, cell survival against genotoxic stress and distant metastasis. In this review, we summarize the current understanding on the biological and pathological functions of ERp29 in cancer and discuss the pivotal aspects of ERp29 as “friend or foe” in epithelial cancer. PMID:25709888

  10. The function of Xenopus Bloom's syndrome protein homolog (xBLM) in DNA replication

    PubMed Central

    Liao, Shuren; Graham, Jeanine; Yan, Hong

    2000-01-01

    The Bloom's syndrome gene (BLM) plays a pivotal role in the maintenance of genomic stability in somatic cells. It encodes a DNA helicase (BLM) of the RecQ family, but the exact function of BLM remains elusive. To study this question, we have cloned the BLM homolog of the frog Xenopus laevis (xBLM) and have raised antibodies to it. Immunodepletion of xBLM from a Xenopus egg extract severely inhibits the replication of DNA in reconstituted nuclei. Moreover, the inhibition can be rescued by the addition of the recombinant xBLM protein. These results provide the first direct evidence that BLM plays an important role in DNA replication, suggesting that Bloom's syndrome may be the consequence of defective DNA replication. PMID:11040210

  11. Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume.

    PubMed

    Xu, Zongda; Zhang, Qixiang; Sun, Lidan; Du, Dongliang; Cheng, Tangren; Pan, Huitang; Yang, Weiru; Wang, Jia

    2014-10-01

    MADS-box genes encode transcription factors that play crucial roles in plant development, especially in flower and fruit development. To gain insight into this gene family in Prunus mume, an important ornamental and fruit plant in East Asia, and to elucidate their roles in flower organ determination and fruit development, we performed a genome-wide identification, characterisation and expression analysis of MADS-box genes in this Rosaceae tree. In this study, 80 MADS-box genes were identified in P. mume and categorised into MIKC, Mα, Mβ, Mγ and Mδ groups based on gene structures and phylogenetic relationships. The MIKC group could be further classified into 12 subfamilies. The FLC subfamily was absent in P. mume and the six tandemly arranged DAM genes might experience a species-specific evolution process in P. mume. The MADS-box gene family might experience an evolution process from MIKC genes to Mδ genes to Mα, Mβ and Mγ genes. The expression analysis suggests that P. mume MADS-box genes have diverse functions in P. mume development and the functions of duplicated genes diverged after the duplication events. In addition to its involvement in the development of female gametophytes, type I genes also play roles in male gametophytes development. In conclusion, this study adds to our understanding of the roles that the MADS-box genes played in flower and fruit development and lays a foundation for selecting candidate genes for functional studies in P. mume and other species. Furthermore, this study also provides a basis to study the evolution of the MADS-box family.

  12. The role of WOX genes in flower development.

    PubMed

    Costanzo, Enrico; Trehin, Christophe; Vandenbussche, Michiel

    2014-11-01

    WOX (Wuschel-like homeobOX) genes form a family of plant-specific HOMEODOMAIN transcription factors, the members of which play important developmental roles in a diverse range of processes. WOX genes were first identified as determining cell fate during embryo development, as well as playing important roles in maintaining stem cell niches in the plant. In recent years, new roles have been identified in plant architecture and organ development, particularly at the flower level. In this review, the role of WOX genes in flower development and flower architecture is highlighted, as evidenced from data obtained in the last few years. The roles played by WOX genes in different species and different flower organs are compared, and differential functional recruitment of WOX genes during flower evolution is considered. This review compares available data concerning the role of WOX genes in flower and organ architecture among different species of angiosperms, including representatives of monocots and eudicots (rosids and asterids). These comparative data highlight the usefulness of the WOX gene family for evo-devo studies of floral development. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. The Role of Drosophila Merlin in the Control of Mitosis Exit and Development

    DTIC Science & Technology

    2008-07-01

    identification of new genes may not yield a clear indication of their respective functions , studies on their evolution may allow validation of their...in the elongated Nebenkern (Figure 2H). In addi- tion, Merlin was seen as a bright punctate dot in the acro- somal region, a Golgi apparatus -derived... functions as a tumor suppressor, we have confirmed that Drosophila Merlin plays important roles in the control of mitosis exit and in the

  14. Role of Achiral Nucleobases in Multicomponent Chiral Self-Assembly: Purine-Triggered Helix and Chirality Transfer.

    PubMed

    Deng, Ming; Zhang, Li; Jiang, Yuqian; Liu, Minghua

    2016-11-21

    Chiral self-assembly is a basic process in biological systems, where many chiral biomolecules such as amino acids and sugars play important roles. Achiral nucleobases usually covalently bond to saccharides and play a significant role in the formation of the double helix structure. However, it remains unclear how the achiral nucleobases can function in chiral self-assembly without the sugar modification. Herein, we have clarified that purine nucleobases could trigger N-(9-fluorenylmethox-ycarbonyl) (Fmoc)-protected glutamic acid to self-assemble into helical nanostructures. Moreover, the helical nanostructure could serve as a matrix and transfer the chirality to an achiral fluorescence probe, thioflavin T (ThT). Upon chirality transfer, the ThT showed not only supramolecular chirality but also circular polarized fluorescence (CPL). Without the nucleobase, the self-assembly processes cannot happen, thus providing an example where achiral molecules played an essential role in the expression and transfer of the chirality. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Garp as a therapeutic target for modulation of T regulatory cell function.

    PubMed

    Shevach, Ethan M

    2017-02-01

    Foxp3 + T regulatory cells (Tregs) play critical roles in immune homeostasis primarily by suppressing many aspects of the immune response. Tregs uniquely express GARP on their cell surface and GARP functions as a delivery system for latent TGF-β. As Treg-derived TGF-β may mediate the suppressive functions of Tregs, GARP may represent a target to inhibit Treg suppression in cancer or augment suppression in autoimmunity. Areas covered: This article will focus on 1) the role of Treg-derived TGF-β in the suppressive activity of Treg, 2) the cellular and molecular regulation of expression of GARP on mouse and human Tregs, 3) the role of integrins in the activation of latent-TGF-β/GARP complex, 4) an overview of our present understanding of the function of the latent-TGF-β/GARP complex. Expert opinion: Two approaches are outlined for targeting the L-TGF-β1/GARP complex for therapeutic purposes. Tregs play a major role in suppressive effector T cell responses to tumors and TGF-β1 may be a major contributor to this process. One approach is to specifically block the production of active TGF-β1 from Tregs as an adjunct to tumor immunotherapy. The second approach in autoimmunity is to selectively enhance the production of TGF-β by Tregs at sites of chronic inflammation.

  16. The adsorption of CH3 and C6H6 on corundum-type sesquioxides: The role of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Dabaghmanesh, Samira; Partoens, Bart; Neyts, Erik

    Van der Waals (vdW) interactions play an important role in the adsorption of atoms and molecules on the surface of solids. This role becomes more significant whenever the interaction between the adsorbate and surface is physisorption. Thanks to recent developments in density functional theory (DFT), we are now able to employ different vdW methods that helps us to account for the long-range vdW forces. However, the choice of the most efficient vdW functional for different materials is still an open question. In our study, we examine different vdW approaches to compute bulk and molecular adsorption properties of M2O3 oxides (M: Cr, Fe, and Al) as well-known examples of the corundum family. For the bulk properties, we compare our results for the heat of formation, cohesive energy, lattice parameters and bond distances as obtained using the different vdW functionals and available experimental data. Next we compute the adsorption energies of the benzene molecule (as an example of physisorption) and CH3 (as an example of chemisorption) on top of the (0001) M-terminated and MO-terminated surfaces. Calculating the vdW contributions into the adsorption energies, we find that the vdW functionals play important role not just in the weak adsorptions but even in strong adsorption.

  17. The effects of the modulation of NMDA receptors by homocysteine thiolactone and dizocilpine on cardiodynamics and oxidative stress in isolated rat heart.

    PubMed

    Srejovic, Ivan; Jakovljevic, Vladimir; Zivkovic, Vladimir; Barudzic, Nevena; Radovanovic, Ana; Stanojlovic, Olivera; Djuric, Dragan M

    2015-03-01

    In light of the limited data concerning the role of N-methyl-D-aspartate (NMDA) receptors in cardiac function, the aim of the present study was to determine the role of NMDA receptors in cardiac function, as well as the possible role played by the oxidative stress induced by the overstimulation of NMDA receptors in isolated rat heart. The hearts of male, Wistar albino rats (n = 24, 12 in each experimental group, BM 180-200 g) were retrogradely perfused at a constant perfusion pressure (70 cm H₂O₂), using the Langendorff technique, and cardiodynamic parameters were determined during the subsequent administration of DL-homocysteine thiolactone (DL-Hcy TLHC) alone, the combination of DL-Hcy TLHC and dizocilpine (MK-801), and MK-801 alone. In the second experimental group, the order of the administration of each of the substances was reversed. The oxidative stress biomarkers, including thiobarbituric acid reactive substances (TBARS), NO(2)(-), O(2)(-) and H₂O₂, were each determined spectrophotometrically. DL-Hcy TLHC and MK-801 depressed cardiac function. DL-Hcy TLHC decreased oxidative stress, a finding that contrasted with the results of the experiments in which MK-801 was administered first. The findings of this study were suggestive of the likely role played by NMDA receptors in the regulation of cardiac function and coronary circulation in isolated rat heart.

  18. Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves.

    PubMed

    Zhang, Qunfeng; Liu, Meiya; Ruan, Jianyun

    2017-03-20

    As the predominant secondary metabolic pathway in tea plants, flavonoid biosynthesis increases with increasing temperature and illumination. However, the concentration of most flavonoids decreases greatly in light-sensitive tea leaves when they are exposed to light, which further improves tea quality. To reveal the metabolism and potential functions of flavonoids in tea leaves, a natural light-sensitive tea mutant (Huangjinya) cultivated under different light conditions was subjected to metabolomics analysis. The results showed that chlorotic tea leaves accumulated large amounts of flavonoids with ortho-dihydroxylated B-rings (e.g., catechin gallate, quercetin and its glycosides etc.), whereas total flavonoids (e.g., myricetrin glycoside, epigallocatechin gallate etc.) were considerably reduced, suggesting that the flavonoid components generated from different metabolic branches played different roles in tea leaves. Furthermore, the intracellular localization of flavonoids and the expression pattern of genes involved in secondary metabolic pathways indicate a potential photoprotective function of dihydroxylated flavonoids in light-sensitive tea leaves. Our results suggest that reactive oxygen species (ROS) scavenging and the antioxidation effects of flavonoids help chlorotic tea plants survive under high light stress, providing new evidence to clarify the functional roles of flavonoids, which accumulate to high levels in tea plants. Moreover, flavonoids with ortho-dihydroxylated B-rings played a greater role in photo-protection to improve the acclimatization of tea plants.

  19. Nonparametric Stochastic Model for Uncertainty Quantifi cation of Short-term Wind Speed Forecasts

    NASA Astrophysics Data System (ADS)

    AL-Shehhi, A. M.; Chaouch, M.; Ouarda, T.

    2014-12-01

    Wind energy is increasing in importance as a renewable energy source due to its potential role in reducing carbon emissions. It is a safe, clean, and inexhaustible source of energy. The amount of wind energy generated by wind turbines is closely related to the wind speed. Wind speed forecasting plays a vital role in the wind energy sector in terms of wind turbine optimal operation, wind energy dispatch and scheduling, efficient energy harvesting etc. It is also considered during planning, design, and assessment of any proposed wind project. Therefore, accurate prediction of wind speed carries a particular importance and plays significant roles in the wind industry. Many methods have been proposed in the literature for short-term wind speed forecasting. These methods are usually based on modeling historical fixed time intervals of the wind speed data and using it for future prediction. The methods mainly include statistical models such as ARMA, ARIMA model, physical models for instance numerical weather prediction and artificial Intelligence techniques for example support vector machine and neural networks. In this paper, we are interested in estimating hourly wind speed measures in United Arab Emirates (UAE). More precisely, we predict hourly wind speed using a nonparametric kernel estimation of the regression and volatility functions pertaining to nonlinear autoregressive model with ARCH model, which includes unknown nonlinear regression function and volatility function already discussed in the literature. The unknown nonlinear regression function describe the dependence between the value of the wind speed at time t and its historical data at time t -1, t - 2, … , t - d. This function plays a key role to predict hourly wind speed process. The volatility function, i.e., the conditional variance given the past, measures the risk associated to this prediction. Since the regression and the volatility functions are supposed to be unknown, they are estimated using nonparametric kernel methods. In addition, to the pointwise hourly wind speed forecasts, a confidence interval is also provided which allows to quantify the uncertainty around the forecasts.

  20. Challenges in Emotional Regulation in Asperger Syndrome and High-Functioning Autism

    ERIC Educational Resources Information Center

    Laurent, Amy C.; Rubin, Emily

    2004-01-01

    As positive outcomes for children and adolescents with either Asperger syndrome or high-functioning autism are related to the development of social communicative competence, recognition of the developmental capacities that contribute to this achievement is essential. Although social communication skills play a central role, developmental…

  1. The Affective Gatekeeper: A Synthesis of Perspectives on Creativity.

    ERIC Educational Resources Information Center

    Bagley, Dan S., III

    1979-01-01

    The article presents research reports on the nature of creativity, including such elements as its characteristics; the function of the affective gatekeeper (which filters the "reality" perceived by each individual); the constructs of perception; and the functions of role playing, altered states of consciousness, and fantasy. (PHR)

  2. The structure and function of the American beekeeping industry

    USDA-ARS?s Scientific Manuscript database

    America has had a long history with beekeeping and plays a leadership role in global beekeeping industry, which provides critical pollination services to agricultural crops constituting one-third of the world’s consumed foods. This article aims to provide an overview of the structure and function of...

  3. Identification, RNAi Knockdown and Functional Analysis of an Ejaculate Protein that Mediates a Postmating, Prezgotic Phenotype in a cricket

    USDA-ARS?s Scientific Manuscript database

    Male ejaculate proteins, including both sperm and seminal fluid proteins, play an important role in mediating reproductive biology. The function of ejaculate proteins can include enabling sperm-egg interactions, enhancing sperm storage, mediating female attractiveness, and even regulating female lif...

  4. School Influences on Child and Youth Development

    ERIC Educational Resources Information Center

    Osher, David; Kendziora, Kimberly; Spier, Elizabeth; Garibaldi, Mark L.

    2014-01-01

    Schools play a key role in child and youth development as both social microcosms of the broader society and reciprocally influencing people and communities. As such, schools can function as a protective factor that promotes safety, motivation, relationships, and support for positive student outcomes. However, schools may also function as a risk…

  5. Calmodulin gene expression in response to mechanical wounding and Botrytis cinerea infection in tomato fruit

    USDA-ARS?s Scientific Manuscript database

    Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding the stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various physiological responses in plants. To determine the functional significance of calmodulin in fl...

  6. Leveraging Publically Available Chemical Functional Use Data in Support of Exposure Prediction

    EPA Science Inventory

    The U.S. EPA Exposure Forecasting (ExpoCast) project aims to provide rapid screening-level exposure predictions for thousands of chemicals, most of which lack detailed exposure data. Chemical functional use - the role a chemical plays in processes or products (e.g. solvent, ant...

  7. Yields of potato and alternative crops impacted by humic product application

    USDA-ARS?s Scientific Manuscript database

    Humic substance (HA—humic acid, fulvic acid, and humin) are a family of organic molecules made up of long carbon chains and numerous active functional groups such as phenols and other aromatics. Humic substances play dynamic roles in soil physical, chemical biological functions essential to soil he...

  8. Adaptive Constructive Processes and the Future of Memory

    ERIC Educational Resources Information Center

    Schacter, Daniel L.

    2012-01-01

    Memory serves critical functions in everyday life but is also prone to error. This article examines adaptive constructive processes, which play a functional role in memory and cognition but can also produce distortions, errors, and illusions. The article describes several types of memory errors that are produced by adaptive constructive processes…

  9. Fathers’ Sensitive Parenting and the Development of Early Executive Functioning

    PubMed Central

    Towe-Goodman, Nissa R.; Willoughby, Michael; Blair, Clancy; Gustafsson, Hanna C.; Mills-Koonce, W. Roger; Cox, Martha J.

    2014-01-01

    Using data from a diverse sample of 620 families residing in rural, predominately low-income communities, this study examined longitudinal links between fathers’ sensitive parenting in infancy and toddlerhood and children’s early executive functioning, as well as the contribution of maternal sensitive parenting. After accounting for the quality of concurrent and prior parental care, children’s early cognitive ability, and other child and family factors, fathers’ and mothers’ sensitive and supportive parenting during play at 24-months predicted children’s executive functioning at 3-years of age. In contrast, paternal parenting quality during play at 7-months did not make an independent contribution above that of maternal care, but the links between maternal sensitive and supportive parenting and executive functioning seemed to operate in similar ways during infancy and toddlerhood. These findings add to prior work on early experience and children’s executive functioning, suggesting that both fathers and mothers play a distinct and complementary role in the development of these self-regulatory skills. PMID:25347539

  10. Fathers' sensitive parenting and the development of early executive functioning.

    PubMed

    Towe-Goodman, Nissa R; Willoughby, Michael; Blair, Clancy; Gustafsson, Hanna C; Mills-Koonce, W Roger; Cox, Martha J

    2014-12-01

    Using data from a diverse sample of 620 families residing in rural, predominately low-income communities, this study examined longitudinal links between fathers' sensitive parenting in infancy and toddlerhood and children's early executive functioning, as well as the contribution of maternal sensitive parenting. After accounting for the quality of concurrent and prior parental care, children's early cognitive ability, and other child and family factors, fathers' and mothers' sensitive and supportive parenting during play at 24 months predicted children's executive functioning at 3 years of age. In contrast, paternal parenting quality during play at 7 months did not make an independent contribution above that of maternal care, but the links between maternal sensitive and supportive parenting and executive functioning seemed to operate in similar ways during infancy and toddlerhood. These findings add to prior work on early experience and children's executive functioning, suggesting that both fathers and mothers play a distinct and complementary role in the development of these self-regulatory skills.

  11. Vitamin D deficiency: infertility and neurodevelopmental diseases (attention deficit hyperactivity disorder, autism, and schizophrenia).

    PubMed

    Berridge, Michael J

    2018-02-01

    The process of development depends on a number of signaling systems that regulates the progressive sequence of developmental events. Infertility and neurodevelopmental diseases, such as attention deficit hyperactivity disorder, autism spectrum disorders, and schizophrenia, are caused by specific alterations in these signaling processes. Calcium signaling plays a prominent role throughout development beginning at fertilization and continuing through early development, implantation, and organ differentiation such as heart and brain development. Vitamin D plays a major role in regulating these signaling processes that control development. There is an increase in infertility and an onset of neurodevelopmental diseases when vitamin D is deficient. The way in which vitamin D deficiency acts to alter development is a major feature of this review. One of the primary functions of vitamin D is to maintain the phenotypic stability of both the Ca 2+ and redox signaling pathways that play such a key role throughout development.

  12. The immunoregulatory role of type I and type II NKT cells in cancer and other diseases

    PubMed Central

    Terabe, Masaki; Berzofsky, Jay A.

    2014-01-01

    NKT cells are CD1d-restricted T cells that recognize lipid antigens. They also have been shown to play critical roles in the regulation of immune responses. In the immune responses against tumors, two subsets of NKT cells, type I and type II, play opposing roles and cross-regulate each other. As members of both the innate and adaptive immune systems, which form a network of multiple components, they also interact with other immune components. Here we discuss the function of NKT cells in tumor immunity and their interaction with other regulatory cells, especially CD4+CD25+Foxp3+ regulatory T cells. PMID:24384834

  13. Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology

    PubMed Central

    Turan, Belma; Tuncay, Erkan

    2017-01-01

    Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn2+. Although Zn2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn2+-diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn2+ in parallel to the discovery of subcellular localization of Zn2+-transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca2+ dynamics. Cellular labile Zn2+ is tightly regulated against its adverse effects through either Zn2+-transporters, Zn2+-binding molecules or Zn2+-sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn2+ distribution in cardiomyocytes and how a remodeling of cellular Zn2+-homeostasis can be important in proper cell function with Zn2+-transporters under hyperglycemia. We also emphasize the recent investigations on Zn2+-transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes. PMID:29137144

  14. A nuclear-encoded chloroplast protein harboring a single CRM domain plays an important role in the Arabidopsis growth and stress response.

    PubMed

    Lee, Kwanuk; Lee, Hwa Jung; Kim, Dong Hyun; Jeon, Young; Pai, Hyun-Sook; Kang, Hunseung

    2014-04-16

    Although several chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins have been characterized for intron splicing and rRNA processing during chloroplast gene expression, the functional role of a majority of CRM domain proteins in plant growth and development as well as chloroplast RNA metabolism remains largely unknown. Here, we characterized the developmental and stress response roles of a nuclear-encoded chloroplast protein harboring a single CRM domain (At4g39040), designated CFM4, in Arabidopsis thaliana. Analysis of CFM4-GFP fusion proteins revealed that CFM4 is localized to chloroplasts. The loss-of-function T-DNA insertion mutants for CFM4 (cfm4) displayed retarded growth and delayed senescence, suggesting that CFM4 plays a role in growth and development of plants under normal growth conditions. In addition, cfm4 mutants showed retarded seed germination and seedling growth under stress conditions. No alteration in the splicing patterns of intron-containing chloroplast genes was observed in the mutant plants, but the processing of 16S and 4.5S rRNAs was abnormal in the mutant plants. Importantly, CFM4 was determined to possess RNA chaperone activity. These results suggest that the chloroplast-targeted CFM4, one of two Arabidopsis genes encoding a single CRM domain-containing protein, harbors RNA chaperone activity and plays a role in the Arabidopsis growth and stress response by affecting rRNA processing in chloroplasts.

  15. A nuclear-encoded chloroplast protein harboring a single CRM domain plays an important role in the Arabidopsis growth and stress response

    PubMed Central

    2014-01-01

    Background Although several chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins have been characterized for intron splicing and rRNA processing during chloroplast gene expression, the functional role of a majority of CRM domain proteins in plant growth and development as well as chloroplast RNA metabolism remains largely unknown. Here, we characterized the developmental and stress response roles of a nuclear-encoded chloroplast protein harboring a single CRM domain (At4g39040), designated CFM4, in Arabidopsis thaliana. Results Analysis of CFM4-GFP fusion proteins revealed that CFM4 is localized to chloroplasts. The loss-of-function T-DNA insertion mutants for CFM4 (cfm4) displayed retarded growth and delayed senescence, suggesting that CFM4 plays a role in growth and development of plants under normal growth conditions. In addition, cfm4 mutants showed retarded seed germination and seedling growth under stress conditions. No alteration in the splicing patterns of intron-containing chloroplast genes was observed in the mutant plants, but the processing of 16S and 4.5S rRNAs was abnormal in the mutant plants. Importantly, CFM4 was determined to possess RNA chaperone activity. Conclusions These results suggest that the chloroplast-targeted CFM4, one of two Arabidopsis genes encoding a single CRM domain-containing protein, harbors RNA chaperone activity and plays a role in the Arabidopsis growth and stress response by affecting rRNA processing in chloroplasts. PMID:24739417

  16. The Role of Vision in the Development of Finger-Number Interactions: Finger-Counting and Finger-Montring in Blind Children

    ERIC Educational Resources Information Center

    Crollen, Virginie; Mahe, Rachel; Collignon, Olivier; Seron, Xavier

    2011-01-01

    Previous research has suggested that the use of the fingers may play a functional role in the development of a mature counting system. However, the role of developmental vision in the elaboration of a finger numeral representation remains unexplored. In the current study, 14 congenitally blind children and 14 matched sighted controls undertook…

  17. The Role of Trustworthiness in Teaching: An Examination of "The Prime of Miss Jean Brodie"

    ERIC Educational Resources Information Center

    Katz, Michael S.

    2014-01-01

    The purpose of this paper is to examine the role that trustworthiness plays in the ability of teachers to function as moral role models. Through exploration of Muriel Spark's novel, "The Prime of Miss Jean Brodie," I explain some of the central features of trustworthiness as a moral virtue and suggest how these features are critical…

  18. To what extent do joint attention, imitation, and object play behaviors in infancy predict later communication and intellectual functioning in ASD?

    PubMed

    Poon, Kenneth K; Watson, Linda R; Baranek, Grace T; Poe, Michele D

    2012-06-01

    The extent to which early social communication behaviors predict later communication and intellectual outcomes was investigated via retrospective video analysis. Joint attention, imitation, and complex object play behaviors were coded from edited home videos featuring scenes of 29 children with ASD at 9-12 and/or 15-18 months. A quantitative interval recording of behavior and a qualitative rating of the developmental level were applied. Social communication behaviors increased between 9-12 and 15-18 months. Their mean level during infancy, but not the rate of change, predicted both Vineland Communication scores and intellectual functioning at 3-7 years. The two methods of measurement yielded similar results. Thus, early social communicative behaviors may play pivotal roles in the development of subsequent communication and intellectual functioning.

  19. 76 FR 65519 - Statement of Organization, Functions, and Delegations of Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... of Policy, Planning, and Innovation's cross-cutting policy role in the Agency as well as externally... other fields that also play a crucial role in supporting and improving behavioral health. OPPI will seek.... Office of the Director (MD1) As the chief policy advisor to the Administrator, SAMHSA, the OPPI Director...

  20. The Role of Teacher Questions in the Chemistry Classroom

    ERIC Educational Resources Information Center

    Dohrn, Sofie Weiss; Dohn, Niels Bonderup

    2018-01-01

    The purpose of this study was to investigate how a chemistry teacher's questions influence the classroom discourse. It presents a fine-grained analysis of the rich variety of one teacher's questions and the roles they play in an upper secondary chemistry classroom. The study identifies six different functions for the teacher's questions:…

  1. The Regulatory Functions of Calcium and the Potential Role of Calcium in Mediating Gravitational Responses in Cells and Tissues

    NASA Technical Reports Server (NTRS)

    Roux, S. J. (Editor)

    1983-01-01

    The hypothesis that calcium plays an important part in regulating cellular response to gravity and to other environmental stimuli is explored. Topics covered include the role of calmodulin and other proteins, gravitropic responses, bone demineralization during space flight, and intracellular communication.

  2. Teachers as Secondary Players: Involvement in Field Trips to Natural Environments

    ERIC Educational Resources Information Center

    Alon, Nirit Lavie; Tal, Tali

    2017-01-01

    This study focused on field trips to natural environments where the teacher plays a secondary role alongside a professional guide. We investigated teachers' and field trip guides' views of the teacher's role, the teacher's actual function on the field trip, and the relationship between them. We observed field trips, interviewed teachers and…

  3. Cartography As Language: An Argument and a Functional Application.

    ERIC Educational Resources Information Center

    Bosowski, Elaine Frances

    This paper justifies the teaching of cartography in secondary schools and expands graphic knowledge by providing a formal graphic language simulation lesson. The cartographer's task, decisions, and methodologies are approximated by the use of this role playing scenario. Students assume the roles of map authors who are contracted to draw up a set…

  4. Reconstruals of the Past: Settlement or Invasion? The Role of JUDGEMENT Analysis.

    ERIC Educational Resources Information Center

    Coffin, Caroline

    While little attention has been given in historiography to the language of historical narrative, and the role language plays in portraying history, the discipline of linguistics, and particularly the subdisciplines of discourse analysis and functional linguistics, have given increasing attention to the discourse of history. Recently, a group of…

  5. Using Exponential Smoothing to Specify Intervention Models for Interrupted Time Series.

    ERIC Educational Resources Information Center

    Mandell, Marvin B.; Bretschneider, Stuart I.

    1984-01-01

    The authors demonstrate how exponential smoothing can play a role in the identification of the intervention component of an interrupted time-series design model that is analogous to the role that the sample autocorrelation and partial autocorrelation functions serve in the identification of the noise portion of such a model. (Author/BW)

  6. Cover cropping frequency is the main driver of soil microbial changes during six years of organic vegetable production

    USDA-ARS?s Scientific Manuscript database

    Soil microbes play a key role in soil health, and understanding the functional role of this living component of soil organic matter is critical to developing sustainable systems in major vegetable production regions like Salinas, California. Soil microbial community size and composition was evaluat...

  7. Role of ubiquitin-proteasome in protein quality control and signaling: implication in the pathogenesis of eye diseases

    USDA-ARS?s Scientific Manuscript database

    The ubiquitin–proteasome pathway (UPP) plays important roles in many cellular functions, such as protein quality control, cell cycle control, and signal transduction. The selective degradation of aberrant proteins by the UPP is essential for the timely removal of potential cytotoxic damaged or other...

