Sample records for functional surface coatings

  1. Activation of Osteoblastic Function on Titanium Surface with Titanium-Doped Hydroxyapatite Nanoparticle Coating: An In Vitro Study.

    PubMed

    Nakazawa, Masahiro; Yamada, Masahiro; Wakamura, Masato; Egusa, Hiroshi; Sakurai, Kaoru

    Titanium-doped hydroxyapatite (TiHA) nanoparticles contain titanium atoms in the hydroxyapatite lattice, which can physicochemically functionalize the titanium surface without modification of the surface topography. This study aimed to evaluate the physicochemical properties of machined or microroughened titanium surfaces coated with TiHA nanoparticles and the functions of osteoblasts cultured on them. Titanium disks with commercially available surface topography, such as machined or sandblasted, large-grit, and acid-etched (SLA) surfaces, were coated with TiHA. The disks with original or TiHA-coated surfaces were evaluated in topography, wettability, and chemical composition. Osteoblastic cells from rat femurs were cultured on the disks and evaluated in proliferation and differentiation. TiHA coating changed from hydrophobicity to hydrophilicity on both machined and SLA surfaces. Calcium and phosphate atoms were detected all over the surface with TiHA coating regardless of the surface topography. However, the considerable change in the inherent surface topographies was not observed on both types of surfaces after TiHA coating. Osteoblastic proliferative activity at day 4 was increased by TiHA coating on both types of surfaces. TiHA coating did not enhance expressions of bone matrix-related genes such as osteocalcin, osteopontin, bone sialoprotein, alkaline phosphatase, and collagen I. However, depositions of collagen, osteocalcin, and calcium in the culture at days 7 and 20 were increased on both types of surface topographies with TiHA coating. TiHA coating enhanced extracellular matrix formation on smooth and microroughened titanium surfaces by increasing osteoblastic proliferative activity without the deterioration of differentiation through hydrophilic and chemical functionalization.

  2. Reactive polymer coatings: A robust platform towards sophisticated surface engineering for biotechnology

    NASA Astrophysics Data System (ADS)

    Chen, Hsien-Yeh

    Functionalized poly(p-xylylenes) or so-called reactive polymers can be synthesized via chemical vapor deposition (CVD) polymerization. The resulting ultra-thin coatings are pinhole-free and can be conformally deposited to a wide range of substrates and materials. More importantly, the equipped functional groups can served as anchoring sites for tailoring the surface properties, making these reactive coatings a robust platform that can deal with sophisticated challenges faced in biointerfaces. In this work presented herein, surface coatings presenting various functional groups were prepared by CVD process. Such surfaces include aldehyde-functionalized coating to precisely immobilize saccharide molecules onto well-defined areas and alkyne-functionalized coating to click azide-modified molecules via Huisgen 1,3-dipolar cycloaddition reaction. Moreover, CVD copolymerization has been conducted to prepare multifunctional coatings and their specific functions were demonstrated by the immobilization of biotin and NHS-ester molecules. By using a photodefinable coating, polyethylene oxides were immobilized onto a wide range of substrates through photo-immobilization. Spatially controlled protein resistant properties were characterized by selective adsorption of fibrinogen and bovine serum albumin as model systems. Alternatively, surface initiator coatings were used for polymer graftings of polyethylene glycol) methyl ether methacrylate, and the resultant protein- and cell- resistant properties were characterized by adsorption of kinesin motor proteins, fibrinogen, and murine fibroblasts (NIH3T3). Accessibility of reactive coatings within confined microgeometries was systematically studied, and the preparation of homogeneous polymer thin films within the inner surface of microchannels was demonstrated. Moreover, these advanced coatings were applied to develop a dry adhesion process for microfluidic devices. This process provides (i) excellent bonding strength, (ii) extended storage time prior to bonding, and (iii) well-defined surface functionalities for subsequent surface modifications. Finally, we have also prepared surface microstructures and surface patterns using reactive coatings via photopatterning, projection lithography, supramolecular nanostamping (SuNS), and vapor-assisted micropatterning in replica structures (VAMPIR). These patterning techniques can be complimentarily used and provide access to precisely confined microenvironments on flat and curved geometries. Reactive coatings provide a technology platform that creates active, long-term control and may lead to improved mimicry of biological systems for effective bio-functional modifications.

  3. Silica Nanoparticles Functionalized with Zwitterionic Sulfobetaine Siloxane for Application as a Versatile Antifouling Coating System.

    PubMed

    Knowles, Brianna R; Wagner, Pawel; Maclaughlin, Shane; Higgins, Michael J; Molino, Paul J

    2017-06-07

    The growing need to develop surfaces able to effectively resist biological fouling has resulted in the widespread investigation of nanomaterials with potential antifouling properties. However, the preparation of effective antifouling coatings is limited by the availability of reactive surface functional groups and our ability to carefully control and organize chemistries at a materials' interface. Here, we present two methods of preparing hydrophilic low-fouling surface coatings through reaction of silica-nanoparticle suspensions and predeposited silica-nanoparticle films with zwitterionic sulfobetaine (SB). Silica-nanoparticle suspensions were functionalized with SB across three pH conditions and deposited as thin films via a simple spin-coating process to generate hydrophilic antifouling coatings. In addition, coatings of predeposited silica nanoparticles were surface functionalized via exposure to zwitterionic solutions. Quartz crystal microgravimetry with dissipation monitoring was employed as a high throughput technique for monitoring and optimizing reaction to the silica-nanoparticle surfaces. Functionalization of nanoparticle films was rapid and could be achieved over a wide pH range and at low zwitterion concentrations. All functionalized particle surfaces presented a high degree of wettability and resulted in large reductions in adsorption of bovine serum albumin protein. Particle coatings also showed a reduction in adhesion of fungal spores (Epicoccum nigrum) and bacteria (Escherichia coli) by up to 87 and 96%, respectively. These results indicate the potential for functionalized nanosilicas to be further developed as versatile fouling-resistant coatings for widespread coating applications.

  4. Improvement of Interaction in a Composite Structure by Using a Sol-Gel Functional Coating on Carbon Fibers.

    PubMed

    Szczurek, Anna; Barcikowski, Michał; Leluk, Karol; Babiarczuk, Bartosz; Kaleta, Jerzy; Krzak, Justyna

    2017-08-25

    The modification of carbon fibers for improving adhesion between fibers and an epoxy resin in composite materials has become the focus of attention. In this work the carbon fiber coating process has been devised in a way preventing the stiffening and clumping of fibers. To improve interactions between coated fibers and a resin in composites, four types of silica coatings with different organic functional groups (3-aminopropyl-coating 1, 3-mercaptopropyl-coating 2, 2-(3,4-epoxycyclohexyl) ethyl-coating 3, methyl-coating 4) were obtained. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to distinguish the changes of a carbon fibers surface after coating deposition. The thickness of the obtained coatings, including the diversity of thickness, was determined by transmission electron microscopy (TEM). The increase in surface free energy (SFE) of modified fibers, including the distinction between the polar and dispersive parts, was examined by wettability measurements using a tensometric test. The developed coating preparation process allowed to cover fibers separately with nanoscale silica layers, which changed their morphology. The introduction of organic functional groups resulted in surface free energy changes, especially an increase in specific polar surface energy components.

  5. Improvement of Interaction in a Composite Structure by Using a Sol-Gel Functional Coating on Carbon Fibers

    PubMed Central

    Barcikowski, Michał; Leluk, Karol; Babiarczuk, Bartosz; Kaleta, Jerzy

    2017-01-01

    The modification of carbon fibers for improving adhesion between fibers and an epoxy resin in composite materials has become the focus of attention. In this work the carbon fiber coating process has been devised in a way preventing the stiffening and clumping of fibers. To improve interactions between coated fibers and a resin in composites, four types of silica coatings with different organic functional groups (3-aminopropyl–coating 1, 3-mercaptopropyl–coating 2, 2-(3,4-epoxycyclohexyl) ethyl–coating 3, methyl–coating 4) were obtained. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to distinguish the changes of a carbon fibers surface after coating deposition. The thickness of the obtained coatings, including the diversity of thickness, was determined by transmission electron microscopy (TEM). The increase in surface free energy (SFE) of modified fibers, including the distinction between the polar and dispersive parts, was examined by wettability measurements using a tensometric test. The developed coating preparation process allowed to cover fibers separately with nanoscale silica layers, which changed their morphology. The introduction of organic functional groups resulted in surface free energy changes, especially an increase in specific polar surface energy components. PMID:28841187

  6. Functional patterned coatings by thin polymer film dewetting.

    PubMed

    Telford, Andrew M; Thickett, Stuart C; Neto, Chiara

    2017-12-01

    An approach for the fabrication of functional polymer surface coatings is introduced, where micro-scale structure and surface functionality are obtained by means of self-assembly mechanisms. We illustrate two main applications of micro-patterned polymer surfaces obtained through dewetting of bilayers of thin polymer films. By tuning the physical and chemical properties of the polymer bilayers, micro-patterned surface coatings could be produced that have applications both for the selective attachment and patterning of proteins and cells, with potential applications as biomaterials, and for the collection of water from the atmosphere. In all cases, the aim is to achieve functional coatings using approaches that are simple to realize, use low cost materials and are potentially scalable. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Facile preparation in two steps of highly hydrophobic coatings on polypropylene surface

    NASA Astrophysics Data System (ADS)

    Petcu, Cristian; Nistor, Cristina Lavinia; Purcar, Violeta; Cinteză, Ludmila Otilia; Spătaru, Cătălin-Ilie; Ghiurea, Marius; Ianchiş, Raluca; Anastasescu, Mihai; Stoica, Mihai

    2015-08-01

    Monolayer and bilayer coatings deposited on polypropylene (PP) surface were prepared by sol-gel process at room temperature. Monolayer coatings were produced from sol-gel acidic solutions, containing tetraethylorthosilicate (TEOS) and different co-precursors such as phenyltriethoxysilane (PhTES), octylmethyldimethoxysilane (OMDMS) and dodecyltriethoxysilane (DOTES). Bilayer coatings consist of one layer prepared in a similar way described for monolayer coatings, followed by a second layer, obtained from fluorinated silica nanoparticles dispersion. The fluorinated group has been confirmed by the presence of Csbnd F bonds along with network Sisbnd Osbnd Si vibrational mode. Water contact angle values registered for bilayer-coated polypropylene are higher, comparing with the reference (pristine PP) and with the monolayer-coated substrate, and varies as a function of the hydrophobic functional groups of the silica co-precursors: phenyl < octyl < dodecyl. The fluorooctyl functions lead to a significant decrease in the surface energy values for bilayer coating, with very small values of polar component.

  8. Atomic to Nanoscale Investigation of Functionalities of Al2O3 Coating Layer on Cathode for Enhanced Battery Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Pengfei; Zheng, Jianming; Zhang, Xiaofeng

    2016-01-06

    Surface coating of cathode has been identified as an effective approach for enhancing the capacity retention of layered structure cathode. However, the underlying operating mechanism of such a thin layer of coating, in terms of surface chemical functionality and capacity retention, remains unclear. In this work, we use aberration corrected scanning transmission electron microscopy and high efficient spectroscopy to probe the delicate functioning mechanism of Al2O3 coating layer on Li1.2Ni0.2Mn0.6O2 cathode. We discovered that in terms of surface chemical function, the Al2O3 coating suppresses the side reaction between cathode and the electrolyte upon the battery cycling. At the same time,more » the Al2O3 coating layer also eliminates the chemical reduction of Mn from the cathode particle surface, therefore avoiding the dissolution of the reduced Mn into the electrolyte. In terms of structural stability, we found that the Al2O3 coating layer can mitigate the layer to spinel phase transformation, which otherwise will initiate from the particle surface and propagate towards the interior of the particle with the progression of the battery cycling. The atomic to nanoscale effects of the coating layer observed here provide insight for optimized design of coating layer on cathode to enhance the battery properties.« less

  9. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    NASA Astrophysics Data System (ADS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  10. Bioinspired, roughness-induced, water and oil super-philic and super-phobic coatings prepared by adaptable layer-by-layer technique

    PubMed Central

    Brown, Philip S.; Bhushan, Bharat

    2015-01-01

    Coatings with specific surface wetting properties are of interest for anti-fouling, anti-fogging, anti-icing, self-cleaning, anti-smudge, and oil-water separation applications. Many previous bioinspired surfaces are of limited use due to a lack of mechanical durability. Here, a layer-by-layer technique is utilized to create coatings with four combinations of water and oil repellency and affinity. An adapted layer-by-layer approach is tailored to yield specific surface properties, resulting in a durable, functional coating. This technique provides necessary flexibility to improve substrate adhesion combined with desirable surface chemistry. Polyelectrolyte binder, SiO2 nanoparticles, and silane or fluorosurfactant layers are deposited, combining surface roughness and necessary chemistry to result in four different coatings: superhydrophilic/superoleophilic, superhydrophobic/superoleophilic, superhydrophobic/superoleophobic, and superhydrophilic/superoleophobic. The superoleophobic coatings display hexadecane contact angles >150° with tilt angles <5°, whilst the superhydrophobic coatings display water contact angles >160° with tilt angles <2°. One coating combines both oleophobic and hydrophobic properties, whilst others mix and match oil and water repellency and affinity. Coating durability was examined through the use of micro/macrowear experiments. These coatings display transparency acceptable for some applications. Fabrication via this novel combination of techniques results in durable, functional coatings displaying improved performance compared to existing work where either durability or functionality is compromised. PMID:26353971

  11. Self-cleaning antimicrobial surfaces by bio-enabled growth of SnO2 coatings on glass

    NASA Astrophysics Data System (ADS)

    André, Rute; Natalio, Filipe; Tahir, Muhammad Nawaz; Berger, Rüdiger; Tremel, Wolfgang

    2013-03-01

    Conventional vapor-deposition techniques for coatings require sophisticated equipment and/or high-temperature resistant substrates. Therefore bio-inspired techniques for the fabrication of inorganic coatings have been developed in recent years. Inspired by the biology behind the formation of the intricate skeletons of diatoms orchestrated by a class of cationic polyamines (silaffins) we have used surface-bound spermine, a naturally occurring polyamine, to promote the fast deposition of homogeneous, thin and transparent biomimetic SnO2 coatings on glass surfaces. The bio-enabled SnO2 film is highly photoactive, i.e. it generates superoxide radicals (O2&z.rad;-) upon sunlight exposure resulting in a strong degradation of organic contaminants and a strong antimicrobial activity. Upon illumination the biomimetic SnO2 coating exhibits a switchable amphiphilic behavior, which - in combination with its photoactivity - creates a self-cleaning surface. The intrinsic self-cleaning properties could lead to the development of new protective, antifouling coatings on various substrates.Conventional vapor-deposition techniques for coatings require sophisticated equipment and/or high-temperature resistant substrates. Therefore bio-inspired techniques for the fabrication of inorganic coatings have been developed in recent years. Inspired by the biology behind the formation of the intricate skeletons of diatoms orchestrated by a class of cationic polyamines (silaffins) we have used surface-bound spermine, a naturally occurring polyamine, to promote the fast deposition of homogeneous, thin and transparent biomimetic SnO2 coatings on glass surfaces. The bio-enabled SnO2 film is highly photoactive, i.e. it generates superoxide radicals (O2&z.rad;-) upon sunlight exposure resulting in a strong degradation of organic contaminants and a strong antimicrobial activity. Upon illumination the biomimetic SnO2 coating exhibits a switchable amphiphilic behavior, which - in combination with its photoactivity - creates a self-cleaning surface. The intrinsic self-cleaning properties could lead to the development of new protective, antifouling coatings on various substrates. Electronic supplementary information (ESI) available: (1) QCM measurement of SnO2 deposition on spermine functionalized silica-based sensors, (2) scheme of the surface functionalization procedure, (3) FTIR-ATR analysis of polyamine (spermine) functionalized glass surfaces, (4) FITC staining of amine groups on glass surfaces, (5) AFM height analysis of bare, spermine coated and SnO2 coated glass slides, (6) SEM micrograph of a spermine functionalized SnO2 coated glass slide, (7) XPS analysis of SnO2 coated surfaces, (8) kinetic profile of rhodamine B degradation with spermine/SnO2, (9) control experiments for the photodegradation of rhodamine B, (10) comparison with commercial SnO2 catalyst, (11) incubation of non-functionalized glass surfaces with E. coli, and (12) incubation of SnO2 coated glass surfaces with E. coli. See DOI: 10.1039/c3nr00007a

  12. Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings.

    PubMed

    Buzzacchera, Irene; Vorobii, Mariia; Kostina, Nina Yu; de Los Santos Pereira, Andres; Riedel, Tomáš; Bruns, Michael; Ogieglo, Wojciech; Möller, Martin; Wilson, Christopher J; Rodriguez-Emmenegger, Cesar

    2017-06-12

    Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.

  13. Atomic to Nanoscale Investigation of Functionalities of an Al2O3 Coating Layer on a Cathode for Enhanced Battery Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Pengfei; Zheng, Jianming; Zhang, Xiaofeng

    2016-02-09

    Surface coating has been identified as an effective approach for enhancing the capacity retention of layered structure cathode. However, the underlying operating mechanism of such a thin coating layer, in terms of surface chemical functionality and capacity retention, remains unclear. In this work, we use aberration-corrected scanning transmission electron microscopy and high-efficiency spectroscopy to probe the delicate functioning mechanism of an Al2O3 coating layer on a Li1.2Ni0.2Mn0.6O2 cathode. We discovered that in terms of surface chemical function, the Al2O3 coating suppresses the side reaction between the cathode and the electrolyte during battery cycling. At the same time, the Al2O3 coatingmore » layer also eliminates the chemical reduction of Mn from the cathode particle surface, therefore preventing the dissolution of the reduced Mn into the electrolyte. In terms of structural stability, we found that the Al2O3 coating layer can mitigate the layer to spinel phase transformation, which otherwise will be initiated from the particle surface and propagate toward the interior of the particle with the progression of battery cycling. The atomic to nanoscale effects of the coating layer observed here provide insight into the optimized design of a coating layer on a cathode to enhance the battery properties.« less

  14. Effect of functional end groups of silane self assembled monolayer surfaces on apatite formation, fibronectin adsorption and osteoblast cell function

    PubMed Central

    Toworfe, G.K.; Bhattacharyya, S.; Composto, R.J.; Adams, C.S.; Shapiro, I.M.; Ducheyne, P.

    2008-01-01

    Bioactive glass (BG) can directly bond to living bone without fibrous tissue encapsulation. Key mechanistic steps of BG’s activity are attributed to calcium phosphate formation, surface hydroxylation and fibronectin (FN) adsorption. In the present study, self-assembled monolayers (SAMs) of alkanesilanes with different surface chemistry (OH, NH2, and COOH) were used as a model system to mimic BG’s surface activity. Calcium phosphate (Ca-P) was formed on SAMs by immersion in a solution which simulates the electrolyte content of physiological fluids. FN adsorption kinetics and monolayer coverage was determined on SAMs with or without Ca-P coating. The surface roughness was also examined on these substrates before and after FN adsorption. The effects of FN-adsorbed, Ca-P coated SAMs on the function of MC3T3-E1 were evaluated by cell growth, expression of alkaline phosphatase activity, and actin cytoskeleton formation. We demonstrate that, although the FN monolayer coverage and the rms roughness are similar on −OH and −COOH terminated SAMs with or without Ca-P coating, higher levels of ALP activity, more actin cytoskeleton formation and more cell growth are obtained on −OH and −COOH terminated SAMs with Ca-P coating. In addition, although the FN monolayer coverage is higher on Ca-P coated −NH2 terminated SAMs and SiOx surfaces, higher levels of ALP activity and more cell growth are obtained on Ca-P coated −OH and −COOH terminated SAMs. Thus with same Ca-P coatings, different surface functional groups have different effects on the function of osteoblastic cells. These findings represent new insights into the mechanism of bioactivity of BG and, thereby, may lead to designing superior constructs for bone grafting. PMID:19012271

  15. In Vitro Biocompatibility of Si Alloyed Multi-Principal Element Carbide Coatings

    PubMed Central

    Vladescu, Alina; Titorencu, Irina; Dekhtyar, Yuri; Jinga, Victor; Pruna, Vasile; Balaceanu, Mihai; Dinu, Mihaela; Pana, Iulian; Vendina, Viktorija

    2016-01-01

    In the current study, we have examined the possibility to improve the biocompatibility of the (TiZrNbTaHf)C through replacement of either Ti or Ta by Si. The coatings were deposited on Si and 316L stainless steel substrates by magnetron sputtering in an Ar+CH4 mixed atmosphere and were examined for elemental composition, chemical bonds, surface topography, surface electrical charge and biocompatible characteristics. The net surface charge was evaluated at nano and macroscopic scale by measuring the electrical potential and work function, respectively. The biocompatible tests comprised determination of cell viability and cell attachment to the coated surface. The deposited coatings had C/(metal+Si) ratios close to unity, while a mixture of metallic carbide, free-carbon and oxidized species formed on the film surface. The coatings’ surfaces were smooth and no influence of surface roughness on electrical charge or biocompatibility was found. The biocompatible characteristics correlated well with the electrical potential/work function, suggesting a significant role of surface charge in improving biocompatibility, particularly cell attachment to coating's surface. Replacement of either Ti or Ta by Si in the (TiZrNbTaHf)C coating led to an enhanced surface electrical charge, as well as to superior biocompatible properties, with best results for the (TiZrNbSiHf)C coating. PMID:27571361

  16. Impact of humidity on functionality of on-paper printed electronics.

    PubMed

    Bollström, Roger; Pettersson, Fredrik; Dolietis, Peter; Preston, Janet; Osterbacka, Ronald; Toivakka, Martti

    2014-03-07

    A multilayer coated paper substrate, combining barrier and printability properties was manufactured utilizing a pilot-scale slide curtain coating technique. The coating structure consists of a thin mineral pigment layer coated on top of a barrier layer. The surface properties, i.e. smoothness and surface porosity, were adjusted by the choice of calendering parameters. The influence of surface properties on the fine line printability and conductivity of inkjet-printed silver lines was studied. Surface roughness played a significant role when printing narrow lines, increasing the risk of defects and discontinuities, whereas for wider lines the influence of surface roughness was less critical. A smooth, calendered surface resulted in finer line definition, i.e. less edge raggedness. Dimensional stability and its influence on substrate surface properties as well as on the functionality of conductive tracks and transistors were studied by exposure to high/low humidity cycles. The barrier layer of the multilayer coated paper reduced the dimensional changes and surface roughness increase caused by humidity and helped maintain the conductivity of the printed tracks. Functionality of a printed transistor during a short, one hour humidity cycle was maintained, but a longer exposure to humidity destroyed the non-encapsulated transistor.

  17. Investigation on large-area fabrication of vivid shark skin with superior surface functions

    NASA Astrophysics Data System (ADS)

    Chen, Huawei; Zhang, Xin; Ma, Lingxi; Che, Da; Zhang, Deyuan; Sudarshan, T. S.

    2014-10-01

    Shark skin has attracted worldwide attention because of its superior drag reduction, antifouling performance induced from its unique surface morphology. Although the vivid shark skin has been fabricated by a bio-replicated micro-imprinting approach in previous studies and superior drag reduction effect has been validated in water tunnel, continuous large-area fabrication is still an obstacle to wide apply. In this paper, one novel bio-replication coating technology is proposed for large-area transfer of shark skin based on rapid UV curable paint. Apart from design of coating system, bio-replication accuracy of surface morphology was validated about 97% by comparison between shark skin template and coating surface morphology. Finally, the drag reduction and anti-fouling function of coating surface were tested in water tunnel and open algae pond respectively. Drag reduction rate of coating surface was validated about 12% higher and anti-fouling was proved to about hundred times ameliorate, all of which are more excellent than simple 2D riblet surface.

  18. Characterization of the modified nickel-zinc ferrite nanoparticles coated with APTES by salinization reaction

    NASA Astrophysics Data System (ADS)

    Zainal, Israa G.; Al-Shammari, Ahmed Majeed; Kachi, Wjeah

    2018-05-01

    Surface functionalization of magnetic iron oxide nanoparticles (NPs) is a kind of functional materials, which have been widely used in the biotechnology and catalysis. In this study, Nickel-Zinc ferrite nanoparticles was functionalized with amino propyl triethoxy silane (APTES) by silanization reaction and both non coated and organosilane-coated magnetite characterized by energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometry, Fourier transformed infrared spectroscopy (FTIR) and atomic force microscopy. Basic groups of amino anchored on the external surface of the coated magnetite were observed. Our study procedure nanoparticles which have surface with free - NH2 groups which can carry out ionic interaction with carboxylic groups and act as a carrier of biological molecules, drugs and metals.

  19. Surface functionalization of magnetite nanoparticle: A new approach using condensation of alkoxysilanes

    NASA Astrophysics Data System (ADS)

    Rodriguez, A. F. R.; Costa, T. P.; Bini, R. A.; Faria, F. S. E. D. V.; Azevedo, R. B.; Jafelicci, M.; Coaquira, J. A. H.; Martínez, M. A. R.; Mantilla, J. C.; Marques, R. F. C.; Morais, P. C.

    2017-09-01

    In this study we report on successful production of two samples (BR15 and BR16) comprising magnetite (Fe3O4) nanoparticles ( 10 nm) surface-functionalized via hydrolysis and condensation of alkoxysilane agents, namely 3-aminopropyl-trimethoxisilane (APTS) and N-propyl-trimethoxisilane (NPTS). The as-produced samples were characterized using transmission electron microscopy (TEM), x-ray diffraction (XRD), magnetization measurements (5 K and 300 K hysteresis cycles and zero field-cooled/field-cooled measurements), and Mössbauer spectroscopy (77 and 297 K). The Mössbauer data supported the model picture of a core-shell magnetite-based system. This material system shows shell properties influenced by the surface-coating design, either APTS-coated (BR15) or APTS+NPTS-coated (sample BR16). Analyses of the Mössbauer spectra indicates that the APTS-coated sample presents Fe(III)-rich core and Fe(II)-rich shell with strong hyperfine field; whereas, the APTS+NPTS-coated sample leads to a mixture of two main nanostructures, one essentially surface-terminated with APTS whereas the other surface-terminated with NPTS, both presenting weak hyperfine fields compared with the single surface-coated sample. Magnetization measurements support the core-shell picture built from the analyses of the Mössbauer data. Our findings emphasize the capability of the Mössbauer spectroscopy in assessing subtle differences in surface-functionalized iron-based core-shell nanostructures.

  20. Conformal atomic layer deposition of alumina on millimeter tall, vertically-aligned carbon nanotube arrays.

    PubMed

    Stano, Kelly L; Carroll, Murphy; Padbury, Richard; McCord, Marian; Jur, Jesse S; Bradford, Philip D

    2014-11-12

    Atomic layer deposition (ALD) can be used to coat high aspect ratio and high surface area substrates with conformal and precisely controlled thin films. Vertically aligned arrays of multiwalled carbon nanotubes (MWCNTs) with lengths up to 1.5 mm were conformally coated with alumina from base to tip. The nucleation and growth behaviors of Al2O3 ALD precursors on the MWCNTs were studied as a function of CNT surface chemistry. CNT surfaces were modified through a series of post-treatments including pyrolytic carbon deposition, high temperature thermal annealing, and oxygen plasma functionalization. Conformal coatings were achieved where post-treatments resulted in increased defect density as well as the extent of functionalization, as characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. Using thermogravimetric analysis, it was determined that MWCNTs treated with pyrolytic carbon and plasma functionalization prior to ALD coating were more stable to thermal oxidation than pristine ALD coated samples. Functionalized and ALD coated arrays had a compressive modulus more than two times higher than a pristine array coated for the same number of cycles. Cross-sectional energy dispersive X-ray spectroscopy confirmed that Al2O3 could be uniformly deposited through the entire thickness of the vertically aligned MWCNT array by manipulating sample orientation and mounting techniques. Following the ALD coating, the MWCNT arrays demonstrated hydrophilic wetting behavior and also exhibited foam-like recovery following compressive strain.

  1. Multifunctional polymer nano-composite based superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Maitra, Tanmoy; Asthana, Ashish; Buchel, Robert; Tiwari, Manish K.; Poulikakos, Dimos

    2014-11-01

    Superhydrophobic surfaces become desirable in plethora of applications in engineering fields, automobile industry, construction industries to name a few. Typical fabrication of superhydrophobic surface consists of two steps: first is to create rough morphology on the substrate of interest, followed by coating of low energy molecules. However, typical exception of the above fabrication technique would be direct coating of functional polymer nanocomposites on substrate where superhydrophobicity is needed. Also in this case, the use of different nanoparticles in the polymer matrix can be exploited to impart multi-functional properties to the superhydrophobic coatings. Herein, different carbon nanoparticles like graphene nanoplatelets (GNP), carbon nanotubes (CNT) and carbon black (CB) are used in fluropolymer matrix to prepare superhydrophobic coatings. The multi-functional properties of coatings are enhanced by combining two different carbon fillers in the matrix. The aforementioned superhydrophobic coatings have shown high electrical conductivity and excellent droplet meniscus impalement resistance. Simultaneous superhydrophobic and oleophillic character of the above coating is used to separate mineral oil and water through filtration of their mixture. Swiss National Science Foundation (SNF) Grant 200021_135479.

  2. Water-Based Assembly of Polymer-Metal Organic Framework (MOF) Functional Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, Souvik; Nandasiri, Manjula I.; Schaef, Herbert T.

    Metal organic frameworks (MOFs) have gained tremendous attention for their porosity, size selectivity, and structural diversity. There is a need for MOF-based coatings, particularly in applications such as separations, electronics and energy; yet forming thin, functional, conformal coatings is prohibitive because MOFs exist as a powder. Layer-by- layer assembly, a versatile thin film coating approach, offers a unique solution to this problem, but this approach requires MOFs that are water-dispersible and bear a surface charge. Here, we address these issues by examining water-based dispersions of MIL-101(Cr) that facilitate the formation of robust polymer-MOF hybrid coatings. Specifically, the substrate to bemore » coated is alternately exposed to an aqueous solution of poly(styrene sulfonate) and dispersion MIL-101(Cr), yielding linear film growth and coatings with a MOF content as high as 77 wt%.This approach is surface-agnostic, in which the coating is successfully applied to silicon, glass, flexible plastic, and even cotton fabric, conformally coating individual fibers. In contrast, prior attempts at forming MOF-coatings were severely limited to a handful of surfaces, required harsh chemical treatment, and were not conformal. The approach presented here unambiguously confirms that MOFs can be conformally coated onto complex and unusual surfaces, opening the door for a wide variety of applications.« less

  3. A preliminary report on a novel electrospray technique for nanoparticle based biomedical implants coating: precision electrospraying.

    PubMed

    Kumbar, Sangamesh G; Bhattacharyya, Subhabrata; Sethuraman, Swaminathan; Laurencin, Cato T

    2007-04-01

    The compatibility and biological efficacy of biomedical implants can be enhanced by coating their surface with appropriate agents. For predictable functioning of implants in situ, it is often desirable to obtain an extremely uniform coating thickness without effects on component dimensions or functions. Conventional coating techniques require rigorous processing conditions and often have limited adhesion and composition properties. In the present study, the authors report a novel precision electrospraying technique that allows both degradable and nondegradable coatings to be placed. Thin metallic slabs, springs, and biodegradable sintered microsphere scaffolds were coated with poly(lactide-co-glycolide) (PLAGA) using this technique. The effects of process parameters such as coating material concentration and applied voltage were studied using PLAGA and poly(ethylene glycol) coatings. Morphologies of coated surfaces were qualitatively characterized by scanning electron microscopy. Qualitative observations suggested that the coatings were composed of particles of various size/shape and agglomerates with different porous architectures. PLAGA coatings of uniform thickness were observed on all surfaces. Spherical nanoparticle poly(ethylene glycol) coatings (462-930 nm) were observed at all concentrations studied. This study found that the precision electrospraying technique is elegant, rapid, and reproducible with precise control over coating thickness (mum to mm) and is a useful alternative method for surface modification of biomedical implants. (c) 2006 Wiley Periodicals, Inc.

  4. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO 2 nanoparticles

    DOE PAGES

    Schaeffer, Daniel A.; Polizos, Georgios; Smith, D. Barton; ...

    2015-01-09

    Optical surfaces such as mirrors and windows that are exposed to outdoor environmental conditions are susceptible to dust buildup and water condensation. The application of transparent superhydrophobic coatings on optical surfaces can improve outdoor performance via a self-cleaning effect similar to the Lotus effect. The contact angle (CA) of water droplets on a typical hydrophobic flat surface varies from 100° to 120°. Adding roughness or microtexture to a hydrophobic surface leads to an enhancement of hydrophobicity and the CA can be increased to a value in the range of 16≥0° to 175°. This result is remarkable because such behavior cannotmore » be explained using surface chemistry alone. When surface features are on the order of 100 nm or smaller, surfaces exhibit superhydrophobic behavior and maintain their optical transparency. In this work we discuss our results on transparent superhydrophobic coatings that can be applied across large surface areas. We have used functionalized silica nanoparticles to coat various optical elements and have measured the contact angle and optical transmission between 190 to 1100 nm on these elements. The functionalized silica nanoparticles were dissolved in a solution of the solvents isopropyl alcohol and 4-chlorobenzotrifluoride (PCBTF) and a proprietary ceramic binder (Cerakote ). Finally, this solution was spin-coated onto a variety of test glass substrates, and following a curing period of about 30 minutes, these coatings exhibited superhydrophobic behavior with a static CA ≥160°.« less

  5. Microstructural design of functionally graded coatings composed of suspension plasma sprayed hydroxyapatite and bioactive glass.

    PubMed

    Cattini, Andrea; Bellucci, Devis; Sola, Antonella; Pawłowski, Lech; Cannillo, Valeria

    2014-04-01

    Various bioactive glass/hydroxyapatite (HA) functional coatings were designed by the suspension plasma spraying (SPS) technique. Their microstructure, scratch resistance, and apatite-forming ability in a simulated body fluid (SBF) were compared. The functional coatings design included: (i) composite coating, that is, randomly distributed constituent phases; (ii) duplex coating with glass top layer onto HA layer; and (iii) graded coating with a gradual changing composition starting from pure HA at the interface with the metal substrate up to pure glass on the surface. The SPS was a suitable coating technique to produce all the coating designs. The SBF tests revealed that the presence of a pure glass layer on the working surface significantly improved the reactivity of the duplex and graded coatings, but the duplex coating suffered a relatively low scratch resistance because of residual stresses. The graded coating therefore provided the best compromise between mechanical reliability and apatite-forming ability in SBF. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 551-560, 2014. Copyright © 2013 Wiley Periodicals, Inc.

  6. Improving biocompatibility by surface modification techniques on implantable bioelectronics.

    PubMed

    Lin, Peter; Lin, Chii-Wann; Mansour, Raafat; Gu, Frank

    2013-09-15

    For implantable bioelectronic devices, the interface between the device and the biological environment requires significant attention as it dictates the device performance in vivo. Non-specific protein adsorption onto the device surface is the initial stage of many degradation mechanisms that will ultimately compromise the functionality of the device. In order to preserve the functionality of any implanted bioelectronics overtime, protein adsorption must be controlled. This review paper outlines two major approaches to minimize protein adsorption onto the surface of implantable electronics. The first approach is surface coating, which minimizes close proximity interactions between proteins and device surfaces by immobilizing electrically neutral hydrophilic polymers as surface coating. These coatings reduce protein fouling by steric repulsion and formation of a hydration layer which acts as both a physical and energetic barrier that minimize protein adsorption onto the device. Relevant performances of various conventional hydrophilic coatings are discussed. The second approach is surface patterning using arrays of hydrophobic nanostructures through photolithography techniques. By establishing a large slip length via super hydrophobic surfaces, the amount of proteins adsorbed to the surface of the device can be reduced. The last section discusses emerging surface coating techniques utilizing zwitterionic polymers where ultralow-biofouling surfaces have been demonstrated. These surface modification techniques may significantly improve the long-term functionality of implantable bioelectronics, thus allowing researchers to overcome challenges to diagnose and treat chronic neurological and cardiovascular diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Characterizations of the Formation of Polydopamine-Coated Halloysite Nanotubes in Various pH Environments.

    PubMed

    Feng, Junran; Fan, Hailong; Zha, Dao-An; Wang, Le; Jin, Zhaoxia

    2016-10-11

    Recent studies demonstrated that polydopamine (PDA) coating is universal to nearly all substrates, and it endows substrates with biocompatibility, postfunctionality, and other useful properties. Surface chemistry of PDA coating is important for its postmodifications and applications. However, there is less understanding of the formation mechanism and surface functional groups of PDA layers generated in different conditions. Halloysite is a kind of clay mineral with tubular nanostructure. Water-swellable halloysite has unique reactivity. In this study, we have investigated the reaction of dopamine in the presence of water-swellable halloysite. We have tracked the reaction progresses in different pH environments by using UV-vis spectroscopy and surface-enhanced Raman spectroscopy (SERS). The surface properties of PDA on halloysite were clarified by X-ray photoelectron spectroscopy (XPS), SERS, Fourier transform infrared (FTIR) characterizations, zeta potential, surface wettability, and morphological characterizations. We noticed that the interaction between halloysite surface and dopamine strongly influences the surface functionality of coated PDA. In addition, pH condition further modulates surface functional groups, resulting in less content of secondary/aromatic amine in PDA generated in weak acidic environment. This study demonstrates that the formation mechanism of polydopamine becomes complex in the presence of inorganic nanomaterials. Substrate property and reaction condition dominate the functionality of obtained PDA together.

  8. Control of hydroxyapatite coating by self-assembled monolayers on titanium and improvement of osteoblast adhesion.

    PubMed

    Shen, Juan; Qi, Yongcheng; Jin, Bo; Wang, Xiaoyan; Hu, Yamin; Jiang, Qiying

    2017-01-01

    Self-assembly technique was applied to introduce functional groups and form hydroxyl-, amine-, and carboxyl-terminal self-assembled monolayers (SAMs). The SAMs were grafted onto titanium substrates to obtain a molecularly smooth functional surface. Subsequent hydrothermal crystal growth formed homogeneous and crack-free crystalline hydroxyapatite (HA) coatings on these substrates. AFM and XPS were used to characterize the SAM surfaces, and XRD, SEM, and TEM were used to characterize the HA coatings. Results show that highly crystalline, dense, and oriented HA coatings can be formed on the OH-, NH 2 -, and COOH-SAM surfaces. The SAM surface with -COOH exhibited stronger nucleating ability than that with -OH and -NH 2 . The nucleation and growth processes of HA coatings were effectively controlled by varying reaction time, pH, and temperature. By using this method, highly crystalline, dense, and adherent HA coatings were obtained. In addition, in vitro cell evaluation demonstrated that HA coatings improved cell adhesion as compared with pristine titanium substrate. The proposed method is considerably effective in introducing the HA coatings on titanium surfaces for various biomedical applications and further usage in other industries. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 124-135, 2017. © 2015 Wiley Periodicals, Inc.

  9. Dual-Functional Polyethylene Glycol-b-polyhexanide Surface Coating with in Vitro and in Vivo Antimicrobial and Antifouling Activities.

    PubMed

    Zhi, Zelun; Su, Yajuan; Xi, Yuewei; Tian, Liang; Xu, Miao; Wang, Qianqian; Padidan, Sara; Li, Peng; Huang, Wei

    2017-03-29

    In recent years, microbial colonization on the surface of biomedical implants/devices has become a severe threat to human health. Herein, surface-immobilized guanidine derivative block copolymers create an antimicrobial and antifouling dual-functional coating. We report the preparation of an antimicrobial and antifouling block copolymer by the conjugation of polyhexanide (PHMB) with either allyl glycidyl ether or allyloxy polyethylene glycol (APEG; MW 1200 and 2400). The allyl glycidyl ether modified PHMB (A-PHMB) and allyloxy polyethylene glycol 1200/2400 modified PHMB (APEG 1200/2400 -PHMB) copolymers were grafted onto a silicone rubber surface as a bottlebrush-like coating, respectively, using a plasma-UV-assisted surface-initiated polymerization. Both A-PHMB and APEG 1200/2400 -PHMB coatings exhibited excellent broad-spectrum antimicrobial properties against Gram-negative/positive bacteria and fungi. The APEG 2400 -PHMB coating displayed an improved antibiofilm as well as antifouling properties and a long reusable cycle, compared with two other coatings, due to its abundant PEG blocks among those copolymers. Also, the APEG 2400 -PHMB-coated silicone coupons were biocompatible toward mammalian cells, as revealed by in vitro hemocompatibile and cytotoxic assays. An in vivo study showed a significant decline of Escherichia coli colonies with a 5-log reduction, indicating the APEG 2400 -PHMB coating surface worked effectively in the rodent subcutaneous infection model. This PHMB-based block copolymer coating is believed to be an effective strategy to prevent biomaterial-associated infections.

  10. Functionalization of Titanium with Chitosan via Silanation: Evaluation of Biological and Mechanical Performances

    PubMed Central

    Renoud, Pauline; Toury, Bérangère; Benayoun, Stéphane; Attik, Ghania; Grosgogeat, Brigitte

    2012-01-01

    Complications in dentistry and orthopaedic surgery are mainly induced by peri-implant bacterial infections and current implant devices do not prevent such infections. The coating of antibacterial molecules such as chitosan on its surface would give the implant bioactive properties. The major challenge of this type of coating is the attachment of chitosan to a metal substrate. In this study, we propose to investigate the functionalization of titanium with chitosan via a silanation. Firstly, the surface chemistry and mechanical properties of such coating were evaluated. We also verified if the coated chitosan retained its biocompatibility with the peri-implant cells, as well as its antibacterial properties. FTIR and Tof-SIMS analyses confirmed the presence of chitosan on the titanium surface. This coating showed great scratch resistance and was strongly adhesive to the substrate. These mechanical properties were consistent with an implantology application. The Chitosan-coated surfaces showed strong inhibition of Actinomyces naeslundii growth; they nonetheless showed a non significant inhibition against Porphyromonas gingivalis after 32 hours in liquid media. The chitosan-coating also demonstrated good biocompatibility to NIH3T3 fibroblasts. Thus this method of covalent coating provides a biocompatible material with improved bioactive properties. These results proved that covalent coating of chitosan has significant potential in biomedical device implantation. PMID:22859940

  11. Kinetic Migration of Diethylhexyl Phthalate in Functional PVC Films

    NASA Astrophysics Data System (ADS)

    Fei, Fei; Liu, Zhongwei; Chen, Qiang; Liu, Fuping

    2012-02-01

    Plasticizers that are generally used in plastics to produce flexible food packaging materials have proved to cause reproductive system problems and women's infertility. A long-term consumption may even cause cancer diseases. Hence a nano-scale layer, named as functional barrier layer, was deposited on the plastic surface to prevent plasticizer diethylhexyl phthalate's (DEHP) migration from plastics to foods. The feasibility of functional barrier layer i.e. SiOx coating through plasma enhanced chemical vapor deposition (PECVD) process was then described in this paper. We used Fourier transform infrared spectroscopy (FTIR) to analyze the chemical composition of coatings, scanning electron microscope (SEM) to explore the topography of the coating surfaces, surface profilemeter to measure thickness of coatings, and high-performance liquid chromatography (HPLC) to evaluate the barrier properties of coatings. The results have clearly shown that the coatings can perfectly block the migration of the DEHP from plastics to their containers. It is also concluded that process parameters significantly influence the block efficiency of the coatings. When the deposition conditions of SiOx coatings were optimized, i.e. 50 W of the discharge power, 4:1 of ratio of O2: HMDSO, and ca.100 nm thickness of SiOx, 71.2% of the DEHP was effectively blocked.

  12. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    NASA Astrophysics Data System (ADS)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  13. Ultraviolet and visible BRDF data on spacecraft thermal control and optical baffle materials

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Predmore, R. E.

    1987-01-01

    Bidirectional scattering functions of numerous optical baffle materials and of spacecraft thermal control coatings and surfaces are presented. Measurements were made at 254 nm and at 633 nm. The coatings and surfaces include high-reflectance white paints, low-reflectance optical blacks, thermal control blankets, and various conversion coatings on aluminum.

  14. Thiol-reactive amphiphilic block copolymer for coating gold nanoparticles with neutral and functionable surfaces

    PubMed Central

    Chen, Hongwei; Zou, Hao; Paholak, Hayley J.; Ito, Masayuki; Qian, Wei; Che, Yong; Sun, Duxin

    2014-01-01

    Nanoparticles designed for biomedical applications are often coated with polymers containing reactive functional groups, such as –COOH and –NH2, to conjugate targeting ligands or drugs. However, introducing highly charged surfaces promotes binding of the nanoparticles to biomolecules in biological systems through ionic interactions, causing the nanoparticles to aggregate in biological environments and consequently undergo strong non-specific binding to off-target cells and tissues. Developing a unique polymer with neutral surfaces that can be further functionalized directly would be critical to develop suitable nanomaterials for nanomedicine. Here, we report a thiol-reactive amphiphilic block copolymer poly(ethylene oxide)-block-poly(pyridyldisulfide ethylmeth acrylate) (PEO-b-PPDSM) for coating gold nanoparticles (AuNPs). The resultant polymer-coated AuNPs have almost neutral surfaces with slightly negative zeta potentials from -10 to 0 mV over a wide pH range from 2 to 12. Although the zeta potential is close to zero we show that the PEO-b-PPDSM copolymer-coated AuNPs have both good stability in various physiological conditions and reduced non-specific adsorption of proteins/biomolecules. Because of the multiple pyridyldisulfide groups on the PPDSM block, these individually dispersed nanocomplexes with an overall hydrodynamic size around 43.8 nm can be directly functionalized via disulfide-thiol exchange chemistry. PMID:24729795

  15. Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption

    PubMed Central

    2015-01-01

    Coating surfaces with thin or thick films of zwitterionic material is an effective way to reduce or eliminate nonspecific adsorption to the solid/liquid interface. This review tracks the various approaches to zwitteration, such as monolayer assemblies and polymeric brush coatings, on micro- to macroscopic surfaces. A critical summary of the mechanisms responsible for antifouling shows how zwitterions are ideally suited to this task. PMID:24754399

  16. Controllable preparation of a nano-hydroxyapatite coating on carbon fibers by electrochemical deposition and chemical treatment.

    PubMed

    Wang, Xudong; Zhao, Xueni; Wang, Wanying; Zhang, Jing; Zhang, Li; He, Fuzhen; Yang, Jianjun

    2016-06-01

    A nano-hydroxyapatite (HA) coating with appropriate thickness and morphology similar to that of human bone tissue was directly prepared onto the surfaces of carbon fibers (CFs). A mixed solution of nitric acid, hydrochloric acid, sulfuric acid, and hydrogen peroxide (NHSH) was used in the preparation process. The coating was fabricated by combining NHSH treatment and electrochemical deposition (ECD). NHSH treatment is easy to operate, produces rapid reaction, and highly effective. This method was first used to induce the nucleation and growth of HA crystals on the CF surfaces. Numerous O-containing functional groups, such as hydroxyl (-OH) and carboxyl (-COOH) groups, were grafted onto the CF surfaces by NHSH treatment (NHSH-CFs); as such, the amounts of these groups on the functionalized CFs increased by nearly 8- and 12-fold, respectively, compared with those on untreated CFs. After treatment, the NHSH-CFs not only acquired larger specific surface areas but retained surfaces free from serious corrosion or breakage. Hence, NHSH-CFs are ideal depositional substrates of HA coating during ECD. ECD was successfully used to prepare a nano-rod-like HA coating on the NHSH-CF surfaces. The elemental composition, structure, and morphology of the HA coating were effectively controlled by adjusting various technological parameters, such as the current density, deposition time, and temperature. The average central diameter of HA crystals and the coating density increased with increasing deposition time. The average central diameter of most HA crystals on the NHSH-CFs varied from approximately 60 nm to 210 nm as the deposition time increased from 60 min to 180 min. Further studies on a possible deposition mechanism revealed that numerous O-containing functional groups on the NHSH-CF surfaces could associate with electrolyte ions (Ca(2+)) to form special chemical bonds. These bonds can induce HA coating deposition and improve the interfacial bonding strength between the HA coating and NHCH-CFs. The results of this study and the proposed preparation of uniform and dense nano-HA coating provide theoretical and practical guidance for future investigations of active HA coatings on fiber materials for medical products and implants. This work also lays the foundation for the wider use of HA-coated CFs/HA composite implants in clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Electrophoretic deposition of tetracycline modified silk fibroin coatings for functionalization of titanium surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Qu, Yinying; Li, Xiaoshuang; Zhang, Sheng; Wei, Qingsong; Shi, Yusheng; Chen, Lili

    2014-06-01

    Electrophoretic deposition has been widely used for the fabrication of functional coatings onto metal implant. A characteristic feature of this process is that positively charged materials migrate toward the cathode and can deposit on it. In this study, silk fibroin was decorated with tetracycline in aqueous solution to impart positive charge, and then deposited on negatively titanium cathode under certain electric field. The characterization of the obtained coatings indicated that the intermolecular hydrogen bonds formed between the backbone of silk fibroin and tetracycline molecular. In vitro biological tests demonstrated that osteoblast-like cells achieved acceptable cell affinity on the tetracycline cross-linked silk fibroin coatings, although greater cell viability was seen on pure silk fibroin coatings. The cationic silk fibroin coatings showed remarkable antibacterial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. Therefore, we concluded that electrophoretic deposition was an effective and efficient technique to prepare cationic silk fibroin coatings on the titanium surface and that cationic silk fibroin coatings with acceptable biocompatibility and antibacterial property were promising candidates for further loading of functional agents.

  18. Effect of photocatalytic and hydrophobic coatings on brewery surface microorganisms.

    PubMed

    Priha, O; Laakso, J; Tapani, K; Levänen, E; Kolari, M; Mäntylä, T; Storgårds, E

    2011-11-01

    The aim of this study was to determine whether process hygiene in the beverage industry could be improved by applying new coating techniques to process surfaces. Photocatalytic titanium dioxide (TiO(2)) and hydrophobic coatings applied to stainless steel with or without added antimicrobial compounds were studied in laboratory attachment tests and in a 15-month process study. No clear reductions in numbers of attached microbes were obtained with photocatalytic coatings, except for coatings to which silver had been added. These TiO(2)+Ag coatings reduced microbial coverage in laboratory studies and in some process samples. Hydrophobic coatings reduced the area coverage of microorganisms in 4-h laboratory studies but did not affect colony counts in laboratory or process studies. The surfaces had changed from hydrophobic into hydrophilic during the process study. The coatings did not mechanically fully withstand process conditions; part of the hydrophobic coatings had peeled off, most of the precipitated Ag had dissolved, and some of the TiO(2) coatings were damaged. In conclusion, functional coatings have potential for reducing microbial loads on beverage industry surfaces, but these coatings need further development.

  19. Cathodic Polarization Coats Titanium Based Implant Materials with Enamel Matrix Derivate (EMD)

    PubMed Central

    Frank, Matthias J.; Walter, Martin S.; Rubert, Marina; Thiede, Bernd; Monjo, Marta; Reseland, Janne E.; Haugen, Håvard J.; Lyngstadaas, Ståle Petter

    2014-01-01

    The idea of a bioactive surface coating that enhances bone healing and bone growth is a strong focus of on-going research for bone implant materials. Enamel matrix derivate (EMD) is well documented to support bone regeneration and activates growth of mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. The aim of this study was to show that cathodic polarization can be used for coating commercially available implant surfaces with an immobilized but functional and bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on the surface while SIMS showed incorporation of EMD into the surface. The hydride layer of the original surface could be activated for coating in an integrated one-step process that did not require any pre-treatment of the surface. SEM images showed nano-spheres and nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness remained unchanged after coating, as it was shown by optical profilometry. The mass peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis confirmed the integrity of EMD after coating. Assessment of the bioavailability suggested that the modified surfaces were active for osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and ALP activity. PMID:28788564

  20. Adjustment of surface chemical and physical properties with functionalized polymers to control cell adhesion

    NASA Astrophysics Data System (ADS)

    Zhou, Zhaoli

    Cell-surface interaction is crucial in many cellular functions such as movement, growth, differentiation, proliferation and survival. In the present work, we have developed several strategies to design and prepare synthetic polymeric materials with selected cues to control cell attachment. To promote neuronal cell adhesion on the surfaces, biocompatible, non-adhesive PEG-based materials were modified with neurotransmitter acetylcholine functionalities to produce hydrogels with a range of porous structures, swollen states, and mechanical strengths. Mice hippocampal cells cultured on the hydrogels showed differences in number, length of processes and exhibited different survival rates, thereby highlighting the importance of chemical composition and structure in biomaterials. Similar strategies were used to prepare polymer brushes to assess how topographical cues influence neuronal cell behaviors. The brushes were prepared using the "grown from" method through surface-initiated atom transfer radical polymerization (SI-ATRP) reactions and further patterned via UV photolithography. Protein absorption tests and hippocampal neuronal cell culture of the brush patterns showed that both protein and neuronal cells can adhere to the patterns and therefore can be guided by the patterns at certain length scales. We also prepared functional polymers to discourage attachment of undesirable cells on the surfaces. For example, we synthesized PEG-perfluorinated alkyl amphiphilic surfactants to modify polystyrene-block-poly(ethylene-ran-butylene)- block-polyisoprene (SEBI or K3) triblock copolymers for marine antifouling/fouling release surface coatings. Initial results showed that the polymer coated surfaces can facilitate removal of Ulva sporelings on the surfaces. In addition, we prepared both bioactive and dual functional biopassive/bioactive antimicrobial coatings based on SEBI polymers. Incubating the polymer coated surfaces with gram-positive bacteria (S. aureus), gram-negative bacteria (E. coli) and marine bacteria (C. marina ) species demonstrated that, unlike biopassive surfaces, the dual functionality polymer coated surfaces can significantly reduce both live and dead cells, without killing the cells in the culture media. The knowledge gained from those studies offers opportunities for further modification and potential applications of those types of polymers in the future.

  1. CO2 adsorption on modified carbon coated monolith: effect of surface modification by using alkaline solutions

    NASA Astrophysics Data System (ADS)

    Hosseini, Soraya; Marahel, Ehsan; Bayesti, Iman; Abbasi, Ali; Chuah Abdullah, L.; Choong, Thomas S. Y.

    2015-01-01

    A monolithic column was used to study the feasibility of modified carbon-coated monolith for recovery of CO2 from gaseous mixtures (He/CO2) in a variety of operating conditions. Carbon-coated monolith was prepared by dip-coating method and modified by two alkaline solutions, i.e. NH3 and KOH. The surface properties of the carbon-coated monolith were altered by functional groups via KOH and NH3 treatments. The comparative study of CO2 uptake by two different adsorbents, i.e. unmodified and modified carbon-coated monolith, demonstrated that the applied modification process had improved CO2 adsorption. The presence of nitrogen- and oxygen-containing functional groups on the surface of the carbon led to an improved level of microporosity on the synthesized carbon-coated monolith. The physical parameters such as higher surface area, lower pore diameter, and larger micropore volume of modified monoliths indicated direct influence on the adsorbed amount of CO2. In the present study, the Deactivation Model is applied to analyze the breakthrough curves. The adsorption capacity increased with an increase in pressure and concentration, while a reduction of CO2 adsorption capacity was occurred with increase in temperature. Ammonia (NH3) and potassium hydroxide (KOH)-modified carbon-coated monolith showed an increase of approximately 12 and 27% in CO2 adsorption, respectively, as compared to unmodified carbon-coated monolith.

  2. Urea functionalized surface-bonded sol-gel coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography.

    PubMed

    Jillani, Shehzada Muhammad Sajid; Alhooshani, Khalid

    2018-03-30

    Sol-gel urea functionalized-[bis(hydroxyethyl)amine] terminated polydimethylsiloxane coating was developed for capillary microextraction-high performance liquid chromatographic analysis from aqueous samples. A fused silica capillary is coated from the inside with surface bonded coating material and is created through in-situ sol-gel reaction. The urea-functionalized coating was immobilized to the inner surface of the capillary by the condensation reaction of silanol groups of capillary and sol-solution. The characterization of the coating material was successfully done by using X-ray photoelectron spectroscopy, thermogravimetric analysis, field emission scanning electron microscope, and energy dispersive X-ray spectrometer. To make a setup of online capillary microextraction-high performance liquid chromatography, the urea functionalized capillary was installed in the HPLC manual injection port. The analytes of interest were pre-concentrated in the coated sampling loop, desorbed by the mobile phase, chromatographically separated on C-18 column, and analyzed by UV detector. Sol-gel coated capillaries were used for online extraction and high-performance liquid chromatographic analysis of phenols, ketones, aldehydes, and polyaromatic hydrocarbons. This newly developed coating showed excellent extraction for a variety of analytes ranging from highly polar to non-polar in nature. The analysis using sol-gel coating showed excellent overall sensitivity in terms of lower detection limits (S/N = 3) for the analytes (0.10 ng mL -1 -14.29 ng mL -1 ) with acceptable reproducibility that is less than 12.0%RSD (n = 3). Moreover, the capillary to capillary reproducibility of the analysis was also tested by changing the capillary of the same size. This provided excellent%RSD of less than 10.0% (n = 3). Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Comparison of self-cleaning properties of three titania coatings on float glass

    NASA Astrophysics Data System (ADS)

    Piispanen, Minna; Hupa, Leena

    2011-11-01

    This work compares the self-cleaning properties of experimental TiO2 and TiO2-Ag coatings on float glass with a commercial self-cleaning glass. In the experimental surfaces, TiO2 coating was applied to float glass via the sol-gel route, while TiO2-Ag coating was applied by the liquid flame spray method, which deposits TiO2-Ag composite nanoparticles on the surface. The effect of the coatings on the surface wettability and the activation time for achieving hydrophilicity was studied through water contact angle as a function of exposure time to UV light. The surface morphology was investigated by using scanning electron microscopy (SEM) and confocal optical microscopy. The photocatalytic activity of the coatings was examined with methylene blue and stearic acid degradation tests. Finally, the soil attachment to the surfaces was tested with a sebum-based model soil. The sol-gel TiO2 coating became superhydrophilic within a few hours, while the activation time needed for the commercial titania coated glass was several days. The surface with the TiO2-Ag nanoparticles did not show any marked changes in the water contact angle. The commercial titania coated and the sol-gel TiO2 surfaces showed self-cleaning properties and clearly lower attachment of soil than the uncoated and TiO2-Ag coated surfaces. The difference in the interaction of the surfaces with the organic contaminants was assumed to depend mainly on differences in the thickness of the coatings.

  4. Multifunctional mussel-inspired copolymerized epigallocatechin gallate (EGCG)/arginine coating: the potential as an ad-layer for vascular materials.

    PubMed

    Luo, Rifang; Tang, Linlin; Xie, Lingxia; Wang, Jin; Huang, Nan; Wang, Yunbing

    2016-12-01

    Surface properties are considered to be important factors in addressing proper functionalities. In this paper, a multifunctional mussel-inspired coating was prepared via the direct copolymerization of epigallocatechin gallate (EGCG) and arginine. The coating formation was confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectra. The EGCG/arginine coating contained diverse functional groups like amines, phenols and carboxyls, whose densities were also tunable. Such mussel-inspired coating could also be applied as an ad-layer for its secondary reactivity, demonstrated by quartz crystal microbalance technique. Moreover, the tunable surface density of phenols showed potential ability in modulating endothelial cell and smooth muscle cell viability. The coatings rich in phenols presented excellent free radical scavenging property. Current results strongly indicated the potential of EGCG/arginine coatings to be applied as an ad-layer for vascular materials.

  5. Coating thickness affects surface stress measurement of brush electro-plating nickel coating using Rayleigh wave approach.

    PubMed

    Liu, Bin; Dong, Shiyun; Xu, Binshi; He, Peng

    2012-09-01

    A surface ultrasonic wave approach was presented for measuring surface stress of brush electro-plating nickel coating specimen, and the influence of coating thickness on surface stress measurement was discussed. In this research, two Rayleigh wave transducers with 5MHz frequency were employed to collect Rayleigh wave signals of coating specimen with different static tensile stresses and different coating thickness. The difference in time of flight between two Rayleigh wave signals was determined based on normalized cross correlation function. The influence of stress on propagation velocity of Rayleigh wave and the relationship between the difference in time of flight and tensile stress that corresponded to different coating thickness were discussed. Results indicate that inhomogeneous deformation of coating affects the relationship between the difference in time of flight and tensile stress, velocity of Rayleigh wave propagating in coating specimen increases with coating thickness increasing, and the variation rate reduces of difference in time of flight with tensile stress increasing as coating thickness increases. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Method for non-destructive evaluation of ceramic coatings

    DOEpatents

    Peterson, Kristen A.; Rosen, Elias P.; Jordan, Eric H.; Shahbazmohamadi, Sina; Vakhtin, Andrei B.

    2016-11-08

    A method for evaluating the condition of a ceramic coating deposited on a substrate comprising illuminating the ceramic coating with light, measuring the intensity of light returned from the ceramic coating as function of depth in the coating and transverse position on the coating, and analyzing the measured light intensities to obtain one or more of intensity of the light returned from the exposed coating surface relative to the intensity of light returned from the coating/substrate interface, intensity of the light returned from the coating/substrate interface relative to the intensity of light returned from the bulk of the ceramic coating, determination of roughness at the exposed surface of the ceramic coating, and determination of roughness of the interface between the ceramic coating and underlying bond coat or substrate.

  7. Octadecyltrimethoxysilane functionalized ZnO nanorods as a novel coating for solid-phase microextraction with strong hydrophobic surface.

    PubMed

    Zeng, Jingbin; Liu, Haihong; Chen, Jinmei; Huang, Jianli; Yu, Jianfeng; Wang, Yiru; Chen, Xi

    2012-09-21

    In this paper, we have, for the first time, proposed an approach by combining self-assembled monolayers (SAMs) and nanomaterials (NMs) for the preparation of novel solid-phase microextraction (SPME) coatings. The self-assembly of octadecyltrimethoxysilane (OTMS) on the surface of ZnO nanorods (ZNRs) was selected as a model system to demonstrate the feasibility of this approach. The functionalization of OTMS on the surface of ZNRs was characterized and confirmed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The OTMS-ZNRs coated fiber exhibited stronger hydrophobicity after functionalization, and its extraction efficiency for non-polar benzene homologues was increased by a factor of 1.5-3.6 when compared to a ZNRs fiber with almost identical thickness and façade. In contrast, the extraction efficiency of the OTMS-ZNRs coated fiber for polar aldehydes was 1.6-4.0-fold lower than that of the ZNRs coated fiber, further indicating its enhanced surface hydrophobicity. The OTMS-ZNRs coated fiber revealed a much higher capacity upon increasing the OTMS layer thickness to 5 μm, leading to a factor of 12.0-13.4 and 1.8-2.5 increase in extraction efficiency for the benzene homologues relative to a ZNRs coated fiber and a commercial PDMS fiber, respectively. The developed HS-SPME-GC method using the OTMS-ZNRs coated fiber was successfully applied to the determination of the benzene homologues in limnetic water samples with recovery ranging from 83 to 113% and relative standard deviations (RSDs) of less than 8%.

  8. High efficiency protein separation with organosilane assembled silica coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ho; Kang, Ki Ho; Choi, Jinsub; Jeong, Young Keun

    2008-10-01

    This work describes the development of high efficiency protein separation with functionalized organosilanes on the surface of silica coated magnetic nanoparticles. The magnetic nanoparticles were synthesized with average particle size of 9 nm and silica coated magnetic nanoparticles were obtained by controlling the coating thicknesses on magnetic nanoparticles. The silica coating thickness could be uniformly sized with a diameter of 10-40 nm by a sol-gel approach. The surface modification was performed with four kinds of functionalized organosilanes such as carboxyl, aldehyde, amine, and thiol groups. The protein separation work with organosilane assembled silica coated magnetic nanoparticles was achieved for model proteins such as bovine serum albumin (BSA) and lysozyme (LSZ) at different pH conditions. Among the various functionalities, the thiol group showed good separation efficiency due to the change of electrostatic interactions and protein conformational structure. The adsorption efficiency of BSA and LSZ was up to 74% and 90% corresponding pH 4.65 and pH 11.

  9. Flagellin based biomimetic coatings: From cell-repellent surfaces to highly adhesive coatings.

    PubMed

    Kovacs, Boglarka; Patko, Daniel; Szekacs, Inna; Orgovan, Norbert; Kurunczi, Sandor; Sulyok, Attila; Khanh, Nguyen Quoc; Toth, Balazs; Vonderviszt, Ferenc; Horvath, Robert

    2016-09-15

    Biomimetic coatings with cell-adhesion-regulating functionalities are intensively researched today. For example, cell-based biosensing for drug development, biomedical implants, and tissue engineering require that the surface adhesion of living cells is well controlled. Recently, we have shown that the bacterial flagellar protein, flagellin, adsorbs through its terminal segments to hydrophobic surfaces, forming an oriented monolayer and exposing its variable D3 domain to the solution. Here, we hypothesized that this nanostructured layer is highly cell-repellent since it mimics the surface of the flagellar filaments. Moreover, we proposed flagellin as a carrier molecule to display the cell-adhesive RGD (Arg-Gly-Asp) peptide sequence and induce cell adhesion on the coated surface. The D3 domain of flagellin was replaced with one or more RGD motifs linked by various oligopeptides modulating flexibility and accessibility of the inserted segment. The obtained flagellin variants were applied to create surface coatings inducing cell adhesion and spreading to different levels, while wild-type flagellin was shown to form a surface layer with strong anti-adhesive properties. As reference surfaces synthetic polymers were applied which have anti-adhesive (PLL-g-PEG poly(l-lysine)-graft-poly(ethylene glycol)) or adhesion inducing properties (RGD-functionalized PLL-g-PEG). Quantitative adhesion data was obtained by employing optical biochips and microscopy. Cell-adhesion-regulating coatings can be simply formed on hydrophobic surfaces by using the developed flagellin-based constructs. The developed novel RGD-displaying flagellin variants can be easily obtained by bacterial production and can serve as alternatives to create cell-adhesion-regulating biomimetic coatings. In the present work, we show for the first time that. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Epoxy composites coating with Fe3O4 decorated graphene oxide: Modified bio-inspired surface chemistry, synergistic effect and improved anti-corrosion performance

    NASA Astrophysics Data System (ADS)

    Zhan, Yingqing; Zhang, Jieming; Wan, Xinyi; Long, Zhihang; He, Shuangjiang; He, Yi

    2018-04-01

    To obtain graphene or graphene derivatives based epoxy composite coatings with high anti-corrosion performance, the morphology of nanostructures, dispersion, and interfacial adhesion are key factors that need to be considered. We here demonstrated the bio-inspired co-modification of graphene oxide/Fe3O4 hybrid (GO-Fe3O4@ poly (DA+KH550)) and its synergistic effect on the anti-corrosion performance of epoxy coating. For this purpose, graphene oxide/Fe3O4 hybrid obtained from hydrothermal route was modified by self-polymerization between dopamine and secondary functional monomer (KH550), which led to the modified bio-inspired surface functionalization. This novel modified bio-inspired functionalization was quite distinct from conventional surface modification or decoration. Namely, abundant amino groups were introduced by modified bio-inspired functionalization, which allowed the graphene oxide/Fe3O4 hybrid to disperse well in epoxy resin and enhanced the interfacial adhesion between modified nanofiller and epoxy resin through chemical crosslinking reaction. The electrochemical impedance spectroscopy (EIS) test revealed that anti-corrosive performance of epoxy coatings was significantly enhanced by addition of 0.5 wt% modified bio-inspired functionalized GO-Fe3O4 hybrid compared with neat epoxy and other nanofillers/epoxy composite coatings. Moreover, the micro-hardness of epoxy coating was enhanced by 71.8% compared with pure epoxy coating at the same loading content. In addition, the anticorrosion mechanism of GO-Fe3O4@poly (DA+KH550) was tentatively discussed.

  11. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    DOEpatents

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  12. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    DOEpatents

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  13. Surface chemical analysis and ab initio investigations of CsI coated C fiber cathodes for high power microwave sources

    NASA Astrophysics Data System (ADS)

    Vlahos, Vasilios; Morgan, Dane; LaCour, Matthew; Golby, Ken; Shiffler, Don; Booske, John H.

    2010-02-01

    CsI coated C fiber cathodes are promising electron emitters utilized in field emission applications. Ab initio calculations, in conjunction with experimental investigations on CsI-spray coated C fiber cathodes, were performed in order to better understand the origin of the low turn-on E-field obtained, as compared to uncoated C fibers. One possible mechanism for lowering the turn-on E-field is surface dipole layers reducing the work function. Ab initio modeling revealed that surface monolayers of Cs, CsI, Cs2O, and CsO are all capable of producing low work function C fiber cathodes (1 eV<Φ<1.5 eV), yielding a reduction in the turn-on E-field by as much as ten times, when compared to the bare fiber. Although a CsI-containing aqueous solution is spray deposited on the C fiber surface, energy dispersive x-ray spectroscopy and scanning auger microscopy measurements show coabsorption of Cs and I into the fiber interior and Cs and O on the fiber surface, with no surface I. It is therefore proposed that a cesium oxide (CsxOy) surface coating is responsible, at least in part, for the low turn E-field and superior emission characteristics of this type of fiber cathode. This CsxOy layer could be formed during preconditioning heating. CsxOy surface layers cannot only lower the fiber work function by the formation of surface dipoles (if they are thin enough) but may also enhance surface emission through their ability to emit secondary electrons due to a process of grazing electron impact. These multiple electron emission processes may explain the reported 10-100 fold reduction in the turn-on E-field of coated C fibers.

  14. Molecular basis of crystal morphology-dependent adhesion behavior of mefenamic acid during tableting.

    PubMed

    Waknis, Vrushali; Chu, Elza; Schlam, Roxana; Sidorenko, Alexander; Badawy, Sherif; Yin, Shawn; Narang, Ajit S

    2014-01-01

    The molecular basis of crystal surface adhesion leading to sticking was investigated by exploring the correlation of crystal adhesion to oxidized iron coated atomic force microscope (AFM) tips and bulk powder sticking behavior during tableting of two morphologically different crystals of a model drug, mefenamic acid (MA), to differences in their surface functional group orientation and energy. MA was recrystallized into two morphologies (plates and needles) of the same crystalline form. Crystal adhesion to oxidized iron coated AFM tips and bulk powder sticking to tablet punches was assessed using a direct compression formulation. Surface functional group orientation and energies on crystal faces were modeled using Accelrys Material Studio software. Needle-shaped morphology showed higher sticking tendency than plates despite similar particle size. This correlated with higher crystal surface adhesion of needle-shaped morphology to oxidized iron coated AFM probe tips, and greater surface energy and exposure of polar functional groups. Higher surface exposure of polar functional groups correlates with higher tendency to stick to metal surfaces and AFM tips, indicating involvement of specific polar interactions in the adhesion behavior. In addition, an AFM method is identified to prospectively assess the risk of sticking during the early stages of drug development.

  15. Hydrophobic Surface Modification of Silk Fabric Using Plasma-Polymerized Hmdso

    NASA Astrophysics Data System (ADS)

    Rani, K. Vinisha; Chandwani, Nisha; Kikani, Purvi; Nema, S. K.; Sarma, Arun Kumar; Sarma, Bornali

    In this work, we study the hydrophobic properties of silk fabrics by deposition of plasma-polymerized (pp) hexamethyldisiloxane (HMDSO) using low-pressure plasma-enhanced chemical vapor deposition. Recently, hydrophobic properties are under active research in textile industry. The effects of coating time and power on the HMDSO-coated silk fabrics are investigated. Water contact angle of pp-HMDSO-coated silk fabric surface is measured as a function of power and coating time. Fabric surface shows an enhancement in hydrophobicity after coating. Attenuated total reflectance-Fourier transform infrared spectroscopy reveals the surface chemistry, and scanning electron microscopy shows the surface morphology of the uncoated and HMDSO-coated fabrics, respectively. In the case of uncoated fabric, water droplet absorbs swiftly, whereas in the case of HMDSO-coated fabric, water droplet remains on the fabric surface with a maximum contact angle of 140∘. The HMDSO-deposited silk surface is found to be durable after detergent washing. Common stains such as ink, tea, milk, turmeric and orange juice are tested on the surface of both fabrics. In HMDSO-coated fabrics, all the stains are bedded like ball droplet. In order to study the self-cleaning property, the fabric is tilted to 45∘ angle; stain droplets easily roll off from the fabric.