  8. Private University Librarian's Experience on Procurement of Books in Bangladesh

    ERIC Educational Resources Information Center

    Chowdhury, Muhammad Hossam Haider

    2011-01-01

    The private universities in Bangladesh are playing an important role in modernizing the higher education system in the country and the role of librarians is also different and challenging. Specially, procuring books and monographs is an exigent function being this lost its demand very quickly. In some cases, titles bear only one semester…

  9. Major Surface Protease of Trypanosomatids: One Size Fits All? ▿

    PubMed Central

    Yao, Chaoqun

    2010-01-01

    Major surface protease (MSP or GP63) is the most abundant glycoprotein localized to the plasma membrane of Leishmania promastigotes. MSP plays several important roles in the pathogenesis of leishmaniasis, including but not limited to (i) evasion of complement-mediated lysis, (ii) facilitation of macrophage (Mø) phagocytosis of promastigotes, (iii) interaction with the extracellular matrix, (iv) inhibition of natural killer cellular functions, (v) resistance to antimicrobial peptide killing, (vi) degradation of Mø and fibroblast cytosolic proteins, and (vii) promotion of survival of intracellular amastigotes. MSP homologues have been found in all other trypanosomatids studied to date including heteroxenous members of Trypanosoma cruzi, the extracellular Trypanosoma brucei, unusual intraerythrocytic Endotrypanum spp., phytoparasitic Phytomonas spp., and numerous monoxenous species. These proteins are likely to perform roles different from those described for Leishmania spp. Multiple MSPs in individual cells may play distinct roles at some time points in trypanosomatid life cycles and collaborative or redundant roles at others. The cellular locations and the extracellular release of MSPs are also discussed in connection with MSP functions in leishmanial promastigotes. PMID:19858295

  10. Assessing disease-modifying effects of norepinephrine in Down syndrome and Alzheimer's disease.

    PubMed

    Ponnusamy, Ravikumar; McNerney, M Windy; Moghadam, Shahrzad; Salehi, Ahmad

    2017-11-08

    Building upon the knowledge that a number of important brain circuits undergo significant degeneration in Alzheimer's disease, numerous recent studies suggest that the norepinephrine-ergic system in the brainstem undergoes significant alterations early in the course of both Alzheimer's disease and Down syndrome. Massive projections from locus coeruleus neurons to almost the entire brain, extensive innervation of brain capillaries, and widespread distribution of noradrenergic receptors enable the norepinephrine-ergic system to play a crucial role in neural processes, including cognitive function. These anatomical and functional characteristics support the role of the norepinephrine-ergic system as an important target for developing new therapies for cognitive dysfunction. Careful neuropathological examinations using postmortem samples from individuals with Alzheimer's disease have implicated the role of the norepinephrine-ergic system in the etiopathogenesis of Alzheimer's disease. Furthermore, numerous studies have supported the existence of a strong interaction between norepinephrine-ergic and neuroimmune systems. We explore the interaction between the two systems that could play a role in the disease-modifying effects of norepinephrine in Alzheimer's disease and Down syndrome. Copyright © 2017. Published by Elsevier B.V.

  11. Vitamin A

    MedlinePlus

    Vitamins are substances that your body needs to grow and develop normally. Vitamin A plays a role in your Vision Bone growth Reproduction Cell functions Immune system Vitamin A is an antioxidant. It can come from ...

  12. Compensatory functions and interdependency of the DNA-binding domain of BRCA2 with the BRCA1-PALB2-BRCA2 complex.

    PubMed

    Al Abo, Muthana; Dejsuphong, Donniphat; Hirota, Kouji; Yonetani, Yasukazu; Yamazoe, Mitsuyoshi; Kurumizaka, Hitoshi; Takeda, Shunichi

    2014-02-01

    BRCA1, BRCA2, and PALB2 are key players in cellular tolerance to chemotherapeutic agents, including camptothecin, cisplatin, and PARP inhibitor. The N-terminal segment of BRCA2 interacts with PALB2, thus contributing to the formation of the BRCA1-PALB2-BRCA2 complex. To understand the role played by BRCA2 in this complex, we deleted its N-terminal segment and generated BRCA2(Δ)(N) mutant cells. Although previous studies have suggested that BRCA1-PALB2 plays a role in the recruitment of BRCA2 to DNA-damage sites, BRCA2(Δ)(N) mutant cells displayed a considerably milder phenotype than did BRCA2(-/-) null-deficient cells. We hypothesized that the DNA-binding domain (DBD) of BRCA2 might compensate for a defect in BRCA2(ΔN) that prevented stable interaction with PALB2. To test this hypothesis, we disrupted the DBD of BRCA2 in wild-type and BRCA2(Δ)(N) cells. Remarkably, although the resulting BRCA2(Δ)(DBD) cells displayed a moderate phenotype, the BRCA2(Δ)(N+ΔDBD) cells displayed a very severe phenotype, as did the BRCA2(-/-) cells, suggesting that the N-terminal segment and the DBD play a substantially overlapping role in the functionality of BRCA2. We also showed that the formation of both the BRCA1-PALB2-BRCA2 complex and the DBD is required for efficient recruitment of BRCA2 to DNA-damage sites. Our study revealed the essential role played by both the BRCA1-PALB2-BRCA2 complex and the DBD in the functionality of BRCA2, as each can compensate for the other in the recruitment of BRCA2 to DNA-damage sites. This knowledge adds to our ability to accurately predict the efficacy of antimalignant therapies for patients carrying mutations in the BRCA2 gene.

  13. Genetic regulation of maize flower development and sex determination.

    PubMed

    Li, Qinglin; Liu, Baoshen

    2017-01-01

    The determining process of pistil fate are central to maize sex determination, mainly regulated by a genetic network in which the sex-determining genes SILKLESS 1 , TASSEL SEED 1 , TASSEL SEED 2 and the paramutagenic locus Required to maintain repression 6 play pivotal roles. Maize silks, which emerge from the ear shoot and derived from the pistil, are the functional stigmas of female flowers and play a pivotal role in pollination. Previous studies on sex-related mutants have revealed that sex-determining genes and phytohormones play an important role in the regulation of flower organogenesis. The processes determining pistil fate are central to flower development, where a silk identified gene SILKLESS 1 (SK1) is required to protect pistil primordia from a cell death signal produced by two commonly known genes, TASSEL SEED 1 (TS1) and TASSEL SEED 2 (TS2). In this review, maize flower developmental process is presented together with a focus on important sex-determining mutants and hormonal signaling affecting pistil development. The role of sex-determining genes, microRNAs, phytohormones, and the paramutagenic locus Required to maintain repression 6 (Rmr6), in forming a regulatory network that determines pistil fate, is discussed. Cloning SK1 and clarifying its function were crucial in understanding the regulation network of sex determination. The signaling mechanisms of phytohormones in sex determination are also an important research focus.

  14. Oxytocin and experimental therapeutics in autism spectrum disorders.

    PubMed

    Bartz, Jennifer A; Hollander, Eric

    2008-01-01

    Autism is a developmental disorder characterized by three core symptom domains: speech and communication abnormalities, social functioning impairments and repetitive behaviours and restricted interests. Oxytocin (OXT) is a nine-amino-acid peptide that is synthesized in the paraventricular and supraoptic nucleus of the hypothalamus and released into the bloodstream by axon terminals in the posterior pituitary where it plays an important role in facilitating uterine contractions during parturition and in milk let-down. In addition, OXT and the structurally similar peptide arginine vasopressin (AVP) are released within the brain where they play a key role in regulating affiliative behaviours, including sexual behaviour, mother-infant and adult-adult pair-bond formation and social memory/recognition. Finally, OXT has been implicated in repetitive behaviours and stress reactivity. Given that OXT is involved in the regulation of repetitive and affiliative behaviours, and that these are key features of autism, it is believed that OXT may play a role in autism and that OXT may be an effective treatment for these two core symptom domains. In this chapter we review evidence to date supporting a relationship between OXT and autism; we then discuss research looking at the functional role of OXT in autism, as well as a pilot study investigating the therapeutic efficacy of OXT in treating core autism symptom domains. Finally, we conclude with a discussion of directions for future research.

  15. Endolysosomal Cation Channels and Cancer-A Link with Great Potential.

    PubMed

    Grimm, Christian; Bartel, Karin; Vollmar, Angelika M; Biel, Martin

    2018-01-05

    The endolysosomal system (ES) consists of lysosomes; early, late, and recycling endosomes; and autophagosomes. It is a key regulator not only of macromolecule degradation and recycling, plasma membrane repair, homeostasis, and lipid storage, but also of antigen presentation, immune defense, cell motility, cell death signaling, tumor growth, and cancer progression. In addition, it plays a critical role in autophagy, and the autophagy-lysosome pathway is intimately associated with the hallmarks of cancer, such as escaping cell death pathways, evading immune surveillance, and deregulating metabolism. The function of endolysosomes is critically dependent on both soluble and endolysosomal membrane proteins such as ion channels and transporters. Cation channels found in the ES include members of the TRP (transient receptor potential) channel superfamily, namely TRPML channels (mucolipins) as well as two-pore channels (TPCs). In recent studies, these channels have been found to play crucial roles in endolysosomal trafficking, lysosomal exocytosis, and autophagy. Mutation or loss of these channel proteins can impact multiple endolysosomal trafficking pathways. A role for TPCs in cancer cell migration and metastasis, linked to distinct defects in endolysosomal trafficking such as integrin trafficking, has been recently established. In this review, we give an overview on the function of lysosomes in cancer with a particular focus on the roles which TPCs and TRPML channels play in the ES and how this can affect cancer cells.

  16. Endolysosomal Cation Channels and Cancer—A Link with Great Potential

    PubMed Central

    Grimm, Christian; Bartel, Karin; Vollmar, Angelika M.; Biel, Martin

    2018-01-01

    The endolysosomal system (ES) consists of lysosomes; early, late, and recycling endosomes; and autophagosomes. It is a key regulator not only of macromolecule degradation and recycling, plasma membrane repair, homeostasis, and lipid storage, but also of antigen presentation, immune defense, cell motility, cell death signaling, tumor growth, and cancer progression. In addition, it plays a critical role in autophagy, and the autophagy-lysosome pathway is intimately associated with the hallmarks of cancer, such as escaping cell death pathways, evading immune surveillance, and deregulating metabolism. The function of endolysosomes is critically dependent on both soluble and endolysosomal membrane proteins such as ion channels and transporters. Cation channels found in the ES include members of the TRP (transient receptor potential) channel superfamily, namely TRPML channels (mucolipins) as well as two-pore channels (TPCs). In recent studies, these channels have been found to play crucial roles in endolysosomal trafficking, lysosomal exocytosis, and autophagy. Mutation or loss of these channel proteins can impact multiple endolysosomal trafficking pathways. A role for TPCs in cancer cell migration and metastasis, linked to distinct defects in endolysosomal trafficking such as integrin trafficking, has been recently established. In this review, we give an overview on the function of lysosomes in cancer with a particular focus on the roles which TPCs and TRPML channels play in the ES and how this can affect cancer cells. PMID:29303993

  17. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms.

    PubMed

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-E; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs' appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers' attention from different fields and many studies have validated MMORPGs' positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers' overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas.

  18. The Americans with Disabilities Act: Using Job Analysis To Meet New Challenges.

    ERIC Educational Resources Information Center

    Lozada-Larsen, Susana R.

    This paper focuses on the role that job analysis plays under the Americans with Disabilities Act (ADA). The most obvious use of job analysis data is in defining the essential functions of each job. The job analysis technique used should: list the functions of the job, define which functions are essential rather than marginal, and offer proof of…

  19. An Extended Functional Analysis Protocol Assesses the Role of Stereotypy in Aggression in Two Young Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    White, Pamela; O'Reilly, Mark; Fragale, Christina; Kang, Soyeon; Muhich, Kimberly; Falcomata, Terry; Lang, Russell; Sigafoos, Jeff; Lancioni, Giulio

    2011-01-01

    Two children with autism who engaged in aggression and stereotypy were assessed using common analogue functional analysis procedures. Aggression was maintained by access to specific preferred items. Data on the rates of stereotypy and appropriate play were collected during an extended functional analysis tangible condition. These data reveal that…

  20. The Mental Space Function of BUT as a Lexical Discourse Marker in American Sign Language Lectures

    ERIC Educational Resources Information Center

    Garrow, William George

    2012-01-01

    This dissertation centers on the application of the mental space theory to expand our understanding of the role lexical discourse markers (LDMs) play in discourse. LDMs have been recognized by many researchers for their discourse connective function(s) (Levinson, 1983; Schiffrin, 1987; Blakemore, 1989, 2000, 2001, 2002; Fraser, 1996, 1999, 2006).…

  1. Exosomes participate in the carcinogenesis and the malignant behavior of gastric cancer.

    PubMed

    Yan, Yunmeng; Fu, Guangzhen; Ye, Yafei; Ming, Liang

    2017-05-01

    In order to summarize the role of exosomes in invasion and metastasis in gastric cancer (GC). Exosomes are vesicles of endocytic origin ranging from 30 to 100 nm in size; they are composed of a lipid bilayer and contain DNA, mRNA, miRNA, circular RNA and multiple proteins. Recently, increasing evidence shows that exosomes play a crucial role in the tumorigenesis of GC. In this review, we focus on the latest findings on GC exosomes, mainly summarizing their role in invasion and metastasis in GC. Then, exosomes? potential functions as novel diagnostic and therapeutic biomarkers for GC are briefly discussed. At last, we prospect the clinical application perspective of exosomes in GC. Exosomes play a vital role in gastric cancer carcinogenesis and metastasis.

  2. Macrophages: Contributors to Allograft Dysfunction, Repair or Innocent Bystanders?

    PubMed Central

    Mannon, Roslyn B.

    2012-01-01

    Purpose of this review Macrophages are members of the innate immune response. However, their role in the adaptive immune response is not known. The purpose of this review is to highlight our current understanding of macrophage structure and function and how they may participate in allograft injury. Recent Findings Studies in acute kidney injury models identify macrophages as key mediators of inflammatory injury while more recent studies indicate that they may play a reparative role, depending on phenotype—M1 or M2 type macrophages. Mregs, generated in vitro, appear to have immune suppressive abilities and a unique phenotype. In solid organ transplant, the emphasis of studies has been on acute or chronic injury. These data are derived from animal models using depletion of macrophages or antagonizing their activation and inflammatory responses. The relative contribution of macrophage phenotype in transplantation has not been explored. Summary These studies suggest that macrophages play an injurious role in acute cellular allograft rejection, as well as in chronic injury. Infiltration of an allograft with macrophages is also associated with worse graft function and poor prognosis. Further studies are needed to understand the mechanisms of macrophage mediated injury, explore their potential reparative role and determine if they or their functional products are biomarkers of poor graft outcomes. PMID:22157320

  3. The Developmental Intestinal Regulator ELT-2 Controls p38-Dependent Immune Responses in Adult C. elegans

    PubMed Central

    Block, Dena H. S.; Twumasi-Boateng, Kwame; Kang, Hae Sung; Carlisle, Jolie A.; Hanganu, Alexandru; Lai, Ty Yu-Jen; Shapira, Michael

    2015-01-01

    GATA transcription factors play critical roles in cellular differentiation and development. However, their roles in mature tissues are less understood. In C. elegans larvae, the transcription factor ELT-2 regulates terminal differentiation of the intestine. It is also expressed in the adult intestine, where it was suggested to maintain intestinal structure and function, and where it was additionally shown to contribute to infection resistance. To study the function of elt-2 in adults we characterized elt-2-dependent gene expression following its knock-down specifically in adults. Microarray analysis identified two ELT-2-regulated gene subsets: one, enriched for hydrolytic enzymes, pointed at regulation of constitutive digestive functions as a dominant role of adult elt-2; the second was enriched for immune genes that are induced in response to Pseudomonas aeruginosa infection. Focusing on the latter, we used genetic analyses coupled to survival assays and quantitative RT-PCR to interrogate the mechanism(s) through which elt-2 contributes to immunity. We show that elt-2 controls p38-dependent gene induction, cooperating with two p38-activated transcription factors, ATF-7 and SKN-1. This demonstrates a mechanism through which the constitutively nuclear elt-2 can impact induced responses, and play a dominant role in C. elegans immunity. PMID:26016853

  4. Electrophysiology and Beyond: Multiple roles of Na+ channel β subunits in development and disease

    PubMed Central

    Patino, Gustavo A.; Isom, Lori L.

    2010-01-01

    Voltage-gated Na+ channel (VGSC) β subunits are not “auxiliary.” These multifunctional molecules not only modulate Na+ current (INa), but also function as cell adhesion molecules (CAMs) – playing roles in aggregation, migration, invasion, neurite outgrowth, and axonal fasciculation. β subunits are integral members of VGSC signaling complexes at nodes of Ranvier, axon initial segments, and cardiac intercalated disks, regulating action potential propagation through critical intermolecular and cell-cell communication events. At least in vitro, many β subunit cell adhesive functions occur both in the presence and absence of pore-forming VGSC α subunits, and in vivo β subunits are expressed in excitable as well as non-excitable cells, thus β subunits may play important functional roles on their own, in the absence of α subunits. VGSC β1 subunits are essential for life and appear to be especially important during brain development. Mutations in β subunit genes result in a variety of human neurological and cardiovascular diseases. Moreover, some cancer cells exhibit alterations in β subunit expression during metastasis. In short, these proteins, originally thought of as merely accessory to α subunits, are critical players in their own right in human health and disease. Here we discuss the role of VGSC β subunits in the nervous system. PMID:20600605

  5. Working with Functions without Understanding: An Assessment of the Perceptions of Basotho College Mathematics Specialists on the Idea of Function

    ERIC Educational Resources Information Center

    Polaki, Mokaeane Victor

    2005-01-01

    It is a well-known fact that the idea of function plays a unifying role in the development of mathematical concepts. Yet research has shown that many students do not understand it adequately even though they have experienced a great deal of success in performing a plethora of operations on function, and on using functions to solve various types of…

  6. The Parenchyma of Secondary Xylem and Its Critical Role in Tree Defense against Fungal Decay in Relation to the CODIT Model

    PubMed Central

    Morris, Hugh; Brodersen, Craig; Schwarze, Francis W. M. R.; Jansen, Steven

    2016-01-01

    This review examines the roles that ray and axial parenchyma (RAP) plays against fungal pathogens in the secondary xylem of wood within the context of the CODIT model (Compartmentalization of Decay in Trees), a defense concept first conceived in the early 1970s by Alex Shigo. This model, simplistic in its design, shows how a large woody perennial is highly compartmented. Anatomical divisions in place at the time of infection or damage, (physical defense) alongside the ‘active’ response by the RAP during and after wounding work together in forming boundaries that function to restrict air or decay spread. The living parenchyma cells play a critical role in all of the four walls (differing anatomical constructs) that the model comprises. To understand how living cells in each of the walls of CODIT cooperate, we must have a clear vision of their complex interconnectivity from a three-dimensional perspective, along with knowledge of the huge variation in ray parenchyma (RP) and axial parenchyma (AP) abundance and patterns. Crucial patterns for defense encompass the symplastic continuum between both RP and AP and the dead tissues, with the latter including the vessel elements, libriform fibers, and imperforate tracheary elements (i.e., vasicentric and vascular tracheids). Also, the heartwood, a chemically altered antimicrobial non-living substance that forms the core of many trees, provides an integral part of the defense system. In the heartwood, dead RAP can play an important role in defense, depending on the genetic constitution of the species. Considering the array of functions that RAP are associated with, from capacitance, through to storage, and long-distance water transport, deciding how their role in defense fits into this suite of functions is a challenge for plant scientists, and likely depends on a range of factors. Here, we explore the important role of RAP in defense against fungal pathogens and the trade-offs involved from a viewpoint for structure-function relations, while also examining how fungi can breach the defense system using an array of enzymes in conjunction with the physically intrusive hyphae. PMID:27881986

  7. Motor and somatosensory conversion disorder: a functional unawareness syndrome?

    PubMed

    Perez, David L; Barsky, Arthur J; Daffner, Kirk; Silbersweig, David A

    2012-01-01

    Although conversion disorder is closely connected to the origins of neurology and psychiatry, it remains poorly understood. In this article, the authors discuss neural and clinical parallels between lesional unawareness disorders and unilateral motor and somatosensory conversion disorder, emphasizing functional neuroimaging/disease correlates. Authors suggest that a functional-unawareness neurobiological framework, mediated by right hemisphere-lateralized, large-scale brain network dysfunction, may play a significant role in the neurobiology of conversion disorder. The perigenual anterior cingulate and the posterior parietal cortices are detailed as important in disease pathophysiology. Further investigations will refine the functional-unawareness concept, clarify the role of affective circuits, and delineate the process through which functional neurologic symptoms emerge.

  8. The bioactive acidic serine- and aspartate-rich motif peptide.

    PubMed

    Minamizaki, Tomoko; Yoshiko, Yuji

    2015-01-01

    The organic component of the bone matrix comprises 40% dry weight of bone. The organic component is mostly composed of type I collagen and small amounts of non-collagenous proteins (NCPs) (10-15% of the total bone protein content). The small integrin-binding ligand N-linked glycoprotein (SIBLING) family, a NCP, is considered to play a key role in bone mineralization. SIBLING family of proteins share common structural features and includes the arginine-glycine-aspartic acid (RGD) motif and acidic serine- and aspartic acid-rich motif (ASARM). Clinical manifestations of gene mutations and/or genetically modified mice indicate that SIBLINGs play diverse roles in bone and extraskeletal tissues. ASARM peptides might not be primary responsible for the functional diversity of SIBLINGs, but this motif is suggested to be a key domain of SIBLINGs. However, the exact function of ASARM peptides is poorly understood. In this article, we discuss the considerable progress made in understanding the role of ASARM as a bioactive peptide.

  9. The role of the DLPFC in inductive reasoning of MCI patients and normal agings: an fMRI study.

    PubMed

    Yang, YanHui; Liang, PeiPeng; Lu, ShengFu; Li, KunCheng; Zhong, Ning

    2009-08-01

    Previous studies of young people have revealed that the left dorsolateral prefrontal cortex (DLPFC) plays an important role in inductive reasoning. An fMRI experiment was performed in this study to examine whether the left DLPFC was involved in inductive reasoning of MCI patients and normal aging, and whether the activation pattern of this region was different between MCI patients and normal aging. The fMRI results indicated that MCI patients had no difference from normal aging in behavior performance (reaction time and accuracy) and the activation pattern of DLPFC. However, the BOLD response of the DLPFC region for MCI patients was weaker than that for normal aging, and the functional connectivity between the bilateral DLPFC regions for MCI patients was significantly higher than for normal aging. Taken together, these results indicated that DLPFC plays an important role in inductive reasoning of aging, and the functional abnormity of DLPFC may be an earlier marker of MCI before structural alterations.

  10. Genetics Home Reference: Greenberg dysplasia

    MedlinePlus

    ... domain, plays an important role in the production (synthesis) of cholesterol. Cholesterol is a type of fat ... of certain hormones and digestive acids. During cholesterol synthesis, the sterol reductase function of the lamin B ...

  11. Self-efficacy: Implications for Physical Activity, Function, and Functional Limitations in Older Adults.

    PubMed

    McAuley, Edward; Szabo, Amanda; Gothe, Neha; Olson, Erin A

    2011-07-01

    Attenuating the physical decline and increases in disability associated with the aging process is an important public health priority. Evidence suggests that regular physical activity participation improves functional performance, such as walking, standing balance, flexibility, and getting up out of a chair, and also plays an important role in the disablement process by providing a protective effect against functional limitations. Whether these effects are direct or indirect has yet to be reliably established. In this review, the authors take the perspective that such relationships are indirect and operate through self-efficacy expectations. They first provide an introduction to social cognitive theory followed by an overview of self-efficacy's reciprocal relationship with physical activity. They then consider the literature that documents the effects of physical activity on functional performance and functional limitations in older adults and the extent to which self-efficacy might mediate these relationships. Furthermore, they also present evidence that suggests that self-efficacy plays a pivotal role in a model in which the protective effects conferred by physical activity on functional limitations operate through functional performance. The article concludes with a brief section making recommendations for the development of strategies within physical activity and rehabilitative programs for maximizing the major sources of efficacy information.

  12. Self-efficacy: Implications for Physical Activity, Function, and Functional Limitations in Older Adults

    PubMed Central

    McAuley, Edward; Szabo, Amanda; Gothe, Neha; Olson, Erin A.

    2013-01-01

    Attenuating the physical decline and increases in disability associated with the aging process is an important public health priority. Evidence suggests that regular physical activity participation improves functional performance, such as walking, standing balance, flexibility, and getting up out of a chair, and also plays an important role in the disablement process by providing a protective effect against functional limitations. Whether these effects are direct or indirect has yet to be reliably established. In this review, the authors take the perspective that such relationships are indirect and operate through self-efficacy expectations. They first provide an introduction to social cognitive theory followed by an overview of self-efficacy's reciprocal relationship with physical activity. They then consider the literature that documents the effects of physical activity on functional performance and functional limitations in older adults and the extent to which self-efficacy might mediate these relationships. Furthermore, they also present evidence that suggests that self-efficacy plays a pivotal role in a model in which the protective effects conferred by physical activity on functional limitations operate through functional performance. The article concludes with a brief section making recommendations for the development of strategies within physical activity and rehabilitative programs for maximizing the major sources of efficacy information. PMID:24353482

  13. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cells via AMP-activated protein kinase pathway.

    PubMed

    Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao

    2015-04-01

    Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. NADPH Oxidases in Vascular Pathology

    PubMed Central

    Konior, Anna; Schramm, Agata; Czesnikiewicz-Guzik, Marta

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of “kindling radicals,” which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. Recent Advances: There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. Critical Issues: NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. Future Directions: Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice. Antioxid. Redox Signal. 20, 2794–2814. PMID:24180474

  15. The role of the helicopter in transportation. [technology assessment for use in civil aviation

    NASA Technical Reports Server (NTRS)

    Dajani, J. S.; Warner, D.; Epstein, D.; Obrien, J.

    1976-01-01

    A general overview is presented of the role that the helicopter plays in the current aviation scene with special emphasis on its use in the airport access function. Technological problems of present-day aircraft are discussed along with some plausible solutions. The economic and regulatory aspects of commercial helicopter operations are presented. Finally six commercial operations utilizing helicopters are reviewed and conditions that enhance the success of the helicopter in the airport access function are proposed.

  16. Predicting materials for sustainable energy sources: The key role of density functional theory

    NASA Astrophysics Data System (ADS)

    Galli, Giulia

    Climate change and the related need for sustainable energy sources replacing fossil fuels are pressing societal problems. The development of advanced materials is widely recognized as one of the key elements for new technologies that are required to achieve a sustainable environment and provide clean and adequate energy for our planet. We discuss the key role played by Density Functional Theory, and its implementations in high performance computer codes, in understanding, predicting and designing materials for energy applications.

  17. Gossip: does it play a role in the socialization of nurses?

    PubMed

    Laing, M

    1993-01-01

    Despite its generally negative reputation, gossip continues to be a significant genre of communication in every society. The initial purpose of this paper is to scrutinize gossip from historical, analytical and feminist perspectives. An extensive review of the literature suggests gossip serves three primary functions: information, influence or social control and entertainment. The second purpose is to explore how the functions of gossip may contribute to the socialization of nurses to their professional role and to their work culture.

  18. The functional role of long non-coding RNA in digestive system carcinomas.

    PubMed

    Wang, Guang-Yu; Zhu, Yuan-Yuan; Zhang, Yan-Qiao

    2014-09-01

    In recent years, long non-coding RNAs (lncRNAs) are emerging as either oncogenes or tumor suppressor genes. Recent evidences suggest that lncRNAs play a very important role in digestive system carcinomas. However, the biological function of lncRNAs in the vast majority of digestive system carcinomas remains unclear. Recently, increasing studies has begun to explore their molecular mechanisms and regulatory networks that they are implicated in tumorigenesis. In this review, we highlight the emerging functional role of lncRNAs in digestive system carcinomas. It is becoming clear that lncRNAs will be exciting and potentially useful for diagnosis and treatment of digestive system carcinomas, some of these lncRNAs might function as both diagnostic markers and the treatment targets of digestive system carcinomas.

  19. Introduction and historical perspective.

    PubMed

    Gunning, Peter

    2008-01-01

    Tropomyosin is a coiled coil dimer which forms a polymer along the major groove of the majority of actin filaments. It is therefore one of the two primary components of the actin filament. Our understanding of the biological function of tropomyosin has been driven almost entirely by its role in striated muscle. This reflects both its original discovery as part of the thin filament in skeletal muscle and its pivotal role in regulating muscle contraction. In contrast, its role in the function of the cytoskeleton of all cells has been poorly understood due, at least in part, to the technical challenge of deciphering the function of a large number of isoforms. This book has brought together many of the leading researchers who have defined the function of tropomyosin in both normal and pathological conditions. Each author brings their own perspective in a series of stand alone reviews of the areas of tropomyosin research they have played a major role in defining.

  20. Genomic imprinting—an epigenetic gene-regulatory model

    PubMed Central

    Koerner, Martha V; Barlow, Denise P

    2010-01-01

    Epigenetic mechanisms (Box 1) are considered to play major gene-regulatory roles in development, differentiation and disease. However, the relative importance of epigenetics in defining the mammalian transcriptome in normal and disease states is unknown. The mammalian genome contains only a few model systems where epigenetic gene regulation has been shown to play a major role in transcriptional control. These model systems are important not only to investigate the biological function of known epigenetic modifications but also to identify new and unexpected epigenetic mechanisms in the mammalian genome. Here we review recent progress in understanding how epigenetic mechanisms control imprinted gene expression. PMID:20153958

  1. Histone Arginine Methylation

    PubMed Central

    Lorenzo, Alessandra Di; Bedford, Mark T.

    2012-01-01

    Arginine methylation is a common posttranslational modification (PTM). This type of PTM occurs on both nuclear and cytoplasmic proteins, and is particularly abundant on shuttling proteins. In this review, we will focus on one aspect of this PTM: the diverse roles that arginine methylation of the core histone tails play in regulating chromatin function. A family of nine protein arginine methyltransferases (PRMTs) catalyze methylation reactions, and a subset target histones. Importantly, arginine methylation of histone tails can promote or prevent the docking of key transcriptional effector molecules, thus playing a central role in the orchestration of the histone code. PMID:21074527

  2. Host-derived apolipoproteins play comparable roles with viral secretory proteins Erns and NS1 in the infectious particle formation of Flaviviridae

    PubMed Central

    Ono, Chikako; Shiokawa, Mai; Mori, Hiroyuki; Uemura, Kentaro; Yamamoto, Satomi; Okamoto, Toru; Suzuki, Ryosuke; Yoshii, Kentaro; Kurosu, Takeshi; Igarashi, Manabu; Aoki, Hiroshi; Sakoda, Yoshihiro

    2017-01-01

    Amphipathic α-helices of exchangeable apolipoproteins have shown to play crucial roles in the formation of infectious hepatitis C virus (HCV) particles through the interaction with viral particles. Among the Flaviviridae members, pestivirus and flavivirus possess a viral structural protein Erns or a non-structural protein 1 (NS1) as secretory glycoproteins, respectively, while Hepacivirus including HCV has no secretory glycoprotein. In case of pestivirus replication, the C-terminal long amphipathic α-helices of Erns are important for anchoring to viral membrane. Here we show that host-derived apolipoproteins play functional roles similar to those of virally encoded Erns and NS1 in the formation of infectious particles. We examined whether Erns and NS1 could compensate for the role of apolipoproteins in particle formation of HCV in apolipoprotein B (ApoB) and ApoE double-knockout Huh7 (BE-KO), and non-hepatic 293T cells. We found that exogenous expression of either Erns or NS1 rescued infectious particle formation of HCV in the BE-KO and 293T cells. In addition, expression of apolipoproteins or NS1 partially rescued the production of infectious pestivirus particles in cells upon electroporation with an Erns-deleted non-infectious RNA. As with exchangeable apolipoproteins, the C-terminal amphipathic α-helices of Erns play the functional roles in the formation of infectious HCV or pestivirus particles. These results strongly suggest that the host- and virus-derived secretory glycoproteins have overlapping roles in the viral life cycle of Flaviviridae, especially in the maturation of infectious particles, while Erns and NS1 also participate in replication complex formation and viral entry, respectively. Considering the abundant hepatic expression and liver-specific propagation of these apolipoproteins, HCV might have evolved to utilize them in the formation of infectious particles through deletion of a secretory viral glycoprotein gene. PMID:28644867

  3. Cholinergic modulation of cognitive processing: insights drawn from computational models

    PubMed Central

    Newman, Ehren L.; Gupta, Kishan; Climer, Jason R.; Monaghan, Caitlin K.; Hasselmo, Michael E.