  16. Preparation and characterization of polymeric nanocomposite films for application as protective coatings

    NASA Astrophysics Data System (ADS)

    Gagliardi, S.; Rondino, F.; D'Erme, C.; Persia, F.; Menchini, F.; Santarelli, M. L.; Paulke, B.-R.; Enayati, A. L.; Falconieri, M.

    2017-08-01

    Addiction of ceramic nanoparticles to acrylic polymers provides a simple and effective means to produce paints with important properties, such as mechanical resistance and tailored wettability, even though for optimal performances, an engineered nanoparticle distribution would be desirable. In this paper we report on the realization and on the morphological and functional characterization of nanocomposites where the nanophase is distributed on the surface of acrylic polymer films, in order to enhance the expression of surface-related properties. To this aim, commercial titanium oxide and silicon oxide nanopowders were dispersed in water and the suspensions were air-sprayed on polymeric films prepared by paint brushing, thus producing a nanostructured ceramic surface coating. Control of the pH of suspensions and acrylic acid functionalization of the surface of titania were used together with high power ultrasonic treatments in order to control dimension of the aggregates in the sprayed suspensions. Optical microscopy, mechanical profilometry, and atomic force microscopy were used to characterize the nanocomposite surface morphology and correlate it to the coating functional properties, evaluated through mechanical abrasion tests and contact angle measurements; also, colorimetry on coated stones was performed in order to test the impact of the coatings on the aesthetical appearance and their photostability under UV irradiation. Results show that the nanostructured ceramic layer slightly improves the resistance of coatings to mechanical abrasion in case of polymer films prepared from latexes. The nanocomposite surface layer does not affect the wettability of the polymer, which remained slightly hydrophilic; this behavior is likely due to inadequate distribution of the nanophase. On the other hand UV-induced superhydrophilicity was observed when the concentration of surface titania nanoparticles is about 0.6 mg/cm2. Colorimetric analysis on historical and Carrara marbles before and after coating evidenced the good transparency of the nanocomposites. Accelerated aging tests permitted to demonstrate that, on the historical marbles, the presence of the nanoparticles has a protective action against UV-induced damage of the underlying polymer film, preventing photodegradation.

  17. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique.

    PubMed

    Zheng, Yanyan; Xiong, Chengdong; Zhang, Shenglan; Li, Xiaoyu; Zhang, Lifang

    2015-10-01

    Poly(etheretherketone) (PEEK) is a rigid semi-crystalline polymer with outstanding mechanical properties, bone-like stiffness and suitable biocompatibility that has attracted much interest as a biomaterial for orthopedic and dental implants. However, the bio-inert surface of PEEK limits its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, -PO4H2, -COOH and -OH groups were introduced on the PEEK surface by further chemical treatments of the vinyl-terminated silanization layers formed on the hydroxylation-pretreated PEEK surface. Both the surface-functionalized and pristine specimens were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and water contact angle measurements. When placed in 1.5 strength simulated body fluid (SBF) solution, apatite was observed to form uniformly on the functionalized PEEK surface and firmly attach to the substrate. The characterized results demonstrated that the coating was constituted by poorly crystallized bone-like apatite and the effect of surface functional groups on coating formation was also discussed in detail. In addition, in vitro biocompatibility of PEEK, in terms of pre-osteoblast cell (MC3T3-E1) attachment, spreading and proliferation, was remarkably enhanced by the bone-like apatite coating. Thus, this study provides a method to enhance the bioactivity of PEEK and expand its applications in orthopedic and dental implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricant Diamond Films and Coatings. Chapter 10

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This chapter describes three studies on the surface design, surface engineering, and tribology of chemical-vapor-deposited (CVD) diamond films and coatings toward wear-resistant, self-lubricating diamond films and coatings. Friction mechanisms and solid lubrication mechanisms of CVD diamond are stated. Effects of an amorphous hydrogenated carbon on CVD diamond, an amorphous, nondiamond carbon surface layer formed on CVD diamond by carbon and nitrogen ion implantation, and a materials combination of cubic boron nitride and CVD diamond on the adhesion, friction, and wear behaviors of CVD diamond in ultrahigh vacuum are described. How surface modification and the selected materials couple improved the tribological functionality of coatings, giving low coefficient of friction and good wear resistance, is explained.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, Daniel A.; Polizos, Georgios; Smith, D. Barton

    Optical surfaces such as mirrors and windows that are exposed to outdoor environmental conditions are susceptible to dust buildup and water condensation. The application of transparent superhydrophobic coatings on optical surfaces can improve outdoor performance via a self-cleaning effect similar to the Lotus effect. The contact angle (CA) of water droplets on a typical hydrophobic flat surface varies from 100° to 120°. Adding roughness or microtexture to a hydrophobic surface leads to an enhancement of hydrophobicity and the CA can be increased to a value in the range of 16≥0° to 175°. This result is remarkable because such behavior cannotmore » be explained using surface chemistry alone. When surface features are on the order of 100 nm or smaller, surfaces exhibit superhydrophobic behavior and maintain their optical transparency. In this work we discuss our results on transparent superhydrophobic coatings that can be applied across large surface areas. We have used functionalized silica nanoparticles to coat various optical elements and have measured the contact angle and optical transmission between 190 to 1100 nm on these elements. The functionalized silica nanoparticles were dissolved in a solution of the solvents isopropyl alcohol and 4-chlorobenzotrifluoride (PCBTF) and a proprietary ceramic binder (Cerakote ). Finally, this solution was spin-coated onto a variety of test glass substrates, and following a curing period of about 30 minutes, these coatings exhibited superhydrophobic behavior with a static CA ≥160°.« less

  20. Use of quartz crystal nanobalance to study the binding and stabilization of albumin and doxycycline on a thin layer of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Victor, Sunita Prem; Sharma, Chandra P.; Sreenivasan, K.

    2011-12-01

    This study reports the use of quartz crystal nanobalance (QCN) to study the adsorption of two model molecules namely albumin and doxycycline by hydroxyapatite (HA). The work focuses on the deposition of a stable coating of HA on the quartz crystal, modification of the coating using doxycycline and its subsequent effects on albumin adsorption. The uniformity and thickness of the HA coating has been studied using atomic force microscopy (AFM). The functional groups to ascertain the presence of the selected moieties have been characterized by Raman spectroscopy. The results indicate that the mass of albumin deposited on the surface of the HA coated quartz crystal functionalized with doxycycline shows a substantial increase when compared to the standard HA coated quartz crystal. The adsorbed albumin has also been found to be retained for an enhanced period of time. This surface immobilization of doxycycline and subsequent albumin adsorption seem to be a promising approach to confer biomaterials with antithrombogenic and antibacterial surfaces.

  1. Fundamental Degradation Mechanisms of Multi-Functional Nanoengineered Surfaces

    DTIC Science & Technology

    2018-04-08

    surface tension fluids with widely used lubricants for designing LIS. We considered a wide range of low surface tension fluids (12 to 48 mN/m) and...selection in designing stable LIS for the low surface tension fluids. Lastly, using steady state condensation experiments, we show that polymeric...polymeric coating to the high surface energy substrate and mechanical delamination of the coating. This finding will be key to future design

  2. Development of Biomimetic and Functionally Responsive Surfaces

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Spiros H.

    2010-03-01

    Controlling the surface morphology of solids and manufacturing of functional surfaces with special responsive properties has been the subject of intense research. We report a methodology for creating multifunctionally responsive surfaces by irradiating silicon wafers with femtosecond laser pulses and subsequently coating them with different types of functional conformal coatings. Such surfaces exhibit controlled dual-scale roughness at the micro- and the nano-scale, which mimics the hierarchical morphology of water repellent natural surfaces. When a simple alkylsilane coating is utilized, highly water repellent surfaces are produced that quantitatively compare to those of the Lotus leaf. When a polymer brush is ``grafted from" these surfaces based on a pH-sensitive polymer, the surfaces can alter their behavior from super-hydrophilic (after immersion in a low pH buffer) to super-hydrophobic and water-repellent (following immersion to a high pH buffer). We quantify the water repellency of such responsive systems by drop elasticity measurements whereas we demonstrate that the water repellent state of such surface requires appropriate hydrophobicity of the functionalizing polymer. When a photo-responsive azobenzene-type polymer is deposited, a dynamic optical control of the wetting properties is obtained and the surface can be switched from super-hydrophilic (following UV irradiation) to hydrophobic (following green irradiation). In all the above cases we show that the principal effect of roughness is to cause amplification of the response to the different external stimuli.

  3. Effects of fluorine contamination on spin-on dielectric thickness in semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-ryeun; Hong, Soonsang; Kim, Samyoung; Oh, Changyeol; Hwang, Sung Min

    2018-03-01

    In the recent semiconductor industry, as the device shrinks, spin-on dielectric (SOD) has been adopted as a widely used material because of its excellent gap-fill, efficient throughput on mass production. SOD film must be uniformly thin, homogeneous and free of particle defects because it has been perfectly perserved after chemical-mechanical polishing (CMP) and etching process. Spin coating is one of the most common techniques for applying SOD thin films to substrates. In spin coating process, the film thickness and uniformity are strong function of the solution viscosity, the final spin speed and the surface properties. Especially, airborne molecular contaminants (AMCs), such as HF, HCl and NH3, are known to change to surface wetting characteristics. In this work, we study the SOD film thickness as a function of fluorine contamination on the wafer surface. To examine the effects of airborne molecular contamination, the wafers are directly exposed to HF fume followed by SOD coating. It appears that the film thickness decreases by higher contact angle on the wafer surface due to fluorine contamination. The thickness of the SOD film decreased with increasing fluorine contamination on the wafer surface. It means that the wafer surface with more hydrophobic property generates less hydrogen bonding with the functional group of Si-NH in polysilazane(PSZ)-SOD film. Therefore, the wetting properties of silicon wafer surfaces can be degraded by inorganic contamination in SOD coating process.

  4. Ab initio investigation of barium-scandium-oxygen coatings on tungsten for electron emitting cathodes

    NASA Astrophysics Data System (ADS)

    Vlahos, Vasilios; Booske, John H.; Morgan, Dane

    2010-02-01

    Microwave, x-ray, and radio-frequency radiation sources require a cathode emitting electrons into vacuum. Thermionic B-type dispenser cathodes consist of BaxOz coatings on tungsten (W), where the surface coatings lower the W work function and enhance electron emission. The new and promising class of scandate cathodes modifies the B-type surface through inclusion of Sc, and their superior emissive properties are also believed to stem from the formation of a low work function surface alloy. In order to better understand these cathode systems, density-functional theory (DFT)-based ab initio modeling is used to explore the stability and work function of BaxScyOz on W(001) monolayer-type surface structures. It is demonstrated how surface depolarization effects can be calculated easily using ab initio calculations and fitted to an analytic depolarization equation. This approach enables the rapid extraction of the complete depolarization curve (work function versus coverage relation) from relatively few DFT calculations, useful for understanding and characterizing the emitting properties of novel cathode materials. It is generally believed that the B-type cathode has some concentration of Ba-O dimers on the W surface, although their structure is not known. Calculations suggest that tilted Ba-O dimers are the stable dimer surface configuration and can explain the observed work function reduction corresponding to various dimer coverages. Tilted Ba-O dimers represent a new surface coating structure not previously proposed for the activated B-type cathode. The thermodynamically stable phase of Ba and O on the W surface was identified to be the Ba0.25O configuration, possessing a significantly lower Φ value than any of the Ba-O dimer configurations investigated. The identification of a more stable Ba0.25O phase implies that if Ba-O dimers cover the surface of emitting B-type cathodes, then a nonequilibrium steady state must dominate the emitting surface. The identification of a stable and low work function Ba0.25Sc0.25O structure suggests that addition of Sc to the B-type cathode surface could form this alloy structure under operating conditions, leading to improved cathode performance and stability. Detailed comparison to previous experimental results of BaxScyOz on W surface coatings are made to both validate the modeling and aid in interpretation of experimental data. The studies presented here demonstrate that ab initio methods are powerful for understanding the fundamental physics of electron emitting materials systems and can potentially aid in the development of improved cathodes.

  5. Interaction of carbon nanotubes coatings with titanium substrate

    NASA Astrophysics Data System (ADS)

    Fraczek-Szczypta, Aneta; Wedel-Grzenda, Alicja; Benko, Aleksandra; Grzonka, Justyna; Mizera, Jaroslaw

    2017-02-01

    The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs) after chemical surface functionalization on the interaction with a titanium surface. Two kinds of MWCNTs differing in terms of concentration of functional groups were deposited on the Ti surface using the electrophoretic deposition method (EPD). The study has shown the detailed analysis of the physicochemical properties of this form of carbon nanomaterial and received on their base coatings using various techniques, such as scanning electron microscopy (SEM), confocal microscopy, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The adhesion of the MWCNTs coatings to the Ti surface was determined using the shear test method, according to standard ASTM F-1044-05. These results indicated that one type of MWCNTs characterized by a higher concentration of functional groups has better adhesion to the metal surface than the second type. Analysis of the MWCNT-metal interface using Raman spectroscopy and SEM and STEM indicates the presence of phase built of MWCNT and TiO2. This phase could be a type of nanocomposite that affects the improvement of the adhesion of MWCNT to the Ti surface.

  6. Effect of triangular texture on the tribological performance of die steel with TiN coatings under lubricated sliding condition

    NASA Astrophysics Data System (ADS)

    Chen, Ping; Xiang, Xin; Shao, Tianmin; La, Yingqian; Li, Junling

    2016-12-01

    The friction and wear of stamping die surface can affect the service life of stamping die and the quality of stamping products. Surface texturing and surface coating have been widely used to improve the tribological performance of mechanical components. This study experimentally investigated the effect of triangular surface texture on the friction and wear properties of the die steel substrate with TiN coatings under oil lubrication. TiN coatings were deposited on a die steel (50Cr) substrate through a multi-arc ion deposition system, and then triangular surface texturing was fabricated by a laser surface texturing. The friction and wear test was conducted by a UMT-3 pin-on-disk tribometer under different sliding speeds and different applied loads, respectively. The adhesion test was performed to evaluate the effectiveness of triangular texturing on the interfacial bonding strength between the TiN coating and the die steel substrate. Results show that the combination method of surface texturing process and surface coating process has excellent tribological properties (the lowest frictional coefficient and wear volume), compared with the single texturing process or the single coating process. The tribological performance is improved resulting from the high hardness and low elastic modulus of TiN coatings, and the generation of hydrodynamic pressure, function of micro-trap for wear debris and micro-reservoirs for lubricating oil of the triangular surface texture. In addition, the coating bonding strength of the texturing sample is 3.63 MPa, higher than that of the single coating sample (3.48 MPa), but the mechanisms remain to be further researched.

  7. The Role of Dextran Coatings on the Cytotoxicity Properties of Ceria Nanoparticles Toward Bone Cancer Cells

    NASA Astrophysics Data System (ADS)

    Yazici, Hilal; Alpaslan, Ece; Webster, Thomas J.

    2015-04-01

    Cerium oxide nanoparticles have demonstrated great potential as antioxidant and radioprotective agents for nanomedicine applications especially for cancer therapy. The surface chemistry of nanoparticles is an important property that has a significant effect on their performance in biological applications including cancer diagnosis, cancer treatment, and bacterial infection. Recently, various nanosized cerium oxide particles with different types of polymer coatings have been developed to improve aqueous solubility and allow for surface functionalization for distinct applications. In this study, the role of ceria nanoparticles coated with dextran on the cytotoxicity properties of bone cancer cells was shown. Specifically, 0.1 M and 0.01 M dextran-coated, <5-nm ceria nanoparticles, were synthesized. The cytotoxicity of 0.1 M and 0.01 M dextran-coated ceria nanoparticles was evaluated against osteosarcoma cells. A change in cell viability was observed when treating osteosarcoma cells with 0.1 M dextran-coated ceria nanoparticles in the 250 -1000 μg/mL concentration range. In contrast, minimal toxicity to bone cancer cells was observed for the 0.01 M dextran coating after 3 days compared with the 0.1 M dextran coating. These results indicated that surface dextran functionalization had a positive impact on the cytotoxicity of cerium oxide nanoparticles against osteosarcoma cells.

  8. Surface protection in bio-shields via a functional soft skin layer: Lessons from the turtle shell.

    PubMed

    Shelef, Yaniv; Bar-On, Benny

    2017-09-01

    The turtle shell is a functional bio-shielding element, which has evolved naturally to provide protection against predator attacks that involve biting and clawing. The near-surface architecture of the turtle shell includes a soft bi-layer skin coating - rather than a hard exterior - which functions as a first line of defense against surface damage. This architecture represents a novel type of bio-shielding configuration, namely, an inverse structural-mechanical design, rather than the hard-coated bio-shielding elements identified so far. In the current study, we used experimentally based structural modeling and FE simulations to analyze the mechanical significance of this unconventional protection architecture in terms of resistance to surface damage upon extensive indentations. We found that the functional bi-layer skin of the turtle shell, which provides graded (soft-softer-hard) mechanical characteristics to the bio-shield exterior, serves as a bumper-buffer mechanism. This material-level adaptation protects the inner core from the highly localized indentation loads via stress delocalization and extensive near-surface plasticity. The newly revealed functional bi-layer coating architecture can potentially be adapted, using synthetic materials, to considerably enhance the surface load-bearing capabilities of various engineering configurations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Synergistic Effects of a Calcium Phosphate/Fibronectin Coating on the Adhesion of Periodontal Ligament Stem Cells Onto Decellularized Dental Root Surfaces.

    PubMed

    Lee, Jung-Seok; Kim, Hyun-Suk; Park, So-Yon; Kim, Tae-Wan; Jung, Jae-Suk; Lee, Jong-Bin; Kim, Chang-Sung

    2015-01-01

    This study aimed to enhance the attachment of periodontal ligament stem cells (PDLSCs) onto the decellularized dental root surface using surface coating with fibronectin and/or calcium phosphate (CaP) and to evaluate the activity of PDLSCs attached to a coated dental root surface following tooth replantation. PDLSCs were isolated from five dogs, and the other dental roots were used as a scaffold for carrying PDLSCs and then assigned to one of four groups according to whether their surface was coated with CaP, fibronectin, CaP/fibronectin, or left uncoated (control). Fibronectin increased the adhesion of PDLSCs onto dental root surfaces compared to both the control and CaP-coated groups, and simultaneous surface coating with CaP and fibronectin significantly accelerated and increased PDLSC adhesion compared to the fibronectin-only group. On in vivo tooth replantation, functionally oriented periodontal new attachment was observed on the CaP/fibronectin-coated dental roots to which autologous PDLSCs had adhered, while in the control condition, dental root replantation was associated only with root resorption and ankylosis along the entire root length. CaP and fibronectin synergistically enhanced the attachment of PDLSCs onto dental root surfaces, and autologous PDLSCs could produce de novo periodontal new attachment in an experimental in vivo model.

  10. The influence of repellent coatings on surface free energy of glass plate and cotton fabric

    NASA Astrophysics Data System (ADS)

    Černe, Lidija; Simončič, Barbara; Željko, Matjaž

    2008-08-01

    The aim of this research was to determine the influence of chemical finishes on the surface properties of glass plate, considered as a model homogeneous smooth surface and cotton fabric as a non-ideal heterogeneous rough surface. Microscopic slides and 100% cotton fabric in plain weave were coated with fluorocarbon polymers (FCP), paraffin waxes with zirconium salts (PWZ), methylolmelamine derivatives (MMD), polysiloxanes with side alkyldimethylammonium groups (PSAAC) and aminofunctional polysiloxanes (AFPS). From the goniometer contact angle measurements of different liquids, the surface free energy of the coated glass plates was calculated according to approaches by Owens-Wendt-Kaelble, Wu, van Oss-Chaudhury-Good, and Li-Neumann-Kwok. The results showed that all the coatings decreased the surface free energy of the substrate, which was also influenced by the liquid combination and the theoretical approach used. In spite of the fact that the liquid contact angles were much higher on the coated fabric samples than on glass plates and resulted in the lower values of work of adhesion, a very good correlation between the coatings deposited on both substrates was obtained. The presence of repellent coatings FCP, PWZ and MMD converted the solid surface from polar to highly apolar by masking the functional groups of glass and cellulose. PSAAC and AFPS coatings did not decrease the solid surface free energy to such an extent as the former three coatings due to their monopolar character.

  11. The optimal SAM surface functional group for producing a biomimetic HA coating on Ti.

    PubMed

    Liu, D P; Majewski, P; O'Neill, B K; Ngothai, Y; Colby, C B

    2006-06-15

    Commercial interest is growing in biomimetic methods that employ self assembled mono-layers (SAMs) to produce biocompatible HA coatings on Ti-based orthopedic implants. Recently, separate studies have considered HA formation for various SAM surface functional groups. However, these have often neglected to verify crystallinity of the HA coating, which is essential for optimal bioactivity. Furthermore, differing experimental and analytical methods make performance comparisons difficult. This article investigates and evaluates HA formation for four of the most promising surface functional groups: --OH, --SO(3)H, --PO(4)H(2) and --COOH. All of them successfully formed a HA coating at Ca/P ratios between 1.49 and 1.62. However, only the --SO(3)H and --COOH end groups produced a predominantly crystalline HA. Furthermore, the --COOH end group yielded the thickest layer and possessed crystalline characteristics very similar to that of the human bone. The --COOH end group appears to provide the optimal SAM surface interface for nucleation and growth of biomimetic crystalline HA. Intriguingly, this finding may lend support to explanations elsewhere of why human bone sialoprotein is such a potent nucleator of HA and is attributed to the protein's glutamic acid-rich sequences.

  12. Method of protecting surfaces from abrasion and abrasion resistant articles of manufacture

    DOEpatents

    Hirschfeld, T.B.

    1988-06-09

    Surfaces of fabricated structures are protected from damage by impacting particulates by a coating of hard material formed as a mass of thin flexible filaments having root ends secured to the surface and free portions which can flex and overlap to form a resilient cushioning mat which resembles hair or fur. The filamentary coating covers the underlying surface with hard abrasion resistance material while also being compliant and capable of local accommodation to particle impacts. The coating can also function as thermal and/or acoustical insulation and has a friction reducing effect. 11 figs.

  13. Creation of hydrophobic surfaces using a paint containing functionalized oxide particles

    NASA Astrophysics Data System (ADS)

    Sino, Paul Albert L.; Herrera, Marvin U.; Balela, Mary Donnabelle L.

    2017-05-01

    Hydrophobic surfaces were created by coating various substrates (aluminum sheet, soda-lime glass, silicon carbide polishing paper, glass with double-sided adhesive) with paint containing functionalized oxide particles. The paint was created by functionalizing oxide particles (ground ZnO, TiO2 nanoparticles, or TiO2 microparticles) with fluorosilane molecules in absolute ethanol. Water contact angle of samples shows that the coated substrate becomes hydrophobic (water contact angle ≥ 90°). Among the oxides that were used, ground ZnO yielded contact angle exemplifying superhydrophobicity (water contact angle ≥ 150°). Scanning electron micrograph of paint-containing TiO2 nanoparticles shows rough functionalized oxides structures which probably increase the hydrophobicity of the surface.

  14. Ta2O5/ Al2O3/ SiO2 - antireflective coating for non-planar optical surfaces by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Pfeiffer, K.; Schulz, U.; Tünnermann, A.; Szeghalmi, A.

    2017-02-01

    Antireflective coatings are essential to improve transmittance of optical elements. Most research and development of AR coatings has been reported on a wide variety of plane optical surfaces; however, antireflection is also necessary on nonplanar optical surfaces. Physical vapor deposition (PVD), a common method for optical coatings, often results in thickness gradients on strongly curved surfaces, leading to a failure of the desired optical function. In this work, optical thin films of tantalum pentoxide, aluminum oxide and silicon dioxide were prepared by atomic layer deposition (ALD), which is based on self-limiting surface reactions. The results demonstrate that ALD optical layers can be deposited on both vertical and horizontal substrate surfaces with uniform thicknesses and the same optical properties. A Ta2O5/Al2O3/ SiO2 multilayer AR coating (400-700 nm) was successfully applied to a curved aspheric glass lens with a diameter of 50 mm and a center thickness of 25 mm.

  15. A functionalized poly(ethylene glycol)-based bioassay surface chemistry that facilitates bio-immobilization and inhibits non-specific protein, bacterial, and mammalian cell adhesion

    PubMed Central

    Harbers, Gregory M.; Emoto, Kazunori; Greef, Charles; Metzger, Steven W.; Woodward, Heather N.; Mascali, James J.; Grainger, David W.; Lochhead, Michael J.

    2008-01-01

    This paper describes a new bioassay surface chemistry that effectively inhibits non-specific biomolecular and cell binding interactions, while providing a capacity for specific immobilization of desired biomolecules. Poly(ethylene glycol) (PEG) as the primary component in nonfouling film chemistry is well-established, but the multicomponent formulation described here is unique in that it (1) is applied in a single, reproducible, solution-based coating step; (2) can be applied to diverse substrate materials without the use of special primers; and (3) is readily functionalized to provide specific attachment chemistries. Surface analysis data are presented, detailing surface roughness, polymer film thickness, and film chemistry. Protein non-specific binding assays demonstrate significant inhibition of serum, fibrinogen, and lysozyme adsorption to coated glass, indium tin oxide, and tissue culture polystyrene dishes. Inhibition of S. aureus and K. pneumoniae microbial adhesion in a microfluidic flow cell, and inhibition of fibroblast cell adhesion from serum-based cell culture is shown. Effective functionalization of the coating is demonstrated by directing fibroblast adhesion to polymer surfaces activated with an RGD peptide. Batch-to-batch reproducibility data are included. The in situ cross-linked PEG-based coating chemistry is unique in its formulation, and its surface properties are attractive for a broad range of in vitro bioassay applications. PMID:18815622

  16. Development of new maskless manufacturing method for anti-reflection structure and application to large-area lens with curved surface

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuya; Takaoka, Toshimitsu; Fukui, Hidetoshi; Haruta, Yasuyuki; Yamashita, Tomoya; Kitagawa, Seiichiro

    2016-03-01

    In general, thin-film coating process is widely applied on optical lens surface as anti-reflection function. In normal production process, at first lens is manufactured by molding, then anti-reflection is added by thin-film coating. In recent years, instead of thin-film coating, sub-wavelength structures adding on surface of molding die are widely studied and development to keep anti-reflection performance. As merits, applying sub-wavelength structure, coating process becomes unnecessary and it is possible to reduce man-hour costs. In addition to cost merit, these are some technical advantages on this study. Adhesion of coating depends on material of plastic, and it is impossible to apply anti-reflection function on arbitrary surface. Sub-wavelength structure can solve both problems. Manufacturing method of anti-reflection structure can be divided into two types mainly. One method is with the resist patterning, and the other is mask-less method that does not require patterning. What we have developed is new mask-less method which is no need for resist patterning and possible to impart an anti-reflection structure to large area and curved lens surface, and can be expected to apply to various market segments. We report developed technique and characteristics of production lens.

  17. Engineering Particle Surface Chemistry and Electrochemistry with Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Jackson, David Hyman Kentaro

    Atomic layer deposition (ALD) is a vapor phase thin film coating technique that relies on sequential pulsing of precursors that undergo self-limited surface reactions. The self- limiting reactions and gas phase diffusion of the precursors together enable the conformal coating of microstructured particles with a high degree of thickness and compositional control. ALD may be used to deposit thin films that introduce new functionalities to a particle surface. Examples of new functionalities include: chemical reactivity, a mechanically strong protective coating, and an electrically resistive layer. The coatings properties are often dependent on the bulk properties and microstructure of the particle substrate, though they usually do not affect its bulk properties or microstructure. Particle ALD finds utility in the ability to synthesize well controlled, model systems, though it is expensive due to the need for costly metal precursors that are dangerous and require special handling. Enhanced properties due to ALD coating of particles in various applications are frequently described empirically, while the details of their enhancement mechanisms often remain the focus of ongoing research in the field. This study covers the various types of particle ALD and attempts to describe them from the unifying perspective of surface science.

  18. Stable superhydrophilic coating on superhydrophobic porous media by functionalized nanoparticles

    NASA Astrophysics Data System (ADS)

    Khazaei, Masoud; Taghi Sadeghi, Mohammad; Sadat Hosseini, Marzieh

    2018-01-01

    In this study, the hydrophilicity property of TiO2 nano-coating was improved by zinc acetate-assisted sol-gel method. The stable superhydrophilic coating was fabricated on a superhydrophobic mineral rock surface. The wettability of surface before and after coating was characterized by contact angle measurements. The n-heptane and water droplet contact angle was 0° and 168° respectively, so the untreated rock was superhydrophobic. After nano-treatment, the n-heptane and water contact angle changed to 172° and 0° respectively, so the superhydrophilic coating was formed on the superhydrophobic surface. The thermal, mechanical and salinity stability of the fabricated coatings was investigated. The coatings had high thermal and salinity stability; they also had moderate mechanical stability that was evaluated by abrasion test. The morphology and composition of synthesized nanoparticles were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and x-ray diffraction (XRD) analyses. Characterization of the coated surfaces was conducted by SEM and XRD analyses. Applications of these nano-coatings include surfaces where cleanliness is paramount such as in hospitals as well as the protection of public monuments and building facades from weathering. Novel industrial application includes wettability alteration of oil wet carbonate rock for enhanced oil recovery.

  19. Porous Organic Nanolayers for Coating of Solid-state Devices

    PubMed Central

    2011-01-01

    Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices. PMID:21569579

  20. Superamphiphobic and Electroactive Nanocomposite toward Self-Cleaning, Antiwear, and Anticorrosion Coatings.

    PubMed

    Yuan, Ruixia; Wu, Shiqi; Yu, Peng; Wang, Baohui; Mu, Liwen; Zhang, Xiguang; Zhu, Yixing; Wang, Bing; Wang, Huaiyuan; Zhu, Jiahua

    2016-05-18

    Multifunctional coatings are in urgent demand in emerging fields. In this work, nanocomposite coatings with extraordinary self-cleaning, antiwear, and anticorrosion properties were prepared on aluminum substrate by a facile spraying technique. Core-shell structured polyaniline/functionalized carbon nanotubes (PANI/fCNTs) composite and nanosized silica were synergistically integrated into ethylene tetrafluoroethylene (ETFE) matrix to construct lotus-leaf-like structures, and 1H,1H,2H,2H- perfluorooctyltriethoxysilane (POTS) was used to decrease the surface energy. The composite coating with 6 wt % PANI/fCNTs possesses superamphiphobic property, with contact angles of 167°, 163°, and 159° toward water, glycerol, and ethylene glycol, respectively. This coating demonstrates stable nonwetting performance over a wide temperature range (<400 °C), as well as outstanding self-cleaning ability to prevent contamination by sludge, concentrated H2SO4, and ethylene glycol. Superamphiphobic surface property could be maintained even after 45 000 times abrasion or bending test for 30 times. The coating displayed strong adhesive ability (grade 1 according to the GB/T9286) on the etched aluminum plate. The superamphiphobic surface could be retained after immersion in 1 mol/L HCl and 3.5 wt % NaCl solutions for 60 and 90 d, respectively. It should be noted that this coating reveals significantly improved anticorrosion performance as compared to the bare ETFE coating and ETFE composite coating without PANI/fCNTs. Such coatings with integrated functionalities offer promising self-cleaning and anticorrosion applications under erosive/abrasive environment.

  1. Silver oxide-containing hydroxyapatite coating supports osteoblast function and enhances implant anchorage strength in rat femur.

    PubMed

    Eto, Shuichi; Miyamoto, Hiroshi; Shobuike, Takeo; Noda, Iwao; Akiyama, Takayuki; Tsukamoto, Masatsugu; Ueno, Masaya; Someya, Shinsuke; Kawano, Shunsuke; Sonohata, Motoki; Mawatari, Masaaki

    2015-09-01

    Antibacterial silver with hydroxyapatite (Ag-HA) is a promising coating material for imparting antibacterial properties to implants. We previously reported that 3% (w/w) silver with HA (3% Ag-HA) has both antibacterial activity and osteoconductivity. In this study, we investigated the effects of Ag-HA on the in vitro osteoblast function and the in vivo anchorage strength and osteoconductivity of implants. Production of the osteoblast marker alkaline phosphatase, but not cytotoxicity, was observed in cells of the osteoblast cell line MC3T3-E1 cultured on the 3% Ag-HA-coated surface. These results were similar to those observed with silver-free HA coating. In contrast, a significant high level of cytotoxicity was observed when the cells were cultured on a 50% Ag-HA-coated surface. The anchorage strength of implants inserted into the femur of Sprague-Dawley (SD) rats was enhanced by coating the implants with 3% Ag-HA. On the 3% Ag-HA-coated surface, both metaphyseal and diaphyseal areas were largely covered with new bone and had adequate osteoconductivity. These results suggest that 3% Ag-HA, like conventional HA, promotes osteogenesis by supporting osteoblast viability and function and thereby contributes to sufficient anchorage strength of implants. Application of 3% Ag-HA, which combines the osteoconductivity of HA and the antibacterial activity of silver, to prosthetic joints will help prevent postoperative infections. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition

    DOE PAGES

    Sunny, Steffi; Vogel, Nicolas; Howell, Caitlin; ...

    2014-09-01

    Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introducemore » sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. As a result, the LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.« less

  3. Lubricant-Infused Nanoparticulate Coatings Assembled by Layer-by-Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunny, S; Vogel, N; Howell, C

    2014-09-01

    Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introducemore » sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. The LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.« less

  4. Differences in fundamental and functional properties of HPMC co-processed fillers prepared by fluid-bed coating and spray drying.

    PubMed

    Dong, QianQian; Zhou, MiaoMiao; Lin, Xiao; Shen, Lan; Feng, Yi

    2018-07-01

    This study aimed to develop novel co-processed tablet fillers based on the principle of particle engineering for direct compaction and to compare the characteristics of co-processed products obtained by fluid-bed coating and co-spray drying, respectively. Water-soluble mannitol and water-insoluble calcium carbonate were selected as representative fillers for this study. Hydroxypropyl methylcellulose (HPMC), serving as a surface property modifier, was distributed on the surface of primary filler particles via the two co-processing methods. Both fundamental and functional properties of the products were comparatively investigated. The results showed that functional properties of the fillers, like flowability, compactibility, and drug-loading capacity, were effectively improved by both co-processing methods. However, fluid-bed coating showed greater advantages over co-spray drying in some aspects, which was mainly attributed to the remarkable differences in some fundamental properties of co-processed powders, like particle size, surface topology, and particle structure. For example, the more irregular surface and porous structure induced by fluid-bed coating could contribute to better compaction properties and lower lubricant sensitivity due to the increasing contact area and mechanical interlocking between particles under pressure. More effective surface distribution of HPMC during fluid-bed coating was also a contributor. In addition, such a porous agglomerate structure could also reduce the separation of drug and excipients after mixing, resulting in the improvement in drug loading capacity and tablet uniformity. In summary, fluid-bed coating appears to be more promising for co-processing than spray drying in some aspects, and co-processed excipients produced by it have a great prospect for further investigations and development. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. The relationship between substrate morphology and biological performances of nano-silver-loaded dopamine coatings on titanium surfaces

    PubMed Central

    Zhang, Weibo; Wang, Shuang; Ge, Shaohua; Ji, Ping

    2018-01-01

    Biomedical device-associated infection (BAI) and lack of osseointegration are the main causes of implant failure. Therefore, it is imperative for implants not only to depress microbial activity and biofilm colonization but also to prompt osteoblast functions and osseointegration. As part of the coating development for implants, the interest of in vitro studies on the interaction between implant substrate morphology and the coating's biological performances is growing. In this study, by harnessing the adhesion and reactivity of bioinspired polydopamine, nano-silver was successfully anchored onto micro/nanoporous as well as smooth titanium surfaces to analyse the effect of substrate morphology on biological performances of the coatings. Compared with the smooth surface, a small size of nano-silver and high silver content was found on the micro/nanoporous surface. More mineralization happened on the coating on the micro/nanoporous structure than on the smooth surface, which led to a more rapid decrease of silver release from the micro/nanoporous surface. Antimicrobial tests indicated that both surfaces with resulting coating inhibit microbial colonization on them and growth around them, indicating that the coating eliminates the shortcoming of the porous structure which render the implant extremely susceptible to BAI. Besides, the multiple osteoblast responses of nano-silver-loaded dopamine coatings on both surfaces, i.e. attachment, proliferation and differentiation, have deteriorated, however the mineralized surfaces of these coatings stimulated osteoblast proliferation and differentiation, especially for the micro/nanoporous surface. Therefore, nano-silver-loaded dopamine coatings on micro/nanoporous substratum may not only reduce the risk of infection but also facilitate mineralization during the early post-operative period and then promote osseointegration owing to the good osteoblast-biocompatibility of the mineralized surface. These results clearly highlight the influence of the substrate morphology on the biological performances of implant coating. PMID:29765680

  6. Investigation on influence of Wurster coating process parameters for the development of delayed release minitablets of Naproxen.

    PubMed

    Shah, Neha; Mehta, Tejal; Aware, Rahul; Shetty, Vasant

    2017-12-01

    The present work aims at studying process parameters affecting coating of minitablets (3 mm in diameter) through Wurster coating process. Minitablets of Naproxen with high drug loading were manufactured using 3 mm multi-tip punches. The release profile of core pellets (published) and minitablets was compared with that of marketed formulation. The core formulation of minitablets was found to show similarity in dissolution profile with marketed formulation and hence was further carried forward for functional coating over it. Wurster processing was implemented to pursue functional coating over core formulation. Different process parameters were screened and control strategy was applied for factors significantly affecting the process. Modified Plackett Burman Design was applied for studying important factors. Based on the significant factors and minimum level of coating required for functionalization, optimized process was executed. Final coated batch was evaluated for coating thickness, surface morphology, and drug release study.

  7. Incorporation of Copper Enhances the Anti-Ageing Property of Flame-Sprayed High-Density Polyethylene Coatings

    NASA Astrophysics Data System (ADS)

    Jia, Zhengmei; Huang, Jing; Gong, Yongfeng; Jin, Peipeng; Suo, Xinkun; Li, Hua

    2017-02-01

    High-density polyethylene (HDPE)-copper (Cu) composite coatings were prepared through depositing HDPE-Cu core-shell particles by flame spraying. The HDPE-Cu composite coatings and the HDPE coatings were aged in xenon lamp ageing testing chamber. The variations of chemical compositions and surface morphology of the coatings before and after the ageing testing were analyzed using infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and ultraviolet-visible spectrophotometer. Results show that there is no chemical composition variation in the HDPE-Cu coatings. Cracks were found on the surfaces of the HDPE coatings, while the HDPE-Cu coating shows almost intact surface morphology. These results suggest that the HDPE-Cu coatings present better anti-ageing performances than the HDPE coatings. Further assessment of the function of Cu shells on the anti-ageing property reveals that Cu shells not only enhanced the absorption of the coatings to ultraviolet, but also increased their reflectivity to visible light. Additionally, the Cu shells enhanced the decomposition temperature and thermal stability of HDPE in the composite coatings. These results give bright insight into potential anti-ageing applications of the polymer-based structures.

  8. Visible light-initiated interfacial thiol-norbornene photopolymerization for forming islet surface conformal coating

    PubMed Central

    Shih, Han; Mirmira, Raghavendra G.; Lin, Chien-Chi

    2015-01-01

    A cytocompatible visible light-mediated interfacial thiol-norbornene photopolymerization scheme was developed for creating hydrogel conformal coating on pancreatic islets. The step-growth thiol-norbornene reaction affords high consistency and tunability in gel coating thickness. Furthermore, isolated islets coated with thiol-norbornene gel maintained their viability and function in vitro. PMID:26509035

  9. Organosilane self-assembled layers (SAMs) and hybrid silicate magnesium-rich primers for the corrosion protection of aluminum alloy 2024 T3

    NASA Astrophysics Data System (ADS)

    Wang, Duhua

    Although current chromate coatings function very well in corrosion protection for aircraft alloys, such as aluminum alloy 2024 T3, the U.S. Environmental Protection Agency is planning to totally ban the use of chromates as coating materials in the next decade or so because of their extremely toxic effect. For this purpose, both self-assembled layers and silicate magnesium-rich primers were tested to provide the corrosion protection for aluminum alloy. The long-term goal of this research is to develop a coating system to replace the current chromate coating for aircraft corrosion protection. Aluminum alloy 2024 T3 substrates were modified with self-assembled monolayer or multilayer thin films from different alkylsilane compounds. Mono-functional silanes, such as octadecyltrichlorosilane (C18SiCl3), can form a mixed hydrophobic monolayer or multilayer thin film on the aluminum oxide surface to provide a barrier to water and other electrolytes, so the corrosion resistance of the SAMs modified surface was increased significantly. On the other hand, the bi-functional silane self-assembly could attach the aluminum surface through the silicon headgroup while using its functional tailgroup to chemically bond the polymer coating, thus improving the adhesion between the aluminum substrate and coating substantially, and seems to contribute more to corrosion protection of aluminum substrate. Organosilanes were also combined with tetraethyl orthosilicate (TEOS) in propel ratios to form a sol-gel binder to make silicate magnesium-rich primers. Analogue to the inorganic zinc-rich coatings, the silicate magnesium-rich primers also showed excellent adhesion and solvent resistance. The sacrificial magnesium pigments and the chemically inert silicate binder both contribute to the anti-corrosion properties. Future studies will be focused on the formula optimization for better toughness, chemical resistance and anticorrosion performance.

  10. Silica coating of nanoparticles by the sonogel process.

    PubMed

    Chen, Quan; Boothroyd, Chris; Tan, Gim Hong; Sutanto, Nelvi; Soutar, Andrew McIntosh; Zeng, Xian Ting

    2008-02-05

    A modified aqueous sol-gel route was developed using ultrasonic power for the silica coating of indium tin oxide (ITO) nanoparticles. In this approach, organosilane with an amino functional group was first used to cover the surface of as-received nanoparticles. Subsequent silica coating was initiated and sustained under power ultrasound irradiation in an aqueous mixture of surface-treated particles and epoxy silane. This process resulted in a thin but homogeneous coverage of silica on the particle surface. Particles coated with a layer of silica show better dispersability in aqueous and organic media compared with the untreated powder. Samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and the zeta potential.

  11. A hydrogel-based versatile screening platform for specific biomolecular recognition in a well plate format.

    PubMed

    Beer, Meike V; Rech, Claudia; Diederichs, Sylvia; Hahn, Kathrin; Bruellhoff, Kristina; Möller, Martin; Elling, Lothar; Groll, Jürgen

    2012-04-01

    Precise determination of biomolecular interactions in high throughput crucially depends on a surface coating technique that allows immobilization of a variety of interaction partners in a non-interacting environment. We present a one-step hydrogel coating system based on isocyanate functional six-arm poly(ethylene oxide)-based star polymers for commercially available 96-well microtiter plates that combines a straightforward and robust coating application with versatile bio-functionalization. This system generates resistance to unspecific protein adsorption and cell adhesion, as demonstrated with fluorescently labeled bovine serum albumin and primary human dermal fibroblasts (HDF), and high specificity for the assessment of biomolecular recognition processes when ligands are immobilized on this surface. One particular advantage is the wide range of biomolecules that can be immobilized and convert the per se inert coating into a specifically interacting surface. We here demonstrate the immobilization and quantification of a broad range of biochemically important ligands, such as peptide sequences GRGDS and GRGDSK-biotin, the broadly applicable coupler molecule biocytin, the protein fibronectin, and the carbohydrates N-acetylglucosamine and N-acetyllactosamine. A simplified protocol for an enzyme-linked immunosorbent assay was established for the detection and quantification of ligands on the coating surface. Cell adhesion on the peptide and protein-modified surfaces was assessed using HDF. All coatings were applied using a one-step preparation technique, including bioactivation, which makes the system suitable for high-throughput screening in a format that is compatible with the most routinely used testing systems.

  12. Increase in gap-junctional intercellular communications (GJIC) of normal human dermal fibroblasts (NHDF) on surfaces coated with high-molecular-weight hyaluronic acid (HMW HA).

    PubMed

    Park, Jeong Ung; Tsuchiya, Toshie

    2002-06-15

    Normal human dermal fibroblast (NHDF) cells were used to detect differences in gap-junctional intercellular communication (GJIC) by hyaluronic acid (HA), a linear polymer built from repeating disaccharide units that consist of N-acetyl-D-glucosamine (GlcNa) and D-glucuronic acid (GlcA) linked by a beta 1-4 glycosidic bond. The NHDF cells were cultured with different molecular weights (MW) of HA for 4 days. The rates of cell attachment in dishes coated with high-molecular-weight (HMW; 310 kDa or 800 kDa) HA at 2 mg/dish were significantly reduced at an early time point compared with low-molecular-weight (LMW; 4.8 kDa or 48 kDa) HA with the same coating amounts. HA-coated surfaces were observed by atomic force microscopy (AFM) under air and showed that HA molecules ran parallel in the dish coated with LMW HA and had an aggregated island structure in the dish coated with HMW HA surfaces. The cell functions of GJIC were assayed by a scrape-loading dye transfer (SLDT) method using a dye solution of Lucifer yellow. Promotion of the dye transfer was clearly obtained in the cell monolayer grown on the surface coated with HMW HA. These results suggest that HMW HA promotes the function of GJIC in NHDF cells. In contrast, when HMW HA was added to the monolayer of NHDF cells, the functions of GJIC clearly were lowered in comparison with the cells grown in the control dish or with those grown on the surface of HMW HA. Therefore it is concluded that the MW size of HA and its application method are important factors for generating biocompatible tissue-engineered products because of the manner in which the GJIC participates in cell differentiation and cell growth rate. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res 60: 541-547, 2002

  13. Applications of Functional Amyloids from Fungi: Surface Modification by Class I Hydrophobins.

    PubMed

    Piscitelli, Alessandra; Cicatiello, Paola; Gravagnuolo, Alfredo Maria; Sorrentino, Ilaria; Pezzella, Cinzia; Giardina, Paola

    2017-06-26

    Class I hydrophobins produced from fungi are amongst the first proteins recognized as functional amyloids. They are amphiphilic proteins involved in the formation of aerial structures such as spores or fruiting bodies. They form chemically robust layers which can only be dissolved in strong acids. These layers adhere to different surfaces, changing their wettability, and allow the binding of other proteins. Herein, the modification of diverse types of surfaces with Class I hydrophobins is reported, highlighting the applications of the coated surfaces. Indeed, these coatings can be exploited in several fields, spanning from biomedical to industrial applications, which include biosensing and textile manufacturing.

  14. The role of "inert" surface chemistry in marine biofouling prevention.

    PubMed

    Rosenhahn, Axel; Schilp, Sören; Kreuzer, Hans Jürgen; Grunze, Michael

    2010-05-07

    The settlement and colonization of marine organisms on submerged man-made surfaces is a major economic problem for many marine industries. The most apparent detrimental effects of biofouling are increased fuel consumption of ships, clogging of membranes and heat exchangers, disabled underwater sensors, and growth of biofoulers in aquaculture systems. The presently common-but environmentally very problematic-way to deal with marine biofouling is to incorporate biocides, which use biocidal products in the surface coatings to kill the colonizing organisms, into the surface coatings. Since the implementation of the International Maritime Organization Treaty on biocides in 2008, the use of tributyltin (TBT) is restricted and thus environmentally benign but effective surface coatings are required. In this short review, we summarize the different strategies which are pursued in academia and industry to better understand the mechanisms of biofouling and to develop strategies which can be used for industrial products. Our focus will be on chemically "inert" model surface coatings, in particular oligo- and poly(ethylene glycol) (OEG and PEG) functionalized surface films. The reasons for choosing this class of chemistry as an example are three-fold: Firstly, experiments on spore settlement on OEG and PEG coatings help to understand the mechanism of non-fouling of highly hydrated interfaces; secondly, these studies defy the common assumption that surface hydrophilicity-as measured by water contact angles-is an unambiguous and predictive tool to determine the fouling behavior on the surface; and thirdly, choosing this system is a good example for "interfacial systems chemistry": it connects the behavior of unicellular marine organisms with the antifouling properties of a hydrated surface coating with structural and electronic properties as derived from ab initio quantum mechanical calculations using the electronic wave functions of oxygen, hydrogen, and carbon. This short review is written to outline for non-experts the hierarchical structure in length- and timescale of marine biofouling and the role of surface chemistry in fouling prevention. Experts in the field are referred to more specialized recent reviews.

  15. MAPs/bFGF-PLGA microsphere composite-coated titanium surfaces promote increased adhesion and proliferation of fibroblasts.

    PubMed

    Wang, Zhongshan; Wu, Guofeng; Bai, Shizhu; Feng, Zhihong; Dong, Yan; Zhou, Jian; Qin, Haiyan; Zhao, Yimin

    2014-06-01

    Infection and epithelial downgrowth are two major problems with maxillofacial transcutaneous implants, and both are mainly due to lack of stable closure of soft tissues at transcutaneous sites. Fibroblasts have been shown to play a key role in the formation of biological seals. In this work, titanium (Ti) model surfaces were coated with mussel adhesive proteins (MAPs) utilizing its unique adhesion ability on diverse inorganic and organic surfaces in wet environments. Prepared basic fibroblast growth factor (bFGF)-poly(lactic-co-glycolic acid) (PLGA) microspheres can be easily synthesized and combined onto MAPs-coated Ti surfaces, due to the negative surface charges of microspheres in aqueous solution, which is in contrast to the positive charges of MAPs. Titanium model surfaces were divided into three groups. Group A: MAPs/bFGF-PLGA microspheres composite-coated Ti surfaces. Group B: MAPs-coated Ti surfaces. Group C: uncoated Ti surfaces. The effects of coated Ti surfaces on adhesion of fibroblasts, cytoskeletal organization, proliferation, and extracellular matrix (ECM)-related gene expressions were examined. The results revealed increased adhesion (P < 0.05), enhanced actin cytoskeletal organization, and up-regulated ECM-related gene expressions in groups A and B compared with group C. Increased proliferation of fibroblasts during five days of incubation was observed in group A compared with groups B and C (P < 0.05). Collectively, the results from this in vitro study demonstrated that MAPs/bFGF-PLGA microspheres composite-coated Ti surfaces had the ability to increase fibroblast functionality. In addition, MAPs/bFGF-PLGA microsphere composite-coated Ti surfaces should be studied further as a method of promoting formation of stable biological seals around transcutaneous sites.

  16. Surface-agnostic highly stretchable and bendable conductive MXene multilayers

    PubMed Central

    An, Hyosung; Habib, Touseef; Shah, Smit; Gao, Huili; Radovic, Miladin; Green, Micah J.; Lutkenhaus, Jodie L.

    2018-01-01

    Stretchable, bendable, and foldable conductive coatings are crucial for wearable electronics and biometric sensors. These coatings should maintain functionality while simultaneously interfacing with different types of surfaces undergoing mechanical deformation. MXene sheets as conductive two-dimensional nanomaterials are promising for this purpose, but it is still extremely difficult to form surface-agnostic MXene coatings that can withstand extreme mechanical deformation. We report on conductive and conformal MXene multilayer coatings that can undergo large-scale mechanical deformation while maintaining a conductivity as high as 2000 S/m. MXene multilayers are successfully deposited onto flexible polymer sheets, stretchable poly(dimethylsiloxane), nylon fiber, glass, and silicon. The coating shows a recoverable resistance response to bending (up to 2.5-mm bending radius) and stretching (up to 40% tensile strain), which was leveraged for detecting human motion and topographical scanning. We anticipate that this discovery will allow for the implementation of MXene-based coatings onto mechanically deformable objects. PMID:29536044

  17. A new approach to the immobilisation of poly(ethylene oxide) for the reduction of non-specific protein adsorption on conductive substrates

    NASA Astrophysics Data System (ADS)

    Cole, Martin A.; Thissen, Helmut; Losic, Dusan; Voelcker, Nicolas H.

    2007-04-01

    Biomedical and biotechnological devices often require surface modifications to improve their performance. In most cases, uniform coatings are desired which provide a specific property or lead to a specific biological response. In the present work, we have generated pinhole-free coatings providing amine functional groups achieved by electropolymerisation of tyramine on highly doped silicon substrates. Furthermore, amine groups were used for the subsequent grafting of poly(ethylene oxide) aldehyde via reductive amination. All surface modification steps were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The results indicate that the stability and the density of amine functional groups introduced at the surface via electropolymerisation compare favourably with alternative coatings frequently used in biomedical and biotechnological devices such as plasma polymer films. Furthermore, protein adsorption on amine and poly(ethylene oxide) coatings was studied by XPS and a colorimetric assay to test enzymatic activity. The grafting of poly(ethylene oxide) under cloud point conditions on electropolymerised tyramine layers resulted in surfaces with extremely low protein fouling character.

  18. PREFACE Surface Modifications and Functionalization of Materials for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Endrino, Jose Luis; Puértolas, Jose A.; Albella, Jose M.

    2010-11-01

    Conference photograph This special issue contains selected papers which were presented as invited and contributed communications at the workshop entitled 'Surface modification and functionalization of materials for biomedical applications' (BIO-COAT 2010) which was held on 24 June 2010 in Zaragoza (Spain). The surface of a material plays a major role in its interaction with the biological medium. Processes related to the mechanical stability of articular devices in contact, osseointegration, thrombogenicity, corrosion and leaching, or the inflammatory response of rejection of a material, are clearly conditioned by the surface properties. Therefore, the modification or functionalization of surfaces can have an important impact on these issues. New techniques for functionalization by thin film deposition or surface treatments help to improve superficial properties, while understanding the interaction of the surface-biological medium is critical for their application in new devices. Jointly organized by the Spanish Materials Research Society, BIO-COAT 2010 provided an open forum to discuss the progress and latest developments in thin film processing and the engineering of biomaterials. Invited lectures were particularly aimed at providing overviews on scientific topics and were given by recognized world-class scientists. Two of them have contributed with a proceedings article to this selected collection (articles 012001 and 012008). The contributed communications were focused on particular cutting-edge aspects of thin film science and functionalization technologies for biomaterials, showing the major scientific push of Spanish research groups in the field. The 2010 BIO-COAT conference was organized along four main topics: (1) functionalization and texture on surfaces, (2) tribology and corrosion, (3) the surface modification of biomaterials, and (4) surface-biological environment interactions. The papers published in this volume were accepted for publication after peer-review as are regular papers. The editor of this proceedings volume gratefully acknowledges all referees for their valuable work, sometimes working to quite short deadlines. Finally, BIO-COAT 2010 would not have been successful without the strong involvement and input of the local organizing committee in Zaragoza, and the support of the University of Zaragoza. We sincerely thank them all for their efforts. Jose L Endrino (Editor) Jose A Puértolas (Chairman) Jose M Albella (Chairman)

  19. Global transcriptomic analysis of model human cell lines exposed to surface-modified gold nanoparticles: the effect of surface chemistry

    NASA Astrophysics Data System (ADS)

    Grzincic, E. M.; Yang, J. A.; Drnevich, J.; Falagan-Lotsch, P.; Murphy, C. J.

    2015-01-01

    Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected.Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected. Electronic supplementary information (ESI) available: UV-Vis spectra of Au NPs, the most significantly changed genes of HDF cells after Au NP incubation under GO accession number GO:0007049 ``cell cycle'', detailed information about the primer/probe sets used for RT-PCR validation of results. See DOI: 10.1039/c4nr05166a

  20. Timescales and mechanisms of formation of amorphous silica coatings on fresh basalts at Kīlauea Volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Chemtob, Steven M.; Rossman, George R.

    2014-10-01

    Young basalts from Kīlauea Volcano, Hawai'i, frequently feature opaque surface coatings, 1-80 μm thick, composed of amorphous silica and Fe-Ti oxides. These coatings are the product of interaction of the basaltic surface with volcanically-derived acidic fluids. Previous workers have identified these coatings in a variety of contexts on Hawai'i, but the timescales of coating development, coating growth rates, and factors controlling lateral coating heterogeneity were largely unconstrained. We sampled and analyzed young lava flows (of varying ages, from hours to ~ 40 years) along Kīlauea's southwest and east rift zones to characterize variation in silica coating properties across the landscape. Coating thickness varies as a function of flow age, flow surface type, and proximity to acid sources like local fissure vents and regional plumes emitted from Kīlauea Caldera and Pu'u Ō'ō. Silica coatings that form in immediate proximity to acid sources are more chemically pure than those forming in higher pH environments, which contain significant Al and Fe. Incipient siliceous alteration was observed on basalt surfaces as young as 8 days old, but periods of a year or more are required to develop contiguous coatings with obvious opaque coloration. Inferred coating growth rates vary with environmental conditions but were typically 1-5 μm/year. Coatings form preferentially on flow surfaces with glassy outer layers, such as spatter ramparts, volcanic bombs, and dense pahoehoe breakouts, due to glass strain weakening during cooling. Microtextural evidence suggests that the silica coatings form both by in situ dissolution-reprecipitation and by deposition of silica mobilized in solution. Thin films of water, acidified by contact with volcanic vapors, dissolved near-surface basalt, then precipitated amorphous silica in place, mobilizing more soluble cations. Additional silica was transported to and deposited on the surface by silica-bearing altering fluids derived from the basalt interior.

  1. Bioinspired synthesis of a soft-nanofilament-based coating consisting of polysilsesquioxanes/polyamine and its divergent surface control.

    PubMed

    Yuan, Jian-Jun; Kimitsuka, Nobuo; Jin, Ren-Hua

    2013-04-24

    The synthesis of polysilsesquioxanes coating with controllable one-dimensional nanostructure on substrates remains a major long-term challenge by conventional solution-phase method. The hydrolytic polycondensation of organosilanes in solution normally produces a mixture of incomplete cages, ladderlike, and network structures, resulting in the poor control of the formation of specific nanostructure. This paper describes a simple aqueous process to synthesize nanofilament-based coatings of polysilsesquioxanes possessing various organo-functional groups (for example, thiol, methyl, phenyl, vinyl, and epoxy). We utilized a self-assembled nanostructured polyamine layer as a biomimetically catalytic scaffold/template to direct the formation of one-dimensional nanofilament of polysilsesquioxanes by temporally and spatially controlled hydrolytic polycondensation of organosilane. The surface nanostructure and morphology of polysilsesquioxane coating could be modulated by changing hydrolysis and condensation reaction conditions, and the orientation of nanofilaments of polysilsesquioxanes on substrates could be controlled by simply adjusting the self-assembly conditions of polyamine layer. The nanostructure and polyamine@polysilsesquioxane hybrid composition of nanofilament-based coatings were examined by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The template role of nanostructured polyamine layer for the formation of polysilsesquioxane nanofilament was confirmed by combining thin film X-ray diffraction (XRD) and XPS measurements. Moreover, these nanotextured coatings with various organo-functional groups could be changed into superhydrophobic surfaces after surface modification with fluorocarbon molecule.

  2. Sol-Gel Derived Hydroxyapatite Coating on Mg-3Zn Alloy for Orthopedic Application

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Manoj Kumar, R.; Kuntal, Kishor Kumar; Gupta, Pallavi; Das, Snehashish; Jayaganthan, R.; Roy, Partha; Lahiri, Debrupa

    2015-04-01

    In recent years, magnesium and its alloys have gained a lot of interest as orthopedic implant constituents because their biodegradability and mechanical properties are closer to that of human bone. However, one major concern with Mg in orthopedics is its high corrosion rate that results in the reduction of mechanical integrity before healing the bone tissue. The current study evaluates the sol-gel-derived hydroxyapatite (HA) coating on a selected Mg alloy (Mg-3Zn) for decreasing the corrosion rate and increasing the bioactivity of the Mg surface. The mechanical integrity of the coating is established as a function of the surface roughness of the substrate and the sintering temperature of the coating. Coating on a substrate roughness of 15-20 nm and sintering at 400°C shows the mechanical properties in similar range of bone, thus making it suitable to avoid the stress-shielding effect. The hydroxyapatite coating on the Mg alloy surface also increases corrosion resistance very significantly by 40 times. Bone cells are also found proliferating better in the HA-coated surface. All these benefits together establish the candidature of sol-gel HA-coated Mg-3Zn alloy in orthopedic application.

  3. Dopamine-assisted co-deposition: An emerging and promising strategy for surface modification.

    PubMed

    Qiu, Wen-Ze; Yang, Hao-Cheng; Xu, Zhi-Kang

    2018-04-27

    Mussel-inspired chemistry based on polydopamine (PDA) deposition has been developed as a facile and universal method for the surface modification of various materials. However, the inherent shortcomings of PDA coatings still impede their practical applications in the development of functional materials. In this review, we introduce the recent progress in the emerging dopamine-assisted co-deposition as a one-step strategy for functionalizing PDA-based coatings, and improving them in the aspects of deposition rate, morphology uniformity, surface wettability and chemical stability. The co-deposition mechanisms are categorized and discussed according to the interactions of dopamine or PDA with the introduced co-component. We also emphasize the influence of these interactions on the properties of the resultant PDA-based coatings. Meanwhile, we conclude the representative potential applications of those dopamine-assisted co-deposited coatings in material science, especially including separation membranes and biomaterials. Finally, some important issues and perspectives for theoretical study and applications are briefly discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Novel hierarchical tantalum oxide-PDMS hybrid coating for medical implants: One pot synthesis, characterization and modulation of fibroblast proliferation.

    PubMed

    Tran, Phong A; Fox, Kate; Tran, Nhiem

    2017-01-01

    Surface properties such as morphology, roughness and charge density have a strong influence on the interaction of biomaterials and cells. Hierarchical materials with a combination of micron/submicron and nanoscale features for coating of medical implants could therefore have significant potential to modulate cellular responses and eventually improve the performance of the implants. In this study, we report a simple, one pot wet chemistry preparation of a hybrid coating system with hierarchical surface structures consisting of polydimethylsiloxane (PDMS) and tantalum oxide. Medical grade, amine functional PDMS was mixed with tantalum ethoxide which subsequently formed Ta 2 O 5 in situ through hydrolysis and condensation during coating process. The coatings were characterized by SEM, EDS, XPS, confocal scanning microscopy, contact angle measurement and in vitro cell culture. Varying PDMS and tantalum ethoxide ratios resulted in coatings of different surface textures ranging from smooth to submicro- and nano-structured. Strikingly, hierarchical surfaces containing both microscale (1-1.5μm) and nanoscale (86-163nm) particles were found on coatings synthesized with 20% and 40% (v/v) tantalum ethoxide. The coatings were similar in term of hydrophobicity but showed different surface roughness and chemical composition. Importantly, higher cell proliferation was observed on hybrid surface with hierarchical structures compared to pure PDMS or pure tantalum oxide. The coating process is simple, versatile, carried out under ambient condition and requires no special equipment. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Polymeric Coatings for Combating Biocorrosion

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Yuan, Shaojun; Jiang, Wei; Lv, Li; Liang, Bin; Pehkonen, Simo O.

    2018-03-01

    Biocorrosion has been considered as big trouble in many industries and marine environments due to causing great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anti-corrosion and anti-microbial properties have been widely accepted as a novel and effective approach to preventbiocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbially-induced corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: i) traditional polymers incorporated with biocides, ii) antibacterial polymers containing quaternary ammonium compounds, and iii) conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting anti-bacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.

  6. Scalable graphene coatings for enhanced condensation heat transfer.

    PubMed

    Preston, Daniel J; Mafra, Daniela L; Miljkovic, Nenad; Kong, Jing; Wang, Evelyn N

    2015-05-13

    Water vapor condensation is commonly observed in nature and routinely used as an effective means of transferring heat with dropwise condensation on nonwetting surfaces exhibiting heat transfer improvement compared to filmwise condensation on wetting surfaces. However, state-of-the-art techniques to promote dropwise condensation rely on functional hydrophobic coatings that either have challenges with chemical stability or are so thick that any potential heat transfer improvement is negated due to the added thermal resistance of the coating. In this work, we show the effectiveness of ultrathin scalable chemical vapor deposited (CVD) graphene coatings to promote dropwise condensation while offering robust chemical stability and maintaining low thermal resistance. Heat transfer enhancements of 4× were demonstrated compared to filmwise condensation, and the robustness of these CVD coatings was superior to typical hydrophobic monolayer coatings. Our results indicate that graphene is a promising surface coating to promote dropwise condensation of water in industrial conditions with the potential for scalable application via CVD.

  7. Sensing abilities of functionalized calix[4]arene coated QCM sensors towards volatile organic compounds in aqueous media

    NASA Astrophysics Data System (ADS)

    Temel, Farabi; Ozcelik, Egemen; Ture, Ayse Gul; Tabakci, Mustafa

    2017-08-01

    This study presents the sensing studies of QCM sensors which coated with calix[4]arene derivatives bearing different functional groups towards some selected Volatile Organic Compounds (VOCs). Initial experiments revealed that QCM sensor coated with calix-3 bearing bromopropyl functionalities was relatively more effective sensor for methylene chloride (MC) emissions than the other calix[4]arene coated QCM sensors, in aqueous media. In further experiments, this effective calix-3 coated QCM sensor were used in detailed sensing studies of selected VOCs. However, the results demonstrated that calix-3 coated QCM sensor was most useful sensor for toluene (TOL) emissions among all. Moreover, the sensing of TOLs with calix-3 coated QCM sensor was also evaluated in terms of sorption phenomena. Consequently, calix-3 coated QCM sensor was good sensor for TOL emissions, and thus it demonstrated that the coating of QCM sensor surface with calixarenes was good approach for sensing of the VOCs.

  8. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses.

    PubMed

    Jia, Zhaojun; Xiu, Peng; Li, Ming; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Wei, Shicheng; Zheng, Yufeng; Xi, Tingfei; Cai, Hong; Liu, Zhongjun

    2016-01-01

    The therapeutic applications of silver nanoparticles (AgNPs) against biomedical device-associated infections (BAI), by local delivery, are encountered with risks of detachment, instability and nanotoxicity in physiological milieus. To firmly anchor AgNPs onto modified biomaterial surfaces through tight physicochemical interactions would potentially relieve these concerns. Herein, we present a strategy for hierarchical TiO2/Ag coating, in an attempt to endow medical titanium (Ti) with anticorrosion and antibacterial properties whilst maintaining normal biological functions. In brief, by harnessing the adhesion and reactivity of bioinspired polydopamine, silver nanoparticles were easily immobilized onto peripheral surface and incorporated into interior cavity of a micro/nanoporous TiO2 ceramic coating in situ grown from template Ti. The resulting coating protected the substrate well from corrosion and gave a sustained release of Ag(+) up to 28 d. An interesting germicidal effect, termed "trap-killing", was observed against Staphylococcus aureus strain. The multiple osteoblast responses, i.e. adherence, spreading, proliferation, and differentiation, were retained normal or promoted, via a putative surface-initiated self-regulation mechanism. After subcutaneous implantation for a month, the coated specimens elicited minimal, comparable inflammatory responses relative to the control. Moreover, this simple and safe functionalization strategy manifested a good degree of flexibility towards three-dimensional sophisticated objects. Expectedly, it can become a prospective bench to bedside solution to current challenges facing orthopedics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. From Coating to Dopant: How the Transition Metal Composition Affects Alumina Coatings on Ni-Rich Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Binghong; Key, Baris; Lapidus, Saul H.

    Surface alumina coatings have been shown to be an effective way to improve the stability and cyclability of cathode materials. However, a detailed understanding of the relationship between the surface coatings and the bulk layered oxides is needed to better define the critical cathode–electrolyte interface. In this work, we systematically studied the effect of the composition of Ni-rich LiNi xMn yCo 1–x–yO 2 (NMC) on the surface alumina coatings. Changing cathode composition from LiNi 0.5Mn 0.3Co 0.2O 2 (NMC532) to LiNi 0.6Mn 0.2Co 0.2O 2 (NMC622) and LiNi 0.8Mn 0.1Co 0.1O 2 (NMC811) was found to facilitate the diffusion ofmore » surface alumina into the bulk after high-temperature annealing. By use of a variety of spectroscopic techniques, Al was seen to have a high bulk compatibility with higher Ni/Co content, and low bulk compatibility was associated with Mn in the transition metal layer. It was also noted that the cathode composition affected the observed morphology and surface chemistry of the coated material, which has an effect on electrochemical cycling. The presence of a high surface Li concentration and strong alumina diffusion into the bulk led to a smoother surface coating on NMC811 with no excess alumina aggregated on the surface. Structural characterization of pristine NMC particles also suggests surface Co segregation, which may act to mediate the diffusion of the Al from the surface to the bulk. The diffusion of Al into the bulk was found to be detrimental to the protection function of surface coatings leading to poor overall cyclability, indicating the importance of compatibility between surface coatings and bulk oxides on the electrochemical performance of coated cathode materials.In conclusion, these results are important in developing a better coating method for synthesis of next-generation cathode materials for lithium-ion batteries.« less

  10. From Coating to Dopant: How the Transition Metal Composition Affects Alumina Coatings on Ni-Rich Cathodes

    DOE PAGES

    Han, Binghong; Key, Baris; Lapidus, Saul H.; ...

    2017-11-01

    Surface alumina coatings have been shown to be an effective way to improve the stability and cyclability of cathode materials. However, a detailed understanding of the relationship between the surface coatings and the bulk layered oxides is needed to better define the critical cathode–electrolyte interface. In this work, we systematically studied the effect of the composition of Ni-rich LiNi xMn yCo 1–x–yO 2 (NMC) on the surface alumina coatings. Changing cathode composition from LiNi 0.5Mn 0.3Co 0.2O 2 (NMC532) to LiNi 0.6Mn 0.2Co 0.2O 2 (NMC622) and LiNi 0.8Mn 0.1Co 0.1O 2 (NMC811) was found to facilitate the diffusion ofmore » surface alumina into the bulk after high-temperature annealing. By use of a variety of spectroscopic techniques, Al was seen to have a high bulk compatibility with higher Ni/Co content, and low bulk compatibility was associated with Mn in the transition metal layer. It was also noted that the cathode composition affected the observed morphology and surface chemistry of the coated material, which has an effect on electrochemical cycling. The presence of a high surface Li concentration and strong alumina diffusion into the bulk led to a smoother surface coating on NMC811 with no excess alumina aggregated on the surface. Structural characterization of pristine NMC particles also suggests surface Co segregation, which may act to mediate the diffusion of the Al from the surface to the bulk. The diffusion of Al into the bulk was found to be detrimental to the protection function of surface coatings leading to poor overall cyclability, indicating the importance of compatibility between surface coatings and bulk oxides on the electrochemical performance of coated cathode materials.In conclusion, these results are important in developing a better coating method for synthesis of next-generation cathode materials for lithium-ion batteries.« less

  11. A summary of special coatings projects conducted in support of the Die Casting Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selle, J.E.

    1988-09-12

    The usefulness of various kinds of coatings to the die casting program has been studied. This work includes heat transfer and fluid flow calculations, as well as experimental work, to examine the feasibility and characteristics of various types of coatings. Calculations include the effect of surface roughness on fluid flow, conductance as a function of coating thickness, conductivity as a function of coating porosity, and solidification and possible remelting of microspheres of metal. In each case, the model is described and the results are presented. Experimental work involved evaluating the relative insulating value of various coatings and an analysis ofmore » commercial flame-sprayed coatings, low-density coatings, and release coatings. In each case, description of the experimental arrangement is given and the results are described. 5 refs., 28 figs., 6 tabs.« less

  12. Atomic layer deposition of nano-TiO2 thin films with enhanced biocompatibility and antimicrobial activity for orthopedic implants

    PubMed Central

    Liu, Luting; Bhatia, Ritwik; Webster, Thomas J

    2017-01-01

    Titanium (Ti) and its alloys have been extensively used as implant materials in orthopedic applications. Nevertheless, implants may fail due to a lack of osseointegration and/or infection. The aim of this in vitro study was to endow an implant surface with favorable biological properties by the dual modification of surface chemistry and nanostructured topography. The application of a nanostructured titanium dioxide (TiO2) coating on Ti-based implants has been proposed as a potential way to enhance tissue-implant interactions while inhibiting bacterial colonization simultaneously due to its chemical stability, biocompatibility, and antimicrobial properties. In this paper, temperature-controlled atomic layer deposition (ALD) was introduced for the first time to provide unique nanostructured TiO2 coatings on Ti substrates. The effect of nano-TiO2 coatings with different morphology and structure on human osteoblast and fibroblast functions and bacterial activities was investigated. In vitro results indicated that the TiO2 coating stimulated osteoblast adhesion and proliferation while suppressing fibroblast adhesion and proliferation compared to uncoated materials. In addition, the introduction of nano-TiO2 coatings was shown to inhibit gram-positive bacteria (Staphylococcus aureus), gram-negative bacteria (Escherichia coli), and antibiotic-resistant bacteria (methicillin-resistant Staphylococcus aureus), all without resorting to the use of antibiotics. Our results suggest that the increase in nanoscale roughness and greater surface hydrophilicity (surface energy) together could contribute to increased protein adsorption selectively, which may affect the cellular and bacterial activities. It was found that ALD-grown TiO2-coated samples with a moderate surface energy at 38.79 mJ/m2 showed relatively promising antibacterial properties and desirable cellular functions. The ALD technique provides a novel and effective strategy to produce TiO2 coatings with delicate control of surface nanotopography and surface energy to enhance the interfacial biocompatibility and mitigate bacterial infection, and could potentially be used for improving numerous orthopedic implants. PMID:29263665

  13. Evaluation of Osseous Integration of PVD-Silver-Coated Hip Prostheses in a Canine Model

    PubMed Central

    Hauschild, Gregor; Hardes, Jendrik; Gosheger, Georg; Blaske, Franziska; Wehe, Christoph; Karst, Uwe; Höll, Steffen

    2015-01-01

    Infection associated with biomaterials used for orthopedic prostheses remains a serious complication in orthopedics, especially tumor surgery. Silver-coating of orthopedic (mega)prostheses proved its efficiency in reducing infections but has been limited to surface areas exposed to soft tissues due to concerns of silver inhibiting osseous integration of cementless stems. To close this gap in the bactericidal capacity of silver-coated orthopedic prostheses extension of the silver-coating on surface areas intended for osseous integration seems to be inevitable. Our study reports about a PVD- (physical-vapor-deposition-) silver-coated cementless stem in a canine model for the first time and showed osseous integration of a silver-coated titanium surface in vivo. Radiological, histological, and biomechanical analysis revealed a stable osseous integration of four of nine stems implanted. Silver trace elemental concentrations in serum did not exceed 1.82 parts per billion (ppb) and can be considered as nontoxic. Changes in liver and kidney functions associated with the silver-coating could be excluded by blood chemistry analysis. This was in accordance with very limited metal displacement from coated surfaces observed by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) 12 months after implantation. In conclusion our results represent a step towards complete bactericidal silver-coating of orthopedic prostheses. PMID:25695057

  14. Functionalized coatings by cold spray: An in vitro study of micro- and nanocrystalline hydroxyapatite compared to porous titanium.

    PubMed

    Vilardell, A M; Cinca, N; Garcia-Giralt, N; Dosta, S; Cano, I G; Nogués, X; Guilemany, J M

    2018-06-01

    Three different surface treatments on a Ti6Al4V alloy have been in vitro tested for possible application in cementless joint prosthesis. All of them involve the novelty of using the Cold Spray technology for their deposition: (i) an as-sprayed highly rough titanium and, followed by the deposition of a thin hydroxyapatite layer with (ii) microcrystalline or (iii) nanocrystalline structure. Primary human osteoblasts were extracted from knee and seeded onto the three different surfaces. Cell viability was tested by MTS and LIVE/DEAD assays, cell differentiation by alkaline phosphatase (ALP) quantification and cell morphology by Phalloidin staining. All tests were carried out at 1, 7 and 14 days of cell culture. Different cell morphologies between titanium and hydroxyapatite surfaces were exhibited. At 1 day of cell culture, cells on the titanium coating were spread and flattened, expanding the filopodia actin filaments in all directions, while cells on the hydroxyapatite coatings showed round like-shape morphology due to slower attachment. Higher cell viability was detected at all times of cell culture on titanium coating due to a better attachment at 1 day. However, from 7 days of cell culture, cells on hydroxyapatite showed good attachment onto surfaces and highly increased their proliferation, mostly on nanocrystalline, achieving similar cell viability levels than titanium coatings. ALP levels were significantly higher in titanium, in part, because of greatest cell number. Overall, the best cell functional results were obtained on titanium coatings whereas microcrystalline hydroxyapatite presented the worst cellular parameters. However, results indicate that nanocrystalline hydroxyapatite coatings may achieve promising results for the faster cell proliferation once cells are attached on the surface. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Micro-oxidation treatment to improve bonding strength of Sr and Na co-substituted hydroxyapatite coatings for carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Yulei; Liu, Shoujie; Guo, Qian; Li, Shaoxian

    2016-08-01

    To improve the bonding strength of Sr and Na co-substituted hydroxyapatite (SNH) coatings for carbon/carbon composites, carbon/carbon composites are surface modified by micro-oxidation treatment. The micro-oxidation treatment could generate large number of pores containing oxygenic functional groups on the surface of carbon/carbon composites. SNH is nucleated on the inwall of the pores and form a flaky shape coating with 10-50 nm in thickness and 200-900 nm in width. The bonding strength between SNH coating and carbon/carbon composites increases from 4.27 ± 0.26 MPa to 10.57 ± 0.38 MPa after the micro-oxidation treatment. The promotion of bonding strength is mainly attributed to the pinning effect caused by the pores and chemical bonding generated by the oxygenic functional groups.

  16. HA and double-layer HA-P2O5/CaO glass coatings: influence of chemical composition on human bone marrow cells osteoblastic behavior.

    PubMed

    Ferraz, M P; Fernandes, M H; Santos, J D; Monteiro, F J

    2001-07-01

    Human osteoblastic bone marrow derived cells were cultured for 28 days onto the surface of a glass reinforced hydroxyapatite (HA) composite and a commercial type HA plasma sprayed coatings, both in the "as-received" condition and after an immersion treatment with culture medium during 21 days. Cell proliferation and differentiation were analyzed as a function of the chemical composition of the coatings and the immersion treatment. Cell attachment, growth and differentiation of osteoblastic bone marrow cells seeded onto "as-received" plasma sprayed coatings were strongly affected by the time-dependent variation of the surface structure occurring during the first hours of culture. Initial interactions leading to higher amounts of adsorbed protein and zeta potential shifts towards negative charges appeared to result in surface structures with better biological performance. Cultures grown onto the pretreated coatings showed higher rate of cell proliferation and increased functional activity, as compared to those grown onto the corresponding "as-received" materials. However, the cell behavior was similar in the glass composite and HA coatings. The results showed that the glass composites present better characteristics for bone cell growth and function than HA. In addition, this work also provide evidence that the biological performance of the glass composites can be modulated and improved by manipulations in the chemical composition, namely in the content of glass added to HA. Copyright 2001 Kluwer Academic Publishers

  17. Infrared spectroscopic investigations on the distribution of residual grease on textiles

    NASA Astrophysics Data System (ADS)

    Siedler, J.; Schumacher-Hamedat, Ursula; Hoecker, Hartwig

    1992-03-01

    Surface modification of textile materials is of major importance in the modern textile industry. Several methods are commonly applied to produce a broad range of coated materials. The adhesion between the coating polymers and the textile fibers often determines the quality. Improved adhesion of the coating is achieved by a chemical bonding (covalent or ionic) between the coating materials and the textile. The efficiency,however, is dependent on the orientation of the functional groups of the outmost molecular layers of the fibers. Therefore, we have used surface sensitive methods to analyze the surface structure of proteinaceous fibers. Homopoly(aminoacid) films like poly(-(gamma) -benzyl-L-glutamate) and poly(- (Beta) -benzyl-L-aspartate) have been chosen as models for natural fibers like wool.

  18. Regularities of Filamentary Channels Formation During Formation of Nanostructured Non-Metallic Inorganic Coatings in Microplasma Galvanostatic Mode in Solutions

    NASA Astrophysics Data System (ADS)

    Mamaev, A. I.; Mamaeva, V. A.; Kolenchin, N. F.; Chubenko, A. K.; Kovalskaya, Ya. B.; Konstantinova, T. A.; Dolgova, Yu. N.; Beletskaya, E. Yu.

    2016-04-01

    This paper presents the theoretical models describing the growth of filamentary channels of nanostructured non-metallic coatings formed by anodizing and microplasma oxidation. The authors identified dependences of the number of pores on the coating thickness. The paper presents graphic dependences of the number of filamentary channels on the process time and the coating thickness. These dependences allow calculating through and surface porosity, and in cases, when the pores are filled with functional material, they allow calculating the concentration distribution of this functional material throughout the coating thickness. The theoretical models enhance our understanding of the nature of anode processes and can be used to describe and forecast the growth and filling of porous coatings, so they can also be used to create functional and bioactive materials.

  19. Synthesis and processing of ELISA polymer substitute: The influence of surface chemistry and morphology on detection sensitivity

    NASA Astrophysics Data System (ADS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Rothan, Hussin A.; Yusof, Rohana; van der Marel, Cees; Koole, Leo H.

    2014-10-01

    Despite the known drawbacks of enzyme-linked immunosorbent assay (ELISA), one of the deficiencies that have relatively been ignored is the performance of ELISA substrate itself. Polystyrene (PS), as the cost effective material of choice for mass production of ELISA well-plates, has shown obvious lacks of suitable physical and chemical properties for protein attachment. The general concept of this work was to develop a potential substrate that can be suggested as a material of choice for production of a new generation of ELISA analytical kits. Spin-coated thin films of polymethyl methacrylate-co-methacrylic acid (PMMA-co-MAA) on silicon surfaces were designed and processed for detection of dengue virus. Coated surfaces of different molar ratios have been investigated as carboxyl-functionalized layers for obtaining platform for biomolecule immobilization with high level of protein activity. To improve the sensitivity of detection, we have used amine functional "spacers", hexamethylenediamine (HMDA) and polyethyleneimine (PEI), which were covalently bonded to the surfaces of PMMA-co-MAA coatings. Results demonstrate that the variation of surface concentration of carboxyl groups of PMMA-co-MAA can be used to control the amine surface concentration after carbodiimide coupling with HMDA and PEI spacers. The presence of amine spacers increases hydrophilicity of the coatings and significantly impacts the polymer surface morphology. In particular, protein immobilization via amine-bearing spacers has been achieved in two effective steps: (1) carbodiimide bonding between amine spacer molecules and PMMA-co-MAA polymer coatings; and (2) covalent immobilization of antibody via glutaraldehyde reaction with amine groups from amine-treated surfaces. The application of PEI spacer in comparison to HMDA has shown much higher intensity of detection signal in ELISA experiment, indicating better immobilization efficiency and preservation of antibody activity upon attachment to the polymer surface.

  20. Bioactivity and biocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolytic oxidation.

    PubMed

    Aktuğ, Salim Levent; Durdu, Salih; Yalçın, Emine; Çavuşoğlu, Kültigin; Usta, Metin

    2017-02-01

    In the present work, hydroxyapatite (HAP)-based plasma electrolytic oxide (PEO) coatings were produced on zirconium at different current densities in a solution containing calcium acetate and β-calcium glycerophosphate by a single step. The phase structure, surface morphology, functional groups, thickness and roughness of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), eddy current method and surface profilometer, respectively. The phases of cubic-zirconia, calcium zirconate and HAP were detected by XRD. The amount of HAP and calcium zirconate increased with increasing current density. The surface of the coatings was very porous and rough. Moreover, bioactivity and biocompatibility of the coatings were analyzed in vitro immersion simulated body fluid (SBF) and MTT (3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, hemolysis assay and bacterial formation. The apatite-forming ability of the coatings was evaluated after immersion in SBF up to 28days. After immersion, the bioactivity of HAP-based coatings on zirconium was greater than the ones of uncoated zirconium and zirconium oxide-based surface. The bioactivity of PEO surface on zirconium was significantly improved under SBF conditions. The bacterial adhesion of the coatings decreased with increasing current density. The bacterial adhesion of the coating produced at 0.370A/cm 2 was minimum compared to uncoated zirconium coated at 0.260 and 0.292A/cm 2 . The hemocompatibility of HAP-based surfaces was improved by PEO. The cell attachment and proliferation of the PEO coatings were better than the one of uncoated zirconium according to MTT assay results. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment.

    PubMed

    Theapsak, Siriporn; Watthanaphanit, Anyarat; Rujiravanit, Ratana

    2012-05-01

    Polyethylene (PE) packaging films were coated with chitosan in order to introduce the antibacterial activity to the films. To augment the interaction between the two polymers, we modified the surfaces of the PE films by dielectric barrier discharge (DBD) plasma before chitosan coating. After that the plasma-treated PE films were immersed in chitosan acetate solutions with different concentrations of chitosan. The optimum plasma treatment time was 10 s as determined from contact angle measurement. Effect of the plasma treatment on the surface roughness of the PE films was investigated by atomic force microscope (AFM) while the occurrence of polar functional groups was observed by X-ray photoelectron spectroscope (XPS) and Fourier transformed infrared spectroscope (FTIR). It was found that the surface roughness as well as the occurrence of oxygen-containing functional groups (i.e., C═O, C-O, and -OH) of the plasma-treated PE films increased from those of the untreated one, indicating that the DBD plasma enhanced hydrophilicity of the PE films. The amounts of chitosan coated on the PE films were determined after washing the coated films in water for several number of washing cycles prior to detection of the chitosan content by the Kjaldahl method. The amounts of chitosan coated on the PE films were constant after washing for three times and the chitosan-coated PE films exhibited appreciable antibacterial activity against Escherichia coli and Staphylococcus aureus. Hence, the obtained chitosan-coated PE films could be a promising candidate for antibacterial food packaging.

  2. Phosphonic acid functionalization of nanostructured Ni-W coatings on steel

    NASA Astrophysics Data System (ADS)

    Orrillo, P. A.; Ribotta, S. B.; Gassa, L. M.; Benítez, G.; Salvarezza, R. C.; Vela, M. E.

    2018-03-01

    The functionalization of nanocrystalline Ni-W coatings, formed by galvanostatic pulsed electrodeposition on steel, by thermal treatment of octadecylphosphonic acid self-assembled on the oxidized alloy surface is studied by Raman spectroscopy, contact angle measurements, X-ray photoelectron spectroscopy, AFM and electrochemical techniques. Results show that this procedure preserves the surface topography and the optimum mechanical properties of the alloy. More importantly, it turns the alloy surface highly hydrophobic and markedly improves its corrosion resistance, in particular to pitting corrosion in aggressive solutions containing chloride anions. The ability of the phosphonate layer to improve surface properties arises from the barrier properties introduced by the hydrocarbon chains and the strong bonds between the phosphonate head and the underlying surface oxides.

  3. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform

    PubMed Central

    Hu, Che-Ming J.; Zhang, Li; Aryal, Santosh; Cheung, Connie; Fang, Ronnie H.; Zhang, Liangfang

    2011-01-01

    Efforts to extend nanoparticle residence time in vivo have inspired many strategies in particle surface modifications to bypass macrophage uptake and systemic clearance. Here we report a top-down biomimetic approach in particle functionalization by coating biodegradable polymeric nanoparticles with natural erythrocyte membranes, including both membrane lipids and associated membrane proteins for long-circulating cargo delivery. The structure, size and surface zeta potential, and protein contents of the erythrocyte membrane-coated nanoparticles were verified using transmission electron microscopy, dynamic light scattering, and gel electrophoresis, respectively. Mice injections with fluorophore-loaded nanoparticles revealed superior circulation half-life by the erythrocyte-mimicking nanoparticles as compared to control particles coated with the state-of-the-art synthetic stealth materials. Biodistribution study revealed significant particle retention in the blood 72 h following the particle injection. The translocation of natural cellular membranes, their associated proteins, and the corresponding functionalities to the surface of synthetic particles represents a unique approach in nanoparticle functionalization. PMID:21690347

  4. Studies on Various Functional Properties of Titania Thin Film Developed on Glazed Ceramic Wall Tiles

    NASA Astrophysics Data System (ADS)

    Anil, Asha; Darshana R, Bangoria; Misra, S. N.

    A sol-gel based TiO2 thin film was applied on glazed wall tiles for studying its various functional properties. Thin film was deposited by spin coating on the substrate and subjected to curing at different temperatures such as 600°C, 650, 700°C, 750°C and 800°C with 10 minutes soaking. The gel powder was characterized by FTIR, DTA/TG and XRD. Microstructure of thin film was analyzed by FESEM and EDX. Surface properties of the coatings such as gloss, colour difference, stain resistance, mineral hardness and wettability were extensively studied. The antibacterial activity of the surface of coated substrate against E. coli was also examined. The durability of the coated substrate in comparison to the uncoated was tested against alkali in accordance with ISO: 10545 (Part 13):1995 standard. FESEM images showed that thin films are dense and homogeneous. Coated substrates after firing results in lustre with high gloss, which increased from 330 to 420 GU as the curing temperature increases compared to that of uncoated one (72 GU). Coated substrate cured at 800°C shows higher mineral hardness (5 Mohs’) compared to uncoated one (4 Mohs’) and films cured at all temperatures showed stain resistance. The experimental results showed that the resistance towards alkali attack increase with increase in curing temperature and alkali resistance of sample cured at 800 °C was found to be superior compared to uncoated substrate. Contact angle of water on coated surface of substrates decreased with increase in temperature. Bacterial reduction percentages of the coated surface was 97% for sample cured at 700°C and it decreased from 97% to 87% as the curing temperature increased to 800 °C when treated with E. coli bacteria.

  5. Electrochemically induced actuation of liquid metal marbles

    NASA Astrophysics Data System (ADS)

    Tang, Shi-Yang; Sivan, Vijay; Khoshmanesh, Khashayar; O'Mullane, Anthony P.; Tang, Xinke; Gol, Berrak; Eshtiaghi, Nicky; Lieder, Felix; Petersen, Phred; Mitchell, Arnan; Kalantar-Zadeh, Kourosh

    2013-06-01

    Controlled actuation of soft objects with functional surfaces in aqueous environments presents opportunities for liquid phase electronics, novel assembled super-structures and unusual mechanical properties. We show the extraordinary electrochemically induced actuation of liquid metal droplets coated with nanoparticles, so-called ``liquid metal marbles''. We demonstrate that nanoparticle coatings of these marbles offer an extra dimension for affecting the bipolar electrochemically induced actuation. The nanoparticles can readily migrate along the surface of liquid metals, upon the application of electric fields, altering the capacitive behaviour and surface tension in a highly asymmetric fashion. Surprising actuation behaviours are observed illustrating that nanoparticle coatings can have a strong effect on the movement of these marbles. This significant novel phenomenon, combined with unique properties of liquid metal marbles, represents an exciting platform for enabling diverse applications that cannot be achieved using rigid metal beads.Controlled actuation of soft objects with functional surfaces in aqueous environments presents opportunities for liquid phase electronics, novel assembled super-structures and unusual mechanical properties. We show the extraordinary electrochemically induced actuation of liquid metal droplets coated with nanoparticles, so-called ``liquid metal marbles''. We demonstrate that nanoparticle coatings of these marbles offer an extra dimension for affecting the bipolar electrochemically induced actuation. The nanoparticles can readily migrate along the surface of liquid metals, upon the application of electric fields, altering the capacitive behaviour and surface tension in a highly asymmetric fashion. Surprising actuation behaviours are observed illustrating that nanoparticle coatings can have a strong effect on the movement of these marbles. This significant novel phenomenon, combined with unique properties of liquid metal marbles, represents an exciting platform for enabling diverse applications that cannot be achieved using rigid metal beads. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00185g

  6. Surface studies of thermionic cathodes and the mechanism of operation of an impregnated tungsten cathode

    NASA Technical Reports Server (NTRS)

    Forman, R.

    1976-01-01

    The surface properties of conventional impregnated cathodes were investigated by the use of Auger spectroscopy and work function measurements, and these were compared with a synthesized barium or barium oxide coated tungsten surface. The barium and barium oxide coated surfaces were prepared by evaporating barium onto a tungsten surface that can be heated to elevated temperatures. Multilayer or monolayer coverages can be investigated using this technique. The results of this study show that the surface of an impregnated tungsten cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on partially oxidized tungsten, using the criteria of identical Auger patterns and work functions. Desorption measurements of barium from a tungsten surface were also made. These results in conjunction with Auger and work function data were interpreted to show that throughout most of its life an impregnated cathode operating in the range of 1100 C has a partial monolayer rather than a monolayer of barium on its surface.

  7. Bioorthogonal layer-by-layer encapsulation of pancreatic islets via hyperbranched polymers

    PubMed Central

    Gattás-Asfura, Kerim M.; Stabler, Cherie L.

    2013-01-01

    The encapsulation of viable tissues via layer-by-layer polymer assembly provides a versatile platform for cell surface engineering, with nanoscale control over capsule properties. Herein, we report the development of a hyperbranched polymer-based, ultrathin capsule architecture expressing bioorthogonal functionality and tailored physiochemical properties. Random carbodiimide-based condensation of 3,5-dicarboxyphenyl glycineamide on alginate yielded a highly branched polysaccharide with multiple, spatially restricted, and readily functionalizable terminal carboxylate moieties. Poly(ethylene glycol) (PEG) was utilized to link azido end groups to the structured alginate. Together with phosphine functionalized poly(amido amine) (PAMAM) dendrimer, nanoscale layer-by-layer coatings, covalently stabilized via Staudinger ligation, were assembled onto solid surfaces and pancreatic islets. The effects of electrostatic and/or bioorthogonal covalent interlayer interactions on the resulting coating efficiency and stability, as well as pancreatic islet viability and function, were studied. These hyperbranched polymers provide a flexible platform for the formation of covalently stabilized ultrathin coatings on viable cells and tissues. In addition, the hyperbranched nature of the polymers presents a highly functionalized surface capable of bioorthogonal conjugation of additional bioactive or labeling motifs. PMID:24063764

  8. Development of Advanced Thermal and Environmental Barrier Coatings Using a High-Heat-Flux Testing Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The development of low conductivity, robust thermal and environmental barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity and cyclic resistance at very high surface temperatures (up to 1700 C) under large thermal gradients. In this study, a laser high-heat-flux test approach is established for evaluating advanced low conductivity, high temperature capability thermal and environmental barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) program. The test approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity, which initially rises under the steady-state high temperature thermal gradient test due to coating sintering, and later drops under the cyclic thermal gradient test due to coating cracking/delamination. The coating system is then evaluated based on damage accumulation and failure after the combined steady-state and cyclic thermal gradient tests. The lattice and radiation thermal conductivity of advanced ceramic coatings can also be evaluated using laser heat-flux techniques. The external radiation resistance of the coating is assessed based on the measured specimen temperature response under a laser- heated intense radiation-flux source. The coating internal radiation contribution is investigated based on the measured apparent coating conductivity increases with the coating surface test temperature under large thermal gradient test conditions. Since an increased radiation contribution is observed at these very high surface test temperatures, by varying the laser heat-flux and coating average test temperature, the complex relation between the lattice and radiation conductivity as a function of surface and interface test temperature may be derived.

  9. A Review to the Laser Cladding of Self-Lubricating Composite Coatings

    NASA Astrophysics Data System (ADS)

    Quazi, M. M.; Fazal, M. A.; Haseeb, A. S. M. A.; Yusof, Farazila; Masjuki, H. H.; Arslan, A.

    2016-06-01

    Liquid lubricants are extremely viable in reducing wear damage and friction of mating components. However, due to the relentless pressure and the recent trend towards higher operating environments in advanced automotive and aerospace turbo-machineries, these lubricants cease to perform and hence, an alternate system is required for maintaining the self-lubricating environment. From the viewpoint of tribologist, wear is related to near-surface regions and hence, surface coatings are considered suitable for improving the functioning of tribo-pairs. Wear resistant coatings can be fabricated with the addition of various solid lubricants so as to reduce friction drag. In order to protect bulk substrates, self-lubricating wear resistant composite coatings have been fabricated by employing various surface coating techniques such as electrochemical process, physical and chemical vapor depositions, thermal and plasma spraying, laser cladding etc. Studies related to laser-based surface engineering approaches have remained vibrant and are recognized in altering the near surface regions. In this work, the latest developments in laser based self-lubricating composite coatings are highlighted. Furthermore, the effect of additives, laser processing parameters and their corresponding influence on mechanical and tribological performance is briefly reviewed.

  10. Magnet-induced temporary superhydrophobic coatings from one-pot synthesized hydrophobic magnetic nanoparticles.

    PubMed

    Fang, Jian; Wang, Hongxia; Xue, Yuhua; Wang, Xungai; Lin, Tong

    2010-05-01

    In this paper, we report on the production of superhydrophobic coatings on various substrates (e.g., glass slide, silicon wafer, aluminum foil, plastic film, nanofiber mat, textile fabrics) using hydrophobic magnetic nanoparticles and a magnet-assembly technique. Fe(3)O(4) magnetic nanoparticles functionalized with a thin layer of fluoroalkyl silica on the surface were synthesized by one-step coprecipitation of Fe(2+)/Fe(3+) under an alkaline condition in the presence of a fluorinated alkyl silane. Under a magnetic field, the magnetic nanoparticles can be easily deposited on any solid substrate to form a thin superhydrophobic coating with water contact angle as high as 172 degrees , and the surface superhydrophobicity showed very little dependence on the substrate type. The particulate coating showed reasonable durability because of strong aggregation effect of nanoparticles, but the coating layer can be removed (e.g., by ultrasonication) to restore the original surface feature of the substrates. By comparison, the thin particle layer deposited under no magnetic field showed much lower hydrophobicity. The main reason for magnet-induced superhydrophobic surfaces is the formation of nano- and microstructured surface features. Such a magnet-induced temporary superhydrophobic coating may have wide applications in electronic, biomedical, and defense-related areas.

  11. Effects of thermally induced denaturation on technological-functional properties of whey protein isolate-based films.

    PubMed

    Schmid, M; Krimmel, B; Grupa, U; Noller, K

    2014-09-01

    This study examined how and to what extent the degree of denaturation affected the technological-functional properties of whey protein isolate (WPI)-based coatings. It was observed that denaturation affected the material properties of WPI-coated films significantly. Surface energy decreased by approximately 20% compared with native coatings. Because the surface energy of a coating should be lower than that of the substrate, this might result in enhanced wettability characteristics between WPI-based solution and substrate surface. Water vapor barrier properties increased by about 35% and oxygen barrier properties increased by approximately 33%. However, significant differences were mainly observed between coatings made of fully native WPI and ones with a degree of denaturation of 25%. Higher degrees of denaturation did not lead to further improvement of material properties. This observation offers cost-saving potential: a major share of denatured whey proteins may be replaced by fully native ones that are not exposed to energy-intensive heat treatment. Furthermore, native WPI solutions can be produced with higher dry matter content without gelatinizing. Hence, less moisture has to be removed through drying, resulting in reduced energy consumption. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Tuning Energetic Material Reactivity Using Surface Functionalization of Aluminum Fuels

    DTIC Science & Technology

    2012-10-30

    analysis of three different thermites consisting of aluminum (Al) particles with and without surface functionalization combined with molybdenum...of thermites , aluminum synthesis, aluminum fluoropolymer combustion, acid coatings Keerti S. Kappagantula, Cory Farley, Michelle L. Pantoya, Jillian...Reactivity Using Surface Functionalization of Aluminum Fuels Report Title ABSTRACT Combustion analysis of three different thermites consisting of aluminum (Al

  13. Plasma deposited composite coatings to control biological response of osteoblast-like MG-63 cells

    NASA Astrophysics Data System (ADS)

    Keremidarska, M.; Radeva, E.; Eleršič, K.; Iglič, A.; Pramatarova, L.; Krasteva, N.

    2014-12-01

    The successful osseointegration of a bone implant is greatly dependent on its ability to support cellular adhesion and functions. Deposition of thin composite coatings onto the implant surface is a promising approach to improve interactions with cells without compromising implant bulk properties. In this work, we have developed composite coatings, based on hexamethyldisiloxane (HMDS) and detonation nanodiamond (DND) particles and have studied adhesion, growth and function of osteoblast-like MG-63 cells. PPHMDS/DND composites are of interest for orthopedics because they combine superior mechanical properties and good biocompatibility of DND with high adherence of HMDS to different substrata including glass, metals and plastics. We have used two approaches of the implementation of DND particles into a polymer matrix: pre-mixture of both components followed by plasma polymerization and layer-by-layer deposition of HMDS and DND particles and found that the deposition approach affects significantly the surface properties of the resulting layers and cell behaviour. The composite, prepared by subsequent deposition of monomer and DND particles was hydrophilic, with a rougher surface and MG-63 cells demonstrated better spreading, growth and function compared to the other composite which was hydrophobic with a smooth surface similarly to unmodified polymer. Thus, by varying the deposition approach, different PPHMDS/DND composite coatings, enhancing or inhibiting osteoblast adhesion and functions, can be obtained. In addition, the effect of fibronectin pre-adsorption was studied and was found to increase greatly MG-63 cell spreading.

  14. Biocompatibility of a functionally graded bioceramic coating made by wide-band laser cladding.

    PubMed

    Weidong, Zhu; Qibin, Liu; Min, Zheng; Xudong, Wang

    2008-11-01

    The application of plasma spray is the most popular method by which a metal-bioceramic surface composite can be prepared for the repair of biological hard-tissue, but this method has disadvantages. These disadvantages include poor coating-to-substrate adhesion, low mechanical strength, and brittleness of the coating. In the investigation described in this article, a gradient bioceramic coating was prepared on a Ti-6Al-4V titanium alloy surface using a gradient composite design and wide-band laser cladding techniques. Using a trilayer-structure composed of a substratum, an alloy and bioceramics, the coating was chemically and metallurgically bonded with the substratum. The coating, which contains beta-tricalcium phosphate and hydroxyapatite, showed favorable biocompatibility with the bone tissue and promoted in vivo osteogenesis.

  15. Engineering M13 for phage display.

    PubMed

    Sidhu, S S

    2001-09-01

    Phage display is achieved by fusing polypeptide libraries to phage coat proteins. The resulting phage particles display the polypeptides on their surfaces and they also contain the encoding DNA. Library members with particular functions can be isolated with simple selections and polypeptide sequences can be decoded from the encapsulated DNA. The technology's success depends on the efficiency with which polypeptides can be displayed on the phage surface, and significant progress has been made in engineering M13 bacteriophage coat proteins as improved phage display platforms. Functional display has been achieved with all five M13 coat proteins, with both N- and C-terminal fusions. Also, coat protein mutants have been designed and selected to improve the efficiency of heterologous protein display, and in the extreme case, completely artificial coat proteins have been evolved specifically as display platforms. These studies demonstrate that the M13 phage coat is extremely malleable, and this property can be used to engineer the phage particle specifically for phage display. These improvements expand the utility of phage display as a powerful tool in modern biotechnology.

  16. Dry particle coating of polymer particles for tailor-made product properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blümel, C., E-mail: karl-ernst.wirth@fau.de; Schmidt, J., E-mail: karl-ernst.wirth@fau.de; Dielesen, A., E-mail: karl-ernst.wirth@fau.de

    2014-05-15

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratiomore » and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.« less

  17. Thrombolysis based on magnetically-controlled surface-functionalized Fe3O4 nanoparticle

    PubMed Central

    Chang, Ming; Lin, Yu-Hao; Gabayno, Jacque Lynn; Li, Qian; Liu, Xiaojun

    2017-01-01

    ABSTRACT In this study, the control of magnetic fields to manipulate surface-functionalized Fe3O4 nanoparticles by urokinase coating is investigated for thrombolysis in a microfluidic channel. The urokinase-coated Fe3O4 nanoparticles are characterized using particle size distribution, zeta potential measurement and spectroscopic data. Thrombolytic ratio tests reveal that the efficiency for thrombus cleaning is significantly improved when using magnetically-controlled urokinase-coated Fe3O4 nanoparticles than pure urokinase solution. The average increase in the rate of thrombolysis with the use of urokinase-coated Fe3O4 nanoparticles is about 50%. In vitro thrombolysis test in a microfluidic channel using the coated nanoparticles shows nearly complete removal of thrombus, a result that can be attributed to the clot busting effect of the urokinase as it inhibits the possible formation of blood bolus during the magnetically-activated microablation process. The experiment further demonstrates that a thrombus mass of 10.32 mg in the microchannel is fully removed in about 180 s. PMID:27689864

  18. Thermal Alternating Polymer Nanocomposite (TAPNC) Coating Designed to Prevent Aerodynamic Insect Fouling

    PubMed Central

    Bayer, Ilker S.; Krishnan, K. Ghokulla; Robison, Robert; Loth, Eric; Berry, Douglas H.; Farrell, Thomas E.; Crouch, Jeffrey D.

    2016-01-01

    Insect residue adhesion to moving surfaces such as turbine blades and aircraft not only causes surface contamination problems but also increases drag on these surfaces. Insect fouling during takeoff, climb and landing can result in increased drag and fuel consumption for aircraft with laminar-flow surfaces. Hence, certain topographical and chemical features of non-wettable surfaces need to be designed properly for preventing insect residue accumulation on surfaces. In this work, we developed a superhydrophobic coating that is able to maintain negligible levels of insect residue after 100 high speed (50 m/s) insect impact events produced in a wind tunnel. The coating comprises alternating layers of a hydrophobic, perfluorinated acrylic copolymer and hydrophobic surface functional silicon dioxide nanoparticles that are infused into one another by successive thermal treatments. The design of this coating was achieved as a result of various experiments conducted in the wind tunnel by using a series of superhydrophobic surfaces made by the combination of the same polymer and nanoparticles in the form of nanocomposites with varying surface texture and self-cleaning hydrophobicity properties. Moreover, the coating demonstrated acceptable levels of wear abrasion and substrate adhesion resistance against pencil hardness, dry/wet scribed tape peel adhesion and 17.5 kPa Taber linear abraser tests. PMID:27924913

  19. Thermal Alternating Polymer Nanocomposite (TAPNC) Coating Designed to Prevent Aerodynamic Insect Fouling.

    PubMed

    Bayer, Ilker S; Krishnan, K Ghokulla; Robison, Robert; Loth, Eric; Berry, Douglas H; Farrell, Thomas E; Crouch, Jeffrey D

    2016-12-07

    Insect residue adhesion to moving surfaces such as turbine blades and aircraft not only causes surface contamination problems but also increases drag on these surfaces. Insect fouling during takeoff, climb and landing can result in increased drag and fuel consumption for aircraft with laminar-flow surfaces. Hence, certain topographical and chemical features of non-wettable surfaces need to be designed properly for preventing insect residue accumulation on surfaces. In this work, we developed a superhydrophobic coating that is able to maintain negligible levels of insect residue after 100 high speed (50 m/s) insect impact events produced in a wind tunnel. The coating comprises alternating layers of a hydrophobic, perfluorinated acrylic copolymer and hydrophobic surface functional silicon dioxide nanoparticles that are infused into one another by successive thermal treatments. The design of this coating was achieved as a result of various experiments conducted in the wind tunnel by using a series of superhydrophobic surfaces made by the combination of the same polymer and nanoparticles in the form of nanocomposites with varying surface texture and self-cleaning hydrophobicity properties. Moreover, the coating demonstrated acceptable levels of wear abrasion and substrate adhesion resistance against pencil hardness, dry/wet scribed tape peel adhesion and 17.5 kPa Taber linear abraser tests.

  20. Thermal Alternating Polymer Nanocomposite (TAPNC) Coating Designed to Prevent Aerodynamic Insect Fouling

    NASA Astrophysics Data System (ADS)

    Bayer, Ilker S.; Krishnan, K. Ghokulla; Robison, Robert; Loth, Eric; Berry, Douglas H.; Farrell, Thomas E.; Crouch, Jeffrey D.

    2016-12-01

    Insect residue adhesion to moving surfaces such as turbine blades and aircraft not only causes surface contamination problems but also increases drag on these surfaces. Insect fouling during takeoff, climb and landing can result in increased drag and fuel consumption for aircraft with laminar-flow surfaces. Hence, certain topographical and chemical features of non-wettable surfaces need to be designed properly for preventing insect residue accumulation on surfaces. In this work, we developed a superhydrophobic coating that is able to maintain negligible levels of insect residue after 100 high speed (50 m/s) insect impact events produced in a wind tunnel. The coating comprises alternating layers of a hydrophobic, perfluorinated acrylic copolymer and hydrophobic surface functional silicon dioxide nanoparticles that are infused into one another by successive thermal treatments. The design of this coating was achieved as a result of various experiments conducted in the wind tunnel by using a series of superhydrophobic surfaces made by the combination of the same polymer and nanoparticles in the form of nanocomposites with varying surface texture and self-cleaning hydrophobicity properties. Moreover, the coating demonstrated acceptable levels of wear abrasion and substrate adhesion resistance against pencil hardness, dry/wet scribed tape peel adhesion and 17.5 kPa Taber linear abraser tests.

  1. Studies of the 3D surface roughness height

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avisane, Anita; Rudzitis, Janis; Kumermanis, Maris

    2013-12-16

    Nowadays nano-coatings occupy more and more significant place in technology. Innovative, functional coatings acquire new aspects from the point of view of modern technologies, considering the aggregate of physical properties that can be achieved manipulating in the production process with the properties of coatings’ surfaces on micro- and nano-level. Nano-coatings are applied on machine parts, friction surfaces, contacting parts, corrosion surfaces, transparent conducting films (TCF), etc. The equipment available at present for the production of transparent conducting oxide (TCO) coatings with highest quality is based on expensive indium tin oxide (ITO) material; therefore cheaper alternatives are being searched for. Onemore » such offered alternative is zink oxide (ZnO) nano-coatings. Evaluating the TCF physical and mechanical properties and in view of the new ISO standard (EN ISO 25178) on the introduction of surface texture (3D surface roughness) in the engineering calculations, it is necessary to examine the height of 3D surface roughness, which is one of the most significant roughness parameters. The given paper studies the average values of 3D surface roughness height and the most often applied distribution laws are as follows: the normal distribution and Rayleigh distribution. The 3D surface is simulated by a normal random field.« less

  2. Cell Adhesion on Surface-Functionalized Magnesium.

    PubMed

    Wagener, Victoria; Schilling, Achim; Mainka, Astrid; Hennig, Diana; Gerum, Richard; Kelch, Marie-Luise; Keim, Simon; Fabry, Ben; Virtanen, Sannakaisa

    2016-05-18

    The biocompatibility of commercially pure magnesium-based (cp Mg) biodegradable implants is compromised of strong hydrogen evolution and surface alkalization due to high initial corrosion rates of cp Mg in the physiological environment. To mitigate this problem, the addition of corrosion-retarding alloying elements or coating of implant surfaces has been suggested. In the following work, we explored the effect of organic coatings on long-term cell growth. cp Mg was coated with aminopropyltriehtoxysilane + vitamin C (AV), carbonyldiimidazole (CDI), or stearic acid (SA). All three coatings have been previously suggested to reduce initial corrosion and to enhance protein adsorption and hence cell adhesion on magnesium surfaces. Endothelial cells (DH1+/+) and osteosarcoma cells (MG63) were cultured on coated samples for up to 20 days. To quantify Mg corrosion, electrochemical impedance spectroscopy (EIS) was measured after 1, 3, and 5 days of cell culture. We also investigated the speed of initial cell spreading after seeding using fluorescently labeled fibroblasts (NIH/3T3). Hydrogen evolution after contact with cell culture medium was markedly decreased on AV- and SA-coated Mg compared to uncoated Mg. These coatings also showed improved cell adhesion and spreading after 24 h of culture comparable to tissue-treated plastic surfaces. On AV-coated cp Mg, a confluent layer of endothelial cells formed after 5 days and remained intact for up to 20 days. Together, these data demonstrate that surface coating with AV is a viable strategy for improving long-term biocompatibility of cp Mg-based implants. EIS measurements confirmed that the presence of a confluent cell layer increased the corrosion resistance.

  3. An accurate and efficient method for piezoelectric coated functional devices based on the two-dimensional Green’s function for a normal line force and line charge

    NASA Astrophysics Data System (ADS)

    Hou, Peng-Fei; Zhang, Yang

    2017-09-01

    Because most piezoelectric functional devices, including sensors, actuators and energy harvesters, are in the form of a piezoelectric coated structure, it is valuable to present an accurate and efficient method for obtaining the electro-mechanical coupling fields of this coated structure under mechanical and electrical loads. With this aim, the two-dimensional Green’s function for a normal line force and line charge on the surface of coated structure, which is a combination of an orthotropic piezoelectric coating and orthotropic elastic substrate, is presented in the form of elementary functions based on the general solution method. The corresponding electro-mechanical coupling fields of this coated structure under arbitrary mechanical and electrical loads can then be obtained by the superposition principle and Gauss integration. Numerical results show that the presented method has high computational precision, efficiency and stability. It can be used to design the best coating thickness in functional devices, improve the sensitivity of sensors, and improve the efficiency of actuators and energy harvesters. This method could be an efficient tool for engineers in engineering applications.

  4. Self-assembled biomimetic superhydrophobic CaCO3 coating inspired from fouling mineralization in geothermal water.

    PubMed

    Wang, Gong G; Zhu, Li Q; Liu, Hui C; Li, Wei P

    2011-10-18

    Inspired from fouling self-mineralization in geothermal water, a novel biomimetic cactuslike CaCO(3) coating with superhydrophobic features is reported in this letter. The structure, morphologies, and phases of the CaCO(3) coating were characterized by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, and infrared spectrophotometry. After prenucleation treatment, a continuous cactuslike CaCO(3) coating with hierarchical nano- and microstructures was self-assembled on stainless steel surfaces after immersion in simulated geothermal water at 50 °C for 48 h. After being modified with a low-surface-energy monolayer of sodium stearate, the as-prepared coating exhibited superhydrophobic properties with a water contact angle of 158.9° and a sliding angle of 2°. Therefore, this work might open up a new application field of geothermal resources and provide insight into designing multidimensional structures with functional applications, including superhydrophobic surfaces. © 2011 American Chemical Society

  5. Metal deposition by electroless plating on polydopamine functionalized micro- and nanoparticles.

    PubMed

    Mondin, Giovanni; Wisser, Florian M; Leifert, Annika; Mohamed-Noriega, Nasser; Grothe, Julia; Dörfler, Susanne; Kaskel, Stefan

    2013-12-01

    A novel approach for the fabrication of metal coated micro- and nanoparticles by functionalization with a thin polydopamine layer followed by electroless plating is reported. The particles are initially coated with polydopamine via self-polymerization. The resulting polydopamine coated particles have a surface rich in catechols and amino groups, resulting in a high affinity toward metal ions. Thus, they provide an effective platform for selective electroless metal deposition without further activation and sensitization steps. The combination of a polydopamine-based functionalization with electroless plating ensures a simple, scalable, and cost-effective metal coating strategy. Silver-plated tungsten carbide microparticles, copper-plated tungsten carbide microparticles, and copper-plated alumina nanoparticles were successfully fabricated, showing also the high versatility of the method, since the polymerization of dopamine leads to the formation of an adherent polydopamine layer on the surface of particles of any material and size. The metal coated particles produced with this process are particularly well suited for the production of metal matrix composites, since the metal coating increases the wettability of the particles by the metal, promoting their integration within the matrix. Such composite materials are used in a variety of applications including electrical contacts, components for the automotive industries, magnets, and electromagnetic interference shielding. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Sensing based on surface-enhanced Raman scattering using self-forming ZnO nanoarrays coated with gold as substrates

    NASA Astrophysics Data System (ADS)

    Tang, Feng; Adam, Pierre-Michel; Rogers, David J.; Sandana, Vinod E.; Bove, Philippe; Teherani, Ferechteh H.

    2018-03-01

    Surface-Enhanced Raman spectroscopy (SERS) is a widely used technique adopted in both academia and industry for the detection of trace quantities of Raman active molecules. This is usually accomplished by functionalizing distributions of plasmonic metal nanoparticles with the analyte molecules. Recently metal-coated nanostructures have been investigated as alternatives to dispersions of metal nanoparticles in order to avoid clustering and homogeneity/reproducibility issues. In this paper, several samples of Au-coated ZnO nanoarrays are adopted as SERS substrates in order to investigate the molecular sensing capacity for methylene blue (MB) molecules. Self-forming ZnO nanoarrays were grown on both c-sapphire and silicon substrates by pulsed laser deposition. The nanoarrays were then coated with 30 nm of gold using thermal evaporation and the SERS signals of MB functionalized samples were obtained with a Raman microspectrometer. The ratio of SERS intensity to that of an MB functionalized glass substrate (ISERS/IRaman) was calculated based on the averaged SERS signals. A relatively good within-wafer homogeneity of the enhancement effect was found with ISERS/IRaman values as high as 64.2 for Au-coated nano ZnO grown on silicon substrates. The experimental results show that the Au-coated ZnO nanoarrays can be excellent SERS substrates for molecular/chemical analyte sensing.

  7. Sugars Can Actually Be Good For Your Health (LBNL Science at the Theater)

    ScienceCinema

    Bertozzi, Carolyn

    2018-05-25

    Like peanut M&Ms, all cells are coated with sugars but the functions of these sugar coatings were a mystery until very recently. This presentation will highlight recent fascinating discoveries regarding why cells are coated with sugars, as well as new tools for cancer detection that take advantage of the cells sugar coating. Professor Bertozzis lab focuses on profiling changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and exploiting this information for development of diagnostic and therapeutic approaches. In addition, her group develops nanoscience-based technologies for probing cell function and for medical diagnostics.

  8. Synthesis of Three-dimensional Polymer Nanostructures via Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Cheng, Kenneth

    Chemical vapor deposition (CVD) is a widely practiced methodology for preparing thin film polymer coatings, and the coatings can be applied to a broad range of materials, including three-dimensional solid structures and low-vapor pressure liquids. Reactive poly(p-xylylene) (PPX) coatings prepared by CVD can be used as a powerful tool for surface functionalization and bio-conjugation. The first portion of this dissertation serves to extend the use of CVD-based reactive PPX coatings as a surface functionalization strategy for the conjugation of biomolecules. Micro-structured PPX coatings having multiple surface reactive groups were fabricated. Multiple orthogonal click reactions were then employed to selectively immobilize galactose and mannobiose to the micro-structured polymer coatings. The presence of different types of carbohydrate enables lectins binding for examining ligands/cell receptor interactions. This dissertation also demonstrates the use of CVD-based reactive PPX coatings as intermediate layers to immobilize adenoviral vectors onto tissue scaffolds. The ability to tether adenoviral vectors on tissue scaffolds localizes the transduction near the scaffold surface and reduces acute toxicity and hepatic pathology cause by direct administration of the viral vector, providing a safe and efficient gene therapy delivery strategy. In the second portion of this dissertation, we explore the CVD of PPX onto surfaces coated with a thin layer of liquid crystal (LC). Instead of forming a conformal PPX coating encapsulating the LC layer, PPX assembled into an array of high-aspect ratio nanofibers inside the LC layer. The LC layer was demonstrated to act as a template where the anisotropic internal ordering of the LC facilitated the formation of nanofibers. The diameter of the nanofibers was in the range of 100 nm and could be tuned by type of LC template used, and the length of the nanofibers could be precisely controlled by varying the thickness of the LC film. The overall shape of the nanofibers could be controlled by the internal ordering of the LC template, as exemplified by the assembly of helical nanofibers using cholesteric LC as the template. PPX nanofibers could be applied to a broad range of materials, such as curved surface, metal meshes and microparticles. We successfully created nanofibers with different surface functionalities and utilized them to capture molecules of interest. We also demonstrated the synthesis of twisted nanofibers using chiral-substituted precursors. The direction and the degree of twisting of nanofibers could be controlled by the handedness and the enantiomeric excess of the chiral precursor. Finally, we showed that the LC-templated CVD method could be extended to fabricating nanofibers made of other CVD-based polymer systems, such as poly(lutidine) and poly(p-phenylene vinylene). Our work opens a new platform for designing functional polymer nanostructures with programmable geometry, alignment and chemistry. The polymer nanostructures can be attractive for applications ranging from sensors, affinity filtration, and catalytic supports.

  9. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-09-01

    Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (∼0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 -1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the α-Al2O3 (1 -1 0 2) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated α-Al2O3 (1 -1 0 2) surfaces in samples without the addition of calcium. However, the amounts of Pb(II) mobilized from the ESHA coatings onto the α-Al2O3 (1 -1 0 2) surfaces increased from 40% (no added Ca) to 58% (with 2 mM Ca) after 72 h of reaction time, possibly due to displacement of Pb(II) by Ca(II) from binding sites in the ESHA coatings. In contrast, Pb(II), Cu(II), and Zn(II) present in the ESHA coatings were found to be unreactive with the α-Al2O3 (0 0 0 1) surface. The observed reactivities of the three ESHA-coated metal-oxide surfaces with respect to metal-ion sorption are consistent with the trend observed for the uncoated metal-oxide surfaces: α-Fe2O3 (0 0 0 1) > α-Al2O3 (1 -1 0 2) > α-Al2O3 (0 0 0 1). In addition, Pb(II) partitioning onto α-Al2O3 (1 -1 0 2) surfaces increased with increasing pH from 4.0 to 9.0 as a result of the increasingly negative surface charge. These results show that intrinsic properties (nature of binding sites, binding affinities, and surface charge) of the ESHA coatings and metal-oxide surfaces, as well as external parameters such as pH and competing ions, are key factors governing the distribution and speciation of metal ions at complex NOM/mineral interfaces.

  10. Tuning the morphology of silver nanostructures photochemically coated on glass substrates: an effective approach to large-scale functional surfaces

    NASA Astrophysics Data System (ADS)

    Zaier, Mohamed; Vidal, Loic; Hajjar-Garreau, Samar; Bubendorff, Jean-Luc; Balan, Lavinia

    2017-03-01

    This paper reports on a simple and environmentally friendly photochemical process capable of generating nano-layers (8-22 nm) of silver nanostructures directly onto glass surfaces. This approach opens the way to large-scale functionalized surfaces with plasmonic properties through a single light-induced processing. Thus, Ag nanostructures top-coated were obtained through photo-reduction, at room temperature, of a photosensitive formulation containing a metal precursor, free from extra toxic stabilizers or reducing agents. The reactive formulation was confined between two glass slides and exposed to a continuous near-UV source. In this way, stable silver nano-layers can be generated directly on the substrate with a very good control of the morphology of as-synthesized nanostructures that allows tailoring the optical properties of the coated layers. The position and width of the corresponding surface plasmon resonance bands can be adjusted over a broad spectral window. By extension, this low-cost and easy-to-apply process can also be used to coat ultra thin layers of metal nanostructures on a variety of substrates. The possibility of controlling of nanostructures shape should achieve valuable developments in many fields, as diverse as plasmonics, surface enhanced Raman scattering, nano-electronic circuitry, or medical devices.

  11. Magneto-Fluorescent Core-Shell Supernanoparticles

    PubMed Central

    Chen, Ou; Riedemann, Lars; Etoc, Fred; Herrmann, Hendrik; Coppey, Mathieu; Barch, Mariya; Farrar, Christian T.; Zhao, Jing; Bruns, Oliver T.; Wei, He; Guo, Peng; Cui, Jian; Jensen, Russ; Chen, Yue; Harris, Daniel K.; Cordero, Jose M.; Wang, Zhongwu; Jasanoff, Alan; Fukumura, Dai; Reimer, Rudolph; Dahan, Maxime; Jain, Rakesh K.; Bawendi, Moungi G.

    2014-01-01

    Magneto-fluorescent particles have been recognized as an emerging class of materials that exhibit great potential in advanced applications. However, synthesizing such magneto-fluorescent nanomaterials that simultaneously exhibit uniform and tunable sizes, high magnetic content loading, maximized fluorophore coverage at the surface, and a versatile surface functionality has proven challenging. Here we report a simple approach for co-assembling magnetic nanoparticles with fluorescent quantum dots to form colloidal magneto-fluorescent supernanoparticles. Importantly, these supernanoparticles exhibit a superstructure consisting of a close packed magnetic nanoparticle “core” which is fully surrounded by a “shell” of fluorescent quantum dots. A thin layer of silica-coating provides high colloidal stability and biocompatiblity and a versatile surface functionality. We demonstrate that after surface pegylation, these silica-coated magneto-fluorescent supernanoparticles can be magnetically manipulated inside living cells while being optically tracked. Moreover, our silica-coated magneto-fluorescent supernanoparticles can also serve as an in vivo multi-photon and magnetic resonance dual-modal imaging probe. PMID:25298155

  12. Engineered Surfaces for Mitigation of Insect Residue Adhesion

    NASA Technical Reports Server (NTRS)

    Siochi, Emilie J.; Smith, Joseph G.; Wohl, Christopher J.; Gardner, J. M.; Penner, Ronald K.; Connell, John W.

    2013-01-01

    Maintenance of laminar flow under operational flight conditions is being investigated under NASA s Environmentally Responsible Aviation (ERA) Program. Among the challenges with natural laminar flow is the accretion of residues from insect impacts incurred during takeoff or landing. Depending on air speed, temperature, and wing structure, the critical residue height for laminar flow disruption can be as low as 4 microns near the leading edge. In this study, engineered surfaces designed to minimize insect residue adhesion were examined. The coatings studied included chemical compositions containing functional groups typically associated with abhesive (non-stick) surfaces. To reduce surface contact by liquids and enhance abhesion, the engineered surfaces consisted of these coatings doped with particulate additives to generate random surface topography, as well as coatings applied to laser ablated surfaces having precision patterned topographies. Performance evaluation of these surfaces included contact angle goniometry of pristine coatings and profilometry of surfaces after insect impacts were incurred in laboratory scale tests, wind tunnel tests and flight tests. The results illustrate the complexity of designing antifouling surfaces for effective insect contamination mitigation under dynamic conditions and suggest that superhydrophobic surfaces may not be the most effective solution for preventing insect contamination on aircraft wing leading edges.

  13. Stimuli-responsive polyaniline coated silica microspheres and their electrorheology

    NASA Astrophysics Data System (ADS)

    Park, Dae Eun; Choi, Hyoung Jin; Vu, Cuong Manh

    2016-05-01

    Silica/polyaniline (PANI) core-shell structured microspheres were synthesized by coating the surface of silica micro-beads with PANI and applied as a candidate inorganic/polymer composite electrorheological (ER) material. The silica micro-beads were initially modified using N-[(3-trimethoxysilyl)-propyl] aniline to activate an aniline functional group on the silica surface for a better PANI coating. The morphology of the PANI coating on the silica surface was examined by scanning electron microscopy and the silica/PANI core-shell structure was confirmed by transmission electron microscopy. The chemical structure of the particles was confirmed by Fourier transform infrared spectroscopy. Rotational rheometry was performed to confirm the difference in the ER properties between pure silica and silica/PANI microsphere-based ER fluids when dispersed in silicone oil.

  14. Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design

    NASA Astrophysics Data System (ADS)

    Metch, Jacob W.; Burrows, Nathan D.; Murphy, Catherine J.; Pruden, Amy; Vikesland, Peter J.

    2018-01-01

    Next-generation DNA sequencing and metagenomic analysis provide powerful tools for the environmentally friendly design of nanoparticles. Herein we demonstrate this approach using a model community of environmental microbes (that is, wastewater-activated sludge) dosed with gold nanoparticles of varying surface coatings and morphologies. Metagenomic analysis was highly sensitive in detecting the microbial community response to gold nanospheres and nanorods with either cetyltrimethylammonium bromide or polyacrylic acid surface coatings. We observed that the gold-nanoparticle morphology imposes a stronger force in shaping the microbial community structure than does the surface coating. Trends were consistent in terms of the compositions of both taxonomic and functional genes, which include antibiotic resistance genes, metal resistance genes and gene-transfer elements associated with cell stress that are relevant to public health. Given that nanoparticle morphology remained constant, the potential influence of gold dissolution was minimal. Surface coating governed the nanoparticle partitioning between the bioparticulate and aqueous phases.

  15. UV-killed Staphylococcus aureus enhances adhesion and differentiation of osteoblasts on bone-associated biomaterials.

    PubMed

    Somayaji, Shankari N; Huet, Yvette M; Gruber, Helen E; Hudson, Michael C

    2010-11-01

    Titanium alloys (Ti) are the preferred material for orthopedic applications. However, very often, these metallic implants loosen over a long period and mandate revision surgery. For implant success, osteoblasts must adhere to the implant surface and deposit a mineralized extracellular matrix (ECM). Here, we utilized UV-killed Staphylococcus aureus as a novel osteoconductive coating for Ti surfaces. S. aureus expresses surface adhesins capable of binding to bone and biomaterials directly. Furthermore, interaction of S. aureus with osteoblasts activates growth factor-related pathways that potentiate osteogenesis. Although UV-killed S. aureus cells retain their bone-adhesive ability, they do not stimulate significant immune modulator expression. All of the abovementioned properties were utilized for a novel implant coating so as to promote osteoblast recruitment and subsequent cell functions on the bone-implant interface. In this study, osteoblast adhesion, proliferation, and mineralized ECM synthesis were measured on Ti surfaces coated with fibronectin with and without UV-killed bacteria. Osteoblast adhesion was enhanced on Ti alloy surfaces coated with bacteria compared to uncoated surfaces, while cell proliferation was sustained comparably on both surfaces. Osteoblast markers such as collagen, osteocalcin, alkaline phosphatase activity, and mineralized nodule formation were increased on Ti alloy coated with bacteria compared to uncoated surfaces.

  16. The effect of composition and thermodynamics on the surface morphology of durable superhydrophobic polymer coatings

    PubMed Central

    Nahum, Tehila; Dodiuk, Hanna; Kenig, Samuel; Panwar, Artee; Barry, Carol; Mead, Joey

    2017-01-01

    Durable superhydrophobic coatings were synthesized using a system of silica nanoparticles (NPs) to provide nanoscale roughness, fluorosilane to give hydrophobic chemistry, and three different polymer binders: urethane acrylate, ethyl 2-cyanoacrylate, and epoxy. Coatings composed of different binders incorporating NPs in various concentrations exhibited different superhydrophobic attributes when applied on polycarbonate (PC) and glass substrates and as a function of coating composition. It was found that the substrate surface characteristics and wettability affected the superhydrophobic characteristics of the coatings. Interfacial tension and spreading coefficient parameters (thermodynamics) of the coating components were used to predict the localization of the NPs for the different binders’ concentrations. The thermodynamic analysis of the NPs localization was in good agreement with the experimental observations. On the basis of the thermodynamic analysis and the experimental scanning electron microscopy, X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy results, it was concluded that localization of the NPs on the surface was critical to provide the necessary roughness and resulting superhydrophobicity. The durability evaluated by tape testing of the epoxy formulations was the best on both glass and PC. Several coating compositions retained their superhydrophobicity after the tape test. In summary, it was concluded that thermodynamic analysis is a powerful tool to predict the roughness of the coating due to the location of NPs on the surface, and hence can be used in the design of superhydrophobic coatings. PMID:28243071

  17. The effect of composition and thermodynamics on the surface morphology of durable superhydrophobic polymer coatings.

    PubMed

    Nahum, Tehila; Dodiuk, Hanna; Kenig, Samuel; Panwar, Artee; Barry, Carol; Mead, Joey

    2017-01-01

    Durable superhydrophobic coatings were synthesized using a system of silica nanoparticles (NPs) to provide nanoscale roughness, fluorosilane to give hydrophobic chemistry, and three different polymer binders: urethane acrylate, ethyl 2-cyanoacrylate, and epoxy. Coatings composed of different binders incorporating NPs in various concentrations exhibited different superhydrophobic attributes when applied on polycarbonate (PC) and glass substrates and as a function of coating composition. It was found that the substrate surface characteristics and wettability affected the superhydrophobic characteristics of the coatings. Interfacial tension and spreading coefficient parameters (thermodynamics) of the coating components were used to predict the localization of the NPs for the different binders' concentrations. The thermodynamic analysis of the NPs localization was in good agreement with the experimental observations. On the basis of the thermodynamic analysis and the experimental scanning electron microscopy, X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy results, it was concluded that localization of the NPs on the surface was critical to provide the necessary roughness and resulting superhydrophobicity. The durability evaluated by tape testing of the epoxy formulations was the best on both glass and PC. Several coating compositions retained their superhydrophobicity after the tape test. In summary, it was concluded that thermodynamic analysis is a powerful tool to predict the roughness of the coating due to the location of NPs on the surface, and hence can be used in the design of superhydrophobic coatings.

  18. Fabrication of Refractive Index Tunable Coating with Moisture-Resistant Function for High-Power Laser Systems Based on Homogeneous Embedding of Surface-Modified Nanoparticles.

    PubMed

    Yang, Wei; Lei, Xiangyang; Hui, Haohao; Zhang, Qinghua; Deng, Xueran

    2018-05-07

    Moisture-resistant silicone coatings were prepared on the surface of potassium dihydrogen phosphate (KDP) crystal by means of spin-coating, in which hydrophobic-modified SiO₂ nanoparticles were embedded in a certain proportion. The refractive index of such coating can be tuned arbitrarily in the range of 1.21⁻1.44, which endows the KDP optical component with excellent transmission capability as well as the moisture proof effect. A dual-layer anti-reflective coating system was obtained by covering this silicone coating with a porous SiO₂ coating which is specially treated to enhance the moisture resistance. Transmittance of such a dual-layer coating system could reach 99.60% and 99.62% at 1064 nm and 532 nm, respectively, by precisely matching the refractive index of both layers. Furthermore, the long-term stability of this coating system has been verified at high humidity ambient of 80% RH for 27 weeks.

  19. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres

    DOE PAGES

    Baginska, Marta; Blaiszik, Benjamin J.; Rajh, Tijana; ...

    2014-07-17

    Thermally triggered autonomic shutdown of a Lithium-ion (Li-ion) battery is demonstrated using polydopamine (PDA)-coated polyethylene microspheres applied onto a battery anode. The microspheres are dispersed in a buffered 10 mM dopamine salt solution and the pH is raised to initiate the polymerization and coat the microspheres. Coated microspheres are then mixed with an aqueous binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR and Raman spectroscopy are used to verify the presence of the polydopamine on the surface of the microspheres. Scanning electron microscopy is used to examine microsphere surface morphology and resulting anodemore » coating quality. Charge and discharge capacity, as well as impedance, are measured for Li-ion coin cells as a function of microsphere content. Autonomous shutdown is achieved by applying 1.7 mg cm –2 of PDA-coated microspheres to the electrode. Furthermore, the PDA coating significantly reduces the mass of microspheres for effective shutdown compared to our prior work with uncoated microspheres.« less

  20. Antibacterial inorganic-organic hybrid coatings on stainless steel via consecutive surface-initiated atom transfer radical polymerization for biocorrosion prevention.

    PubMed

    Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2010-05-04

    To enhance the corrosion resistance of stainless steel (SS) and to impart its surface with antibacterial functionality for inhibiting biofilm formation and biocorrosion, well-defined inorganic-organic hybrid coatings, consisting of a polysilsesquioxane inner layer and quaternized poly(2-(dimethyamino)ethyl methacrylate) (P(DMAEMA)) outer blocks, were prepared via successive surface-initiated atom transfer radical polymerization (ATRP) of 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). The cross-linked P(TMASPMA), or polysilsesquioxane, inner layer provided a durable and resistant coating to electrolytes. The pendant tertiary amino groups of the P(DMAEMA) outer block were quaternized with alkyl halide to produce a high concentration of quaternary ammonium groups with biocidal functionality. The so-synthesized inorganic-organic hybrid coatings on the SS substrates exhibited good anticorrosion and antibacterial effects and inhibited biocorrosion induced by sulfate-reducing bacteria (SRB) in seawater media, as revealed by antibacterial assay and electrochemical analyses, and they are potentially useful to steel-based equipment under harsh industrial and marine environments.

  1. Synergic combination of the sol–gel method with dip coating for plasmonic devices

    PubMed Central

    Patrini, Maddalena; Floris, Francesco; Fornasari, Lucia; Pellacani, Paola; Marchesini, Gerardo; Valsesia, Andrea; Artizzu, Flavia; Marongiu, Daniela; Saba, Michele; Marabelli, Franco; Mura, Andrea; Bongiovanni, Giovanni

    2015-01-01

    Summary Biosensing technologies based on plasmonic nanostructures have recently attracted significant attention due to their small dimensions, low-cost and high sensitivity but are often limited in terms of affinity, selectivity and stability. Consequently, several methods have been employed to functionalize plasmonic surfaces used for detection in order to increase their stability. Herein, a plasmonic surface was modified through a controlled, silica platform, which enables the improvement of the plasmonic-based sensor functionality. The key processing parameters that allow for the fine-tuning of the silica layer thickness on the plasmonic structure were studied. Control of the silica coating thickness was achieved through a combined approach involving sol–gel and dip-coating techniques. The silica films were characterized using spectroscopic ellipsometry, contact angle measurements, atomic force microscopy and dispersive spectroscopy. The effect of the use of silica layers on the optical properties of the plasmonic structures was evaluated. The obtained results show that the silica coating enables surface protection of the plasmonic structures, preserving their stability for an extended time and inducing a suitable reduction of the regeneration time of the chip. PMID:25821692

  2. Optoelectronic properties and interfacial durability of CNT and ITO on boro-silicate glass and PET substrates with nano- and heterostructural aspects

    NASA Astrophysics Data System (ADS)

    Park, Joung-Man; Wang, Zuo-Jia; Kwon, Dong-Jun; DeVries, Lawrence

    2011-02-01

    Nano- and hetero-structures of carbon nanotube (CNT) and indium tin oxide (ITO) can control significantly piezoelectric and optoelectronic properties in Microelectromechanical Systems (MEMS) as sensing and actuator under cyclic loading. Optimized preparing conditions were obtained for multi-functional purpose of the specimen by obtaining the best dispersion and turbidity in the solution. Optical transmittance and electrical properties were investigated for CNT and ITO dipping and spraying coating on boro-silicate glass and polyethylene terephthalate (PET) substrates by electrical resistance measurement under cyclic loading and wettability test. Uniform dip-coating was performed using Wilhelmy plate method due to its simple and convenience. Spraying coating was applied to the specimen additionally. The change in the electrical resistance and optical properties of coated layer were mainly dependent upon the number of dip-coating, the concentration of CNT and ITO solutions, and the surface treatment condition. Electric properties of coating layers were measured using four-point probe method, and surface resistance was calculated using a dual configuration method. Optical transmittance of CNT and ITO coated PET film was also evaluated using UV spectrum. Surface energy and their hydrophilic and hydrophobic properties of CNT and ITO coated substrates were investigated by wettability test via static and dynamic contact angle measurements. As the elapsing time of cyclic loading passed, the stability of surface resistance and thus comparative interfacial adhesion between coated layer and substrates was evaluated to compare the thermodynamic work of adhesion, Wa. As dip-coating number increased, surface resistance of coated CNT decreased, whereas the transmittance decreased step-by-step due to the thicker CNT and ITO networked layer. Nano- and heterostructural effects of CNT and ITO solution on the optical and electrical effects have been studied continuously.

  3. Evaluation of the tablets' surface flow velocities in pan coaters.

    PubMed

    Dreu, Rok; Toschkoff, Gregor; Funke, Adrian; Altmeyer, Andreas; Knop, Klaus; Khinast, Johannes; Kleinebudde, Peter

    2016-09-01

    The tablet pan coating process involves various types of transverse tablet bed motions, ranging from rolling to cascading. To preserve satisfactory results in terms of coating quality after scale-up, understanding the dynamics of pan coating process should be achieved. The aim of this study was to establish a methodology of estimating translational surface velocities of the tablets in a pan coater and to assess their dependence on the drum's filling degree, the pan speed, the presence of baffles and the selected tablet properties in a dry bed system and during coating while varying the drum's filling degree and the pan speed. Experiments were conducted on the laboratory scale and on the pilot scale in side-vented pan coaters. Surface movement of biconvex two-layer tablets was assessed before, during and after the process of active coating. In order to determine the tablets' surface flow velocities, a high-speed video of the tablet surface flow was recorded via a borescope inserted into the coating drum and analysed via a cross-correlation algorithm. The obtained tablet velocity data were arranged in a linear fashion as a function of the coating drum's radius and frequency. Velocity data obtained during coating were close to those of dry tablets after coating. The filling degree had little influence on the tablet velocity profile in a coating drum with baffles but clearly affected it in a coating drum without baffles. In most but not all cases, tablets with a lower static angle of repose had tablet velocity profiles with lower slopes than tablets with higher inter-tablet friction. This particular tablet velocity response can be explained by case specific values of tablet bed's dynamic angle of repose. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Self-assembling triblock proteins for biofunctional surface modification

    NASA Astrophysics Data System (ADS)

    Fischer, Stephen E.

    Despite the tremendous promise of cell/tissue engineering, significant challenges remain in engineering functional scaffolds to precisely regulate the complex processes of tissue growth and development. As the point of contact between the cells and the scaffold, the scaffold surface plays a major role in mediating cellular behaviors. In this dissertation, the development and utility of self-assembling, artificial protein hydrogels as biofunctional surface modifiers is described. The design of these recombinant proteins is based on a telechelic triblock motif, in which a disordered polyelectrolyte central domain containing embedded bioactive ligands is flanked by two leucine zipper domains. Under moderate conditions of temperature and pH, the leucine zipper end domains form amphiphilic alpha-helices that reversibly associate into homo-trimeric aggregates, driving hydrogel formation. Moreover, the amphiphilic nature of these helical domains enables surface adsorption to a variety of scaffold materials to form biofunctional protein coatings. The nature and stability of these coatings in various solution conditions, and their interaction with mammalian cells is the primary focus of this dissertation. In particular, triblock protein coatings functionalized with cell recognition sequences are shown to produce well-defined surfaces with precise control over ligand density. The impact of this is demonstrated in multiple cell types through ligand density-dependent cell-substrate interactions. To improve the stability of these physically self-assembled coatings, two covalent crosslinking strategies are described---one in which a zero-length chemical crosslinker (EDC) is utilized and a second in which disulfide bonds are engineered into the recombinant proteins. These targeted crosslinking approaches are shown to increase the stability of surface adsorbed protein layers with minimal effect on the presentation of many bioactive ligands. Finally, to demonstrate the versatility of the triblock protein hydrogels, and the ease of introducing multiple functionalities to a substrate surface, a surface coating is tailored for neural stem cell culture in order to improve proliferation on the scaffold, while maintaining the stem cell phenotype. These studies demonstrate the unique advantages of genetic engineering over traditional techniques for surface modification. In addition to their unmatched sequence fidelity, recombinant proteins can easily be modified with bioactive ligands and their organization into coherent, supramolecular structures mimics natural self-assembly processes.