    2012-01-01

    Acetylcholine plays an important role in cognitive function, as shown by pharmacological manipulations that impact working memory, attention, episodic memory, and spatial memory function. Acetylcholine also shows striking modulatory influences on the cellular physiology of hippocampal and cortical neurons. Modeling of neural circuits provides a framework for understanding how the cognitive functions may arise from the influence of acetylcholine on neural and network dynamics. We review the influences of cholinergic manipulations on behavioral performance in working memory, attention, episodic memory, and spatial memory tasks, the physiological effects of acetylcholine on neural and circuit dynamics, and the computational models that provide insight into the functional relationships between the physiology and behavior. Specifically, we discuss the important role of acetylcholine in governing mechanisms of active maintenance in working memory tasks and in regulating network dynamics important for effective processing of stimuli in attention and episodic memory tasks. We also propose that theta rhythm plays a crucial role as an intermediary between the physiological influences of acetylcholine and behavior in episodic and spatial memory tasks. We conclude with a synthesis of the existing modeling work and highlight future directions that are likely to be rewarding given the existing state of the literature for both empiricists and modelers. PMID:22707936

  4. Beyond microbial community composition: functional activities of the oral microbiome in health and disease

    PubMed Central

    Duran-Pinedo, Ana E.; Frias-Lopez, Jorge

    2015-01-01

    The oral microbiome plays a relevant role in the health status of the host and is a key element in a variety of oral and non-oral diseases. Despite advances in our knowledge of changes in microbial composition associated with different health conditions the functional aspects of the oral microbiome that lead to dysbiosis remain for the most part unknown. In this review, we discuss the progress made towards understanding the functional role of the oral microbiome in health and disease and how novel technologies are expanding our knowledge on this subject. PMID:25862077

  5. Genetics Home Reference: methylmalonic acidemia

    MedlinePlus

    ... cobalamin) to break down several protein building blocks ( amino acids ), certain lipids, and cholesterol. Mutations in the MUT ... also plays a role in the breakdown of amino acids, certain lipids, and cholesterol. Disruption in the function ...

  6. Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones

    PubMed Central

    Hansen, R K; Bissell, M J

    2010-01-01

    The changes in tissue architecture that accompany the development of breast cancer have been the focus of investigations aimed at developing new cancer therapeutics. As we learn more about the normal mammary gland, we have begun to understand the complex signaling pathways underlying the dramatic shifts in the structure and function of breast tissue. Integrin-, growth factor-, and steroid hormone-signaling pathways all play an important part in maintaining tissue architecture; disruption of the delicate balance of signaling results in dramatic changes in the way cells interact with each other and with the extracellular matrix, leading to breast cancer. The extracellular matrix itself plays a central role in coordinating these signaling processes. In this review, we consider the interrelationships between the extracellular matrix, integrins, growth factors, and steroid hormones in mammary gland development and function. PMID:10903527

  7. Photobiomodulation on senescence

    NASA Astrophysics Data System (ADS)

    Liu, Timon Cheng-Yi; Cheng, Lei; Rong, Dong-Liang; Xu, Xiao-Yang; Cui, Li-Ping; Lu, Jian; Deng, Xiao-Yuan; Liu, Song-Hao

    2006-09-01

    Photobiomodulation (PBM) is an effect oflow intensity monochromatic light or laser irradiation (LIL) on biological systems. which stimulates or inhibits biological functions but does not result in irreducible damage. It has been observed that PBM can suppress cellular senescence, reverse skin photoageing and improve fibromyalgia. In this paper, the biological information model of photobiomodulation (BIMP) is used to discuss its mechanism. Cellular senescence can result from short, dysfunctional telomeres, oxidative stress, or oncogene expression, and may contribute to aging so that it can be seen as a decline of cellular function in which cAMP plays an important role, which provide a foundation for PBM on senescence since cellular senescence is a reasonable model of senescence and PBM is a cellular rehabilitation in which cAMP also plays an important role according to BIMP. The PBM in reversing skin photoageing and improving fibromyalgia are then discussed in detail.

  8. NITRIC OXIDE, MITOCHONDRIAL HYPERPOLARIZATION AND T-CELL ACTIVATION

    PubMed Central

    Nagy, Gyorgy; Koncz, Agnes; Fernandez, David; Perl, Andras

    2007-01-01

    T lymphocyte activation is associated with nitric oxide (NO) production that plays an essential role in multiple T cell functions. NO acts as a messenger, activating soluble guanyl cyclase and participating in the transduction signaling pathways involving cyclic GMP. NO modulates mitochondrial events that are involved in apoptosis and regulates mitochondrial membrane potential and mitochondrial biogenesis in many cell types, including lymphocytes. Mitochondrial hyperpolarization (MHP), an early and reversible event during both T lymphocyte activation and apoptosis, is regulated by NO. Here, we discuss recent evidence that NO-induced MHP represents a molecular switch in multiple T cell signaling pathways. Overproduction of NO in systemic lupus erythematosus (SLE) induces mitochondrial biogenesis and alters Ca2+ signaling. Thus, while NO plays a physiological role in lymphocyte cell signaling, its overproduction may disturb normal T cell function, contributing to the pathogenesis of autoimmunity. PMID:17462531

  9. Memory-guided attention in the anterior thalamus.

    PubMed

    Leszczyński, Marcin; Staudigl, Tobias

    2016-07-01

    The anterior thalamus is densely connected with both the hippocampus and the prefrontal cortex. It is known to play a role in learning and episodic memory. Given its connectivity profile with the prefrontal cortex, it may also be expected to contribute to executive functions. Recent studies in both rodents and humans add to our understanding of anterior thalamic function, suggesting that it is a key region for allocating attention. We discuss the convergence between studies in rodents and humans, both of which imply that the anterior thalamus may play a key role in memory-guided attention. We suggest that efficient allocation of attention to memory representations requires interaction between the memory-related hippocampal and the attention related fronto-parietal networks. We further propose that the anterior thalamus is a hub that connects and modulates both systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Relative Expression Levels Rather Than Specific Activity Plays the Major Role in Determining In Vivo AKT Isoform Substrate Specificity

    PubMed Central

    Lee, Rachel S.; House, Colin M.; Cristiano, Briony E.; Hannan, Ross D.; Pearson, Richard B.; Hannan, Katherine M.

    2011-01-01

    The AKT protooncogene mediates many cellular processes involved in normal development and disease states such as cancer. The three structurally similar isoforms: AKT1, AKT2, and AKT3 exhibit both functional redundancy and isoform-specific functions; however the basis for their differential signalling remains unclear. Here we show that in vitro, purified AKT3 is ∼47-fold more active than AKT1 at phosphorylating peptide and protein substrates. Despite these marked variations in specific activity between the individual isoforms, a comprehensive analysis of phosphorylation of validated AKT substrates indicated only subtle differences in signalling via individual isoforms in vivo. Therefore, we hypothesise, at least in this model system, that relative tissue/cellular abundance, rather than specific activity, plays the dominant role in determining AKT substrate specificity in situ. PMID:21869924

  11. Effects of RAAS Inhibitors in Patients with Kidney Disease.

    PubMed

    Zhang, Fan; Liu, Hong; Liu, Di; Liu, Yexin; Li, Huiqiong; Tan, Xia; Liu, Fuyou; Peng, Youming; Zhang, Hongqing

    2017-08-08

    Proteinuria and decline of renal function are associated with progression of kidney disease. The Renin Angiotensin Aldosterone System (RAAS) plays an important role in blood pressure regulation, fluid volume, and sodium balance. Overactivity of RAAS contributes to the pathogenesis of a variety of clinical conditions including progress of chronic kidney disease (CKD). This review summarizes the use of RAAS inhibitors as dual therapy or monotherapy in different stages of kidney disease. Experimental and clinical studies have demonstrated RAAS inhibitors prevent proteinuria, kidney fibrosis and slow decline of renal function and thus play a protective role in both early and end stages of kidney disease. While combination use of RAAS inhibitors showed higher efficiency compared with monotherapy, it is also associated with higher incidence of adverse events. Besides ACEI/ARBs, more mechanism research of mineralocorticoid receptor antagonists in kidney disease should be performed.

  12. Synapsin I and Synapsin II regulate neurogenesis in the dentate gyrus of adult mice.

    PubMed

    Barbieri, Raffaella; Contestabile, Andrea; Ciardo, Maria Grazia; Forte, Nicola; Marte, Antonella; Baldelli, Pietro; Benfenati, Fabio; Onofri, Franco

    2018-04-10

    Adult neurogenesis is emerging as an important player in brain functions and homeostasis, while impaired or altered adult neurogenesis has been associated with a number of neuropsychiatric diseases, such as depression and epilepsy. Here we investigated the possibility that synapsins (Syns) I and II, beyond their known functions in developing and mature neurons, also play a role in adult neurogenesis. We performed a systematic evaluation of the distinct stages of neurogenesis in the hippocampal dentate gyrus of Syn I and Syn II knockout (KO) mice, before (2-months-old) and after (6-months-old) the appearance of the epileptic phenotype. We found that Syns I and II play an important role in the regulation of adult neurogenesis. In juvenile mice, Syn II deletion was associated with a specific decrease in the proliferation of neuronal progenitors, whereas Syn I deletion impaired the survival of newborn neurons. These defects were reverted after the appearance of the epileptic phenotype, with Syn I KO and Syn II KO mice exhibiting significant increases in survival and proliferation, respectively. Interestingly, long-term potentiation dependent on newborn neurons was present in both juvenile Syn mutants while, at later ages, it was only preserved in Syn II KO mice that also displayed an increased expression of brain-derived neurotrophic factor. This study suggests that Syns I and II play a role in adult neurogenesis and the defects in neurogenesis associated with Syn deletion may contribute to the alterations of cognitive functions observed in Syn-deficient mice.

  13. Essential role of grim-led programmed cell death for the establishment of corazonin-producing peptidergic nervous system during embryogenesis and metamorphosis in Drosophila melanogaster.

    PubMed

    Lee, Gyunghee; Sehgal, Ritika; Wang, Zixing; Nair, Sudershana; Kikuno, Keiko; Chen, Chun-Hong; Hay, Bruce; Park, Jae H

    2013-03-15

    In Drosophila melanogaster, combinatorial activities of four death genes, head involution defective (hid), reaper (rpr), grim, and sickle (skl), have been known to play crucial roles in the developmentally regulated programmed cell death (PCD) of various tissues. However, different expression patterns of the death genes also suggest distinct functions played by each. During early metamorphosis, a great number of larval neurons unfit for adult life style are removed by PCD. Among them are eight pairs of corazonin-expressing larval peptidergic neurons in the ventral nerve cord (vCrz). To reveal death genes responsible for the PCD of vCrz neurons, we examined extant and recently available mutations as well as RNA interference that disrupt functions of single or multiple death genes. We found grim as a chief proapoptotic gene and skl and rpr as minor ones. The function of grim is also required for PCD of the mitotic sibling cells of the vCrz neuronal precursors (EW3-sib) during embryonic neurogenesis. An intergenic region between grim and rpr, which, it has been suggested, may enhance expression of three death genes in embryonic neuroblasts, appears to play a role for the vCrz PCD, but not for the EW3-sib cell death. The death of vCrz neurons and EW3-sib is triggered by ecdysone and the Notch signaling pathway, respectively, suggesting distinct regulatory mechanisms of grim expression in a cell- and developmental stage-specific manner.

  14. Functions in Contemporary Secondary Mathematics Textbook Series in the United States

    ERIC Educational Resources Information Center

    Ross, Daniel J.

    2011-01-01

    Textbooks play a central role in US mathematics classrooms (Stein, Remillard, & Smith, 2007) and functions are a key topic in secondary mathematics (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). This study presents results from an analysis of this essential topic in the latest editions of three textbook series: the Glencoe Mathematics…

  15. The differentiation and protective function of cytolytic CD4 T cells in influenza infection

    USDA-ARS?s Scientific Manuscript database

    CD4 T cells that recognize peptide antigen in the context of Class II MHC can differentiate into various subsets that are characterized by their helper functions. However, increasing evidence indicates that CD4 cells with direct cytolytic activity play a role in chronic, as well as, acute infections...

  16. Executive Function and Academic Achievement in Primary-Grade Students with Down Syndrome

    ERIC Educational Resources Information Center

    Will, E.; Fidler, D. J.; Daunhauer, L.; Gerlach-McDonald, B.

    2017-01-01

    Background: Executive function (EF) plays a critical role in academic outcomes in typically developing children, but the contribution of EF to academic performance in Down syndrome (DS) is less well understood. This study evaluated differences in early academic foundations between primary school aged children with DS and non-verbal mental-age…

  17. Confounding the origin and function of mirror neurons.

    PubMed

    Rizzolatti, Giacomo

    2014-04-01

    Cook et al. argue that mirror neurons originate in sensorimotor associative learning and that their function is determined by their origin. Both these claims are hard to accept. It is here suggested that a major role in the origin of the mirror mechanism is played by top-down connections rather than by associative learning.

  18. Pulmonary function response and effects of antioxidant genetic polymorphisms in healthy young adults exposed to low concentration ozone.

    EPA Science Inventory

    Rational: Ozone is known to induce a variety of pulmonary effects including decrement of spirometric lung function and inflammatory reaction, and antioxidant genes are known to play an important role in modulating the effects. It is unclear, however, if such effects may occur at...

  19. Families of Functions and Functions of Proof

    ERIC Educational Resources Information Center

    Landman, Greisy Winicki

    2002-01-01

    This article describes an activity for secondary school students that may constitute an appropriate opportunity to discuss with them the idea of proof, particularly in an algebraic context. During the activity the students may experience and understand some of the roles played by proof in mathematics in addition to verification of truth:…

  20. Quantization of Electromagnetic Fields in Cavities

    NASA Technical Reports Server (NTRS)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  1. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca(2+) exchangers

    USDA-ARS?s Scientific Manuscript database

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+) exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recen...

  2. Prostaglandins modify phosphorylation of specific proteins in the insect cell line BCIRL-HzAM1

    USDA-ARS?s Scientific Manuscript database

    Prostaglandins (PGs) play crucial roles in vertebrate biology, particularly in immune functions. Because PGs also mediate specific cell functions in insect immunity, we are investigating how these signaling molecules affect insect cells. We reported that PGs, notably PGA1, PGA2, and PGE1, up and/or ...

  3. Reduced Prefrontal Hemodynamic Response in Pediatric Obsessive-Compulsive Disorder as Measured by Near-Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Ota, Toyosaku; Iida, Junzo; Sawada, Masayuki; Suehiro, Yuko; Yamamuro, Kazuhiko; Matsuura, Hiroki; Tanaka, Shohei; Kishimoto, Naoko; Negoro, Hideki; Kishimoto, Toshifumi

    2013-01-01

    Recent developments in near-infrared spectroscopy (NIRS) have enabled non-invasive clarification of brain functions in psychiatric disorders. Functional neuroimaging studies of patients with obsessive-compulsive disorder (OCD) have suggested that the frontal cortex and subcortical structures may play a role in the pathophysiology of the disorder.…

  4. State Spending on Higher Education Capital Outlays

    ERIC Educational Resources Information Center

    Delaney, Jennifer A.; Doyle, William R.

    2014-01-01

    This paper explores the role that state spending on higher education capital outlays plays in state budgets by considering the functional form of the relationship between state spending on higher education capital outlays and four types of state expenditures. Three possible functional forms are tested: a linear model, a quadratic model, and the…

  5. Transient Relay Function of Midline Thalamic Nuclei during Long-Term Memory Consolidation in Humans

    ERIC Educational Resources Information Center

    Thielen, Jan-Willem; Takashima, Atsuko; Rutters, Femke; Tendolkar, Indira; Fernández, Guillén

    2015-01-01

    To test the hypothesis that thalamic midline nuclei play a transient role in memory consolidation, we reanalyzed a prospective functional MRI study, contrasting recent and progressively more remote memory retrieval. We revealed a transient thalamic connectivity increase with the hippocampus, the medial prefrontal cortex (mPFC), and a…

  6. A Visualisation-Based Semiotic Analysis of Learners' Conceptual Understanding of Graphical Functional Relationships

    ERIC Educational Resources Information Center

    Mudaly, Vimolan

    2014-01-01

    Within the South African school curriculum, the section on graphical functional relationships consists of signs which include symbols, notation and imagery. In a previous article we explored the role visualisation played in the way learners understood mathematical concepts. That paper reported on the learners' fixation with the physical features…

  7. Preserved local but disrupted contextual figure-ground influences in an individual with abnormal function of intermediate visual areas

    PubMed Central

    Brooks, Joseph L.; Gilaie-Dotan, Sharon; Rees, Geraint; Bentin, Shlomo; Driver, Jon

    2012-01-01

    Visual perception depends not only on local stimulus features but also on their relationship to the surrounding stimulus context, as evident in both local and contextual influences on figure-ground segmentation. Intermediate visual areas may play a role in such contextual influences, as we tested here by examining LG, a rare case of developmental visual agnosia. LG has no evident abnormality of brain structure and functional neuroimaging showed relatively normal V1 function, but his intermediate visual areas (V2/V3) function abnormally. We found that contextual influences on figure-ground organization were selectively disrupted in LG, while local sources of figure-ground influences were preserved. Effects of object knowledge and familiarity on figure-ground organization were also significantly diminished. Our results suggest that the mechanisms mediating contextual and familiarity influences on figure-ground organization are dissociable from those mediating local influences on figure-ground assignment. The disruption of contextual processing in intermediate visual areas may play a role in the substantial object recognition difficulties experienced by LG. PMID:22947116

  8. The RNA polymerase II CTD coordinates transcription and RNA processing

    PubMed Central

    Hsin, Jing-Ping; Manley, James L.

    2012-01-01

    The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of multiple heptad repeats (consensus Tyr1–Ser2–Pro3–Thr4–Ser5–Pro6–Ser7), varying in number from 26 in yeast to 52 in vertebrates. The CTD functions to help couple transcription and processing of the nascent RNA and also plays roles in transcription elongation and termination. The CTD is subject to extensive post-translational modification, most notably phosphorylation, during the transcription cycle, which modulates its activities in the above processes. Therefore, understanding the nature of CTD modifications, including how they function and how they are regulated, is essential to understanding the mechanisms that control gene expression. While the significance of phosphorylation of Ser2 and Ser5 residues has been studied and appreciated for some time, several additional modifications have more recently been added to the CTD repertoire, and insight into their function has begun to emerge. Here, we review findings regarding modification and function of the CTD, highlighting the important role this unique domain plays in coordinating gene activity. PMID:23028141

  9. Decrease of SYNGAP1 in GABAergic cells impairs inhibitory synapse connectivity, synaptic inhibition and cognitive function

    PubMed Central

    Berryer, Martin H.; Chattopadhyaya, Bidisha; Xing, Paul; Riebe, Ilse; Bosoi, Ciprian; Sanon, Nathalie; Antoine-Bertrand, Judith; Lévesque, Maxime; Avoli, Massimo; Hamdan, Fadi F.; Carmant, Lionel; Lamarche-Vane, Nathalie; Lacaille, Jean-Claude; Michaud, Jacques L.; Di Cristo, Graziella

    2016-01-01

    Haploinsufficiency of the SYNGAP1 gene, which codes for a Ras GTPase-activating protein, impairs cognition both in humans and in mice. Decrease of Syngap1 in mice has been previously shown to cause cognitive deficits at least in part by inducing alterations in glutamatergic neurotransmission and premature maturation of excitatory connections. Whether Syngap1 plays a role in the development of cortical GABAergic connectivity and function remains unclear. Here, we show that Syngap1 haploinsufficiency significantly reduces the formation of perisomatic innervations by parvalbumin-positive basket cells, a major population of GABAergic neurons, in a cell-autonomous manner. We further show that Syngap1 haploinsufficiency in GABAergic cells derived from the medial ganglionic eminence impairs their connectivity, reduces inhibitory synaptic activity and cortical gamma oscillation power, and causes cognitive deficits. Our results indicate that Syngap1 plays a critical role in GABAergic circuit function and further suggest that Syngap1 haploinsufficiency in GABAergic circuits may contribute to cognitive deficits. PMID:27827368

  10. The phylogenetic analysis of tetraspanins projects the evolution of cell-cell interactions from unicellular to multicellular organisms.

    PubMed

    Huang, Shengfeng; Yuan, Shaochun; Dong, Meiling; Su, Jing; Yu, Cuiling; Shen, Yang; Xie, Xiaojin; Yu, Yanhong; Yu, Xuesong; Chen, Shangwu; Zhang, Shicui; Pontarotti, Pierre; Xu, Anlong

    2005-12-01

    In animals, the tetraspanins are a large superfamily of membrane proteins that play important roles in organizing various cell-cell and matrix-cell interactions and signal pathways based on such interactions. However, their origin and evolution largely remain elusive and most of the family's members are functionally unknown or less known due to difficulties of study, such as functional redundancy. In this study, we rebuilt the family's phylogeny with sequences retrieved from online databases and our cDNA library of amphioxus. We reveal that, in addition to in metazoans, various tetraspanins are extensively expressed in protozoan amoebae, fungi, and plants. We also discuss the structural evolution of tetraspanin's major extracellular domain and the relation between tetraspanin's duplication and functional redundancy. Finally, we elucidate the coevolution of tetraspanins and eukaryotes and suggest that tetraspanins play important roles in the unicell-to-multicell transition. In short, the study of tetraspanin in a phylogenetic context helps us understand the evolution of intercellular interactions.

  11. The NADPH-oxidase AtRbohI plays a positive role in drought-stress response in Arabidopsis thaliana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Huan; Yan, Jingwei; Yu, Xiaoyun

    As the major resource of reactive oxygen species (ROS), the NADPH oxidases (Rbohs) have been shown to play important roles in plant cells under normal growth and stress conditions. Although many family members of Rbohs were studied, little is known about the function of RbohI in Arabidopsis thaliana. Here, we report that exogenous ABA application decreases RbohI expression and mannitol significantly increases RbohI expression at transcript level. The RbohI transcripts were strongly detected in dry seeds and roots. The loss-of-function mutant rbohI exhibited sensitivity to ABA and mannitol stress during germination. Furthermore, the lateral root growth of rbohI was severelymore » inhibited after treatment with mannitol stress. Overexpression of RbohI in Arabidopsis significantly improves the drought tolerance. Moreover, more H 2O 2 accumulated in RbohI overexpressors than in wild type plants in response to mannitol stress. Our conclusion is that AtRbohI functions in drought-stress response in Arabidopsis thaliana.« less

  12. pH-dependent Differential Scanning Calorimetry and Dynamic Light Scattering Studies of 21:0 PC and 18:0 PS Lipid Binary System

    NASA Astrophysics Data System (ADS)

    Ali, Rejwan

    2010-03-01

    Large unilamallar vesicle has been a model system to study many membrane functions. High Tg lipid systems offer many potential biomedical applications in lipid-based delivery applications. While the optimized vesicle functionalities are achieved by Polyethylene Glycol (PEG) polymer, modified PEG and other functional molecule incorporation, however, the host binary lipid system plays the pivotal role in pH-dependent phase transition based lipid vehicular methods. We have investigated a lipid binary system composed of 21:0 PC (1,2-dihenarachidoyl-sn-glycero-3-phosphocholine) and 18:0 PS(1,2-distearoyl-sn-glycero-3-phospho-L-serine). Preliminary studies implementing differential scanning calorimetry shows pH plays key role in temperature shift and thermotropic phase behavior of the binary system. While dynamic light scattering study shows lipid vesicle size is almost independent of pH changes. We will also present pH-dependent thermodynamic parameters to correlate underlying molecular mechanism in relevant pH-range.

  13. Identification of two frataxin isoforms in Zea mays: Structural and functional studies.

    PubMed

    Buchensky, Celeste; Sánchez, Manuel; Carrillo, Martin; Palacios, Oscar; Capdevila, Mercè; Domínguez-Vera, Jose M; Busi, Maria V; Atrian, Sílvia; Pagani, Maria A; Gomez-Casati, Diego F

    2017-09-01

    Frataxin is a ubiquitous protein that plays a role in Fe-S cluster biosynthesis and iron and heme metabolism, although its molecular functions are not entirely clear. In non-photosynthetic eukaryotes, frataxin is encoded by a single gene, and the protein localizes to mitochondria. Here we report the presence of two functional frataxin isoforms in Zea mays, ZmFH-1 and ZmFH-2. We confirmed our previous findings regarding plant frataxins: both proteins have dual localization in mitochondria and chloroplasts. Physiological, biochemical and biophysical studies show some differences in the expression pattern, protection against oxidants and in the aggregation state of both isoforms, suggesting that the two frataxin homologs would play similar but not identical roles in plant cell metabolism. In addition, two specific features of plant frataxins were evidenced: their ability to form dimers and their tendency to undergo conformational change under oxygen exposure. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. Shugoshins function as a guardian for chromosomal stability in nuclear division.

    PubMed

    Yao, Yixin; Dai, Wei

    2012-07-15

    Accurate chromosome segregation during mitosis and meiosis is regulated and secured by several distinctly different yet intricately connected regulatory mechanisms. As chromosomal instability is a hallmark of a majority of tumors as well as a cause of infertility for germ cells, extensive research in the past has focused on the identification and characterization of molecular components that are crucial for faithful chromosome segregation during cell division. Shugoshins, including Sgo1 and Sgo2, are evolutionarily conserved proteins that function to protect sister chromatid cohesion, thus ensuring chromosomal stability during mitosis and meiosis in eukaryotes. Recent studies reveal that Shugoshins in higher animals play an essential role not only in protecting centromeric cohesion of sister chromatids and assisting bi-orientation attachment at the kinetochores, but also in safeguarding centriole cohesion/engagement during early mitosis. Many molecular components have been identified that play essential roles in modulating/mediating Sgo functions. This review primarily summarizes recent advances on the mechanisms of action of Shugoshins in suppressing chromosomal instability during nuclear division in eukaryotic organisms.

  15. In Vivo Imaging of Flavoprotein Fluorescence During Hypoxia Reveals the Importance of Direct Arterial Oxygen Supply to Cerebral Cortex Tissue.

    PubMed

    Chisholm, K I; Ida, K K; Davies, A L; Papkovsky, D B; Singer, M; Dyson, A; Tachtsidis, I; Duchen, M R; Smith, K J

    2016-01-01

    Live imaging of mitochondrial function is crucial to understand the important role played by these organelles in a wide range of diseases. The mitochondrial redox potential is a particularly informative measure of mitochondrial function, and can be monitored using the endogenous green fluorescence of oxidized mitochondrial flavoproteins. Here, we have observed flavoprotein fluorescence in the exposed murine cerebral cortex in vivo using confocal imaging; the mitochondrial origin of the signal was confirmed using agents known to manipulate mitochondrial redox potential. The effects of cerebral oxygenation on flavoprotein fluorescence were determined by manipulating the inspired oxygen concentration. We report that flavoprotein fluorescence is sensitive to reductions in cortical oxygenation, such that reductions in inspired oxygen resulted in loss of flavoprotein fluorescence with the exception of a preserved 'halo' of signal in periarterial regions. The findings are consistent with reports that arteries play an important role in supplying oxygen directly to tissue in the cerebral cortex, maintaining mitochondrial function.

  16. Hating School, Loving Mathematics: On the Ideological Function of Critique and Reform in Mathematics Education

    ERIC Educational Resources Information Center

    Lundin, Sverker

    2012-01-01

    Students' engagement with fictions in the form of "word problems" plays an important role in classroom practice as well as in theories of mathematical learning. Drawing on the Dutch historian Johan Huizinga and the Austrian philosopher Robert Pfaller, I show that this activity can be seen as a form of "play" or "game," where it is pretended that…

  17. HES factors regulate specific aspects of chondrogenesis and chondrocyte hypertrophy during cartilage development

    PubMed Central

    Rutkowski, Timothy P.; Kohn, Anat; Sharma, Deepika; Ren, Yinshi; Mirando, Anthony J.

    2016-01-01

    ABSTRACT RBPjκ-dependent Notch signaling regulates multiple processes during cartilage development, including chondrogenesis, chondrocyte hypertrophy and cartilage matrix catabolism. Select members of the HES- and HEY-families of transcription factors are recognized Notch signaling targets that mediate specific aspects of Notch function during development. However, whether particular HES and HEY factors play any role(s) in the processes during cartilage development is unknown. Here, for the first time, we have developed unique in vivo genetic models and in vitro approaches demonstrating that the RBPjκ-dependent Notch targets HES1 and HES5 suppress chondrogenesis and promote the onset of chondrocyte hypertrophy. HES1 and HES5 might have some overlapping function in these processes, although only HES5 directly regulates Sox9 transcription to coordinate cartilage development. HEY1 and HEYL play no discernable role in regulating chondrogenesis or chondrocyte hypertrophy, whereas none of the HES or HEY factors appear to mediate Notch regulation of cartilage matrix catabolism. This work identifies important candidates that might function as downstream mediators of Notch signaling both during normal skeletal development and in Notch-related skeletal disorders. PMID:27160681

  18. Global analysis of sumoylation function reveals novel insights into development and appressorium-mediated infection of the rice blast fungus.