  5. Mechanical Characterization of Polydopamine-Assisted Silver Deposition on Polymer Substrates

    NASA Astrophysics Data System (ADS)

    Cordes, Amanda Laurence

    Inspired by the adhesive proteins in marine mussels, polydopamine has become a popular adhesive ad-layer for surface functionalization of a variety of substrates. Based on the chemistry of the dopamine monomer, amine and thiol functional groups are hypothesized to increase adhesion between polymer substrates and polydopamine thin films. This hypothesis was the central motivation for development of a tailorable thiol-ene system in order to study the effects of substrate chemistry on polydopamine adhesion. While polydopamine-adhered silver has been studied on a variety of substrates, no in depth mechanical characterization has been performed and to date, no research has been published on thiol-enes coated in polydopamine-adhered silver. The purpose of this study was to characterize the mechanical durability and adhesion properties of a polydopamine-adhered silver film on commercial substrates and a tailorable thiol-ene system. Polydopamine and silver coatings were deposited on a variety of polymer substrates through a simple dip-coat process. The polydopamine forms a thin uniform adhesive layer and the silver deposits in a discontinuous manner with a nanoparticle sized base layer covering the full surface and micron-sized clusters adhered sporadically on top. Mechanical tensile testing was performed to characterize the durability of the silver coating on commercial polymers. Coated nylon and HDPE showed no signs of degradation or delamination of the polydopamine-adhered silver coating up to 30% strain although both substrates showed large plastic deformation. Peel tests were performed on both commercial polymers as well as a tailorable thiol-ene system. Results support the hypothesis that polydopamine adhesion is increased with the presence of functional groups. Parts of the HDPE sample were cleanly peeled, but silver patches were left sporadically across the surface pointing to weaker adhesion between polyethylene and polydopamine. A high adhesive strength tape was used on nylon and the thiol-ene polymers and removed some of the large clusters but was ineffective at removing the particle base layer. The silver base layer remained firmly attached on the surface after multiple rounds of peel testing. With the addition of functional groups in the polymer makeup, the adhesion strength of polydopamine-adhered silver coatings can be increased to create a mechanically durable and adhesively robust silver coating.

  6. One-pot preparation of silica-supported hybrid immobilized metal affinity adsorbent with macroporous surface based on surface imprinting coating technique combined with polysaccharide incorporated sol--gel process.

    PubMed

    Li, Feng; Li, Xue-Mei; Zhang, Shu-Sheng

    2006-10-06

    A simple and reliable one-pot approach using surface imprinting coating technique combined with polysaccharide incorporated sol-gel process was established to synthesize a new organic-inorganic hybrid matrix possessing macroporous surface and functional ligand. Using mesoporous silica gel being a support, immobilized metal affinity adsorbent with a macroporous shell/mesoporous core structure was obtained after metal ion loading. In the prepared matrix, covalently bonded coating and morphology manipulation on silica gel was achieved by using one-pot sol-gel process starting from an inorganic precursor, -glycidoxypropyltrimethoxysiloxane (GPTMS), and a functional biopolymer, chitosan (CS) at the atmosphere of imprinting polyethylene glycol (PEG). Self-hydrolysis of GPTMS, self-condensation, and co-condensation of silanol groups (Si-OH) from siloxane and silica gel surface, and in situ covalent cross-linking of CS created an orderly coating on silica gel surface. PEG extraction using hot ammonium hydroxide solution gave a chemically and mechanically stabilized pore structure and deactivated residual epoxy groups. The prepared matrix was characterized by using X-ray energy dispersion spectroscopy (EDX), scanning electron microscopy (SEM) and mercury intrusion porosimetry. The matrix possessed a high capacity for copper ion loading. Protein adsorption performance of the new immobilized metal affinity adsorbent was evaluated by batch adsorption and column chromatographic experiment using bovine serum albumin (BSA) as a simple model protein. Under the optimized coating conditions, the obtained macroporous surface resulted in a fast kinetics and high capability for protein adsorption, while the matrix non-charged with metal ions offered a low non-specific adsorption.

  7. Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition

    PubMed Central

    Cheng, Christine

    2017-01-01

    3D printing is a useful fabrication technique because it offers design flexibility and rapid prototyping. The ability to functionalize the surfaces of 3D-printed objects allows the bulk properties, such as material strength or printability, to be chosen separately from surface properties, which is critical to expanding the breadth of 3D printing applications. In this work, we studied the ability of the initiated chemical vapor deposition (iCVD) process to coat 3D-printed shapes composed of poly(lactic acid) and acrylonitrile butadiene styrene. The thermally insulating properties of 3D-printed plastics pose a challenge to the iCVD process due to large thermal gradients along the structures during processing. In this study, processing parameters such as the substrate temperature and the filament temperature were systematically varied to understand how these parameters affect the uniformity of the coatings along the 3D-printed objects. The 3D-printed objects were coated with both hydrophobic and hydrophilic polymers. Contact angle goniometry and X-ray photoelectron spectroscopy were used to characterize the functionalized surfaces. Our results can enable the use of iCVD to functionalize 3D-printed materials for a range of applications such as tissue scaffolds and microfluidics. PMID:28875099

  8. Controlling surface-segregation of a polymer to display carboxy groups on an outermost surface using perfluoroacyl groups.

    PubMed

    Nishimori, Keisuke; Kitahata, Shigeru; Nishino, Takashi; Maruyama, Tatsuo

    2018-05-10

    Controlling the surface properties of solid polymers is important for practical applications. We here succeeded in controlling the surface segregation of polymers to display carboxy groups on an outermost surface, which allowed the covalent immobilization of functional molecules via the carboxy groups on a substrate surface. Random methacrylate-based copolymers containing carboxy groups, in which carboxy groups were protected with perfluoroacyl (Rf) groups, were dip-coated on acrylic substrate surfaces. X-ray photoelectron spectroscopy and contact-angle measurements revealed that the Rf groups were segregated to the outermost surface of the dip-coated substrates. The Rf groups were removed by hydrolysis of the Rf esters in the copolymers, resulting in the display of carboxy groups on the surface. The quantification of carboxy groups on a surface revealed that the carboxy groups were reactive to a water-soluble solute in aqueous solution. The surface segregation was affected by the molecular structure of the copolymer used for dip-coating.

  9. Understanding cracking failures of coatings: A fracture mechanics approach

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Ryong

    A fracture mechanics analysis of coating (paint) cracking was developed. A strain energy release rate (G(sub c)) expression due to the formation of a new crack in a coating was derived for bending and tension loadings in terms of the moduli, thicknesses, Poisson's ratios, load, residual strain, etc. Four-point bending and instrumented impact tests were used to determine the in-situ fracture toughness of coatings as functions of increasing baking (drying) time. The system used was a thin coating layer on a thick substrate layer. The substrates included steel, aluminum, polycarbonate, acrylonitrile-butadiene-styrene (ABS), and Noryl. The coatings included newly developed automotive paints. The four-point bending configuration promoted nice transversed multiple coating cracks on both steel and polymeric substrates. The crosslinked type automotive coatings on steel substrates showed big cracks without microcracks. When theoretical predictions for energy release rate were compared to experimental data for coating/steel substrate samples with multiple cracking, the agreement was good. Crosslinked type coatings on polymeric substrates showed more cracks than theory predicted and the G(sub c)'s were high. Solvent evaporation type coatings on polymeric substrates showed clean multiple cracking and the G(sub c)'s were higher than those obtained by tension analysis of tension experiments with the same substrates. All the polymeric samples showed surface embrittlement after long baking times using four-point bending tests. The most apparent surface embrittlement was observed in the acrylonitrile-butadiene-styrene (ABS) substrate system. The impact properties of coatings as a function of baking time were also investigated. These experiments were performed using an instrumented impact tester. There was a rapid decrease in G(sub c) at short baking times and convergence to a constant value at long baking times. The surface embrittlement conditions and an embrittlement toughness were found upon impact loading. This analysis provides a basis for a quantitative approach to measuring coating toughness.

  10. Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly.

    PubMed

    Zhong, Xue; Song, Yunjia; Yang, Peng; Wang, Yao; Jiang, Shaoyun; Zhang, Xu; Li, Changyi

    2016-01-01

    The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL), on which multilayer coatings can incorporate silver nanoparticles (AgNP) using chitosan (CS) and hyaluronic acid (HA) via a layer-by-layer (LbL) self-assembly technique. In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethyl)phosphine (TCEP) to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates. The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration. The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections in the early stage.

  11. Novel Investigation on Nanostructured Multilayer and Functionally Graded Ni-P Electroless Coatings on Stainless Steel

    NASA Astrophysics Data System (ADS)

    Anvari, S. R.; Monirvaghefi, S. M.; Enayati, M. H.

    2015-06-01

    In this study, step-wise multilayer and functionally graded Ni-P coatings were deposited with electroless in which the content of phosphorus and nickel would be changed gradually and step-wise through the thickness of the coatings, respectively. To compare the properties of these coatings with Ni-P single-layer coatings, three types of coatings with different phosphorus contents were deposited. Heat treatment of coatings was performed at 400 °C for 1 h. The microstructure and phase transformation of coatings were characterized by SEM/EDS, TEM, and XRD. The mechanical properties of coatings were studied by nanoindentation test. According to the results of the single-layer coatings, low P coating had the maximum hardness and also the ratio of hardness ( H) to elasticity modulus ( E) for the mentioned coating was maximum. In addition, low and medium P coatings had crystalline and semi-crystalline structure, respectively. The mentioned coatings had <111> texture and after heat treatment their texture didn't change. While high P coating had amorphous structure, after heat treatment it changed to crystalline structure with <100> texture for nickel grains. Furthermore, the results showed that functionally graded and step-wise multilayer coatings were deposited successfully by using the same initial bath and changing the temperature and pH during deposition. Nanoindentation test results showed that the hardness of the mentioned coatings changed from 670 Hv near the substrate to 860 Hv near the top surface of coatings. For functionally graded coating the hardness profile had gradual changes, while step-wise multilayer coating had step-wise hardness profile. After heat treatment trend of hardness profiles was changed, so that near the substrate, hardness was measured 1400 Hv and changed to 1090 Hv at the top coat.

  12. Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells

    NASA Astrophysics Data System (ADS)

    Sawant, V. J.; Bamane, S. R.; Shejwal, R. V.; Patil, S. B.

    2016-11-01

    The functionalization and surface engineering of CoFe2O4 and ZnFe2O4 nanoparticles were performed by coating with PEG and Chitosan respectively using simple wet co-precipitation. Then multiactive therapeutic drug curcumin was loaded to form drug delivery nanohybrids by precipitation. These nanohybrids were characterized separately using UV-vis, FTIR, PL spectroscopy, XRD, VSM, SEM and TEM analysis. The moderate antibacterial activities of the nanohybrids were elaborated by in vitro antibacterial screening on Escherichia coli and Staphylococcus aureus. The anticancer potentials, apoptotic effects and enhanced drug delivery properties of these nanohybrids were confirmed and compared on MCF-7 cells by in vitro MTT assay. The drug delivery activities for hydrophobic drug and anticancer effects of chitosan coated zinc ferrite functionalized nanoparticles were higher than PEG coated cobalt ferrite nanohybrids.

  13. Tea stains-inspired initiator primer for surface grafting of antifouling and antimicrobial polymer brush coatings.

    PubMed

    Pranantyo, Dicky; Xu, Li Qun; Neoh, Koon-Gee; Kang, En-Tang; Ng, Ying Xian; Teo, Serena Lay-Ming

    2015-03-09

    Inspired by tea stains, plant polyphenolic tannic acid (TA) was beneficially employed as the primer anchor for functional polymer brushes. The brominated TA (TABr) initiator primer was synthesized by partial modification of TA with alkyl bromide functionalities. TABr with trihydroxyphenyl moieties can readily anchor on a wide range of substrates, including metal, metal oxide, polymer, glass, and silicon. Concomitantly, the alkyl bromide terminals serve as initiation sites for atom transfer radical polymerization (ATRP). Cationic [2-(methacryloyloxy)ethyl]trimethylammonium chloride (META) and zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) and N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SBMA) were graft-polymerized from the TABr-anchored stainless steel (SS) surface. The cationic polymer brushes on the modified surfaces are bactericidal, while the zwitterionic coatings exhibit resistance against bacterial adhesion. In addition, microalgal attachment (microfouling) and barnacle cyprid settlement (macrofouling) on the functional polymer-grafted surfaces were significantly reduced, in comparison to the pristine SS surface. Thus, the bifunctional TABr initiator primer provides a unique surface anchor for the preparation of functional polymer brushes for inhibiting both microfouling and macrofouling.

  14. Feasibility Study Exploring the Potential of Novel Battacin Lipopeptides as Antimicrobial Coatings.

    PubMed

    De Zoysa, Gayan Heruka; Sarojini, Vijayalekshmi

    2017-01-18

    Colonization of medical implant surfaces by pathogenic microorganisms causes implant failure and undermines their clinical applicability. Alarming increase in multidrug-resistant bacteria poses serious concerns with the use of medical implants. Antimicrobial peptides (AMPs) that form part of the innate immune system in all forms of life are attractive alternatives to conventional antibiotics to treat multidrug-resistant bacterial biofilms. The aim of this study was to assess the in vitro antibacterial potency of our recently discovered lipopeptides from the battacin family upon immobilization to various surfaces. To achieve this, glass, silicon, and titanium surfaces were functionalized through silanization followed by addition of the heterobifunctional cross-linker, succinimidyl-[N-maleimidopropionamido]-poly(ethylene glycol) ester to generate maleimide-functionalized surfaces. The lipopeptide, GZ3.27, with an added N-terminal cysteine was covalently coupled to the surfaces via a thioether bond through a Michael-type addition between the cysteine sulfhydryl group and the maleimide moiety. Success of surface immobilization and antimicrobial activity of the coated surfaces was assessed using water contact angle measurements, X-ray photoelectron spectroscopy, ellipsometry, scanning electron microscopy, colony forming unit assays and biofilm analysis. The lipopeptide-coated surfaces caused significant damage to the cellular envelop of Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli) upon contact and prevented surface colonization by P. aeruginosa and E. coli biofilms. The lipopeptides investigated in this study were not hemolytic to mouse blood cells in solution. Findings from this study indicate that these lipopeptides have the potential to be developed as promising antimicrobial coatings on medical implants.

  15. Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications.

    PubMed

    Braem, Annabel; Van Mellaert, Lieve; Mattheys, Tina; Hofmans, Dorien; De Waelheyns, Evelien; Geris, Liesbet; Anné, Jozef; Schrooten, Jan; Vleugels, Jef

    2014-01-01

    Implant-related infections are a serious complication in prosthetic surgery, substantially jeopardizing implant fixation. As porous coatings for improved osseointegration typically present an increased surface roughness, their resulting large surface area (sometimes increasing with over 700% compared to an ideal plane) renders the implant extremely susceptible to bacterial colonization and subsequent biofilm formation. Therefore, there is particular interest in orthopaedic implantology to engineer surfaces that combine both the ability to improve osseointegration and at the same time reduce the infection risk. As part of this orthopaedic coating development, the interest of in vitro studies on the interaction between implant surfaces and bacteria/biofilms is growing. In this study, the in vitro staphylococcal adhesion and biofilm formation on newly developed porous pure Ti coatings with 50% porosity and pore sizes up to 50 μm is compared to various dense and porous Ti or Ti-6Al-4V reference surfaces. Multiple linear regression analysis indicates that surface roughness and hydrophobicity are the main determinants for bacterial adherence. Accordingly, the novel coatings display a significant reduction of up to five times less bacterial surface colonization when compared to a commercial state-of-the-art vacuum plasma sprayed coating. However, the results also show that a further expansion of the porosity with over 15% and/or the pore size up to 150 μm is correlated to a significant increase in the roughness parameters resulting in an ascent of bacterial attachment. Chemically modifying the Ti surface in order to improve its hydrophilicity, while preserving the average roughness, is found to strongly decrease bacteria quantities, indicating the importance of surface functionalization to reduce the infection risk of porous coatings. Copyright © 2013 Wiley Periodicals, Inc.

  16. Super-hydrophobic multilayer coatings with layer number tuned swapping in surface wettability and redox catalytic anti-corrosion application.

    PubMed

    Syed, Junaid Ali; Tang, Shaochun; Meng, Xiangkang

    2017-06-30

    The wetting characteristic of a metal surface can be controlled by employing different coating materials and external stimuli, however, layer number (n) modulated surface swapping between hydrophobicity and hydrophilicity in a multilayer structure to achieve prolonged anti-corrosion ability was not taken into consideration. In this study, we proposed a layer-by-layer (LbL) spin assembled polyaniline-silica composite/tetramethylsilane functionalized silica nanoparticles (PSC/TMS-SiO 2 ) coating with the combined effect of super-hydrophobicity and enhanced anti-corrosion ability. Interestingly, the hierarchical integration of two coating materials with inherently different surface roughness and energy in a multilayer structure allows the wetting feature to swap from hydrophobic to hydrophilic state by modulating n with decreasing hydrophilicity. The samples with odd n (TMS-SiO 2 surface) are hydrophobic while the samples with even n (PSC surface) exhibits the hydrophilic character. The TMS-SiO 2 content was optimized to achieve super-hydrophobic coating with significantly high water contact angle (CA) 153° ± 2° and small sliding angle (SA) 6° ± 2°. Beside its self-cleaning behavior, the electro-active PSC/TMS-SiO 2 coating also exhibits remarkably enhanced corrosion resistance against aggressive media. The corrosion resistance of the coating was remained stable even after 240 h of exposure, this enhancement is attributed to super-hydrophobicity and anodic shift in corrosion potential.

  17. In situ crosslinking of surface-initiated ring opening metathesis polymerization of polynorbornene for improved stability.

    PubMed

    Fursule, Ishan A; Abtahi, Ashkan; Watkins, Charles B; Graham, Kenneth R; Berron, Brad J

    2018-01-15

    In situ crosslinking is expected to increase the solvent stability of coatings formed by surface-initiated ring opening metathesis polymerization (SI ROMP). Solvent-associated degradation limits the utility of SI ROMP coatings. SI ROMP coatings have a unique capacity for post-functionalization through reaction of the unsaturated site on the polymer backbone. Any post-reaction scheme which requires a liquid solvent has the potential to degrade the coating and lower the thickness of the resulting film. We designed a macromolecular crosslinking group based on PEG dinorbornene. The PEG length is tailored to the expected mean chain to chain distance during surface-initiated polymerization. This crosslinking macromer is randomly copolymerized with norbornene through SI ROMP on a gold coated substrate. The solvent stability of polynorbornene coatings with and without PEG dinorbornene is quantitatively determined, and the mechanism of degradation is further supported through XPS and AFM analyses. The addition of the 0.25mol% PEG dinorbornene significantly increases the solvent stability of the SI ROMP coatings. The crosslinker presence in the more stable films is supported with observable PEG absorbances by FTIR and an increase in contact angle hysteresis when compared to non-crosslinked coatings. The oxidation of the SI ROMP coatings is supported by the observation of carbonyl oxygen in the polynorbornene coatings. The rapid loss of the non-crosslinked SI ROMP coating corresponds to nanoscale pitting across the surface and micron-scale regions of widespread film loss. The crosslinked coatings have uniform nanoscale pitting, but the crosslinked films show no evidence of micron-scale film damage. In all, the incorporation of minimal crosslinking content is a simple strategy for improving the solvent stability of SI ROMP coatings. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Surface coating with Ca(OH)2 for improvement of the transport of nanoscale zero-valent iron (nZVI) in porous media.

    PubMed

    Wei, Cai-jie; Li, Xiao-yan

    2013-01-01

    A novel thermal deposition method was developed to coat Ca(OH)2 on the surface of nanoscale zero-valent iron (nZVI). The nZVI particles with the Ca(OH)2 coating layer, nZVI/Ca(OH)2, had a clear core-shell structure based on the transmission electron microscopy observations, and the Ca(OH)2 shell was identified as an amorphous phase. The Ca(OH)2 coating shell would not only function as an effective protection layer for nZVI but also improve the mobility of nZVI in porous media for its use in environmental decontamination. A 10% Ca/Fe mass ratio was found to result in a proper thickness of the Ca(OH)2 shell on the nZVI surface. Based on the filtration tests in sand columns, the Ca(OH)2-based surface coating could greatly improve the mobility and transport of nZVI particles in porous media. In addition, batch experiments were conducted to evaluate the reactivity of Ca(OH)2-coated nZVI particles for the reduction of Cr(VI) and its removal from water.

  19. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.

    PubMed

    Johnson, Ian; Wang, Sebo Michelle; Silken, Christine; Liu, Huinan

    2016-05-01

    Nanocomposite coatings offer multiple functions simultaneously to improve the interfacial properties of magnesium (Mg) alloys for skeletal implant applications, e.g., controlling the degradation rate of Mg substrates, improving bone cell functions, and providing drug delivery capability. However, the effective service time of nanocomposite coatings may be limited due to their early delamination from the Mg-based substrates. Therefore, the objective of this study was to address the delamination issue of nanocomposite coatings, improve the coating properties for reducing the degradation of Mg-based substrates, and thus improve their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The surface conditions of the substrates, polymer component type of the nanocomposite coatings, and post-deposition processing are the key parameters that contribute to the efficacy of the nanocomposite coatings in regulating substrate degradation and bone cell responses. Specifically, the effects of metallic surface versus alkaline heat-treated hydroxide surface of the substrates on coating quality were investigated. For the nanocomposite coatings, nanophase hydroxyapatite (nHA) was dispersed in three types of biodegradable polymers, i.e., poly(lactic-co-glycolic acid) (PLGA), poly(l-lactic acid) (PLLA), or poly(caprolactone) (PCL) to determine which polymer component could provide integrated properties for slowest Mg degradation. The nanocomposite coatings with or without post-deposition processing, i.e., melting, annealing, were compared to determine which processing route improved the properties of the nanocomposite coatings most significantly. The results showed that optimizing the coating processes addressed the delamination issue. The melted then annealed nHA/PCL coating on the metallic Mg substrates showed the slowest degradation and the best coating adhesion, among all the combinations of conditions studied; and, it improved the adhesion density of BMSCs. This study elucidated the key parameters for optimizing nanocomposite coatings on Mg-based substrates for skeletal implant applications, and provided rational design guidelines for the nanocomposite coatings on Mg alloys for potential clinical translation of biodegradable Mg-based implants. This manuscript describes the systemic optimization of nanocomposite coatings to control the degradation and bioactivity of magnesium for skeletal implant applications. The key parameters influencing the integrity and functions of the nanocomposite coatings on magnesium were identified, guidelines for the optimization of the coatings were established, and the benefits of coating optimization were demonstrated through reduced magnesium degradation and increased bone marrow derived mesenchymal stem cell (BMSC) adhesion in vitro. The guidelines developed in this manuscript are valuable for the biometal field to improve the design of bioresorbable implants and devices, which will advance the clinical translation of magnesium-based implants. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Electrodeposited silk coatings for bone implants.

    PubMed

    Elia, Roberto; Michelson, Courtney D; Perera, Austin L; Brunner, Teresa F; Harsono, Masly; Leisk, Gray G; Kugel, Gerard; Kaplan, David L

    2015-11-01

    The aim of this study was to characterize the mechanical properties and drug elution features of silk protein-based electrodeposited dental implant coatings. Silk processing conditions were modified to obtain coatings with a range of mechanical properties on titanium studs. These coatings were assessed for adhesive strength and dissolution, with properties tuned using water vapor annealing or glycerol incorporation to modulate crystalline content. Coating reproducibility was demonstrated over a range of silk concentrations from 1% to 10%. Surface roughness of titanium substrates was altered using industry relevant acid etching and grit blasting, and the effect of surface topography on silk coating adhesion was assessed. Florescent compounds were incorporated into the silk coatings, which were modulated for crystalline content, to achieve four days of sustained release of the compounds. This silk electrogelation technique offers a safe and relatively simple approach to generate mechanically robust, biocompatible, and degradable implant coatings that can also be functionalized with bioactive compounds to modulate the local regenerative tissue environment. © 2014 Wiley Periodicals, Inc.

  1. Electrodeposited silk coatings for bone implants

    PubMed Central

    Elia, Roberto; Michelson, Courtney D.; Perera, Austin L.; Brunner, Teresa F.; Harsono, Masly; Leisk, Gray G.; Kugel, Gerard; Kaplan, David L.

    2014-01-01

    The aim of this study was to characterize the mechanical properties and drug elution features of silk protein-based electrodeposited dental implant coatings. Silk processing conditions were modified to obtain coatings with a range of mechanical properties on titanium studs. These coatings were assessed for adhesive strength and dissolution, with properties tuned using water vapor annealing or glycerol incorporation to modulate crystalline content. Coating reproducibility was demonstrated over a range of silk concentrations from 1 to 10%. Surface roughness of titanium substrates was altered using industry relevant acid etching and grit blasting, and the effect of surface topography on silk coating adhesion was assessed. Florescent compounds were incorporated into the silk coatings, which were modulated for crystalline content, to achieve four days of sustained release of the compounds. This silk electrogelation technique offers a safe and relatively simple approach to generate mechanically robust, biocompatible and degradable implant coatings that can also be functionalized with bioactive compounds to modulate the local regenerative tissue environment. PMID:25545462

  2. Inkjet printing of Chitlac-nanosilver--a method to create functional coatings for non-metallic bone implants.

    PubMed

    Nganga, Sara; Moritz, Niko; Kolakovic, Ruzica; Jakobsson, Kristina; Nyman, Johan O; Borgogna, Massimiliano; Travan, Andrea; Crosera, Matteo; Donati, Ivan; Vallittu, Pekka K; Sandler, Niklas

    2014-10-22

    Biostable fiber-reinforced composites, based on bisphenol-A-dimethacrylate and triethyleneglycoldimethacrylate thermoset polymer matrix reinforced with E-glass fibers have been successfully used in cranial reconstructions and the material has been approved for clinical use. As a further refinement of these implants, antimicrobial, non-cytotoxic coatings on the composites were created by an immersion procedure driven by strong electrostatic interactions. Silver nanoparticles (nAg) were immobilized in lactose-modified chitosan (Chitlac) to prepare the bacteriostatic coatings. Herein, we report the use of inkjet technology (a drop-on-demand inkjet printer) to deposit functional Chitlac-nAg coatings on the thermoset substrates. Characterization methods included scanning electron microscopy, scanning white light interferometry and electro-thermal atomic absorption spectroscopy. Inkjet printing enabled the fast and flexible functionalization of the thermoset surfaces with controlled coating patterns. The coatings were not impaired by the printing process: the kinetics of silver release from the coatings created by inkjet printing and conventional immersion technique was similar. Further research is foreseen to optimize printing parameters and to tailor the characteristics of the coatings for specific clinical applications.

  3. Low-Melt Polyamic Acid Based Powder Coatings

    NASA Technical Reports Server (NTRS)

    Jolley, Scott T. (Inventor)

    2017-01-01

    The present invention is directed to a method for powder coating a metal substrate using a low-melt polyamic acid (PAA) polymer that readily imidizes to polyimides. These low-melt PAAs have been shown to be useful in resins applied as powder coatings to metal surfaces. The resin includes an end-capping material capable of providing crosslinking functionality to at least one end of the low-melt PAA polymer. The end-capping material functions dually as a polymerization chain terminator and crosslinking agent, thus producing resins that have molecular weights low enough to flow well and form good cured films applicable for use in powder coating.

  4. Functionally graded alumina-based thin film systems

    DOEpatents

    Moore, John J.; Zhong, Dalong

    2006-08-29

    The present invention provides coating systems that minimize thermal and residual stresses to create a fatigue- and soldering-resistant coating for aluminum die casting dies. The coating systems include at least three layers. The outer layer is an alumina- or boro-carbide-based outer layer that has superior non-wettability characteristics with molten aluminum coupled with oxidation and wear resistance. A functionally-graded intermediate layer or "interlayer" enhances the erosive wear, toughness, and corrosion resistance of the die. A thin adhesion layer of reactive metal is used between the die substrate and the interlayer to increase adhesion of the coating system to the die surface.

  5. Fabrication of durable super-repellent surfaces on cotton fabric with liquids of varying surface tension: Low surface energy and high roughness

    NASA Astrophysics Data System (ADS)

    Singh, Arun K.; Singh, Jayant K.

    2017-09-01

    In this study, we have developed super-repellent surface on cotton fabric via a facile and eco-friendly strategy using zirconia particles with water-soluble siloxane emulsion. The coated fabric using zirconia-siloxane (ZS) coating showed super-repellency of liquids with surface tension >47.7 mN/m, like water, mixtures of isopropyl alcohol with deionized water (2% and 5%, v/v), and ethylene glycol with contact angle of 158°, 155°, 153° and 152°, respectively. Furthermore, the coated fabric displays low sliding angle, <10°, with these liquids. The super-repellency of the coated fabric is attributed due to its lower surface energy (<1.0 mJ m-2). The produced coating exhibited excellent durability and retained its super-repelling properties under harsh environment conditions like acidic, alkaline, salty, ultraviolet irradiation, mechanical abrasion and repeated tear test with an adhesive tape. In addition, in a mixture of water and oil (having surface tension <30 mN/m), the developed coated fabric exhibited dual nature viz., superhydrophobicity and superoleophilicity, maintaining the super-repellency with water even they are wetted with oily liquids. The materials with ability to repel water in the presence of oily pollutants are very useful in application related to sea water. Thus as-prepared coated fabric, with dual functionality, is a promising material for many applications including anti-wetting, self-cleaning, support for aquatic floating devices and as a filtration material for rapid and continuous oil-water separation.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecheva, E.; Fingarova, D.; Pramatarova, L.

    Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HAmore » and/or to the higher HA roughness.« less

  7. Polycrystalline Silicon: a Biocompatibility Assay

    NASA Astrophysics Data System (ADS)

    Pecheva, E.; Laquerriere, P.; Bouthors, Sylvie; Fingarova, D.; Pramatarova, L.; Hikov, T.; Dimova-Malinovska, D.; Montgomery, P.

    2010-01-01

    Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HA and/or to the higher HA roughness.

  8. Nanosecond multi-pulse laser milling for certain area removal of metal coating on plastics surface

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Jia, Zhenyuan; Ma, Jianwei; Liu, Wei; Wang, Ling

    2014-12-01

    Metal coating with functional pattern on engineering plastics surface plays an important role in industry applications; it can be obtained by adding or removing certain area of metal coating on engineering plastics surface. However, the manufacturing requirements are improved continuously and the plastic substrate presents three-dimensional (3D) structure-many of these parts cannot be fabricated by conventional processing methods, and a new manufacturing method is urgently needed. As the laser-processing technology has many advantages like high machining accuracy and constraints free substrate structure, the machining of the parts is studied through removing certain area of metal coating based on the nanosecond multi-pulse laser milling. To improve the edge quality of the functional pattern, generation mechanism and corresponding avoidance strategy of the processing defects are studied. Additionally, a prediction model for the laser ablation depth is proposed, which can effectively avoid the existence of residual metal coating and reduces the damage of substrate. With the optimal machining parameters, an equiangular spiral pattern on copper-clad polyimide (CCPI) is machined based on the laser milling at last. The experimental results indicate that the edge of the pattern is smooth and consistent, the substrate is flat and without damage. The achievements in this study could be applied in industrial production.

  9. Plasma enhanced chemical vapour deposition of silica onto Ti: Analysis of surface chemistry, morphology and functional hydroxyl groups

    PubMed Central

    Szili, Endre J.; Kumar, Sunil; Smart, Roger St. C.; Lowe, Rachel; Saiz, Eduardo; Voelcker, Nicolas H.

    2009-01-01

    Previously, we have developed and characterised a procedure for the deposition of thin silica films by a plasma enhanced chemical vapour deposition (PECVD) procedure using tetraethoxysilane (TEOS) as the main precursor. We have used the silica coatings for improving the corrosion resistance of metals and for enhancing the bioactivity of biomedical metallic implants. Recently, we have been fine-tuning the PECVD method for producing high quality and reproducible PECVD-silica (PECVD-Si) coatings on metals, primarily for biomaterial applications. In order to understand the interaction of the PECVD-Si coatings with biological species (such as proteins and cells), it is important to first analyse the properties of the silica films deposited using the optimised parameters. Therefore, this current investigation was carried out to analyse the characteristic features of PECVD-Si deposited on Ti substrates (PECVD-Si-Ti). We determined that the PECVD-Si coatings on Ti were conformal to the substrate surface, strongly adhered to the underlying substrate and were resistant to delamination. The PECVD-Si surface was composed of stoichiometric SiO2, showed a low carbon content (below 10 at.%) and was very hydrophilic (contact angle <10°). Finally, we also showed that the PECVD-Si coatings contain functional hydroxyl groups. PMID:19809536

  10. Coatings with a Mole-hill Structure of Nanoparticle-Raspberry Containers for Surfaces with Abrasion-Refreshable Reservoir Functionality.

    PubMed

    Ballweg, Thomas; Gellermann, Carsten; Mandel, Karl

    2015-11-11

    Active silica nanoparticle-based raspberry-like container depots for agents such as antimicrobial substances are presented. The nano raspberry-containers are integrated into coatings in a way that they form a mole-hill structure; i.e., they are partly standing out of the coating. As an application example, it is demonstrated that the containers can be filled with antimicrobially active agents such as nano ZnO or Ag or organic molecules such as thymol. It is demonstrated that the containers can be partly chopped-off via abrasion by rubbing over the surface. This mechanism proves to be an attractive approach to render surfaces refreshable. A first proof of principle for antimicrobial activity of the intact containers in the coatings and the abrasion treated, chopped-off (and thereby reactivated) containers is demonstrated.

  11. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    NASA Astrophysics Data System (ADS)

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan; Xie, Xi

    2017-12-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.

  12. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    PubMed Central

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan

    2017-01-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials. PMID:29308265

  13. The Extract of Roots of Sophora flavescens Enhances the Recovery of Motor Function by Axonal Growth in Mice with a Spinal Cord Injury.

    PubMed

    Tanabe, Norio; Kuboyama, Tomoharu; Kazuma, Kohei; Konno, Katsuhiro; Tohda, Chihiro

    2015-01-01

    Although axonal extension to reconstruct spinal tracts should be effective for restoring function after spinal cord injury (SCI), chondroitin sulfate proteoglycan (CSPG) levels increase at spinal cord lesion sites, and inhibit axonal regrowth. In this study, we found that the water extract of roots of Sophora flavescens extended the axons of mouse cortical neurons, even on a CSPG-coated surface. Consecutive oral administrations of S. flavescens extract to SCI mice for 31 days increased the density of 5-HT-positive axons at the lesion site and improved the motor function. Further, the active constituents in the S. flavescens extract were identified. The water and alkaloid fractions of the S. flavescens extract each exhibited axonal extension activity in vitro. LC/MS analysis revealed that these fractions mainly contain matrine and/or oxymatrine, which are well-known major compounds in S. flavescens. Matrine and oxymatrine promoted axonal extension on the CSPG-coated surface. This study is the first to demonstrate that S. flavescens extract, matrine, and oxymatrine enhance axonal growth in vitro, even on a CSPG-coated surface, and that S. flavescens extract improves motor function and increases axonal density in SCI mice.

  14. Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum.

    PubMed

    Yang, Wei; Zhang, Lei; Wang, Shanlin; White, Andrew D; Jiang, Shaoyi

    2009-10-01

    A new surface chemistry presenting an abundance of functional groups for ligand immobilization in an ultra-low fouling background all in one material for nanoparticles was introduced. This surface platform, as demonstrated by zwitterionic poly(carboxybetaine acrylamide) (polyCBAA) coated nanoparticles, is not only ultra stable in undiluted human blood serum, but also can be conjugated to biomolecules conveniently and effectively. Thus, this surface chemistry is ideal to create multi-functional nanoparticles for targeted delivery and diagnostics. In addition, this work clearly shows that 10% blood serum commonly used to evaluate the stability of nanoparticles is insufficient and a new evaluation criterion with undiluted blood serum is recommended.

  15. Development and Implementation of Methods and Means for Achieving a Uniform Functional Coating Thickness

    NASA Astrophysics Data System (ADS)

    Shishlov, A. V.; Sagatelyan, G. R.; Shashurin, V. D.

    2017-12-01

    A mathematical model is proposed to calculate the growth rate of the thin-film coating thickness at various points in a flat substrate surface during planetary motion of the substrate, which makes it possible to calculate an expected coating thickness distribution. Proper software package is developed. The coefficients used for computer simulation are experimentally determined.

  16. Surface and Bulk Characteristics of Cesium Iodide (CsI) coated Carbon (C) Fibers for High Power Microwave (HPM) Field Emission Cathodes

    NASA Astrophysics Data System (ADS)

    Vlahos, Vasilios; Morgan, Dane; Booske, John H.; Shiffler, Don

    2008-11-01

    CsI coated C fibers [1] are promising field emission cathodes for HPM applications. Ab initio computational modeling has shown that atomically-thin CsI coatings reduce the work function of C substrates by a surface dipole mechanism [2]. Characterization measurements of the composition and morphology of the CsI-coated C fibers are underway for determining the properties and characteristics of the following important regions of the fiber: (i) the surface on the tip of the fiber where the majority of electron emission is believed to occur, (ii) the surface covering the body of the fiber and its role on the emission properties of the system, and (iii) the interior volume of the fiber and its effects on the CsI surface re-supply process and rate. The results will be interpreted in terms of surface electronic properties and theoretical electron emission models. [1]D. Shiffler, et al., Phys. Plasmas 11 (2004) 1680. [2]V.Vlahos et al., Appl. Phys. Lett. 91 (2007) 144102.

  17. One-step fabrication of robust superhydrophobic and superoleophilic surfaces with self-cleaning and oil/water separation function.

    PubMed

    Zhang, Zhi-Hui; Wang, Hu-Jun; Liang, Yun-Hong; Li, Xiu-Juan; Ren, Lu-Quan; Cui, Zhen-Quan; Luo, Cheng

    2018-03-01

    Superhydrophobic surfaces have great potential for application in self-cleaning and oil/water separation. However, the large-scale practical applications of superhydrophobic coating surfaces are impeded by many factors, such as complicated fabrication processes, the use of fluorinated reagents and noxious organic solvents and poor mechanical stability. Herein, we describe the successful preparation of a fluorine-free multifunctional coating without noxious organic solvents that was brushed, dipped or sprayed onto glass slides and stainless-steel meshes as substrates. The obtained multifunctional superhydrophobic and superoleophilic surfaces (MSHOs) demonstrated self-cleaning abilities even when contaminated with or immersed in oil. The superhydrophobic surfaces were robust and maintained their water repellency after being scratched with a knife or abraded with sandpaper for 50 cycles. In addition, stainless-steel meshes sprayed with the coating quickly separated various oil/water mixtures with a high separation efficiency (>93%). Furthermore, the coated mesh maintained a high separation efficiency above 95% over 20 cycles of separation. This simple and effective strategy will inspire the large-scale fabrication of multifunctional surfaces for practical applications in self-cleaning and oil/water separation.

  18. Influence of Nitrogen Flow Rate on Friction Coefficient and Surface Roughness of TiN Coatings Deposited on Tool Steel Using Arc Method

    NASA Astrophysics Data System (ADS)

    Hamzah, Esah; Ourdjini, Ali; Ali, Mubarak; Akhter, Parvez; Hj. Mohd Toff, Mohd Radzi; Abdul Hamid, Mansor

    In the present study, the effect of various N2 gas flow rates on friction coefficient and surface roughness of TiN-coated D2 tool steel was examined by a commercially available cathodic arc physical vapor deposition (CAPVD) technique. A Pin-on-Disc test was carried out to study the Coefficient of friction (COF) versus sliding distance. A surface roughness tester measured the surface roughness parameters. The minimum values for the COF and surface roughness were recorded at a N2 gas flow rate of 200 sccm. The increase in the COF and surface roughness at a N2 gas flow rate of 100 sccm was mainly attributed to an increase in both size and number of titanium particles, whereas the increase at 300 sccm was attributed to a larger number of growth defects generated during the coating process. These ideas make it possible to optimize the coating properties as a function of N2 gas flow rate for specific applications, e.g. cutting tools for automobiles, aircraft, and various mechanical parts.

  19. Rapidly-Deposited Polydopamine Coating via High Temperature and Vigorous Stirring: Formation, Characterization and Biofunctional Evaluation

    PubMed Central

    Zhou, Ping; Deng, Yi; Lyu, Beier; Zhang, Ranran; Zhang, Hai; Ma, Hongwei; Lyu, Yalin; Wei, Shicheng

    2014-01-01

    Polydopamine (PDA) coating provides a promising approach for immobilization of biomolecules onto almost all kinds of solid substrates. However, the deposition kinetics of PDA coating as a function of temperature and reaction method is not well elucidated. Since dopamine self-polymerization usually takes a long time, therefore, rapid-formation of PDA film becomes imperative for surface modification of biomaterials and medical devices. In the present study, a practical method for preparation of rapidly-deposited PDA coating was developed using a uniquely designed device, and the kinetics of dopamine self-polymerization was investigated by QCM sensor system. It was found that high temperature and vigorous stirring could dramatically speed up the formation of PDA film on QCM chip surface. Surface characterization, BSA binding study, cell viability assay and antibacterial test demonstrates that the polydopamine coating after polymerization for 30 min by our approach exhibits similar properties to those of 24 h counterpart. The method has a great potential for rapid-deposition of polydopamine films to modify biomaterial surfaces. PMID:25415328

  20. Single lipid bilayer deposition on polymer surfaces using bicelles.

    PubMed

    Saleem, Qasim; Zhang, Zhenfu; Petretic, Amy; Gradinaru, Claudiu C; Macdonald, Peter M

    2015-03-09

    A lipid bilayer was deposited on a 3 μm diameter polystyrene (PS) bead via hydrophobic anchoring of bicelles containing oxyamine-bearing cholesteric moieties reacting with the aldehyde functionalized bead surface. Discoidal bicelles were formed by mixing dimyristoylphosphatidylcholine (DMPC), dihexanoylphosphatidylcholine (DHPC), dimyristoyltrimethylammonium propane (DMTAP), and the oxyamine-terminated cholesterol derivative, cholest-5-en-3β-oxy-oct-3,6-oxa-an-8-oxyamine (CHOLOA), in the molar ratio DMPC/DHCP/DMTAP/CHOLOA (1/0.5/0.01/0.05) in water. Upon exposure to aldehyde-bearing PS beads, a stable single lipid bilayer coating rapidly formed at the bead surface. Fluorescence recovery after photobleaching demonstrated that the deposited lipids fused into an encapsulating lipid bilayer. Electrospray ionization mass spectrometry showed that the short chain lipid DHPC was entirely absent from the PS adherent lipid coating. Fluorescence quenching measurements proved that the coating was a single lipid bilayer. The bicelle coating method is thus simple and robust, can be modified to include membrane-associated species, and can be adapted to coat any number of different surfaces.

  1. Mechanisms of LiCoO2 Cathode Degradation by Reaction with HF and Protection by Thin Oxide Coatings.

    PubMed

    Tebbe, Jonathon L; Holder, Aaron M; Musgrave, Charles B

    2015-11-04

    Reactions of HF with uncoated and Al and Zn oxide-coated surfaces of LiCoO2 cathodes were studied using density functional theory. Cathode degradation caused by reaction of HF with the hydroxylated (101̅4) LiCoO2 surface is dominated by formation of H2O and a LiF precipitate via a barrierless reaction that is exothermic by 1.53 eV. We present a detailed mechanism where HF reacts at the alumina coating to create a partially fluorinated alumina surface rather than forming AlF3 and H2O and thus alumina films reduce cathode degradation by scavenging HF and avoiding H2O formation. In contrast, we find that HF etches monolayer zinc oxide coatings, which thus fail to prevent capacity fading. However, thicker zinc oxide films mitigate capacity loss by reacting with HF to form a partially fluorinated zinc oxide surface. Metal oxide coatings that react with HF to form hydroxyl groups over H2O, like the alumina monolayer, will significantly reduce cathode degradation.

  2. Dual functional nisin-multi-walled carbon nanotubes coated filters for bacterial capture and inactivation.

    PubMed

    Dong, Xiuli; Yang, Liju

    2015-01-01

    Removal of pathogens from water is one way to prevent waterborne illness. In this paper, we developed dual functional carbon nanotube (CNT) modified filters for bacterial capture and inactivation, utilizing multi-walled CNTs (MWCNTs) to coat on commercially available filters and making use of the exceptional adsorption property of CNTs to adsorb a natural antimicrobial peptide-nisin on it. Two types of MWCNTs with different outer layer diameters were used (MWCNTs1: <8 nm in diameter; MWCNTs2: 10-20 nm in diameter). The thickness of MWCNT layers, surface morphology, and surface hydrophobicity of both types of MWCNT coated filters were characterized. The MWCNT coating on filters significantly increased the surface hydrophobicity. The absorption of nisin and the capture of bacterial pathogens were correlated with increased surface hydrophobicity. The MWCNTs1 and MWCNTs2 filters with 1.5 mg MWCNTs loading captured 2.44 and 3.88 log of cells, respectively, from aqueous solutions containing a total of ~10(6) CFU/mL cells. Nisin deposit at the amount of 0.5 mg on the surfaces of MWCNT filters significantly reduced the viability of captured B. anthracis cells by 95.71-97.19 %, and inhibited the metabolic activities of the captured cells by approximately 98.3 %. The results demonstrated that the MWCNT-nisin filters achieved dual functions in bacterial pathogen capture and inhibition in one single filtration step, which is potentially applicable in removing undesired microorganisms from water sources and inhibiting captured Gram positive bacteria activities.

  3. Inorganic-organic hybrid coatings on stainless steel by layer-by-layer deposition and surface-initiated atom-transfer-radical polymerization for combating biocorrosion.

    PubMed

    Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2009-03-01

    To improve the biocorrosion resistance of stainless steel (SS) and to confer the bactericidal function on its surface for inhibiting bacterial adhesion and biofilm formation, well-defined inorganic-organic hybrid coatings, consisting of the inner compact titanium oxide multilayers and outer dense poly(vinyl-N-hexylpyridinium) brushes, were successfully developed. Nanostructured titanium oxide multilayer coatings were first built up on the SS substrates via the layer-by-layer sol-gel deposition process. The trichlorosilane coupling agent, containing the alkyl halide atom-transfer-radical polymerization (ATRP) initiator, was subsequently immobilized on the titanium oxide coatings for surface-initiated ATRP of 4-vinylpyridine (4VP). The pyridium nitrogen moieties of the covalently immobilized 4VP polymer, or P(4VP), brushes were quaternized with hexyl bromide to produce a high concentration of quaternary ammonium salt on the SS surfaces. The excellent antibacterial efficiency of the grafted polycations, poly(vinyl-N-pyridinium bromide), was revealed by viable cell counts and atomic force microscopy images of the surface. The effectiveness of the hybrid coatings in corrosion protection was verified by the Tafel plot and electrochemical impedance spectroscopy measurements.

  4. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    NASA Astrophysics Data System (ADS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H.

    2014-05-01

    The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface -COOH groups (determined with UV-vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  5. Effect of liquid immersion of PEDOT: PSS-coated polyester fabric on surface resistance and wettability

    NASA Astrophysics Data System (ADS)

    Getnet Tadesse, Melkie; Loghin, Carmen; Chen, Yan; Wang, Lichuan; Catalin, Dumitras; Nierstrasz, Vincent

    2017-06-01

    Coating of textile fabrics with poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS) is one of the methods used for obtaining functional or smart applications. In this work, we prepared PEDOT:PSS polymer with certain additives such as polyethylene glycol, methanol (MeOH), and ethylene glycol on polyester fabric substrates by a simple immersion process. Surface resistance was measured and analyzed with analysis of variance to determine the coating parameters at 95% confidence level. Fourier transform infrared (FTIR) analysis and scanning electron microscopy (SEM) study of the samples were performed. Contact angle and washing fastness measurements were conducted, to observe the wettability and washing fastness of the samples, respectively. Surface resistance values were decreased by a factor of 100, due to conductive enhancers. As the immersion time and temperature condition varies, surface resistance showed no difference, statistically. FTIR analysis supports the idea that the mechanism responsible for the conductivity enhancement is the partial replacement of PSS from PEDOT chain by forming a hydrogen bond with hydroxyl ion (OH) of the conductive enhancers. A SEM images showed that PEDOT:PSS is well distributed to the surface of the fabrics. Contact angle measurements showed morphology change in the samples. The conductivity was reasonably stable after 10 washing cycles. Altogether, an effective simple immersion of coated polyester fabric is presented to achieve functional textiles that offer a broad range of possible applications.

  6. Enhancing the Stiffness of Electrospun Nanofiber Scaffolds with Controlled Surface Coating and Mineralization

    PubMed Central

    Liu, Wenying; Yeh, Yi-Chun; Lipner, Justin; Xie, Jingwei; Sung, Hsing-Wen; Thomopoulos, Stavros; Xia, Younan

    2011-01-01

    A new method was developed to coat hydroxyapatite (HAp) onto electrospun poly(lactic-co-glycolic acid) (PLGA) nanofibers for tendon-to-bone insertion site repair applications. Prior to mineralization, chitosan and heparin were covalently immobilized onto the surface of the fibers to accelerate the nucleation of bone-like HAp crystals. Uniform coatings of HAp were obtained by immersing the nanofiber scaffolds into a modified 10 times concentrated simulated body fluid (m10SBF) for different periods of time. The new method resulted in thicker and denser coatings of mineral on the fibers compared to previously reported methods. Scanning electron microscopy measurements confirmed the formation of nanoscale HAp particles on the fibers. Mechanical property assessment demonstrated higher stiffness with respect to previous coating methods. A combination of the nanoscale fibrous structure and bone-like mineral coating could mimic the structure, composition, and function of mineralized tissues. PMID:21710996

  7. Microfluidic transmission surface plasmon resonance enhancement for biosensor applications

    NASA Astrophysics Data System (ADS)

    Lertvachirapaiboon, Chutiparn; Baba, Akira; Ekgasit, Sanong; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao

    2017-01-01

    The microfluidic transmission surface plasmon resonance (MTSPR) constructed by assembling a gold-coated grating substrate with a microchannel was employed for biosensor application. The transmission surface plasmon resonance spectrum obtained from the MTSPR sensor chip showed a strong and narrow surface plasmon resonance (SPR) peak located between 650 and 800 nm. The maximum SPR excitation was observed at an incident angle of 35°. The MTSPR sensor chip was employed for glucose sensor application. Gold-coated grating substrates were functionalized using 3-mercapto-1-propanesulfonic acid sodium salt and subsequently functionalized using a five-bilayer poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) to facilitate the coupling/decoupling of the surface plasmon and to prepare a uniform surface for sensing. The detection limit of our developed system for glucose was 2.31 mM. This practical platform represents a high possibility of further developing several biomolecules, multiplex systems, and a point-of-care assay for practical biosensor applications.

  8. Nano-scale investigations of electric-dipole-layer enhanced field and thermionic emission from high current density cathodes

    NASA Astrophysics Data System (ADS)

    Vlahos, Vasilios

    Cesium iodide coated graphitic fibers and scandate cathodes are two important electron emission technologies. The coated fibers are utilized as field emitters for high power microwave sources. The scandate cathodes are promising thermionic cathode materials for pulsed power vacuum electron devices. This work attempts to understand the fundamental physical and chemical relationships between the atomic structure of the emitting cathode surfaces and the superior emission characteristics of these cathodes. Ab initio computational modeling in conjunction with experimental investigations was performed on coated fiber cathodes to understand the origin of their very low turn on electric field, which can be reduced by as much as ten-fold compared to uncoated fibers. Copious amounts of cesium and oxygen were found co-localized on the fiber, but no iodine was detected on the surface. Additional ab initio studies confirmed that cesium oxide dimers could lower the work function significantly. Surface cesium oxide dipoles are therefore proposed as the source of the observed reduction in the turn on electric field. It is also proposed that emission may be further enhanced by secondary electrons from cesium oxide during operation. Thermal conditioning of the coated cathode may be a mechanism by which surface cesium iodide is converted into cesium oxide, promoting the depletion of iodine by formation of volatile gas. Ab initio modeling was also utilized to investigate the stability and work functions of scandate structures. The work demonstrated that monolayer barium-scandium-oxygen surface structures on tungsten can dramatically lower the work function of the underlying tungsten substrate from 4.6 eV down to 1.16 eV, by the formation of multiple surface dipoles. On the basis of this work, we conclude that high temperature kinetics force conventional dispenser cathodes (barium-oxygen monolayers on tungsten) to operate in a non-equilibrium compositional steady state with higher than optimal work functions of ˜2 eV. We hypothesize that scandium enables the barium-oxygen surface monolayer kinetics to access a more thermodynamically stable phase with reported work functions as low as ˜1.3 eV.

  9. Microenvironment Sensitive Multimodal Contrast Agent for Prostate Cancer Diagnosis

    DTIC Science & Technology

    2016-10-01

    coated with a biopolymer (i.e. starch ) to improve biocompatibility, and tagged with prostate cancer-targeting ligands. A significant challenge to...The starch coating of 50 nm and 100 nm SPIONs was crosslinked and coated with amine groups, and then functionalized with NHS-polyethylene glycol (PEG...of varying molecular weight (i.e., 2k, 5k or 20k Da) as shown in Scheme 1. Scheme 1. Surface modification of starch -coated SPIONs into aminated

  10. Functionalizing the Surface of Lithium-Metal Anodes

    DOE PAGES

    Buonaiuto, Megan; Neuhold, Susanna; Schroeder, David J.; ...

    2014-09-03

    Metal-air batteries are an important aspect of many beyond lithium ion research efforts. However, as our understanding of how molecular oxygen can act as a rechargeable cathode has progressed; the problems associated with how these materials at various states of charge interact with the lithium metal anode are only beginning to come to the surface. In this study we have devised a method to coat the surface a lithium with a functional group to act as either an anchor for further derivation studies or be polymerized to create a nanometer thick polymer coating attached to the surface by silane groups.more » These stable films, formed by polymerization of vinyl substituents, lower cell impedance at the electrode and over the first 50 cycles, increase cycling efficiency and demonstrate lower capacity fade.« less

  11. Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties

    NASA Astrophysics Data System (ADS)

    Heimann, Robert B.

    2016-06-01

    This contribution discusses salient properties and functions of hydroxylapatite (HA)-based plasma-sprayed coatings, including the effect on biomedical efficacy of coating thickness, phase composition and distribution, amorphicity and crystallinity, porosity and surface roughness, cohesion and adhesion, micro- and nano-structured surface morphology, and residual coating stresses. In addition, it will provide details of the thermal alteration that HA particles undergo in the extremely hot plasma jet that leads to dehydroxylated phases such as oxyhydroxylapatite (OHA) and oxyapatite (OA) as well as thermal decomposition products such as tri-(TCP) and tetracalcium phosphates (TTCP), and quenched phases such as amorphous calcium phosphate (ACP). The contribution will further explain the role of ACP during the in vitro interaction of the as-deposited coatings with simulated body fluid resembling the composition of extracellular fluid (ECF) as well as the in vivo responses of coatings to the ECF and the host tissue, respectively. Finally, it will briefly describe performance profiles required to fulfill biological functions of osteoconductive bioceramic coatings designed to improve osseointegration of hip endoprostheses and dental root implants. In large parts, the content of this contribution is a targeted review of work done by the author and his students and coworkers over the last two decades. In addition, it is considered a stepping stone toward a standard operation procedure aimed at depositing plasma-sprayed bioceramic implant coatings with optimum properties.

  12. Enhanced electron emission from coated metal targets: Effect of surface thickness on performance

    NASA Astrophysics Data System (ADS)

    Madas, Saibabu; Mishra, S. K.; Upadhyay Kahaly, Mousumi

    2018-03-01

    In this work, we establish an analytical formalism to address the temperature dependent electron emission from a metallic target with thin coating, operating at a finite temperature. Taking into account three dimensional parabolic energy dispersion for the target (base) material and suitable thickness dependent energy dispersion for the coating layer, Fermi Dirac statistics of electron energy distribution and Fowler's mechanism of the electron emission, we discuss the dependence of the emission flux on the physical properties such as the Fermi level, work function, thickness of the coating material, and operating temperature. Our systematic estimation of how the thickness of coating affects the emission current demonstrates superior emission characteristics for thin coating layer at high temperature (above 1000 K), whereas in low temperature regime, a better response is expected from thicker coating layer. This underlying fundamental behavior appears to be essentially identical for all configurations when work function of the coating layer is lower than that of the bulk target work function. The analysis and predictions could be useful in designing new coated materials with suitable thickness for applications in the field of thin film devices and field emitters.

  13. Antimicrobial and Antifouling Polymeric Agents for Surface Functionalization of Medical Implants.

    PubMed

    Zeng, Qiang; Zhu, Yiwen; Yu, Bingran; Sun, Yujie; Ding, Xiaokang; Xu, Chen; Wu, Yu-Wei; Tang, Zhihui; Xu, Fu-Jian

    2018-05-09

    Combating implant-associated infections is an urgent demand due to the increasing numbers in surgical operations such as joint replacements and dental implantations. Surface functionalization of implantable medical devices with polymeric antimicrobial and antifouling agents is an efficient strategy to prevent bacterial fouling and associated infections. In this work, antimicrobial and antifouling branched polymeric agents (GPEG and GEG) were synthesized via ring-opening reaction involving gentamicin and ethylene glycol species. Due to their rich primary amine groups, they can be readily coated on the polydopamine-modified implant (such as titanium) surfaces. The resultant surface coatings of Ti-GPEG and Ti-GEG produce excellent in vitro antibacterial efficacy toward both Staphylococcus aureus and Escherichia coli, while Ti-GPEG exhibit better antifouling ability. Moreover, the infection model with S. aureus shows that implanted Ti-GPEG possessed excellent antibacterial and antifouling ability in vivo. This study would provide a promising strategy for the surface functionalization of implantable medical devices to prevent implant-associated infections.

  14. Self-assembled anchor layers/polysaccharide coatings on titanium surfaces: a study of functionalization and stability

    PubMed Central

    Zemek, Josef; Neykova, Neda; Demianchuk, Roman; Chánová, Eliška Mázl; Šlouf, Miroslav; Houska, Milan; Rypáček, František

    2015-01-01

    Summary Composite materials based on a titanium support and a thin, alginate hydrogel could be used in bone tissue engineering as a scaffold material that provides biologically active molecules. The main objective of this contribution is to characterize the activation and the functionalization of titanium surfaces by the covalent immobilization of anchoring layers of self-assembled bisphosphonate neridronate monolayers and polymer films of 3-aminopropyltriethoxysilane and biomimetic poly(dopamine). These were further used to bind a bio-functional alginate coating. The success of the titanium surface activation, anchoring layer formation and alginate immobilization, as well as the stability upon immersion under physiological-like conditions, are demonstrated by different surface sensitive techniques such as spectroscopic ellipsometry, infrared reflection–absorption spectroscopy and X-ray photoelectron spectroscopy. The changes in morphology and the established continuity of the layers are examined by scanning electron microscopy, surface profilometry and atomic force microscopy. The changes in hydrophilicity after each modification step are further examined by contact angle goniometry. PMID:25821702

  15. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    NASA Astrophysics Data System (ADS)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  16. Mesostructured Hydrophobic-Oleophobic Silica Films for Sustained Functionality in Tribological Environments

    NASA Astrophysics Data System (ADS)

    Kessman, Aaron J.

    The primary goal of this research was to synthesize water- and oil-repellent coatings that offer sustained functionality and durability. Engineered low surface energy materials generally suffer from a lack of mechanical robustness, which makes them susceptible to damage by abrasive wear. Fluorinated silanes are often combined with alkoxide precursors via sol-gel co-condensation to create coatings with high hardness and good substrate adhesion. However, a common problem with these materials is that the organic moieties that provide low surface energy also become surface segregated and highly concentrated at the solid-air interface. With such a structure, mechanical removal of the top surface by abrasion, for example, reveals subsurface areas that are then much less concentrated in terms of functional chemistry. The material developed in this study was designed to overcome this problem by means of a tailored and templated mesostructure that effectively encapsulated the low surface energy functional moieties, and thus achieves sustained functionality during abrasive wear. This material, applied as a thin coating to a variety of substrates, has the potential to reduce waste and pollution and the environmental degradation of materials and structures. Improving the performance of such materials can benefit a wide variety of applications. These include optoelectronic devices including photovoltaic panels; automobile and aircraft; architectural structures; the chemical, food, and medical industries for hygienic and anti-fouling requirements; textiles; and household applications. This approach has further implications in areas such as boundary lubrication and drug delivery systems. Hydrophobic-oleophobic mesoporous fluorinated silica films were synthesized via sol-gel co-condensation and coated on glass substrates. Fluorosilane and surfactant template concentrations were varied to elucidate the effect of organic functionality and porosity on performance. Structural, chemical, mechanical, surface, and tribological properties were investigated to examine the performance of functionalized mesostructured thin films in abrasive environments. Analytical techniques included XPS depth profiling, porosimetry, AFM and friction force microscopy, nanoindentation, contact angle goniometry, and stylus profilometry. Controlled abrasion was conducted using a lab-built instrument. Hydrophobic and oleophobic properties were monitored ex-situ during abrasion to observe and quantify changes in functionality as the material is worn. Experimental results show that surfactant templating aids in generating an internal mesostructure that facilitates encapsulation of functional moieties. This encapsulation allows exposed surfaces to be sacrificially worn away while maintaining much of the original functionality. The results of tribological measurements, as observed through abrasive wear testing, friction force mapping, and wear rate calculations, suggest that the low-friction surface generate by fluorosilane moieties grafted to internal pore surfaces mitigates to some extent the detrimental effect of film porosity on hardness and wear resistance.

  17. The surface structure of silver-coated gold nanocrystals and its influence on shape control

    DOE PAGES

    Padmos, J. Daniel; Personick, Michelle L.; Tang, Qing; ...

    2015-07-08

    Understanding the surface structure of metal nanocrystals with specific facet indices is important due to its impact on controlling nanocrystal shape and functionality. However, this is particularly challenging for halide-adsorbed nanocrystals due to the difficulty in analysing interactions between metals and light halides (for example, chloride). Here we uncover the surface structures of chloride-adsorbed, silver-coated gold nanocrystals with {111}, {110}, {310} and {720} indexed facets by X-ray absorption spectroscopy and density functional theory modelling. The silver–chloride, silver–silver and silver–gold bonding structures are markedly different between the nanocrystal surfaces, and are sensitive to their formation mechanism and facet type. A uniquemore » approach of combining the density functional theory and experimental/simulated X-ray spectroscopy further verifies the surface structure models and identifies the previously indistinguishable valence state of silver atoms on the nanocrystal surfaces. Overall, this work elucidates the thus-far unknown chloride–metal nanocrystal surface structures and sheds light onto the halide-induced growth mechanism of anisotropic nanocrystals.« less

  18. Facile and generalized encapsulations of inorganic nanocrystals with nitrogen-doped carbonaceous coating for multifunctionality

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Zhang, Jingchao; Wang, Shitong; Xu, Xiaobin; Zhang, Zhicheng; Wang, Pengpeng; Tang, Zilong; Wang, Xun

    2015-02-01

    A simple strategy toward versatile encapsulations of inorganic nanocrystals, through a green hydrothermal treatment of commercial polyurethane sponge, was developed. This approach enables us to realize a general method to form a surface-adherent, N-doped coating with a controllable thickness for well-defined structures. These composites exhibit active properties in optical applications and energy storage. For example, N-doped carbon encapsulated Fe2O3 nanoboxes show a very high discharge capacity and outstanding cyclability, and the capacity still remained at 1086 mA h g-1 at a current density of 400 mA g-1 after 200 cycles. Our results described here provide a simple surface coating technique to design various functional nanostructures.A simple strategy toward versatile encapsulations of inorganic nanocrystals, through a green hydrothermal treatment of commercial polyurethane sponge, was developed. This approach enables us to realize a general method to form a surface-adherent, N-doped coating with a controllable thickness for well-defined structures. These composites exhibit active properties in optical applications and energy storage. For example, N-doped carbon encapsulated Fe2O3 nanoboxes show a very high discharge capacity and outstanding cyclability, and the capacity still remained at 1086 mA h g-1 at a current density of 400 mA g-1 after 200 cycles. Our results described here provide a simple surface coating technique to design various functional nanostructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07181f

  19. Fabrication of nonfouling, bactericidal, and bacteria corpse release multifunctional surface through surface-initiated RAFT polymerization.

    PubMed

    Wang, Bailiang; Ye, Zi; Tang, Yihong; Han, Yuemei; Lin, Quankui; Liu, Huihua; Chen, Hao; Nan, Kaihui

    Infections after surgery or endophthalmitis are potentially blinding complications caused by bacterial adhesion and subsequent biofilm formation on the intraocular lens. Neither single-function anti-adhesion surface nor contacting killing surface can exhibit ideal antibacterial function. In this work, a novel (2-(dimethylamino)-ethyl methacrylate- co -2-methacryloyloxyethyl phosphorylcholine) (p (DMAEMA- co -MPC)) brush was synthesized by "grafting from" method through reversible-addition fragmentation chain transfer polymerization. 1-Bromoheptane was used to quaternize the p (DMAEMA- co -MPC) brush coating and to endow the surface with bactericidal function. The success of the surface functionalization was confirmed by atomic force microscopy, water contact angle, and spectroscopic ellipsometry. The quaternary ammonium salt units were employed as efficient disinfection that can eliminate bacteria through contact killing, whereas the 2-methacryloyloxyethyl phosphorylcholine units were introduced to suppress unwanted nonspecific adsorption. The functionalized poly(dimethyl siloxane) surfaces showed efficiency in reducing bovine serum albumin adsorption and in inhibiting bacteria adhesion and biofilm formation. The copolymer brushes also demonstrated excellent bactericidal function against gram-positive ( Staphylococcus aureus ) bacteria measured by bacteria live/dead staining and shake-flask culture methods. The surface biocompatibility was evaluated by morphology and activity measurement with human lens epithelial cells in vitro. The achievement of the p (DMAEMA + - co -MPC) copolymer brush coating with nonfouling, bactericidal, and bacteria corpse release properties can be used to modify intraocular lenses.

  20. Fabrication of nonfouling, bactericidal, and bacteria corpse release multifunctional surface through surface-initiated RAFT polymerization

    PubMed Central

    Wang, Bailiang; Ye, Zi; Tang, Yihong; Han, Yuemei; Lin, Quankui; Liu, Huihua; Chen, Hao; Nan, Kaihui

    2017-01-01

    Infections after surgery or endophthalmitis are potentially blinding complications caused by bacterial adhesion and subsequent biofilm formation on the intraocular lens. Neither single-function anti-adhesion surface nor contacting killing surface can exhibit ideal antibacterial function. In this work, a novel (2-(dimethylamino)-ethyl methacrylate-co-2-methacryloyloxyethyl phosphorylcholine) (p (DMAEMA-co-MPC)) brush was synthesized by “grafting from” method through reversible–addition fragmentation chain transfer polymerization. 1-Bromoheptane was used to quaternize the p (DMAEMA-co-MPC) brush coating and to endow the surface with bactericidal function. The success of the surface functionalization was confirmed by atomic force microscopy, water contact angle, and spectroscopic ellipsometry. The quaternary ammonium salt units were employed as efficient disinfection that can eliminate bacteria through contact killing, whereas the 2-methacryloyloxyethyl phosphorylcholine units were introduced to suppress unwanted nonspecific adsorption. The functionalized poly(dimethyl siloxane) surfaces showed efficiency in reducing bovine serum albumin adsorption and in inhibiting bacteria adhesion and biofilm formation. The copolymer brushes also demonstrated excellent bactericidal function against gram-positive (Staphylococcus aureus) bacteria measured by bacteria live/dead staining and shake-flask culture methods. The surface biocompatibility was evaluated by morphology and activity measurement with human lens epithelial cells in vitro. The achievement of the p (DMAEMA+-co-MPC) copolymer brush coating with nonfouling, bactericidal, and bacteria corpse release properties can be used to modify intraocular lenses. PMID:28053527

  1. Structuring of Functional Spider Silk Wires, Coatings, and Sheets by Self-Assembly on Superhydrophobic Pillar Surfaces.

    PubMed

    Gustafsson, Linnea; Jansson, Ronnie; Hedhammar, My; van der Wijngaart, Wouter

    2018-01-01

    Spider silk has recently become a material of high interest for a large number of biomedical applications. Previous work on structuring of silk has resulted in particles (0D), fibers (1D), films (2D), and foams, gels, capsules, or microspheres (3D). However, the manufacturing process of these structures is complex and involves posttreatment of chemicals unsuitable for biological applications. In this work, the self-assembly of recombinant spider silk on micropatterned superhydrophobic surfaces is studied. For the first time, structuring of recombinant spider silk is achieved using superhydrophobic surfaces under conditions that retain the bioactivity of the functionalized silk. By tuning the superhydrophobic surface geometry and the silk solution handling parameters, this approach allows controlled generation of silk coatings, nanowires, and sheets. The underlying mechanisms and governing parameters are discussed. It is believed that the results of this work pave the way for fabrication of silk formations for applications including vehicles for drug delivery, optical sensing, antimicrobial coatings, and cell culture scaffolds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Characterization of PEG-Like Macromolecular Coatings on Plasma Modified NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Gao, Jiacheng; Chang, Peng; Wang, Jianhua

    2008-04-01

    A poly (ethylene glycol) (PEG-like) coating was developed to improve the biocompatibility of Nickel-Titanium (NiTi) alloy implants. The PEG-like macromolecular coatings were deposited on NiTi substrates at a room temperature of 298 K through a ECR (electron-cyclotron resonance) cold-plasma enhanced chemical vapor deposition method using tetraglyme (CH3-O-(CH2-CH2-O)4-CH3) as a precursor. A power supply with a frequency of 2.45 GHz was applied to ignite the plasma with Ar(argon) used as the carrier gas. Based on the atomic force microscopy (AFM) studies, a thin smooth coating on NiTi substrates with highly amorphous functional groups on the modified NiTi surfaces were mainly the same accumulated stoichiometric ratio of C and O with PEG. The vitro studies showed that platelet-rich plasma (PRP) adsorption on the modified NiTi alloy surface was significantly reduced. This study indicated that plasma surface modification changes the surface components of NiTi alloy and subsequently improves its biocompatibility.