    PubMed

    Liu, Caiyun; Li, Zhigang; Xing, Junjie; Yang, Jun; Wang, Zhao; Zhang, Hong; Chen, Deng; Peng, You-Liang; Chen, Xiao-Lin

    2018-04-16

    Protein post-translational modifications play critical roles in cellular processes, development and stress response. The small ubiquitin-like modifier (SUMO) to proteins is one of the essential modifications in eukaryotes, but its function remains largely unknown in plant pathogenic fungi. We present a comprehensive analysis combined with proteomic, molecular and cellular approaches to explore the roles of sumoylation in the model plant fungal pathogen, Magnaporthe oryzae. We found the SUMO pathway plays key roles in colony growth, conidia formation and virulence to the host, as well as cell-cycle-related phenotypes. Sumoylation is also involved in responding to different stresses. Affinity purification identified 940 putative SUMO substrates, many of which were reported to be involved in development, stress response and infection. Interestingly, four septins were also shown to be sumoylated. Mutation of consensus sumoylation sites in each septin all resulted in reduced virulence to the host and dislocation of septins in appressoria. Moreover, sumoylation is also involved in extracellular secretion of different effector proteins. Our study on the functions of sumoylation provides novel insight into development and infection of the rice blast fungus. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  19. Phospholipase D Signaling Pathways and Phosphatidic Acid as Therapeutic Targets in Cancer

    PubMed Central

    Bruntz, Ronald C.; Lindsley, Craig W.

    2014-01-01

    Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein–coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. PMID:25244928

  20. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer.

    PubMed

    Bruntz, Ronald C; Lindsley, Craig W; Brown, H Alex

    2014-10-01

    Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Uric acid, lung function, physical capacity and exacerbation frequency in patients with COPD: a multi-dimensional approach.

    PubMed

    Kahnert, Kathrin; Alter, Peter; Welte, Tobias; Huber, Rudolf M; Behr, Jürgen; Biertz, Frank; Watz, Henrik; Bals, Robert; Vogelmeier, Claus F; Jörres, Rudolf A

    2018-06-04

    Recent investigations showed single associations between uric acid levels, functional parameters, exacerbations and mortality in COPD patients. The aim of this study was to describe the role of uric acid within the network of multiple relationships between function, exacerbation and comorbidities. We used baseline data from the German COPD cohort COSYCONET which were evaluated by standard multiple regression analyses as well as path analysis to quantify the network of relations between parameters, particularly uric acid. Data from 1966 patients were analyzed. Uric acid was significantly associated with reduced FEV 1 , reduced 6-MWD, higher burden of exacerbations (GOLD criteria) and cardiovascular comorbidities, in addition to risk factors such as BMI and packyears. These associations remained significant after taking into account their multiple interdependences. Compared to uric acid levels the diagnosis of hyperuricemia and its medication played a minor role. Within the limits of a cross-sectional approach, our results strongly suggest that uric acid is a biomarker of high impact in COPD and plays a genuine role for relevant outcomes such as physical capacity and exacerbations. These findings suggest that more attention should be paid to uric acid in the evaluation of COPD disease status.

  2. Lipid-Mediated Regulation of Embedded Receptor Kinases via Parallel Allosteric Relays.

    PubMed

    Ghosh, Madhubrata; Wang, Loo Chien; Ramesh, Ranita; Morgan, Leslie K; Kenney, Linda J; Anand, Ganesh S

    2017-02-28

    Membrane-anchored receptors are essential cellular signaling elements for stimulus sensing, propagation, and transmission inside cells. However, the contributions of lipid interactions to the function and dynamics of embedded receptor kinases have not been described in detail. In this study, we used amide hydrogen/deuterium exchange mass spectrometry, a sensitive biophysical approach, to probe the dynamics of a membrane-embedded receptor kinase, EnvZ, together with functional assays to describe the role of lipids in receptor kinase function. Our results reveal that lipids play an important role in regulating receptor function through interactions with transmembrane segments, as well as through peripheral interactions with nonembedded domains. Specifically, the lipid membrane allosterically modulates the activity of the embedded kinase by altering the dynamics of a glycine-rich motif that is critical for phosphotransfer from ATP. This allostery in EnvZ is independent of membrane composition and involves direct interactions with transmembrane and periplasmic segments, as well as peripheral interactions with nonembedded domains of the protein. In the absence of the membrane-spanning regions, lipid allostery is propagated entirely through peripheral interactions. Whereas lipid allostery impacts the phosphotransferase function of the kinase, extracellular stimulus recognition is mediated via a four-helix bundle subdomain located in the cytoplasm, which functions as the osmosensing core through osmolality-dependent helical stabilization. Our findings emphasize the functional modularity in a membrane-embedded kinase, separated into membrane association, phosphotransferase function, and stimulus recognition. These components are integrated through long-range communication relays, with lipids playing an essential role in regulation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Social Play Behavior in Adolescent Rats is Mediated by Functional Activity in Medial Prefrontal Cortex and Striatum

    PubMed Central

    van Kerkhof, Linda WM; Damsteegt, Ruth; Trezza, Viviana; Voorn, Pieter; Vanderschuren, Louk JMJ

    2013-01-01

    Social play behavior is a characteristic, vigorous form of social interaction in young mammals. It is highly rewarding and thought to be of major importance for social and cognitive development. The neural substrates of social play are incompletely understood, but there is evidence to support a role for the prefrontal cortex (PFC) and striatum in this behavior. Using pharmacological inactivation methods, ie, infusions of GABA receptor agonists (baclofen and muscimol; B&M) or the AMPA/kainate receptor antagonist 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX), we investigated the involvement of several subregions of the medial PFC and striatum in social play. Inactivation of the prelimbic cortex, infralimbic cortex, and medial/ventral orbitofrontal cortex using B&M markedly reduced frequency and duration of social play behavior. Local administration of DNQX into the dorsomedial striatum increased the frequency and duration of social play, whereas infusion of B&M tended to have the same effect. Inactivation of the nucleus accumbens (NAcc) core using B&M increased duration but not frequency of social play, whereas B&M infusion into the NAcc shell did not influence social play behavior. Thus, functional integrity of the medial PFC is important for the expression of social play behavior. Glutamatergic inputs into the dorsomedial striatum exert an inhibitory influence on social play, and functional activity in the NAcc core acts to limit the length of playful interactions. These results highlight the importance of prefrontal and striatal circuits implicated in cognitive control, decision making, behavioral inhibition, and reward-associated processes in social play behavior. PMID:23568326

  4. Protective role of Parkin in skeletal muscle contractile and mitochondrial function.

    PubMed

    Gouspillou, Gilles; Godin, Richard; Piquereau, Jérome; Picard, Martin; Mofarrahi, Mahroo; Mathew, Jasmin; Purves-Smith, Fennigje M; Sgarioto, Nicolas; Hepple, Russell T; Burelle, Yan; Hussain, Sabah N A

    2018-04-22

    Parkin, an E3 ubiquitin ligase encoded by the Park2 gene, has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are degraded. The exact physiological significance of Parkin in regulating mitochondrial function and contractility in skeletal muscle remains largely unexplored. Using Park2 -/- mice, we show that Parkin ablation causes a decrease in muscle specific force, a severe decrease in mitochondrial respiration, mitochondrial uncoupling and an increased susceptibility to opening of the permeability transition pore. These results demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in skeletal muscles. Parkin is an E3 ubiquitin ligase encoded by the Park2 gene. Parkin has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are sequestered in autophagosomes and delivered to lysosomes for degradation. Although Parkin has been mainly studied for its implication in neuronal degeneration in Parkinson disease, its role in other tissues remains largely unknown. In the present study, we investigated the skeletal muscles of Park2 knockout (Park2 -/- ) mice to test the hypothesis that Parkin plays a physiological role in mitochondrial quality control in normal skeletal muscle, a tissue highly reliant on mitochondrial content and function. We first show that the tibialis anterior (TA) of Park2 -/- mice display a slight but significant decrease in its specific force. Park2 -/ - muscles also show a trend for type IIB fibre hypertrophy without alteration in muscle fibre type proportion. Compared to Park2 +/+ muscles, the mitochondrial function of Park2 -/- skeletal muscles was significantly impaired, as indicated by the significant decrease in ADP-stimulated mitochondrial respiratory rates, uncoupling, reduced activities of respiratory chain complexes containing mitochondrial DNA (mtDNA)-encoded subunits and increased susceptibility to opening of the permeability transition pore. Muscles of Park2 -/- mice also displayed a decrease in the content of the mitochondrial pro-fusion protein Mfn2 and an increase in the pro-fission protein Drp1 suggesting an increase in mitochondrial fragmentation. Finally, Park2 ablation resulted in an increase in basal autophagic flux in skeletal muscles. Overall, the results of the present study demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in normal skeletal muscles. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  5. Manipulation of the Glycan-Specific Natural Antibody Repertoire for Immunotherapy

    PubMed Central

    New, J. Stewart; King, R. Glenn; Kearney, John F.

    2015-01-01

    Summary Natural immunoglobulin derived from innate-like B lymphocytes plays important roles in the suppression of inflammatory responses and represents a promising therapeutic target in a growing number of allergic and autoimmune diseases. These antibodies are commonly autoreactive and incorporate evolutionarily conserved specificities, including certain glycan-specific antibodies. Despite this conservation, exposure to bacterial polysaccharides during innate-like B lymphocyte development, through either natural exposure or immunization, induces significant changes in clonal representation within the glycan-reactive B cell pool. Glycan-reactive natural antibodies have been reported to play protective and pathogenic roles in autoimmune and inflammatory diseases. An understanding of the composition and functions of a healthy glycan-reactive natural antibody repertoire is therefore paramount. A more thorough understanding of natural antibody repertoire development holds promise for the design of both biological diagnostics and therapies. In this article we review the development and functions of natural antibodies and examine three glycan specificities, represented in the innate-like B cell pool, to illustrate the complex roles environmental antigens play in natural antibody repertoire development. We also discuss the implications of increased clonal plasticity of the innate-like B cell repertoire during neonatal and perinatal periods, and the prospect of targeting B cell development with interventional therapies and correct defects in this important arm of the adaptive immune system. PMID:26864103

  6. Nutrition in early life and the programming of adult disease: the first 1000 days

    PubMed

    Moreno Villares, José Manuel

    2016-07-12

    Development during fetal life and infancy is characterized by rapid growth as well as the maturation of organs and systems. Changes, both in quality and quality, in nutrients during these periods may permanently infl uence the way these organs mature and function. These effects are termed as “programming” and play an important role in the presence of non-transmissible diseases through the lifespan. Specially cardiovascular disease, metabolic disorders and carbohydrate intolerance. Nutritional deficits during pregnancy, leading to intrauterine growth restriction, are associated to a higher risk of type 2 diabetes, and coronary disease among the offspring. This infl uence does not stop with the delivery but early nutrition in infancy, type of lactation, and the way and time solid foods are introduced, does play a role in this programming. Nutritional and non-nutritional factors alter the expression of some genes, resulting in effective remodeling of tissue structure and functionality. These epigenetic modifications can be transmitted to further generations, adding evidence that hereditable epigenetic modifications play a critical role in nutritional programming. But, at the same time, it opens a window of opportunity to decrease the burden of non-transmissible disease by a clever advise on nutrition during pregnancy and across the first 2 years of life (the so-called 1000 days strategy).

  7. The critical role of peptide chemistry in the life sciences.

    PubMed

    Kent, Stephen B H

    2015-03-01

    Peptide chemistry plays a key role in the synthesis and study of protein molecules and their functions. Modern ligation methods enable the total synthesis of enzymes and the systematic dissection of the chemical basis of enzyme catalysis. Predicted developments in peptide science are described. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  8. Changing Attitudes over Time: Assessing the Effectiveness of a Workplace Diversity Course

    ERIC Educational Resources Information Center

    Probst, Tahira M.

    2003-01-01

    Diversity is increasing within the United States, and higher education will likely play a key role in preparing people to function in this new environment. This study assessed the effectiveness of a semester-long psychology workplace diversity course at changing student levels of ethnocentrism and attitudes regarding gender roles; the disabled;…

  9. An fMRI Investigation of Covertly and Overtly Produced Mono- And Multisyllabic Words

    ERIC Educational Resources Information Center

    Shuster, Linda I.; Lemieux, Susan K.

    2005-01-01

    Studies suggest that the left insula may play an important role in speech motor programming. We used functional magnetic resonance imaging to investigate the role of the left insula in the production of monosyllabic or multisyllabic words during overt and covert speech conditions. The left insula did not show a BOLD response for multisyllabic…

  10. Doom and Resistance: Perspectives of Developmental Math Students at a Midwestern Community College

    ERIC Educational Resources Information Center

    Kimura, Keiko

    2012-01-01

    The role and function of developmental education at the American community college has been a source of controversy for many years. One primary source of conflict is the role that remedial education plays. One view supports the notion that developmental education promotes a meritocratic system of rewards, whereby even the most unprepared are…

  11. Teaching Tip: Using a Group Role-Play Exercise to Engage Students in Learning Business Processes and ERP

    ERIC Educational Resources Information Center

    Shen, Yide; Nicholson, Jennifer; Nicholson, Darren

    2015-01-01

    With the increasing process-centric focus and proliferation of Enterprise Resource Planning (ERP) systems in organizations, it is imperative for business graduates to understand cross-functional business processes and ERP system's role in supporting business processes. However, this topic can be rather abstract and dry to undergraduate students,…

  12. Frontal Lobe Involvement in a Task of Time-Based Prospective Memory

    ERIC Educational Resources Information Center

    McFarland, Craig P.; Glisky, Elizabeth L.

    2009-01-01

    Time-based prospective memory (PM) has been found to be negatively affected by aging, possibly as a result of declining frontal lobe (FL) function. Despite a clear retrospective component to PM tasks, the medial temporal lobes (MTL) are thought to play only a secondary role in successful task completion. The present study investigated the role of…

  13. Activation of beta2-Adrenoceptor Enhances Synaptic Potentiation and Behavioral Memory via cAMP-PKA Signaling in the Medial Prefrontal Cortex of Rats

    ERIC Educational Resources Information Center

    Zhou, Hou-Cheng; Sun, Yan-Yan; Cai, Wei; He, Xiao-Ting; Yi, Feng; Li, Bao-Ming; Zhang, Xue-Han

    2013-01-01

    The prefrontal cortex (PFC) plays a critical role in cognitive functions, including working memory, attention regulation, behavioral inhibition, as well as memory storage. The functions of PFC are very sensitive to norepinephrine (NE), and even low levels of endogenously released NE exert a dramatic influence on the functioning of the PFC.…

  14. An Examination of the Effects of a Video-Based Training Package on Professional Staff's Implementation of a Brief Functional Analysis and Data Analysis

    ERIC Educational Resources Information Center

    Fleming, Courtney V.

    2011-01-01

    Minimal research has investigated training packages used to teach professional staff how to implement functional analysis procedures and to interpret data gathered during functional analysis. The current investigation used video-based training with role-play and feedback to teach six professionals in a clinical setting to implement procedures of a…

  15. Structural and functional connectivity of the subthalamic nucleus during vocal emotion decoding

    PubMed Central

    Frühholz, Sascha; Ceravolo, Leonardo; Grandjean, Didier

    2016-01-01

    Our understanding of the role played by the subthalamic nucleus (STN) in human emotion has recently advanced with STN deep brain stimulation, a neurosurgical treatment for Parkinson’s disease and obsessive-compulsive disorder. However, the potential presence of several confounds related to pathological models raises the question of how much they affect the relevance of observations regarding the physiological function of the STN itself. This underscores the crucial importance of obtaining evidence from healthy participants. In this study, we tested the structural and functional connectivity between the STN and other brain regions related to vocal emotion in a healthy population by combining diffusion tensor imaging and psychophysiological interaction analysis from a high-resolution functional magnetic resonance imaging study. As expected, we showed that the STN is functionally connected to the structures involved in emotional prosody decoding, notably the orbitofrontal cortex, inferior frontal gyrus, auditory cortex, pallidum and amygdala. These functional results were corroborated by probabilistic fiber tracking, which revealed that the left STN is structurally connected to the amygdala and the orbitofrontal cortex. These results confirm, in healthy participants, the role played by the STN in human emotion and its structural and functional connectivity with the brain network involved in vocal emotions. PMID:26400857

  16. Masculinity, moral atmosphere, and moral functioning of high school football players.

    PubMed

    Steinfeldt, Jesse A; Rutkowski, Leslie A; Vaughan, Ellen L; Steinfeldt, Matthew C

    2011-04-01

    In order to identify factors associated with on-field moral functioning among student athletes within the unique context of football, we examined masculine gender role conflict, moral atmosphere, and athletic identity. Using structural equation modeling to assess survey data from 204 high school football players, results demonstrated that moral atmosphere (i.e., the influence of coaches and teammates) was significantly associated with participants' process of on-field moral functioning across the levels of judgment, intention, and behavior. Neither masculine gender role conflict nor athletic identity significantly predicted moral functioning, but the results indicated that participants' identification with the athlete role significantly predicted conflict with socialized gender roles. Results suggest that in the aggressive and violent sport of football, coaches can have a direct influence on players' moral functioning process. Coaches can also have an indirect effect by influencing all the players so that a culture of ethical play can be cultivated among teammates and spread from the top down.

  17. A Novel Nondevelopmental Role of the SAX-7/L1CAM Cell Adhesion Molecule in Synaptic Regulation in Caenorhabditis elegans

    PubMed Central

    Opperman, Karla; Moseley-Alldredge, Melinda; Yochem, John; Bell, Leslie; Kanayinkal, Tony; Chen, Lihsia

    2015-01-01

    The L1CAM family of cell adhesion molecules is a conserved set of single-pass transmembrane proteins that play diverse roles required for proper nervous system development and function. Mutations in L1CAMs can cause the neurological L1 syndrome and are associated with autism and neuropsychiatric disorders. L1CAM expression in the mature nervous system suggests additional functions besides the well-characterized developmental roles. In this study, we demonstrate that the gene encoding the Caenorhabditis elegans L1CAM, sax-7, genetically interacts with gtl-2, as well as with unc-13 and rab-3, genes that function in neurotransmission. These sax-7 genetic interactions result in synthetic phenotypes that are consistent with abnormal synaptic function. Using an inducible sax-7 expression system and pharmacological reagents that interfere with cholinergic transmission, we uncovered a previously uncharacterized nondevelopmental role for sax-7 that impinges on synaptic function. PMID:25488979

  18. Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography.

    PubMed

    Picek, Stjepan; Carlet, Claude; Guilley, Sylvain; Miller, Julian F; Jakobovic, Domagoj

    2016-01-01

    The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.

  19. Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis.

    PubMed

    Ellis, Kathryn; Bagwell, Jennifer; Bagnat, Michel

    2013-03-04

    The notochord plays critical structural and signaling roles during vertebrate development. At the center of the vertebrate notochord is a large fluid-filled organelle, the notochord vacuole. Although these highly conserved intracellular structures have been described for decades, little is known about the molecular mechanisms involved in their biogenesis and maintenance. Here we show that zebrafish notochord vacuoles are specialized lysosome-related organelles whose formation and maintenance requires late endosomal trafficking regulated by the vacuole-specific Rab32a and H(+)-ATPase-dependent acidification. We establish that notochord vacuoles are required for body axis elongation during embryonic development and identify a novel role in spine morphogenesis. Thus, the vertebrate notochord plays important structural roles beyond early development.

  20. Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis

    PubMed Central

    Ellis, Kathryn; Bagwell, Jennifer

    2013-01-01

    The notochord plays critical structural and signaling roles during vertebrate development. At the center of the vertebrate notochord is a large fluid-filled organelle, the notochord vacuole. Although these highly conserved intracellular structures have been described for decades, little is known about the molecular mechanisms involved in their biogenesis and maintenance. Here we show that zebrafish notochord vacuoles are specialized lysosome-related organelles whose formation and maintenance requires late endosomal trafficking regulated by the vacuole-specific Rab32a and H+-ATPase–dependent acidification. We establish that notochord vacuoles are required for body axis elongation during embryonic development and identify a novel role in spine morphogenesis. Thus, the vertebrate notochord plays important structural roles beyond early development. PMID:23460678

  1. Mother-infant dyadic reparation and individual differences in vagal tone affect 4-month-old infants' social stress regulation.

    PubMed

    Provenzi, Livio; Casini, Erica; de Simone, Paola; Reni, Gianluigi; Borgatti, Renato; Montirosso, Rosario

    2015-12-01

    Infants' social stress regulation (i.e., reactivity and recovery) might be affected by mother-infant dyadic functioning and infants' vagal tone (i.e., respiratory sinus arrhythmia, RSA). This study investigated the role of a specific dyadic functioning feature (i.e., dyadic reparation) and individual differences in vagal tone regulation (i.e., RSA suppression vs. non-suppression) in relation to social stress regulation in 4-month-old infants. A total of 65 mother-infant dyads participated in the face-to-face still-face paradigm. Social stress reactivity and recovery were measured as negative emotionality during Still-Face and Reunion episodes, respectively. RSA was measured during Play, Still-Face, and Reunion episodes. Suppressors had higher dyadic reparation during Play and higher recovery from social stress compared with non-suppressors. Higher reparation during Play was associated with lower reactivity and higher recovery only for suppressors. Findings suggest a joint role of infants' RSA individual differences and dyadic reparation in affecting infants' social stress regulation at 4 months of age. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice.

    PubMed

    Vitry, Marie-Alice; De Trez, Carl; Goriely, Stanislas; Dumoutier, Laure; Akira, Shizuo; Ryffel, Bernhard; Carlier, Yves; Letesson, Jean-Jacques; Muraille, Eric

    2012-12-01

    Brucella spp. are facultative intracellular bacterial pathogens responsible for brucellosis, a worldwide zoonosis that causes abortion in domestic animals and chronic febrile disease associated with serious complications in humans. There is currently no approved vaccine against human brucellosis, and antibiotic therapy is long and costly. Development of a safe protective vaccine requires a better understanding of the roles played by components of adaptive immunity in the control of Brucella infection. The importance of lymphocyte subsets in the control of Brucella growth has been investigated separately by various research groups and remains unclear or controversial. Here, we used a large panel of genetically deficient mice to compare the importance of B cells, transporter associated with antigen processing (TAP-1), and major histocompatibility complex class II-dependent pathways of antigen presentation as well as T helper 1 (Th1), Th2, and Th17-mediated responses on the immune control of Brucella melitensis 16 M infection. We clearly confirmed the key function played by gamma interferon (IFN-γ)-producing Th1 CD4(+) T cells in the control of B. melitensis infection, whereas IFN-γ-producing CD8(+) T cells or B cell-mediated humoral immunity plays only a modest role in the clearance of bacteria during primary infection. In the presence of a Th1 response, Th2 or Th17 responses do not really develop or play a positive or negative role during the course of B. melitensis infection. On the whole, these results could improve our ability to develop protective vaccines or therapeutic treatments against brucellosis.

  3. Phospholipase A2 superfamily members play divergent roles after spinal cord injury

    PubMed Central

    López-Vales, Rubèn; Ghasemlou, Nader; Redensek, Adriana; Kerr, Bradley J.; Barbayianni, Efrosini; Antonopoulou, Georgia; Baskakis, Constantinos; Rathore, Khizr I.; Constantinou-Kokotou, Violetta; Stephens, Daren; Shimizu, Takao; Dennis, Edward A.; Kokotos, George; David, Samuel

    2011-01-01

    Spinal cord injury (SCI) results in permanent loss of motor functions. A significant aspect of the tissue damage and functional loss may be preventable as it occurs, secondary to the trauma. We show that the phospholipase A2 (PLA2) superfamily plays important roles in SCI. PLA2 enzymes hydrolyze membrane glycerophospholipids to yield a free fatty acid and lysophospholipid. Some free fatty acids (arachidonic acid) give rise to eicosanoids that promote inflammation, while some lysophospholipids (lysophosphatidylcholine) cause demyelination. We show in a mouse model of SCI that two cytosolic forms [calcium-dependent PLA2 group IVA (cPLA2 GIVA) and calcium-independent PLA2 group VIA (iPLA2 GVIA)], and a secreted form [secreted PLA2 group IIA (sPLA2 GIIA)] are up-regulated. Using selective inhibitors and null mice, we show that these PLA2s play differing roles. cPLA2 GIVA mediates protection, whereas sPLA2 GIIA and, to a lesser extent, iPLA2 GVIA are detrimental. Furthermore, completely blocking all three PLA2s worsens outcome, while the most beneficial effects are seen by partial inhibition of all three. The partial inhibitor enhances expression of cPLA2 and mediates its beneficial effects via the prostaglandin EP1 receptor. These findings indicate that drugs that inhibit detrimental forms of PLA2 (sPLA2 and iPLA2) and up-regulate the protective form (cPLA2) may be useful for the treatment of SCI.—López-Vales, R., Ghasemlou, N., Redensek, A., Kerr, B. J., Barbayianni, E., Antonopoulou, G., Baskakis, C., Rathore, K. I., Constantinou-Kokotou, V., Stephens, D., Shimizu, T., Dennis, E. A., Kokotos, G., David, S. Phospholipase A2 superfamily members play divergent roles after spinal cord injury. PMID:21868473

  4. Fact or fiction? A longitudinal study of play and the development of reflective functioning.

    PubMed

    Tessier, V P; Normandin, L; Ensink, K; Fonagy, P

    2016-01-01

    In Fonagy and Target's (1996, 2000) developmental model of mentalization, play is theorized as a precursor of later mentalization and reflective function (RF); however, the relationship between play and later mentalization and RF has yet to be empirically tested. These processes are particularly important in the context of trauma, but an empirical model of the relationships among mentalization, play, and trauma is currently lacking. The aim of this longitudinal study was to examine whether children's capacity to engage in pretend play, to symbolize, and to make play narratives was associated with later RF in those children. Thirty-nine sexually abused children and 21 nonabused children (aged 3 to 8) participated in the study. The Children's Play Therapy Instrument was used to assess children's free play. Three years after the play assessment, children's RF was assessed using the Child Attachment Interview, coded with the Child and Adolescent Reflective Functioning Scale. Pretend play completion was associated with later other-understanding. Play was also found to mediate the relationship between sexual abuse and children's later mentalization regarding others. These findings are consistent with Fonagy and Target's emphasis on the role of pretend play in the development of a nuanced sense of the qualities of the mind and reality. In sum, the findings lend support to Fonagy and Target's account of playing with reality, and the development of mentalization suggests that it may be more than "fiction." Furthermore, these results suggest that children's ability to create meaningful and coherent play sequences after sexual abuse is associated with the development of a better understanding of their relationships with others. Clinical implications and future directions are discussed.

  5. Neurotrophin Propeptides: Biological Functions and Molecular Mechanisms.

    PubMed

    Rafieva, Lola M; Gasanov, Eugene V

    2016-01-01

    Neurotrophins constitute a family of growth factors that play a key role in the regulation of the development and function of the central and peripheral nervous systems. A common feature of all the neurotrophins is their synthesis in cells as long precursors (pre-pro-neurotrophins) that contain an N-terminal signal peptide, a following propeptide and the mature neurotrophin. Although the signal peptide functions have been well studied, the role of neurotrophin propeptides is not so clear. Here, we briefly summarize the biochemistry of neurotrophin propeptides, including their role as folding-assistants for the mature factor and their role in processing and in secretion of neurotrophins. In the main part of the review we summarize our current state of knowledge of the biological activity of neurotrophin propeptides, their possible mechanisms of action, and their potential influence on the activity of the mature neurotrophins.

  6. The Mediator Complex and Transcription Elongation

    PubMed Central

    Conaway, Ronald C.; Conaway, Joan Weliky

    2013-01-01

    Background Mediator is an evolutionarily conserved multisubunit RNA polymerase II (Pol II) coregulatory complex. Although Mediator was initially found to play a critical role in regulation of the initiation of Pol II transcription, recent studies have brought to light an expanded role for Mediator at post-initiation stages of transcription. Scope of review We provide a brief description of the structure of Mediator and its function in the regulation of Pol II transcription initiation, and we summarize recent findings implicating Mediator in the regulation of various stages of Pol II transcription elongation. Major conclusions Emerging evidence is revealing new roles for Mediator in nearly all stages of Pol II transcription, including initiation, promoter escape, elongation, pre-mRNA processing, and termination. General significance Mediator plays a central role in the regulation of gene expression by impacting nearly all stages of mRNA synthesis. PMID:22983086

  7. Role of Bioreactors in Microbial Biomass and Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Liang; Zhang, Biao; Zhu, Xun

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems aremore » described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.« less

  8. Endogenous hydrogen sulfide is involved in the pathogenesis of atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Wang; Chaoshu, Tang; Key Laboratory of Molecular Cardiovascular Medicine, Ministry of Education

    2010-05-28

    Atherosclerosis is a chronic, complex, and progressive pathological process in large and medium sized arteries. The exact mechanism of this process remains unclear. Hydrogen sulfide (H{sub 2}S), a novel gasotransmitter, was confirmed as playing a major role in the pathogenesis of many cardiovascular diseases. It plays a role in vascular smooth muscle cell (VSMC) proliferation and apoptosis, participates in the progress of hyperhomocysteinemia (HHCY), inhibits atherogenic modification of LDL, interferes with vascular calcification, intervenes with platelet function, and there are interactions between H{sub 2}S and inflammatory processes. The role of H{sub 2}S in atherosclerotic pathogenesis highlights the mysteries of atherosclerosismore » and inspires the search for innovative therapeutic strategies. Here, we review the studies to date that have considered the role of H{sub 2}S in atherosclerosis.« less

  9. Microglia: An Active Player in the Regulation of Synaptic Activity

    PubMed Central

    Ji, Kyungmin; Miyauchi, Jeremy; Tsirka, Stella E.

    2013-01-01

    Synaptic plasticity is critical for elaboration and adaptation in the developing and developed brain. It is well established that astrocytes play an important role in the maintenance of what has been dubbed “the tripartite synapse”. Increasing evidence shows that a fourth cell type, microglia, is critical to this maintenance as well. Microglia are the resident macrophages of the central nervous system (CNS). Because of their well-characterized inflammatory functions, research has primarily focused on their innate immune properties. The role of microglia in the maintenance of synapses in development and in homeostasis is not as well defined. A number of significant findings have shed light on the critical role of microglia at the synapse. It is becoming increasingly clear that microglia play a seminal role in proper synaptic development and elimination. PMID:24303218

  10. Does IGF-1 play a role in the biology of endometrial cancer?

    PubMed

    Majchrzak-Baczmańska, Dominika; Malinowski, Andrzej

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) is a mitogen which plays a key role in regulating cell proliferation, differentiation, and apoptosis. It belongs to the family of proteins also composed of insulin-like growth factor 2 (IGF-2), two types of membrane receptors (IGF-1R and IGF-2R), 6 binding proteins (IGFBP 1-6), hydrolyzing proteases, and reactive molecules binding proteins, which regulate the activity of growth factors. Disturbances in the functioning of IGFBP/IGF/1GF1R can lead to induction of carcinogenesis, which has been demonstrated in breast, prostate or colon cancers. Findings evaluating the role of IGF-1 in endometrial cancer biology are ambiguous and contradictory. Therefore, in the present study, we analyzed the role of IGF-1 in the process of carcinogenesis of endometrial cancer, based on the available literature.

  11. Effectiveness of adaptive pretend play on affective expression and imagination of children with cerebral palsy.

    PubMed

    Hsieh, Hsieh-Chun

    2012-01-01

    Children with cerebral palsy (CP) have difficulty participating in role-pretending activities. The concept of adaptive play makes play accessible by modifying play materials for different needs or treatment goals for children with CP. This study examines the affective expressions and imagination in children with CP as a function of ordinary versus adaptive pretend play. The Affect in Play Scale-Brief Rating measured the affective expression and imagination for 29 children with CP and 29 typically developing children (mean age=7.34 years). Two groups of children were observed while playing with a standard set of ordinary toys for ten times and with a standard procedure of adaptive pretend play for ten times. The results show significantly different affective expressions and imagination between the two groups. Typically developing children displayed much more affective expression and imagination. However, a more positive influence of affective expression and imagination occurred in children with CP than in typically developing children. In repeated measures analysis, the frequency of positive affective expression and imagination of children with CP was higher when pretending with adaptive toys. Adaptive pretend play can promote more role-pretending behaviors and a sense of environmental control during the manipulating process for children with CP. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Telocytes play a key role in prostate tissue organisation during the gland morphogenesis.

    PubMed

    Sanches, Bruno D A; Maldarine, Juliana S; Zani, Bruno C; Tamarindo, Guilherme H; Biancardi, Manoel F; Santos, Fernanda C A; Rahal, Paula; Góes, Rejane M; Felisbino, Sérgio L; Vilamaior, Patricia S L; Taboga, Sebastião R

    2017-12-01

    Telocytes are CD34-positive interstitial cells, known to exert several functions, one of which is a role in tissue organisation, previously demonstrated by telocytes in the myocardium. The existence of telocytes in the prostate has recently been reported, however, there is a lack of information regarding the function of these cells in prostate tissue, and information regarding the possible role of these cells in prostatic development. This study used immunofluorescence techniques in prostate tissue and prostatic telocytes in culture to determine the relationship between telocytes and prostate morphogenesis. Furthermore, immunofluorescent labelling of telocytes was performed on prostate tissue at different stages of early postnatal development. Initially, CD34-positive cells are found at the periphery of the developing alveoli, later in the same region, c-kit-positive cells and cells positive for both factors are verified and CD34-positive cells were predominantly observed in the interalveolar stroma and the region surrounding the periductal smooth muscle. Fluorescence assays also demonstrated that telocytes secrete TGF-β1 and are ER-Beta (ERβ) positive. The results suggest that telocytes play a changing role during development, initially supporting the differentiation of periductal and perialveolar smooth muscle, and later, producing dense networks that separate alveoli groups and form a barrier between the interalveolar region and periurethral smooth muscle. We conclude that telocytes play a relevant role in prostate tissue organisation during postnatal development. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. Adenosine A2A receptor inhibition restores the normal transport of endothelial glutamate transporters in the brain.

    PubMed

    Bai, Wei; Li, Ping; Ning, Ya-Lei; Peng, Yan; Xiong, Ren-Ping; Yang, Nan; Chen, Xing; Zhou, Yuan-Guo

    2018-04-15

    Excitatory amino acid transporters (EAATs) on cerebral vascular endothelial cells play an important role in maintaining glutamate homeostasis in the brain. The dysfunction of endothelial EAATs is an important reason for the dramatically elevated brain glutamate levels after brain injury, such as traumatic brain injury (TBI). The adenosine A 2A receptor (A 2A R) plays an important role in regulating the brain glutamate level after brain injury; however, researchers have not clearly determined whether this role was related to its ability to regulate endothelial EAATs. Activation of A 2A R in vitro not only decreased the PKA- and glutamate level-dependent strengthening of the interaction between NKA-α1 and the FXYD1 subunit and the subsequent decrease in the activity of Na + /K + -ATPases (NKAs) but also enhanced its interaction with EAATs and ultimately aggravated the reverse transport function of endothelial EAATs under oxygen-glucose deprivation (OGD) conditions. Conversely, inhibition of A 2A R restored the normal transport of EAAT. Moreover, A 2A R inhibition increased NKA activity and decreased its interaction with EAATs in isolated brain capillaries after TBI, further confirming its role in endothelial EAATs in vivo. Based on our results, A 2A R played an important role in regulating endothelial EAAT function, and strategies that restore the normal transport of endothelial EAATs through the inhibition of A 2A R might serve as an effective treatment for brain injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Othering Processes and STS Curricula: From Nineteenth Century Scientific Discourse on Interracial Competition and Racial Extinction to Othering in Biomedical Technosciences

    NASA Astrophysics Data System (ADS)

    Arteaga, Juan Manuel Sánchez; El-Hani, Charbel N.

    2012-05-01

    This paper analyzes the debates on "interracial competition" and "racial extinction" in the biological discourse on human evolution during the second half of the nineteenth century. Our intention is to discuss the ideological function of these biological concepts as tools for the naturalization and scientific legitimation of racial hierarchies during that period. We argue that the examination of these scientific discussions about race from a historical perspective can play the role of a critical platform for students and teachers to think about the role of science in current othering processes, such as those related to biomedical technosciences. If they learn how biological ideas played an ideological function concerning interracial relationships in the past, they can be compelled to ask which ideological functions the biological knowledge they are teaching and learning might play now. If this is properly balanced, they can eventually both value scientific knowledge for its contributions and have a critical appraisal of some of its implications. We propose, here, a number of initial design principles for the construction of teaching sequences about scientific racism and science-technology-society relationships, yet to be empirically tested by iterative cycles of implementation in basic education and teacher education classrooms.

  15. Assessment of the adsorption mechanism of Flutamide anticancer drug on the functionalized single-walled carbon nanotube surface as a drug delivery vehicle: An alternative theoretical approach based on DFT and MD

    NASA Astrophysics Data System (ADS)

    Kamel, Maedeh; Raissi, Heidar; Morsali, Ali; Shahabi, Mahnaz

    2018-03-01

    In the present work, we have studied the drug delivery performance of the functionalized (5, 5) single-walled carbon nanotube with a carboxylic acid group for Flutamide anticancer drug in the gas phase as well as water solution by means of density functional theory calculations. The obtained results confirmed the energetic stability of the optimized geometries and revealed that the nature of drug adsorption on the functionalized carbon nanotube is physical. Our computations showed that the hydrogen bonding between active sites of Flutamide molecule and the carboxyl functional group of the nanotube plays a vital role in the stabilization of the considered configurations. The natural bond orbital analysis suggested that the functionalized nanotube plays the role of an electron donor and Flutamide molecule acts as an electron acceptor at the investigated complexes. In addition, molecular dynamics simulation is also utilized to investigate the effect of functionalized carbon nanotube chirality on the dynamic process of drug molecule adsorption on the nanotube surface. Simulation results demonstrated that drug molecules are strongly adsorbed on the functionalized nanotube surface with (10,5) chirality, as reflected by the most negative van der Waals interaction energy and a high number of hydrogen bonds between the functionalized nanotube and drug molecules.

  16. Cellular and Synaptic Properties of Local Inhibitory Circuits.

    PubMed

    Hull, Court

    2017-05-01

    Inhibitory interneurons play a key role in sculpting the information processed by neural circuits. Despite the wide range of physiologically and morphologically distinct types of interneurons that have been identified, common principles have emerged that have shed light on how synaptic inhibition operates, both mechanistically and functionally, across cell types and circuits. This introduction summarizes how electrophysiological approaches have been used to illuminate these key principles, including basic interneuron circuit motifs, the functional properties of inhibitory synapses, and the main roles for synaptic inhibition in regulating neural circuit function. It also highlights how some key electrophysiological methods and experiments have advanced our understanding of inhibitory synapse function. © 2017 Cold Spring Harbor Laboratory Press.

  17. Cholinergic modulation of the hippocampal region and memory function.

    PubMed

    Haam, Juhee; Yakel, Jerrel L

    2017-08-01

    Acetylcholine (ACh) plays an important role in memory function and has been implicated in aging-related dementia, in which the impairment of hippocampus-dependent learning strongly manifests. Cholinergic neurons densely innervate the hippocampus, mediating the formation of episodic as well as semantic memory. Here, we will review recent findings on acetylcholine's modulation of memory function, with a particular focus on hippocampus-dependent learning, and the circuits involved. In addition, we will discuss the complexity of ACh actions in memory function to better understand the physiological role of ACh in memory. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  18. Nonmuscle myosin IIA and IIB differentially contribute to intrinsic and directed migration of human embryonic lung fibroblasts.

    PubMed

    Kuragano, Masahiro; Murakami, Yota; Takahashi, Masayuki

    2018-03-25

    Nonmuscle myosin II (NMII) plays an essential role in directional cell migration. In this study, we investigated the roles of NMII isoforms (NMIIA and NMIIB) in the migration of human embryonic lung fibroblasts, which exhibit directionally persistent migration in an intrinsic manner. NMIIA-knockdown (KD) cells migrated unsteadily, but their direction of migration was approximately maintained. By contrast, NMIIB-KD cells occasionally reversed their direction of migration. Lamellipodium-like protrusions formed in the posterior region of NMIIB-KD cells prior to reversal of the migration direction. Moreover, NMIIB KD led to elongation of the posterior region in migrating cells, probably due to the lack of load-bearing stress fibers in this area. These results suggest that NMIIA plays a role in steering migration by maintaining stable protrusions in the anterior region, whereas NMIIB plays a role in maintenance of front-rear polarity by preventing aberrant protrusion formation in the posterior region. These distinct functions of NMIIA and NMIIB might promote intrinsic and directed migration of normal human fibroblasts. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Trehalase plays a role in macrophage colonization and virulence of Burkholderia pseudomallei in insect and mammalian hosts

    PubMed Central

    Vanaporn, Muthita; Sarkar-Tyson, Mitali; Kovacs-Simon, Andrea; Ireland, Philip M.; Pumirat, Pornpan; Korbsrisate, Sunee; Titball, Richard W.; Butt, Aaron

    2017-01-01

    ABSTRACT Trehalose is a disaccharide formed from two glucose molecules. This sugar molecule can be isolated from a range of organisms including bacteria, fungi, plants and invertebrates. Trehalose has a variety of functions including a role as an energy storage molecule, a structural component of glycolipids and plays a role in the virulence of some microorganisms. There are many metabolic pathways that control the biosynthesis and degradation of trehalose in different organisms. The enzyme trehalase forms part of a pathway that converts trehalose into glucose. In this study we set out to investigate whether trehalase plays a role in both stress adaptation and virulence of Burkholderia pseudomallei. We show that a trehalase deletion mutant (treA) had increased tolerance to thermal stress and produced less biofilm than the wild type B. pseudomallei K96243 strain. We also show that the ΔtreA mutant has reduced ability to survive in macrophages and that it is attenuated in both Galleria mellonella (wax moth larvae) and a mouse infection model. This is the first report that trehalase is important for bacterial virulence. PMID:27367830

  20. Brain Gut Microbiome Interactions and Functional Bowel Disorders

    PubMed Central

    Mayer, Emeran A.; Savidge, Tor; Shulman, Robert J.

    2014-01-01

    Alterations in the bidirectional interactions between the gut and the nervous system play an important role in IBS pathophysiology and symptom generation. A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. Characterizations of alterations of gut microbiota in unselected IBS patients, and assessment of changes in subjective symptoms associated with manipulations of the gut microbiota with prebiotics, probiotics and antibiotics support a small, but poorly defined role of dybiosis in overall IBS symptoms. It remains to be determined if the observed abnormalities are a consequence of altered top down signaling from the brain to the gut and microbiota, if they are secondary to a primary perturbation of the microbiota, and if they play a role in the development of altered brain gut interactions early in life. Different mechanisms may play role in subsets of patients. Characterization of gut microbiome alterations in large cohorts of well phenotyped patients as well as evidence correlating gut metabolites with specific abnormalities in the gut brain axis are required to answer these questions. PMID:24583088

  1. Disrupted in schizophrenia 1 and synaptic function in the mammalian central nervous system

    PubMed Central

    Randall, Andrew D; Kurihara, Mai; Brandon, Nicholas J; Brown, Jon T

    2014-01-01

    The disrupted in schizophrenia 1 (DISC1) gene is found at the breakpoint of an inherited chromosomal translocation, and segregates with major mental illnesses. Its potential role in central nervous system (CNS) malfunction has triggered intensive investigation of the biological roles played by DISC1, with the hope that this may shed new light on the pathobiology of psychiatric disease. Such work has ranged from investigations of animal behavior to detailed molecular-level analysis of the assemblies that DISC1 forms with other proteins. Here, we discuss the evidence for a role of DISC1 in synaptic function in the mammalian CNS. PMID:24712987

  2. The role of magnetic resonance imaging in the diagnosis of Parkinson's disease: a review.

    PubMed

    Al-Radaideh, Ali M; Rababah, Eman M

    2016-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's in elderly people. Different structural and functional neuroimaging methods play a great role in the early diagnosis of neurodegenerative diseases. This review discusses the role of magnetic resonance imaging (MRI) in the diagnosis of PD. MRI provides clinicians with structural and functional information of human brain noninvasively. Advanced quantitative MRI techniques have shown promise for detecting pathological changes related to different stages of PD. Collectively, advanced MRI techniques at high and ultrahigh magnetic fields aid in better understanding of the nature and progression of PD. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. INTESTINAL ALKALINE PHOSPHATASE: A SUMMARY OF ITS ROLE IN CLINICAL DISEASE

    PubMed Central

    Fawley, Jason; Gourlay, David

    2016-01-01

    Over the past few years, there is increasing evidence implicating a novel role for Intestinal Alkaline Phosphatase (IAP) in mitigating inflammatory mediated disorders. IAP is an endogenous protein expressed by the intestinal epithelium that is believed to play a vital role in maintaining gut homeostasis. Loss of IAP expression or function is associated with increased intestinal inflammation, dysbiosis, bacterial translocation and subsequently systemic inflammation. As these events are a cornerstone of the pathophysiology of many diseases relevant to surgeons, we sought to review recent research in both animal and humans on IAP’s physiologic function, mechanisms of action and current research in specific surgical diseases. PMID:27083970

  4. Update in TSH Receptor Agonists and Antagonists

    PubMed Central

    Neumann, Susanne

    2012-01-01

    The physiological role of the TSH receptor (TSHR) as a major regulator of thyroid function is well understood, but TSHRs are also expressed in multiple normal extrathyroidal tissues, and the physiological roles of TSHRs in these tissues are unclear. Moreover, TSHRs play a major role in several pathological conditions including hyperthyroidism, hypothyroidism, and thyroid tumors. Small molecule, “drug-like” TSHR agonists, neutral antagonists, and inverse agonists may be useful as probes of TSHR function in extrathyroidal tissues and as leads to develop drugs for several diseases of the thyroid. In this Update, we review the most recent findings regarding the development and use of these small molecule TSHR ligands. PMID:23019348

  5. The role of adult hippocampal neurogenesis in brain health and disease.

    PubMed

    Toda, Tomohisa; Parylak, Sarah L; Linker, Sara B; Gage, Fred H

    2018-04-20

    Adult neurogenesis in the dentate gyrus of the hippocampus is highly regulated by a number of environmental and cell-intrinsic factors to adapt to environmental changes. Accumulating evidence suggests that adult-born neurons may play distinct physiological roles in hippocampus-dependent functions, such as memory encoding and mood regulation. In addition, several brain diseases, such as neurological diseases and mood disorders, have deleterious effects on adult hippocampal neurogenesis, and some symptoms of those diseases can be partially explained by the dysregulation of adult hippocampal neurogenesis. Here we review a possible link between the physiological functions of adult-born neurons and their roles in pathological conditions.

  6. SoxNeuro orchestrates central nervous system specification and differentiation in Drosophila and is only partially redundant with Dichaete

    PubMed Central

    2014-01-01

    Background Sox proteins encompass an evolutionarily conserved family of transcription factors with critical roles in animal development and stem cell biology. In common with vertebrates, the Drosophila group B proteins SoxNeuro and Dichaete are involved in central nervous system development, where they play both similar and unique roles in gene regulation. Sox genes show extensive functional redundancy across metazoans, but the molecular basis underpinning functional compensation mechanisms at the genomic level are currently unknown. Results Using a combination of genome-wide binding analysis and gene expression profiling, we show that SoxNeuro directs embryonic neural development from the early specification of neuroblasts through to the terminal differentiation of neurons and glia. To address the issue of functional redundancy and compensation at a genomic level, we compare SoxNeuro and Dichaete binding, identifying common and independent binding events in wild-type conditions, as well as instances of compensation and loss of binding in mutant backgrounds. Conclusions We find that early aspects of group B Sox functions in the central nervous system, such as stem cell maintenance and dorsoventral patterning, are highly conserved. However, in contrast to vertebrates, we find that Drosophila group B1 proteins also play prominent roles during later aspects of neural morphogenesis. Our analysis of the functional relationship between SoxNeuro and Dichaete uncovers evidence for redundant and independent functions for each protein, along with unexpected examples of compensation and interdependency, thus providing new insights into the general issue of transcription factor functional redundancy. PMID:24886562

  7. Functional sub-division of the Drosophila genome via chromatin looping: the emerging importance of CP190.

    PubMed

    Ahanger, Sajad H; Shouche, Yogesh S; Mishra, Rakesh K

    2013-01-01

    Insulators help in organizing the eukaryotic genomes into physically and functionally autonomous regions through the formation of chromatin loops. Recent findings in Drosophila and vertebrates suggest that insulators anchor multiple loci through long-distance interactions which may be mechanistically linked to insulator function. Important to such processes in Drosophila is CP190, a common co-factor of insulator complexes. CP190 is also known to associate with the nuclear matrix, components of the RNAi machinery, active promoters and borders of the repressive chromatin domains. Although CP190 plays a pivotal role in insulator function in Drosophila, vertebrates lack a probable functional equivalent of CP190 and employ CTCF as the major factor to carry out insulator function/chromatin looping. In this review, we discuss the emerging role of CP190 in tethering genome, specifically in the perspective of insulator function in Drosophila. Future studies aiming genome-wide role of CP190 in chromatin looping is likely to give important insights into the mechanism of genome organization.

  8. Functional sub-division of the Drosophila genome via chromatin looping

    PubMed Central

    Ahanger, Sajad H.; Shouche, Yogesh S.; Mishra, Rakesh K.

    2013-01-01

    Insulators help in organizing the eukaryotic genomes into physically and functionally autonomous regions through the formation of chromatin loops. Recent findings in Drosophila and vertebrates suggest that insulators anchor multiple loci through long-distance interactions which may be mechanistically linked to insulator function. Important to such processes in Drosophila is CP190, a common co-factor of insulator complexes. CP190 is also known to associate with the nuclear matrix, components of the RNAi machinery, active promoters and borders of the repressive chromatin domains. Although CP190 plays a pivotal role in insulator function in Drosophila, vertebrates lack a probable functional equivalent of CP190 and employ CTCF as the major factor to carry out insulator function/chromatin looping. In this review, we discuss the emerging role of CP190 in tethering genome, specifically in the perspective of insulator function in Drosophila. Future studies aiming genome-wide role of CP190 in chromatin looping is likely to give important insights into the mechanism of genome organization. PMID:23333867

  9. [The Role of Membrane-Bound Heat Shock Proteins Hsp90 in Migration of Tumor Cells in vitro and Involvement of Cell Surface Heparan Sulfate Proteoglycans in Protein Binding to Plasma Membrane].

    PubMed

    Snigireva, A V; Vrublevskaya, V V; Skarga, Y Y; Morenkov, O S

    2016-01-01

    Heat shock protein Hsp90, detected in the extracellular space and on the membrane of cells, plays an important role in cell motility, migration, invasion and metastasis of tumor cells. At present, the functional role and molecular mechanisms of Hsp90 binding to plasma membrane are not elucidated. Using isoform-specific antibodies against Hsp90, Hsp9α and Hsp90β, we showed that membrane-bound Hsp90α and Hsp90β play a significant role in migration of human fibrosarcoma (HT1080) and glioblastoma (A-172) cells in vitro. Disorders of sulfonation of cell heparan sulfates, cleavage of cell heparan. sulfates by heparinase I/III as well as treatment of cells with heparin lead to an abrupt reduction in the expression level of Hsp90 isoforms. Furthermore, heparin significantly inhibits tumor cell migration. The results obtained demonstrate that two isoforms of membrane-bound Hsp90 are involved in migration of tumor cells in vitro and that cell surface heparan sulfate proteoglycans play a pivotal role in the "anchoring" of Hsp90α and Hsp90β to the plasma membrane.

  10. RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage.

    PubMed

    Paul, Atanu; Wang, Bin

    2017-05-18

    Ubiquitin modification of proteins plays pivotal roles in the cellular response to DNA damage. Given the complexity of ubiquitin conjugation due to the formation of poly-conjugates of different linkages, functional roles of linkage-specific ubiquitin modification at DNA damage sites are largely unclear. We identify that Lys11-linkage ubiquitin modification occurs at DNA damage sites in an ATM-dependent manner, and ubiquitin-modifying enzymes, including Ube2S E2-conjugating enzyme and RNF8 E3 ligase, are responsible for the assembly of Lys11-linkage conjugates on damaged chromatin, including histone H2A/H2AX. We show that RNF8- and Ube2S-dependent Lys11-linkage ubiquitin conjugation plays an important role in regulating DNA damage-induced transcriptional silencing, distinct from the role of Lys63-linkage ubiquitin in the recruitment of DNA damage repair proteins 53BP1 and BRCA1. Thus, our study highlights the importance of linkage-specific ubiquitination at DNA damage sites, and it reveals that Lys11-linkage ubiquitin modification plays a crucial role in the DNA damage response. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. What the laboratory rat has taught us about social play behavior: role in behavioral development and neural mechanisms.

    PubMed

    Vanderschuren, Louk J M J; Trezza, Viviana

    2014-01-01

    Social play behavior is the most vigorous and characteristic form of social interaction displayed by developing mammals. The laboratory rat is an ideal species to study this behavior, since it shows ample social play that can be easily recognized and quantified. In this chapter, we will first briefly describe the structure of social play behavior in rats. Next, we will discuss studies that used social isolation rearing during the period in life when social play is most abundant to investigate the developmental functions of social play behavior in rats, focusing on the consequences of play deprivation on social, cognitive, emotional, and sensorimotor development. Last, we will discuss the neural substrates of social play behavior in rats, with emphasis on the limbic corticostriatal circuits that underlie emotions and their influence on behavior.

  12. Functional Assessment: Old Wine in New Bottles.

    ERIC Educational Resources Information Center

    Ervin, Ruth A.; Ehrhardt, Kristal E.; Poling, Alan

    2001-01-01

    Traces functional assessment (FA) in school settings to early contributions by B. F. Skinner. FA plays an important role in behavior analysis, and the value of this approach in dealing with behavior problems in many settings has long been evident. Although interest in FA in school settings has only recently become widespread, FA in education has a…

  13. Predictors of Behavioral Regulation in Kindergarten: Household Chaos, Parenting, and Early Executive Functions

    ERIC Educational Resources Information Center

    Vernon-Feagans, Lynne; Garrett-Peters, Patricia; Willoughby, Michael

    2016-01-01

    Behavioral regulation is an important school readiness skill that has been linked to early executive function (EF) and later success in learning and school achievement. Although poverty and related risks, as well as negative parenting, have been associated with poorer EF and behavioral regulation, chaotic home environments may also play a role in…

  14. Encoding: The Keystone to Efficient Functioning of Verbal Short-Term Memory

    ERIC Educational Resources Information Center

    Barry, Johanna G.; Sabisch, Beate; Friederici, Angela D.; Brauer, Jens

    2011-01-01

    Verbal short-term memory (VSTM) is thought to play a critical role in language learning. It is indexed by the nonword repetition task where listeners are asked to repeat meaningless words like "blonterstaping". The present study investigated the effect on nonword repetition performance of differences in efficiency of functioning of some part of…

  15. Role-Playing and Problem-Based Learning: The Use of Cross-Functional Student Teams in Business Application Development

    ERIC Educational Resources Information Center

    Pike, Jacqueline C.; Spangler, William; Williams, Valerie; Kollar, Robert

    2017-01-01

    To create a learning experience which replicates the process by which consultants, systems developers and business end users collaborate to design and implement a business application, a cross-functional student team project was developed and is described. The overall learning experience was distinguished by specific components and characteristics…

  16. A Pragmatic Analysis of Discourse Particles in Filipino Computer Mediated Communication

    ERIC Educational Resources Information Center

    Palacio, May Antonette; Gustilo, Leah

    2016-01-01

    As the English language continues to evolve through time, many of its structures and functions changed, which made it even realizable that the smallest unit in a discourse can play a crucial role in communication. Hence, this present study is an attempt to investigate the phenomenon and further delve into the discourse-pragmatic functions of…

  17. The Effect of Exposure Duration on Visual Character Identification in Single, Whole, and Partial Report

    ERIC Educational Resources Information Center

    Petersen, Anders; Andersen, Tobias S.

    2012-01-01

    The psychometric function of single-letter identification is typically described as a function of stimulus intensity. However, the effect of stimulus exposure duration on letter identification remains poorly described. This is surprising because the effect of exposure duration has played a central role in modeling performance in whole and partial…

  18. Family Functioning and Low Vision: A Systematic Review

    ERIC Educational Resources Information Center

    Bambara, Jennifer K.; Wadley, Virginia; Owsley, Cynthia; Martin, Roy C.; Porter, Chebon; Dreer, Laura E.

    2009-01-01

    This review highlights the literature on the function and adjustment process of family members of persons with adult-onset vision loss. The majority of the literature has focused on the unique role that the family plays in providing both instrumental and emotional support to adults with low vision. In contrast, the impact of low vision on the…

  19. FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii

    PubMed Central

    Green, Stephen A.; Norris, Rachael P.; Terasaki, Mark; Lowe, Christopher J.