  3. Carbon-based nanostructured surfaces for enhanced phase-change cooling

    NASA Astrophysics Data System (ADS)

    Selvaraj Kousalya, Arun

    To maintain acceptable device temperatures in the new generation of electronic devices under development for high-power applications, conventional liquid cooling schemes will likely be superseded by multi-phase cooling solutions to provide substantial enhancement to the cooling capability. The central theme of the current work is to investigate the two-phase thermal performance of carbon-based nanostructured coatings in passive and pumped liquid-vapor phase-change cooling schemes. Quantification of the critical parameters that influence thermal performance of the carbon nanostructured boiling surfaces presented herein will lead to improved understanding of the underlying evaporative and boiling mechanisms in such surfaces. A flow boiling experimental facility is developed to generate consistent and accurate heat transfer performance curves with degassed and deionized water as the working fluid. New means of boiling heat transfer enhancement by altering surface characteristics such as surface energy and wettability through light-surface interactions is explored in this work. In this regard, carbon nanotube (CNT) coatings are exposed to low-intensity irradiation emitted from a light emitting diode and the subcooled flow boiling performance is compared against a non-irradiated CNT-coated copper surface. A considerable reduction in surface superheat and enhancement in average heat transfer coefficient is observed. In another work involving CNTs, the thermal performance of CNT-integrated sintered wick structures is evaluated in a passively cooled vapor chamber. A physical vapor deposition process is used to coat the CNTs with varying thicknesses of copper to promote surface wetting with the working fluid, water. Thermal performance of the bare sintered copper powder sample and the copper-functionalized CNT-coated sintered copper powder wick samples is compared using an experimental facility that simulates the capillary fluid feeding conditions of a vapor chamber. Nanostructured samples having a thicker copper coating provided a considerable increase in dryout heat flux while maintaining lower surface superheat temperatures compared to a bare sintered powder sample; this enhancement is attributed primarily to the improved surface wettability. Dynamic contact angle measurements are conducted to quantitatively compare the surface wetting trends for varying copper coating thicknesses and confirm the increase in hydrophilicity with increasing coating thickness. The second and relatively new carbon nanostructured coating, carbon nanotubes decorated with graphitic nanopetals, are used as a template to manufacture boiling surfaces with heterogeneous wettability. Heat transfer surfaces with parallel alternating superhydrophobic and superhydrophilic stripes are fabricated by a combination of oxygen plasma treatment, Teflon coating and shadow masking. Such composite wetting surfaces exhibit enhanced flow-boiling performance compared to homogeneous wetting surfaces. Flow visualization studies elucidate the physical differences in nucleate boiling mechanisms between the different heterogeneous wetting surfaces. The third and the final carbon nanomaterial, graphene, is examined as an oxidation barrier coating for liquid and liquid-vapor phase-change cooling systems. Forced convection heat transfer experiments on bare and graphene-coated copper surfaces reveal nearly identical liquid-phase and two-phase thermal performance for the two surfaces. Surface analysis after thermal testing indicates significant oxide formation on the entire surface of the bare copper substrate; however, oxidation is observed only along the grain boundaries of the graphene-coated substrate. Results suggest that few-layer graphene can act as a protective layer even under vigorous flow boiling conditions, indicating a broad application space of few-layer graphene as an ultra-thin oxidation barrier coating.

  4. Monolithic graded-refractive-index glass-based antireflective coatings. Broadband/omnidirectional light harvesting and self-cleaning characteristics

    DOE PAGES

    Aytug, Tolga; Lupini, Andrew R.; Jellison, Gerald E.; ...

    2015-04-23

    The design of multifunctional coatings impact impact the performance of many optical systems and components. Such coatings should be mechanically robust, and combine user-defined optical and wetting functions with scalable fabrication formulations. By taking cues from the properties of some natural biological structures, we report here the formation of low-refractive index antireflective glass films that embody omni-directional optical properties over a wide range of wavelengths, while also possessing specific wetting capabilities. The coatings comprise an interconnected network of nanoscale pores surrounded by a nanostructured silica framework. These structures result from a novel fabrication method that utilizes metastable spinodal phase separationmore » in glass-based materials. The approach not only enables design of surface microstructures with graded-index antireflection characteristics, where the surface reflection is suppressed through optical impedance matching between interfaces, but also facilitates self-cleaning ability through modification of the surface chemistry. Based on near complete elimination of Fresnel reflections (yielding >95% transmission through a single-side coated glass) and corresponding increase in broadband transmission, the fabricated nanostructured surfaces are found to promote a general and an invaluable ~3–7% relative increase in current output of multiple direct/indirect bandgap photovoltaic cells. Moreover, these antireflective surfaces also demonstrate superior resistance against mechanical wear and abrasion. Unlike conventional counterparts, the present antireflective coatings are essentially monolithic, enabling simultaneous realization of graded index anti-reflectivity, self-cleaning capability, and mechanical stability within the same surface. Moreover, the concept represents a fundamental basis for development of advanced coated optical quality products, especially where environmental exposure is required.« less

  5. Improved wear resistance of functional diamond like carbon coated Ti-6Al-4V alloys in an edge loading conditions.

    PubMed

    Choudhury, Dipankar; Lackner, Jürgen M; Major, Lukasz; Morita, Takehiro; Sawae, Yoshinori; Bin Mamat, Azuddin; Stavness, Ian; Roy, Chanchal K; Krupka, Ivan

    2016-06-01

    This study investigates the durability of functional diamond-like carbon (DLC) coated titanium alloy (Ti-6Al-4V) under edge loading conditions for application in artificial hip joints. The multilayered (ML) functional DLC coatings consist of three key layers, each of these layers were designed for specific functions such as increasing fracture strength, adapting stress generation and enhancing wear resistance. A 'ball-on-disk' multi-directional wear tester was used in the durability test. Prior to the wear testing, surface hardness, modulus elasticity and Raman intensity were measured. The results revealed a significant wear reduction to the DLC coated Ti-6Al-4V disks compared to that of non-coated Ti-6Al-4V disks. Remarkably, the counterpart Silicon Nitride (Si3N4) balls also yielded lowered specific wear rate while rubbed against the coated disks. Hence, the pairing of a functional multilayered DLC and Si3N4 could be a potential candidate to orthopedics implants, which would perform a longer life-cycle against wear caused by edge loading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The effect of nano-structured alumina coating on resin-bond strength to zirconia ceramics.

    PubMed

    Jevnikar, Peter; Krnel, Kristoffer; Kocjan, Andraz; Funduk, Nenad; Kosmac, Tomaz

    2010-07-01

    The aim of this study was to functionalize the surface of yttria partially stabilized tetragonal zirconia ceramics (Y-TZP) with a nano-structured alumina coating to improve resin bonding. A total of 120 densely sintered disc-shaped specimens (15.5+/-0.03 mm in diameter and 2.6+/-0.03 mm thick) were produced from biomedical-grade TZ-3YB-E zirconia powder (Tosoh, Tokyo, Japan), randomly divided into three groups of 40 and subjected to the following surface treatments: AS - as-sintered; APA - airborne-particle abraded; POL - polished. Half of the discs in each group received an alumina coating that was fabricated by exploiting the hydrolysis of aluminium nitride (AlN) powder (groups AS-C, APA-C, POL-C). The coating was characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The shear-bond strength of the self-etching composite resin (RelyX Unicem, 3M ESPE, USA) was then studied for the coated and uncoated surfaces of the as-sintered, polished and airborne-particle abraded specimens before and after thermocycling (TC). The SEM/TEM analyses revealed that the application of an alumina coating to Y-TZP ceramics created a highly retentive surface for resin penetration. The coating showed good surface coverage and a uniform thickness of 240 nm. The resin-bond strength to the groups AS-C, APA-C, POL-C was significantly higher than to the groups AS, APA and POL, both before and after TC (p< or =0.05). During TC all the specimens in the POL and AS groups debonded spontaneously. In contrast, the TC did not affect the bond strength of the AS-C, POL-C and APA-C groups. A non-invasive method has been developed that significantly improves resin-bond strength to Y-TZP ceramics. After surface functionalization the bond survives thermocycling without reduction in strength. The method is relatively simple and has the potential to become an effective conditioning method for zirconia ceramics. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Design of water-repellant coating using dual scale size of hybrid silica nanoparticles on polymer surface

    NASA Astrophysics Data System (ADS)

    Conti, J.; De Coninck, J.; Ghazzal, M. N.

    2018-04-01

    The dual-scale size of the silica nanoparticles is commonly aimed at producing dual-scale roughness, also called hierarchical roughness (Lotus effect). In this study, we describe a method to build a stable water-repellant coating with controlled roughness. Hybrid silica nanoparticles are self-assembled over a polymeric surface by alternating consecutive layers. Each one uses homogenously distributed silica nanoparticles of a particular size. The effect of the nanoparticle size of the first layer on the final roughness of the coating is studied. The first layer enables to adjust the distance between the silica nanoparticles of the upper layer, leading to a tuneable and controlled final roughness. An optimal size nanoparticle has been found for higher water-repellency. Furthermore, the stability of the coating on polymeric surface (Polycarbonate substrate) is ensured by photopolymerization of hybridized silica nanoparticles using Vinyl functional groups.

  8. Effects of functional groups and ionization on the structure of alkanethiol coated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Bolintineanu, Dan S.; Lane, J. Matthew D.; Grest, Gary S.

    2013-03-01

    We report fully atomistic molecular dynamics simulations of alkanethiol coated gold nanoparticles solvated in water and decane. The structure of the coatings is analyzed as a function of various functional end groups, including amine and carboxyl groups in different neutralization states. We study the effects of charge in the end groups for two different chain lengths (10 and 18 carbons) and different counterions (mono- and divalent). For the longer alkanes we find significant local phase segregation of chains on the nanoparticle surface, which results in highly asymmetric coating structures. In general, the charged end groups attenuate this effect by enhancing the water solubility of the nanoparticles. Based on the coating structures and density profiles, we can qualitatively infer the overall solubility of the nanoparticles. The asymmetry in the alkanethiol coatings is also likely to have a significant effect on aggregation behavior. More importantly, our simulations suggest the ability to modulate end group charge states (e.g. by changing the pH of the solution) in order to control coating structure, and therefore control solubility and aggregation behavior.

  9. Long-term liver-specific functions of hepatocytes in electrospun chitosan nanofiber scaffolds coated with fibronectin.

    PubMed

    Rajendran, Divya; Hussain, Ali; Yip, Derek; Parekh, Amit; Shrirao, Anil; Cho, Cheul H

    2017-08-01

    In this study, a new 3D liver model was developed using biomimetic nanofiber scaffolds and co-culture system consisting of hepatocytes and fibroblasts for the maintenance of long-term liver functions. The chitosan nanofiber scaffolds were fabricated by the electrospinning technique. To enhance cellular adhesion and spreading, the surfaces of the chitosan scaffolds were coated with fibronectin (FN) by adsorption and evaluated for various cell types. Cellular phenotype, protein expression, and liver-specific functions were extensively characterized by immunofluorescent and histochemical stainings, albumin enzyme-linked immunosorbent assay and Cytochrome p450 detoxification assays, and scanning electron microscopy. The electrospun chitosan scaffolds exhibited a highly porous and randomly oriented nanofibrous structure. The FN coating on the surface of the chitosan nanofibers significantly enhanced cell attachment and spreading, as expected, as surface modification with this cell adhesion molecule on the chitosan surface is important for focal adhesion formation and integrin binding. Comparison of hepatocyte mono-cultures and co-cultures in 3D culture systems indicated that the hepatocytes in co-cultures formed colonies and maintained their morphologies and functions for prolonged periods of time. The 3D liver tissue model developed in this study will provide useful tools toward the development of engineered liver tissues for drug screening and tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2119-2128, 2017. © 2017 Wiley Periodicals, Inc.

  10. Carbon coatings with olive oil, soybean oil and butter on nano-LiFePO 4

    NASA Astrophysics Data System (ADS)

    Kim, Ketack; Jeong, Ji Hwa; Kim, Ick-Jun; Kim, Hyun-Soo

    Kitchen oils (olive, soybean and butter) are selected for carbon coatings on LiFePO 4. The surface properties of LiFePO 4 are unknown or vary depending on synthetic methods. The multi-functional groups of fatty acids in the oils can orient properly to cope with the variable surface properties of LiFePO 4, which can lead to dense carbon coatings. The low price and low toxicity of kitchen oils are other advantages of the coating process. LiFePO 4 (D 50 = 121 nm)combined with the carbon coating enhances the rate capability. Capacities at the 2 C rate reach 150 mAh g -1 or higher. The charge retention values of 2.0 C/0.2 C are between 94.4 and 98.9%.

  11. Zwitterion-Coated Iron Oxide Nanoparticles: Surface Chemistry and Intracellular Uptake by Hepatocarcinoma (HepG2) Cells.

    PubMed

    Mondini, Sara; Leonzino, Marianna; Drago, Carmelo; Ferretti, Anna M; Usseglio, Sandro; Maggioni, Daniela; Tornese, Paolo; Chini, Bice; Ponti, Alessandro

    2015-07-07

    Nanoparticles (NPs) have received much attention in recent years for their diverse potential biomedical applications. However, the synthesis of NPs with desired biodistribution and pharmacokinetics is still a major challenge, with NP size and surface chemistry being the main factors determining the behavior of NPs in vivo. Here we report on the surface chemistry and in vitro cellular uptake of magnetic iron oxide NPs coated with zwitterionic dopamine sulfonate (ZDS). ZDS-coated NPs were compared to similar iron oxide NPs coated with PEG-like 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (MEEA) to investigate how surface chemistry affects their in vitro behavior. ZDS-coated NPs had a very dense coating, guaranteeing high colloidal stability in several aqueous media and negligible interaction with proteins. Treatment of HepG2 cells with increasing doses (2.5-100 μg Fe/mL) of ZDS-coated iron oxide NPs had no effect on cell viability and resulted in a low, dose-dependent NP uptake, inferior than most reported data for the internalization of iron oxide NPs by HepG2 cells. MEEA-coated NPs were scarcely stable and formed micrometer-sized aggregates in aqueous media. They decreased cell viability for dose ≥50 μg Fe/mL, and were more efficiently internalized than ZDS-coated NPs. In conclusion, our data indicate that the ZDS layer prevented both aggregation and sedimentation of iron oxide NPs and formed a biocompatible coating that did not display any biocorona effect. The very low cellular uptake of ZDS-coated iron NPs can be useful to achieve highly selective targeting upon specific functionalization.

  12. Dust coatings on basaltic rocks and implications for thermal infrared spectroscopy of Mars

    USGS Publications Warehouse

    Johnson, J. R.; Christensen, P.R.; Lucey, P.G.

    2002-01-01

    Thin coatings of atmospherically deposited dust can mask the spectral characteristics of underlying surfaces on Mars from the visible to thermal infrared wavelengths, making identification of substrate and coating mineralogy difficult from lander and orbiter spectrometer data. To study the spectral effects of dust coatings, we acquired thermal emission and hemispherical reflectance spectra (5-25 μm; 2000-400 cm-1) of basaltic andesite coated with different thicknesses of air fall-deposited palagonitic soils, fine-grained ceramic clay powders, and terrestrial loess. The results show that thin coatings (10-20 μm) reduce the spectral contrast of the rock substrate substantially, consistent with previous work. This contrast reduction continues linearly with increasing coating thickness until a "saturation thickness" is reached, after which little further change is observed. The saturation thickness of the spectrally flat palagonite coatings is ~100-120 μm, whereas that for coatings with higher spectral contrast is only ~50-75 μm. Spectral differences among coated and uncoated samples correlate with measured coating thicknesses in a quadratic manner, whereas correlations with estimated surface area coverage are better fit by linear functions. Linear mixture modeling of coated samples using the rock substrate and coating materials as end-members is also consistent with their measured coating thicknesses and areal coverage. A comparison of ratios of Thermal Emission Spectrometer (TES) spectra of dark and bright intracrater and windstreak deposits associated with Radau crater suggests that the dark windstreak material may be coated with as much as 90% areal coverage of palagonitic dust. The data presented here also will help improve interpretations of upcoming mini-TES and Thermal Emission Imaging System (THEMIS) observations of coated Mars surface materials.

  13. Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles.

    PubMed

    Reimhult, Kristina; Yoshimatsu, Keiichi; Risveden, Klas; Chen, Si; Ye, Lei; Krozer, Anatol

    2008-07-15

    Molecularly imprinted polymers (MIPs) are gaining great interest as tailor-made recognition materials for the development of biomimetic sensors. Various approaches have been adopted to interface MIPs with different transducers, including the use of pre-made imprinted particles and the in situ preparation of thin polymer layers directly on transducer surfaces. In this work we functionalized quartz crystal microbalance (QCM) sensor crystals by coating the sensing surfaces with pre-made molecularly imprinted nanoparticles. The nanoparticles were immobilized on the QCM transducers by physical entrapment in a thin poly(ethylene terephthalate) (PET) layer that was spin-coated on the transducer surface. By controlling the deposition conditions, it was possible to gain a high nanoparticle loading in a stable PET layer, allowing the recognition sites in nanoparticles to be easily accessed by the test analytes. In this work, different sensor surfaces were studied by micro-profilometry and atomic force microscopy and the functionality was evaluated using quartz crystal microbalance with dissipation (QCM-D). The molecular recognition capability of the sensors were also confirmed using radioligand binding analysis by testing their response to the presence of the test compounds, (R)- and (S)-propranolol in aqueous buffer.

  14. One Step Assembly of Thin Films of Carbon Nanotubes on Screen Printed Interface for Electrochemical Aptasensing of Breast Cancer Biomarker.

    PubMed

    Nawaz, Muhammad Azhar Hayat; Rauf, Sajid; Catanante, Gaelle; Nawaz, Mian Hasnain; Nunes, Gilvanda; Marty, Jean Louis; Hayat, Akhtar

    2016-10-06

    Thin films of organic moiety functionalized carbon nanotubes (CNTs) from a very well-dispersed aqueous solution were designed on a screen printed transducer surface through a single step directed assembly methodology. Very high density of CNTs was obtained on the screen printed electrode surface, with the formation of a thin and uniform layer on transducer substrate. Functionalized CNTs were characterized by X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Brunauer-Emmett- Teller (BET) surface area analyzer methodologies, while CNT coated screen printed transducer platform was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed methodology makes use of a minimum amount of CNTs and toxic solvents, and is successfully demonstrated to form thin films over macroscopic areas of screen printed carbon transducer surface. The CNT coated screen printed transducer surface was integrated in the fabrication of electrochemical aptasensors for breast cancer biomarker analysis. This CNT coated platform can be applied to immobilize enzymes, antibodies and DNA in the construction of biosensor for a broad spectrum of applications.

  15. One Step Assembly of Thin Films of Carbon Nanotubes on Screen Printed Interface for Electrochemical Aptasensing of Breast Cancer Biomarker

    PubMed Central

    Nawaz, Muhammad Azhar Hayat; Rauf, Sajid; Catanante, Gaelle; Nawaz, Mian Hasnain; Nunes, Gilvanda; Louis Marty, Jean; Hayat, Akhtar

    2016-01-01

    Thin films of organic moiety functionalized carbon nanotubes (CNTs) from a very well-dispersed aqueous solution were designed on a screen printed transducer surface through a single step directed assembly methodology. Very high density of CNTs was obtained on the screen printed electrode surface, with the formation of a thin and uniform layer on transducer substrate. Functionalized CNTs were characterized by X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) surface area analyzer methodologies, while CNT coated screen printed transducer platform was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed methodology makes use of a minimum amount of CNTs and toxic solvents, and is successfully demonstrated to form thin films over macroscopic areas of screen printed carbon transducer surface. The CNT coated screen printed transducer surface was integrated in the fabrication of electrochemical aptasensors for breast cancer biomarker analysis. This CNT coated platform can be applied to immobilize enzymes, antibodies and DNA in the construction of biosensor for a broad spectrum of applications. PMID:27782067

  16. Bulk water freezing dynamics on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm < Lc < 6 mm) using carefully designed freezing experiments in a temperature-controlled, zero-humidity environment on thin water slabs. To probe the effect of surface wettability, we investigated the total time for room temperature water to completely freeze into ice on superhydrophilic ( θaapp→ 0°), hydrophilic (0° < θa < 90°), hydrophobic (90° < θa < 125°), and superhydrophobic ( θaapp→ 180°) surfaces. Our results show that at macroscopic length scales, heat conduction through the bulk water/ice layer dominates the freezing process when compared to heat conduction through the functional coatings or nanoscale gaps at the superhydrophobic substrate-water/ice interface. In order to verify our findings, and to determine when the surface structure thermal resistance approaches the water/ice resistance, we fabricated and tested the additional substrates coated with commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  17. Antimicrobial polycaprolactone/polyethylene glycol embedded lysozyme coatings of Ti implants for osteoblast functional properties in tissue engineering

    NASA Astrophysics Data System (ADS)

    Visan, A.; Cristescu, R.; Stefan, N.; Miroiu, M.; Nita, C.; Socol, M.; Florica, C.; Rasoga, O.; Zgura, I.; Sima, L. E.; Chiritoiu, M.; Chifiriuc, M. C.; Holban, A. M.; Mihailescu, I. N.; Socol, G.

    2017-09-01

    In this study, coatings based on lysozyme embedded into a matrix of polyethylene glycol (PEG) and polycaprolactone (PCL) were fabricated by two different methods (Matrix Assisted Pulsed Laser Evaporation - MAPLE and Dip Coating) for obtaining antimicrobial coatings envisaged for long term medical applications. Coatings with different PEG:PCL compositions (3:1; 1:1; 1:3) were synthesized in order to evaluate the antimicrobial activity of lysozyme embedded into the polymeric matrix. The main surface features, such as roughness and wettability, with impact on the microbial adhesion as well as on the eukaryote cell function were measured. The obtained composite coatings exhibited a significant antibacterial activity against Escherichia coli, Bacillus subtilis, Enterococcus faecalis and Staphylococcus aureus strains. As well, specific blended coatings showed appropriate viability, good spreading and normal cell morphology of SaOs2 human osteoblasts and mesenchymal stem cells (MSCs). These investigations highlight the suitability of biodegradable composites as implant coatings for decreasing the risk of bacterial contamination associated with prosthetic procedures.

  18. Technology of Strengthening Steel Details by Surfacing Composite Coatings

    NASA Astrophysics Data System (ADS)

    Burov, V. G.; Bataev, A. A.; Rakhimyanov, Kh M.; Mul, D. O.

    2016-04-01

    The article considers the problem of forming wear resistant meal ceramic coatings on steel surfaces using the results of our own investigations and the analysis of achievements made in the country and abroad. Increasing the wear resistance of surface layers of steel details is achieved by surfacing composite coatings with carbides or borides of metals as disperse particles in the strengthening phase. The use of surfacing on wearing machine details and mechanisms has a history of more than 100 years. But still engineering investigations in this field are being conducted up to now. The use of heating sources which provide a high density of power allows ensuring temperature and time conditions of surfacing under which composites with peculiar service and functional properties are formed. High concentration of energy in the zone of melt, which is created from powder mixtures and the hardened surface layer, allows producing the transition zone between the main material and surfaced coating. Surfacing by the electron beam directed from vacuum to the atmosphere is of considerable technological advantages. They give the possibility of strengthening surface layers of large-sized details by surfacing powder mixtures without their preliminary compacting. A modified layer of the main metal with ceramic particles distributed in it is created as a result of heating surfaced powders and the detail surface layer by the electron beam. Technology of surfacing allows using powders of refractory metals and graphite in the composition of powder mixtures. They interact with one another and form the particles of the hardening phase of the composition coating. The chemical composition of the main and surfaced materials is considered to be the main factor which determines the character of metallurgical processes in local zones of melt as well as the structure and properties of surfaced composition.

  19. Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications.

    PubMed

    Kohara, Kaori; Yamamoto, Shinpei; Seinberg, Liis; Murakami, Tatsuya; Tsujimoto, Masahiko; Ogawa, Tetsuya; Kurata, Hiroki; Kageyama, Hiroshi; Takano, Mikio

    2013-03-28

    Carboxylated SiO2-coated α-Fe nanoparticles have been successfully prepared via CaH2-mediated reduction of SiO2-coated Fe3O4 nanoparticles followed by surface carboxylation. These α-Fe-based nanoparticles, which are characterized by ease of coating with additional functional groups, a large magnetization of 154 emu per g-Fe, enhanced corrosion resistivity, excellent aqueous dispersibility, and low cytotoxicity, have potential to be a versatile platform in biomedical applications.

  20. Evaluation of adhesion force between functionalized microbeads and protein-coated stainless steel using shear-flow-induced detachment.

    PubMed

    Mercier-Bonin, Muriel; Adoue, Mathieu; Zanna, Sandrine; Marcus, Philippe; Combes, Didier; Schmitz, Philippe

    2009-10-01

    Spherical microbeads functionalized with two types of chemical groups (NH(2), OH) were chosen as a simplified bacterial model, in order to elucidate the role of macromolecular interactions between specific biopolymers and 316 L stainless steel, in the frame of biofilm formation in the marine environment. NH(2) microbeads were used in their native form or after covalent binding to BSA or different representative poly-amino acids. OH microbeads were used in their native form. Adhesion force between microbeads and bare or BSA-coated stainless steel was quantified at nanoscale. Shear-flow-induced detachment experiments were combined with a simplified version of a theoretical model, based on the balance of hydrodynamic forces and torque exerted on microbeads. A maximal adhesion force of 27.6+/-8.5 nN was obtained for BSA-coated NH(2) microbeads. The high reactivity of OH functional groups was assessed (adhesion force of 15.6+/-4.8 nN for large microbeads). When charge-conducting stainless steel was coated with BSA, adhesion force was significantly lower than the one estimated with the bare surface, probably due to an increase in hydrophilic surface properties or suppression of charge transfer. The mechanism for microbead detachment was established (mainly rolling). The flow chamber and the associated theoretical modelling were demonstrated to be a relevant approach to quantify nanoscale forces between interacting surfaces.

  1. Aqueous route to facile, efficient and functional silica coating of metal nanoparticles at room temperature

    NASA Astrophysics Data System (ADS)

    Shah, Kwok Wei; Sreethawong, Thammanoon; Liu, Shu-Hua; Zhang, Shuang-Yuan; Tan, Li Sirh; Han, Ming-Yong

    2014-09-01

    Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also applied to prepare highly surface-enhanced Raman scattering (SERS)-active Ag@SiO2-SH NPs with different types of Raman molecules for highly sensitive SERS-based applications in various fields.Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also applied to prepare highly surface-enhanced Raman scattering (SERS)-active Ag@SiO2-SH NPs with different types of Raman molecules for highly sensitive SERS-based applications in various fields. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03306j

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aytug, Tolga; Lupini, Andrew R.; Jellison, Gerald E.

    The design of multifunctional coatings impact impact the performance of many optical systems and components. Such coatings should be mechanically robust, and combine user-defined optical and wetting functions with scalable fabrication formulations. By taking cues from the properties of some natural biological structures, we report here the formation of low-refractive index antireflective glass films that embody omni-directional optical properties over a wide range of wavelengths, while also possessing specific wetting capabilities. The coatings comprise an interconnected network of nanoscale pores surrounded by a nanostructured silica framework. These structures result from a novel fabrication method that utilizes metastable spinodal phase separationmore » in glass-based materials. The approach not only enables design of surface microstructures with graded-index antireflection characteristics, where the surface reflection is suppressed through optical impedance matching between interfaces, but also facilitates self-cleaning ability through modification of the surface chemistry. Based on near complete elimination of Fresnel reflections (yielding >95% transmission through a single-side coated glass) and corresponding increase in broadband transmission, the fabricated nanostructured surfaces are found to promote a general and an invaluable ~3–7% relative increase in current output of multiple direct/indirect bandgap photovoltaic cells. Moreover, these antireflective surfaces also demonstrate superior resistance against mechanical wear and abrasion. Unlike conventional counterparts, the present antireflective coatings are essentially monolithic, enabling simultaneous realization of graded index anti-reflectivity, self-cleaning capability, and mechanical stability within the same surface. Moreover, the concept represents a fundamental basis for development of advanced coated optical quality products, especially where environmental exposure is required.« less

  3. Influence of Cu, Au and Ag on structural and surface properties of bioactive coatings based on titanium.

    PubMed

    Wojcieszak, D; Mazur, M; Kalisz, M; Grobelny, M

    2017-02-01

    In this work influence of copper, silver and gold additives on structural and surface properties of biologically active thin films based on titanium have been described. Coatings were prepared by magnetron sputtering method. During each process metallic discs (targets) - Ti and the additive (Cu, Ag or Au) were co-sputtered in argon atmosphere. Structural investigation of as-deposited coatings was performed with the aid of XRD and SEM/EDS method. It was found that all prepared thin films were homogenous. Addition of Cu, Ag and Au resulted in nanocrystalline structure. Moreover, influence of these additives on hardness and antibacterial activity of titanium coatings was also studied. Ti-Cu, Ti-Ag and Ti-Au films had lower hardness as-compared to Ti. According to AAS results the difference of their activity was related to the ion migration process. It was found that Ti-Ag and Ti-Au coatings had biocidal effect related to direct contact of their surface with microorganisms. In the case of Ti-Cu antimicrobial activity had direct and indirect nature due to efficient ion migration process from the film surface to the surrounding environment. Functional features of coatings such as wettability and corrosion resistance were also examined and included in the comprehensive analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A Simple, Cost-Efficient Method to Separate Microalgal Lipids from Wet Biomass Using Surface Energy-Modified Membranes.

    PubMed

    Kwak, Moo Jin; Yoo, Youngmin; Lee, Han Sol; Kim, Jiyeon; Yang, Ji-Won; Han, Jong-In; Im, Sung Gap; Kwon, Jong-Hee

    2016-01-13

    For the efficient separation of lipid extracted from microalgae cells, a novel membrane was devised by introducing a functional polymer coating onto a membrane surface by means of an initiated chemical vapor deposition (iCVD) process. To this end, a steel-use-stainless (SUS) membrane was modified in a way that its surface energy was systemically modified. The surface modification by conformal coating of functional polymer film allowed for selective separation of oil-water mixture, by harnessing the tuned interfacial energy between each liquid phase and the membrane surface. The surface-modified membrane, when used with chloroform-based solvent, exhibited superb permeate flux, breakthrough pressure, and also separation yield: it allowed separation of 95.5 ± 1.2% of converted lipid (FAME) in the chloroform phase from the water/MeOH phase with microalgal debris. This result clearly supported that the membrane-based lipid separation is indeed facilitated by way of membrane being functionalized, enabling us to simplify the whole downstream process of microalgae-derived biodiesel production.

  5. Reversible Immobilization of Proteins in Sensors and Solid-State Nanopores.

    PubMed

    Ananth, Adithya; Genua, María; Aissaoui, Nesrine; Díaz, Leire; Eisele, Nico B; Frey, Steffen; Dekker, Cees; Richter, Ralf P; Görlich, Dirk

    2018-05-01

    The controlled functionalization of surfaces with proteins is crucial for many analytical methods in life science research and biomedical applications. Here, a coating for silica-based surfaces is established which enables stable and selective immobilization of proteins with controlled orientation and tunable surface density. The coating is reusable, retains functionality upon long-term storage in air, and is applicable to surfaces of complex geometry. The protein anchoring method is validated on planar surfaces, and then a method is developed to measure the anchoring process in real time using silicon nitride solid-state nanopores. For surface attachment, polyhistidine tags that are site specifically introduced into recombinant proteins are exploited, and the yeast nucleoporin Nsp1 is used as model protein. Contrary to the commonly used covalent thiol chemistry, the anchoring of proteins via polyhistidine tag is reversible, permitting to take proteins off and replace them by other ones. Such switching in real time in experiments on individual nanopores is monitored using ion conductivity. Finally, it is demonstrated that silica and gold surfaces can be orthogonally functionalized to accommodate polyhistidine-tagged proteins on silica but prevent protein binding to gold, which extends the applicability of this surface functionalization method to even more complex sensor devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Li, Ming; Xiong, Pan; Mo, Maosong; Cheng, Yan; Zheng, Yufeng

    2016-09-01

    The combination of graphene oxide (GO) with robust mechanical property, silk fibroin (SF) with fascinating biological effects and hydroxyapatite (HA) with superior osteogenic activity is a competitive approach to make novel coatings for orthopedic applications. Herein, the feasibility of depositing ternary SF/GO/HA nanocomposite coatings on Ti substrate was firstly verified by exploiting electrophoretic nanotechnology, with SF being used as both a charging additive and a dispersion agent. The surface morphology, microstructure and composition, in vitro hemocompatibility and in vitro cytocompatibility of the resulting coatings were investigated by SEM, Raman, FTIR spectra and biocompatibility tests. Results demonstrated that GO, HA and SF could be co-deposited with a uniform, smooth thin-film morphology. The hemolysis rate analysis and the platelet adhesion test indicated good blood compatibility of the coatings. The human osteosarcoma MG63 cells displayed well adhesion and proliferation behaviors on the prepared coatings, with enhanced ALP activities. The present study suggested that SF/GO/HA nanocomposite coatings could be a promising candidate for the surface functionalization of biomaterials, especially as orthopedic implant coating.

  7. Surface modification of polypropylene based particle foams

    NASA Astrophysics Data System (ADS)

    Schreier, P.; Trassl, C.; Altstädt, V.

    2014-05-01

    This paper deals with the modification of the surface properties of expanded polypropylene (EPP). EPP is a semi-hard to soft elastic thermoplastic foam. The characteristic surface of EPP shows process-related steam nozzle imprints and gussets. Therefore EPP does not satisfy the quality requirements for visible automotive applications. In order to meet these demands, plastic surfaces are usually enhanced with functional or decorative coatings, e.g. textiles, plastic films or paint. The coating of plastics with low surface energies such as PP often leads to adhesion problems by reason of the missing polar and functional groups. This paper gives an evaluation of activation and pre-treatment methods of EPP, with the aim to identify the most suitable pre-treatment method. For this purpose five typical surface treatment methods - flame treatment, corona, fluorination, atmospheric and low-pressure plasma - were performed on EPP samples. As a comparison criterion the maximum increase in the adhesion force between a polyurethane-based coating and the modified EPP substrate was selected. Moreover the influence of the selected pre-treatment method on the increase in the total surface energy and its polar component was investigated by the drop shape analysis method. The results showed that the contact angle measurement is a suitable method to determine the polar and disperse fractions of the surface tension of EPP. Furthermore, all performed methods increased the adhesion of EPP.

  8. Nanostructured Anti-Reflecting and Water-Repellent Surface Coatings

    ScienceCinema

    None

    2018-06-13

    A nanotechnology-based surface-texturing method developed at Brookhaven Lab’s Center for Functional Nanomaterials imparts perfect anti-reflection and robust water-repellency to silicon, glass, and some plastics.

  9. Succinate Functionalization of Hyperbranched Polyglycerol-Coated Magnetic Nanoparticles as a Draw Solute During Forward Osmosis.

    PubMed

    Yang, Hee-Man; Choi, Hye Min; Jang, Sung-Chan; Han, Myeong Jin; Seo, Bum-Kyoung; Moon, Jei-Kwon; Lee, Kune-Woo

    2015-10-01

    Hyperbranched polyglycerol-coated magnetic nanoparticles (SHPG-MNPs) were functionalized with succinate groups to form a draw solute for use in a forward osmosis (FO). After the one-step synthesis of hyperbranched polyglycerol-coated magnetic nanoparticles (HPG-MNPs), the polyglycerol groups on the surfaces of the HPG-MNPs were functionalized with succinic anhydride moieties. The resulting SHPG-MNPs showed no change of size and magnetic property compared with HPG-MNPs and displayed excellent dispersibility in water up to the concentration of 400 g/L. SHPG-MNPs solution showed higher osmotic pressure than that of HPG-MNPs solution due to the presence of surface carboxyl groups in SHPG-MNPs and could draw water from a feed solution across an FO membrane without any reverse draw solute leakage during FO process. Moreover, the water flux remained nearly constant over several SHPG-MNP darw solute regeneration cycles applied to the ultrafiltration (UF) process. The SHPG-MNPs demonstrate strong potential for use as a draw solute in FO processes.

  10. Influence of organic matter on the transport of Cryptosporidium parvum oocysts in a ferric oxyhydroxide-coated quartz sand saturated porous medium

    USGS Publications Warehouse

    Abudalo, R.A.; Ryan, J.N.; Harvey, R.W.; Metge, D.W.; Landkamer, Lee L.

    2010-01-01

    To assess the effect of organic matter on the transport of Cryptosporidium parvum oocysts in a geochemically heterogeneous saturated porous medium, we measured the breakthrough and collision efficiencies of oocysts as a function of dissolved organic matter concentration in a flow-through column containing ferric oxyhydroxide-coated sand. We characterized the surface properties of the oocysts and ferric oxyhydroxide-coated sand using microelectrophoresis and streaming potential, respectively, and the amount of organic matter adsorbed on the ferric oxyhydroxide-coated sand as a function of the concentration of dissolved organic matter (a fulvic acid isolated from Florida Everglades water). The dissolved organic matter had no significant effect on the zeta potential of the oocysts. Low concentrations of dissolved organic matter were responsible for reversing the charge of the ferric oxyhydroxide-coated sand surface from positive to negative. The charge reversal and accumulation of negative charge on the ferric oxyhydroxide-coated sand led to increases in oocyst breakthrough and decreases in oocyst collision efficiency with increasing dissolved organic matter concentration. The increase in dissolved organic matter concentration from 0 to 20 mg L-1 resulted in a two-fold decrease in the collision efficiency. ?? 2009 Elsevier Ltd.

  11. The Extract of Roots of Sophora flavescens Enhances the Recovery of Motor Function by Axonal Growth in Mice with a Spinal Cord Injury

    PubMed Central

    Tanabe, Norio; Kuboyama, Tomoharu; Kazuma, Kohei; Konno, Katsuhiro; Tohda, Chihiro

    2016-01-01

    Although axonal extension to reconstruct spinal tracts should be effective for restoring function after spinal cord injury (SCI), chondroitin sulfate proteoglycan (CSPG) levels increase at spinal cord lesion sites, and inhibit axonal regrowth. In this study, we found that the water extract of roots of Sophora flavescens extended the axons of mouse cortical neurons, even on a CSPG-coated surface. Consecutive oral administrations of S. flavescens extract to SCI mice for 31 days increased the density of 5-HT-positive axons at the lesion site and improved the motor function. Further, the active constituents in the S. flavescens extract were identified. The water and alkaloid fractions of the S. flavescens extract each exhibited axonal extension activity in vitro. LC/MS analysis revealed that these fractions mainly contain matrine and/or oxymatrine, which are well-known major compounds in S. flavescens. Matrine and oxymatrine promoted axonal extension on the CSPG-coated surface. This study is the first to demonstrate that S. flavescens extract, matrine, and oxymatrine enhance axonal growth in vitro, even on a CSPG-coated surface, and that S. flavescens extract improves motor function and increases axonal density in SCI mice. PMID:26834638

  12. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting.

    PubMed

    Yu, Zhenwei; Yun, Frank F; Wang, Yanqin; Yao, Li; Dou, Shixue; Liu, Kesong; Jiang, Lei; Wang, Xiaolin

    2017-09-01

    With the impacts of climate change and impending crisis of clean drinking water, designing functional materials for water harvesting from fog with large water capacity has received much attention in recent years. Nature has evolved different strategies for surviving dry, arid, and xeric conditions. Nature is a school for human beings. In this contribution, inspired by the Stenocara beetle, superhydrophilic/superhydrophobic patterned surfaces are fabricated on the silica poly(dimethylsiloxane) (PDMS)-coated superhydrophobic surfaces using a pulsed laser deposition approach with masks. The resultant samples with patterned wettability demonstrate water-harvesting efficiency in comparison with the silica PDMS-coated superhydrophobic surface and the Pt nanoparticles-coated superhydrophilic surface. The maximum water-harvesting efficiency can reach about 5.3 g cm -2 h -1 . Both the size and the percentage of the Pt-coated superhydrophilic square regions on the patterned surface affect the condensation and coalescence of the water droplet, as well as the final water-harvesting efficiency. The present water-harvesting strategy should provide an avenue to alleviate the water crisis facing mankind in certain arid regions of the world. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Establishing Antibacterial Multilayer Films on the Surface of Direct Metal Laser Sintered Titanium Primed with Phase-Transited Lysozyme

    PubMed Central

    Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu

    2016-01-01

    Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants. PMID:27821857

  14. Establishing Antibacterial Multilayer Films on the Surface of Direct Metal Laser Sintered Titanium Primed with Phase-Transited Lysozyme.

    PubMed

    Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu

    2016-11-08

    Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants.

  15. Establishing Antibacterial Multilayer Films on the Surface of Direct Metal Laser Sintered Titanium Primed with Phase-Transited Lysozyme

    NASA Astrophysics Data System (ADS)

    Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu

    2016-11-01

    Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants.

  16. The Effect of Journal Roughness and Foil Coatings on the Performance of Heavily Loaded Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.; DellaCorte, Christopher

    2001-01-01

    Foil air bearing load capacity tests were conducted to investigate if a solid lubricant coating applied to the surface of the bearing's top foil can function as a break-in coating. Two foil coating materials, a conventional soft polymer film (polyimide) and a hard ceramic (alumina), were independently evaluated against as-ground and worn (run-in) journals coated with NASA PS304, a high-temperature solid lubricant composite coating. The foil coatings were evaluated at journal rotational speeds of 30,000 rpm and at 25 C. Tests were also performed on a foil bearing with a bare (uncoated) nickel-based superalloy top foil to establish a baseline for comparison. The test results indicate that the presence of a top foil solid lubricant coating is effective at increasing the load capacity performance of the foil bearing. Compared to the uncoated baseline, the addition of the soft polymer coating on the top foil increased the bearing load coefficient by 120% when operating against an as-ground journal surface and 85 percent against a run-in journal surface. The alumina coating increased the load coefficient by 40% against the as-ground journal but did not have any affect when the bearing was operated with the run-in journal. The results suggest that the addition of solid lubricant films provide added lubrication when the air film is marginal indicating that as the load capacity is approached foil air bearings transition from hydrodynamic to mixed and boundary lubrication.

  17. Surface Functionalization of Orthopedic Titanium Implants with Bone Sialoprotein

    PubMed Central

    Ritz, Ulrike; Ackermann, Angelika; Anthonissen, Joris; Kaufmann, Kerstin B.; Brendel, Christian; Götz, Hermann; Rommens, Pol M.; Hofmann, Alexander

    2016-01-01

    Orthopedic implant failure due to aseptic loosening and mechanical instability remains a major problem in total joint replacement. Improving osseointegration at the bone-implant interface may reduce micromotion and loosening. Bone sialoprotein (BSP) has been shown to enhance bone formation when coated onto titanium femoral implants and in rat calvarial defect models. However, the most appropriate method of BSP coating, the necessary level of BSP coating, and the effect of BSP coating on cell behavior remain largely unknown. In this study, BSP was covalently coupled to titanium surfaces via an aminosilane linker (APTES), and its properties were compared to BSP applied to titanium via physisorption and untreated titanium. Cell functions were examined using primary human osteoblasts (hOBs) and L929 mouse fibroblasts. Gene expression of specific bone turnover markers at the RNA level was detected at different intervals. Cell adhesion to titanium surfaces treated with BSP via physisorption was not significantly different from that of untreated titanium at any time point, whereas BSP application via covalent coupling caused reduced cell adhesion during the first few hours in culture. Cell migration was increased on titanium disks that were treated with higher concentrations of BSP solution, independent of the coating method. During the early phases of hOB proliferation, a suppressive effect of BSP was observed independent of its concentration, particularly when BSP was applied to the titanium surface via physisorption. Although alkaline phosphatase activity was reduced in the BSP-coated titanium groups after 4 days in culture, increased calcium deposition was observed after 21 days. In particular, the gene expression level of RUNX2 was upregulated by BSP. The increase in calcium deposition and the stimulation of cell differentiation induced by BSP highlight its potential as a surface modifier that could enhance the osseointegration of orthopedic implants. Both physisorption and covalent coupling of BSP are similarly effective, feasible methods, although a higher BSP concentration is recommended. PMID:27111551

  18. Electrochemical Deposition of Nanostructured Conducting Polymer Coatings on Neural Prosthetic Devices

    NASA Astrophysics Data System (ADS)

    Yang, Junyan; Martin, David

    2003-03-01

    Micromachined neural prosthetic devices facilitate the functional stimulation of and recording from the central nervous system (CNS). These devices have been fabricated to consist of silicon shanks that have gold or iridium sites along their surface. Our goal is to improve the biocompatibility and long-term performance of the neural prosthetic probes when they are implanted chronically in the brain. In our most recent efforts we have established that electrochemical polymerization can be used to deposit fuzzy coatings of conducting polymers specifically on the electrode sites. For neural prosthetic devices that are intended for long term implantation, we need to develop surfaces that provide intimate contact and promote efficient signal transport at the interface of the microelectrode array and brain tissue. We have developed methods to rapidly and reliably fabricate nanostructured conducting polymer coatings on the electrode probes using templated and surfactant-mediated techniques. Conducting polymer nanomushrooms and nanohairs of polypyrrole (PPy) were electrochemically polymerized onto the functional sites of neural probes by using either nanoporous block copolymers thin films, "track-etched" polycarbonate films or anodic aluminium oxide membranes as templates. Nanofibers of conducting polymers have also been successfully obtained by polymerizations in the presence of surfactants. The influence of current density, monomer concentration, surfactant concentration, and deposition charge on the thickness and morphology of the nanostructured conducting polymer coatings has been studied by optical, scanned probe, scanning electron and transmission electron microscopy. As compared with the normal nodular morphology of polypyrrole, the nanostructured morphologies grown from the neural electrode result in fuzzy coatings with extremely high surface area. The electrical properties of the polymer coatings were studied by Impedance Spectroscopy (IS) and Cyclic Voltammetry (CV). The significant drop in impedance in magnitude and phase angle is consistent with an increase of the surface area due to the roughened surface morphology.

  19. Coated particles for lithium battery cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mohit; Eitouni, Hany Basam; Pratt, Russell Clayton

    Particles of cathodic materials are coated with polymer to prevent direct contact between the particles and the surrounding electrolyte. The polymers are held in place either by a) growing the polymers from initiators covalently bound to the particle, b) attachment of the already-formed polymers by covalently linking to functional groups attached to the particle, or c) electrostatic interactions resulting from incorporation of cationic or anionic groups in the polymer chain. Carbon or ceramic coatings may first be formed on the surfaces of the particles before the particles are coated with polymer. The polymer coating is both electronically and ionically conductive.

  20. Nanostructured diamond coatings for orthopaedic applications

    PubMed Central

    CATLEDGE, S.A.; THOMAS, V.; VOHRA, Y.K.

    2013-01-01

    With increasing numbers of orthopaedic devices being implanted, greater emphasis is being placed on ceramic coating technology to reduce friction and wear in mating total joint replacement components, in order to improve implant function and increase device lifespan. In this chapter, we consider ultra-hard carbon coatings, with emphasis on nanostructured diamond, as alternative bearing surfaces for metallic components. Such coatings have great potential for use in biomedical implants as a result of their extreme hardness, wear resistance, low friction and biocompatibility. These ultra-hard carbon coatings can be deposited by several techniques resulting in a wide variety of structures and properties. PMID:25285213

  1. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  2. Phosphonate-anchored monolayers for antibody binding to magnetic nanoparticles.

    PubMed

    Benbenishty-Shamir, Helly; Gilert, Roni; Gotman, Irena; Gutmanas, Elazar Y; Sukenik, Chaim N

    2011-10-04

    Targeted delivery of magnetic iron oxide nanoparticles (IONPs) to a specific tissue can be achieved by conjugation with particular biological ligands on an appropriately functionalized IONP surface. To take best advantage of the unique magnetic properties of IONPs and to maximize their blood half-life, thin, strongly bonded, functionalized coatings are required. The work reported herein demonstrates the successful application of phosphonate-anchored self-assembled monolayers (SAMs) as ultrathin coatings for such particles. It also describes a new chemical approach to the anchoring of antibodies on the surface of SAM-coated IONPs (using nucleophilic aromatic substitution). This anchoring strategy results in stable, nonhydrolyzable, covalent attachment and allows the reactivity of the particles toward antibody binding to be activated in situ, such that prior to the activation the modified surface is stable for long-term storage. While the SAMs do not have the well-packed crystallinity of other such monolayers, their structure was studied using smooth model substrates based on an iron oxide layer on a double-side polished silicon wafer. In this way, atomic force microscopy, ellipsometry, and contact angle goniometry (tools that could not be applied to the nanoparticles' surfaces) could contribute to the determination of their monomolecular thickness and uniformity. Finally, the successful conjugation of IgG antibodies to the SAM-coated IONPs such that the antibodies retain their biological activity is verified by their complexation to a secondary fluorescent antibody. © 2011 American Chemical Society

  3. Electrospun Fibro-porous Polyurethane Coatings for Implantable Glucose Biosensors

    PubMed Central

    Wang, Ning; Burugapalli, Krishna; Song, Wenhui; Halls, Justin; Moussy, Francis; Ray, Asim; Zheng, Yudong

    2012-01-01

    This study reports methods for coating miniature implantable glucose biosensors with electrospun polyurethane (PU) membranes, their effects on sensor function and efficacy as mass-transport limiting membranes. For electrospinning fibres directly on sensor surface, both static and dynamic collector systems, were designed and tested. Optimum collector configurations were first ascertained by FEA modelling. Both static and dynamic collectors allowed complete covering of sensors, but it was the dynamic collector that produced uniform fibro-porous PU coatings around miniature ellipsoid biosensors. The coatings had random fibre orientation and their uniform thickness increased linearly with increasing electrospinning time. The effects of coatings having an even spread of submicron fibre diameters and sub-100μm thicknesses on glucose biosensor function were investigated. Increasing thickness and fibre diameters caused a statistically insignificant decrease in sensor sensitivity for the tested electrospun coatings. The sensors’ linearity for the glucose detection range of 2 to 30mM remained unaffected. The electrospun coatings also functioned as mass-transport limiting membranes by significantly increasing the linearity, replacing traditional epoxy-PU outer coating. To conclude, electrospun coatings, having controllable fibro-porous structure and thicknesses, on miniature ellipsoid glucose biosensors were demonstrated to have minimal effect on pre-implantation sensitivity and also to have mass-transport limiting ability. PMID:23146433

  4. A novel approach for application of nylon membranes in the biosensing domain

    NASA Astrophysics Data System (ADS)

    Farahmand, Elham; Ibrahim, Fatimah; Hosseini, Samira; Rothan, Hussin A.; Yusof, Rohana; Koole, Leo H.; Djordjevic, Ivan

    2015-10-01

    In this paper we report the polymer-coated microporous nylon membranes and their application as platforms for protein immobilization and subsequent detection of the dengue virus (DV) in blood serum. Protein recognition experiments were performed with enzyme-linked immunosorbent assay (ELISA). The polymers used for coatings were synthesized by free-radical polymerization reaction between methyl methacrylate (MMA) and methacrylic acid (MAA) in different concentrations. The MAA monomer has carefully been chosen to generate polymers with pendant carboxyl (-COOH) groups, which also exist on polymer surfaces. A high degree of control over surface-exposed -COOH groups has been achieved through variation of monomers concentration in polymerization reaction. The general aspect of this work relies on the dengue antibody (Ab) immobilization on surface -COOH groups via physical attachment or covalent immobilization. Prior to Ab immobilization and ELISA experiment, polymer-coated nylon samples were analyzed in detail for their physical properties by atomic force microscopy (AFM), scanning electron microscopy (SEM), and water-in-air contact angle (WCA) measurements. Membranes were further analyzed by Fourier transform infrared spectroscopy (FTIR) in order to establish the relationship between wettability, porosity, and surface roughness with chemical composition and concentration of -COOH groups on the coating's surface. Optimized coatings have shown high sensitivity towards dengue Ab molecules, revealing fundamental aspect of polymer-protein interfaces as a function of surface -COOH groups' concentration.

  5. Producing lasting amphiphobic building surfaces with self-cleaning properties

    NASA Astrophysics Data System (ADS)

    Facio, Dario S.; Carrascosa, Luis A. M.; Mosquera, María J.

    2017-06-01

    Nowadays, producing building surfaces that prevent water and oil uptake and which present self-cleaning activity is still a challenge. In this study, amphiphobic (superhydrophobic and oleophobic) building surfaces were successfully produced. A simple and low-cost process was developed, which is applicable to large-scale building surfaces, according the following procedure: (1) by spraying a SiO2 nanocomposite which produces a closely-packed nanoparticle uniform topography; (2) by functionalizing the previous coating with a fluorinated alkoxysilane, producing high hydrophobicity and oleophobicity. The formation of a Cassie-Baxter regime, in which air pockets could be trapped between the aggregates of particles, was confirmed by topographic study. The building surface demonstrated an excellent self-cleaning performance. Finally, the surface presented lasting superhydrophobicity with high stability against successive attachment/detachment force cycles. This high durability can be explained by the effective grafting of the silica nanocomposite coating skeleton with the substrate, and with the additional fluorinated coating produced by condensation reactions.

  6. Synthesis and characterization of functionalized methacrylates for coatings and biomedical applications

    NASA Astrophysics Data System (ADS)

    Shemper, Bianca Sadicoff

    The research presented in this dissertation involves the design of polymers for biomaterials and for coatings applications. The development of non-wettable, hard UV-curing, or reactive coatings is discussed. The biomaterials section involves the syntheses of linear and star-like polymers of the functionalized monomer poly(propylene glycol) monomethacrylate (PPGM) via atom transfer radical polymerization (ATRP) (Chapter II). Its copolymerization with a perfluoroalkyl ethyl methacrylate monomer (1H,1H,2H,2H-heptadecafluorodecyl methacrylate) and the syntheses of linear and star-like amphiphilic copolymers containing the fluorinated monomer and poly(ethyleneglycol) methyl ether methacrylate (MPEGMA) are discussed in Chapter III. The four-arm amphiphilic block copolymer obtained showed unique associative properties leading to micellization in selective solvents. Chapter IV includes research involving the design of films with low surface energy by incorporating fluorine into the polymer. The synthesis, characterization and polymerization of a perfluoroalkylether-substituted methacrylic acid (C8F7) are discussed, and the properties of coatings obtained after its photopolymerization on different substrates are evaluated to confirm formation of low-surface energy polymeric coatings. Subsequently, hard coatings based on methyl (alpha-hydroxymethyl)acrylate (MHMA) were prepared via photopolymerization using UV-light. Firstly, mechanistic investigations into the photopolymerization behavior of (alpha-hydroxymethyl)acrylates (RHMA's) are reported (Chapter V). RHMA derivatives were photopolymerized with various multifunctional acrylates and methacrylates and the effect of crosslinker type and degree of functionality on photopolymerization rates and conversions was investigated. Then, in Chapter VI the synthesis of a series of new crosslinkers is described and their photopolymerization kinetics was investigated in bulk. The effect of these novel crosslinkers on the photopolymerization kinetics and coatings properties of MHMA systems is then shown in Chapter VII. This chapter also includes the effect of the presence of synthetic clay in these systems and the preparation of nanocomposite-based films. The final chapter of this dissertation involves the design of reactive coatings for biomedical applications. The syntheses and characterization of novel functionalized methacrylates containing succinimide ester groups susceptible to derivatization with amine-containing species were accomplished. Photopolymerization of these monomers led to formation of hydrogels and derivatization of the hydrogel surfaces with the tripeptide RGD (arginine-glycine-aspartic acid) was successfully achieved.

  7. Fusion peptide P15-CSP shows antibiofilm activity and pro-osteogenic activity when deposited as a coating on hydrophilic but not hydrophobic surfaces.

    PubMed

    Li, Xian; Contreras-Garcia, Angel; LoVetri, Karen; Yakandawala, Nandadeva; Wertheimer, Michael R; De Crescenzo, Gregory; Hoemann, Caroline D

    2015-12-01

    In the context of porous bone void filler for oral bone reconstruction, peptides that suppress microbial growth and promote osteoblast function could be used to enhance the performance of a porous bone void filler. We tested the hypothesis that P15-CSP, a novel fusion peptide containing collagen-mimetic osteogenic peptide P15, and competence-stimulating peptide (CSP), a cationic antimicrobial peptide, has emerging properties not shared by P15 or CSP alone. Peptide-coated surfaces were tested for antimicrobial activity toward Streptoccocus mutans, and their ability to promote human mesenchymal stem cell (MSC) attachment, spreading, metabolism, and osteogenesis. In the osteogenesis assay, peptides were coated on tissue culture plastic and on thin films generated by plasma-enhanced chemical vapor deposition to have hydrophilic or hydrophobic character (water contact angles 63°, 42°, and 92°, respectively). S. mutans planktonic growth was specifically inhibited by CSP, whereas biofilm formation was inhibited by P15-CSP. MSC adhesion and actin stress fiber formation was strongly enhanced by CSP, P15-CSP, and fibronectin coatings and modestly enhanced by P15 versus uncoated surfaces. Metabolic assays revealed that CSP was slightly cytotoxic to MSCs. MSCs developed alkaline phosphatase activity on all surfaces, with or without peptide coatings, and consistently deposited the most biomineralized matrix on hydrophilic surfaces coated with P15-CSP. Hydrophobic thin films completely suppressed MSC biomineralization, consistent with previous findings of suppressed osteogenesis on hydrophobic bioplastics. Collective data in this study provide new evidence that P15-CSP has unique dual capacity to suppress biofilm formation, and to enhance osteogenic activity as a coating on hydrophilic surfaces. © 2015 Wiley Periodicals, Inc.

  8. Fundamental studies to elucidate the protection mechanism (s) for making intelligent choices of coatings used in oil and gas production

    NASA Astrophysics Data System (ADS)

    Aljassem, Nasser Ashoor

    Considerable attention has been given by the industries and researchers to develop the organic coating systems because of their importance in protecting and maintaining the integrity of the internal surfaces of oil and gas pipelines against corrosive solutions. Oil and natural gas pipelines mostly encounter both corrosion and wear degradations. The current study focuses on the development of coating systems by incorporating various types and amounts of fillers that are improving its barrier function to ward off the internal pipeline surfaces from the corrosive constituents. Simultaneously, fillers enhance the mechanical property of the coating systems that are capable of resisting a physical wear damage. The coating systems ranged in thickness and with micro to nano-size fillers. The pin-ball wear process, with two loads (100 N and 200 N), were applied on the surfaces of the coating systems. The hardness and reduced Young's modulus of the coated surfaces were characterized. The effect of the wear process with different loads were evaluated by employing a three dimensions (3D)-image profile-meter. A simulation of the sweet (CO2) and sour (CO2 and H2S) environments, with 2000 ppm Cl - ions, pH 4, at (60 °C and 1 bar), and (100 °C and 100 bar), respectively, used in the oil and gas industry were used to immerse and evaluate the coating systems. The coating system surface topographies, after the exposure to corrosive solutions, were evaluated by the 3-D profile-meter, stereoscope and scanning electron microscopy (SEM). The intentional defects imposed on the coating systems were exposed to corrosive solutions and their performance were periodically studied by the electrochemical impedance spectroscopy (EIS) technique. The electrochemical actions and coating system degradations due to the exposure to the corrosive solution were studied by the equivalent circuit models. The calculated EIS parameters were used to understand the interactions between the coating systems and corrosive solution. The effect of the high-load wear process was not considerable on the coating systems with significant amount of fillers. The coating systems with high amount of conductive and non-conductive fillers significantly showed high impedance in both the intact coating case and the highest coating resistance in case of the surface with intentional defects. No critical impact of the harsh environment with high pressure and temperature was observed on the powder phenolic Novolac coating system with defects. The harsh corrosive environment (sour), with high pressure and temperature, had a significant impact on most of the coating systems with defects and, specifically, the coating system that had carbon nanotube fillers. Protection and degradation mechanisms of the coating systems have been proposed.

  9. Transparent superhydrophobic surfaces using a spray coating process

    DOE PAGES

    Polyzos, Georgios; Jang, Gyoung Gug; Smith, D. Barton; ...

    2017-11-03

    One significant maintenance problem and cost associated with solar energy conversion systems is the soiling due to the accumulation of dust and other pollutants. Here in this work, we describe a scalable approach for applying antisoiling coatings based on superhydrophobic (SH) silica particles using a spray coating process. A large water contact angle (WCA) is one of the characteristics of excellent SH surfaces and because of the low surface energy and low adhesion forces the soiling rate is reduced. Our findings indicate that the WCA depends strongly on the ratio of the polymer binder and the nanoparticles. The nanoparticle surfacemore » coverage of the spray coated samples was substantially improved after rinsing with solvent. This process tended to remove large aggregates and excess polymer binder and further increased the WCA by allowing exposure of the functionalized nanoparticles. The durability of the SH coatings was enhanced when the substrate was pretreated with polymer binder and an optimal curing time between 30 and 60 min. The abrasion tests of the SH coatings we report in this study showed that the WCA decreased from ~ 166° to ~ 157° after exposure to 2.6 g of sand. Such coatings will help reduce costs of periodic cleaning of solar energy conversion systems (photovoltaic panels and concentrated solar mirrors).« less

  10. Electrophoretic deposition of dexamethasone-loaded gelatin nanospheres/chitosan coating and its dual function in anti-inflammation and osteogenesis.

    PubMed

    Qi, Hongfei; Chen, Qiang; Ren, Hailong; Wu, Xianglong; Liu, Xianhu; Lu, Tingli

    2018-05-18

    Surface modification of metallic implants with bioactive and biodegradable coatings could be a promising approach for bone regeneration. The objective of this study was to prepare chitosan/gelatin nanospheres (GNs) composite coating for the delivery of dexamethasone (DEX). GNs with narrow size distribution and negative surface charge were firstly prepared by a two-step desolvation method. Homogeneous and stable gelatin nanospheres/chitosan (GNs/CTS) composite coatings were formed by electrophoretic deposition (EPD). Drug loading, encapsulation efficiency and in vitro release of DEX were estimated using high performance liquid chromatography (HPLC). The anti-inflammatory effect of DEX-loaded coatings on macrophage RAW 264.7 cells was assessed by the secretion of tumour necrosis factor (TNF) and inducible nitric oxide synthase (iNOS). Osteogenic differentiation of MC3T3-E1 osteoblasts on DEX-loaded coatings was investigated by osteogenic gene expression and mineralization. The DEX in GNs/CTS composite coating showed a two-stage release pattern could not only suppress inflammation during the burst release period, but also promote osteogenic differentiation in the sustained release period. This study might offer a feasible method for modifying the surface of metallic implants in bone regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Transparent superhydrophobic surfaces using a spray coating process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyzos, Georgios; Jang, Gyoung Gug; Smith, D. Barton

    One significant maintenance problem and cost associated with solar energy conversion systems is the soiling due to the accumulation of dust and other pollutants. Here in this work, we describe a scalable approach for applying antisoiling coatings based on superhydrophobic (SH) silica particles using a spray coating process. A large water contact angle (WCA) is one of the characteristics of excellent SH surfaces and because of the low surface energy and low adhesion forces the soiling rate is reduced. Our findings indicate that the WCA depends strongly on the ratio of the polymer binder and the nanoparticles. The nanoparticle surfacemore » coverage of the spray coated samples was substantially improved after rinsing with solvent. This process tended to remove large aggregates and excess polymer binder and further increased the WCA by allowing exposure of the functionalized nanoparticles. The durability of the SH coatings was enhanced when the substrate was pretreated with polymer binder and an optimal curing time between 30 and 60 min. The abrasion tests of the SH coatings we report in this study showed that the WCA decreased from ~ 166° to ~ 157° after exposure to 2.6 g of sand. Such coatings will help reduce costs of periodic cleaning of solar energy conversion systems (photovoltaic panels and concentrated solar mirrors).« less

  12. Robust Superhydrophobic Graphene-Based Composite Coatings with Self-Cleaning and Corrosion Barrier Properties.

    PubMed

    Nine, Md J; Cole, Martin A; Johnson, Lucas; Tran, Diana N H; Losic, Dusan

    2015-12-30

    Superhydrophobic surfaces for self-cleaning applications often suffer from mechanical instability and do not function well after abrasion/scratching. To address this problem, we present a method to prepare graphene-based superhydrophobic composite coatings with robust mechanical strength, self-cleaning, and barrier properties. A suspension has been formulated that contains a mixture of reduced graphene oxide (rGO) and diatomaceous earth (DE) modified with polydimethylsiloxane (PDMS) that can be applied on any surface using common coating methods such as spraying, brush painting, and dip coating. Inclusion of TiO2 nanoparticles to the formulation shows further increase in water contact angle (WCA) from 159 ± 2° to 170 ± 2° due to the structural improvement with hierarchical surface roughness. Mechanical stability and durability of the coatings has been achieved by using a commercial adhesive to bond the superhydrophobic "paint" to various substrates. Excellent retention of superhydrophobicity was observed even after sandpaper abrasion and crosscut scratching. A potentiodynamic polarization study revealed excellent corrosion resistance (96.78%) properties, and an acid was used to provide further insight into coating barrier properties. The ease of application and remarkable properties of this graphene-based composite coating show considerable potential for broad application as a self-cleaning and protective layer.

  13. Facile Synthesis of Smart Nanocontainers as Key Components for Construction of Self-Healing Coating with Superhydrophobic Surfaces.

    PubMed

    Liang, Yi; Wang, MingDong; Wang, Cheng; Feng, Jing; Li, JianSheng; Wang, LianJun; Fu, JiaJun

    2016-12-01

    SiO2-imidazoline nanocomposites (SiO2-IMI) owning high loading capacity of corrosion inhibitor, 1-hexadecyl-3-methylimidazolium bromide (HMID), and a special acid/alkali dual-stimuli-accelerated release property have been synthesized via a one-step modified Stöber method. SiO2-IMI were uniformly distributed into the hydrophobic SiO2 sol to construct "host"-"guest" feedback active coating with a superhydrophobic surface (SiO2-IMI@SHSC) on aluminium alloy, AA2024, by dip-coating technique. SiO2-IMI as "guest" components have good compatibility with "host" sol-gel coating, and more importantly, once localized corrosion occurs on the surface of AA2024, SiO2-IMI can simultaneously respond to the increase in environmental pH around corrosive micro-cathodic regions and decrease in pH near micro-anodic regions, promptly releasing HMID to form a compact molecular film on the damaged surface, inhibiting corrosion spread and executing a self-healing function. The scanning vibrating electrode technique (SVET) was applied to illustrate the suppression process of cathodic/anodic corrosion activities. Furthermore, benefiting from the superhydrophobic surface, SiO2-IMI@SHSC remained its protective ability after immersion in 0.5 M NaCl solution for 35 days, which is far superior to the conventional sol-gel coating with the same coating thickness. The facile fabrication method of SiO2-IMI simplifies the construction procedure of SiO2-IMI@SHSC, which have great potential to replace non-environmental chromate conversion coatings for practical use.

  14. Effect of cathode vibration and heat treatment on electromagnetic properties of flake-shaped diatomite coated with Ni-Fe alloy by electroplating

    NASA Astrophysics Data System (ADS)

    Lan, Mingming; Li, Huiqin; Huang, Weihua; Xu, Guangyin; Li, Yan

    2015-03-01

    In this paper, flake-shaped diatomite particles were used as forming templates for the fabrication of the ferromagnetic functional fillers by way of electroplating Ni-Fe alloy method. The effects of cathode vibration frequency on the content of Ni-Fe alloy in the coating and the surface morphologies of the coatings were evaluated. The electromagnetic properties of the coated diatomite particles before and after heat treatment were also investigated in detail. The results show that the core-shell flake-shaped diatomite particles with high content of Ni-Fe alloy and good surface qualities of the coatings can be obtained by adjusting cathode vibration frequency. The coated diatomite particles with heat treatment filled paraffin wax composites exhibit a superior microwave absorbing and electromagnetic properties compared to the non-heat treated samples. Additionally, the peaks of reflection loss are found to be able to shift to lower frequency by the heat treatment process, which indicates the heat treatment can adjust microwave absorbing frequency band.

  15. A Proposal for the Establishment of a Center for Advanced Composite Materials Research

    DTIC Science & Technology

    1992-03-01

    materials. We were able to synthesize comb-shaped self-ordering polymers in which molecular teeth were functionalized at their termini. These chemical...layers were most likely transferred with phenolic functional groups exposed on the outer surface. For the fibers coated with polymer, contact angle...cured epoxy matrix. A striking result was observed, namely, the permanent birefringence obtained with coated fibers is 1.8 times greater than the one

  16. Self-healing coatings containing microcapsule

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Wei; Liao, Le-ping; Wang, Si-jie; Li, Wu-jun

    2012-01-01

    Effectiveness of epoxy resin filled microcapsules was investigated for healing of cracks generated in coatings. Microcapsules were prepared by in situ polymerization of urea-formaldehyde resin to form shell over epoxy resin droplets. Characteristics of these capsules were studied by 3D measuring laser microscope, particle size analyzer, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimeter (DSC) to investigate their surface morphology, size distribution, chemical structure and thermal stability, respectively. The results indicate that microcapsules containing epoxy resins can be synthesized successfully. The size is around 100 μm. The rough outer surface of microcapsule is composed of agglomerated urea-formaldehyde nanoparticles. The size and surface morphology of microcapsule can be controlled by selecting different processing parameters. The microcapsules basically exhibit good storage stability at room temperature, and they are chemically stable before the heating temperature is up to approximately 200 °C. The model system of self-healing coating consists of epoxy resin matrix, 10 wt% microencapsulated healing agent, 2 wt% catalyst solution. The self-healing function of this coating system is evaluated through self-healing testing of damaged and healed coated steel samples.

  17. Tailoring the heat transfer on the injection moulding cavity by plasma sprayed ceramic coatings

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Hopmann, Ch; Öte, M.; Knoch, M. A.; Alkhasli, I.; Dornebusch, H.; Schmitz, M.

    2017-03-01

    Inhomogeneous material shrinkage in injection moulding can cause warpage in thermoplastic components. To minimise the deformations of the injection moulding parts, the heat transfer during the cooling phase can be adjusted according to the local cooling demand on the surface of the mould cavity by means of plasma sprayed coatings with locally variable thermal resistance over the surface of the mould. Thermal resistance is a function of thermal conductivity and thickness of the coatings, where thermal conductivity of thermal barrier coatings can be adjusted by altering the chemical composition and the microstructure, which is depending on the thickness. This work evaluates the application of plasma sprayed coatings with variable thickness as thermal barrier coatings in the mould cavity. The thermal resistance of the coating and thereby the heat transfer from the melt into the mould will be influenced locally by varying the coating thickness over the cavity area according to the local cooling demand. Using the laser flash method, the thermal conduction of coatings with different thicknesses will be determined. On the basis of the experimentally determined thermal conduction, the effect of the coatings on the temperature field of the mould cavity will be numerically calculated and the required thickness distribution of the coating for an optimal temperature gradient will be determined.

  18. Tribological properties of epoxy composite coatings reinforced with functionalized C-BN and H-BN nanofillers

    NASA Astrophysics Data System (ADS)

    Yu, Jingjing; Zhao, Wenjie; Wu, Yinghao; Wang, Deliang; Feng, Ruotao

    2018-03-01

    A series of epoxy resin (EP) composite coatings reinforced with functionalized cubic boron nitride (FC-BN) and functionalized hexagonal boron nitride (FH-BN) were fabricated successfully on 316L stainless steel by hand lay-up technique. The structure properties were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The morphologies were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, UMT-3 tribometer and surface profiler were used to investigate tribological behaviors of as-prepared composite coatings under dry friction and seawater conditions respectively. The results demonstrated that the presence of FC-BN or FH-BN fillers could greatly decrease the friction coefficient (COF) and wear rate of epoxy, in addition, composite coatings possess better tribological properties under seawater condition which was attributed to the lubricating effect of seawater. Moreover, FC-BN endows the composite coatings the highest wear resistance, and FH-BN /EP composite coatings exhibited the best friction reduction performance which is attributed to the self-lubricating performance of lamella structure for FH-BN sheet.

  19. Improvement of flow and bulk density of pharmaceutical powders using surface modification.

    PubMed

    Jallo, Laila J; Ghoroi, Chinmay; Gurumurthy, Lakxmi; Patel, Utsav; Davé, Rajesh N

    2012-02-28

    Improvement in flow and bulk density, the two most important properties that determine the ease with which pharmaceutical powders can be handled, stored and processed, is done through surface modification. A limited design of experiment was conducted to establish a standardized dry coating procedure that limits the extent of powder attrition, while providing the most consistent improvement in angle of repose (AOR). The magnetically assisted impaction coating (MAIC) was considered as a model dry-coater for pharmaceutical powders; ibuprofen, acetaminophen, and ascorbic acid. Dry coated drug powders were characterized by AOR, particle size as a function of dispersion pressure, particle size distribution, conditioned bulk density (CBD), Carr index (CI), flow function coefficient (FFC), cohesion coefficient using different instruments, including a shear cell in the Freeman FT4 powder rheometer, and Hansen flowability index. Substantial improvement was observed in all the measured properties after dry coating relative to the uncoated powders, such that each powder moved from a poorer to a better flow classification and showed improved dispersion. The material intrinsic property such as cohesion, plotted as a function of particle size, gave a trend similar to those of bulk flow properties, AOR and CI. Property improvement is also illustrated in a phase map of inverse cohesion (or FFC) as a function of bulk density, which also indicated a significant positive shift due to dry coating. It is hoped that such phase maps are useful in manufacturing decisions regarding the need for dry coating, which will allow moving from wet granulation to roller compaction or to direct compression based formulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles.