    2013-01-01

    FGFs act in vertebrate mesoderm induction and also play key roles in early mesoderm formation in ascidians and amphioxus. However, in sea urchins initial characterizations of FGF function do not support a role in early mesoderm induction, making the ancestral roles of FGF signaling and mechanisms of mesoderm specification in deuterostomes unclear. In order to better characterize the evolution of mesoderm formation, we have examined the role of FGF signaling during mesoderm development in Saccoglossus kowalevskii, an experimentally tractable representative of hemichordates. We report the expression of an FGF ligand, fgf8/17/18, in ectoderm overlying sites of mesoderm specification within the archenteron endomesoderm. Embryological experiments demonstrate that mesoderm induction in the archenteron requires contact with ectoderm, and loss-of-function experiments indicate that both FGF ligand and receptor are necessary for mesoderm specification. fgf8/17/18 gain-of-function experiments establish that FGF8/17/18 is sufficient to induce mesoderm in adjacent endomesoderm. These experiments suggest that FGF signaling is necessary from the earliest stages of mesoderm specification and is required for all mesoderm development. Furthermore, they suggest that the archenteron is competent to form mesoderm or endoderm, and that FGF signaling from the ectoderm defines the location and amount of mesoderm. When considered in a comparative context, these data support a phylogenetically broad requirement for FGF8/17/18 signaling in mesoderm specification and suggest that FGF signaling played an ancestral role in deuterostome mesoderm formation. PMID:23344709

  20. Arabidopsis Small Rubber Particle Protein Homolog SRPs Play Dual Roles as Positive Factors for Tissue Growth and Development and in Drought Stress Responses1[OPEN

    PubMed Central

    Kim, Eun Yu; Park, Ki Youl; Seo, Young Sam; Kim, Woo Taek

    2016-01-01

    Lipid droplets (LDs) act as repositories for fatty acids and sterols, which are used for various cellular processes such as energy production and membrane and hormone synthesis. LD-associated proteins play important roles in seed development and germination, but their functions in postgermination growth are not well understood. Arabidopsis (Arabidopsis thaliana) contains three SRP homologs (SRP1, SRP2, and SRP3) that share sequence identities with small rubber particle proteins of the rubber tree (Hevea brasiliensis). In this report, the possible cellular roles of SRPs in postgermination growth and the drought tolerance response were investigated. Arabidopsis SRPs appeared to be LD-associated proteins and displayed polymerization properties in vivo and in vitro. SRP-overexpressing transgenic Arabidopsis plants (35S:SRP1, 35S:SRP2, and 35S:SRP3) exhibited higher vegetative and reproductive growth and markedly better tolerance to drought stress than wild-type Arabidopsis. In addition, constitutive over-expression of SRPs resulted in increased numbers of large LDs in postgermination seedlings. In contrast, single (srp1, 35S:SRP2-RNAi, and srp3) and triple (35S:SRP2-RNAi/srp1srp3) loss-of-function mutant lines exhibited the opposite phenotypes. Our results suggest that Arabidopsis SRPs play dual roles as positive factors in postgermination growth and the drought stress tolerance response. The possible relationships between LD-associated proteins and the drought stress response are discussed. PMID:26903535

  1. MITD1 is recruited to midbodies by ESCRT-III and participates in cytokinesis

    PubMed Central

    Lee, Seongju; Chang, Jaerak; Renvoisé, Benoît; Tipirneni, Anita; Yang, Sarah; Blackstone, Craig

    2012-01-01

    Diverse cellular processes, including multivesicular body formation, cytokinesis, and viral budding, require the sequential functions of endosomal sorting complexes required for transport (ESCRTs) 0 to III. Of these multiprotein complexes, ESCRT-III in particular plays a key role in mediating membrane fission events by forming large, ring-like helical arrays. A number of proteins playing key effector roles, most notably the ATPase associated with diverse cellular activities protein VPS4, harbor present in microtubule-interacting and trafficking molecules (MIT) domains comprising asymmetric three-helical bundles, which interact with helical MIT-interacting motifs in ESCRT-III subunits. Here we assess comprehensively the ESCRT-III interactions of the MIT-domain family member MITD1 and identify strong interactions with charged multivesicular body protein 1B (CHMP1B), CHMP2A, and increased sodium tolerance-1 (IST1). We show that these ESCRT-III subunits are important for the recruitment of MITD1 to the midbody and that MITD1 participates in the abscission phase of cytokinesis. MITD1 also dimerizes through its C-terminal domain. Both types of interactions appear important for the role of MITD1 in negatively regulating the interaction of IST1 with VPS4. Because IST1 binding in turn regulates VPS4, MITD1 may function through downstream effects on the activity of VPS4, which plays a critical role in the processing and remodeling of ESCRT filaments in abscission. PMID:23015756

  2. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms

    PubMed Central

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-e; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs’ appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers’ attention from different fields and many studies have validated MMORPGs’ positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers’ overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas. PMID:28303097

  3. The Core Subunit of A Chromatin-Remodeling Complex, ZmCHB101, Plays Essential Roles in Maize Growth and Development.

    PubMed

    Yu, Xiaoming; Jiang, Lili; Wu, Rui; Meng, Xinchao; Zhang, Ai; Li, Ning; Xia, Qiong; Qi, Xin; Pang, Jinsong; Xu, Zheng-Yi; Liu, Bao

    2016-12-05

    ATP-dependent chromatin remodeling complexes play essential roles in the regulation of diverse biological processes by formulating a DNA template that is accessible to the general transcription apparatus. Although the function of chromatin remodelers in plant development has been studied in A. thaliana, how it affects growth and development of major crops (e.g., maize) remains uninvestigated. Combining genetic, genomic and bioinformatic analyses, we show here that the maize core subunit of chromatin remodeling complex, ZmCHB101, plays essential roles in growth and development of maize at both vegetative and reproductive stages. Independent ZmCHB101 RNA interference plant lines displayed abaxially curling leaf phenotype due to increase of bulliform cell numbers, and showed impaired development of tassel and cob. RNA-seq-based transcriptome profiling revealed that ZmCHB101 dictated transcriptional reprogramming of a significant set of genes involved in plant development, photosynthesis, metabolic regulation, stress response and gene expressional regulation. Intriguingly, we found that ZmCHB101 was required for maintaining normal nucleosome density and 45 S rDNA compaction. Our findings suggest that the SWI3 protein, ZmCHB101, plays pivotal roles in maize normal growth and development via regulation of chromatin structure.

  4. Netrin-1 guides inflammatory cell migration to control mucosal immune responses during intestinal inflammation

    PubMed Central

    Aherne, Carol M.; Collins, Colm B.; Eltzschig, Holger K.

    2013-01-01

    The intestinal epithelium is a dynamic barrier playing an active role in intestinal homeostasis and inflammation. Intestinal barrier function is dysregulated during inflammatory bowel disease (IBD), with epithelial cells playing a significant part in generating an inflammatory milieu through the release of signals that attract leukocytes to the intestinal lamina propria. However, it is increasingly appreciated that the intestinal epithelium mediates a counterbalancing response to drive resolution. Drawing analogies with neuronal development, where the balance of chemoattractive and chemorepellent signals is key to directed neuronal movement it has been postulated that such secreted cues play a role in leukocyte migration. Netrin-1 is one of the best-described neuronal guidance molecules, which has been shown to play a significant role in directed migration of leukocytes. Prior to our study the potential role of netrin-1 in IBD was poorly characterized. We defined netrin-1 as an intestinal epithelial-derived protein capable of limiting neutrophil recruitment to attenuate acute colitis. Our study highlights that the intestinal epithelium releases factors during acute inflammation that are responsible for fine-tuning the immune response. Exploration of these epithelial-mediated protective mechanisms will shed light on the complexity of the intestinal epithelial barrier in health and disease. PMID:24665394

  5. Hungry for Life: How the arcuate nucleus and neuropeptide Y may play a critical role in mediating the benefits of calorie restriction

    PubMed Central

    Minor, Robin K.; Chang, Joy W.; de Cabo, Rafael

    2009-01-01

    Laboratory studies consistently demonstrate extended lifespan in animals on calorie restriction (CR), where total caloric intake is reduced by 10–40% but adequate nutrition is otherwise maintained. CR has been further shown to delay the onset and severity of chronic diseases associated with aging such as cancer, and to extend the functional health span of important functions including cognition. Less understood are the underlying mechanisms through which CR might act to induce such alterations. One theory postulates that CR’s beneficial effects are intimately tied to the neuroendocrine response to low energy availability, of which the arcuate nucleus in the hypothalamus plays a pivotal role. Neuropeptide Y (NPY), a neurotransmitter in the front line of the arcuate response to low energy availability, is the primary hunger signal affected by CR and therefore may be a critical mechanism for lifespan extension. PMID:19041366

  6. Shift Work and Sleep: Medical Implications and Management

    PubMed Central

    Jehan, Shazia; Zizi, Ferdinand; Pandi-Perumal, Seithikurippu R; Myers, Alyson K; Auguste, Evan; Jean-Louis, Girardin; McFarlane, Samy I

    2018-01-01

    The primary occupation of a worker can play an important role in achieving good sleep, as well as good physical and mental health. Shift Work Sleep Disorder (SWSD) is a condition that results from working atypical shifts (i.e. other than the typical 9 am to 5 pm schedule). Individuals who manifest SWSD usually complaint of trouble sleeping, excessive sleepiness and fatigue which interfere with overall functioning. Misalignment of circadian timing system results in undesirable health consequences. Among shift workers, good sleep is essential for efficient functioning. Disturbed sleep is associated with anxiety, depression, poor physical and mental health and eventually, leads to impaired quality of life. The economic burden of undiagnosed, under-and untreated shift work is high. The healthcare workers and policymakers can play a pivotal role in dealing with this issue by educating the public and providing them with adequate privileges to perform their work. PMID:29517053

  7. Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, R K; Bissell, M J

    The changes in tissue architecture that accompany the development of breast cancer have been the focus of investigations aimed at developing new cancer therapeutics. As we learn more about the normal mammary gland, we have begun to understand the complex signaling pathways underlying the dramatic shifts in the structure and function of breast tissue. Integrin-, growth factor-, and steroid hormone-signaling pathways all play an important part in maintaining tissue architecture; disruption of the delicate balance of signaling results in dramatic changes in the way cells interact with each other and with the extracellular matrix, leading to breast cancer. The extracellularmore » matrix itself plays a central role in coordinating these signaling processes. In this review, we consider the interrelationships between the extracellular matrix, integrins, growth factors, and steroid hormones in mammary gland development and function.« less

  8. Altering sensorimotor feedback disrupts visual discrimination of facial expressions.

    PubMed

    Wood, Adrienne; Lupyan, Gary; Sherrin, Steven; Niedenthal, Paula

    2016-08-01

    Looking at another person's facial expression of emotion can trigger the same neural processes involved in producing the expression, and such responses play a functional role in emotion recognition. Disrupting individuals' facial action, for example, interferes with verbal emotion recognition tasks. We tested the hypothesis that facial responses also play a functional role in the perceptual processing of emotional expressions. We altered the facial action of participants with a gel facemask while they performed a task that involved distinguishing target expressions from highly similar distractors. Relative to control participants, participants in the facemask condition demonstrated inferior perceptual discrimination of facial expressions, but not of nonface stimuli. The findings suggest that somatosensory/motor processes involving the face contribute to the visual perceptual-and not just conceptual-processing of facial expressions. More broadly, our study contributes to growing evidence for the fundamentally interactive nature of the perceptual inputs from different sensory modalities.

  9. Mutations of RNA splicing factors in hematological malignancies.

    PubMed

    Shukla, Girish C; Singh, Jagjit

    2017-11-28

    Systematic large-scale cancer genomic studies have produced numerous significant findings. These studies have not only revealed new cancer-promoting genes, but they also have identified cancer-promoting functions of previously known "housekeeping" genes. These studies have identified numerous mutations in genes which play a fundamental role in nuclear precursor mRNA splicing. Somatic mutations and copy number variation in many of the splicing factors which participate in the formation of multiple spliceosomal complexes appear to play a role in many cancers and in particular in myelodysplastic syndromes (MDS). Mutated proteins seem to interfere with the recognition of the authentic splice sites (SS) leading to utilization of suboptimal alternative splicing sites generating aberrantly spliced mRNA isoforms. This short review is focusing on the function of the splice factors involved in the formation of splicing complexes and potential mechanisms which affect usage of the authentic splice site recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Imaging the hard/soft tissue interface.

    PubMed

    Bannerman, Alistair; Paxton, Jennifer Z; Grover, Liam M

    2014-03-01

    Interfaces between different tissues play an essential role in the biomechanics of native tissues and their recapitulation is now recognized as critical to function. As a consequence, imaging the hard/soft tissue interface has become increasingly important in the area of tissue engineering. Particularly as several biotechnology based products have made it onto the market or are close to human trials and an understanding of their function and development is essential. A range of imaging modalities have been developed that allow a wealth of information on the morphological and physical properties of samples to be obtained non-destructively in vivo or via destructive means. This review summarizes the use of a selection of imaging modalities on interfaces to date considering the strengths and weaknesses of each. We will also consider techniques which have not yet been utilized to their full potential or are likely to play a role in future work in the area.

  11. The multidimensional ionotropic receptors of Drosophila melanogaster.

    PubMed

    Rimal, S; Lee, Y

    2018-02-01

    Ionotropic receptors (IRs), which form ion channels, can be categorized into conserved 'antennal IRs', which define the first olfactory receptor family of insects, and species-specific 'divergent IRs', which are expressed in gustatory receptor neurones. These receptors are located primarily in cell bodies and dendrites, and are highly enriched in the tips of the dendritic terminals that convey sensory information to higher brain centres. Antennal IRs play important roles in odour and thermosensation, whereas divergent IRs are involved in other important biological processes such as taste sensation. Some IRs are known to play specific biological roles in the perception of various molecules; however, many of their functions have not yet been defined. Although progress has been made in this field, many functions and mechanisms of these receptors remain unknown. In this review, we provide a comprehensive summary of the current state of knowledge in this field. © 2017 The Royal Entomological Society.

  12. E3 ubiquitin ligase Cbl-b in innate and adaptive immunity

    PubMed Central

    Liu, Qingjun; Zhou, Hong; Langdon, Wallace Y; Zhang, Jian

    2014-01-01

    Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), a RING finger E3 ubiquitin-protein ligase, has been demonstrated to play a crucial role in establishing the threshold for T-cell activation and controlling peripheral T-cell tolerance via multiple mechanisms. Accumulating evidence suggests that Cbl-b also regulates innate immune responses and plays an important role in host defense to pathogens. Understanding the signaling pathways regulated by Cbl-b in innate and adaptive immune cells is therefore essential for efficient manipulation of Cbl-b in emerging immunotherapies for human disorders such as autoimmune diseases, allergic inflammation, infections, and cancer. In this article, we review the latest developments in the molecular structural basis of Cbl-b function, the regulation of Cbl-b expression, the signaling mechanisms of Cbl-b in immune cells, as well as the biological function of Cbl-b in physiological and pathological immune responses in animal models and human diseases. PMID:24875217

  13. Glucagon-like peptide-1 and cholecystokinin production and signaling in the pancreatic islet as an adaptive response to obesity.

    PubMed

    Linnemann, Amelia K; Davis, Dawn Belt

    2016-04-01

    Precise control of blood glucose is dependent on adequate β-cell mass and function. Thus, reductions in β-cell mass and function lead to insufficient insulin production to meet demand, and result in diabetes. Recent evidence suggests that paracrine signaling in the islet might be important in obesity, and disruption of this signaling could play a role in the pathogenesis of diabetes. For example, we recently discovered a novel islet incretin axis where glucagon-like peptide-1 regulates β-cell production of another classic gut hormone, cholecystokinin. This axis is stimulated by obesity, and plays a role in enhancing β-cell survival. In the present review, we place our observations in the wider context of the literature on incretin regulation in the islet, and discuss the potential for therapeutic targeting of these pathways.

  14. Diversity in immunological synapse structure

    PubMed Central

    Thauland, Timothy J; Parker, David C

    2010-01-01

    Immunological synapses (ISs) are formed at the T cell–antigen-presenting cell (APC) interface during antigen recognition, and play a central role in T-cell activation and in the delivery of effector functions. ISs were originally described as a peripheral ring of adhesion molecules surrounding a central accumulation of T-cell receptor (TCR)–peptide major histocompatibility complex (pMHC) interactions. Although the structure of these ‘classical’ ISs has been the subject of intense study, non-classical ISs have also been observed under a variety of conditions. Multifocal ISs, characterized by adhesion molecules dispersed among numerous small accumulations of TCR–pMHC, and motile ‘immunological kinapses’ have both been described. In this review, we discuss the conditions under which non-classical ISs are formed. Specifically, we explore the profound effect that the phenotypes of both T cells and APCs have on IS structure. We also comment on the role that IS structure may play in T-cell function. PMID:21039474

  15. A novel ubiquitin-binding protein ZNF216 functioning in muscle atrophy

    PubMed Central

    Hishiya, Akinori; Iemura, Shun-ichiro; Natsume, Tohru; Takayama, Shinichi; Ikeda, Kyoji; Watanabe, Ken

    2006-01-01

    The ubiquitin–proteasome system (UPS) is critical for specific degradation of cellular proteins and plays a pivotal role on protein breakdown in muscle atrophy. Here, we show that ZNF216 directly binds polyubiquitin chains through its N-terminal A20-type zinc-finger domain and associates with the 26S proteasome. ZNF216 was colocalized with the aggresome, which contains ubiquitinylated proteins and other UPS components. Expression of Znf216 was increased in both denervation- and fasting-induced muscle atrophy and upregulated by expression of constitutively active FOXO, a master regulator of muscle atrophy. Mice deficient in Znf216 exhibited resistance to denervation-induced atrophy, and ubiquitinylated proteins markedly accumulated in neurectomized muscle compared to wild-type mice. These data suggest that ZNF216 functions in protein degradation via the UPS and plays a crucial role in muscle atrophy. PMID:16424905

  16. Functional expression of SCL/TAL1 interrupting locus (Stil) protects retinal dopaminergic cells from neurotoxin-induced degeneration.

    PubMed

    Li, Jingling; Li, Ping; Carr, Aprell; Wang, Xiaokai; DeLaPaz, April; Sun, Lei; Lee, Eric; Tomei, Erika; Li, Lei

    2013-01-11

    We previously isolated a dominant mutation, night blindness b (nbb), which causes a late onset of retinal dopaminergic cell degeneration in zebrafish. In this study, we cloned the zebrafish nbb locus. Sequencing results revealed that nbb is a homolog of the vertebrate SCL/TAL1 interrupting locus (Stil). The Stil gene has been shown to play important roles in the regulation of vertebrate embryonic neural development and human cancer cell proliferation. In this study, we demonstrate that functional expression of Stil is also required for neural survival. In zebrafish, decreased expression of Stil resulted in increased toxic susceptibility of retinal dopaminergic cells to 6-hydroxydopamine. Increases in Stil-mediated Shh signaling transduction (i.e. by knocking down the Shh repressor Sufu) prevented dopaminergic cell death induced by neurotoxic insult. The data suggest that the oncogene Stil also plays important roles in neural protection.

  17. Fluorescence correlation spectroscopy: the case of subdiffusion.

    PubMed

    Lubelski, Ariel; Klafter, Joseph

    2009-03-18

    The theory of fluorescence correlation spectroscopy is revisited here for the case of subdiffusing molecules. Subdiffusion is assumed to stem from a continuous-time random walk process with a fat-tailed distribution of waiting times and can therefore be formulated in terms of a fractional diffusion equation (FDE). The FDE plays the central role in developing the fluorescence correlation spectroscopy expressions, analogous to the role played by the simple diffusion equation for regular systems. Due to the nonstationary nature of the continuous-time random walk/FDE, some interesting properties emerge that are amenable to experimental verification and may help in discriminating among subdiffusion mechanisms. In particular, the current approach predicts 1), a strong dependence of correlation functions on the initial time (aging); 2), sensitivity of correlation functions to the averaging procedure, ensemble versus time averaging (ergodicity breaking); and 3), that the basic mean-squared displacement observable depends on how the mean is taken.

  18. Expansion of Protein Farnesyltransferase Specificity Using “Tunable” Active Site Interactions

    PubMed Central

    Hougland, James L.; Gangopadhyay, Soumyashree A.; Fierke, Carol A.

    2012-01-01

    Post-translational modifications play essential roles in regulating protein structure and function. Protein farnesyltransferase (FTase) catalyzes the biologically relevant lipidation of up to several hundred cellular proteins. Site-directed mutagenesis of FTase coupled with peptide selectivity measurements demonstrates that molecular recognition is determined by a combination of multiple interactions. Targeted randomization of these interactions yields FTase variants with altered and, in some cases, bio-orthogonal selectivity. We demonstrate that FTase specificity can be “tuned” using a small number of active site contacts that play essential roles in discriminating against non-substrates in the wild-type enzyme. This tunable selectivity extends in vivo, with FTase variants enabling the creation of bioengineered parallel prenylation pathways with altered substrate selectivity within a cell. Engineered FTase variants provide a novel avenue for probing both the selectivity of prenylation pathway enzymes and the effects of prenylation pathway modifications on the cellular function of a protein. PMID:22992747

  19. The need for lumbar-pelvic assessment in the resolution of chronic hamstring strain.

    PubMed

    Panayi, Stephanie

    2010-07-01

    A lumbar-pelvic assessment and treatment model based on a review of clinical and anatomical research is presented for consideration in the treatment of chronic hamstring strain. The origin of the biceps femoris muscle attaches to the pelvis at the ischial tuberosity and to the sacrum via the sacrotuberous ligament. The biomechanics of the sacroiliac joint and hip, along with lumbar-pelvic stability, therefore play a significant role in hamstring function. Pelvic asymmetry and/or excessive anterior tilt can lead to increased tension at the biceps origin and increase functional demands on the hamstring group by inhibiting its synergists. Joint proprioceptive mechanisms may play a significant role in re-establishing balance between agonists and antagonists. An appreciation of neuromuscular connections as well as overall lumbar-pelvic structural assessment is recommended in conjunction with lumbar-pelvic strengthening exercises to help resolve chronic hamstring strain. (c) 2009 Elsevier Ltd. All rights reserved.

  20. Discourse Impairments Following Right Hemisphere Brain Damage: A Critical Review

    PubMed Central

    Johns, Clinton L.; Tooley, Kristen M.; Traxler, Matthew J.

    2015-01-01

    Right hemisphere brain damage (RHD) rarely causes aphasias marked by clear and widespread failures of comprehension or extreme difficulty producing fluent speech. Nonetheless, subtle language comprehension deficits can occur following unilateral RHD. In this article, we review the empirical record on discourse function following right hemisphere damage, as well as relevant work on non-brain damaged individuals that focuses on right hemisphere function. The review is divided into four sections that focus on discourse processing, inferencing, humor, and non-literal language. While the exact role that the right hemisphere plays in language processing, and the exact way that the two cerebral hemispheres coordinate their linguistic processes are still open to debate, our review suggests that the right hemisphere plays a critical role in managing inferred or implied information by maintaining relevant information and/or suppressing irrelevant information. Deficits in one or both of these mechanisms may account for discourse deficits following RHD. PMID:26085839

  1. Dopamine in Drosophila: setting arousal thresholds in a miniature brain

    PubMed Central

    Van Swinderen, Bruno; Andretic, Rozi

    2011-01-01

    In mammals, the neurotransmitter dopamine (DA) modulates a variety of behaviours, although DA function is mostly associated with motor control and reward. In insects such as the fruitfly, Drosophila melanogaster, DA also modulates a wide array of behaviours, ranging from sleep and locomotion to courtship and learning. How can a single molecule play so many different roles? Adaptive changes within the DA system, anatomical specificity of action and effects on a variety of behaviours highlight the remarkable versatility of this neurotransmitter. Recent genetic and pharmacological manipulations of DA signalling in Drosophila have launched a surfeit of stories—each arguing for modulation of some aspect of the fly's waking (and sleeping) life. Although these stories often seem distinct and unrelated, there are some unifying themes underlying DA function and arousal states in this insect model. One of the central roles played by DA may involve perceptual suppression, a necessary component of both sleep and selective attention. PMID:21208962

  2. Long non-coding RNA GAS5 is induced by interferons and plays an antitumor role in esophageal squamous cell carcinoma.

    PubMed

    Huang, Jianbing; Li, Yuan; Lu, Zhiliang; Che, Yun; Sun, Shouguo; Mao, Shuangshuang; Lei, Yuanyuan; Zang, Ruochuan; Li, Ning; Sun, Nan; He, Jie

    2018-05-09

    The long non-coding RNA GAS5 has been reported as a tumor suppressor in many cancers. However, its functions and mechanisms remain largely unknown in esophageal squamous cell carcinoma (ESCC). In this study, we found that GAS5 was over-expressed in ESCC tissue compared with that in normal esophageal tissue in a public database. Functional studies showed that GAS5 could inhibit ESCC cell proliferation, migration and invasion in vitro. Further analysis revealed that GAS5 was regulated by interferon (IFN) responses via the JAK-STAT pathway. Moreover, as an IFN-stimulated gene (ISG), GAS5 was a positive regulator of IFN responses. The feedback loop between GAS5 and the IFN signaling pathway plays an important antitumor role in ESCC, thus providing novel potential therapeutic targets. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  3. Ultraweak photon emission in the brain.

    PubMed

    Salari, V; Valian, H; Bassereh, H; Bókkon, I; Barkhordari, A

    2015-09-01

    Besides the low-frequency electromagnetic body-processes measurable through the electroencephalography (EEG), electrocardiography (ECG), etc. there are processes that do not need external excitation, emitting light within or close to the visible spectra. Such ultraweak photon emission (UPE), also named biophoton emission, reflects the cellular (and body) oxidative status. Recently, a growing body of evidence shows that UPE may play an important role in the basic functioning of living cells. Moreover, interesting evidences are beginning to emerge that UPE may well play an important role in neuronal functions. In fact, biophotons are byproducts in cellular metabolism and produce false signals (e.g., retinal discrete dark noise) but on the other side neurons contain many light sensitive molecules that makes it hard to imagine how they might not be influenced by UPE, and thus UPE may carry informational contents. Here, we investigate UPE in the brain from different points of view such as experimental evidences, theoretical modeling, and physiological significance.

  4. Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications

    PubMed Central

    Wang, Wei; Qin, Jiang-Jiang; Voruganti, Sukesh; Nag, Subhasree; Zhou, Jianwei; Zhang, Ruiwen

    2016-01-01

    Polycomb group (PcG) proteins are transcriptional repressors that regulate several crucial developmental and physiological processes in the cell. More recently, they have been found to play important roles in human carcinogenesis and cancer development and progression. The deregulation and dysfunction of PcG proteins often lead to blocking or inappropriate activation of developmental pathways, enhancing cellular proliferation, inhibiting apoptosis, and increasing the cancer stem cell population. Genetic and molecular investigations of PcG proteins have long been focused on their PcG functions. However, PcG proteins have recently been shown to exert non-polycomb functions, contributing to the regulation of diverse cellular functions. We and others have demonstrated that PcG proteins regulate the expression and function of several oncogenes and tumor suppressor genes in a PcG-independent manner, and PcG proteins are associated with the survival of patients with cancer. In this review, we summarize the recent advances in the research on PcG proteins, including both the polycomb-repressive and non-polycomb functions. We specifically focus on the mechanisms by which PcG proteins play roles in cancer initiation, development, and progression. Finally, we discuss the potential value of PcG proteins as molecular biomarkers for the diagnosis and prognosis of cancer, and as molecular targets for cancer therapy. PMID:26227500

  5. Genome-Wide Detection and Analysis of Multifunctional Genes

    PubMed Central

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  6. Functional analysis of the global repressor Tup1 for maltose metabolism in Saccharomyces cerevisiae: different roles of the functional domains.

    PubMed

    Lin, Xue; Yu, Ai-Qun; Zhang, Cui-Ying; Pi, Li; Bai, Xiao-Wen; Xiao, Dong-Guang

    2017-11-09

    Tup1 is a general transcriptional repressor of diverse gene families coordinately controlled by glucose repression, mating type, and other mechanisms in Saccharomyces cerevisiae. Several functional domains of Tup1 have been identified, each of which has differing effects on transcriptional repression. In this study, we aim to investigate the role of Tup1 and its domains in maltose metabolism of industrial baker's yeast. To this end, a battery of in-frame truncations in the TUP1 gene coding region were performed in the industrial baker's yeasts with different genetic background, and the maltose metabolism, leavening ability, MAL gene expression levels, and growth characteristics were investigated. The results suggest that the TUP1 gene is essential to maltose metabolism in industrial baker's yeast. Importantly, different domains of Tup1 play different roles in glucose repression and maltose metabolism of industrial baker's yeast cells. The Ssn6 interaction, N-terminal repression and C-terminal repression domains might play roles in the regulation of MAL transcription by Tup1 for maltose metabolism of baker's yeast. The WD region lacking the first repeat could influence the regulation of maltose metabolism directly, rather than indirectly through glucose repression. These findings lay a foundation for the optimization of industrial baker's yeast strains for accelerated maltose metabolism and facilitate future research on glucose repression in other sugar metabolism.

  7. Roles of Sensory Nerves in the Regulation of Radiation-Induced Structural and Functional Changes in the Heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Sharma, Sunil

    Purpose: Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. Methods and Materials: Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy.more » During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. Results: Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. Conclusions: These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity.« less

  8. Unsolved Mysteries in NLR Biology

    PubMed Central

    Lupfer, Christopher; Kanneganti, Thirumala-Devi

    2013-01-01

    NOD-like receptors (NLRs) are a class of cytoplasmic pattern-recognition receptors. Although most NLRs play some role in immunity, their functions range from regulating antigen presentation (NLRC5, CIITA) to pathogen/damage sensing (NLRP1, NLRP3, NLRC1/2, NLRC4) to suppression or modulation of inflammation (NLRC3, NLRP6, NLRP12, NLRX1). However, NLRP2, NLRP5, and NLRP7 are also involved in non-immune pathways such as embryonic development. In this review, we highlight some of the least well-understood aspects of NLRs, including the mechanisms by which they sense pathogens or damage. NLRP3 recognizes a diverse range of stimuli and numerous publications have presented potential unifying models for NLRP3 activation, but no single mechanism proposed thus far appears to account for all possible NLRP3 activators. Additionally, NLRC3, NLRP6, and NLRP12 inhibit NF-κB activation, but whether direct ligand sensing is a requirement for this function is not known. Herein, we review the various mechanisms of sensing and activation proposed for NLRP3 and other inflammasome activators. We also discuss the role of NLRC3, NLRP6, NLRP12, and NLRX1 as inhibitors and how they are activated and function in their roles to limit inflammation. Finally, we present an overview of the emerging roles that NLRP2, NLRP5, and NLRP7 play during embryonic development and postulate on the potential pathways involved. PMID:24062750

  9. A Genome-Wide Functional Investigation into the Roles of Receptor-Like Proteins in Arabidopsis1[W][OA

    PubMed Central

    Wang, Guodong; Ellendorff, Ursula; Kemp, Ben; Mansfield, John W.; Forsyth, Alec; Mitchell, Kathy; Bastas, Kubilay; Liu, Chun-Ming; Woods-Tör, Alison; Zipfel, Cyril; de Wit, Pierre J.G.M.; Jones, Jonathan D.G.; Tör, Mahmut; Thomma, Bart P.H.J.

    2008-01-01

    Receptor-like proteins (RLPs) are cell surface receptors that typically consist of an extracellular leucine-rich repeat domain, a transmembrane domain, and a short cytoplasmatic tail. In several plant species, RLPs have been found to play a role in disease resistance, such as the tomato (Solanum lycopersicum) Cf and Ve proteins and the apple (Malus domestica) HcrVf2 protein that mediate resistance against the fungal pathogens Cladosporium fulvum, Verticillium spp., and Venturia inaequalis, respectively. In addition, RLPs play a role in plant development; Arabidopsis (Arabidopsis thaliana) TOO MANY MOUTHS (TMM) regulates stomatal distribution, while Arabidopsis CLAVATA2 (CLV2) and its functional maize (Zea mays) ortholog FASCINATED EAR2 regulate meristem maintenance. In total, 57 RLP genes have been identified in the Arabidopsis genome and a genome-wide collection of T-DNA insertion lines was assembled. This collection was functionally analyzed with respect to plant growth and development and sensitivity to various stress responses, including susceptibility toward pathogens. A number of novel developmental phenotypes were revealed for our CLV2 and TMM insertion mutants. In addition, one AtRLP gene was found to mediate abscisic acid sensitivity and another AtRLP gene was found to influence nonhost resistance toward Pseudomonas syringae pv phaseolicola. This genome-wide collection of Arabidopsis RLP gene T-DNA insertion mutants provides a tool for future investigations into the biological roles of RLPs. PMID:18434605

  10. Roles of Principals in the Preparing Students to Life

    ERIC Educational Resources Information Center

    Arslan, Hasan; Bingul, Murat

    2006-01-01

    This article explores the impacts of school leaders on the school curriculums of preparing students to life. Even if the school leaders and teachers are expert in their area related to the functions of the schools, it seems that schools are failing in the preparation of the students to life. The school leaders may play an important role to…

  11. Energy Everywhere – An Introduction to Energy Literacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mably, Colin

    Energy plays a major role in the everyday functions of our planet and all its life forms. From weather patterns and food chains, to human society’s daily electricity and heating needs, energy is the driver of everything we know. This video series highlights the seven Energy Literacy Principles, which demonstrate energy’s role across the natural and social sciences.

  12. Vocal coordination and vocal imitation: a role for mirror neurons?

    PubMed

    Newman, John D

    2014-04-01

    Some birds and mammals have vocal communication systems in which coordination between individuals is important. Examples would include duetting or antiphonal calling in some birds and mammals, rapid exchanges of the same vocalization, and vocal exchanges between paired individuals and other nearby pairs. Mirror neurons may play a role in such systems but become functional only after experience.

  13. Conditional Routing of Information to the Cortex: A Model of the Basal Ganglia's Role in Cognitive Coordination

    ERIC Educational Resources Information Center

    Stocco, Andrea; Lebiere, Christian; Anderson, John R.

    2010-01-01

    The basal ganglia play a central role in cognition and are involved in such general functions as action selection and reinforcement learning. Here, we present a model exploring the hypothesis that the basal ganglia implement a conditional information-routing system. The system directs the transmission of cortical signals between pairs of regions…

  14. Role of PSMA in Aberrant Cell Cycle Progression in Prostate Cancer

    DTIC Science & Technology

    2004-12-01

    playing a role in nutrient uptake, and a peptidase involved in signal transduction in prostate epithelial cells. Insights into possible functions of PSMA...should improve the diagnostic and therapeutic values of this clinically important molecule. prostate cancer; receptor; peptidase ; endocytosis 2 OVERVIEW... peptidase activities hydrolyze gamma-peptide bonds between N-acetylaspartate and glutamate in the abundant neuropeptide N-acetylaspartylglutamate

  15. PIWI Proteins and PIWI-Interacting RNA: Emerging Roles in Cancer.

    PubMed

    Han, Yi-Neng; Li, Yuan; Xia, Sheng-Qiang; Zhang, Yuan-Yuan; Zheng, Jun-Hua; Li, Wei

    2017-01-01

    P-Element induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a type of noncoding RNAs (ncRNAs) and interact with PIWI proteins. piRNAs were primarily described in the germline, but emerging evidence revealed that piRNAs are expressed in a tissue-specific manner among multiple human somatic tissue types as well and play important roles in transposon silencing, epigenetic regulation, gene and protein regulation, genome rearrangement, spermatogenesis and germ stem-cell maintenance. PIWI proteins were first discovered in Drosophila and they play roles in spermatogenesis, germline stem-cell maintenance, self-renewal, retrotransposons silencing and the male germline mobility control. A growing number of studies have demonstrated that several piRNA and PIWI proteins are aberrantly expressed in various kinds of cancers and may probably serve as a novel biomarker and therapeutic target for cancer treatment. Nevertheless, their specific mechanisms and functions need further investigation. In this review, we discuss about the biogenesis, functions and the emerging role of piRNAs and PIWI proteins in cancer, providing novel insights into the possible applications of piRNAs and PIWI proteins in cancer diagnosis and clinical treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.

  16. Design and reactivity of Ni-complexes using pentadentate neutral-polypyridyl ligands: Possible mimics of NiSOD.

    PubMed

    Snider, Victoria G; Farquhar, Erik R; Allen, Mark; Abu-Spetani, Ayah; Mukherjee, Anusree

    2017-10-01

    Superoxide plays a key role in cell signaling, but can be cytotoxic within cells unless well regulated by enzymes known as superoxide dismutases (SOD). Nickel superoxide dismutase (NiSOD) catalyzes the disproportion of the harmful superoxide radical into hydrogen peroxide and dioxygen. NiSOD has a unique active site structure that plays an important role in tuning the potential of the nickel center to function as an effective catalyst for superoxide dismutation with diffusion controlled rates. The synthesis of structural and functional analogues of NiSOD provides a route to better understand the role of the nickel active site in superoxide dismutation. In this work, the synthesis of a series of nickel complexes supported by nitrogen rich pentadentate ligands is reported. The complexes have been characterized through absorption spectroscopy, mass spectrometry, and elemental analysis. X-ray absorption spectroscopy was employed to establish the oxidation state and the coordination geometry around the metal center. The reactivity of these complexes toward KO 2 was evaluated to elucidate the role of the coordination sphere in controlling superoxide dismutation reactivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Role of fibroblast-derived factors in the pathogenesis of melasma.

    PubMed

    Byun, J W; Park, I S; Choi, G S; Shin, J

    2016-08-01

    The hyperactive melanocytes present in melasma skin are confined to the epidermis, but epidermal ablation to treat melasma pigmentation may lead to disease recurrence and aggravation. Melanocyte function is regulated by interactions between melanocytes and neighbouring cells such as keratinocytes and fibroblasts. Because melasma skin usually shows dermal changes after exposure to sunlight, we hypothesized that sun-damaged fibroblasts might play a crucial role in the pathogenesis of melasma. In this study, the melanogenic role of primary cultured fibroblasts from human melasma skin was investigated. We explored whether primary cultured fibroblasts from melasma tissue have a melanogenic function on cultured human epidermal melanocytes and artificial skin. The cytokine profile derived from fibroblasts and their effect on the pigmented epidermal equivalents were investigated. Fibroblasts from the melasma lesion and perilesional skin increased melanogenesis in cultured human epidermal melanocytes and in artificial skin. Fibroblasts from the melasma lesion and perilesional skin secreted more nerve growth factor (NGF)-β than those in normal buttock skin, and also increased melanogenesis and the expression level of NGF-β in cultured human epidermal melanocytes and artificial skin. These results suggest that fibroblasts may play a role in melanogenesis and the pathogenesis of melasma. © 2016 British Association of Dermatologists.

  18. Expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and its expected roles in the bovine endometrium during gestation.

    PubMed

    Mishra, B; Kizaki, K; Koshi, K; Ushizawa, K; Takahashi, T; Hosoe, M; Sato, T; Ito, A; Hashizume, K

    2012-02-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) and its induced matrix metalloproteinases (MMPs) play a crucial role in tissue remodeling during the peri-implantation period. However, the role of EMMPRIN in the bovine placenta is still unclear. We have postulated that EMMPRIN might play a regulatory role in trophoblastic cell functions during gestation by itself or through the regulation of MMP expression. In this study, EMMPRIN mRNA was detected in the bovine placentome and interplacentome throughout gestation, and its expression was significantly higher in the cotyledon during late gestation. In situ hybridization showed that EMMPRIN mRNA was expressed in the caruncular epithelium and the cotyledonary epithelium, including binucleate cells. Western blot analysis detected a band representing a protein of approximately 65 kDa in the caruncular and cotyledonary tissues, and the intensity of its expression was increased in both of these tissues during late gestation. The expression levels of MMP-2 and MMP-14 in the bovine placenta were higher during late gestation, as was observed for EMMPRIN. Therefore, EMMPRIN might regulate trophoblastic cell functions, especially those of binucleate cells, through MMP expression in the bovine placenta. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Evidence for a possible role of oxygen free radicals in the abnormal functional arterial vasomotion in insulin dependent diabetes.

    PubMed

    Ceriello, A; Quatraro, A; Caretta, F; Varano, R; Giugliano, D

    1990-01-01

    A functional arterial spasm, revealed by reduced post-ischemic response, is present in diabetic subjects with no overt evidence of vascular damage. The administration of three different antioxidant agents, vitamin C, thiopronine and glutathione, produces an increase of basal blood flow in both diabetic and normal subjects, and ameliorates significantly the vascular functional response in diabetes. These data suggest that free radicals may play a role in the regulation of arterial resistance in humans, and that a de-regulation of their action may be involved in the development of arterial dysfunction in diabetes.

  20. From Vesicles to Protocells: The Roles of Amphiphilic Molecules

    PubMed Central

    Sakuma, Yuka; Imai, Masayuki

    2015-01-01

    It is very challenging to construct protocells from molecular assemblies. An important step in this challenge is the achievement of vesicle dynamics that are relevant to cellular functions, such as membrane trafficking and self-reproduction, using amphiphilic molecules. Soft matter physics will play an important role in the development of vesicles that have these functions. Here, we show that simple binary phospholipid vesicles have the potential to reproduce the relevant functions of adhesion, pore formation and self-reproduction of vesicles, by coupling the lipid geometries (spontaneous curvatures) and the phase separation. This achievement will elucidate the pathway from molecular assembly to cellular life. PMID:25738256

  1. Galectin-3 in M2 macrophages plays a protective role in resolution of neuropathology in brain parasitic infection by regulating neutrophil turnover.

    PubMed

    Quenum Zangbede, Fredice O; Chauhan, Arun; Sharma, Jyotika; Mishra, Bibhuti B

    2018-06-26

    Macrophages/microglia with M2- activation phenotype are thought to play an important anti-inflammatory and tissue reparative functions in the brain, yet the molecular basis of their functions in the central nervous system (CNS) remain to be clearly defined. In a preclinical model of neurocysticercosis using brain infection with a parasite Mesocestoides corti , we previously reported the presence of large numbers of M2 cells in the CNS. In this study using female mice, we report that M2 macrophages in the parasite-infected brain display abundant galectin-3 expression. Disease severity was increased in Galectin-3 -/- mice correlating with increased neurological defects, augmented cell death and, importantly, massive accumulation of neutrophils and M2 macrophages in the CNS of these mice. Because neutrophil clearance by efferocytosis is an important function of M2 macrophages, we investigated a possible role of galectin-3 in this process. Indeed, galectin-3 deficient M2 macrophages exhibited a defect in efferocytic clearance of neutrophils in-vitro. Furthermore, adoptive transfer of M2 macrophages from Galectin-3 sufficient WT mice reduced neutrophilia in the CNS and ameliorated disease severity in parasite-infected Galectin-3 -/- mice. Together, these results demonstrate for the first time a novel role of galectin-3 in M2 macrophage function in neutrophil turnover and resolution of inflammatory pathology in the CNS. This likely will have implications in neurocysticercosis and neuro-inflammatory diseases. SIGNIFICANCE STATEMENT Macrophages/microglia with M1-activation phenotype are thought to promote CNS pathology, whereas M2-anti-inflammatory phenotype promote CNS repair. However, the mechanisms regulating M2 cell protective functions in the CNS microenvironment are undefined. Quenum Zangbede et. al., report that helminth infection of the brain induces an increased expression of galectin-3 in M2 macrophages accumulated in the CNS. Using multiple experimental models in vivo and in vitro , they show that galectin-3 in M2 macrophages functions to clear neutrophils accumulated in the CNS. Importantly, galectin-3 in M2 macrophages plays a central role in the containment of neuropathology and disease severity. These results provide a direct mechanistic evidence of the protective function of M2- macrophages in the CNS. Copyright © 2018 the authors.

  2. Adducin in tumorigenesis and metastasis.

    PubMed

    Luo, Cong; Shen, Jiayu

    2017-07-18

    Adducin is a membrane-skeletal protein localized at spectrin-actin junctions, involving in the formation of the network of cytoskeleton, cellular signal transduction, ionic transportation, cell motility and cell proliferation. While previous researches focused mainly on the relationship between adducin and hypertension, there are few studies focusing on the role of adducin in tumor. Previous studies showed that adducin played a role in the evolution and progression of neoplasm. This review makes a brief summary on the structure, function and mechanism of adducin and how adducin functions in tumorigenesis and metastasis.

  3. Axonal transport: cargo-specific mechanisms of motility and regulation.

    PubMed

    Maday, Sandra; Twelvetrees, Alison E; Moughamian, Armen J; Holzbaur, Erika L F

    2014-10-22

    Axonal transport is essential for neuronal function, and many neurodevelopmental and neurodegenerative diseases result from mutations in the axonal transport machinery. Anterograde transport supplies distal axons with newly synthesized proteins and lipids, including synaptic components required to maintain presynaptic activity. Retrograde transport is required to maintain homeostasis by removing aging proteins and organelles from the distal axon for degradation and recycling of components. Retrograde axonal transport also plays a major role in neurotrophic and injury response signaling. This review provides an overview of axonal transport pathways and discusses their role in neuronal function.

  4. Do fatty acids affect fetal programming?

    PubMed

    Kabaran, Seray; Besler, H Tanju

    2015-08-13

    In this study discussed the primary and regulatory roles of fatty acids, and investigated the affects of fatty acids on metabolic programming. Review of the literature was carried out on three electronic databases to assess the roles of fatty acids in metabolic programming. All abstracts and full-text articles were examined, and the most relevant articles were selected for screening and inclusion in this review. The mother's nutritional environment during fetal period has important effects on long term health. Fatty acids play a primary role in growth and development. Alterations in fatty acid intake in the fetal period may increase the risk of obesity and metabolic disorders in later life. Maternal fatty acid intakes during pregnancy and lactation are passed to the fetus and the newborn via the placenta and breast milk, respectively. Imbalances in fatty acid intake during the fetal period change the fatty acid composition of membrane phospholipids, which can cause structural and functional problems in cells. Additionally, the metabolic and neuroendocrine environments of the fetus and the newborn play key roles in the regulation of energy balance. Imbalances in fatty acid intake during pregnancy and lactation may result in permanent changes in appetite control, neuroendocrine function and energy metabolism in the fetus, leading to metabolic programming. Further studies are needed to determine the role of fatty acid intake in metabolic programming.

  5. Human RecQL4 helicase plays multifaceted roles in the genomic stability of normal and cancer cells.

    PubMed

    Mo, Dongliang; Zhao, Yongliang; Balajee, Adayabalam S

    2018-01-28

    Human RecQ helicases that share homology with E. coli RecQ helicase play critical roles in diverse biological activities such as DNA replication, transcription, recombination and repair. Mutations in three of the five human RecQ helicases (RecQ1, WRN, BLM, RecQL4 and RecQ5) result in autosomal recessive syndromes characterized by accelerated aging symptoms and cancer incidence. Mutational inactivation of Werner (WRN) and Bloom (BLM) genes results in Werner syndrome (WS) and Bloom syndrome (BS) respectively. However, mutations in RecQL4 result in three human disorders: (I) Rothmund-Thomson syndrome (RTS), (II) RAPADILINO and (III) Baller-Gerold syndrome (BGS). Cells from WS, BS and RTS are characterized by a unique chromosomal anomaly indicating that each of the RecQ helicases performs specialized function(s) in a non-redundant manner. Elucidating the biological functions of RecQ helicases will enable us to understand not only the aging process but also to determine the cause for age-associated human diseases. Recent biochemical and molecular studies have given new insights into the multifaceted roles of RecQL4 that range from genomic stability to carcinogenesis and beyond. This review summarizes some of the existing and emerging knowledge on diverse biological functions of RecQL4 and its significance as a potential molecular target for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Septins Function in G1 Pathways that Influence the Pattern of Cell Growth in Budding Yeast

    PubMed Central

    Egelhofer, Thea A.; Villén, Judit; McCusker, Derek; Gygi, Steven P.; Kellogg, Douglas R.

    2008-01-01

    The septins are a conserved family of proteins that have been proposed to carry out diverse functions. In budding yeast, the septins become localized to the site of bud emergence in G1 but have not been thought to carry out important functions at this stage of the cell cycle. We show here that the septins function in redundant mechanisms that are required for formation of the bud neck and for the normal pattern of cell growth early in the cell cycle. The Shs1 septin shows strong genetic interactions with G1 cyclins and is directly phosphorylated by G1 cyclin-dependent kinases, consistent with a role in early cell cycle events. However, Shs1 phosphorylation site mutants do not show genetic interactions with the G1 cyclins or obvious defects early in the cell cycle. Rather, they cause an increased cell size and aberrant cell morphology that are dependent upon inhibitory phosphorylation of Cdk1 at the G2/M transition. Shs1 phosphorylation mutants also show defects in interaction with the Gin4 kinase, which associates with the septins during G2/M and plays a role in regulating inhibitory phosphorylation of Cdk1. Phosphorylation of Shs1 by G1 cyclin-dependent kinases plays a role in events that influence Cdk1 inhibitory phosphorylation. PMID:18431499

  7. Upstream mononucleotide A-repeats play a cis-regulatory role in mammals through the DICER1 and Ago proteins.

    PubMed

    Aporntewan, Chatchawit; Pin-on, Piyapat; Chaiyaratana, Nachol; Pongpanich, Monnat; Boonyaratanakornkit, Viroj; Mutirangura, Apiwat

    2013-10-01

    A-repeats are the simplest form of tandem repeats and are found ubiquitously throughout genomes. These mononucleotide repeats have been widely believed to be non-functional 'junk' DNA. However, studies in yeasts suggest that A-repeats play crucial biological functions, and their role in humans remains largely unknown. Here, we showed a non-random pattern of distribution of sense A- and T-repeats within 20 kb around transcription start sites (TSSs) in the human genome. Different distributions of these repeats are observed upstream and downstream of TSSs. Sense A-repeats are enriched upstream, whereas sense T-repeats are enriched downstream of TSSs. This enrichment directly correlates with repeat size. Genes with different functions contain different lengths of repeats. In humans, tissue-specific genes are enriched for short repeats of <10 bp, whereas housekeeping genes are enriched for long repeats of ≥10 bp. We demonstrated that DICER1 and Argonaute proteins are required for the cis-regulatory role of A-repeats. Moreover, in the presence of a synthetic polymer that mimics an A-repeat, protein binding to A-repeats was blocked, resulting in a dramatic change in the expression of genes containing upstream A-repeats. Our findings suggest a length-dependent cis-regulatory function of A-repeats and that Argonaute proteins serve as trans-acting factors, binding to A-repeats.

  8. The Role of Noise in Brain Function

    NASA Astrophysics Data System (ADS)

    Roy, S.; Llinás, R.

    2012-12-01

    Noise plays a fundamental role in all living organisms from the earliest prokaryotes to advanced mammalian forms, such as ourselves. In the context of living organisms, the term 'noise' usually refers to the variance amongst measurements obtained from repeated identical experimental conditions, or from output signals from these systems. It is noteworthy that both these conditions are universally characterized by the presence of background fluctuations. In non-biological systems, such as electronics or in communications sciences, where the aim is to send error-free messages, noise was generally regarded as a problem. The discovery of Stochastic Resonances (SR) in non-linear dynamics brought a shift of perception where noise, rather than representing a problem, became fundamental to system function, especially so in biology. The question now is: to what extent is biological function dependent on random noise. Indeed, it seems feasible that noise also plays an important role in neuronal communication and oscillatory synchronization. Given this approach, it follows that determining Fisher information content could be relevant in neuronal communication. It also seems possible that the principle of least time, and that of the sum over histories, could be important basic principles in understanding the coherence dynamics responsible for action and perception. Ultimately, external noise cancellation combined with intrinsic noise signal embedding and, the use of the principle of least time may be considered an essential step in the organization of central nervous system (CNS) function.

  9. Influence of functional food components on gut health.

    PubMed

    Wan, Murphy L Y; Ling, K H; El-Nezami, Hani; Wang, M F

    2018-01-30

    Intestinal epithelial cells (IECs) lining the gastrointestinal tract establish a barrier between external environments and the internal milieu. An intact intestinal barrier maintains gut health and overall good health of the body by preventing from tissue injury, pathogen infection and disease development. When the intestinal barrier function is compromised, bacterial translocation can occur. Our gut microbiota also plays a fundamentally important role in health, for example, by maintaining intestinal barrier integrity, metabolism and modulating the immune system, etc. Any disruption of gut microbiota composition (also termed dysbiosis) can lead to various pathological conditions. In short, intestinal barrier and gut microbiota are two crucial factors affecting gut health. The gastrointestinal tract is a complex environment exposed to many dietary components and commensal bacteria. Dietary components are increasingly recognized to play various beneficial roles beyond basic nutrition, resulting in the development of the functional food concepts. Various dietary modifiers, including the consumption of live bacteria (probiotics) and ingestible food constituents such as prebiotics, as well as polyphenols or synbiotics (combinations of probiotics and prebiotics) are the most well characterized dietary bioactive compounds and have been demonstrated to beneficially impact the gut health and the overall well-being of the host. In this review we depict the roles of intestinal epithelium and gut microbiota in mucosal defence responses and the influence of certain functional food components on the modulation of gut health, with a particular focus on probiotics, prebiotics and polyphenols.

  10. Role of leptin in female reproduction.

    PubMed

    Pérez-Pérez, Antonio; Sánchez-Jiménez, Flora; Maymó, Julieta; Dueñas, José L; Varone, Cecilia; Sánchez-Margalet, Víctor

    2015-01-01

    Reproductive function is dependent on energy resources. The role of weight, body composition, fat distribution and the effect of diet have been largely investigated in experimental female animals as well as in women. Any alteration in diet and/or weight may induce abnormalities in timing of sexual maturation and fertility. However, the cellular mechanisms involved in the fine coordination of energy balance and reproduction are largely unknown. The brain and hypothalamic structures receive endocrine and/or metabolic signals providing information on the nutritional status and the degree of fat stores. Adipose tissue acts both as a store of energy and as an active endocrine organ, secreting a large number of biologically important molecules termed adipokines. Adipokines have been shown to be involved in regulation of the reproductive functions. The first adipokine described was leptin. Extensive research over the last 10 years has shown that leptin is not only an adipose tissue-derived messenger of the amount of energy stores to the brain, but also a crucial hormone/cytokine for a number of diverse physiological processes, such as inflammation, angiogenesis, hematopoiesis, immune function, and most importantly, reproduction. Leptin plays an integral role in the normal physiology of the reproductive system with complex interactions at all levels of the hypothalamic-pituitary gonadal (HPG) axis. In addition, leptin is also produced by placenta, where it plays an important autocrine function. Observational studies have demonstrated that states of leptin excess, deficiency, or resistance can be associated with abnormal reproductive function. This review focuses on the leptin action in female reproduction.

  11. Translational Perspective on the Role of Testosterone in Sexual Function and Dysfunction.

    PubMed

    Podlasek, Carol A; Mulhall, John; Davies, Kelvin; Wingard, Christopher J; Hannan, Johanna L; Bivalacqua, Trinity J; Musicki, Biljana; Khera, Mohit; González-Cadavid, Nestor F; Burnett, Arthur L

    2016-08-01

    The biological importance of testosterone is generally accepted by the medical community; however, controversy focuses on its relevance to sexual function and the sexual response, and our understanding of the extent of its role in this area is evolving. To provide scientific evidence examining the role of testosterone at the cellular and molecular levels as it pertains to normal erectile physiology and the development of erectile dysfunction and to assist in guiding successful therapeutic interventions for androgen-dependent sexual dysfunction. In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current basic science literature examining the role of testosterone in sexual function and dysfunction. Testosterone plays an important role in sexual function through multiple processes: physiologic (stimulates activity of nitric oxide synthase), developmental (establishes and maintains the structural and functional integrity of the penis), neural (development, maintenance, function, and plasticity of the cavernous nerve and pelvic ganglia), therapeutically for dysfunctional regulation (beneficial effect on aging, diabetes, and prostatectomy), and phosphodiesterase type 5 inhibition (testosterone supplement to counteract phosphodiesterase type 5 inhibitor resistance). Despite controversies concerning testosterone with regard to sexual function, basic science studies provide incontrovertible evidence for a significant role of testosterone in sexual function and suggest that properly administered testosterone therapy is potentially advantageous for treating male sexual dysfunction. Published by Elsevier Inc.

  12. Bioenergetic adaptation in response to autophagy regulators during rotenone exposure

    PubMed Central

    Giordano, Samantha; Dodson, Matthew; Ravi, Saranya; Redmann, Matthew; Ouyang, Xiaosen; Usmar, Victor M Darley; Zhang, Jianhua

    2015-01-01

    Parkinson’s disease (PD) is the second most common neurodegenerative disorder with both mitochondrial dysfunction and insufficient autophagy playing a key role in its pathogenesis. Among the risk factors, exposure to the environmental neurotoxin rotenone increases the probability of developing PD. We previously reported that in differentiated SH-SY5Y cells, rotenone-induced cell death is directly related to inhibition of mitochondrial function. How rotenone at nM concentrations inhibits mitochondrial function, and whether it can engage the autophagy pathway necessary to remove damaged proteins and organelles, is unknown. We tested the hypothesis that autophagy plays a protective role against rotenone toxicity in primary neurons. We found that rotenone (10–100 nM) immediately inhibited cellular bioenergetics. Concentrations that decreased mitochondrial function at 2 hr, caused cell death at 24 hr with an LD50 of 10 nM. Overall autophagic flux was decreased by 10 nM rotenone at both 2 and 24 hr, but surprisingly mitophagy, or autophagy of the mitochondria, was increased at 24 hr, suggesting that a mitochondrial-specific lysosomal degradation pathway may be activated. Upregulation of autophagy by rapamycin protected against cell death while inhibition of autophagy by 3-methyladenine (3-MA) exacerbated cell death. Interestingly, while 3-MA exacerbated the rotenone-dependent effects on bioenergetics, rapamycin did not prevent rotenone-induced mitochondrial dysfunction, but caused reprogramming of mitochondrial substrate usage associated with both complex I and complex II activities. Taken together, these data demonstrate that autophagy can play a protective role in primary neuron survival in response to rotenone; moreover, surviving neurons exhibit bioenergetic adaptations to this metabolic stressor. PMID:25081478

  13. Synapsin I and Synapsin II regulate neurogenesis in the dentate gyrus of adult mice

    PubMed Central

    Barbieri, Raffaella; Contestabile, Andrea; Ciardo, Maria Grazia; Forte, Nicola; Marte, Antonella; Baldelli, Pietro; Benfenati, Fabio; Onofri, Franco

    2018-01-01

    Adult neurogenesis is emerging as an important player in brain functions and homeostasis, while impaired or altered adult neurogenesis has been associated with a number of neuropsychiatric diseases, such as depression and epilepsy. Here we investigated the possibility that synapsins (Syns) I and II, beyond their known functions in developing and mature neurons, also play a role in adult neurogenesis. We performed a systematic evaluation of the distinct stages of neurogenesis in the hippocampal dentate gyrus of Syn I and Syn II knockout (KO) mice, before (2-months-old) and after (6-months-old) the appearance of the epileptic phenotype. We found that Syns I and II play an important role in the regulation of adult neurogenesis. In juvenile mice, Syn II deletion was associated with a specific decrease in the proliferation of neuronal progenitors, whereas Syn I deletion impaired the survival of newborn neurons. These defects were reverted after the appearance of the epileptic phenotype, with Syn I KO and Syn II KO mice exhibiting significant increases in survival and proliferation, respectively. Interestingly, long-term potentiation dependent on newborn neurons was present in both juvenile Syn mutants while, at later ages, it was only preserved in Syn II KO mice that also displayed an increased expression of brain-derived neurotrophic factor. This study suggests that Syns I and II play a role in adult neurogenesis and the defects in neurogenesis associated with Syn deletion may contribute to the alterations of cognitive functions observed in Syn-deficient mice. PMID:29721159

  14. Essential role of grim-led programmed cell death for the establishment of corazonin-producing peptidergic nervous system during embryogenesis and metamorphosis in Drosophila melanogaster

    PubMed Central

    Lee, Gyunghee; Sehgal, Ritika; Wang, Zixing; Nair, Sudershana; Kikuno, Keiko; Chen, Chun-Hong; Hay, Bruce; Park, Jae H.

    2013-01-01

    Summary In Drosophila melanogaster, combinatorial activities of four death genes, head involution defective (hid), reaper (rpr), grim, and sickle (skl), have been known to play crucial roles in the developmentally regulated programmed cell death (PCD) of various tissues. However, different expression patterns of the death genes also suggest distinct functions played by each. During early metamorphosis, a great number of larval neurons unfit for adult life style are removed by PCD. Among them are eight pairs of corazonin-expressing larval peptidergic neurons in the ventral nerve cord (vCrz). To reveal death genes responsible for the PCD of vCrz neurons, we examined extant and recently available mutations as well as RNA interference that disrupt functions of single or multiple death genes. We found grim as a chief proapoptotic gene and skl and rpr as minor ones. The function of grim is also required for PCD of the mitotic sibling cells of the vCrz neuronal precursors (EW3-sib) during embryonic neurogenesis. An intergenic region between grim and rpr, which, it has been suggested, may enhance expression of three death genes in embryonic neuroblasts, appears to play a role for the vCrz PCD, but not for the EW3-sib cell death. The death of vCrz neurons and EW3-sib is triggered by ecdysone and the Notch signaling pathway, respectively, suggesting distinct regulatory mechanisms of grim expression in a cell- and developmental stage-specific manner. PMID:23519152

  15. Abnormalities in auditory efferent activities in children with selective mutism.

    PubMed

    Muchnik, Chava; Ari-Even Roth, Daphne; Hildesheimer, Minka; Arie, Miri; Bar-Haim, Yair; Henkin, Yael

    2013-01-01

    Two efferent feedback pathways to the auditory periphery may play a role in monitoring self-vocalization: the middle-ear acoustic reflex (MEAR) and the medial olivocochlear bundle (MOCB) reflex. Since most studies regarding the role of auditory efferent activity during self-vocalization were conducted in animals, human data are scarce. The working premise of the current study was that selective mutism (SM), a rare psychiatric disorder characterized by consistent failure to speak in specific social situations despite the ability to speak normally in other situations, may serve as a human model for studying the potential involvement of auditory efferent activity during self-vocalization. For this purpose, auditory efferent function was assessed in a group of 31 children with SM and compared to that of a group of 31 normally developing control children (mean age 8.9 and 8.8 years, respectively). All children exhibited normal hearing thresholds and type A tympanograms. MEAR and MOCB functions were evaluated by means of acoustic reflex thresholds and decay functions and the suppression of transient-evoked otoacoustic emissions, respectively. Auditory afferent function was tested by means of auditory brainstem responses (ABR). Results indicated a significantly higher proportion of children with abnormal MEAR and MOCB function in the SM group (58.6 and 38%, respectively) compared to controls (9.7 and 8%, respectively). The prevalence of abnormal MEAR and/or MOCB function was significantly higher in the SM group (71%) compared to controls (16%). Intact afferent function manifested in normal absolute and interpeak latencies of ABR components in all children. The finding of aberrant efferent auditory function in a large proportion of children with SM provides further support for the notion that MEAR and MOCB may play a significant role in the process of self-vocalization. © 2013 S. Karger AG, Basel.