    PubMed

    Forsman, Nina; Lozhechnikova, Alina; Khakalo, Alexey; Johansson, Leena-Sisko; Vartiainen, Jari; Österberg, Monika

    2017-10-01

    Herein we present a simple method to render cellulosic materials highly hydrophobic while retaining their breathability and moisture buffering properties, thus allowing for their use as functional textiles. The surfaces are coated via layer-by-layer deposition of two natural components, cationic poly-l-lysine and anionic carnauba wax particles. The combination of multiscale roughness, open film structure, and low surface energy of wax colloids, resulted in long-lasting superhydrophobicity on cotton surface already after two bilayers. Atomic force microscopy, interference microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy were used to decouple structural effects from changes in surface energy. Furthermore, the effect of thermal annealing on the coating was evaluated. The potential of this simple and green approach to enhance the use of natural cellulosic materials is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of surface chemistry on the rate of osseointegration of sintered porous-surfaced Ti-6Al-4V implants.

    PubMed

    Taché, Alex; Gan, Lu; Deporter, Douglas; Pilliar, Robert M

    2004-01-01

    The effect of adding a thin sol-gel-formed calcium phosphate (CaP) coating to sintered porous-surfaced titanium alloy (Ti-6Al-4V) implants on rates of initial bone ingrowth was investigated. Control implants (as manufactured) and similar implants with sol-gel CaP coatings were randomly placed in distal femoral rabbit condyles (1 implant/leg). After healing for 6, 9, 12, and 16 days, 8 of 10 rabbits in each time group were assessed for maximum implant pullout force (N) and interface stiffness (N/mm). Selected extracted implants also were examined by secondary electron imaging to characterize affected surfaces. The implants of the remaining 2 rabbits in each group were examined by backscattered scanning electron microscopy (BSEM). Significantly greater pullout forces and interface stiffness were found for CaP-coated implants at 6 and 9 days. At 6 days, BSEM revealed bone ingrowth on CaP-coated implants but not on control implants. Secondary electron imaging and BSEM observations also suggested greater bone ingrowth with CaP-coated porous implants at 9, 12, and 16 days. Sol-gel-formed CaP surface films significantly enhance rates of bone ingrowth into sintered porous-surfaced implants. This surface treatment may have a number of clinical benefits, including shortening the period prior to functional loading of such implants and improving treatment outcomes in situations of poor bone quality and/or quantity. (More than 50 references).

  2. Reverse switching of surface roughness in a self-organized polydomain liquid crystal coating.

    PubMed

    Liu, Danqing; Liu, Ling; Onck, Patrick R; Broer, Dirk J

    2015-03-31

    In this work we propose randomly ordered polydomain nematic liquid crystal polymer networks to reversibly generate notable jagged relief patterns at a polymer coating surface by light illumination. The domain size is controlled by the addition of traces of partly insoluble fluorinated acrylate. The photoresponse of the coating is induced by a small amount of copolymerized azobenzene monomers. Upon exposure to UV light, azobenzene undergoes trans to cis isomerization, resulting in a change in molecular order and packing within each domain. The extent of this effect and its directionality depends on the domain orientation. Localized to domain level, this morphological change forms large 3D spikes at the surface with a modulation amplitude of more than 20% of the initial thickness. The process is reversible; the surface topographical patterns erase within 10 s by stopping the light exposure. A finite element model is applied to simulate the surface topography changes of the polydomain coating. The simulations describe the formation of the topographic features in terms of light absorption and isomerization process as a function of the director orientation. The random director distribution leads to surface structures which were found to be in close agreement with the ones measured by interference microscopy. The effect of domain size on surface roughness and depth modulation was explored and related to the internal mechanical constraints. The use of nematic liquid crystal polydomains confined in a polymer network largely simplifies the fabrication of smart coatings with a prominent triggered topographic response.

  3. Improving the interfacial and mechanical properties of short glass fiber/epoxy composites by coating the glass fibers with cellulose nanocrystals

    Treesearch

    A. Asadi; M. Miller; Robert Moon; K. Kalaitzidou

    2016-01-01

    In this study, the interfacial and mechanical properties of cellulose nanocrystals (CNC) coated glass fiber/epoxy composites were investigated as a function of the CNC content on the surface of glass fibers (GF). Chopped GF rovings were coated with CNC by immersing the GF in CNC (0–5 wt%) aqueous suspensions. Single fiber fragmentation (SFF) tests showed that the...

  4. Coated substrate apparatus and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Zhenan; Diao, Ying; Mannsfeld, Stefan Christian Bernhardt

    A coated substrate is formed with aligned objects such as small molecules, macromolecules and nanoscale particulates, such as inorganic, organic or inorganic/organic hybrid materials. In accordance with one or more embodiments, an apparatus or method involves an applicator having at least one surface patterned with protruded or indented features, and a coated substrate including a solution-based layer of objects having features and morphology attributes arranged as a function of the protruded or indented features.

  5. The interplay of nanointerface curvature and calcium binding in weak polyelectrolyte-coated nanoparticles.

    PubMed

    Nap, Rikkert J; Gonzalez Solveyra, Estefania; Szleifer, Igal

    2018-05-01

    When engineering nanomaterials for application in biological systems, it is important to understand how multivalent ions, such as calcium, affect the structural and chemical properties of polymer-modified nanoconstructs. In this work, a recently developed molecular theory was employed to study the effect of surface curvature on the calcium-induced collapse of end-tethered weak polyelectrolytes. In particular, we focused on cylindrical and spherical nanoparticles coated with poly(acrylic acid) in the presence of different amounts of Ca2+ ions. We describe the structural changes that grafted polyelectrolytes undergo as a function of calcium concentration, surface curvature, and morphology. The polymer layers collapse in aqueous solutions that contain sufficient amounts of Ca2+ ions. This collapse, due to the formation of calcium bridges, is not only controlled by the calcium ion concentration but also strongly influenced by the curvature of the tethering surface. The transition from a swollen to a collapsed layer as a function of calcium concentration broadens and shifts to lower amounts of calcium ions as a function of the radius of cylindrical and spherical nanoparticles. The results show how the interplay between calcium binding and surface curvature governs the structural and functional properties of the polymer molecules. This would directly impact the fate of weak polyelectrolyte-coated nanoparticles in biological environments, in which calcium levels are tightly regulated. Understanding such interplay would also contribute to the rational design and optimization of smart interfaces with applications in, e.g., salt-sensitive and ion-responsive materials and devices.

  6. 3D patterned substrates for bioartificial blood vessels - The effect of hydrogels on aligned cells on a biomaterial surface.

    PubMed

    Zhao, Xinxin; Irvine, Scott Alexander; Agrawal, Animesh; Cao, Ye; Lim, Pei Qi; Tan, Si Ying; Venkatraman, Subbu S

    2015-10-01

    The optimal bio-artificial blood vessel construct is one that has a compliant tubular core with circumferentially aligned smooth muscle cells (SMCs). Obtaining this well-aligned pattern of SMCs on a scaffold is highly beneficial as this cellular orientation preserves the SMC contractile phenotype. We used 3D patterning to create channels on a polycaprolactone (PCL) scaffold; SMCs were then found to be aligned within the microchannels. To preserve this alignment, and to provide a protective coating that could further incorporate cells, we evaluated the use of two hydrogels, one based on poly(ethylene glycol) diacrylate (PEGDA) and the other based on gelatin. Hydrogels were either physically coated on the PCL surfaces or covalently linked via suitable surface modification of PCL. For covalent immobilization of PEGDA hydrogel, alkene groups were introduced on PCL, while for gelatin covalent linkage, serum proteins were introduced. It is, however, crucial that the hydrogel coating does not disrupt the cellular patterning and distribution. We show in this work that both the process of coating as well as the nature of the coating are critical to preservation of the aligned SMCs. The covalent coating methods involving the crosslinking of hydrogels with the surface of PCL films promoted hydrogel retention time on the film as compared with physical deposition. Furthermore, subsequent hydrogel degradation is affected by the components of the cell culture medium, hinting at a possible route to in vivo biodegradation. Surface features control cellular orientation and subsequently influence their functionality, a useful effect for cellularized biomedical devices. Such devices also can benefit from protective and cell friendly hydrogel coatings. However, literature is lacking on the fate of cells that have endured hydrogel coating whilst orientated on a biomaterial surface. In particular, elucidation of the cells ability to remain adherent and orientated post hydrogel addition. Coating requires two procedures that may be deleterious to the orientated cells: the surface pretreatment for gel binding and the hydrogel crosslinking reaction. We compare transglutaminase gelatin crosslinking and UV initiated PEGDA crosslinking, coated onto smooth muscle cells orientated on patterned PCL surfaces. This original study will be of considerable use to the wider biomaterials community. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Functionalized hexagonal boron nitride nano-coatings for protection of transparent plastics

    NASA Astrophysics Data System (ADS)

    Van Tran, Thu; Usta, Aybala; Asmatulu, Ramazan

    2016-04-01

    Nanocoating is the result of a coating application of nanomaterials to build a consistent network of molecules in a paint to protect the surfaces of various materials and devices. Hexagonal Boron Nitride (h-BN) is in two dimensional form with excellent thermal, mechanical and chemical properties. These BN nanocoatings are also a thermally insulating material for heat management. After adding functionalized h-BNs into paints or other coatings, they will absorb the harmful UV part of sunlight and prevent coating against the environmental degradations. The impacts of the environmental factors on the coatings can be substantially eliminated. In the present study, h-BNs were modified with [2-(2-Aminoethylamino) propyl] trimethoxysilane and uniformly dispersed into the polyurethane coatings with different amounts, such as 0.1, 0.2, 0.4, and 0.8wt% to increase hardness and water resistance, and decrease the UV degradation level of coatings and transparent plastics. The prepared samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), UV-Vis Spectroscopy, Scanning Electron Microscope (SEM), Water Contact Angle, and Differential Scanning Calorimeter (DSC). The test results showed that the nanocoatings with functionalized h-BN provided excellent physical and chemical behaviors against the UV and other physical degradations on the substrates.

  8. Powder Metallurgy Reconditioning of Food and Processing Equipment Components

    NASA Astrophysics Data System (ADS)

    Nafikov, M. Z.; Aipov, R. S.; Konnov, A. Yu.

    2017-12-01

    A powder metallurgy method is developed to recondition the worn surfaces of food and processing equipment components. A combined additive is composed to minimize the powder losses in sintering. A technique is constructed to determine the powder consumption as a function of the required metallic coating thickness. A rapid method is developed to determine the porosity of the coating. The proposed technology is used to fabricate a wear-resistant defectless metallic coating with favorable residual stresses, and the adhesive strength of this coating is equal to the strength of the base metal.

  9. Effective micro-spray cooling for light-emitting diode with graphene nanoporous layers

    NASA Astrophysics Data System (ADS)

    Keong Lay, Kok; Yew Cheong, Brian Mun; Li Tong, Wei; Tan, Ming Kwang; Hung, Yew Mun

    2017-04-01

    A graphene nanoplatelet (GNP) coating is utilized as a functionalized surface in enhancing the evaporation rate of micro-spray cooling for light-emitting diodes (LEDs). In micro-spray cooling, water is atomized into micro-sized droplets to reduce the surface energy and to increase the surface area for evaporation. The GNP coating facilitates the effective filmwise evaporation through the attribute of fast water permeation. The oxygenated functional groups of GNPs provide the driving force that initiates the intercalation of water molecules through the carbon nanostructure. The water molecules slip through the frictionless passages between the hydrophobic carbon walls, resulting an effective filmwise evaporation. The enhancement of evaporation leads to an enormous temperature reduction of 61.3 °C. The performance of the LED is greatly enhanced: a maximum increase in illuminance of 25% and an extension of power rating from 9 W to 12 W can be achieved. With the application of GNP coating, the high-temperature region is eliminated while maintaining the LED surface temperature for optimal operation. This study paves the way for employing the effective hybrid spray-evaporation-nanostructure technique in the development of a compact, low-power-consumption cooling system.

  10. Hierarchically engineered fibrous scaffolds for bone regeneration

    PubMed Central

    Sachot, Nadège; Castaño, Oscar; Mateos-Timoneda, Miguel A.; Engel, Elisabeth; Planell, Josep A.

    2013-01-01

    Surface properties of biomaterials play a major role in the governing of cell functionalities. It is well known that mechanical, chemical and nanotopographic cues, for example, influence cell proliferation and differentiation. Here, we present a novel coating protocol to produce hierarchically engineered fibrous scaffolds with tailorable surface characteristics, which mimic bone extracellular matrix. Based on the sol–gel method and a succession of surface treatments, hollow electrospun polylactic acid fibres were coated with a silicon–calcium–phosphate bioactive organic–inorganic glass. Compared with pure polymeric fibres that showed a completely smooth surface, the coated fibres exhibited a nanostructured topography and greater roughness. They also showed improved hydrophilic properties and a Young's modulus sixfold higher than non-coated ones, while remaining fully flexible and easy to handle. Rat mesenchymal stem cells cultured on these fibres showed great cellular spreading and interactions with the material. This protocol can be transferred to other structures and glasses, allowing the fabrication of various materials with well-defined features. This novel approach represents therefore a valuable improvement in the production of artificial matrices able to direct stem cell fate through physical and chemical interactions. PMID:23985738

  11. Rational strategy for the atmospheric icing prevention based on chemically functionalized carbon soot coatings

    NASA Astrophysics Data System (ADS)

    Esmeryan, Karekin D.; Bressler, Ashton H.; Castano, Carlos E.; Fergusson, Christian P.; Mohammadi, Reza

    2016-12-01

    Although the superhydrophobic surfaces are preferable for passive anti-icing systems, as they provide water shedding before initiation of ice nucleation, their practical usage is still under debate. This is so, as the superhydrophobic materials are not necessarily icephobic and most of the synthesis techniques are characterized with low fabrication scalability. Here, we describe a rational strategy for the atmospheric icing prevention, based on chemically functionalized carbon soot, suitable for large-scale fabrication of superhydrophobic coatings that exhibit and retain icephobicity in harsh operational conditions. This is achieved through a secondary treatment with ethanol and aqueous fluorocarbon solution, which improves the coating's mechanical strength without altering its water repellency. Subsequent experimental analyses on the impact dynamics of icy water droplets on soot coated aluminum and steel sheets show that these surfaces remain icephobic in condensate environments and substrate temperatures down to -35 °C. Furthermore, the soot's icephobicity and non-wettability are retained in multiple icing/de-icing cycles and upon compressed air scavenging, spinning and water jetting with impact velocity of ∼25 m/s. Finally, on frosted soot surfaces, the droplets freeze in a spherical shape and are entirely detached by adding small amount of thermal energy, indicating lower ice adhesion compared to the uncoated metal substrates.

  12. Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity

    PubMed Central

    Ye, Xiaotong; Leeflang, Sander; Wu, Chengtie; Chang, Jiang; Zhou, Jie; Huan, Zhiguang

    2017-01-01

    Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM), having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone ingrowth and regeneration. The aim of the present study was to develop a bioactive coating on the struts of SLM Ti-6Al-4V scaffolds in order to add the desired surface osteogenesis ability. Mesoporous bioactive glasses (MBGs) coating was applied on the strut surfaces of the SLM Ti-6Al-4V scaffolds through spin coating, followed by a heat treatment. It was found that the coating could maintain the characteristic mesoporous structure and chemical composition of MBG, and establish good interfacial adhesion to the Ti-6Al-4V substrate. The compressive strength and pore interconnectivity of the scaffolds were not affected by the coating. Moreover, the results obtained from in vitro cell culture experiments demonstrated that the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSCs) on the MBG-coated Ti-6Al-4V scaffolds were improved as compared with those on the conventional bioactive glass (BG)-coated Ti-6Al-4V scaffolds and bare-metal Ti-6Al-4V scaffolds. Our results demonstrated that the MBG coating by using the spinning coating method could be an effective approach to achieving enhanced surface biofunctionalization for SLM Ti-6Al-4V scaffolds. PMID:29077014

  13. Modification of Ti6Al4V implant surfaces by biocompatible TiO2/PCL hybrid layers prepared via sol-gel dip coating: Structural characterization, mechanical and corrosion behavior.

    PubMed

    Catauro, Michelina; Bollino, Flavia; Giovanardi, Roberto; Veronesi, Paolo

    2017-05-01

    Surface modification of metallic implants is a promising strategy to improve tissue tolerance, osseointegration and corrosion resistance of them. In the present work, bioactive and biocompatible organic-inorganic hybrid coatings were prepared using a sol-gel dip coating route. They consist of an inorganic TiO 2 matrix in which different percentages of poly(ε-caprolactone) (PCL), a biodegradable and biocompatible polymer, were incorporated. The coatings were used to modify the surface of Ti6Al4V substrates in order to improve their wear and corrosion resistance. The chemical structure of the coatings was analyzed by attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy. Coating microstructure, mechanical properties and ability to inhibit the corrosion of the substrates were evaluated as a function of the PCL amount. Scanning electron microscopy (SEM) showed that the polymer allows to obtain crack-free coatings, but when high percentages were added uncoated areas appear. Nano-indentation tests revealed that, as expected, surface hardness and elastic modulus decrease as the percentage of polymeric matrix increases, but scratch testing demonstrated that the coatings are effective in preventing scratching of the underlying metallic substrate, at least for PCL contents up to 20wt%. The electrochemical tests (polarization curves acquired in order to evaluate the corrosion resistance) allowed to asses that the coatings have a significant effect in term of corrosion potential (E corr ) but they do not significantly affect the passivation process that titanium undergoes in contact with the test solution used (modified Dulbecco's phosphate-buffered saline or DPBS). Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Minimally Adhesive, Advanced Non-toxic Coatings of Dendrimeric Catalysts in Sol-Gel Matrices

    DTIC Science & Technology

    2015-10-19

    PD Summary of Research Highlights Supported by ONR N00014-09-1-0217 1) Hydrophobie xerogel coatings are "robust" - good adhesion to glass , aluminum...that none of the xerogels leach materials that cause increased mortality relative to leachates from glass slides. 6) Xerogels can be tailored to...with high surface area, high surface roughness, and chemical segregation of functionality. 10) Monoliths of 5 mole-% V2O5 or 0=V(0-/Pr)3 in

  15. Retroreflective Phase Retardation Prisms.

    DTIC Science & Technology

    1981-06-01

    resonant cavity of a 1.064 Mm laser. This report shows that it is possible to coat the reflecting surfaces of a porro prism so that incident plane...with controlled phase retardation can be made by coating each reflecting surface of a porro prism with a single dielectric film. The amount of phase...of angle of incidence (n, < n2) S. Phase change on reflection as a function of angle of incidence (n" n ) [RL-0202-’R 6. Porro prism 7. Phase change

  16. Decreased fibrous encapsulation and enhanced osseointegration in vitro by decorin-modified titanium surface.

    PubMed

    He, Ronghan; Lu, Yunxiang; Ren, Jianhua; Wang, Zhe; Huang, Junqi; Zhu, Lei; Wang, Kun

    2017-07-01

    Orthopedic implants, using materials such as titanium, are extensively used in clinical surgeries. Despite its popularity, titanium is still inadequate to reliable osseointegration due to aseptic loosing. Fibrous encapsulation on the titanium implant interface prevents osseointegration and leads to the loosing of orthopedic implant. In this study, decorin was loaded on titanium surface by polydopamine film to examine fibrous encapsulation inhibition and bone growth acceleration. The coating of decorin was evaluated by X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. Quantitative analysis showed increased decorin coating on titanium surface when decorin in the loading solution increases. To test the effect of decorin modification, fibroblast and osteoblast cultures were utilized in vitro. The results showed that the functions of fibroblasts (proliferation, migration and collagen synthesis) were significantly attenuated on the decorin-modified surfaces and this anti-fibrous effect could be due to fibrotic gene suppression by decorin. In contrast, osteoblastic activities, such as calcium deposition and alkaline phosphatase (ALP) activity, were enhanced by the modified decorin. These results suggest that decorin coating on titanium surface inhibited proliferation and function of fibroblasts and improved that of osteoblasts. Therefore, this study is potentially useful for enhancing orthopedic implant. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition.

    PubMed

    Riccardi, Laura; Gabrielli, Luca; Sun, Xiaohuan; De Biasi, Federico; Rastrelli, Federico; Mancin, Fabrizio; De Vivo, Marco

    2017-07-13

    The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which could explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs.

  18. Superhydrophobic aerogel that does not require per-fluoro compounds or contain any fluorine

    DOEpatents

    Kissel, David J.; Brinker, Charles Jeffrey

    2015-05-26

    Provided are superhydrophobic coatings, devices and articles including superhydrophobic coatings, and methods for preparing the superhydrophobic coatings. The exemplary superhydrophobic device can include a substrate component and one or more superhydrophobic coatings disposed over the substrate component, wherein at least one of the one or more superhydrophobic coatings has a water contact angle of at least about 150.degree. and a contact angle hysteresis of less than about 1.degree.. The one or more superhydrophobic coatings can include an ultra high water content acid catalyzed polysilicate gel, the polysilicate gel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  19. In-situ ellipsometric studies of optical and surface properties of GaAs(100) at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Snyder, Paul G.

    1991-01-01

    A rotating-polarizer ellipsometer was attached to an ultrahigh vacuum (UHV) chamber. A GaAs(100) sample was introduced into the UHV chamber and heated at anumber of fixed elevated temperatures, without arsenic overpressure. In-situ spectroscopic ellipsometric (SE) measurements were taken, through a pair of low-strain quartz windows, to monitor the surface changes and measure the pseudodielectric functions at elevated temperatures. Real-time data from GaAs surface covered with native oxide showed clearly the evolution of oxide desorption at approximately 580 C. In addition, surface degradation was found before and after the oxide desorption. An oxide free and smooth GaAs surface was obtained by depositing an arsenic protective coating onto a molecular beam epitaxy grown GaAs surface. The arsenic coating was evaporated immediately prior to SE measurements. A comparison showed that our room temperature data from this GaAs surface, measured in the UHV, are in good agreement with those in the literature obtained by wet-chemical etching. The surface also remained clean and smooth at higher temperatures, so that reliable temperature-dependent dielectric functions were obtained.

  20. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    DOE PAGES

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; ...

    2016-05-09

    Here, mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) ( 0.0004%) between Elliott Soil Humic Acid (ESHA) coatings andmore » three model single-crystal metal-oxide substrates: α-Al 2O 3 (0 0 0 1), α-Al 2O 3 (1 1 0 2), and α-Fe 2O 3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al 2O 3 (1 1 0 2) and α-Fe 2O 3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe 2O 3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time).« less

  1. Electrophoretic deposition of colloidal particles on Mg with cytocompatibility, antibacterial performance, and corrosion resistance.

    PubMed

    Sun, Jiadi; Zhu, Ye; Meng, Long; Chen, Peng; Shi, Tiantian; Liu, Xiaoya; Zheng, Yufeng

    2016-11-01

    Magnesium (Mg) has recently received increasing attention due to its unique biological performance, including cytocompatibility, antibacterial and biodegradable properties. However, rapid corrosion in physiological environment and potential toxicity limits its clinical applications. To improve the corrosion resistance meanwhile not compromise other excellent performance, self-assembled colloidal particles were deposited onto magnesium surfaces in ethanol by a simple and effective electrophoretic deposition (EPD) method. The fabricated functional nanostructured coatings were investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM). The electrochemical test, pH value, and Mg ion concentration data show that the corrosion resistance of Mg samples is enhanced appreciably after surface treatment. In vitro cellular response and antibacterial capability of the modified Mg substrates are performed. Significantly increased cell adhesion and viability are observed from the coated Mg samples, and the amounts of adherent bacteria on the treated Mg surfaces diminish remarkably compared to the bare Mg. Furthermore, the bare and coated Mg samples were implanted in New Zealand white rabbits for 12 weeks to examine the in vivo long-term corrosion performance and in situ inflammation behavior. The experiment results confirmed that compared with bare Mg substrate the corrosion and foreign-body reactions of the coated Mg samples were suppressed. The above results suggested that our coatings, which effectively enhance the biocompatibility, antimicrobial properties, and corrosion resistance of Mg substrate, provide a simple and practical strategy to expedite clinical acceptance of biodegradableMg and its alloys. Biomedical Mg metals have been considered as promising biodegradable implants because of their intended functions, such as cytocompatibility, antibacterial, and biodegradable properties. However, rapid corrosion in physiological environment limits their clinical applications. Alloying and surface coatings have been used to reduce the degradation rate. But this would compromise other excellent performance of Mg samples, including antibacterial and anti-inflammatory activity. Thus, while the rapid degradation of Mg samples must be solved, good antibacterial property and acceptable cytocompatibility are also necessary. In this study, polymer-based coatings were fabricated on Mg surfaces by electrophoretic deposition of poly(isobornyl acrylate-co-dimethylaminoethyl methacrylate)/tannic acid (P(ISA-co-DMA)/TA) colloidal particles. It suggested that the coating materials effectively improved the biocompatibility, antimicrobial behavior, and corrosion resistance of biomedical Mg. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Effect of layer thickness on the properties of nickel thermal sprayed steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurisna, Zuhri, E-mail: zuhri-nurisna@yahoo.co.id; Triyono,, E-mail: triyonomesin@uns.ac.id; Muhayat, Nurul, E-mail: nurulmuhayat@staff.uns.ac.id

    Thermal arc spray nickel coating is widely used for decorative and functional applications, by improving corrosion resistance, wear resistance, heat resistence or by modifying other properties of the coated materials. There are several properties have been studied. Layer thickness of nickel thermal sprayed steel may be make harder the substrate surface. In this study, the effect of layer thickness of nickel thermal sprayed steel has been investigated. The rectangular substrate specimens were coated by Ni–5 wt.% Al using wire arc spray method. The thickness of coating layers were in range from 0.4 to 1.0 mm. Different thickness of coating layers weremore » conducted to investigate their effect on hardness and morphology. The coating layer was examined by using microvickers and scanning electron microscope with EDX attachment. Generally, the hardness at the interface increased with increasing thickness of coating layers for all specimens due to higher heat input during spraying process. Morphology analysis result that during spraying process aluminum would react with surrounding oxygen and form aluminum oxide at outer surface of splat. Moreover, porosity was formed in coating layers. However, presence porosity is not related to thickness of coating material. The thicker coating layer resulted highesr of hardness and bond strength.« less

  3. Bioactivity of sol-gel-derived TiO2 coating on polyetheretherketone: In vitro and in vivo studies.

    PubMed

    Shimizu, Takayoshi; Fujibayashi, Shunsuke; Yamaguchi, Seiji; Yamamoto, Koji; Otsuki, Bungo; Takemoto, Mitsuru; Tsukanaka, Masako; Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi; Matsuda, Shuichi

    2016-04-15

    A polyetheretherketone (PEEK) surface was modified using a sol-gel-derived TiO2 coating in order to confer bone-bonding ability. To enhance the bonding strength of the coating layer, pretreatment with either O2 plasma or sandblasting was performed prior to sol-gel coating. Additionally, post-treatment with acid was carried out to confer apatite (calcium phosphate)-forming ability to the surface. Biomechanical and histological analyses performed using an in vivo rabbit tibia model showed that PEEK surfaces modified with sol-gel-derived TiO2 and acid post-treatment had better bone-bonding properties than uncoated PEEK surfaces. These modified surfaces also performed well in terms of their in vitro cell responses due to their modified surface chemistries and topographies. Although O2 plasma or sandblasting treatment were, for the most part, equivocal in terms of performance, we conclude that sol-gel-derived TiO2 coating followed by acid post-treatment significantly improves the bone bonding ability of PEEK surfaces, thus rendering them optimal for their use in surgical implants. The role of polyetheretherketone (PEEK) as an alternative biomaterial to conventional metallic implant materials has become increasingly important. However, its low bone bonding ability is yet to be resolved. This in vivo and in vitro investigation on the functionalization of PEEK surfaces highlights the utility of this material in clinical interventions that require implants, and may extend range of applications of PEEK. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Investigation of novel sol-gel hydrophobic surfaces for desorption electrospray ionization-mass spectrometry analysis.

    PubMed

    Penna, Andrea; Elviri, Lisa; Careri, Maria; Mangia, Alessandro; Predieri, Giovanni

    2011-05-01

    Sol-gel-based materials were synthesized, characterized and finally tested as solid supports for desorption electrospray ionization-mass spectrometry (DESI-MS) analysis of a mixture of compounds of different polarity. Films with thickness in the 2-4 μm range were obtained by a dip-coating process using tetraethoxysilane (TEOS) and octyltriethoxysilane (OTES) as sol-gel precursors. Three types of surface with different hydrophobic character were obtained by varying the TEOS/OTES ratio in the sol-gel mixture. Each coating was characterized by atomic force microscopy investigations, gaining insight into homogeneity, smoothness and thickness of the obtained films. To study hydrophobicity of each surface, surface free energy measurements were performed. Different DESI-MS responses were observed when different solvent mixture deposition procedures and solvent spray compositions were investigated. Results were finally compared to those obtained by using commercial polytetrafluoroethylene-coated slides. It was found that surface free energy plays an important role in the desorption/ionization process as a function of the polarity of analytes.

  5. Effects of Small Oscillations on the Effective Area

    NASA Astrophysics Data System (ADS)

    Cotroneo, V.; Conconi, P.; Cusumano, G.; Pareschi, G.; Spiga, D.; Tagliaferri, G.

    2009-05-01

    We analyze the effective area of the Simbol-X mirrors as a function of the off-axis angle for small oscillations. A reduction is expected due to: 1) geometrical effects, because some of the photons miss the secondary mirror surface; 2) reflectivity effects, caused by the variation of the coating reflectivity with the incidence angle. The former are related to the length of the two mirror surfaces, and can be reduced by making the secondary mirror longer. The second ones are energy-dependent, and strongly related to the characteristics of the reflecting coating. These effects are analyzed by means of ray-tracing simulations in order to optimize the mirror and coating design, aiming to improve the effective area stability.

  6. Surface self-organization in multilayer film coatings

    NASA Astrophysics Data System (ADS)

    Shuvalov, Gleb M.; Kostyrko, Sergey A.

    2017-12-01

    It is a recognized fact that during film deposition and subsequent thermal processing the film surface evolves into an undulating profile. Surface roughness affects many important aspects in the engineering application of thin film materials such as wetting, heat transfer, mechanical, electromagnetic and optical properties. To accurately control the morphological surface modifications at the micro- and nanoscale and improve manufacturing techniques, we design a mathematical model of the surface self-organization process in multilayer film materials. In this paper, we consider a solid film coating with an arbitrary number of layers under plane strain conditions. The film surface has a small initial perturbation described by a periodic function. It is assumed that the evolution of the surface relief is governed by surface and volume diffusion. Based on Gibbs thermodynamics and linear theory of elasticity, we present a procedure for constructing a governing equation that gives the amplitude change of the surface perturbation with time. A parametric study of the evolution equation leads to the definition of a critical undulation wavelength that stabilizes the surface. As a numerical result, the influence of geometrical and physical parameters on the morphological stability of an isotropic two-layered film coating is analyzed.

  7. Competitive time- and density-dependent adhesion of staphylococci and osteoblasts on crosslinked poly(ethylene glycol)-based polymer coatings in co-culture flow chambers.

    PubMed

    Saldarriaga Fernández, Isabel C; Busscher, Henk J; Metzger, Steve W; Grainger, David W; van der Mei, Henny C

    2011-02-01

    Biomaterial-associated infections (BAI) remain a serious clinical complication, often arising from an inability of host tissue-implant integration to out-compete bacterial adhesion and growth. A commercial polymer coating based on polyethylene glycol (PEG), available in both chemically inert and NHS-activated forms (OptiChem(®)), was compared for simultaneous growth of staphylococci and osteoblasts. In the absence of staphylococci, osteoblasts adhered and proliferated well on glass controls and on the NHS-reactive PEG-based coating over 48 h, but not on the inert PEG coating. Staphylococcal growth was low on both PEG-based coatings. When staphylococci were pre-adhered on surfaces for 1.5 h to mimic peri-operative contamination, osteoblast growth and spreading was reduced on glass but virtually absent on both reactive and inert PEG-based coatings. Thus although NHS-reactive, PEG-based coatings stimulated tissue-cell interactions in the absence of contaminating staphylococci, the presence of adhering staphylococci eliminated osteoblast adhesion advantages on the PEG surface. This study demonstrates the importance of using bacterial and cellular co-cultures compared to monocultures when assessing functionalized biomaterials coatings for infectious potential. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Temperature-responsive peptide-mimetic coating based on poly(N-methacryloyl-l-leucine): properties, protein adsorption and cell growth.

    PubMed

    Raczkowska, Joanna; Ohar, Mariya; Stetsyshyn, Yurij; Zemła, Joanna; Awsiuk, Kamil; Rysz, Jakub; Fornal, Katarzyna; Bernasik, Andrzej; Ohar, Halyna; Fedorova, Svitlana; Shtapenko, Oksana; Polovkovych, Svyatoslav; Novikov, Volodymyr; Budkowski, Andrzej

    2014-06-01

    Poly(N-methacryloyl-l-leucine) (PNML) coatings were successfully fabricated via polymerization from peroxide initiator grafted to premodified glass substrate. Chemical composition and thickness of PNML coatings were determined using time of flight-secondary ion mass spectrometry (TOF- SIMS) and ellipsometry, respectively. PNML coatings exhibit thermal response of the wettability, between 4 and 28°C, which indicates a transition between hydrated loose coils and hydrophobic collapsed chains. Morphology of the PNML coating was observed with the AFM, transforming with increasing temperature from initially relatively smooth surface to rough and more structured surface. Protein adsorption observed by fluorescence microscopy for model proteins (bovine serum albumin and lentil lectin labeled with fluorescein isothiocyanate) at transition from 5 to 25°C, showed high affinity of PNML coating to proteins at all investigated temperatures and pH. Thus, PNML coating have significant potential for medical and biotechnological applications as protein capture agents or functional replacements of antibodies ("plastic antibodies"). The high proliferation growth of the human embryonic kidney cell (HEK 293) onto PNML coating was demonstrated, indicating its excellent cytocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Characteristics and in vitro response of thin hydroxyapatite–titania films produced by plasma electrolytic oxidation of Ti alloys in electrolytes with particle additions

    PubMed Central

    Yeung, W. K.; Sukhorukova, I. V.; Shtansky, D. V.; Levashov, E. A.; Zhitnyak, I. Y.; Gloushankova, N. A.; Kiryukhantsev-Korneev, P. V.; Petrzhik, M. I.; Matthews, A.

    2016-01-01

    The enhancement of the biological properties of Ti by surface doping with hydroxyapatite (HA) is of great significance, especially for orthodontic applications. This study addressed the effects of HA particle size in the electrolyte suspension on the characteristics and biological properties of thin titania-based coatings produced on Ti–6Al–4V alloy by plasma electrolytic oxidation (PEO). Detailed morphological investigation of the coatings formed by a single-stage PEO process with two-step control of the electrical parameters was performed using the Minkowski functionals approach. The surface chemistry was studied by glow discharge optical emission spectroscopy and Fourier transform infrared spectroscopy, whereas mechanical properties were evaluated using scratch tests. The biological assessment included in vitro evaluation of the coating bioactivity in simulated body fluid (SBF) as well as studies of spreading, proliferation and osteoblastic differentiation of MC3T3-E1 cells. The results demonstrated that both HA micro- and nanoparticles were successfully incorporated in the coatings but had different effects on their surface morphology and elemental distributions. The micro-particles formed an irregular surface morphology featuring interpenetrated networks of fine pores and coating material, whereas the nanoparticles penetrated deeper into the coating matrix which retained major morphological features of the porous TiO2 coating. All coatings suffered cohesive failure in scratch tests, but no adhesive failure was observed; moreover doping with HA increased the coating scratch resistance. In vitro tests in SBF revealed enhanced bioactivity of both HA-doped PEO coatings; furthermore, the cell proliferation/morphometric tests showed their good biocompatibility. Fluorescence microscopy revealed a well-organised actin cytoskeleton and focal adhesions in MC3T3-E1 cells cultivated on these substrates. The cell alkaline phosphatase activity in the presence of ascorbic acid and β-glycerophosphate was significantly increased, especially in HA nanoparticle-doped coatings. PMID:27019704

  10. Microenvironment-Sensitive Multimodal Contrast Agent for Prostate Cancer Diagnosis

    DTIC Science & Technology

    2015-10-01

    with a biopolymer (i.e. starch ) to improve biocompatibility, and tagged with prostate cancer-targeting ligands. A significant challenge to translation... starch coating of 50 nm and 100 nm SPIONs was crosslinked and coated with amine groups, and then functionalized with NHS-polyethylene glycol (PEG) of...varying molecular weight (i.e., 2k, 5k or 20k Da) as shown in Scheme 1. Scheme 1. Surface modification of starch -coated SPIONs into aminated and

  11. Bacterial Immobilization for Imaging by Atomic Force Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, David P; Sullivan, Claretta; Mortensen, Ninell P

    2011-01-01

    AFM is a high-resolution (nm scale) imaging tool that mechanically probes a surface. It has the ability to image cells and biomolecules, in a liquid environment, without the need to chemically treat the sample. In order to accomplish this goal, the sample must sufficiently adhere to the mounting surface to prevent removal by forces exerted by the scanning AFM cantilever tip. In many instances, successful imaging depends on immobilization of the sample to the mounting surface. Optimally, immobilization should be minimally invasive to the sample such that metabolic processes and functional attributes are not compromised. By coating freshly cleaved micamore » surfaces with porcine (pig) gelatin, negatively charged bacteria can be immobilized on the surface and imaged in liquid by AFM. Immobilization of bacterial cells on gelatin-coated mica is most likely due to electrostatic interaction between the negatively charged bacteria and the positively charged gelatin. Several factors can interfere with bacterial immobilization, including chemical constituents of the liquid in which the bacteria are suspended, the incubation time of the bacteria on the gelatin coated mica, surface characteristics of the bacterial strain and the medium in which the bacteria are imaged. Overall, the use of gelatin-coated mica is found to be generally applicable for imaging microbial cells.« less

  12. Deformation sensor based on polymer-supported discontinuous graphene multi-layer coatings

    NASA Astrophysics Data System (ADS)

    Carotenuto, G.; Schiavo, L.; Romeo, V.; Nicolais, L.

    2014-05-01

    Graphene can be conveniently used in the modification of polymer surfaces. Graphene macromolecules are perfectly transparent to the visible light and electrically conductive, consequently these two properties can be simultaneously provided to polymeric substrates by surface coating with thin graphene layers. In addition, such coating process provides the substrates of: water-repellence, higher surface hardness, low-friction, self-lubrication, gas-barrier properties, and many other functionalities. Polyolefins have a non-polar nature and therefore graphene strongly sticks on their surface. Nano-crystalline graphite can be used as graphene precursor in some chemical processes (e.g., graphite oxide synthesis by the Hummer method), in addition it can be directly applied to the surface of a polyolefin substrate (e.g., polyethylene) to cover it by a thin graphene multilayer. In particular, the nano-crystalline graphite perfectly exfoliate under the application of a combination of shear and friction forces and the produced graphene single-layers perfectly spread and adhere on the polyethylene substrate surface. Such polymeric materials can be used as ITO (indium-tin oxide) substitute and in the fabrication of different electronic devices. Here the fabrication of transparent resistive deformation sensors based on low-density polyethylene films coated by graphene multilayers is described. Such devices are very sensible and show a high reversible and reproducible behavior.

  13. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes.

    PubMed

    Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa; Park, Hyung Gyu; Utke, Ivo

    2014-01-01

    Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.

  14. Monolayer nanoparticle-covered liquid marbles derived from a sol-gel coating

    NASA Astrophysics Data System (ADS)

    Li, Xiaoguang; Wang, Yiqi; Huang, Junchao; Yang, Yao; Wang, Renxian; Geng, Xingguo; Zang, Duyang

    2017-12-01

    A sol-gel coating consisting of hydrophobic SiO2 nanoparticles (NPs) was used to produce monolayer NP-covered (mNPc) liquid marbles. The simplest approach was rolling a droplet on this coating, and an identifiable signet allowed determination of the coverage ratio of the resulting liquid marble. Alternatively, the particles were squeezed onto a droplet surface with two such coatings, generating surface buckling from interfacial NP jamming, and then a liquid marble was produced via a jamming-relief process in which water was added into the buckled droplet. This process revealed an ˜7% reduction in particle distance after interfacial jamming. The mNPc liquid marbles obtained by the two methods were transparent with smooth profiles, as naked droplets, and could be advantageously used in fundamental and applied researches for their unique functions.

  15. Low Earth Orbital Atomic Oxygen Interactions With Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Miller, Sharon K.

    2004-01-01

    Atomic oxygen, formed in Earth s thermosphere, interacts readily with many materials on spacecraft flying in low Earth orbit (LEO). All hydrocarbon based polymers and graphite are easily oxidized upon the impact of approx.4.5 eV atomic oxygen as the spacecraft ram into the residual atmosphere. The resulting interactions can change the morphology and reduce the thickness of these materials. Directed atomic oxygen erosion will result in the development of textured surfaces on all materials with volatile oxidation products. Examples from space flight samples are provided. As a result of the erosive properties of atomic oxygen on polymers and composites, protective coatings have been developed and are used to increase the functional life of polymer films and composites that are exposed to the LEO environment. The atomic oxygen erosion yields for actual and predicted LEO exposure of numerous materials are presented. Results of in-space exposure of vacuum deposited aluminum protective coatings on polyimide Kapton indicate high rates of degradation are associated with aluminum coatings on both surfaces of the Kapton. Computational modeling predictions indicate that less trapping of the atomic oxygen occurs, with less resulting damage, if only the space-exposed surface is coated with vapor deposited aluminum rather than having both surfaces coated.

  16. Interfacial friction and adhesion of cross-linked polymer thin films swollen with linear chains.

    PubMed

    Zhang, Qing; Archer, Lynden A

    2007-07-03

    The preparation and interfacial properties of a new type of tethered, thin-film lubricant coating are presented. These coatings are composed of three components: a dense self-assembled monolayer (SAM) underlayer that presents reactive vinyl groups at its surface; a cross-linked polydimethylsiloxane (PDMS) overlayer that is covalently tethered to the SAM; and free, mobile linear PDMS chains dispersed in the network. We investigate the influence of the molecular weight (Ms) and concentration of the free PDMS chains on the structure and equilibrium swelling properties of the cross-linked films. Using a bead-probe lateral force microscopy measurement technique, we also quantify the interfacial friction and adhesion characteristics of surfaces functionalized with these coatings. We find that both the volume fraction and the molecular weight of free PDMS molecules in the coatings influence their interfacial friction and adhesion properties. For example, the addition of short PDMS chains in dry, cross-linked PDMS thin films yields tethered surface coatings with ultralow friction coefficients (mu = 5.2 x 10(-3)). An analysis based on classical lubrication theory suggests that the reduction in friction force produced by free polymer is a consequence of the gradual separation of asperities on opposing surfaces and the consequent substitution of solid-solid friction by viscous drag of the free polymer chains in the network.

  17. Development and characterisation of chitosan or alginate-coated low density polyethylene films containing Satureja hortensis extract.

    PubMed

    Rahmani, Bahareh; Hosseini, Hedayat; Khani, Mohammadreza; Farhoodi, Mehdi; Honarvar, Zohreh; Feizollahi, Ehsan; Shokri, Babak; Shojaee-Aliabadi, Saeedeh

    2017-12-01

    This study aimed to develop novel bilayer films based on alginate, chitosan and low-density polyethylene (LDPE) containing different concentrations of summer savory extract (SSE). The cold atmospheric plasma system was used to increase the surface energy of LDPE. Initially, water contact angle, surface roughness and the functional group of LDPE before and after plasma treatment were investigated. Then physical, mechanical, optical, antioxidant and microstructure properties of plasma-treated and untreated bilayer films and antioxidant films incorporated with SSE were characterized. Results showed that plasma treatment increased oxygen-containing the polar group, surface roughness and decreased water contact angle of LDPE surface (from 90.47° to 48.73°) and in result enhanced adhesion between polysaccharide coating and LDPE. Tensile strength of both alginate and chitosan coated-LDPE increased from 10.096 to 14.372 and 11.513 to 13.459MPa, respectively after plasma pretreatment. However chitosan-based films had lower water solubility. Although, incorporation of SSE into chitosan and alginate coated-LDPE despite slight adverse effects on the physical and mechanical properties of films, it provided antioxidant activity. Chitosan coated-LDPE containing SSE had potential to use as antioxidant food packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Interactions of Graphene Oxide Nanomaterials with Natural Organic Matter and Metal Oxide Surfaces

    EPA Science Inventory

    Interactions of graphene oxide (GO) with silica surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Both GO deposition and release were monitored on silica- and poly-l-lysine (PLL) coated surfaces as a function of GO concentration a...

  19. Hydrophilic-impermeable modified polyethylene terephthalate for selective endothelialization

    NASA Astrophysics Data System (ADS)

    Chetouane, D.; Fafet, J. F.; Barbet, R.; Dieval, F.

    2017-10-01

    The aim of this study was to create a modified polyethylene terephthalate (PET) responding to vascular implants’ requirements, mainly with a surface promoting selective endothelialization. The surface alteration was carried out by hydrophilic functionalization in an alkaline solution with the presence of specific surfactant (TA). The carboxylic groups resulting from this reaction were quantified by colorimetric titration using bleu toluidine O dye (TBO). A single-sided coating process was then optimized to cover the PET surface by micro spherical structures’ polymeric layer. This coating provided to the PET surface high impermeability to the water under a pressure of 120 mmHg and enhanced its hydrophilic property. This spherical topography reduced the adhesion of Mesenchymal Stem Cells (MSC) by 37% and inhibited their proliferation after 3 days by 50%. The hydrophilic functionalized PET (PET-TA) surface decreased the MSC adhesion by 50% and promoted HUVEC attachment with a number twice more important than the number of HUVEC adhered onto non treated-PET.

  20. Modified corrosion protection coatings for Concrete tower of Transmission line

    NASA Astrophysics Data System (ADS)

    Guo, Kai; Jing, Xiangyang; Wang, Hongli; Yue, Zengwu; Wu, Yaping; Mi, Xuchun; Li, Xingeng; Chen, Suhong; Fan, Zhibin

    2017-12-01

    By adding nano SiO2 particles, an enhanced K-PRTV anti-pollution flashover coating had been prepared. Optical profile meter (GT-K), atomic force microscopy (AFM) and infrared spectrometer (FT-IR) characterization were carried out on the coating surface analysis. With the use of modified epoxy resin as the base material, the supplemented by phosphate as a corrosion stabilizer, to achieve a corrosion of steel and galvanized steel with rust coating. Paint with excellent adhesion, more than 10MPa (1), resistant to neutral salt spray 1000h does not appear rust point. At the same time coating a large amount of ultra-fine zinc powder can be added for the tower galvanized layer zinc repair function, while the paint in the zinc powder for the tower to provide sacrificial anode protection, to achieve self-repair function of the coating. Compared to the market with a significant reduction in the cost of rust paint, enhance the anti-corrosion properties.

  1. Metal organic chemical vapor deposition of environmental barrier coatings for the inhibition of solid deposit formation from heated jet fuel

    NASA Astrophysics Data System (ADS)

    Mohan, Arun Ram

    Solid deposit formation from jet fuel compromises the fuel handling system of an aviation turbine engine and increases the maintenance downtime of an aircraft. The deposit formation process depends upon the composition of the fuel, the nature of metal surfaces that come in contact with the heated fuel and the operating conditions of the engine. The objective of the study is to investigate the effect of substrate surfaces on the amount and nature of solid deposits in the intermediate regime where both autoxidation and pyrolysis play an important role in deposit formation. A particular focus has been directed to examining the effectiveness of barrier coatings produced by metal organic chemical vapor deposition (MOCVD) on metal surfaces for inhibiting the solid deposit formation from jet fuel degradation. In the first part of the experimental study, a commercial Jet-A sample was stressed in a flow reactor on seven different metal surfaces: AISI316, AISI 321, AISI 304, AISI 347, Inconel 600, Inconel 718, Inconel 750X and FecrAlloy. Examination of deposits by thermal and microscopic analysis shows that the solid deposit formation is influenced by the interaction of organosulfur compounds and autoxidation products with the metal surfaces. The nature of metal sulfides was predicted by Fe-Ni-S ternary phase diagram. Thermal stressing on uncoated surfaces produced coke deposits with varying degree of structural order. They are hydrogen-rich and structurally disordered deposits, spherulitic deposits, small carbon particles with relatively ordered structures and large platelets of ordered carbon structures formed by metal catalysis. In the second part of the study, environmental barrier coatings were deposited on tube surfaces to inhibit solid deposit formation from the heated fuel. A new CVD system was configured by the proper choice of components for mass flow, pressure and temperature control in the reactor. A bubbler was designed to deliver the precursor into the reactor for the deposition of metal and metal oxide functional coatings by MOCVD. Alumina was chosen as a candidate for metal oxide coating because of its thermal and phase stability. Platinum was chosen as a candidate to utilize the oxygen spillover process to maintain a self-cleaning surface by oxidizing the deposits formed during thermal stressing. Two metal organic precursors, aluminum trisecondary butoxide and aluminum acetylacetonate, were used as precursors to coat tubes of varying diameters. The morphology and uniformity of the coatings were characterized by electron microscopy and energy-dispersive x-ray spectroscopy. The coating was characterized by x-ray photoelectron spectroscopy to obtain the surface chemical composition. This is the first study conducted to examine the application of MOCVD to coat internal surfaces of tubes with varying diameters. In the third part of the study, the metal oxide coatings, alumina from aluminum acetylacetonate, alumina from aluminum trisecondary butoxide, zirconia from zirconium acetylacetonate, tantalum oxide from tantalum pentaethoxide and the metal coating, platinum from platinum acetylacetonate were deposited by MOCVD on AISI304. The chemical composition and the surface acidity of the coatings were characterized by x-ray photoelectron spectroscopy. The morphology of the coatings was characterized by electron microscopy. The coated substrates were tested in the presence of heated Jet-A in a flow reactor to evaluate their effectiveness in inhibiting the solid deposit formation. All coatings inhibited the formation of metal sulfides and the carbonaceous solid deposits formed by metal catalysis. The coatings also delayed the accumulation of solid carbonaceous deposits. In particular, it has been confirmed that the surface acidity of the metal oxide coatings affects the formation of carbonaceous deposits. Bimolecular addition reactions promoted by the Bronsted acid sites appear to lead to the formation of carbonaceous solid deposits depending on the surface acidity of the coatings. In the last part of the study, the residual carbon was incorporated in the zirconia coating by deposition with and without oxygen. As carbon surface is less active towards coke deposition, presence of residual carbon in the coating was expected to reduce its activity towards carbon deposition. The residual carbon in the coating was characterized by Raman spectroscopy and thermal analysis. However, it has been observed that residual carbon in the coating beyond a certain concentration compromises the integrity of the coating during the process of cooling the substrate from deposition temperature to room temperature. It has been found that residual carbon in the zirconia coating does not appear to affect the activity of the surface towards carbon deposition.

  2. Hydrophilic/hydrophobic features of TiO2 nanoparticles as a function of crystal phase, surface area and coating, in relation to their potential toxicity in peripheral nervous system.

    PubMed

    Bolis, V; Busco, C; Ciarletta, M; Distasi, C; Erriquez, J; Fenoglio, I; Livraghi, S; Morel, S

    2012-03-01

    The hydrophilic/hydrophobic properties of a variety of commercial TiO(2) nanoparticles (NP), to be employed as inorganic filters in sunscreen lotions, were investigated both as such (dry powders) and dispersed in aqueous media. Water uptake and the related interaction energy have been determined by means of adsorption microcalorimetry of H(2)O vapor, whereas dispersion features in aqueous solutions were investigated by dynamic light scattering and electrokinetic measurements (zeta potential). The optimized dispersions in cell culture medium were employed to assess the possible in vitro neuro-toxicological effect on dorsal root ganglion (DRG) cells upon exposure to TiO(2)-NP, as a function of crystal phase, surface area and coating. All investigated materials, with the only exception of the uncoated rutile, were found to induce apoptosis on DRG cells; the inorganic/organic surface coating was found not to protect against the TiO(2)-induced apoptosis. The risk profile for DRG cells, which varies for the uncoated samples in the same sequence as the photo-catalytic activity of the different polymorphs: anatase-rutile>anatase>rutile, was found not to be correlated with the surface hydrophilicity of the uncoated/coated specimens. Aggregates/agglomerates hydrodynamic diameter was comprised in the ~200-400 nm range, compatible with the internalization within DRG cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Treatment of subgingival implant surfaces with Teflon-coated sonic and ultrasonic scaler tips and various implant curettes. An in vitro study.

    PubMed

    Rühling, A; Kocher, T; Kreusch, J; Plagmann, H C

    1994-03-01

    Removal of plaque and calculus by means of sonic and ultrasonic scalers causes considerable damage to implants. With a view to avoiding the aggressive effects of these instruments, an experimental study was carried out for which conventional sonic and ultrasonic scalers were coated with Teflon. The effects of these instruments on implant surfaces was then compared with that of plastic and metal implant curettes. Stereo-microscopy, scanning electron microscopy and surface profilometry were used to detect and record damage to implant surfaces and changes in surface roughness. Generation and propagation of heat in subgingival simulation of use of sonic and ultrasonic scalers were also recorded by means of temperature measurements at the implant surface. The results revealed that no discernible damage was caused by Teflon-coated sonic and ultrasonic scalers or implant curettes made of plastic on smooth titanium surfaces. Instrument material residues were found on rough implant surfaces. It was not the intention of this study to provide an analysis of the prerequisites for the cleaning of rough implant surfaces, but rather to determine what type of damage is to be expected when contact is made with smooth and rough surfaces unintentionally. Temperature measurements during the subgingival use of sonic and ultrasonic scalers indicated satisfactory functioning of the cooling system. Coating of sonic and ultrasonic scaler tips with Teflon thus facilitates the use of high-frequency instruments to achieve professional cleaning of implants.

  4. Functionalization of Ti99.2 substrates surface by hybrid treatment investigated with spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Jasinski, Jaroslaw Jan; Lubas, Malgorzata; Kurpaska, Lukasz; Napadlek, Wojciech; Sitarz, Maciej

    2018-07-01

    The article presents spectroscopic investigation of Ti 99.2 based functional substrates formed by hybrid oxidation process. Surface treatments were performed by combining methods of fluidized bed atmospheric diffusion treatment (FADT) with physical vapor deposition (PVD) - magnetron sputtering and laser surface texturing (LST) treatments. The processes were implemented to form a titanium diffusive layer saturated with oxygen in the substrate and a tight homogeneous oxide coating on Ti surface deposited with magnetron sputtering or laser texturing technique. The hybrid treatment was realized in Al2O3 fluidized bed reactor with air atmosphere, at 640 °C for 8 h and 12 h. At the same time, magnetron sputtering with the use of TiO2 target at a pressure of 3 × 102 mbar and laser surface texturing treatment with Nd:YAG λ = 1064 nm was performed. In order to investigate the effects of hybrid oxidation, microscopic (AFM, CLSM, SEM/SEM-EDX), spectroscopic (RS) and X-ray investigations (GID-XRD) were performed. Applied hybrid technique made possible to combine the effects of the generated layers and to reduce the stresses in the area of the PVD coating/oxidized Ti substrate interface. Furthermore, Raman spectroscopy results obtained at oxide layers manufactured with different variants of oxidation allowed detailed analysis of the created oxides. The coatings have shown structure with a Tiα(O) diffusion zone, a TiO2 rutile and anatase oxide zone deposited and textured on the substrate. Phase composition and morphology of these oxides is essential for the osseointegration process i.e. intensity of hydroxyapatite growing on the implant surface. Performed processes influenced the surface roughness parameter and cause the increase of substrate functional properties, which are important for biomedical applications.

  5. Photonic crystals on copolymer film for label-free detection of DNA hybridization.

    PubMed

    Su, Han; Cheng, Xin R; Endo, Tatsuro; Kerman, Kagan

    2018-04-30

    The presence of a single-nucleotide polymorphism in Apolipoprotein E4 gene is implicated with the increased risk of developing Alzheimer's disease (AD). In this study, detection of AD-related DNA oligonucleotide sequence associated with Apolipoprotein E4 gene sequence was achieved using localized-surface plasmon resonance (LSPR) on 2D-Photonic crystal (2D-PC) and Au-coated 2D-PC surfaces. 2D-PC surfaces were fabricated on a flexible copolymer film using nano-imprint lithography (NIL). The film surface was then coated with a dual-functionalized polymer to react with surface immobilized DNA probe. DNA hybridization was detected by monitoring the optical responses of either a Fresnel decrease in reflectance on 2D-PC surfaces or an increase in LSPR on Au-coated 2D-PC surfaces. The change in response due to DNA hybridization on the modified surfaces was also investigated using mismatched and non-complementary oligonucleotides sequences. The proof-of-concept results are promising towards the development of 2D-PC on copolymer film surfaces as miniaturized and wearable biosensors for various diagnostic and defense applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Gelatin Nano-coating for Inhibiting Surface Crystallization of Amorphous Drugs.

    PubMed

    Teerakapibal, Rattavut; Gui, Yue; Yu, Lian

    2018-01-05

    Inhibit the fast surface crystallization of amorphous drugs with gelatin nano-coatings. The free surface of amorphous films of indomethacin or nifedipine was coated by a gelatin solution (type A or B) and dried. The coating's effect on surface crystallization was evaluated. Coating thickness was estimated from mass change after coating. For indomethacin (weak acid, pK a  = 4.5), a gelatin coating of either type deposited at pH 5 and 10 inhibited its fast surface crystal growth. The coating thickness was 20 ± 10 nm. A gelatin coating deposited at pH 3, however, provided no protective effect. These results suggest that an effective gelatin coating does not require that the drug and the polymer have opposite charges. The ineffective pH 3 coating might reflect the poor wetting of indomethacin's neutral, hydrophobic surface by the coating solution. For nifedipine (weak base, pK a  = 2.6), a gelatin coating of either type deposited at pH 5 inhibited its fast surface crystal growth. Gelatin nano-coatings can be conveniently applied to amorphous drugs from solution to inhibit fast surface crystallization. Unlike strong polyelectrolyte coatings, a protective gelatin coating does not require strict pairing of opposite charges. This could make gelatin coating a versatile, pharmaceutically acceptable coating for stabilizing amorphous drugs.

  7. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    NASA Astrophysics Data System (ADS)

    Hsiao, Chaio-Ru; Lin, Cheng-Wei; Chou, Chia-Man; Chung, Chi-Jen; He, Ju-Liang

    2015-08-01

    This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF4) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF4 (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF4 (fH) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiOx nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The sbnd CF functional group, sbnd CF2 bonding, and SiOx were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply that the pp-HC coating can potentially prevent the formation of thrombi and provide an alternative means of modifying the surfaces of blood-contacting biomaterials.

  8. Textile Functionalization and Its Effects on the Release of Silver Nanoparticles into Artificial Sweat.

    PubMed

    Wagener, Sandra; Dommershausen, Nils; Jungnickel, Harald; Laux, Peter; Mitrano, Denise; Nowack, Bernd; Schneider, Gregor; Luch, Andreas

    2016-06-07

    This study addresses the release of total silver (Ag) and silver nanoparticles (Ag-NPs) from textiles into artificial sweat, particularly considering the functionalization technology used in textile finishing. Migration experiments were conducted for four commercially available textiles and for six laboratory-prepared textiles. Two among these lab-prepared textiles represent materials in which Ag-NPs were embedded within the textile fibers (composites), whereas the other lab-prepared textiles contain Ag particles on the respective fiber surfaces (coatings). The results indicate a smaller release of total Ag from composites in comparison to surface-coated textiles. The particulate fraction determined within the artificial sweat was negligible for most textiles, meaning that the majority of the released Ag is present as dissolved Ag. It is also relevant to note that nanotextiles do not release more particulate Ag than conventional Ag textiles. The results rather indicate that the functionalization type is the most important parameter affecting the migration. Furthermore, after measuring different Ag-NP types in their pristine form with inductively coupled plasma mass spectrometry in the single particle mode, there is evidence that particle modifications, like surface coating, may also influence the dissolution behavior of the Ag-NPs in the sweat solutions. These factors are important when discussing the likelihood of consumer exposure.

  9. Nucleation and growth of hydroxyapatite on arc-deposited TiO2 surfaces studied by quartz crystal microbalance with dissipation

    NASA Astrophysics Data System (ADS)

    Lilja, Mirjam; Butt, Umer; Shen, Zhijian; Bjöörn, Dorota

    2013-11-01

    Understanding of nucleation and growth kinetics of biomimetically deposited hydroxyapatite (HA) on crystalline TiO2 surfaces is important with respect to the application and performance of HA as functional implant coatings. Arc-evaporation was used to deposit TiO2 coatings dominated by anatase phase, rutile phase or their mixtures. Subsequent formation of HA from phosphate buffered saline solution (PBS) was investigated in real-time using in situ quartz crystal microbalance with dissipation technique (QCM-D). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to characterize the presence, morphology and crystal structure of TiO2 coatings and the formed HA. Increasing temperature of the PBS, increasing flow rate and applying a higher ion concentration in solution were found to accelerate HA nucleation process and hence affect growth kinetics. Lower PBS temperature resulted in the formation of HA coatings with flake-like morphology and increasing HA porosity. All TiO2 coatings under study enabled HA formation at body temperature, while in contrast Ti reference surfaces only supported HA nucleation and growth at elevated temperatures. QCM-D technique is a powerful tool for studying the impact of process parameters during biomimetic coating deposition on coating structure evolution in real time and provides valuable information for understanding, optimizing as well as tailoring the biomimetic HA growth processes.

  10. Tailoring Interfacial Properties by Controlling Carbon Nanotube Coating Thickness on Glass Fibers Using Electrophoretic Deposition.

    PubMed

    Tamrakar, Sandeep; An, Qi; Thostenson, Erik T; Rider, Andrew N; Haque, Bazle Z Gama; Gillespie, John W

    2016-01-20

    The electrophoretic deposition (EPD) method was used to deposit polyethylenimine (PEI) functionalized multiwall carbon nanotube (CNT) films onto the surface of individual S-2 glass fibers. By varying the processing parameters of EPD following Hamaker's equation, the thickness of the CNT film was controlled over a wide range from 200 nm to 2 μm. The films exhibited low electrical resistance, providing evidence of coating uniformity and consolidation. The effect of the CNT coating on fiber matrix interfacial properties was investigated through microdroplet experiments. Changes in interfacial properties due to application of CNT coatings onto the fiber surface with and without a CNT-modified matrix were studied. A glass fiber with a 2 μm thick CNT coating and the unmodified epoxy matrix showed the highest increase (58%) in interfacial shear strength (IFSS) compared to the baseline. The increase in the IFSS was proportional to CNT film thickness. Failure analysis of the microdroplet specimens indicated higher IFSS was related to fracture morphologies with higher levels of surface roughness. EPD enables the thickness of the CNT coating to be adjusted, facilitating control of fiber/matrix interfacial resistivity. The electrical sensitivity provides the opportunity to fabricate a new class of sizing with tailored interfacial properties and the ability to detect damage initiation.

  11. A novel surface modification approach for protein and cell microarrays

    NASA Astrophysics Data System (ADS)

    Kurkuri, Mahaveer D.; Driever, Chantelle; Thissen, Helmut W.; Voelcker, Nicholas H.

    2007-01-01

    Tissue engineering and stem cell technologies have led to a rapidly increasing interest in the control of the behavior of mammalian cells growing on tissue culture substrates. Multifunctional polymer coatings can assist research in this area in many ways, for example, by providing low non-specific protein adsorption properties and reactive functional groups at the surface. The latter can be used for immobilization of specific biological factors that influence cell behavior. In this study, glass slides were coated with copolymers of glycidyl methacrylate (GMA) and poly(ethylene glycol) methacrylate (PEGMA). The coatings were prepared by three different methods based on dip and spin coating as well as polymer grafting procedures. Coatings were characterized by X-ray photoelectron spectroscopy, surface sensitive infrared spectroscopy, ellipsometry and contact angle measurements. A fluorescently labelled protein was deposited onto reactive coatings using a contact microarrayer. Printing of a model protein (fluorescein labeled bovine serum albumin) was performed at different protein concentrations, pH, temperature, humidity and using different micropins. The arraying of proteins was studied with a microarray scanner. Arrays printed at a protein concentration above 50 μg/mL prepared in pH 5 phosphate buffer at 10°C and 65% relative humidity gave the most favourable results in terms of the homogeneity of the printed spots and the fluorescence intensity.

  12. Highly Stretchable Superhydrophobic Composite Coating Based on Self-Adaptive Deformation of Hierarchical Structures.

    PubMed

    Hu, Xin; Tang, Changyu; He, Zhoukun; Shao, Hong; Xu, Keqin; Mei, Jun; Lau, Woon-Ming

    2017-05-01

    With the rapid development of stretchable electronics, functional textiles, and flexible sensors, water-proof protection materials are required to be built on various highly flexible substrates. However, maintaining the antiwetting of superhydrophobic surface under stretching is still a big challenge since the hierarchical structures at hybridized micro-nanoscales are easily damaged following large deformation of the substrates. This study reports a highly stretchable and mechanically stable superhydrophobic surface prepared by a facile spray coating of carbon black/polybutadiene elastomeric composite on a rubber substrate followed by thermal curing. The resulting composite coating can maintain its superhydrophobic property (water contact angle ≈170° and sliding angle <4°) at an extremely large stretching strain of up to 1000% and can withstand 1000 stretching-releasing cycles without losing its superhydrophobic property. Furthermore, the experimental observation and modeling analysis reveal that the stable superhydrophobic properties of the composite coating are attributed to the unique self-adaptive deformation ability of 3D hierarchical roughness of the composite coating, which delays the Cassie-Wenzel transition of surface wetting. In addition, it is first observed that the damaged coating can automatically recover its superhydrophobicity via a simple stretching treatment without incorporating additional hydrophobic materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Zaldana, Antonio R.; Radil, Kevin C.

    2002-01-01

    Foil air bearings are self-acting hydrodynamic bearings which rely upon solid lubricants to reduce friction and minimize wear during sliding which occurs at start-up and shut-down when surface speeds are too low to allow the formation of a hydrodynamic air film. This solid lubrication is typically accomplished by coating the non-moving foil surface with a thin, soft polymeric film. The following paper introduces a systems approach in which the solid lubrication is provided by a combination of self lubricating shaft coatings coupled with various wear resistant and lubricating foil coatings. The use of multiple materials, each providing different functions is modeled after oil-lubricated hydrodynamic sleeve bearing technology which utilizes various coatings and surface treatments in conjunction with oil lubricants to achieve optimum performance. In this study, room temperature load capacity tests are performed on journal foil air bearings operating at 14,000 rpm. Different shaft and foil coating technologies such as plasma sprayed composites, ceramic, polymer and inorganic lubricant coatings are evaluated as foil bearing lubricants. The results indicate that bearing performance is improved through the individual use of the lubricants and treatments tested. Further, combining several solid lubricants together yielded synergistically better results than any material alone.

  14. A novel hydroxyl epoxy phosphate monomer enhancing the anticorrosive performance of waterborne Graphene/Epoxy coatings

    NASA Astrophysics Data System (ADS)

    Ding, Jiheng; Rahman, Obaid ur; Peng, Wanjun; Dou, Huimin; Yu, Haibin

    2018-01-01

    Herein, we report the synthesis of a novel hydroxyl epoxy phosphate monomer (PGHEP) as an efficient dispersant for graphene to enhance the compatibility of the graphene in epoxy resin. Raman spectroscopy, Ultraviolet-visible spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS) studies were confirmed the π-π interactions between PGHEP and graphene. Well-dispersed states of PGHEP functionalized graphene (G) sheets in water were analyzed by transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Further, microstructure of prepared G/waterborne epoxy coatings containing 0.5-1.0 wt.% of PGHEP functionalized G sheets were also observed with the help of SEM and TEM. The PGHEP functionalized G sheets dispersed composite coatings displayed enhanced corrosion resistance compared with pure epoxy resin, these coatings have higher contact angle, lower water absorption as evident from the results of electrochemical impedance spectroscopy (EIS) and salt spray tests. The superior corrosion protection performances of G/epoxy coatings were mainly attributed to the formed passive film from uniformly dispersed PGHEP functionalized G sheets which act as physical barrier on the steel surface. Therefore, this work provides a novel bio-based efficient dispersant for G sheets and an important method for preparing G/waterborne epoxy coatings with superior corrosion resistance properties.

  15. Functionalised particles using dry powder coating in pharmaceutical drug delivery: promises and challenges.

    PubMed

    Dahmash, Eman Z; Mohammed, Afzal R

    2015-01-01

    Production of functionalised particles using dry powder coating is a one-step, environmentally friendly process that paves the way for the development of particles with targeted properties and diverse functionalities. Applying the first principles in physical science for powders, fine guest particles can be homogeneously dispersed over the surface of larger host particles to develop functionalised particles. Multiple functionalities can be modified including: flowability, dispersibility, fluidisation, homogeneity, content uniformity and dissolution profile. The current publication seeks to understand the fundamental underpinning principles and science governing dry coating process, evaluate key technologies developed to produce functionalised particles along with outlining their advantages, limitations and applications and discusses in detail the resultant functionalities and their applications. Dry particle coating is a promising solvent-free manufacturing technology to produce particles with targeted functionalities. Progress within this area requires the development of continuous processing devices that can overcome challenges encountered with current technologies such as heat generation and particle attrition. Growth within this field requires extensive research to further understand the impact of process design and material properties on resultant functionalities.

  16. Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants.

    PubMed

    Memarzadeh, Kaveh; Sharili, Amir S; Huang, Jie; Rawlinson, Simon C F; Allaker, Robert P

    2015-03-01

    Orthopedic and dental implants are prone to infection. In this study, we describe a novel system using zinc oxide nanoparticles (nZnO) as a coating material to inhibit bacterial adhesion and promote osteoblast growth. Electrohydrodynamic atomisation (EHDA) was employed to deposit mixtures of nZnO and nanohydroxyapatite (nHA) onto the surface of glass substrates. Nano-coated substrates were exposed to Staphylococcus aureus suspended in buffered saline or bovine serum to determine antimicrobial activity. Our results indicate that 100% nZnO and 75% nZnO/25% nHA composite-coated substrates have significant antimicrobial activity. Furthermore, osteoblast function was explored by exposing cells to nZnO. UMR-106 cells exposed to nZnO supernatants showed minimal toxicity. Similarly, MG-63 cells cultured on nZnO substrates did not show release of TNF-α and IL-6 cytokines. These results were reinforced by both proliferation and differentiation studies which revealed that a substrate coated with exclusively nZnO is more efficient than composite surface coatings. Finally, electron and light microscopy, together with immunofluorescence staining, revealed that all cell types tested, including human mesenchymal cell (hMSC), were able to maintain normal cell morphology when adhered onto the surface of the nano-coated substrates. Collectively, these findings indicate that nZnO can, on its own, provide an optimal coating for future bone implants that are both antimicrobial and biocompatible. © 2014 Wiley Periodicals, Inc.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yang; Piper, Daniela M.; Gu, Meng

    Surface modification of silicon nanoparticle via molecular layer deposition (MLD) has been recently proved to be an effective way for dramatically enhancing the cyclic performance in lithium ion batteries. However, the fundamental mechanism as how this thin layer of coating function is not known, which is even complicated by the inevitable presence of native oxide of several nanometers on the silicon nanoparticle. Using in-situ TEM, we probed in detail the structural and chemical evolution of both uncoated and coated silicon particles upon cyclic lithiation/delithation. We discovered that upon initial lithiation, the native oxide layer converts to crystalline Li2O islands, whichmore » essentially increases the impedance on the particle, resulting in ineffective lithiation/delithiation, and therefore low coulombic efficiency. In contrast, the alucone MLD coated particles show extremely fast, thorough and highly reversible lithiation behaviors, which are clarified to be associated with the mechanical flexibility and fast Li+/e- conductivity of the alucone coating. Surprisingly, the alucone MLD coating process chemically changes the silicon surface, essentially removing the native oxide layer and therefore mitigates side reaction and detrimental effects of the native oxide. This study provides a vivid picture of how the MLD coating works to enhance the coulombic efficiency and preserve capacity and clarifies the role of the native oxide on silicon nanoparticles during cyclic lithiation and delithiation. More broadly, this work also demonstrated that the effect of the subtle chemical modification of the surface during the coating process may be of equal importance as the coating layer itself.« less

  18. Designing a biocidal reverse osmosis membrane coating: Synthesis and biofouling properties

    DOE PAGES

    Hibbs, Michael R.; McGrath, Lucas K.; Kang, Seoktae; ...