  16. Msx-1 and Msx-2 in mammary gland development.

    PubMed

    Satoh, Kennichi; Ginsburg, Erika; Vonderhaar, Barbara K

    2004-04-01

    Homeobox genes do not generally function alone to determine cell fate and morphogenesis. Rather it is the distinct combination of various members of the homeobox family of genes and their spatiotemporal patterns of expression that determine cell identity and function. Functional redundancy often makes it difficult to clearly discern the role of any one given homeobox gene. The roles that Msx1 and Msx2 play in branching morphogenesis of the mammary gland are only now becoming more evident. Many signaling pathways and transcription factors are implicated in how these homeobox genes correctly determine the morphological development of the gland. Overexpression of Msx1 and Msx2 may also be involved in tumorigenesis. Additional studies are needed to elucidate the roles of these genes in both breast development and cancer.

  17. The Hepatic Response to Thermal Injury: Is the Liver Important for Postburn Outcomes?

    PubMed Central

    Jeschke, Marc G

    2009-01-01

    Thermal injury produces a profound hypermetabolic and hypercatabolic stress response characterized by increased endogenous glucose production via gluconeogenesis and glycogenolysis, lipolysis, and proteolysis. The liver is the central body organ involved in these metabolic responses. It is suggested that the liver, with its metabolic, inflammatory, immune, and acute phase functions, plays a pivotal role in patient survival and recovery by modulating multiple pathways following thermal injury. Studies have evaluated the role and function of the liver during the postburn response and showed that liver integrity and function are essential for survival, and that hepatic acute phase proteins are strong predictors for postburn survival. This review discusses these studies and delineates the pivotal role of the liver in patients following severe thermal injury. PMID:19603107

  18. The T-cell-specific adapter protein family: TSAd, ALX, and SH2D4A/SH2D4B.

    PubMed

    Lapinski, Philip E; Oliver, Jennifer A; Bodie, Jennifer N; Marti, Francesc; King, Philip D

    2009-11-01

    Adapter proteins play key roles in intracellular signal transduction through complex formation with catalytically active signaling molecules. In T lymphocytes, the role of several different types of adapter proteins in T-cell antigen receptor signal transduction is well established. An exception to this is the family of T-cell-specific adapter (TSAd) proteins comprising of TSAd, adapter protein of unknown function (ALX), SH2D4A, and SH2D4B. Only recently has the function of these adapters in T-cell signal transduction been explored. Here, we discuss advances in our understanding of the role of this family of adapter proteins in T cells. Their function as regulators of signal transduction in other cell types is also discussed.

  19. HvHMA2, a P1B-ATPase from Barley, Is Highly Conserved among Cereals and Functions in Zn and Cd Transport

    PubMed Central

    Mills, Rebecca F.; Peaston, Kerry A.; Runions, John; Williams, Lorraine E.

    2012-01-01

    Manipulation of crops to improve their nutritional value (biofortification) and optimisation of plants for removal of toxic metals from contaminated soils (phytoremediation) are major goals. Identification of membrane transporters with roles in zinc and cadmium transport would be useful for both aspects. The P1B-ATPases play important roles in heavy metal allocation and detoxification in Arabidopsis and it is now important to elucidate their roles in monocots. We identified nine P1B-ATPases in barley and this study focuses on the functional characterization of HvHMA2, providing evidence for its role in heavy metal transport. HvHMA2 was cloned using information from EST analysis and 5′ RACE. It possesses the conserved aspartate that is phosphorylated during the reaction cycle of P-type pumps and has motifs and key residues characteristic of P1B-ATPases, falling into the P1B-2 subclass. Homologous sequences occur in three major sub-families of the Poaceae (Gramineae). Heterologous expression in Saccharomyces cerevisiae demonstrates that HvHMA2 functions as a Zn and Cd pump. Mutagenesis studies show that proposed cation coordination sites of the P1B-2 pumps are crucial for the metal responses conferred by HvHMA2 in yeast. HvHMA2 expression suppresses the Zn-deficient phenotype of the Arabidopsis hma2hma4 mutant indicating that HvHMA2 functions as a Zn pump in planta and could play a role in root to shoot Zn transport. When expressed in Arabidopsis, HvHMA2 localises predominantly to the plasma membrane. PMID:22880063

  20. Disruption of the Aspergillus fumigatus ECM33 homologue results in rapid conidial germination, antifungal resistance and hypervirulence.

    PubMed

    Romano, Jacob; Nimrod, Guy; Ben-Tal, Nir; Shadkchan, Yona; Baruch, Koti; Sharon, Haim; Osherov, Nir

    2006-07-01

    The ECM33/SPS2 family of glycosylphosphatidylinositol-anchored proteins plays an important role in maintaining fungal cell wall integrity and virulence. However, the precise molecular role of these proteins is unknown. In this work, AfuEcm33, the gene encoding the ECM33 homologue in the important pathogenic fungus Aspergillus fumigatus, has been cloned and its function analysed. It is shown that disruption of AfuEcm33 results in rapid conidial germination, increased cell-cell adhesion, resistance to the antifungal agent caspofungin and increased virulence in an immunocompromised mouse model for disseminated aspergillosis. These results suggest that the protein encoded by AfuEcm33 is involved in key aspects of cell wall morphogenesis and plays an important role in A. fumigatus virulence.

  1. A systematic review of the role of vitamin insufficiencies and supplementation in COPD.

    PubMed

    Tsiligianni, Ioanna G; van der Molen, Thys

    2010-12-06

    Pulmonary inflammation, oxidants-antioxidants imbalance, as well as innate and adaptive immunity have been proposed as playing a key role in the development of COPD. The role of vitamins, as assessed either by food frequency questionnaires or measured in serum levels, have been reported to improve pulmonary function, reduce exacerbations and improve symptoms. Vitamin supplements have therefore been proposed to be a potentially useful additive to COPD therapy. A systematic literature review was performed on the association of vitamins and COPD. The role of vitamin supplements in COPD was then evaluated. The results of this review showed that various vitamins (vitamin C, D, E, A, beta and alpha carotene) are associated with improvement in features of COPD such as symptoms, exacerbations and pulmonary function. High vitamin intake would probably reduce the annual decline of FEV1. There were no studies that showed benefit from vitamin supplementation in improved symptoms, decreased hospitalization or pulmonary function.

  2. Suppression of the lipopolysaccharide-induced expression of MARCKS-related protein (MRP) affects transmigration in activated RAW264.7 cells.

    PubMed

    Chun, Kwang-Rok; Bae, Eun Mi; Kim, Jae-Kwan; Suk, Kyoungho; Lee, Won-Ha

    2009-01-01

    The molecular action mechanism of MRP, one of the protein kinase C (PKC) substrates, has been under intense investigation, but reports on its role in macrophage function remain controversial. The treatment of macrophage cell lines with bacterial lipopolysaccharide (LPS) induced a high level of MRP expression suggesting that MRP plays a role in the function of activated macrophages. In order to investigate the role of MRP in activated RAW264.7 cells, we stably transfected MRP-specific shRNA expression constructs and tested for alterations in macrophage-related functions. The down-regulation of MRP expression resulted in a marked reduction in chemotaxis toward MCP-1 or extracellular matrix proteins. Furthermore, pharmacological inhibitors of PKC significantly inhibited the chemotaxis in RAW264.7 cells. These data reveals the pivotal role of MRP in the transmigration of activated RAW264.7 cells.

  3. Comprehensive Behavioral Analysis of Male Ox1r (-/-) Mice Showed Implication of Orexin Receptor-1 in Mood, Anxiety, and Social Behavior.

    PubMed

    Abbas, Md G; Shoji, Hirotaka; Soya, Shingo; Hondo, Mari; Miyakawa, Tsuyoshi; Sakurai, Takeshi

    2015-01-01

    Neuropeptides orexin A and orexin B, which are exclusively produced by neurons in the lateral hypothalamic area, play an important role in the regulation of a wide range of behaviors and homeostatic processes, including regulation of sleep/wakefulness states and energy homeostasis. The orexin system has close anatomical and functional relationships with systems that regulate the autonomic nervous system, emotion, mood, the reward system, and sleep/wakefulness states. Recent pharmacological studies using selective antagonists have suggested that orexin receptor-1 (OX1R) is involved in physiological processes that regulate emotion, the reward system, and autonomic nervous system. Here, we examined Ox1r (-/-) mice with a comprehensive behavioral test battery to screen additional OX1R functions. Ox1r (-/-) mice showed increased anxiety-like behavior, altered depression-like behavior, slightly decreased spontaneous locomotor activity, reduced social interaction, increased startle response, and decreased prepulse inhibition. These results suggest that OX1R plays roles in social behavior and sensory motor gating in addition to roles in mood and anxiety.

  4. The CCR4 Deadenylase Acts with Nanos and Pumilio in the Fine-Tuning of Mei-P26 Expression to Promote Germline Stem Cell Self-Renewal

    PubMed Central

    Joly, Willy; Chartier, Aymeric; Rojas-Rios, Patricia; Busseau, Isabelle; Simonelig, Martine

    2013-01-01

    Summary Translational regulation plays an essential role in Drosophila ovarian germline stem cell (GSC) biology. GSC self-renewal requires two translational repressors, Nanos (Nos) and Pumilio (Pum), which repress the expression of differentiation factors in the stem cells. The molecular mechanisms underlying this translational repression remain unknown. Here, we show that the CCR4 deadenylase is required for GSC self-renewal and that Nos and Pum act through its recruitment onto specific mRNAs. We identify mei-P26 mRNA as a direct and major target of Nos/Pum/CCR4 translational repression in the GSCs. mei-P26 encodes a protein of the Trim-NHL tumor suppressor family that has conserved functions in stem cell lineages. We show that fine-tuning Mei-P26 expression by CCR4 plays a key role in GSC self-renewal. These results identify the molecular mechanism of Nos/Pum function in GSC self-renewal and reveal the role of CCR4-NOT-mediated deadenylation in regulating the balance between GSC self-renewal and differentiation. PMID:24286029

  5. The CCR4 deadenylase acts with Nanos and Pumilio in the fine-tuning of Mei-P26 expression to promote germline stem cell self-renewal.

    PubMed

    Joly, Willy; Chartier, Aymeric; Rojas-Rios, Patricia; Busseau, Isabelle; Simonelig, Martine

    2013-01-01

    Translational regulation plays an essential role in Drosophila ovarian germline stem cell (GSC) biology. GSC self-renewal requires two translational repressors, Nanos (Nos) and Pumilio (Pum), which repress the expression of differentiation factors in the stem cells. The molecular mechanisms underlying this translational repression remain unknown. Here, we show that the CCR4 deadenylase is required for GSC self-renewal and that Nos and Pum act through its recruitment onto specific mRNAs. We identify mei-P26 mRNA as a direct and major target of Nos/Pum/CCR4 translational repression in the GSCs. mei-P26 encodes a protein of the Trim-NHL tumor suppressor family that has conserved functions in stem cell lineages. We show that fine-tuning Mei-P26 expression by CCR4 plays a key role in GSC self-renewal. These results identify the molecular mechanism of Nos/Pum function in GSC self-renewal and reveal the role of CCR4-NOT-mediated deadenylation in regulating the balance between GSC self-renewal and differentiation.

  6. Leucine-Rich Repeat Kinase 2 in Parkinson's Disease: Updated from Pathogenesis to Potential Therapeutic Target.

    PubMed

    Chen, Jinhua; Chen, Ying; Pu, Jiali

    2018-04-27

    Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons in the midbrain. The pathogenesis of PD is not fully understood but is likely caused by a combination of genetic and environmental factors. Several genes are associated with the onset and progression of familial PD. There is increasing evidence that leucine-rich repeat kinase 2 (LRRK2) plays a significant role in PD pathophysiology. Many studies have been conducted to elucidate the functions of LRRK2 and identify effective LRRK2 inhibitors for PD treatment. In this review, we discuss the role of LRRK2 in PD and recent progress in the use of LRRK2 inhibitors as therapeutic agents. Key Messages: LRRK2 plays a significant role in the pathophysiology of PD, and pharmacological inhibition of LRRK2 has become one of the most promising potential therapies for PD. Further research is warranted to determine the functions of LRRK2 and expand the applications of LRRK2 inhibitors in PD treatment. © 2018 S. Karger AG, Basel.

  7. The presence and significance of polar meibum and tear lipids.

    PubMed

    Pucker, Andrew D; Haworth, Kristina M

    2015-01-01

    The ocular tear film is a complex structure composed of a number of elements. While all of these components serve valuable functional and structural roles, the external lipid layer has been a focus because it is known to play a critical role in dry eye. Traditionally, meibomian gland phospholipids have been considered to be the vital amphiphilic molecules needed to create an interphase between the outer nonpolar lipid layer and inner aqueous layers, yet recent work has called this theory into question. The purpose of this review is to clarify the current understanding of the origins, identity, and significance of polar tear lipids. Studies indicate that both phospholipids and ω-hydroxy fatty acids likely play a critical role in tear film stability. Studies also indicate that polar lipids likely originate from multiple sources and that they are integrally involved in ocular surface disease. Additional studies are needed to fully understand the origins and significance of polar tear lipids, because to date only correlational evidence has described their hypothesized origins and functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Functional Analyses of a Novel CITED2 Nonsynonymous Mutation in Chinese Tibetan Patients with Congenital Heart Disease.

    PubMed

    Liu, Shiming; Su, Zhaobing; Tan, Sainan; Ni, Bin; Pan, Hong; Liu, Beihong; Wang, Jing; Xiao, Jianmin; Chen, Qiuhong

    2017-08-01

    CITED2 gene is an important cardiac transcription factor that plays a fundamental role in the formation and development of embryonic cardiovascular. Previous studies have showed that knock-out of CITED2 in mice might result in various cardiac malformations. However, the mechanisms of CITED2 mutation on congenital heart disease (CHD) in Chinese Tibetan population are still poorly understood. In the present study, 187 unrelated Tibetan patients with CHD and 200 unrelated Tibetan healthy controls were screened for variants in the CITED2 gene; we subsequently identified one potential disease-causing mutation p.G143A in a 6-year-old girl with PDA and functional analyses of the mutation were carried out. Our study showed that the novel mutation of CITED2 significantly enhanced the expression activity of vascular endothelial growth factor (VEGF) under the role of co-receptor hypoxia inducible factor 1-aipha (HIF-1A), which is closely related with embryonic cardiac development. As a result, CITED2 gene mutation may play a significant role in the development of pediatric congenital heart disease.

  9. Comprehensive Behavioral Analysis of Male Ox1r−/− Mice Showed Implication of Orexin Receptor-1 in Mood, Anxiety, and Social Behavior

    PubMed Central

    Abbas, Md. G.; Shoji, Hirotaka; Soya, Shingo; Hondo, Mari; Miyakawa, Tsuyoshi; Sakurai, Takeshi

    2015-01-01

    Neuropeptides orexin A and orexin B, which are exclusively produced by neurons in the lateral hypothalamic area, play an important role in the regulation of a wide range of behaviors and homeostatic processes, including regulation of sleep/wakefulness states and energy homeostasis. The orexin system has close anatomical and functional relationships with systems that regulate the autonomic nervous system, emotion, mood, the reward system, and sleep/wakefulness states. Recent pharmacological studies using selective antagonists have suggested that orexin receptor-1 (OX1R) is involved in physiological processes that regulate emotion, the reward system, and autonomic nervous system. Here, we examined Ox1r−/− mice with a comprehensive behavioral test battery to screen additional OX1R functions. Ox1r−/− mice showed increased anxiety-like behavior, altered depression-like behavior, slightly decreased spontaneous locomotor activity, reduced social interaction, increased startle response, and decreased prepulse inhibition. These results suggest that OX1R plays roles in social behavior and sensory motor gating in addition to roles in mood and anxiety. PMID:26696848

  10. The human CTC1/STN1/TEN1 complex regulates telomere maintenance in ALT cancer cells.

    PubMed

    Huang, Chenhui; Jia, Pingping; Chastain, Megan; Shiva, Olga; Chai, Weihang

    2017-06-15

    Maintaining functional telomeres is important for long-term proliferation of cells. About 15% of cancer cells are telomerase-negative and activate the alternative-lengthening of telomeres (ALT) pathway to maintain their telomeres. Recent studies have shown that the human CTC1/STN1/TEN1 complex (CST) plays a multi-faceted role in telomere maintenance in telomerase-expressing cancer cells. However, the role of CST in telomere maintenance in ALT cells is unclear. Here, we report that human CST forms a functional complex localizing in the ALT-associated PML bodies (APBs) in ALT cells throughout the cell cycle. Suppression of CST induces telomere instabilities including telomere fragility and elevates telomeric DNA recombination, leading to telomere dysfunction. In addition, CST deficiency significantly diminishes the abundance of extrachromosomal circular telomere DNA known as C-circles and t-circles. Suppression of CST also results in multinucleation in ALT cells and impairs cell proliferation. Our findings imply that the CST complex plays an important role in regulating telomere maintenance in ALT cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Domestic and International Best Practice Case Studies

    DOT National Transportation Integrated Search

    2001-02-01

    Air transportation plays a vital role in the Texas economy. Air passenger/cargo traffic is projected to continue to increase considerably at many of the state's large airports. Ground access to airports is an important function that must be provided ...

  12. The effect of claustrum lesions on human consciousness and recovery of function.

    PubMed

    Chau, Aileen; Salazar, Andres M; Krueger, Frank; Cristofori, Irene; Grafman, Jordan

    2015-11-01

    Crick and Koch proposed that the claustrum plays a crucial role in consciousness. Their proposal was based on the structure and connectivity of the claustrum that suggested it had a role in coordinating a set of diverse brain functions. Given the few human studies investigating this claim, we decided to study the effects of claustrum lesions on consciousness in 171 combat veterans with penetrating traumatic brain injuries. Additionally, we studied the effects of claustrum lesions and loss of consciousness on long-term cognitive abilities. Claustrum damage was associated with the duration, but not frequency, of loss of consciousness, indicating that the claustrum may have an important role in regaining, but not maintaining, consciousness. Total brain volume loss, but not claustrum lesions, was associated with long-term recovery of neurobehavioral functions. Our findings constrain the current understanding of the neurobehavioral functions of the claustrum and its role in maintaining and regaining consciousness. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. LKB1 and lung cancer: more than the usual suspects.

    PubMed

    Shah, Usman; Sharpless, Norman E; Hayes, D Neil

    2008-05-15

    Often, the problem in cancer research is figuring out how a gene or pathway works in regulating cellular transformation. The question of what RAS activates or PTEN inhibits have been classic dilemmas of modern cancer biology. In these cases, biochemical and genetic studies have provided us with a fairly clear picture of the cancer relevant functions of these genes. For LKB1, a more recently identified human tumor suppressor gene, however, the problem is different. This serine-threonine kinase that is conserved from yeast to mammals seems to play a role in many diverse cellular pathways. Therefore, although elegant functional and genetic approaches have established critical roles for LKB1 in the regulation of metabolism, motility, polarity, and the cell cycle, the role(s) responsible for its true tumor suppressor function(s) is unknown. One is reminded of an Agatha Christie murder mystery where nearly every character in the book has reason to be suspected of committing the crime-there are too many suspects for how LKB1 might repress lung cancer.

  14. Sirtuins, Bioageing, and Cancer

    PubMed Central

    McGuinness, D.; McGuinness, D. H.; McCaul, J. A.; Shiels, P. G.

    2011-01-01

    The Sirtuins are a family of orthologues of yeast Sir2 found in a wide range of organisms from bacteria to man. They display a high degree of conservation between species, in both sequence and function, indicative of their key biochemical roles. Sirtuins are heavily implicated in cell cycle, cell division, transcription regulation, and metabolism, which places the various family members at critical junctures in cellular metabolism. Typically, Sirtuins have been implicated in the preservation of genomic stability and in the prolongation of lifespan though many of their target interactions remain unknown. Sirtuins play key roles in tumourigenesis, as some have tumour-suppressor functions and others influence tumours through their control of the metabolic state of the cell. Their links to ageing have also highlighted involvement in various age-related and degenerative diseases. Here, we discuss the current understanding of the role of Sirtuins in age-related diseases while taking a closer look at their roles and functions in maintaining genomic stability and their influence on telomerase and telomere function. PMID:21766030

  15. [Friend or Foe in the Pocket? - The Role of the Individual, Peergroup and Parents for (dys)functional Mobile Phone Use].

    PubMed

    Knop, Karin; Hefner, Dorothée

    2018-02-01

    Friend or Foe in the Pocket? - The Role of the Individual, Peergroup and Parents for (dys)functional Mobile Phone Use In order to provide consultative support to parents as well as to children and young people, background knowledge regarding the motives of mobile phone use, functions of usage, comprehension of the attraction of this all-round medium also as knowledge about potential hazards are essential. This study offers empirical results about potentials and risks. The peergroup plays an important role for riskful and problematic mobile phone involvement. Parents function as a role model and the explicit parental mediation practices and their impact on the child are in focus. Data was acquired from a quota-sample survey with 500 children between the age of 8 and 14 years and one of their parents, qualitative interviews (20 children and their parents) and eight peergroup-discussions (52 participants). The present paper illuminates the above mentioned aspects and derives implications for guidance practice.

  16. Dietary Antioxidants: Potential Anticancer Agents.

    PubMed

    Wu, Xiayu; Cheng, Jiaoni; Wang, Xu

    2017-01-01

    There are several extrinsic and intrinsic factors involving reactive oxygen species that play critical roles in tumor development and progression by inducing DNA mutations, genomic instability, and aberrant pro-tumorigenic signaling. There are various essential micronutrients including minerals and vitamins in the diet, which play pivotal roles in maintaining and reinforcing antioxidant performance, affecting the complex network of genes (nutrigenomic approach) and encoding proteins for carcinogenesis. A lot of these antioxidant agents are available as dietary supplements and are predominant worldwide. However, the best antioxidant micronutrient (or a combination of micronutrients) for reducing cancer risks is unknown. The purpose of this review is to survey the literature on modern biological theories of cancer and the roles of dietary antioxidants in cancer. The roles and functions of antioxidant micronutrients, such as vitamin C (ascorbate), vitamin E (alpha-tocopherol), selenium, and vitamin A, provided through diet for the prevention of cancer are discussed in the present work.

  17. Longitudinal muscle of the esophagus: its role in esophageal health and disease.

    PubMed

    Mittal, Ravinder K

    2013-07-01

    The muscularis propria of the esophagus is organized into circular and longitudinal muscle layers. The function of the longitudinal muscle and its role in bolus propulsion are not clear. The goal of this review is to summarize what is known of the role of the longitudinal muscle in health, as well as in sensory and motor disorders of the esophagus. Simultaneous manometry and ultrasound imaging reveal that, during peristalsis, the two muscle layers of the esophagus contract in perfect synchrony. On the contrary, during transient lower esophageal sphincter (LES) relaxation, longitudinal muscle contracts independent of the circular muscle. Recent studies have provided novel insights into the role of the longitudinal muscle in LES relaxation and descending relaxation of the esophagus. In certain diseases (e.g. some motility disorders of the esophagus), there is discoordination between the two muscle layers, which likely plays an important role in the genesis of dysphagia and delayed esophageal emptying. There is close temporal correlation between prolonged contractions of the longitudinal muscles of the esophagus and esophageal 'angina-like' pain. Novel techniques to record longitudinal muscle contraction are reviewed. Longitudinal muscles of the esophagus play a key role in the physiology and pathophysiology of esophageal sensory and motor function. Neuro-pharmacologic controls of circular and longitudinal muscle are different, which provides an opportunity for the development of novel pharmacological therapies in the treatment of esophageal sensory and motor disorders.

  18. 'Decoy' and 'non-decoy' functions of DcR3 promote malignant potential in human malignant fibrous histiocytoma cells.

    PubMed

    Toda, Mitsunori; Kawamoto, Teruya; Ueha, Takeshi; Kishimoto, Kenta; Hara, Hitomi; Fukase, Naomasa; Onishi, Yasuo; Harada, Risa; Minoda, Masaya; Kurosaka, Masahiro; Akisue, Toshihiro

    2013-09-01

    Decoy receptor 3 (DcR3) is a soluble secreted protein that belongs to the tumor necrosis factor receptor (TNFR) superfamily. DcR3 inhibits the Fas ligand (FasL)/Fas apoptotic pathway by binding to FasL, competitively with Fas receptor. Previous studies have reported that overexpression of DcR3 has been detected in various human malignancies and that DcR3 functions as a 'decoy' for FasL to inhibit FasL-induced apoptosis. In addition, recent studies have revealed that DcR3 has 'non-decoy' functions to promote tumor cell migration and invasion, suggesting that DcR3 may play important roles in tumor progression by decoy and non-decoy functions. We have previously reported that overexpression of DcR3 was observed in human malignant fibrous histiocytoma (MFH), however, the roles of DcR3 in MFH have not been studied. In the present study, to elucidate the roles of DcR3 in tumor progression of MFH, we examined the effects of DcR3 inhibition on cell apoptosis, migration and invasion in human MFH cells. siRNA knockdown of DcR3 enhanced the FasL-induced apoptotic activity and significantly decreased cell migration and invasion with a decrease in the activation of phosphatidylinositol 3 kinase (PI3K)/Akt and matrix metalloproteinase (MMP)-2. The findings in this study strongly suggest that DcR3 plays important roles in tumor progression of human MFH by decoy as well as non-decoy functions and that DcR3 may serve as a potent therapeutic target for human MFH.

  19. miR-181c-BRK1 axis plays a key role in actin cytoskeleton-dependent T cell function.

    PubMed

    Lim, Shok Ping; Ioannou, Nikolaos; Ramsay, Alan G; Darling, David; Gäken, Joop; Mufti, Ghulam J

    2018-05-01

    MicroRNAs are short endogenous noncoding RNAs that play pivotal roles in a diverse range of cellular processes. The miR-181 family is important in T cell development, proliferation, and activation. In this study, we have identified BRK1 as a potential target of miR-181c using a dual selection functional assay and have showed that miR-181c regulates BRK1 by translational inhibition. Given the importance of miR-181 in T cell function and the potential role of BRK1 in the involvement of WAVE2 complex and actin polymerization in T cells, we therefore investigated the influence of miR-181c-BRK1 axis in T cell function. Stimulation of PBMC derived CD3 + T cells resulted in reduced miR-181c expression and up-regulation of BRK1 protein expression, suggesting that miR-181c-BRK1 axis is important in T cell activation. We further showed that overexpression of miR-181c or suppression of BRK1 resulted in inhibition of T cell activation and actin polymerization coupled with defective lamellipodia generation and immunological synapse formation. Additionally, we found that BRK1 silencing led to reduced expressions of other proteins in the WAVE2 complex, suggesting that the impairment of T cell actin dynamics was a result of the instability of the WAVE2 complex following BRK1 depletion. Collectively, we demonstrated that miR-181c reduces BRK1 protein expression level and highlighted the important role of miR-181c-BRK1 axis in T cell activation and actin polymerization-mediated T cell functions. ©2018 Society for Leukocyte Biology.

  20. High-fat diet induces cardiac remodelling and dysfunction: assessment of the role played by SIRT3 loss.

    PubMed

    Zeng, Heng; Vaka, Venkata Ramana; He, Xiaochen; Booz, George W; Chen, Jian-Xiong

    2015-08-01

    Mitochondrial dysfunction plays an important role in obesity-induced cardiac impairment. SIRT3 is a mitochondrial protein associated with increased human life span and metabolism. This study investigated the functional role of SIRT3 in obesity-induced cardiac dysfunction. Wild-type (WT) and SIRT3 knockout (KO) mice were fed a normal diet (ND) or high-fat diet (HFD) for 16 weeks. Body weight, fasting glucose levels, reactive oxygen species (ROS) levels, myocardial capillary density, cardiac function and expression of hypoxia-inducible factor (HIF)-1α/-2α were assessed. HFD resulted in a significant reduction in SIRT3 expression in the heart. Both HFD and SIRT3 KO mice showed increased ROS formation, impaired HIF signalling and reduced capillary density in the heart. HFD induced cardiac hypertrophy and impaired cardiac function. SIRT3 KO mice fed HFD showed greater ROS production and a further reduction in cardiac function compared to SIRT3 KO mice on ND. Thus, the adverse effects of HFD on cardiac function were not attributable to SIRT3 loss alone. However, HFD did not further reduce capillary density in SIRT3 KO hearts, implicating SIRT3 loss in HFD-induced capillary rarefaction. Our study demonstrates the importance of SIRT3 in preserving heart function and capillary density in the setting of obesity. Thus, SIRT3 may be a potential therapeutic target for obesity-induced heart failure. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

Top