    2015-12-04

    In this study, a biocidal coating was developed in order to reduce biofouling on a reverse osmosis (RO) membrane using a quaternary ammonium (QA) functionalized polymer. The synthesis of a series of polysulfone (PS) ionomers with QA groups is described, and a method for spraying these QA ionomers as an alcoholic solution, which dried into water insoluble coatings. Contact angle and streaming potential were used to analyze the coating's hydrophilicity and surface charge. Both PS-QA1 and the commercial RO membrane had an apparent contact angle of 68° that increased to 126° for PS-QA12 corresponding to alkyl chain length. A negativelymore » charged particle-probe was used to measure coated and uncoated RO membrane interaction forces. Measured interaction forces correlated strongly with the length of alkyl chains or hydrophobicity of the coated surfaces. Uncoated RO membranes and ones coated with PS-QA were exposed to suspensions of Escherichia coli cells. All four PS-QA coatings showed significant biotoxicity and killed 100% of the E. coli cells, but uncoated RO membranes had metabolically active biofilms. However, coatings tested in a RO crossflow system showed a flux reduction that is attributed to mass transfer resistance due to excessively thick films.« less

  19. Designing a biocidal reverse osmosis membrane coating: Synthesis and biofouling properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hibbs, Michael R.; McGrath, Lucas K.; Kang, Seoktae

    In this study, a biocidal coating was developed in order to reduce biofouling on a reverse osmosis (RO) membrane using a quaternary ammonium (QA) functionalized polymer. The synthesis of a series of polysulfone (PS) ionomers with QA groups is described, and a method for spraying these QA ionomers as an alcoholic solution, which dried into water insoluble coatings. Contact angle and streaming potential were used to analyze the coating's hydrophilicity and surface charge. Both PS-QA1 and the commercial RO membrane had an apparent contact angle of 68° that increased to 126° for PS-QA12 corresponding to alkyl chain length. A negativelymore » charged particle-probe was used to measure coated and uncoated RO membrane interaction forces. Measured interaction forces correlated strongly with the length of alkyl chains or hydrophobicity of the coated surfaces. Uncoated RO membranes and ones coated with PS-QA were exposed to suspensions of Escherichia coli cells. All four PS-QA coatings showed significant biotoxicity and killed 100% of the E. coli cells, but uncoated RO membranes had metabolically active biofilms. However, coatings tested in a RO crossflow system showed a flux reduction that is attributed to mass transfer resistance due to excessively thick films.« less

  20. Experimental and numerical investigation on cladding of corrosion-erosion resistant materials by a high power direct diode laser

    NASA Astrophysics Data System (ADS)

    Farahmand, Parisa

    In oil and gas industry, soil particles, crude oil, natural gas, particle-laden liquids, and seawater can carry various highly aggressive elements, which accelerate the material degradation of component surfaces by combination of slurry erosion, corrosion, and wear mechanisms. This material degradation results into the loss of mechanical properties such as strength, ductility, and impact strength; leading to detachment, delamination, cracking, and ultimately premature failure of components. Since the failure of high valued equipment needs considerable cost and time to be repaired or replaced, minimizing the tribological failure of equipment under aggressive environment has been gaining increased interest. It is widely recognized that effective management of degradation mechanisms will contribute towards the optimization of maintenance, monitoring, and inspection costs. The hardfacing techniques have been widely used to enhance the resistance of surfaces against degradation mechanisms. Applying a surface coating improves wear and corrosion resistance and ensures reliability and long-term performance of coated parts. A protective layer or barrier on the components avoids the direct mechanical and chemical contacts of tool surfaces with process media and will reduce the material loss and ultimately its failure. Laser cladding as an advanced hardfacing technique has been widely used for industrial applications in order to develop a protective coating with desired material properties. During the laser cladding, coating material is fused into the base material by means of a laser beam in order to rebuild a damaged part's surface or to enhance its surface function. In the hardfacing techniques such as atmospheric plasma spraying (APS), high velocity oxygen-fuel (HVOF), and laser cladding, mixing of coating materials with underneath surface has to be minimized in order to utilize the properties of the coating material most effectively. In this regard, laser cladding offers advantages due to creating coating layers with superior properties in terms of purity, homogeneity, low dilution, hardness, bonding, and microstructure. In the development of modern materials for hardfacing applications, the functionality is often improved by combining materials with different properties into composites. Metal Matrix Composite (MMC) coating is a composite material with two constituent parts, i.e., matrix and the reinforcement. This class of composites are addressing improved mechanical properties such as stiffness, strength, toughness, and tribological and chemical resistance. Fabrication of MMCs is to achieve a combination of properties not achievable by any of the materials acting alone. MMCs have attracted significant attention for decades due to their combination of wear-resistivity, corrosion-resistivity, thermal, electrical and magnetic properties. Presently, there is a strong emphasis on the development of advanced functional coatings for corrosion, erosion, and wear protection for different industrial applications. In this research, a laser cladding system equipped with a high power direct diode laser associated with gas driven metal powder delivery system was used to develop advanced MMC coatings. The high power direct diode laser used in this study offers wider beam spot, shorter wavelength and uniform power distribution. These properties make the cladding set-up ideal for coating due to fewer cladding tracks, lower operation cost, higher laser absorption, and improved coating qualities. In order to prevent crack propagation, porosity, and uniform dispersion of carbides in MMC coating, cladding procedure was assisted by an induction heater as a second heat source. The developed defect free MMC coatings were combined with nano-size particles of WC, rare earth (RE) element (La2O3), and Mo as a refractory metal to enhance mechanical properties, chemical composition, and subsequently improve the tribological performance of the coatings. The resistance of developed MMC coatings were examined under highly accelerated slurry erosion, corrosion, and wear as the most frequently encountered failure modes of mechanical components. The microstructure, mechanical properties, and the level of induced residual stress on the coating after cladding procedure are closely related to cladding process variables. Study about the effect of processing parameters on clad quality and experienced thermal history and thermally-induced stress evolution requires both theoretical and experimental understanding of the associated physical phenomena. Numerical modeling offers a cost-efficient way to better understand the related complex physics in laser cladding process. It helps to reveal the effects and significance of each processing parameters on the desired characteristics of clad parts. Successful numerical simulation can provide unique insight into complex laser cladding process, efficiently calculate the complex procedure, and help to obtain coating parts with quality integrity. Therefore, current study develops a three-dimensional (3D) transient and uncoupled thermo-elastic-plastic model to study thermal history, molten pool evolution, thermally induced residual stress, and the effect of utilizing an induction heater as a second heat source on the mechanical properties and microstructural properties of final cladded coating.

  1. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    NASA Astrophysics Data System (ADS)

    Andolina, Vincent L.

    The scientific hypothesis of this work is that modulation of the properties of hard materials to exhibit abrasion-reducing and low-energy surfaces will extend the functional lifetimes of elastomeric seals pressed against them in abrasive underwater systems. The initial motivation of this work was to correct a problem noted in the leaking of seals at major hydropower generating facilities subject to fouling by abrasive zebra mussel shells and extensive corrosion. Similar biofouling-influenced problems can develop at seals in medical devices and appliances from regulators in anesthetic machines and SCUBA diving oxygen supply units to autoclave door seals, injection syringe gaskets, medical pumps, drug delivery components, and feeding devices, as well as in food handling equipment like pasteurizers and transfer lines. Maritime and many other heavy industrial seal interfaces could also benefit from this coating system. Little prior work has been done to elucidate the relationship of seal plate surface properties to the friction and wear of elastomeric seals during sliding contacts of these articulating materials, or to examine the secondary influence of mineralized debris within the contacting interfaces. This investigation utilized the seal materials relevant to the hydropower application---neoprene elastomer against carbon steel---with and without the application of a silicone-epoxy coating (WearlonRTM 2020.98) selected for its wear-resistance, hydrophobicity, and "easy-release" capabilities against biological fouling debris present in actual field use. Analytical techniques applied to these materials before and after wear-producing processes included comprehensive Contact Angle measurements for Critical Surface Tension (CA-CST) determination, Scanning Electron Microscopic inspections, together with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF) measurements for determination of surface texture and inorganic composition, Multiple Attenuated Internal Reflection (MAIR-IR) and Microscopic Infrared Spectroscopy for organic surface compositional details, light microscopy for wear area quantification, and profilometry for surface roughness estimation and wear depth quantification. Pin-on-disc dynamic Coefficient of Friction (CoF) measurements provided data relevant to forecasts of seal integrity in dry, wet and biofouling-influenced sliding contact. Actual wear of neoprene seal material against uncoated and coated steel surfaces, wet and dry, was monitored after both rotary and linear cyclic wear testing, demonstrating significant reductions in elastomer wear areas and depths (and resultant volumes) when the coating was present. Coating the steel eliminated a 270% increase in neoprene surface area wear and an 11-fold increase in seal abrasive volume loss associated with underwater rusting in rotary experiments. Linear testing results confirm coating efficacy by reducing wear area in both loading regimes by about half. No coating delamination was observed, apparently due to a differential distribution of silicone and epoxy ingredients at the air-exposed vs. steel-bonded interfaces demonstrated by IR and EDS methods. Frictional testing revealed higher Coefficients of Friction (CoF) associated with the low-speed sliding of Neoprene over coated rather than uncoated steel surfaces in a wet environment, indicating better potential seal adhesion between the hydrophobic elastomer and coating than between the elastomer and intrinsically hydrophilic uncoated steel. When zebra mussel biofouling debris was present in the articulating joints, CoF was reduced as a result of a water channel path produced between the articulating surfaces by the retained biological matter. Easier release of the biofouling from the low-CST coated surfaces restored the seal integrity more rapidly with further water rinsing. Rapid sliding diminished these biofouling-related differences, but revealed a significant advantage in reducing the CoF of the elastomer-on-coating couples to less than 50% of the elastomer-on-steel couples in all conditions. These consolidated results indicate that general improvements in maintenance of seal integrity and functional lifetimes for other sliding joints exposed to potentially abrasive biofouling media can be obtained by coating the more-rigid seal-plate surfaces with low-CST, hydrophobic, wear-resistant materials such as the silicone-epoxy system characterized here.

  2. In-situ phosphatizing coatings for aerospace, OEM and coil coating applications

    NASA Astrophysics Data System (ADS)

    Neuder, Heather Aurelia

    The current metal coating process is a multi-step process. The surface is cleaned, primered, dried and then painted. The process is labor intensive and time consuming. The wash primer is a conversion coating, which prepares metal surface for better paint adhesion. The wash primers currently used often contain hexavalent chromium (Cr6+), which seals the pores in the conversion coating. The presence of hexavalent chromium, a known carcinogen, and volatile organic compounds (VOCs) make waste disposal expensive and pose dangers to workers. The novel technique of in-situ phosphatizing coating (ISPC) is a single-step, chrome-free alternative to the present coating practice. Formulation of an ISPC involves predispersal of an in-situ phosphatizing reagent (ISPR) into the paint system to form a stable formulation. The ISPR reacts with the metal surface and bonds with the paint film simultaneously, which eliminates the need for a conversion coating. In acid catalyzed paint systems, such as polyester-melamine paints, the ISPR also catalyzes cross-linking reactions between the melamine and the polyester polyols. ISPCs are formulated using commercially available coating systems including: polyester-melamine, two-component epoxy, polyurethane and high-hydroxy content polyester-melamine coil coating. The ISPCs are applied to metal substrates and their performances are evaluated using electrochemical, thermal and standard American Society for Testing and Materials (ASTM) testing methods. In addition, ISPCs were designed and formulated based on: (1) phosphate chemistry, (2) polymer chemistry, (3) sol-gel chemistry, and (4) the ion-exchange principle. Organo-functionalized silanes, which serve as excellent coupling and dispersion agents, are incorporated into the optimized ISPC formula and evaluated using standard ASTM testing methods and electrochemical spectroscopy. Also, an ion-exchange pigment, which leads to better adhesion by forming a mixed metal silicate surface, is dispersed into an ISPC and the performance of the final coating formulation is evaluated. Successful ISPCs formulated for multiple coating systems exhibited excellent adhesion, hardness and gloss, which supports their suitability as a chrome-free, single-step alternative for aerospace, original equipment manufacturing (OEM) and coil coating applications.

  3. pH Sensitive Microcapsules for Delivery of Corrosion Inhibitors

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Calle, Luz M.

    2006-01-01

    A considerable number of corrosion problems can be solved by coatings. However, even the best protective coatings can fail by allowing the slow diffusion of oxygen and moisture to the metal surface. Corrosion accelerates when a coating delaminates. Often, the problems start when microscopic nicks or pits on the surface develop during manufacturing or through wear and tear. This problem can be solved by the incorporation of a self-healing function into the coating. Several new concepts are currently under development to incorporate this function into a coating. Conductive polymers, nanoparticles, and microcapsules are used to release corrosion-inhibiting ions at a defect site. The objective of this investigation is to develop a smart coating for the early detection and inhibition of corrosion. The dual function of this new smart coating system is performed by pH-triggered release microcapsules. The microcapsules can be used to deliver healing agents to terminate the corrosion process at its early stage or as corrosion indicators by releasing dyes at the localized corrosion sites. The dyes can be color dyes or fluorescent dyes, with or without pH sensitivity. Microcapsules were formed through the interfacial polymerization process. The average size of the microcapsules can be adjusted from 1 to 100 micron by adjusting the emulsion formula and the microcapsule forming conditions. A typical microcapsule size is around 10 microns with a narrow size distribution. The pH sensitivity of the microcapsule can also be controlled by adjusting the emulsion formula and the polymerization reaction time. Both corrosion indicator (pH indicator) and corrosion inhibitor containing microcapsules were formed and incorporated into paint systems. Test panels of selected steels and aluminum alloys were painted using these paints. Testing of compatibility between the microcapsule system and different paint systems are in progress. Initial experiments with the microcapsule containing paint show visible color changes at induced corrosion sites and improvement of corrosion protection. Further investigation of the performance of the coating using electrochemical techniques and long term exposure are currently underway.

  4. CuSO4/H2O2-Triggered Polydopamine/Poly(sulfobetaine methacrylate) Coatings for Antifouling Membrane Surfaces.

    PubMed

    Zhang, Chao; Li, Hao-Nan; Du, Yong; Ma, Meng-Qi; Xu, Zhi-Kang

    2017-02-07

    Mussel-inspired polydopamine (PDA) coatings have been broadly exploited for constructing functional membrane surfaces. One-step codeposition of PDA with antifouling polymers, especially zwitterionic polymers, has been regarded as a promising strategy for fabricating antifouling membrane surfaces. However, one challenge is that the codeposition is usually a slow process over 10 h or even several days. Herein, we report that CuSO 4 /H 2 O 2 is able to notably accelerate the codeposition process of PDA with poly(sulfobetaine methacrylate) (PSBMA). In our case, PSBMA is facilely anchored to the polypropylene microporous membrane (PPMM) surfaces within 1 h with the assistance of PDA because of its strong interfacial adhesion. The PDA/PSBMA-coated PPMMs show excellent surface hydrophilicity, high water permeation flux (7506 ± 528 L/m 2 ·h at 0.1 MPa), and an outstanding antifouling property. Moreover, the antifouling property is maintained after the membranes are treated with acid and alkali solutions as well as organic solvents. To recap, it provides a facile, universal, and time-saving strategy for exploiting high-efficiency and durable antifouling membrane surfaces.

  5. Interfaces - Weak Links, Yet Great Opportunities

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Dimofte, Florin; Chupp, Raymond E.; Steinetz, Bruce M.

    2011-01-01

    Inadequate turbomachine interface design can rapidly degrade system performance, yet provide great opportunity for improvements. Engineered coatings of seals and bearing interfaces are major issues in the operational life of power systems. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining component life. Interface coatings, like lubricants, are sacrificial for the benefit of the component. Bearing and sealing surfaces are routinely protected by tribologically paired coatings such as silicon diamond like coatings (SiDLC) in combination with an oil lubricated wave bearing that prolongs bearing operational life. Likewise, of several methods used or researched for detecting interface failures, dopants within coatings show failures in functionally graded ceramic coatings. The Bozzolo-Ferrante-Smith (BFS) materials models and quantum mechanical tools, employed in interface design, are discussed.

  6. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate.

    PubMed

    Shi, Y Y; Li, M; Liu, Q; Jia, Z J; Xu, X C; Cheng, Y; Zheng, Y F

    2016-03-01

    Electrophoretic deposition (EPD) is a facile and feasible technique to prepare functional nanocomposite coatings for application in orthopedic-related implants. In this work, a ternary graphene oxide-chitosan-hydroxyapatite (GO-CS-HA) composite coating on Ti substrate was successfully fabricated by EPD. Coating microstructure and morphologies were investigated by scanning electron microscopy, contact angle test, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found GO-CS surface were uniformly decorated by HA nanoparticles. The potentiodynamic polarization test in simulated body fluid indicated that the GO-CS-HA coatings could provide effective protection of Ti substrate from corrosion. This ternary composite coating also exhibited good biocompatibility during incubation with MG63 cells. In addition, the nanocomposite coatings could decrease the attachment of Staphylococcus aureus.

  7. Biomimetic coatings enhance tribocorrosion behavior and cell responses of commercially pure titanium surfaces

    PubMed Central

    Marques, Isabella da Silva Vieira; Alfaro, Maria Fernanda; Saito, Miki Taketomi; da Cruz, Nilson Cristino; Takoudis, Christos; Landers, Richard; Mesquita, Marcelo Ferraz; Nociti Junior, Francisco Humberto; Mathew, Mathew T.; Sukotjo, Cortino; Barão, Valentim Adelino Ricardo

    2016-01-01

    Biofunctionalized surfaces for implants are currently receiving much attention in the health care sector. Our aims were (1) to create bioactive Ti-coatings doped with Ca, P, Si, and Ag produced by microarc oxidation (MAO) to improve the surface properties of biomedical implants, (2) to investigate the TiO2 layer stability under wear and corrosion, and (3) to evaluate human mesenchymal stem cells (hMSCs) responses cultured on the modified surfaces. Tribocorrosion and cell experiments were performed following the MAO treatment. Samples were divided as a function of different Ca/P concentrations and treatment duration. Higher Ca concentration produced larger porous and harder coatings compared to the untreated group (p < 0.001), due to the presence of rutile structure. Free potentials experiments showed lower drops (−0.6 V) and higher coating lifetime during sliding for higher Ca concentration, whereas lower concentrations presented similar drops (−0.8 V) compared to an untreated group wherein the drop occurred immediately after the sliding started. MAO-treated surfaces improved the matrix formation and osteogenic gene expression levels of hMSCs. Higher Ca/P ratios and the addition of Ag nanoparticles into the oxide layer presented better surface properties, tribocorrosive behavior, and cell responses. MAO is a promising technique to enhance the biological, chemical, and mechanical properties of dental implant surfaces. PMID:27514370

  8. Biomimetic coatings enhance tribocorrosion behavior and cell responses of commercially pure titanium surfaces.

    PubMed

    Marques, Isabella da Silva Vieira; Alfaro, Maria Fernanda; Saito, Miki Taketomi; da Cruz, Nilson Cristino; Takoudis, Christos; Landers, Richard; Mesquita, Marcelo Ferraz; Nociti Junior, Francisco Humberto; Mathew, Mathew T; Sukotjo, Cortino; Barão, Valentim Adelino Ricardo

    2016-09-11

    Biofunctionalized surfaces for implants are currently receiving much attention in the health care sector. Our aims were (1) to create bioactive Ti-coatings doped with Ca, P, Si, and Ag produced by microarc oxidation (MAO) to improve the surface properties of biomedical implants, (2) to investigate the TiO2 layer stability under wear and corrosion, and (3) to evaluate human mesenchymal stem cells (hMSCs) responses cultured on the modified surfaces. Tribocorrosion and cell experiments were performed following the MAO treatment. Samples were divided as a function of different Ca/P concentrations and treatment duration. Higher Ca concentration produced larger porous and harder coatings compared to the untreated group (p < 0.001), due to the presence of rutile structure. Free potentials experiments showed lower drops (-0.6 V) and higher coating lifetime during sliding for higher Ca concentration, whereas lower concentrations presented similar drops (-0.8 V) compared to an untreated group wherein the drop occurred immediately after the sliding started. MAO-treated surfaces improved the matrix formation and osteogenic gene expression levels of hMSCs. Higher Ca/P ratios and the addition of Ag nanoparticles into the oxide layer presented better surface properties, tribocorrosive behavior, and cell responses. MAO is a promising technique to enhance the biological, chemical, and mechanical properties of dental implant surfaces.

  9. Fe-Based Amorphous Coatings on AISI 4130 Structural Steel for Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana; Santhanakrishnan, S.; Dahotre, Narendra B.

    2012-06-01

    The current study focuses on synthesizing a novel functional coating for corrosion resistance applications, via laser surface alloying. The iron-based (Fe48Cr15Mo14Y2C15B) amorphous precursor powder is used for laser surface alloying on AISI 4130 steel substrate, with a continuous wave ytterbium Nd-YAG fiber laser. The corrosion resistance of the coatings is evaluated for different processing conditions. The microstructural evolution and the response of the microstructure to the corrosive environment is studied using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Microstructural studies indicate the presence of face-centered cubic Fe-based dendrites intermixed within an amorphous matrix along with fine crystalline precipitates. The corrosion resistance of the coatings decrease with an increase in laser energy density, which is attributed to the precipitation and growth of chromium carbide. The enhanced corrosion resistance of the coatings processed with low energy density is attributed to the self-healing mechanism of this amorphous system.

  10. Critical Role of Surface Energy in Guiding Crystallization of Solution-Coated Conjugated Polymer Thin Films

    DOE PAGES

    Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi; ...

    2017-10-02

    It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less

  11. Critical Role of Surface Energy in Guiding Crystallization of Solution-Coated Conjugated Polymer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi

    It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less

  12. Ocular Protection from Laser Hazards. Phase 2

    DTIC Science & Technology

    1993-10-31

    including optics,electronics and surface protection. Physical vapor deposition ( PVD ) is the commonly used method to produce thin film coatings . Standard...control computer. In this part of the program, we intended to investigate various binary combinations of the following coating materials: SiC 2, Ta2O5 ...80 [ o Ta2O5 60 40 U 20 0 i I I Thickness [nm] 0 50 100 150 200 250 Figure 2. Dependence of the temperature in the coating chamber as a function of

  13. Visible/near-infrared spectra and two-layer modeling of palagonite-coated Basalts

    USGS Publications Warehouse

    Johnson, J. R.; Grundy, W.M.

    2001-01-01

    Fine-grained dust coatings on Martian rocks and soils obscure underlying surfaces and hinder mineralogic interpretations of both remote sensing and in-situ observations. We investigate laboratory visible/near-infrared spectra of various thicknesses of palagonite coatings on basalt substrates. We develop a two-layer Hapke scattering model incorporating porosity, grain size, and derived absorption coefficients of palagonite and basalt that reproduces the observed spectra only when the single scattering particle phase function is varied with wavelength.

  14. Efficient and Tunable Three-Dimensional Functionalization of Fully Zwitterionic Antifouling Surface Coatings.

    PubMed

    Lange, Stefanie C; van Andel, Esther; Smulders, Maarten M J; Zuilhof, Han

    2016-10-11

    To enhance the sensitivity and selectivity of surface-based (bio)sensors, it is of crucial importance to diminish background signals that arise from the nonspecific binding of biomolecules, so-called biofouling. Zwitterionic polymer brushes have been shown to be excellent antifouling materials. However, for sensing purposes, antifouling does not suffice but needs to be combined with the possibility to efficiently modify the brush with recognition units. So far this has been achieved only at the expense of either antifouling properties or binding capacity. Herein we present a conceptually new approach by integrating both characteristics into a single tailor-made monomer: a novel sulfobetaine-based zwitterionic monomer equipped with a clickable azide moiety. Copolymerization of this monomer with a well-established standard sulfobetaine monomer results in highly antifouling surface coatings with a large yet tunable number of clickable groups present throughout the entire brush. Subsequent functionalization of the azido brushes via widely used strain-promoted alkyne azide click reactions yields fully zwitterionic 3D-functionalized coatings with a recognition unit of choice that can be tailored for any specific application. Here we show a proof of principle with biotin-functionalized brushes on Si 3 N 4 that combine excellent antifouling properties with specific avidin binding from a protein mixture. The signal-to-noise ratio is significantly improved over that of traditional chain-end modification of sulfobetaine polymer brushes, even if the azide content is lowered to 1%. This therefore offers a viable approach to the development of biosensors with greatly enhanced performance on any surface.

  15. The reflectance of Ames 24E, Infrablack, and Martin black. [anodizing coatings for far-infrared space telescopes

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon M.

    1989-01-01

    Results are reported from measurements of the specular reflectances (SRs) and bidirectional reflectance distribution functions (BRDFs) of three black optical coatings in the FIR wavelength range. The nonspecular reflectometer apparatus described by Smith (1984) is employed, and the data are presented in tables and graphs and discussed in detail. It is found that Ames 24E has an FIR SR one order of magnitude lower than that of Martin black (MB), with BRDF values characteristic of a nearly Lambertian surface, while Infrablack has SR two orders lower than MB and a specular-diffuse surface; MB itself has a very specular surface.

  16. Fabrication of biomimetic superhydrophobic surface using hierarchical polyaniline spheres.

    PubMed

    Dong, Xiaofei; Wang, Jixiao; Zhao, Yanchai; Wang, Zhi; Wang, Shichang

    2011-06-01

    Wettability and water-adhesion behavior are the most important properties of solid surfaces from both fundamental and practical aspects. Here, the biomimetic superhydrophobic surface was fabricated via a simple coating process using polyaniline (PANI) microspheres which is covered with PANI nanowires as functional component, and poly-vinyl butyral (PVB, poly-vinyl alcohol crosslinked with n-butylaldehyde) as PANI microsphere adhering improvement agent to the substrate. The obtained surface displays superhydrophobic behavior without any modification with low-surface-energy materials such as thiol- or fluoroalkylsilane. The effects of coating process and the content of PANI microspheres on superhydropbobic behavior were discussed. Combine contact angle, water-adhesion measurements, scanning electronic microscopy (SEM) observations with selected areas energy dispersion spectrometer (EDS), the hydrophobic mechanism was proposed. The superhydrophobicity is attributed to a hierarchical morphology of PANI microspheres and the nature of the material itself. In addition, induced by van der Waals forces, the created superhydrophobic surface here shows the strong water-adhesion behavior. The surface has the combination performance of Lotus leaf and gecko's pad. The special wettability would be of great significance to the liquid microtransport in microfluid devices. The experimental results show that the ordinary coating process is a facile approach for fabrication of superhydrophobic surfaces.

  17. Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency

    PubMed Central

    Chuah, Yon Jin; Koh, Yi Ting; Lim, Kaiyang; Menon, Nishanth V.; Wu, Yingnan; Kang, Yuejun

    2015-01-01

    Polydimethylsiloxane (PDMS) has been extensively exploited to study stem cell physiology in the field of mechanobiology and microfluidic chips due to their transparency, low cost and ease of fabrication. However, its intrinsic high hydrophobicity renders a surface incompatible for prolonged cell adhesion and proliferation. Plasma-treated or protein-coated PDMS shows some improvement but these strategies are often short-lived with either cell aggregates formation or cell sheet dissociation. Recently, chemical functionalization of PDMS surfaces has proved to be able to stabilize long-term culture but the chemicals and procedures involved are not user- and eco-friendly. Herein, we aim to tailor greener and biocompatible PDMS surfaces by developing a one-step bio-inspired polydopamine coating strategy to stabilize long-term bone marrow stromal cell culture on PDMS substrates. Characterization of the polydopamine-coated PDMS surfaces has revealed changes in surface wettability and presence of hydroxyl and secondary amines as compared to uncoated surfaces. These changes in PDMS surface profile contribute to the stability in BMSCs adhesion, proliferation and multipotency. This simple methodology can significantly enhance the biocompatibility of PDMS-based microfluidic devices for long-term cell analysis or mechanobiological studies. PMID:26647719

  18. Friction surfaced Stellite6 coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid, E-mail: khalidrafi@gmail.com

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material formore » friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.« less

  19. Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces

    DOE PAGES

    Wang, Yingge; Gelabert, Alexandre; Michel, F. Marc; ...

    2016-05-30

    Microbial biofilms are often present as coatings on metal-oxide surfaces in natural and industrial environments and may induce significant changes in the partitioning behavior and speciation of aqueous metal ions, which in turn can impact their transport and fate. In this study, long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy was used to measure under in situ conditions the partitioning of aqueous Pb(II) and Zn(II) between multilayer Shewanella oneidensis MR-1 biofilms and highly polished, oriented single-crystal surfaces of α-Al 2O 3 and α-Fe 2O 3 as a function of metal-ion concentration and time at pH 6.0. We show that after 3-hmore » exposure time, Pb(II) binds preferentially to the alpha-Al 2O 3 (1-102) and α-Fe 2O 3 (0001) surfaces at low Pb concentration ([Pb] = 10 –7 M) and then increasingly partitions into the biofilm coatings at higher concentrations (10 –6 to 10 –4 M). In contrast, Zn(II) partitions preferentially into the biofilm coating for both surfaces at all Zn concentrations studied (10 –7 to 10 –4 M). In comparison, the α-Al 2O 3 (0001) surface has a low affinity for both Pb(II) and Zn(II), and the biofilm coatings are the dominant sink for both ions. These findings suggest that in the presence of S. oneidensis biofilm coatings, α-Al 2O 3 (0001) is the least reactive surface for Pb(II) and Zn(II) compared to α-Al 2O 3 (1-102) and α-Fe 2O 3 (0001). They also show that Zn(II) has a lower affinity than Pb(II) for reactive sites on α-Al 2O 3 (1-102) and α-Fe 2O 3 (0001) at [Me(II)] of 10 –7 M; at 10 –5 M, the bulk of the metal ions partition into the biofilm coatings. At longer exposure times (20-24 h), both Pb(II) and Zn(II) increasingly partition to the metal-oxide surfaces at [Me(II)] = 10 –5 M and pH 6.0, indicating possible reaction/diffusion-controlled sorption processes. Pb L-III-edge and Zn K-edge grazing-incidence extended X-ray absorption fine structure (GI-EXAFS) measurements suggest that both Pb(II) and Zn(II) ions may be complexed by carboxyl groups in S. oneidensis biofilms after 3-h exposure at pH 6.0 and [Me(II)] = 10 –5 M. In contrast with Burkholderia cepacia, which was used in our previous studies of monolayer biofilm-coated metal-oxide surfaces (Templeton et al., 2001), S. oneidensis MR-1 forms relatively thick biofilm coatings (6-20 μm) that are rich in reactive functional groups and are expected to dominate metal-ion adsorption. Lastly, our results show that even thick and highly reactive biofilms like S. oneidensis do not cause much change in the intrinsic chemical reactivities of the underlying metal-oxide surfaces with respect to aqueous Pb(II) and Zn(II) and don't block reactive sites on the metal-oxide surfaces; instead they reduce the rate of Pb(II) and Zn(II) sorption onto these surfaces.« less

  20. Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yingge; Gélabert, Alexandre; Michel, F. Marc; Choi, Yongseong; Gescher, Johannes; Ona-Nguema, Georges; Eng, Peter J.; Bargar, John R.; Farges, Francois; Spormann, Alfred M.; Brown, Gordon E.

    2016-09-01

    Microbial biofilms are often present as coatings on metal-oxide surfaces in natural and industrial environments and may induce significant changes in the partitioning behavior and speciation of aqueous metal ions, which in turn can impact their transport and fate. In this study, long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy was used to measure under in situ conditions the partitioning of aqueous Pb(II) and Zn(II) between multilayer Shewanella oneidensis MR-1 biofilms and highly polished, oriented single-crystal surfaces of α-Al2O3 and α-Fe2O3 as a function of metal-ion concentration and time at pH 6.0. We show that after 3-h exposure time, Pb(II) binds preferentially to the α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1) surfaces at low Pb concentration ([Pb] = 10-7 M) and then increasingly partitions into the biofilm coatings at higher concentrations (10-6 to 10-4 M). In contrast, Zn(II) partitions preferentially into the biofilm coating for both surfaces at all Zn concentrations studied (10-7 to 10-4 M). In comparison, the α-Al2O3 (0 0 0 1) surface has a low affinity for both Pb(II) and Zn(II), and the biofilm coatings are the dominant sink for both ions. These findings suggest that in the presence of S. oneidensis biofilm coatings, α-Al2O3 (0 0 0 1) is the least reactive surface for Pb(II) and Zn(II) compared to α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1). They also show that Zn(II) has a lower affinity than Pb(II) for reactive sites on α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1) at [Me(II)] of 10-7 M; at 10-5 M, the bulk of the metal ions partition into the biofilm coatings. At longer exposure times (20-24 h), both Pb(II) and Zn(II) increasingly partition to the metal-oxide surfaces at [Me(II)] = 10-5 M and pH 6.0, indicating possible reaction/diffusion-controlled sorption processes. Pb LIII-edge and Zn K-edge grazing-incidence extended X-ray absorption fine structure (GI-EXAFS) measurements suggest that both Pb(II) and Zn(II) ions may be complexed by carboxyl groups in S. oneidensis biofilms after 3-h exposure at pH 6.0 and [Me(II)] = 10-5 M. In contrast with Burkholderia cepacia, which was used in our previous studies of monolayer biofilm-coated metal-oxide surfaces (Templeton et al., 2001), S. oneidensis MR-1 forms relatively thick biofilm coatings (6-20 μm) that are rich in reactive functional groups and are expected to dominate metal-ion adsorption. Our results show that even thick and highly reactive biofilms like S. oneidensis do not cause much change in the intrinsic chemical reactivities of the underlying metal-oxide surfaces with respect to aqueous Pb(II) and Zn(II) and don't block reactive sites on the metal-oxide surfaces; instead they reduce the rate of Pb(II) and Zn(II) sorption onto these surfaces.

  1. Monolayer coated gold nanoparticles for delivery applications

    PubMed Central

    Rana, Subinoy; Bajaj, Avinash; Mout, Rubul; Rotello, Vincent M.

    2011-01-01

    Gold nanoparticles (AuNPs) provide attractive vehicles for delivery of drugs, genetic materials, proteins, and small molecules. AuNPs feature low core toxicity coupled with the ability to parametrically control particle size and surface properties. In this review, we focus on engineering of the AuNP surface monolayer, highlighting recent advances in tuning monolayer structures for efficient delivery of drugs and biomolecules. This review covers two broad categories of particle functionalization, organic monolayers and biomolecule coatings, and discusses their applications in drug, DNA/RNA, protein and small molecule delivery. PMID:21925556

  2. Acrylic acid plasma polymerization for biomedical use

    NASA Astrophysics Data System (ADS)

    Bitar, Rim; Cools, Pieter; De Geyter, Nathalie; Morent, Rino

    2018-08-01

    Since a few decades, polymeric materials have played a central role in regenerative medicine and tissue engineering as artificial tissue replacements and organ transplantation devices. Chemical and topographical surface modifications of biomaterials are often required to achieve an overall better biocompatibility. Non-thermal plasma is a non-invasive, solvent-free alternative for modifying polymeric surface properties without affecting the bulk of the material. Plasma polymerization of organic compounds has proven to be an effective tool for thin film production with specific surface chemistries, useful for biomedical applications. These polymer layers have received a growing interest in tissue regeneration and biomolecules immobilization processes. Many different types of chemical functional groups can be introduced, but the focus of this review will be on carboxylic acid groups. Thin films consisting of carboxylic acid functional groups are considered attractive for biomedical applications since these are known for stimulating the adhesion and proliferation of fibroblasts and other kind of cells. Therefore, an overview on the use of acrylic acid (AAc) as a precursor or for the plasma-assisted deposition of carboxylic-group containing-films in bio-interface research activities, will be described in this review. The review will specifically focus on plasma polymerized acrylic acid (PPAA) coatings that are obtained using a variety of plasma deposition techniques. Moreover, the influence of plasma parameters on surface properties such as wettability, surface topography and chemical composition will be discussed in detail. The correlation between different parameters will be studied and a general recipe leading to the successful deposition of COOH-rich stable coatings will be extracted and linked to their ability to improve cell growth, proliferation and differentiation, all leading to the further progress in the biomedical field. A lot of publications claim to have developed suitable coatings for biomedical applications, but neglect the importance of coating stability. For those publications exhibiting sufficient coating stability, a lot of initial in vitro experiments were performed, but the number in-depth studies on the mechanisms behind the cell-material interactions is limited. Although AAc forms an excellent precursor for biomedical coatings, its potential still needs to be explored in more details.

  3. Osteoconductive phosphoserine-modified poly(ε-lysine) dendrons: synthesis, titanium oxide surface functionalization and response of osteoblast-like cell lines

    PubMed Central

    Meikle, S. T.; Bianchi, G.; Olivier, G.; Santin, M.

    2013-01-01

    The lack of direct bonding between the surface of an implant and the mineralized bony tissue is among the main causes of aseptic loosening in titanium-based implants. Surface etching and ceramic coatings have led to improved osteointegration, but their clinical performance is still limited either by partial bonding or by coating delamination. In this work, a solid-phase synthesis method has been optimized to produce poly(ε-lysine) dendrons, the outermost branching generation of which is functionalized by phosphoserine (PS), a known catalyst of the biomineralization process. The dendrons were deposited onto etched titanium oxide surfaces as a near-to-monolayer film able to induce the formation of a homogeneous calcium phosphate phase in a simulated body fluid over 3 days. The dendron films also stimulated MG63 and SAOS-2 osteoblast-like cells to proliferate at a rate significantly higher than etched titanium, with SAOS-2 also showing a higher degree of differentiation over 14 days. PS-tethered dendron films were not affected by various sterilization methods and UV treatment appeared to improve the cell substrate potential of these films, thus suggesting their potential as a surface functionalization method for bone implants. PMID:23193106

  4. Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys

    DOEpatents

    Park, J.H.

    1998-06-23

    A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. 2 figs.

  5. Preparation of Metalloporphyrin-Bound Superparamagnetic Silica Particles via "Click" Reaction.

    PubMed

    Hollingsworth, Javoris V; Bhupathiraju, N V S Dinesh K; Sun, Jirun; Lochner, Eric; Vicente, M Graça H; Russo, Paul S

    2016-01-13

    A facile approach using click chemistry is demonstrated for immobilization of metalloporphyrins onto the surface of silica-coated iron oxide particles. Oleic-acid stabilized iron oxide nanocrystals were prepared by thermal decomposition of iron(III) acetylacetonate. Their crystallinity, morphology, and superparamagnetism were determined using X-ray diffraction, transmission electron microscopy, and a superconducting quantum interference device. Monodisperse core-shell particles were produced in the silica-coating of iron oxide via microemulsion synthesis. Surface modification of these particles was performed in two steps, which included the reaction of silica-coated iron oxide particles with 3-bromopropyltrichlorosilane, followed by azido-functionalization with sodium azide. Monoalkylated porphyrins were prepared using the Williamson ether synthesis of commercially available tetra(4-hydroxyphenyl) porphyrin with propargyl bromide in the presence of a base. (1)H NMR and matrix-assisted laser desorption ionization confirmed the identity of the compounds. The prepared monoalkyne porphyrins were zinc-metalated prior to their introduction to azide-functionalized, silica-coated iron oxide particles in the click reaction. X-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the surface chemistry after each step in the reaction. In addition, particle size was determined using dynamic light scattering and microscopy. The presented methodology is versatile and can be extended to other photoreactive systems, such as phthalocyanines and boron-dipyrromethane, which may lead to new materials for optical, photonic, and biological applications.

  6. Effect of tetraethoxysilane coating on the improvement of plasma treated polypropylene adhesion

    NASA Astrophysics Data System (ADS)

    Pantoja, M.; Encinas, N.; Abenojar, J.; Martínez, M. A.

    2013-09-01

    Polypropylene is one of the most used polymers due to its lightweight and recyclability properties, among others. However, its poor characteristics regarding surface energy and lack of polar functional groups have to be overcome to perform adhesion processes. The main objective of this work is to improve the adhesion behavior of polypropylene by combining atmospheric pressure plasma surface activation and silane adhesion promoter. Tetraethoxysilane hydrolysis and condensation are followed through infrared spectroscopy by attenuated total reflectance in order to set the coating conditions. Contact angle measurements and surface energy calculations as well as infrared and X-ray photoelectron spectroscopy are used to evaluate polymer chemical modifications. Morphological changes are studied through scanning electron and atomic force microscopy. Results show the ability of plasma treatment to create active oxydised functional groups on the polypropylene surface. These groups lead to a proper wetting of the polymer by the silane. Shear strength of single-lap bonding of polypropylene with a polyurethane adhesive suffers a significant improvement when the silane coating is applied on previously plasma activated samples. It has been also demonstrated that the silane curing conditions play a decisive role on the adhesion response. Finally, the stability of the silane solution is tested up to 30 days, yielding diminished but still acceptable adhesion strength values.

  7. Simple, benign, aqueous-based amination of polycarbonate surfaces

    DOE PAGES

    VanDelinder, Virginia; Wheeler, David R.; Small, Leo J.; ...

    2015-03-18

    Here we report a simple, safe, environmentally-friendly aqueous method that uses diamines to functionalize a polycarbonate surface with amino groups. We demonstrate the ability of this facile method to serve as a foundation upon which other functionalities may be attached, including anti-fouling coatings and oriented membrane proteins. The use of water as the solvent for the functionalization ensures that solvent induced swelling does not affect the optical or mechanical properties of the polycarbonate.

  8. Efficient magnetic recycling of covalently attached enzymes on carbon-coated metallic nanomagnets.

    PubMed

    Zlateski, Vladimir; Fuhrer, Roland; Koehler, Fabian M; Wharry, Scott; Zeltner, Martin; Stark, Wendelin J; Moody, Thomas S; Grass, Robert N

    2014-04-16

    In the pursuit of robust and reusable biocatalysts for industrial synthetic chemistry, nanobiotechnology is currently taking a significant part. Recently, enzymes have been immobilized on different nanoscaffold supports. Carbon coated metallic nanoparticles were found to be a practically useful support for enzyme immobilization due to their large surface area, high magnetic saturation, and manipulatable surface chemistry. In this study carbon coated cobalt nanoparticles were chemically functionalized (diazonium chemistry), activated for bioconjugation (N,N-disuccinimidyl carbonate), and subsequently used in enzyme immobilization. Three enzymes, β-glucosidase, α-chymotrypsin, and lipase B were successfully covalently immobilized on the magnetic nonsupport. The enzyme-particle conjugates formed retained their activity and stability after immobilization and were efficiently recycled from milliliter to liter scales in short recycle times.

  9. Development of a functionalized coating for inhibition of marine corrosion and biofouling

    NASA Astrophysics Data System (ADS)

    Gittens, Jeanette Elizabeth

    The financial loss incurred by corrosion of metals in the marine environment has led to a need to develop effective, economic and environmentally friendly methods of protection. Traditional methods of counteracting the development of surface biofilms and biofouling within aqueous environments have involved implementing chemical biocides, often with a deleterious effect on non-target organisms. Sol gel coating technology offers a convenient route for immobilizing functional additives, such as inhibitors or, in the case of this study, biologically active microorganisms. Paenibacillus polymyxa biofilms inhibit the corrosion of metal substrates and this strain has the advantage of forming endospores can withstand the solvent and acid concentrations required in sol-gel formulation. Encapsulation of viable P. polymyxa endospores within the sol-gel matrix allowed germination on exposure to nutrients, when germinating endospores and vegetative cells were seen after fluorescence microscopy to be distributed throughout the coating. Laboratory electrochemical impedance tests were used to characterize the corrosion behaviour of the endospore-containing (biotic) sol-gel coating in comparison to an abiotic (no endospores) sol-gel only coating and one containing non-viable (killed) endospores. The technology enabled manipulation of the sol-gel formulation and the method of application to produce biotic sol-gel with enhanced corrosion inhibition properties on aluminium alloy. Field trials in a marine environment confirmed the corrosion protecting properties of the biotic coating and that the biotic coatings inhibited macroscopic biofouling for at least 29 weeks relative to the controls without encapsulated live endospores. Production of polymyxin by the encapsulated bacteria, which was proposed as a mechanism by which they inhibit MIC, was less than 1 mug per ml and below the threshold of detection by liquid chromatography mass spectrometry and antimicrobial bioassay. Microcosm experiments were used to study differences in the corrosion of abiotic and biotic coatings in the presence of a corrosion-causing sulphate-reducing bacterium. Scanning electrochemical microscopy was developed as a technique to study electrochemical processes on the coating surface and showed differences in the distribution of copper ions on the surface of abiotic and biotic coatings.The results of the experimental work in this thesis show the potential of encapsulating metabolically active bacterial cells within a sol-gel coating on metals for the control of marine corrosion and biofouling.

  10. Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications.

    PubMed

    Boudot, Cécile; Kühn, Marvin; Kühn-Kauffeldt, Marina; Schein, Jochen

    2017-05-01

    Silicone elastomer is a promising material for medical applications and is widely used for implants with blood and tissue contact. However, its strong hydrophobicity limits adhesion of tissue cells to silicone surfaces, which can impair the healing process. To improve the biological properties of silicone, a triggerless pulsed vacuum cathodic arc plasma deposition technique was applied to deposit titanium dioxide (TiO 2 ) films onto the surface. Scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and contact angle measurements were used for coating characterization. Deposited films were about 150nm thick and exhibited good adhesion to the underlying silicone substrate. Surface wettability and roughness both increased after deposition of the TiO 2 layer. In addition, cell-biological investigations demonstrated that the in-vitro cytocompatibility of TiO 2 -coated samples was greatly improved without impacting silicone's nontoxicity. For validation of use in medical devices, further investigations were conducted and demonstrated stability of surface properties in an aqueous environment for a period of 68days and the coating's resistance to several sterilization methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. New Coating Technique of Ceramic Implants with Different Glass Solder Matrices for Improved Osseointegration-Mechanical Investigations.

    PubMed

    Mick, Enrico; Markhoff, Jana; Mitrovic, Aurica; Jonitz, Anika; Bader, Rainer

    2013-09-11

    Ceramics are a very popular material in dental implant technology due to their tribological properties, their biocompatibility and their esthetic appearance. However, their natural surface structure lacks the ability of proper osseointegration, which constitutes a crucial process for the stability and, thus, the functionality of a bone implant. We investigated the application of a glass solder matrix in three configurations-consisting mainly of SiO₂, Al₂O₃, K₂O and Na₂O to TZP-A ceramic specimens. The corresponding adhesive strength and surface roughness of the coatings on ceramic specimens have been analyzed. Thereby, high adhesive strength (70.3 ± 7.9 MPa) was found for the three different coatings. The obtained roughness (R z ) amounted to 18.24 ± 2.48 µm in average, with significant differences between the glass solder configurations. Furthermore, one configuration was also tested after additional etching which did not lead to significant increase of surface roughness (19.37 ± 1.04 µm) or adhesive strength (57.2 ± 5.8 MPa). In conclusion, coating with glass solder matrix seems to be a promising surface modification technique that may enable direct insertion of ceramic implants in dental and orthopaedic surgery.

  12. Influence of non-thermal TiCl4/Ar+O2 plasma-assisted TiOx based coatings on the surface of polypropylene (PP) films for the tailoring of surface properties and cytocompatibility.

    PubMed

    Pandiyaraj, K N; Kumar, A Arun; Ramkumar, M C; Sachdev, A; Gopinath, P; Cools, Pieter; De Geyter, N; Morent, R; Deshmukh, R R; Hegde, P; Han, C; Nadagouda, M N

    2016-05-01

    The superior bulk properties (corrosion resistance, high strength to weight ratio, relatively low cost and easy processing) of hydrocarbon based polymers such as polypropylene (PP) have contributed significantly to the development of new biomedical applications such as artificial organs and cell scaffolds. However, low cell affinity is one of the main draw backs for PP due to its poor surface properties. In tissue engineering, physico-chemical surface properties such as hydrophilicity, polar functional groups, surface charge and morphology play a crucial role to enrich the cell proliferation and adhesion. In this present investigation TiOx based biocompatible coatings were developed on the surface of PP films via DC excited glow discharge plasma, using TiCl4/Ar+O2 gas mixture as a precursor. Various TiOx-based coatings are deposited on the surface of PP films as a function of discharge power. The changes in hydrophilicity of the TiOx/PP film surfaces were studied using contact angle analysis and surface energy calculations by Fowke's approximation. X-ray photo-electron spectroscopy (XPS) was used to investigate the surface chemical composition of TiOx/PP films. The surface morphology of the obtained TiOx/PP films was investigated by scanning electron and transmission electron microscopy (SEM &TEM). Moreover, the surface topography of the material was analyzed by atomic force microscopy (AFM). The cytocompatibility of the TiOx/PP films was investigated via in vitro analysis (cell viability, adhesion and cytotoxicity) using NIH3T3 (mouse embryonic fibroblast) cells. Furthermore the antibacterial activities of TiOx/PP films were also evaluated against two distinct bacterial models namely Gram positive Staphylococcus aureus (S.aureus) and Gram negative Escherichia coli DH5α. (E.coli) bacteria. XPS results clearly indicate the successful incorporation of TiOx and oxygen containing polar functional groups on the surface of plasma treated PP films. Moreover the surface of modified PP films exhibited nano structured morphology, as confirmed by SEM, TEM and AFM. The physico-chemical changes have improved the hydrophilicity of the PP films. The in-vitro analysis clearly confirms that the TiOx coated PP films performs as good as the standard tissue culture plates and also are unlikely to impact the bacterial cell viability. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The Incorporation of Strontium in a Sodium Alginate Coating on Titanium Surfaces for Improved Biological Properties

    PubMed Central

    Yuan, Ning; Jia, Lili; Geng, Zhen; Wang, Renfeng; Yang, Xianjin; Cui, Zhenduo; Zhu, Shengli; Liang, Yanqin; Liu, Yunde

    2017-01-01

    Orthopedic implant failure is mainly attributed to the poor bonding of the implant to bone tissue. An effective approach to minimize the implant failure would be modifying the surface of the implant. Strontium (Sr) can stimulate the proliferation and differentiation of osteoblasts and reduce the activity of osteoclasts. In this study, a titanium (Ti) surface was successively functionalized by covalently grafting dopamine, sodium alginate (SA), and Sr2+ via the electrostatic immobilization method. The as-prepared coatings on the Ti surface were characterized by using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and contact angle. The results indicated that the Sr-incorporated coatings were successfully prepared and that Sr distributed uniformly on the surface. A long-lasting and sustained Sr release had been observed in Sr2+ release studies. The Ti/DOPA/SA/Sr exhibited little cytotoxicity and a robust effect of Sr incorporation on the adhesion and spreading of MG63 cells. The proliferation and alkaline phosphatase (ALP) activity of MG63 cells were enhanced by immobilizing Sr2+ on the SA-grafted Ti. The Sr-containing coatings, which displayed excellent biocompatibility and osteogenic activity, may provide a promising solution for promoting the tissue integration of implants. PMID:29109961

  14. In vitro evaluation of anti-pathogenic surface coating nanofluid, obtained by combining Fe3O4/C12 nanostructures and 2-((4-ethylphenoxy)methyl)-N-(substituted-phenylcarbamothioyl)-benzamides

    PubMed Central

    2012-01-01

    In this paper, we report the design of a new nanofluid for anti-pathogenic surface coating. For this purpose, new 2-((4-ethylphenoxy)methyl)-N-(substituted-phenylcarbamothioyl)-benzamides were synthesized and used as an adsorption shell for Fe3O4/C12 core/shell nanosized material. The functionalized specimens were tested by in vitro assays for their anti-biofilm properties and biocompatibility. The optimized catheter sections showed an improved resistance to Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853 in vitro biofilm development, as demonstrated by the viable cell counts of biofilm-embedded bacterial cells and by scanning electron microscopy examination of the colonized surfaces. The nanofluid proved to be not cytotoxic and did not influence the eukaryotic cell cycle. These results could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with improved anti-biofilm properties. PMID:22992217

  15. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films

    NASA Astrophysics Data System (ADS)

    Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.; Trejo, Rosa M.; Jellison, Gerald E.; Ivanov, Ilia N.; Pennycook, Stephen J.; Hillesheim, Daniel A.; Winter, Kyle O.; Christen, David K.; Hunter, Scott R.; Haynes, J. Allen

    2013-08-01

    We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.

  16. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films.

    PubMed

    Aytug, Tolga; Simpson, John T; Lupini, Andrew R; Trejo, Rosa M; Jellison, Gerald E; Ivanov, Ilia N; Pennycook, Stephen J; Hillesheim, Daniel A; Winter, Kyle O; Christen, David K; Hunter, Scott R; Haynes, J Allen

    2013-08-09

    We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.

  17. Electrochemical analysis of gold-coated magnetic nanoparticles for detecting immunological interaction

    NASA Astrophysics Data System (ADS)

    Pham, Thao Thi-Hien; Sim, Sang Jun

    2010-01-01

    An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles-human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.

  18. Non-Equilibrium Plasma Processing for the Preparation of Antibacterial Surfaces

    PubMed Central

    Sardella, Eloisa; Palumbo, Fabio; Camporeale, Giuseppe; Favia, Pietro

    2016-01-01

    Non-equilibrium plasmas offer several strategies for developing antibacterial surfaces that are able to repel and/or to kill bacteria. Due to the variety of devices, implants, and materials in general, as well as of bacteria and applications, plasma assisted antibacterial strategies need to be tailored to each specific surface. Nano-composite coatings containing inorganic (metals and metal oxides) or organic (drugs and biomolecules) compounds can be deposited in one step, and used as drug delivery systems. On the other hand, functional coatings can be plasma-deposited and used to bind antibacterial molecules, for synthesizing surfaces with long lasting antibacterial activity. In addition, non-fouling coatings can be produced to inhibit the adhesion of bacteria and reduce the formation of biofilm. This paper reviews plasma-based strategies aimed to reduce bacterial attachment and proliferation on biomedical materials and devices, but also onto materials used in other fields. Most of the activities described have been developed in the lab of the authors. PMID:28773637

  19. Enhanced chemiluminescence-based detection on gold substrate after electrografting of diazonium precursor-coated gold nanoparticles.

    PubMed

    Houmed Adabo, Ali; Zeggari, Rabah; Mohamed Saïd, Nasser; Bazzi, Rana; Elie-Caille, Céline; Marquette, Christophe; Martini, Matteo; Tillement, Olivier; Perriat, Pascal; Chaix, Carole; Boireau, Wilfrid; Roux, Stéphane

    2016-04-01

    Since it was demonstrated that nanostructured surfaces are more efficient for the detection based on the specific capture of analytes, there is a real need to develop strategies for grafting nanoparticles onto flat surfaces. Among the different routes for the functionalization of a surface, the reduction of diazonium salts appears very attractive for the covalent immobilization of nanoparticles because this method does not require a pre-treatment of the surface. For achieving this goal, gold nanoparticles coated by precursor of diazonium salts were synthesized by reduction of gold salt in presence of mercaptoaniline. These mercaptoaniline-coated gold nanoparticles (Au@MA) were successfully immobilized onto various conducting substrates (indium tin oxide (ITO), glassy carbon (GC) and gold electrodes with flat terraces) after addition of sodium nitrite at fixed potential. When applied onto the gold electrodes, such a grafting strategy led to an obvious enhancement of the luminescence of luminol used for the biodetection. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Mussel-Inspired Adhesives and Coatings

    PubMed Central

    Lee, Bruce P.; Messersmith, P.B.; Israelachvili, J.N.; Waite, J.H.

    2011-01-01

    Mussels attach to solid surfaces in the sea. Their adhesion must be rapid, strong, and tough, or else they will be dislodged and dashed to pieces by the next incoming wave. Given the dearth of synthetic adhesives for wet polar surfaces, much effort has been directed to characterizing and mimicking essential features of the adhesive chemistry practiced by mussels. Studies of these organisms have uncovered important adaptive strategies that help to circumvent the high dielectric and solvation properties of water that typically frustrate adhesion. In a chemical vein, the adhesive proteins of mussels are heavily decorated with Dopa, a catecholic functionality. Various synthetic polymers have been functionalized with catechols to provide diverse adhesive, sealant, coating, and anchoring properties, particularly for critical biomedical applications. PMID:22058660

  1. Fiber optic apparatus for detecting molecular species by surface enhanced Raman spectroscopy

    DOEpatents

    Angel, S.M.; Sharma, S.K.

    1988-11-01

    Optrode apparatus for detecting constituents of a fluid medium includes an optical fiber having a metal coating on at least a portion of a light transmissive core. The metal is one, such as silver, gold or copper, which enhances emission of Raman signal frequencies by molecules adsorbed on the surface of the coating when monochromatic probe light of a different frequency is scattered by such molecules and the metal coating is sufficiently thin to transmit light between the absorbed molecules and the core of the fiber. Probe light is directed into one end of the fiber and a detector analyzes light emitted from the fiber for Raman frequencies that identify one or more particular molecular species. In one form, the optrode may function as a working electrode of an electrochemical cell while also serving to detect the products of oxidation or reduction reactions which occur at the electrode surface. 6 figs.

  2. Fiber optic apparatus for detecting molecular species by surface enhanced Raman spectroscopy

    DOEpatents

    Angel, S.M.; Sharma, S.K.

    1987-11-30

    Optrode apparatus for detecting constituents of a fluid medium includes an optical fiber having a metal coating on at least a portion of a light transmissive core. The metal is one, such as silver, gold or copper, which enhances emission of Raman signal frequencies by molecules adsorbed on the surface of the coating when monochromatic probe light of a different frequency is scattered by such molecules and the metal coating is sufficiently thin to transmit light between the adsorbed molecules and the core of the fiber. Probe light is directed into one end of the fiber and a detector analyzes light emitted from the fiber for Raman frequencies that identify one or more particular molecular species. In one form, the optrode may function as a working electrode of an electrochemical cell while also serving to detect the products of oxidation or reduction reactions which occur at the electrode surface. 6 figs.

  3. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents

    NASA Astrophysics Data System (ADS)

    Dong, Jie; Xu, Zhenghe; Wang, Feng

    2008-03-01

    Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m 2/g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective.

  4. Superhydrophilicity and antibacterial property of a Cu-dotted oxide coating surface

    PubMed Central

    2010-01-01

    Background Aluminum-made settings are widely used in healthcare, schools, public facilities and transit systems. Frequently-touched surfaces of those settings are likely to harbour bacteria and be a potential source of infection. One method to utilize the effectiveness of copper (Cu) in eliminating pathogens for these surfaces would be to coat the aluminum (Al) items with a Cu coating. However, such a combination of Cu and Al metals is susceptible to galvanic corrosion because of their different electrochemical potentials. Methods In this work, a new approach was proposed in which electrolytic plasma oxidation (EPO) of Al was used to form an oxide surface layer followed by electroplating of Cu metal on the top of the oxide layer. The oxide was designed to function as a corrosion protective and biocompatible layer, and the Cu in the form of dots was utilized as an antibacterial material. The antibacterial property enhanced by superhydrophilicity of the Cu-dotted oxide coating was evaluated. Results A superhydrophilic surface was successfully prepared using electrolytic plasma oxidation of aluminum (Al) followed by electroplating of copper (Cu) in a Cu-dotted form. Both Cu plate and Cu-dotted oxide surfaces had excellent antimicrobial activities against E. coli ATCC 25922, methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 and vancomycin-resistant Enterococcus faecium (VRE) ATCC 51299. However, its Cu-dotted surface morphology allowed the Cu-dotted oxide surface to be more antibacterial than the smooth Cu plate surface. The enhanced antibacterial property was attributed to the superhydrophilic behaviour of the Cu-dotted oxide surface that allowed the bacteria to have a more effective killing contact with Cu due to spreading of the bacterial suspension media. Conclusion The superhydrophilic Cu-dotted oxide coating surface provided an effective method of controlling bacterial growth and survival on contact surfaces and thus reduces the risk of infection and spread of bacteria-related diseases particularly in moist or wet environments. PMID:20843373

  5. Polysaccharide-based antibiofilm surfaces.

    PubMed

    Junter, Guy-Alain; Thébault, Pascal; Lebrun, Laurent

    2016-01-01

    Surface treatment by natural or modified polysaccharide polymers is a promising means to fight against implant-associated biofilm infections. The present review focuses on polysaccharide-based coatings that have been proposed over the last ten years to impede biofilm formation on material surfaces exposed to bacterial contamination. Anti-adhesive and bactericidal coatings are considered. Besides classical hydrophilic coatings based on hyaluronic acid and heparin, the promising anti-adhesive properties of the algal polysaccharide ulvan are underlined. Surface functionalization by antimicrobial chitosan and derivatives is extensively surveyed, in particular chitosan association with other polysaccharides in layer-by-layer assemblies to form both anti-adhesive and bactericidal coatings. Bacterial contamination of surfaces, leading to biofilm formation, is a major problem in fields as diverse as medicine, first, but also food and cosmetics. Many prophylactic strategies have emerged to try to eliminate or reduce bacterial adhesion and biofilm formation on surfaces of materials exposed to bacterial contamination, in particular implant materials. Polysaccharides are widely distributed in nature. A number of these natural polymers display antibiofilm properties. Hence, surface treatment by natural or modified polysaccharides is a promising means to fight against implant-associated biofilm infections. The present manuscript is an in-depth look at polysaccharide-based antibiofilm surfaces that have been proposed over the last ten years. This review, which is a novelty compared to published literature, will bring well documented and updated information to readers of Acta Biomaterialia. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Preparation and characterization of lysine-immobilized poly(glycidyl methacrylate) nanoparticle-coated capillary for the separation of amino acids by open tubular capillary electrochromatography.

    PubMed

    Xu, Liang; Cui, Pengfei; Wang, Dongmei; Tang, Cheng; Dong, Linyi; Zhang, Can; Duan, Hongquan; Yang, Victor C

    2014-01-03

    In this study, poly(glycidyl methacrylate) (PGMA) nanoparticles (NPs) were prepared and chemically immobilized for the first time onto a capillary inner wall for open tubular capillary electrochromatography (OTCEC). The immobilization of PGMA NPs onto the capillary was attained by a ring-opening reaction between the NPs and an amino-silylated fused capillary inner surface. Scanning electron micrographs clearly demonstrated that the NPs were bound to the capillary inner surface in a dense monolayer. The PGMA NP-coated column was then functionalized by lysine (Lys). After fuctionalization, the capillary can afford strong anodic electroosmotic flow, especially in acidic running buffers. Separations of three amino acids (including tryptophan, tyrosine and phenylalanine) were performed in NP-modified, monolayer Lys-functionalized and bare uncoated capillaries. Results indicated that the NP-coated column can provide more retention and higher resolution for analytes due to the hydrophobic interaction between analytes and the NP-coating. Run-to-run and column-to-column reproducibilities in the separation of the amino acids using the NP-modified column were also demonstrated. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Antithrombogenic Polymer Coating.

    DOEpatents

    Huang, Zhi Heng; McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2003-01-21

    An article having a non-thrombogenic surface and a process for making the article are disclosed. The article is formed by (i) coating a polymeric substrate with a crosslinked chemical combination of a polymer having at least two amino substituted side chains, a crosslinking agent containing at least two crosslinking functional groups which react with amino groups on the polymer, and a linking agent containing a first functional group which reacts with a third functional group of the crosslinking agent, and (ii) contacting the coating on the substrate with an antithrombogenic agent which covalently bonds to a second functional group of the linking agent. In one example embodiment, the polymer is a polyamide having amino substituted alkyl chains on one side of the polyamide backbone, the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl, the linking agent is a polyhydrazide and the antithrombogenic agent is heparin.

  8. Surface modification of aramid fibers by bio-inspired poly(dopamine) and epoxy functionalized silane grafting.

    PubMed

    Sa, Rina; Yan, Yan; Wei, Zhenhai; Zhang, Liqun; Wang, Wencai; Tian, Ming

    2014-12-10

    A novel biomimetic surface modification method for meta-aramid (MPIA) fibers and the improvement on adhesion with rubber matrix was demonstrated. Inspired by the composition of adhesive proteins in mussels, we used dopamine (DOPA) self-polymerization to form thin, surface-adherent poly(dopamine) (PDA) films onto the surface of MPIA fibers simply by immersing MPIA fibers in a dopamine solution at room temperature. An epoxy functionalized silane (KH560) grafting was then carried out on the surface of the poly(dopamine)-coated MPIA, either by a "one-step" or "two-step" method, to introduce an epoxy group onto the MPIA fiber surface. The surface composition and microstructure of the modified MPIA was characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results indicated successful grafting of KH560 on the PDA-coated MPIA surface. A single-fiber pull-out test was applied to evaluate the adhesion of MPIA fibers with the rubber matrix. Compared with the untreated MPIA fibers, the adhesion strength between the modified MPIA fibers by "one step" method with rubber matrix has an increase of 62.5%.

  9. Composition and work function relationship in Os–Ru–W ternary alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartzentruber, Phillip D.; Detisch, Michael J.; Balk, T. John, E-mail: john.balk@uky.edu

    2015-03-15

    Os–Ru thin films with varying concentrations of W were sputter deposited in order to investigate their structure–property relationships. The films were analyzed with x-ray diffraction to investigate their crystal structures, and a Kelvin probe to investigate their work functions. An Os–Ru–W film with ∼30 at. % W yielded a work function maximum of approximately 5.38 eV. These results align well with other studies that found work function minima from thermionic emission data on M-type cathodes with varying amounts of W in the coatings. Furthermore, the results are consistent with other work explaining energy-level alignment and charge transfer of molecules on metalmore » oxides. This may shed light on the mechanism behind the “anomalous effect” first reported by Zalm et al., whereby a high work function coating results in a low work function for emitting cathode surfaces. An important implication of this work is the potential for the Kelvin probe to evaluate the effectiveness of dispenser cathode coatings.« less

  10. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating.

    PubMed

    Li, Yong; Yang, Wei; Li, Xiaokang; Zhang, Xing; Wang, Cairu; Meng, Xiangfei; Pei, Yifeng; Fan, Xiangli; Lan, Pingheng; Wang, Chunhui; Li, Xiaojie; Guo, Zheng

    2015-03-18

    Titanium alloys with various porous structures can be fabricated by advanced additive manufacturing techniques, which are attractive for use as scaffolds for bone defect repair. However, modification of the scaffold surfaces, particularly inner surfaces, is critical to improve the osteointegration of these scaffolds. In this study, a biomimetic approach was employed to construct polydopamine-assisted hydroxyapatite coating (HA/pDA) onto porous Ti6Al4V scaffolds fabricated by the electron beam melting method. The surface modification was characterized with the field emission scanning electron microscopy, energy dispersive spectroscopy, water contact angle measurement, and confocal laser scanning microscopy. Attachment and proliferation of MC3T3-E1 cells on the scaffold surface were significantly enhanced by the HA/pDA coating compared to the unmodified surfaces. Additionally, MC3T3-E1 cells grown on the HA/pDA-coated Ti6Al4V scaffolds displayed significantly higher expression of runt-related transcription factor-2, alkaline phosphatase, osteocalcin, osteopontin, and collagen type-1 compared with bare Ti6Al4V scaffolds after culture for 14 days. Moreover, microcomputed tomography analysis and Van-Gieson staining of histological sections showed that HA/pDA coating on surfaces of porous Ti6Al4V scaffolds enhanced osteointegration and significantly promoted bone regeneration after implantation in rabbit femoral condylar defects for 4 and 12 weeks. Therefore, this study provides an alternative to biofunctionalized porous Ti6Al4V scaffolds with improved osteointegration and osteogenesis functions for orthopedic applications.

  11. Effect of Gold on the Corrosion Behavior of an Electroless Nickel/Immersion Gold Surface Finish

    NASA Astrophysics Data System (ADS)

    Bui, Q. V.; Nam, N. D.; Yoon, J. W.; Choi, D. H.; Kar, A.; Kim, J. G.; Jung, S. B.

    2011-09-01

    The performance of surface finishes as a function of the pH of the utilized plating solution was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl solution. In addition, the surface finishes were examined by x-ray diffraction (XRD), and the contact angle of the liquid/solid interface was recorded. NiP films on copper substrates with gold coatings exhibited their highest coating performance at pH 5. This was attributed to the films having the highest protective efficiency and charge transfer resistance, lowest porosity value, and highest contact angle among those examined as a result of the strongly preferred Au(111) orientation and the improved surface wettability.

  12. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration.

    PubMed

    Rao, Prashanth J; Pelletier, Matthew H; Walsh, William R; Mobbs, Ralph J

    2014-05-01

    The clinical outcome of lumbar spinal fusion is correlated with achievement of bony fusion. Improving interbody implant bone on-growth and in-growth may enhance fusion, limiting pseudoarthrosis, stress shielding, subsidence and implant failure. Polyetheretherketone (PEEK) and titanium (Ti) are commonly selected for interbody spacer construction. Although these materials have desirable biocompatibility and mechanical properties, they require further modification to support osseointegration. Reports of extensive research on this topic are available in biomaterial-centric published reports; however, there are few clinical studies concerning surface modification of interbody spinal implants. The current article focuses on surface modifications aimed at fostering osseointegration from a clinician's point of view. Surface modification of Ti by creating rougher surfaces, modifying its surface topography (macro and nano), physical and chemical treatment and creating a porous material with high interconnectivity can improve its osseointegrative potential and bioactivity. Coating the surface with osteoconductive materials like hydroxyapatite (HA) can improve osseointegration. Because PEEK spacers are relatively inert, creating a composite by adding Ti or osteoconductive materials like HA can improve osseointegration. In addition, PEEK may be coated with Ti, effectively bio-activating the coating. © 2014 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  13. Adhesion of protein residues to substituted (111) diamond surfaces: an insight from density functional theory and classical molecular dynamics simulations.

    PubMed

    Borisenko, Konstantin B; Reavy, Helen J; Zhao, Qi; Abel, Eric W

    2008-09-15

    Protein-repellent diamond coatings have great potential value for surface coatings on implants and surgical instruments. The design of these coatings relies on a fundamental understanding of the intermolecular interactions involved in the adhesion of proteins to surfaces. To get insight into these interactions, adhesion energies of glycine to pure and Si and N-doped (111) diamond surfaces represented as clusters were calculated in the gas phase, using density functional theory (DFT) at the B3LYP/6-31G* level. The computed adhesion energies indicated that adhesion of glycine to diamond surface may be modified by introducing additional elements into the surface. The adhesion was also found to induce considerable change in the conformation of glycine when compared with the lowest-energy conformer of the free molecule. In the Si and N-substituted diamond clusters, notable changes in the structures involving the substituents atoms when compared with smaller parent molecules, such as 1-methyl-1-silaadamantane and 1-azaadamantane, were detected. Adhesion free energy differences were estimated for a series of representative peptides (hydrophobic Phe-Gly-Phe, amphiphilic Arg-Gly-Phe, and hydrophilic Arg-Gly-Arg) to a (111) diamond surface substituted with different amounts of N, Si, or F, using molecular dynamics simulations in an explicit water environment employing a Dreiding force field. The calculations were in agreement with the DFT results in that adsorption of the studied peptides to diamond surface is influenced by introducing additional elements to the surface. It has been shown that, in general, substitution will enhance electrostatic interactions between a surface and surrounding water, leading to a weaker adhesion of the studied peptides.

  14. Cell-polymer interactions of fluorescent polystyrene latex particles coated with thermosensitive poly(N-isopropylacrylamide) and poly(N-vinylcaprolactam) or grafted with poly(ethylene oxide)-macromonomer.

    PubMed

    Vihola, Henna; Marttila, Anna-Kaisa; Pakkanen, Jukka S; Andersson, Mirja; Laukkanen, Antti; Kaukonen, Ann Marie; Tenhu, Heikki; Hirvonen, Jouni

    2007-10-01

    Cell-polymer interactions of thermosensitive poly(N-isopropylacrylamide) (PNIPAM) or poly(N-vinylcaprolactam) (PVCL) coated particles with RAW264.7 macrophages and intestinal Caco-2 cells were evaluated. Nanosized particles were prepared by modifying the surface of fluorescent polystyrene (FPS) particles with the thermosensitive polymer gels or with poly(ethylene oxide) (PEO)-macromonomer grafts. The particles were characterized by IR-spectroscopy for functional groups, light scattering for size distribution and zeta-potential for surface charge. Effects of temperature and polymer coating/grafting on the cellular interactions were evaluated by cell association/uptake and visualized by confocal scanning microscope. PEO and PNIPAM inhibited the polymer-cell contact by steric repulsion, evidenced by weak attachment of the particles. PVCL-coated FPS was adsorbed on the cells more strongly, especially at 37 degrees C, because of more hydrophobic nature at higher temperatures. The results suggest feasibility of the PNIPAM and PVCL for biotechnological/pharmaceutical applications, as the cell-particle interactions may be modified by size, surface charge, hydrophobicity, steric repulsion and temperature.

  15. Testing and comparison of the coating materials for immunosensors on QCM

    NASA Astrophysics Data System (ADS)

    Oztuna, Ali; Nazir, Hasan

    2012-06-01

    In immunoassay based biosensors development studies polymers, as a matrix, and thiol, amine and aldehyde derivative compounds, as a antibody linker, are to be experimented. Aim of this study is to test amine and acetate functional group containing derivatives in liquid phase in order to develop an antibody immobilization strategy for Quartz Crystal Microbalance (QCM) system. In our study, 4-aminothiophenol (4-AT), carboxylated-PVC (PVC-COOH) and aminated- PVC (PVC-NH2) compared with each other as a coating material. Surface of the coated AT-cut gold crystals were characterized with Fourier Transform Infrared spectrometry (FTIR) and Scanning Electron Microscobe (SEM) and tested in a Bacillus anthracis (GenBank: GQ375871) spores immunoassay model system. Subsequently, a series of SEM micrographs were taken again in order to investigate surface morphology and show the presence of the B. anthracis spores on the sensor surface. When experimental results and SEM images were evaluated together, it was suggested that with the synthesis of PVC like open-chained polymers, containing -NH2 and -SH functional groups, B. anthracis spore detection can be accomplished on QCM without requiring complicated immobilization procedures and expensive preliminary preparations.

  16. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, J.; Allen, B.; Wriggins, W.

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirementmore » for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test methods have been developed that deliver accurate and repeatable data, which will be described.« less

  17. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    NASA Astrophysics Data System (ADS)

    Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.

    2012-11-01

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test methods have been developed that deliver accurate and repeatable data, which will be described.

  18. Autoclaving-Derived Surface Coating with In Vitro and In Vivo Antimicrobial and Antibiofilm Efficacies.

    PubMed

    Su, Yajuan; Zhi, Zelun; Gao, Qiang; Xie, Meihua; Yu, Meng; Lei, Bo; Li, Peng; Ma, Peter X

    2017-03-01

    Biomedical device-associated infections which engender severe threat to public health require feasible solutions. In this study, block copolymers consisting of antimicrobial, antifouling, and surface-tethering segments in one molecule are synthesized and grafted on polymeric substrates by a facile plasma/autoclave-assisted method. Hetero-bifunctional polyethylene glycol (PEG) with allyl and tosyl groups (APEG-OTs) is first prepared. PEGs with different molecular weights (1200 and 2400 Da) are employed. Polyhexamethylene guanidine (PHMG) which has excellent broad-spectrum antimicrobial activity and thermal/chemical stability, is conjugated with APEG-OTs to generate the block copolymer (APEG-PHMG). Allyl terminated PHMG (A-PHMG) without PEG segments is also synthesized by reacting PHMG with allyl glycidyl ether. The synthesized copolymers are thermal initiated by autoclaving and grafted on plasma pretreated silicone surface, forming permanently bonded bottlebrush-like coatings. Both A-PHMG and APEG 1200/2400 -PHMG coatings exhibit potent antimicrobial activity against gram-positive/negative bacteria and fungus, whereas APEG 1200/2400 -PHMG coatings show superior antifouling activity and long-term reusability to A-PHMG coating. APEG 2400 -PHMG coating demonstrates the most effective in vitro antibiofilm and protein/platelet-resistant properties, as well as excellent hemo/biocompatibility. Furthermore, APEG 2400 -PHMG greatly reduces the bacteria number with 5-log reduction in a rodent subcutaneous infection model. This rationally designed dual-functional antimicrobial and antifouling coating has great potential in combating biomedical devices/implant-associated infections. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Force-activatable coating enables high-resolution cellular force imaging directly on regular cell culture surfaces.

    PubMed

    Sarkar, Anwesha; Zhao, Yuanchang; Wang, Yongliang; Wang, Xuefeng

    2018-06-25

    Integrin-transmitted cellular forces are crucial mechanical signals regulating a vast range of cell functions. Although various methods have been developed to visualize and quantify cellular forces at the cell-matrix interface, a method with high performance and low technical barrier is still in demand. Here we developed a force-activatable coating (FAC), which can be simply coated on regular cell culture apparatus' surfaces by physical adsorption, and turn these surfaces to force reporting platforms that enable cellular force mapping directly by fluorescence imaging. The FAC molecule consists of an adhesive domain for surface coating and a force-reporting domain which can be activated to fluoresce by integrin molecular tension. The tension threshold required for FAC activation is tunable in 10-60 piconewton (pN), allowing the selective imaging of cellular force contributed by integrin tension at different force levels. We tested the performance of two FACs with tension thresholds of 12 and 54 pN (nominal values), respectively, on both glass and polystyrene surfaces. Cellular forces were successfully mapped by fluorescence imaging on all the surfaces. FAC-coated surfaces also enable co-imaging of cellular forces and cell structures in both live cells and immunostained cells, therefore opening a new avenue for the study of the interplay of force and structure. We demonstrated the co-imaging of integrin tension and talin clustering in live cells, and concluded that talin clustering always occurs before the generation of integrin tension above 54 pN, reinforcing the notion that talin is an important adaptor protein for integrin tension transmission. Overall, FAC provides a highly convenient approach that is accessible to general biological laboratories for the study of cellular forces with high sensitivity and resolution, thus holding the potential to greatly boost the research of cell mechanobiology.

  20. Atomic Oxygen Durability Evaluation of a UV Curable Ceramer Protective Coating

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Karniotis, Christina A.; Dworak, David; Soucek, Mark

    2004-01-01

    The exposure of most silicones to atomic oxygen in low Earth orbit (LEO) results in the oxidative loss of methyl groups with a gradual conversion to oxides of silicon. Typically there is surface shrinkage of oxidized silicone protective coatings which leads to cracking of the partially oxidized brittle surface. Such cracks widen and branch crack with continued atomic oxygen exposure ultimately allowing atomic oxygen to reach any hydrocarbon polymers under the silicone coating. A need exists for a paintable silicone coating that is free from such surface cracking and can be effectively used for protection of polymers and composites in LEO. A new type of silicone based protective coating holding such potential was evaluated for atomic oxygen durability in an RF atomic oxygen plasma exposure facility. The coating consisted of a UV curable inorganic/organic hybrid coating, known as a ceramer, which was fabricated using a methyl substituted polysiloxane binder and nanophase silicon-oxo-clusters derived from sol-gel precursors. The polysiloxane was functionalized with a cycloaliphatic epoxide in order to be cured at ambient temperature via a cationic UV induced curing mechanism. Alkoxy silane groups were also grafted onto the polysiloxane chain, through hydrosilation, in order to form a network with the incorporated silicon-oxo-clusters. The prepared polymer was characterized by H-1 and Si-29 NMR, FT-IR, and electrospray ionization mass spectroscopy. The paper will present the results of atomic oxygen protection ability of thin ceramer coatings on Kapton H as evaluated over a range of atomic oxygen fluence levels.

  1. Glucose monitoring using a polymer brush modified polypropylene hollow fiber-based hydraulic flow sensor.

    PubMed

    Fortin, Nicolas; Klok, Harm-Anton

    2015-03-04

    Tight regulation of blood glucose levels of diabetic patients requires durable and robust continuous glucose sensing schemes. This manuscript reports the fabrication of ultrathin, phenylboronic acid (PBA) functionalized polymer brushes that swell upon glucose binding and which were integrated as the sensing interface in a new polypropylene hollow fiber (PPHF)-based hydraulic flow glucose sensor prototype. The polymer brushes were prepared via surface-initiated atom transfer radical polymerization of sodium methacrylate followed by postpolymerization modification with 3-aminophenyl boronic acid. In a first series of experiments, the glucose-response of PBA-functionalized poly(methacrylic acid) (PMAA) brushes grafted from planar silicon surfaces was investigated by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM) experiments. The QCM-D experiments revealed a more or less linear change of the frequency shift for glucose concentrations up to ∼10 mM and demonstrated that glucose binding was completely reversible for up to seven switching cycles. The AFM experiments indicated that glucose binding was accompanied by an increase in the film thickness of the PBA functionalized PMAA brushes. The PBA functionalized PMAA brushes were subsequently grafted from the surface of PPHF membranes. The hydraulic permeability of these porous fibers depends on the thickness and swelling of the PMAA brush coating. PBA functionalized brush-coated PPHFs showed a decrease in flux upon exposure to glucose, which is consistent with swelling of the brush coating. Because they avoid the use of enzymes and do not rely on an electrochemical transduction scheme, these PPHF-based hydraulic flow sensors could represent an interesting alternative class of continuous glucose sensors.

  2. Corrosion prevention of magnesium surfaces via surface conversion treatments using ionic liquids

    DOEpatents

    Qu, Jun; Luo, Huimin

    2016-09-06

    A method for conversion coating a magnesium-containing surface, the method comprising contacting the magnesium-containing surface with an ionic liquid compound under conditions that result in decomposition of the ionic liquid compound to produce a conversion coated magnesium-containing surface having a substantially improved corrosion resistance relative to the magnesium-containing surface before said conversion coating. Also described are the resulting conversion-coated magnesium-containing surface, as well as mechanical components and devices containing the conversion-coated magnesium-containing surface.

  3. Electrocurtain coating process for coating solar mirrors

    DOEpatents

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  4. Forces between functionalized silica nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Ismail, Ahmed E.; Chandross, Michael; Lorenz, Christian D.; Grest, Gary S.

    2009-05-01

    To prevent the flocculation and phase separation of nanoparticles in solution, nanoparticles are often functionalized with short chain surfactants. Here we present fully atomistic molecular dynamics simulations which characterize how these functional coatings affect the interactions between nanoparticles and with the surrounding solvent. For 5-nm-diameter silica nanoparticles coated with poly(ethylene oxide) (PEO) oligomers in water, we determined the hydrodynamic drag on two approaching nanoparticles moving through solvent and on a single nanoparticle as it approaches a planar surface. In most circumstances, macroscale fluid theory accurately predicts the drag on these nanoscale particles. Good agreement is seen with Brenner’s analytical solutions for wall separations larger than the soft nanoparticle radius. For two approaching coated nanoparticles, the solvent-mediated (velocity independent) and lubrication (velocity-dependent) forces are purely repulsive and do not exhibit force oscillations that are typical of uncoated rigid spheres.

  5. Surface functionalized magnetic nanoparticles for cancer therapy applications

    NASA Astrophysics Data System (ADS)

    Wydra, Robert John

    Despite recent advances, cancer remains the second leading cause of deaths in the United States. Magnetic nanoparticles have found various applications in cancer research as drug delivery platforms, enhanced contrast agents for improved diagnostic imaging, and the delivery of thermal energy as standalone therapy. Iron oxide nanoparticles absorb the energy from an alternating magnetic field and convert it into heat through Brownian and Neel relaxations. To better utilize magnetic nanoparticles for cancer therapy, surface functionalization is essential for such factors as decreasing cytotoxicity of healthy tissue, extending circulation time, specific targeting of cancer cells, and manage the controlled delivery of therapeutics. In the first study, iron oxide nanoparticles were coated with a poly(ethylene glycol) (PEG) based polymer shell. The PEG coating was selected to prevent protein adsorption and thus improve circulation time and minimize host response to the nanoparticles. Thermal therapy application feasibility was demonstrated in vitro with a thermoablation study on lung carcinoma cells. Building on the thermal therapy demonstration with iron oxide nanoparticles, the second area of work focused on intracellular delivery. Nanoparticles can be appropriately tailored to enter the cell and deliver energy on the nanoscale eliminating individual cancer cells. The underlying mechanism of action is still under study, and we were interested in determining the role of reactive oxygen species (ROS) catalytically generated from the surface of iron oxide nanoparticles in this measured cytotoxicity. When exposed to an AMF, the nanoscale heating effects are capable of enhancing the Fenton-like generation of ROS determined through a methylene blue degradation assay. To deliver this enhanced ROS effect to cells, monosaccharide coated nanoparticles were developed and successfully internalized by colon cancer cell lines. Upon AMF exposure, there was a measured increase in cellular ROS and apoptosis that was attributed to lysosomal disruption since the surface functionalization selected inhibited the Fenton-like surface chemistry. To overcome this surface inhibition, a biodegradable poly(beta-amino ester) (PBAE) polymer coating was synthesized to deliver bare iron oxide to intracellular components. Delivering enhanced ROS to cancer cells is a promising new route of therapy that deserves future studies.

  6. Antimicrobial activity of lauric arginate-coated polylactic acid films against Listeria monocytogenes and Salmonella typhimurium on cooked sliced ham.

    PubMed

    Theinsathid, Pornpun; Visessanguan, Wonnop; Kruenate, Jittiporn; Kingcha, Yutthana; Keeratipibul, Suwimon

    2012-02-01

    A novel type of environmentally friendly packaging with antibacterial activity was developed from lauric arginate (LAE)-coating of polylactic acid (PLA) films after surface activation using a corona discharge. Scanning electron microscopy (SEM)-based analysis of the LAE/PLA films confirmed the successful coating of LAE on the PLA surface. The mechanical properties of the LAE/PLA films with different levels of LAE-coating (0% to 2.6%[w/w]) were essentially the same as those of the neat PLA film. The antibacterial activity of the LAE/PLA films against Listeria monocytogenes and Salmonella enterica Serovar Typhimurium (S. Typhimurium) was confirmed by a qualitative modified agar diffusion assay and quantitative JIS Z 2801:2000 method. Using the LAE/PLA film as a food-contact antimicrobial packaging for cooked cured ham, as a model system, suggested a potential application to inhibit L. monocytogenes and S. Typhimurium on ham with a 0.07% (w/w) LAE coating on the PLA when high transparency is required, as evidenced from the 2 to 3 log CFU/tested film lower pathogen growth after 7 d storage but even greater antibacterial activity is obtained with a LAE coating level of 2.6% (w/w) but at the cost of a reduced transparency of the finished product. This article shows how we can simply develop functional green packaging of PLA for food with effective and efficient antimicrobial activity by use of LAE coating on the surface via corona discharge. The effectiveness of an innovative antimicrobial LAE-coated PLA film against foodborne pathogens was demonstrated. Importantly, the application of the LAE to form the LAE-coated PLA film can be customized within current film manufacturing lines. © 2012 Institute of Food Technologists®

  7. Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.

  8. Development of an Organosilicon-Based Superhydrophobic/Icephobic Surface Using an Atmospheric Pressure Plasma Jet =

    NASA Astrophysics Data System (ADS)

    Asadollahi, Siavash

    During the past few decades, plasma-based surface treatment methods have gained a lot of interest in various applications such as thin film deposition, surface etching, surface activation and/or cleaning, etc. Generally, in plasma-based surface treatment methods, high-energy plasma-generated species are utilized to modify the surface structure or the chemical composition of a substrate. Unique physical and chemical characteristics of the plasma along with the high controllability of the process makes plasma treatment approaches very attractive in several industries. Plasma-based treatment methods are currently being used or investigated for a number of practical applications, such as adhesion promotion in auto industry, wound management and cancer treatment in biomedical industry, and coating development in aerospace industry. In this study, a two-step procedure is proposed for the development of superhydrophobic/icephobic coatings based on atmospheric-pressure plasma treatment of aluminum substrates using air and nitrogen plasma. The effects of plasma parameters on various surface properties are studied in order to identify the optimum conditions for maximum coating efficiency against icing and wetting. In the first step, the interactions between air or nitrogen plasma and the aluminum surface are studied. It is shown that by reducing jet-to-substrate distance, air plasma treatment, unlike nitrogen plasma treatment, is capable of creating micro-porous micro-roughened structures on the surface, some of which bear a significant resemblance to the features observed in laser ablation of metals with short and ultra-short laser pulses. The formation of such structures in plasma treatment is attributed to a transportation of energy from the jet to the surface over a very short period of time, in the range of picoseconds to microseconds. This energy transfer is shown to occur through a streamer discharge from the rotating arc source in the jet body to a close proximity of the surface, and then through multiple seemingly random electric arcs on the surface. The formation of these discharges is facilitated by the near-infinite conductivity of the air plasma column. The micro-porous micro-roughened structure developed in this step is then used as the substrate for coating deposition. In the next step, first the plasma jet is slightly modified with a quartz tube surrounding the jet-head. This modification allows for ignition and maintenance of a very weak plasma while hindering the diffusion of oxygen into the plasma and thus increasing the amount of organic deposition on the surface. This is confirmed by the chemical characterization of the surfaces developed using the modified jet. Furthermore, it is shown that this modification can significantly affect surface morphology, leading to a finer surface structure with different levels of roughness. Hydrophobic materials are then deposited on the surface in the presence of HMDSO using nitrogen plasma. Several samples are prepared with different precursor flow rates, plasma generation powers and number of deposition passes. All coatings are characterized regarding their surface morphology, chemical composition, wetting behavior and icephobic characteristics. It is shown that at low precursor flow rates, coating deposition is not enough for a full coverage of the surface. On the other hand, at high flow rates coating deposition can completely cover the surface features originated from the air plasma treatment process, thus negating the effects of an important roughness level. At the median flow rate, which was identified to be 5 g/h, the coating can fully cover the surface while maintaining the pre-existing surface features. It is also shown that by increasing the number of plasma deposition passes, surface features become slightly larger while the amount of organic deposition on the surface increases. Finally, it is shown that in high plasma generation powers, the amount of oxide deposition on the surface increases, leading to lower contact angles and higher ice adhesion strengths. In order to estimate coatings' efficiency in practical applications, coating's stability against some environmental factors is studied. At first, the effects of multiple icing/deicing cycles on surface properties is investigated. SEM studies confirm the removal of the coating material from the surface in all cases after multiple icing/deicing cycles. However, it is shown that the sample resulting from the lowest generation power combined with median flow rate and 3 passes of plasma deposition can maintain its hydrophobicity and icephobicity for up to 10 cycles of icing/deicing. This sample is then exposed to an equivalent of up to 4 years of natural ultraviolet exposure and the effects of UV on surface properties were studied. It is suggested that ultraviolet exposure may be capable of reorganizing the organic functions in the coating structure, leading to shorter siloxane chains with denser methyl functionalization, thus affecting the wetting and icing behavior of the surface. Ice adhesion strength was shown to decrease significantly after the equivalent of 3 years of natural UV exposure. The procedure introduced in this thesis is a cheap, quick, and environmentally friendly method for development of superhydrophobic/icephobic coatings on aluminum substrates. Therefore, it can be easily implemented in several industrial applications where outdoor structures are expected to be exposed to severe icing events.

  9. Novel Bio-functional Magnesium Coating on Porous Ti6Al4V Orthopaedic Implants: In vitro and In vivo Study

    PubMed Central

    Li, Xiaokang; Gao, Peng; Wan, Peng; Pei, Yifeng; Shi, Lei; Fan, Bo; Shen, Chao; Xiao, Xin; Yang, Ke; Guo, Zheng

    2017-01-01

    Titanium and its alloys with various porous structures are one of the most important metals used in orthopaedic implants due to favourable properties as replacement for hard tissues. However, surface modification is critical to improve the osteointegration of titanium and its alloys. In this study, a bioactive magnesium coating was successfully fabricated on porous Ti6Al4V by means of arc ion plating, which was proved with fine grain size and high film/substrate adhesion. The surface composition and morphology were characterized by X-ray diffraction and SEM equipped with energy dispersive spectroscopy. Furthermore, the in vitro study of cytotoxicity and proliferation of MC3T3-E1 cells showed that magnesium coated porous Ti6Al4V had suitable degradation and biocompatibility. Moreover, the in vivo studies including fluorescent labelling, micro-computed tomography analysis scan and Van-Gieson staining of histological sections indicated that magnesium coated porous Ti6Al4V could significantly promote bone regeneration in rabbit femoral condylar defects after implantation for 4 and 8 weeks, and has better osteogenesis and osteointegration than the bare porous Ti6Al4V. Therefore, it is expected that this bioactive magnesium coating on porous Ti6Al4V scaffolds with improved osteointegration and osteogenesis functions can be used for orthopedic applications. PMID:28102294

  10. In Situ Enrichment of Phosphopeptides on MALDI Plates Functionalized by Reactive Landing of Zirconium(IV)–n-Propoxide Ions

    PubMed Central

    Blacken, Grady R.; Volný, Michael; Vaisar, Tomáš; Sadílek, Martin; Tureček, František

    2008-01-01

    We report substantial in situ enrichment of phosphopeptides in peptide mixtures using zirconium oxide coated plates for detection by MALDI-TOF mass spectrometry. The novel feature of this approach rests on the specific preparation of zirconium oxide coatings using reactive landing on stainless steel support of gas-phase positive ions produced by electrospray of zirconium(IV)–n-propoxide solutions in 1-propanol. Reactive landing was found to produce durable functionalized surfaces for selective phosphopeptide capture and desorption–ionization by MALDI. Enrichment factors on the order of 20–90 were achieved for several monophosphorylated peptides relative to abundant nonphosphorylated peptides in tryptic digests. We demonstrate the ability of the zirconium oxide functionalized MALDI surfaces to facilitate detection of enriched phosphopeptides in mid-femtomole amounts of α-casein digests per MALDI spot. PMID:17569507

  11. Glycofunctionalization of Poly(lactic- co-glycolic acid) Polymers: Building Blocks for the Generation of Defined Sugar-Coated Nanoparticles.

    PubMed

    Palmioli, Alessandro; La Ferla, Barbara

    2018-06-15

    A set of poly(lactic- co-glycolic acid) polymers functionalized with different monosaccharides as well as glycodendrimers and surface-decorated nanoparticles (NPs) were synthesized and characterized. The functionalization of the polymer was carried out through amide bond formation with amino-modified sugar monomers and through a biocompatible chemoselective method exploiting the reducing end of a free sugar. The assemblage of the NPs adopting a nanoprecipitation method was straightforward and allowed the preparation of sugars/sugar dendrimer coated NPs.

  12. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties.

    PubMed

    Gao, Qiang; Yu, Meng; Su, Yajuan; Xie, Meihua; Zhao, Xin; Li, Peng; Ma, Peter X

    2017-03-15

    Numerous antimicrobial coatings have been developed for biomedical devices/implants, but few can simultaneously fulfill the requirements for antimicrobial and antifouling ability and biocompatibility. In this study, to develop an antimicrobial and antibiofilm surface coating, diblock amphiphilic molecules with antimicrobial and antifouling segments in a single chain were rationally designed and synthesized. Cationic antimicrobial polypeptides (AMP) were first synthesized by N-carboxyanhydride ring-opening polymerization (NCA-ROP). Heterofunctionalized poly(ethylene glycol) with different lengths (methacrylate-PEG n -tosyl, n=10/45/90) was synthesized and site-specifically conjugated with polypeptides to form diblock amphiphiles. Along with increased PEG chain length, hemolytic activity was considerably improved, and broad-spectrum antimicrobial activity is retained. Three MA-PEG n -b-AMP copolymers were further grafted onto the surface of silicone rubber (a commonly used catheter material) via plasma/UV-induced surface polymerizations to form a bottlebrush-like coating with excellent antimicrobial activity against several pathogenic bacteria (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus), and effectively prevent biofilm formation. This bottlebrush coating also greatly reduced protein adsorption and platelet adhesion, indicating its excellent antifouling ability. An in vitro cytotoxicity study also demonstrated that this coating is biocompatible with mammalian cells. After subcutaneous implantation of the materials in rats, we demonstrated that the g-PEG 45 -b-AMP bottlebrush coating exhibits significant anti-infective activity in vivo. Thus, this facilely synthesized PEGylated AMP bottlebrush coating is a feasible method to prevent biomedical devices-associated infections. Current antimicrobial coatings are often associated with concerns such as antibiotic resistance, environmental pollution, short-time antimicrobial activity, biofouling, poor blood compatibility and cytotoxicity, etc. To overcome these drawbacks, a robust PEGylated cationic amphiphilic peptides-based bottlebrush-like surface coating is demonstrated here, which fulfil the requirements of antimicrobial and antifouling as well as biocompatibility in the meantime. Briefly, the rational designed g-PEG n -b-AMP block copolymers (n=10/45/90) were synthesized and grafted on silicone surface. This bottlebrush-like coating efficiently kill the contacted bacteria and prevent the biofilm formation, greatly reduced protein and platelet adhesion. It also exhibits excellent blood compatibility and low cytotoxicity in vitro. In particular, g-PEG 45 -b-AMP coating exhibits significant anti-infection effect in vivo. This coating offering an effective strategy for combating biomedical devices-associated infections. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Friction between Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Sokoloff, Jeffrey

    2006-03-01

    A polymer brush consists of a surface with a fairly concentrated coating of polymer chains, each one of which has one of its ends tightly bound to the surface. They serve as extremely effective lubricant, producing friction coefficients as low as 0.001 or less! Polymer brushes are a promising way to reduce friction to extremely low values. They have the disadvantage, however, that they must be immersed in a liquid solvent in order to function as a lubricant. The presence of a solvent is believed to result in osmotic pressure which partially supports the load. The density profile of a polymer brush (i.e., the density of monomers as a function of distance from the surface to which the polymers are attached) is well established. What is not understood is how the interaction of polymer brush coated surfaces in contact with each other is able to account for the details of the observed low friction. For example, molecular dynamics studies generally do not predict static friction, whereas surface force apparatus measurements due to Tadmor, et. al., find that there is static friction. This is the topic of the present presentation.

  14. Biomimetic surface coatings from modular amphiphilic proteins

    NASA Astrophysics Data System (ADS)

    Harden, James; Wan, Fan; Fischer, Stephen; Dick, Scott

    2010-03-01

    Recombinant DNA methods have been used to develop a library of diblock protein polymers for creating designer biofunctional interfaces. These proteins are composed of a surface-active, amphiphilic block joined to a disordered, water soluble block with an end terminal bioactive domain. The amphiphilic block has a strong affinity for many synthetic polymer surfaces, providing a facile means of imparting biological functionality to otherwise bio-neutral materials through physical self-assembly. We have incorporated a series of bioactive end domains into this diblock motif, including sequences that encode specific cell binding and signaling functions of extracellular matrix constituents (e.g. RGD and YIGSR). In this talk, we show that these diblock constructs self-assemble into biofunctional surface coatings on several model synthetic polymer materials. We demonstrate that surface adsorption of the proteins has minimal impacts on the presentation of the bioactive domains in the soluble block, and through the use of microscopic and cell proliferation assays, we show that the resulting biofunctional interfaces are capable of inducing appropriate cellular responses in a variety of human cell types.

  15. Nano-anisotropic surface coating based on drug immobilized pendant polymer to suppress macrophage adhesion response.

    PubMed

    Kaladhar, K; Renz, H; Sharma, C P

    2015-04-01

    Exploring drug molecules for material design, to harness concepts of nano-anisotropy and ligand-receptor interactions, are rather elusive. The aim of this study is to demonstrate the bottom-up design of a single-step and bio-interactive polymeric surface coating, based on drug based pendant polymer. This can be applied on to polystyrene (PS) substrates, to suppress macrophage adhesion and spreading. The drug molecule is used in this coating for two purposes. The first one is drug as a "pendant" group, to produce nano-anisotropic properties that can enable adhesion of the coatings to the substrate. The second purpose is to use the drug as a "ligand", to produce ligand-receptor interaction, between the bound ligand and receptors of albumin, to develop a self-albumin coat over the surface, by the preferential binding of albumin in biological environment, to reduce macrophage adhesion. Our in silico studies show that, diclofenac (DIC) is an ideal drug based "ligand" for albumin. This can also act as a "pendant" group with planar aryl groups. The combination of these two factors can help to harness, both nano-anisotropic properties and biological functions to the polymeric coating. Further, the drug, diclofenac (DIC) is immobilized to the polyvinyl alcohol (PVA), to develop the pendant polymer (PVA-DIC). The interaction of bound DIC with the albumin is a ligand-receptor based interaction, as per the studies by circular dichroism, differential scanning calorimetry, and SDS-PAGE. The non-polar π-π* interactions are regulating; the interactions between PVA bound DIC-DIC interactions, leading to "nano-anisotropic condensation" to form distinct "nano-anisotropic segments" inside the polymeric coating. This is evident from, the thermo-responsiveness and uniform size of nanoparticles, as well as regular roughness in the surface coating, with similar properties as that of nanoparticles. In addition, the hydrophobic DIC-polystyrene (PS) interactions, between the PVA-DIC coating and PS-substrate produce improved coating stability. Subsequently, the PVA-DIC coated substrate has the maximum capacity to suppress the macrophage (RAW 264.7 cell line) adhesion and spreading, which is partly due to wavy-surface topography of hydrophilic PVA and preferential albumin binding capacity of PVA bound DIC. Our result shows that, such surfaces suppress the macrophages, even under stimulation with lipopolysaccharide (LPS). The modified tissue culture plates can be used as an in vitro tool, to study the macrophage response under low spatial cues. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Layer-by-layer assembly for biomedical applications in the last decade

    NASA Astrophysics Data System (ADS)

    Gentile, P.; Carmagnola, I.; Nardo, T.; Chiono, V.

    2015-10-01

    In the past two decades, the design and manufacture of nanostructured materials has been of tremendous interest to the scientific community for their application in the biomedical field. Among the available techniques, layer-by-layer (LBL) assembly has attracted considerable attention as a convenient method to fabricate functional coatings. Nowadays, more than 1000 scientific papers are published every year, tens of patents have been deposited and some commercial products based on LBL technology have become commercially available. LBL presents several advantages, such as (1): a precise control of the coating properties; (2) environmentally friendly, mild conditions and low-cost manufacturing; (3) versatility for coating all available surfaces; (4) obtainment of homogeneous film with controlled thickness; and (5) incorporation and controlled release of biomolecules/drugs. This paper critically reviews the scientific challenge of the last 10 years—functionalizing biomaterials by LBL to obtain appropriate properties for biomedical applications, in particular in tissue engineering (TE). The analysis of the state-of-the-art highlights the current techniques and the innovative materials for scaffold and medical device preparation that are opening the way for the preparation of LBL-functionalized substrates capable of modifying their surface properties for modulating cell interaction to improve substitution, repair or enhancement of tissue function.

  17. Timing properties of phosphor-coated polished LSO crystals.

    PubMed

    Schmall, Jeffrey P; Roncali, Emilie; Berg, Eric; Viswanath, Varsha; Du, Junwei; Cherry, Simon R

    2014-08-07

    This study investigates a time-of-flight (TOF)-depth-of-interaction (DOI) detector design for positron emission tomography (PET), based on phosphor-coated lutetium oxyorthosilicate (LSO) scintillator crystals coupled to fast single channel photomultiplier tubes. Interaction of the scintillation light with the phosphor coating changes the pulse shape in a depth-dependent manner. 3 × 3 × 10 mm(3) LSO scintillation crystals with polished surfaces were characterized, with and without phosphor coating, to assess DOI capability and timing properties. Two different phosphor coating geometries were studied: coating of the top surface of the crystal, and the top plus half of the crystal sides. There was negligible depth dependency in the decay time when coating only the top surface, however there was a ∼10 ns difference in end-to-end decay time when coating the top plus half of the crystal sides, sufficient to support the use of three DOI bins (3.3 mm DOI bin width). The rise time of the half-coated phosphor crystal was slightly faster at all depths, compared to uncoated crystals, however the signal amplitude was lower. Phosphor coating resulted in depth-dependent photopeak positions with an energy resolution of 13.7%, at a depth of 1 mm, and 15.3%, at a depth of 9 mm, for the half-coated crystal. Uncoated LSO crystals showed no change in photopeak position as a function of depth, with an energy resolution of 10.4%. The head-on coincidence timing resolution (CTR) of two uncoated LSO crystals was 287 ps using constant fraction discrimination for time pick-off. With phosphor coating, the CTR of the top-coated crystal was 314 ps, compared to 384 ps for the half-coated crystal. We demonstrate that the trade-off between timing resolution and DOI resolution can be controlled by the phosphor coating geometry. Here we present preliminary results demonstrating that good DOI resolution can be achieved with only a modest 26% degradation in CTR.

  18. Surface Passivation for Single-molecule Protein Studies

    PubMed Central

    Chandradoss, Stanley D.; Haagsma, Anna C.; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin

    2014-01-01

    Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation. PMID:24797261

  19. A simple and general route for monofunctionalization of fluorescent and magnetic nanoparticles using peptides

    NASA Astrophysics Data System (ADS)

    Clarke, Samuel; Tamang, Sudarsan; Reiss, Peter; Dahan, Maxime

    2011-04-01

    Nanoparticles are now utilized in many diverse biological and medical applications. Despite this, it remains challenging to tailor their surface for specific molecular targeting while maintaining high biocompatibility. To address this problem, we evaluate a phytochelatin-related peptide surface coating to produce functional and biocompatible nanoparticles (NPs) based on fluorescent InP/ZnS and CdSe/ZnS or superparamagnetic FePt and Fe3O4. Using a combination of transmission electron microscopy, size-exclusion chromatography and gel electrophoresis (GE), we demonstrate the excellent colloidal properties of the peptide-coated NPs (pNPs) and the compact nature of the coating (~4 nm thickness). We develop a simple protocol for the monofunctionalization of the pNPs with targeting biomolecules, by combining covalent conjugation with GE purification. We then employ functionalized InP/ZnS pNPs in a live-cell, single-molecule imaging application to specifically target and detect individual proteins in the cell membrane. These findings showcase the versatility of the peptides for preparing compact NPs of various compositions and sizes, which are easily functionalized, and suitable for a broad range of biomedical applications.

  20. A simple and general route for monofunctionalization of fluorescent and magnetic nanoparticles using peptides.

    PubMed

    Clarke, Samuel; Tamang, Sudarsan; Reiss, Peter; Dahan, Maxime

    2011-04-29

    Nanoparticles are now utilized in many diverse biological and medical applications. Despite this, it remains challenging to tailor their surface for specific molecular targeting while maintaining high biocompatibility. To address this problem, we evaluate a phytochelatin-related peptide surface coating to produce functional and biocompatible nanoparticles (NPs) based on fluorescent InP/ZnS and CdSe/ZnS or superparamagnetic FePt and Fe(3)O(4). Using a combination of transmission electron microscopy, size-exclusion chromatography and gel electrophoresis (GE), we demonstrate the excellent colloidal properties of the peptide-coated NPs (pNPs) and the compact nature of the coating (∼4 nm thickness). We develop a simple protocol for the monofunctionalization of the pNPs with targeting biomolecules, by combining covalent conjugation with GE purification. We then employ functionalized InP/ZnS pNPs in a live-cell, single-molecule imaging application to specifically target and detect individual proteins in the cell membrane. These findings showcase the versatility of the peptides for preparing compact NPs of various compositions and sizes, which are easily functionalized, and suitable for a broad range of biomedical applications.

  1. Photopolymerization-based fabrication of chemical sensing films

    DOEpatents

    Yang, Xiaoguang; Swanson, Basil I.; Du, Xian-Xian

    2003-12-30

    A photopolymerization method is disclosed for attaching a chemical microsensor film to an oxide surface including the steps of pretreating the oxide surface to form a functionalized surface, coating the functionalized surface with a prepolymer solution, and polymerizing the prepolymer solution with ultraviolet light to form the chemical microsensor film. The method also allows the formation of molecular imprinted films by photopolymerization. Formation of multilayer sensing films and patterned films is allowed by the use of photomasking techniques to allow patterning of multiple regions of a selected sensing film, or creating a sensor surface containing several films designed to detect different compounds.

  2. Sputtered silicon nitride coatings for wear protection

    NASA Technical Reports Server (NTRS)

    Grill, A.; Aron, P. R.

    1982-01-01

    Silicon nitride films were deposited by RF sputtering on 304 stainless steel substrates in a planar RF sputtering apparatus. The sputtering was performed from a Si3N4 target in a sputtering atmosphere of argon and nitrogen. The rate of deposition, the composition of the coatings, the surface microhardness and the adhesion of the coatings to the substrates were investigated as a function of the process parameters, such as: substrate target distance, fraction nitrogen in the sputtering atmosphere and sputtering pressure. Silicon rich coating was obtained for fraction nitrogen below 0.2. The rate of deposition decreases continuously with increasing fraction nitrogen and decreasing sputtering pressure. It was found that the adherence of the coatings improves with decreasing sputtering pressure, almost independently of their composition.

  3. Particulate Respirators Functionalized with Silver Nanoparticles Showed Excellent Real-Time Antimicrobial Effects against Pathogens.

    PubMed

    Zheng, Clark Renjun; Li, Shuai; Ye, Chengsong; Li, Xinyang; Zhang, Chiqian; Yu, Xin

    2016-07-05

    Particulate respirators designed to filtrate fine particulate matters usually do not possess antimicrobial functions. The current study aimed to functionalize particulate respirators with silver nanoparticles (nanosilver or AgNPs), which have excellent antimicrobial activities, utilizing a straightforward and effective method. We first enhanced the nanosilver-coating ability of nonwoven fabrics from a particulate respirator through surface modification by sodium oleate. The surfactant treatment significantly improved the fabrics' water wet preference where the static water contact angles reduced from 122° to 56°. Both macroscopic agar-plate tests and microscopic scanning electron microscope (SEM) characterization revealed that nanosilver functionalized fabrics could effectively inhibit the growth of two model bacterial strains (i.e., Staphylococcus aureus and Pseudomonas aeruginosa). The coating of silver nanoparticles would not affect the main function of particulate respirators (i.e., filtration of fine air-borne particles). Nanosilver coated particulate respirators with excellent antimicrobial activities can provide real-time protection to people in regions with severe air pollution against air-borne pathogens.

  4. Photochemically modified diamond-like carbon surfaces for neural interfaces.

    PubMed

    Hopper, A P; Dugan, J M; Gill, A A; Regan, E M; Haycock, J W; Kelly, S; May, P W; Claeyssens, F

    2016-01-01

    Diamond-like carbon (DLC) was modified using a UV functionalization method to introduce surface-bound amine and aldehyde groups. The functionalization process rendered the DLC more hydrophilic and significantly increased the viability of neurons seeded to the surface. The amine functionalized DLC promoted adhesion of neurons and fostered neurite outgrowth to a degree indistinguishable from positive control substrates (glass coated with poly-L-lysine). The aldehyde-functionalized surfaces performed comparably to the amine functionalized surfaces and both additionally supported the adhesion and growth of primary rat Schwann cells. DLC has many properties that are desirable in biomaterials. With the UV functionalization method demonstrated here it may be possible to harness these properties for the development of implantable devices to interface with the nervous system. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Nano-Ceramic Coated Plastics

    NASA Technical Reports Server (NTRS)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (<100 C) is also a key to generating these ceramic coatings on the plastics. One possible way of processing nanoceramic coatings at low temperatures (< 90 C) is to take advantage of in-situ precipitated nanoparticles and nanostructures grown from aqueous solution. These nanostructures can be tailored to ceramic film formation and the subsequent microstructure development. In addition, the process provides environment- friendly processing because of the aqueous solution. Low-temperature processing has also shown versatility to generate various nanostructures. The growth of low-dimensional nanostructures (0-D, 1-D) provides a means of enhancing the crystallinity of the solution-prepared films that is of importance for photocatalytic performance. This technology can generate durable, fully functional nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  6. Surfactant-free Colloidal Particles with Specific Binding Affinity

    PubMed Central

    2017-01-01

    Colloidal particles with specific binding affinity are essential for in vivo and in vitro biosensing, targeted drug delivery, and micrometer-scale self-assembly. Key to these techniques are surface functionalizations that provide high affinities to specific target molecules. For stabilization in physiological environments, current particle coating methods rely on adsorbed surfactants. However, spontaneous desorption of these surfactants typically has an undesirable influence on lipid membranes. To address this issue and create particles for targeting molecules in lipid membranes, we present here a surfactant-free coating method that combines high binding affinity with stability at physiological conditions. After activating charge-stabilized polystyrene microparticles with EDC/Sulfo-NHS, we first coat the particles with a specific protein and subsequently covalently attach a dense layer of poly(ethyelene) glycol. This polymer layer provides colloidal stability at physiological conditions as well as antiadhesive properties, while the protein coating provides the specific affinity to the targeted molecule. We show that NeutrAvidin-functionalized particles bind specifically to biotinylated membranes and that Concanavalin A-functionalized particles bind specifically to the glycocortex of Dictyostelium discoideum cells. The affinity of the particles changes with protein density, which can be tuned during the coating procedure. The generic and surfactant-free coating method reported here transfers the high affinity and specificity of a protein onto colloidal polystyrene microparticles. PMID:28847149

  7. Clathrin-independent pathways do not contribute significantly to endocytic flux.

    PubMed

    Bitsikas, Vassilis; Corrêa, Ivan R; Nichols, Benjamin J

    2014-09-17

    Several different endocytic pathways have been proposed to function in mammalian cells. Clathrin-coated pits are well defined, but the identity, mechanism and function of alternative pathways have been controversial. Here we apply universal chemical labelling of plasma membrane proteins to define all primary endocytic vesicles, and labelling of specific proteins with a reducible SNAP-tag substrate. These approaches provide high temporal resolution and stringent discrimination between surface-connected and intracellular membranes. We find that at least 95% of the earliest detectable endocytic vesicles arise from clathrin-coated pits. GPI-anchored proteins, candidate cargoes for alternate pathways, are also found to enter the cell predominantly via coated pits. Experiments employing a mutated clathrin adaptor reveal distinct mechanisms for sorting into coated pits, and thereby explain differential effects on the uptake of transferrin and GPI-anchored proteins. These data call for a revision of models for the activity and diversity of endocytic pathways in mammalian cells.

  8. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

    NASA Astrophysics Data System (ADS)

    Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.

    2016-06-01

    Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

  9. Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films

    PubMed Central

    Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O’

    2015-01-01

    Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness. PMID:26123117

  10. Protein-resistant polymer coatings obtained by matrix assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Rusen, L.; Mustaciosu, C.; Mitu, B.; Filipescu, M.; Dinescu, M.; Dinca, V.

    2013-08-01

    Adsorption of proteins and polysaccharides is known to facilitate microbial attachment and subsequent formation of biofilm on surfaces that ultimately results in its biofouling. Therefore, protein repellent modified surfaces are necessary to block the irreversible attachment of microorganisms. Within this context, the feasibility of using the Poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether (PEG-block-PCL Me) copolymer as potential protein-resistant coating was explored in this work. The films were deposited using Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique that allows good control of composition, thickness and homogeneity. The chemical and morphological characteristics of the films were examined using Fourier Transform Infrared Spectroscopy (FTIR), contact angle measurements and Atomic Force Microscopy (AFM). The FTIR data demonstrates that the functional groups in the MAPLE-deposited films remain intact, especially for fluences below 0.5 J cm-2. Optical Microscopy and AFM images show that the homogeneity and the roughness of the coatings are related to both laser parameters (fluence, number of pulses) and target composition. Protein adsorption tests were performed on the PEG-block-PCL Me copolymer coated glass and on bare glass surface as a control. The results show that the presence of copolymer as coating significantly reduces the adsorption of proteins.

  11. Environmentally benign sol-gel antifouling and foul-releasing coatings.

    PubMed

    Detty, Michael R; Ciriminna, Rosaria; Bright, Frank V; Pagliaro, Mario

    2014-02-18

    Biofouling on ships and boats, characterized by aquatic bacteria and small organisms attaching to the hull, is an important global issue, since over 80000 tons of antifouling paint is used annually. This biofilm, which can form in as little as 48 hours depending on water temperature, increases drag on watercraft, which greatly reduces their fuel efficiency. In addition, biofouling can lead to microbially induced corrosion (MIC) due to H2S formed by the bacteria, especially sulfate-reducing bacteria. When the International Maritime Organization (IMO) international convention banned the use of effective but environmentally damaging coatings containing tributyl tin in 2008, the development of clean and effective antifouling systems became more important than ever. New nonbiocidal coatings are now in high demand. Scientists have developed new polymers, materials, and biocides, including new elastomeric coatings that they have obtained by improving the original silicone (polydimethylsiloxane) formulation patented in 1975. However, the high cost of silicones, especially of fluoropolymer-modified silicones, has generally prevented their large-scale diffusion. In 2009, traditional antifouling coatings using cuprous oxide formulated in copolymer paints still represented 95% of the global market volume of anti-fouling paints. The sol-gel nanochemistry approach to functional materials has emerged as an attractive candidate for creating low fouling surfaces due to the unique structure and properties of silica-based coatings and of hybrid inorganic-organic silicas in particular. Sol-gel formulations easily bind to all types of surfaces, such as steel, fiberglass, aluminum, and wood. In addition, they can cure at room temperature and form thin glassy coatings that are markedly different from thick silicone elastomeric foul-releasing coatings. Good to excellent performance against biofouling, low cure temperatures, enhanced and prolonged chemical and physical stability, ease of application, and the waterborne nature of sol-gel coatings all support the diffusion of these paints to efficiently reduce the accumulation of fouling layers on valued surfaces immersed in marine or fluvial waters. Furthermore, sol-gel glassy coatings are transparent and can be effectively applied to optical devices, windows, and solar panels used in lake, fluvial, or marine environments. Sol-gel technology is eminently versatile, and the first generation sol-gel paints have already shown good performance. Even so, vast opportunities still exist for chemists to develop novel sol-gel derived coatings to both prevent biofouling and enhance the hydrodynamic properties of boat and ship hulls. Moreover, researchers have prepared and applied multifunctional sol-gel coatings providing protection against both biofouling and corrosion. They have tested these in the marine environment with good preliminary results. In this Account, we discuss some of our new strategies for the controlled functionalization of surfaces for the development of efficient antifouling and foul-releasing systems and summarize the main achievements with biocidal and nonbiocidal sol-gel coatings. We conclude by giving insight into the marine coatings and sol-gel products markets, providing arguments to justify our conclusion that the sol-gel coatings technology is now a mature platform for the development of economically viable and environmentally friendly antifouling and foul-release formulations of enhanced performance.

  12. Atomic force measurements of 16-mercaptohexadecanoic acid and its salt with CH 3, OH, and CONHCH 3 functionalized self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Morales-Cruz, Angel L.; Tremont, Rolando; Martínez, Ramón; Romañach, Rodolfo; Cabrera, Carlos R.

    2005-03-01

    Chemical and mechanical properties of different compounds can be elucidated by measuring fundamental forces such as adhesion, attraction and repulsion, between modified surfaces by means of atomic force microscopy (AFM) in force mode calibration. This work presents a combination of AFM, self-assembled monolayers (SAMs), and crystallization techniques to study the forces of interaction between excipients and active ingredients used in pharmaceutical formulations. SAMs of 16-mercaptohexadecanoate, which represent magnesium stereate, were used to modify the probe tip, whereas CH3-, OH- and CONHCH3-functional SAMs were formed on a gold-coated mica substrate, and used as examples of the surfaces of lactose and theophylline. The crystals of lactose and theophylline were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The modification of gold surfaces with 16-mercaptohexadecanoate, 10-mercapto-1-decanol (OH-functional SAM), 1-decanethiol (CH3-functional) and N-methyl-11-mercaptoundecanamide (CONHCH3-functional SAM) was studied by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Fourier transform-infrared spectroscopy (FT-IR) in specular reflectance mode. XPS and AES results of the modified surfaces showed the presence of sulfur binding, and kinetic energies that correspond to the presence of 10-mercapto-1-decanol, 1-decanethiol, N-methyl-11-mercaptoundecanamide and the salt of 16-mercaptohexadecanoic acid. The absorption bands in the IR spectra further confirm the modification of the gold-coated substrates with these compounds. Force versus distance measurements were performed between the modified tip and the modified gold-coated mica substrates. The mean adhesion forces between the COO-Ca2+ functionalized tip and the CH3-, OH-, and CONHCH3-modified substrates were determined to be 4.5, 8.9 and 6.3 nN, respectively. The magnitude of the adhesion force (ion-dipole) interaction between the modified tip and substrate decreases in the following order: COO-Ca2+/OH > COO-Ca2+/CONHCH3 > COO-Ca2+/CH3.

  13. Influence of AlN(0001) Surface Reconstructions on the Wettability of an Al/AlN System: A First-Principle Study.

    PubMed

    Cao, Junhua; Liu, Yang; Ning, Xiao-Shan

    2018-05-11

    A successful application of a hot dip coating process that coats aluminum (Al) on aluminum nitride (AlN) ceramics, revealed that Al had a perfect wettability to the ceramics under specific circumstances, which was different from previous reports. In order to elucidate the mechanism that controlled the supernormal wetting phenomenon during the dip coating, a first-principle calculation of an Al(111)/AlN(0001) interface, based on the density functional theory (DFT), was employed. The wettability of the Al melt on the AlN(0001) surface, as well as the effect that the surface reconstruction of AlN and the oxygen adsorption had on Al for the adhesion and the wettability of the Al/AlN system, were studied. The results revealed that a LCM (laterally contracted monolayer) reconstruction could improve the adhesion and wettability of the system. Oxygen adsorption on the free surface of Al decreased the contact angle, because the adsorption reduced of the surface tension of Al. A prefect wetting was obtained only after some of the oxygen atoms adsorbed on the free surface of Al. The supernormal wetting phenomenon came from the surface reconstruction of the AlN and the adsorption of oxygen atoms on the Al melt surface.

  14. Oxidation behavior of a thermal barrier coating

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1984-01-01

    Thermal barrier coatings, consisting of a plasma sprayed calcium silicate ceramic layer and a CoCrAlY or NiCrAlY bond coat, were applied on B-1900 coupons and cycled hourly in air in a rapid-response furnace to maximum temperatures of 1030, 1100, or 1160 C. Eight specimens were tested for each of the six conditions of bond-coat composition and temperature. Specimens were removed from test at the onset of failure, which was taken to be the formation of a fine surface crack visible at 10X magnification. Specimens were weighed periodically, and plots of weight gain vs time indicate that weight is gained at a parabolic rate after an initial period where weight was gained at a much greater rate. The high initial oxidation rate is thought to arise from the initially high surface area in the porous bond coat. Specimen life (time to first crack) was found to be a strong function of temperature. However, while test lives varied greatly with time, the weight gain at the time of specimen failure was quite insensitive to temperature. This indicates that there is a critical weight gain at which the coating fails when subjected to this test.

  15. Photochemical Copper Coating on 3D Printed Thermoplastics

    NASA Astrophysics Data System (ADS)

    Yung, Winco K. C.; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-08-01

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.

  16. Photochemical Copper Coating on 3D Printed Thermoplastics

    PubMed Central

    Yung, Winco K. C.; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-01-01

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy. PMID:27501761

  17. Photochemical Copper Coating on 3D Printed Thermoplastics.

    PubMed

    Yung, Winco K C; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-08-09

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.

  18. Biofunctionalized anti-corrosive silane coatings for magnesium alloys.

    PubMed

    Liu, Xiao; Yue, Zhilian; Romeo, Tony; Weber, Jan; Scheuermann, Torsten; Moulton, Simon; Wallace, Gordon

    2013-11-01

    Biodegradable magnesium alloys are advantageous in various implant applications, as they reduce the risks associated with permanent metallic implants. However, a rapid corrosion rate is usually a hindrance in biomedical applications. Here we report a facile two step procedure to introduce multifunctional, anti-corrosive coatings on Mg alloys, such as AZ31. The first step involves treating the NaOH-activated Mg with bistriethoxysilylethane to immobilize a layer of densely crosslinked silane coating with good corrosion resistance; the second step is to impart amine functionality to the surface by treating the modified Mg with 3-amino-propyltrimethoxysilane. We characterized the two-layer anticorrosive coating of Mg alloy AZ31 by Fourier transform infrared spectroscopy, static contact angle measurement and optical profilometry, potentiodynamic polarization and AC impedance measurements. Furthermore, heparin was covalently conjugated onto the silane-treated AZ31 to render the coating haemocompatible, as demonstrated by reduced platelet adhesion on the heparinized surface. The method reported here is also applicable to the preparation of other types of biofunctional, anti-corrosive coatings and thus of significant interest in biodegradable implant applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Applications of functional polymer brushes for nanoparticle uptake and prevention of protein adsorption

    NASA Astrophysics Data System (ADS)

    Arifuzzaman, Shafi M.

    The central theme of this Ph.D. dissertation is to develop novel multifunctional polymer coatings for understanding partition of proteins and nanoparticles on polymers grafted to flat surfaces (so-called brushes). Systematic investigation of the adsorption phenomena is accomplished by utilizing surface-anchored assemblies comprising grafted polymers with variation in physical properties (i.e., length or/and grafting density) and chemical functionality. The chemical composition of the brush is tailored by either "chemical coloring" of a parent homopolymer brush with selective chemical moieties or by sequential growth of two chemically dissimilar polymer blocks. We present preparation of two types of tailor-made, surface-grafted copolymers: (1) those composed of hydrophilic and hydrophobic blocks (so-called amphiphilic polymer brushes), and (2) those comprising of anionic and cationic polymer segments (so-called polyampholyte brushes). We describe the organization of functionality in the grafted polymer brushes and the partitioning of proteins and nanoparticles using a battery of complementary analytical probes. Specifically, we address how varying the molecular weight, grafting density, and chemical composition of the brush affects adsorbtion and desorbtion of model proteins and gold nanoparticles. Our observations indicate densely-populated responsive amphiphilic polymers are very efficient in suppressing protein adsorption. In addition, we have established that the length of poly(ethylene glycol) spacers attached to a parent homopolymer brush is a key factor governing uptake of gold nanoparticles. Both grafting density and molecular weight of the coating are important in controlling the kinetics and thermodynamics of protein adsorption on surfaces. Our findings and methodologies can lead to the development of next generation environmentally friendly antifouling surfaces and will find application in medical devices, antifouling coatings and anti reflection finishes.

  20. Carbon-Based Wear Coatings: Properties and Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2003-01-01

    The technical function of numerous engineering systems - such as vehicles, machines, and instruments - depends on the processes of motion and on the surface systems. Many processes in nature and technology depend on the motion and dynamic behavior of solids, liquids, and gases. Smart surface systems are essential because of the recent technological push toward higher speeds, loads, and operating temperatures; longer life; lighter weight and smaller size (including nanotechnology); and harsh environments in mechanical, mechatronic, and biomechanical systems. If proper attention is not given to surface systems, then vehicles, machines, instruments, and other technical systems could have short lives, consume excessive energy, experience breakdowns, result in liabilities, and fail to accomplish their missions. Surface systems strongly affect our national economy and our lifestyles. At the NASA Glenn Research Center, we believe that proper attention to surface systems, especially in education, research, and application, could lead to economic savings of between 1.3 and 1.6 percent of the gross domestic product. Wear coatings and surface systems continue to experience rapid growth as new coating and surface engineering technologies are discovered, more cost-effective coating and surface engineering solutions are developed, and marketers aggressively pursue, uncover, and exploit new applications for engineered surface systems in cutting tools and wear components. Wear coatings and smart surface systems have been used widely in industrial, consumer, automotive, aerospace, and biomedical applications. This presentation expresses the author's views of and insights into smart surface systems in wear coatings. A revolution is taking place in carbon science and technology. Diamond, an allotrope of carbon, joins graphite, fullerenes, and nanotubes as its major pure carbon structures. It has a unique combination of extreme properties: hardness and abrasion resistance; adhesion and friction; thermal conductivity; chemical and thermal inertness; corrosion and wear resistance; radiation resistance and biocompatibility; electronic, acoustic, and electrochemical characteristics; and environmental compatibility. These properties make diamond attractive for a wide range of diverse applications. In particular, chemical-vapor-deposited (CVD) diamond coatings offer a broad potential, since size and cost are not as limiting. The production of large, superhard diamond films or sheets at low cost make designer materials possible. This presentation is divided into two sections: properties and applications of hard coatings. The first section is concerned with the fundamental properties of the surfaces of CVD diamonds and related materials. The surface properties of hard coatings with favorable coefficients of friction (less than or equal to 0.1) and dimensional wear coefficients (less than or equal to 10(exp -6) cubic millimeters/N.m) in specific environments are discussed. The second section is devoted to applications. Examples of actual, successful applications and of potential challenging applications of the coatings.such as CVD diamond, diamondlike carbon, and cubic boron nitride-are described. Cutting tools coated with CVD diamond are of immediate commercial interest. Other applications, such as microelectromechanical systems (MEMS), valves, and bearings of CVD diamond, are being developed, but at a slow pace. There is a continually growing interest in commercializing diamondlike carbon for wear parts applications, such as biomedical parts and implants, forming dies, transport guides, magnetic tapes and disks, valves, and gears. Cubic boron nitride films are receiving attention because they can be used on tools to machine ferrous materials or on wear parts in sliding contact with ferrous materials.

  1. Robust Functionalization of Large Microelectrode Arrays by Using Pulsed Potentiostatic Deposition

    PubMed Central

    Rothe, Joerg; Frey, Olivier; Madangopal, Rajtarun; Rickus, Jenna; Hierlemann, Andreas

    2016-01-01

    Surface modification of microelectrodes is a central step in the development of microsensors and microsensor arrays. Here, we present an electrodeposition scheme based on voltage pulses. Key features of this method are uniformity in the deposited electrode coatings, flexibility in the overall deposition area, i.e., the sizes and number of the electrodes to be coated, and precise control of the surface texture. Deposition and characterization of four different materials are demonstrated, including layers of high-surface-area platinum, gold, conducting polymer poly(ethylenedioxythiophene), also known as PEDOT, and the non-conducting polymer poly(phenylenediamine), also known as PPD. The depositions were conducted using a fully integrated complementary metal-oxide-semiconductor (CMOS) chip with an array of 1024 microelectrodes. The pulsed potentiostatic deposition scheme is particularly suitable for functionalization of individual electrodes or electrode subsets of large integrated microelectrode arrays: the required deposition waveforms are readily available in an integrated system, the same deposition parameters can be used to functionalize the surface of either single electrodes or large arrays of thousands of electrodes, and the deposition method proved to be robust and reproducible for all materials tested. PMID:28025569

  2. Ellipsometry of single-layer antireflection coatings on transparent substrates

    NASA Astrophysics Data System (ADS)

    Azzam, R. M. A.

    2017-11-01

    The complex reflection coefficients of p- and s-polarized light and ellipsometric parameters of a transparent substrate of refractive index n2, which is coated by a transparent thin film whose refractive index n1 =√{n2 } satisfies the anti-reflection condition at normal incidence, are considered as functions of film thickness d and angle of incidence ϕ. A unique coated surface, with n1 =√{n2 } and film thickness d equal to half of the film-thickness period Dϕ at angle ϕ and wavelength λ, reflects light of the same wavelength without change of polarization for all incident polarization states. (The reflection Jones matrix of such coated surface is the 2 × 2 identity matrix pre-multiplied by a scalar, hence tanΨ = 1,Δ = 0.) To monitor the deposition of an antireflection coating, the normalized Stokes parameters of obliquely reflected light (e.g. at ϕ =70∘) are measured until predetermined target values of those parameters are detected. This provides a more accurate means of film thickness control than is possible using a micro-balance technique or an intensity reflectance method.

  3. Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties.

    PubMed

    Hambardzumyan, Arayik; Foulon, Laurence; Chabbert, Brigitte; Aguié-Béghin, Véronique

    2012-12-10

    Novel nanocomposite coatings composed of cellulose nanocrystals (CNCs) and lignin (either synthetic or fractionated from spruce and corn stalks) were prepared without chemical modification or functionalization (via covalent attachment) of one of the two biopolymers. The spectroscopic properties of these coatings were investigated by UV-visible spectrophotometry and spectroscopic ellipsometry. When using the appropriate weight ratio of CNC/lignin (R), these nanocomposite systems exhibited high-performance optical properties, high transmittance in the visible spectrum, and high blocking in the UV spectrum. Atomic force microscopy analysis demonstrated that these coatings were smooth and homogeneous, with visible dispersed lignin nodules in a cellulosic matrix. It was also demonstrated that the introduction of nanoparticles into the medium increases the weight ratio and the CNC-specific surface area, which allows better dispersion of the lignin molecules throughout the solid film. Consequently, the larger molecular expansion of these aromatic polymers on the surface of the cellulosic nanoparticles dislocates the π-π aromatic aggregates, which increases the extinction coefficient and decreases the transmittance in the UV region. These nanocomposite coatings were optically transparent at visible wavelengths.

  4. Structure-Property Relationships of Architectural Coatings by Neutron Methods

    NASA Astrophysics Data System (ADS)

    Nakatani, Alan

    2015-03-01

    Architectural coatings formulations are multi-component mixtures containing latex polymer binder, pigment, rheology modifiers, surfactants, and colorants. In order to achieve the desired flow properties for these formulations, measures of the underlying structure of the components as a function of shear rate and the impact of formulation variables on the structure is necessary. We have conducted detailed measurements to understand the evolution under shear of local microstructure and larger scale mesostructure in model architectural coatings formulations by small angle neutron scattering (SANS) and ultra small angle neutron scattering (USANS), respectively. The SANS results show an adsorbed layer of rheology modifier molecules exist on the surface of the latex particles. However, the additional hydrodynamic volume occupied by the adsorbed surface layer is insufficient to account for the observed viscosity by standard hard sphere suspension models (Krieger-Dougherty). The USANS results show the presence of latex aggregates, which are fractal in nature. These fractal aggregates are the primary structures responsible for coatings formulation viscosity. Based on these results, a new model for the viscosity of coatings formulations has been developed, which is capable of reproducing the observed viscosity behavior.

  5. Robust self-cleaning surfaces that function when exposed to either air or oil

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Sathasivam, Sanjayan; Song, Jinlong; Crick, Colin R.; Carmalt, Claire J.; Parkin, Ivan P.

    2015-03-01

    Superhydrophobic self-cleaning surfaces are based on the surface micro/nanomorphologies; however, such surfaces are mechanically weak and stop functioning when exposed to oil. We have created an ethanolic suspension of perfluorosilane-coated titanium dioxide nanoparticles that forms a paint that can be sprayed, dipped, or extruded onto both hard and soft materials to create a self-cleaning surface that functions even upon emersion in oil. Commercial adhesives were used to bond the paint to various substrates and promote robustness. These surfaces maintained their water repellency after finger-wipe, knife-scratch, and even 40 abrasion cycles with sandpaper. The formulations developed can be used on clothes, paper, glass, and steel for a myriad of self-cleaning applications.

  6. Red selenium nanoparticles and gray selenium nanorods as antibacterial coatings for PEEK medical devices.

    PubMed

    Wang, Qi; Mejía Jaramillo, Alejandra; Pavon, Juan J; Webster, Thomas J

    2016-10-01

    Bacterial infections are commonly found on various poly(ether ether ketone) (PEEK) medical devices (such as orthopedic instruments, spinal fusion devices, and segments in dialysis equipment), and thus, there is a significant need for introducing antibacterial properties to such materials. The objective of this in vitro study was to introduce antibacterial properties to PEEK medical devices by coating them with nanosized selenium. In this study, red selenium (an elemental form of selenium) nanoparticles were coated on PEEK medical devices through a quick precipitation method. Furthermore, with heat treatment at 100°C for 6 days, red selenium nanoparticles were transferred into gray selenium nanorods on the PEEK surfaces. Bacteria test results showed that both red and gray selenium-coated PEEK medical devices significantly inhibited the growth of Pseudomonas aeruginosa compared with uncoated PEEK after either 1, 2, or 3 days. Red selenium nanoparticle-coated PEEK showed less bacteria growth on its surface than gray selenium nanorod-coated PEEK after 3 days. This study demonstrated that red, and to a lesser extent gray, nanosized selenium could be used as potential antibacterial coatings to prevent bacteria function on PEEK medical devices. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1352-1358, 2016. © 2015 Wiley Periodicals, Inc.

  7. Electrical contact arrangement for a coating process

    DOEpatents

    Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W

    2013-09-17

    A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.

  8. Probing the Interaction of Dielectric Nanoparticles with Supported Lipid Membrane Coatings on Nanoplasmonic Arrays

    PubMed Central

    Ferhan, Abdul Rahim; Ma, Gamaliel Junren; Jackman, Joshua A.; Sut, Tun Naw; Park, Jae Hyeon; Cho, Nam-Joon

    2017-01-01

    The integration of supported lipid membranes with surface-based nanoplasmonic arrays provides a powerful sensing approach to investigate biointerfacial phenomena at membrane interfaces. While a growing number of lipid vesicles, protein, and nucleic acid systems have been explored with nanoplasmonic sensors, there has been only very limited investigation of the interactions between solution-phase nanomaterials and supported lipid membranes. Herein, we established a surface-based localized surface plasmon resonance (LSPR) sensing platform for probing the interaction of dielectric nanoparticles with supported lipid bilayer (SLB)-coated, plasmonic nanodisk arrays. A key emphasis was placed on controlling membrane functionality by tuning the membrane surface charge vis-à-vis lipid composition. The optical sensing properties of the bare and SLB-coated sensor surfaces were quantitatively compared, and provided an experimental approach to evaluate nanoparticle–membrane interactions across different SLB platforms. While the interaction of negatively-charged silica nanoparticles (SiNPs) with a zwitterionic SLB resulted in monotonic adsorption, a stronger interaction with a positively-charged SLB resulted in adsorption and lipid transfer from the SLB to the SiNP surface, in turn influencing the LSPR measurement responses based on the changing spatial proximity of transferred lipids relative to the sensor surface. Precoating SiNPs with bovine serum albumin (BSA) suppressed lipid transfer, resulting in monotonic adsorption onto both zwitterionic and positively-charged SLBs. Collectively, our findings contribute a quantitative understanding of how supported lipid membrane coatings influence the sensing performance of nanoplasmonic arrays, and demonstrate how the high surface sensitivity of nanoplasmonic sensors is well-suited for detecting the complex interactions between nanoparticles and lipid membranes. PMID:28644423

  9. A chemical stability study of trimethylsilane plasma nanocoatings for coronary stents.

    PubMed

    Jones, John Eric; Yu, Qingsong; Chen, Meng

    2017-01-01

    Trimethylsilane (TMS) plasma nanocoatings were deposited onto stainless steel coupons in direct current (DC) and radio frequency (RF) glow discharges and additional NH 3 /O 2 plasma treatment to tailor the coating surface properties. The chemical stability of the nanocoatings were evaluated after 12 week storage under dry condition (25 °C) and immersion in simulated body fluid (SBF) at 37 °C. It was found that nanocoatings did not impact surface roughness of underlying stainless steel substrates. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to characterize surface chemistry and compositions. Both DC and RF nanocoatings had Si- and C-rich composition; and the O- and N-contents on the surfaces were substantially increased after NH 3 /O 2 plasma treatment. Contact angle measurements showed that DC-TMS nanocoating with NH 3 /O 2 treatment generated very hydrophilic surfaces. DC-TMS nanocoatings with NH 3 /O 2 treatment showed minimal surface chemistry change after 12 week immersion in SBF. However, nitrogen functionalities on RF-TMS coating with NH 3 /O 2 post treatment were not as stable as in DC case. Cell culture studies revealed that the surfaces with DC coating and NH 3 /O 2 post treatment demonstrated substantially improved proliferation of endothelial cells over the 12 week storage period at both dry and wet conditions, as compared to other coated surfaces. Therefore, DC nanocoatings with NH 3 /O 2 post treatment may be chemically stable for long-term properties, including shelf-life storage and exposure to the bloodstream for coronary stent applications.

  10. PVA and PEG functionalised LSMO nanoparticles for magnetic fluid hyperthermia application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadhav, S.V.; Nikam, D.S.; Khot, V.M.

    2015-04-15

    La{sub 0.7}Sr{sub 0.3}MnO{sub 3} magnetic nanoparticles are synthesized by a solution combustion method and functionalised with polyvinyl alcohol and polyethylene glycol. The induction heating characteristics of coated magnetic nanoparticles (42 °C) were observed at a reasonably low concentration (5 mg/mL). Remarkably, coated magnetic nanoparticles exhibited a promisingly high specific absorption rate with varying magnetic field and constant frequency. The surface analysis is carried out by X-ray photoelectron spectroscopy. A reduction in the agglomeration of the particles was observed when the magnetic nanoparticles were functionalised with polyvinyl alcohol or polyethylene glycol and can be confirmed by transmission electron microscopy and dynamicmore » light scattering studies. Vibrating sample magnetometer measurements indicate superparamagnetic behaviour at room temperature before and after coating. Colloidal stability revealed a considerably higher zeta potential value for coated system. In vitro cytotoxicity test of the magnetic nanoparticles indicates that coated nanoparticles have no significant effect on cell viability within the tested concentrations (1–5 mg mL{sup -1}) as compared to uncoated La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. All these findings explore the potentiality of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanoparticles for magnetic fluid hyperthermia. - Highlights: • Surface functionalization of LSMO nanoparticles — first time with PVA • Surface functionalization of LSMO nanoparticles — first time with PEG • BSA protein — first time used as dispersion medium for stability of LSMO nanoparticles • The heating ability observed at low concentration • Improved efficiency of magnetic fluid hyperthermia treatment with surfactants.« less

  11. Coupling Light Emitting Diodes with Photocatalyst-Coated Optical Fibers Improves Quantum Yield of Pollutant Oxidation.

    PubMed

    Ling, Li; Tugaoen, Heather; Brame, Jonathon; Sinha, Shahnawaz; Li, Chuanhao; Schoepf, Jared; Hristovski, Kiril; Kim, Jae-Hong; Shang, Chii; Westerhoff, Paul

    2017-11-21

    A photocatalyst-coated optical fiber was coupled with a 318 nm ultraviolet-A light emitting diode, which activated the photocatalysts by interfacial photon-electron excitation while minimizing photonic energy losses due to conventional photocatalytic barriers. The light delivery mechanism was explored via modeling of evanescent wave energy produced upon total internal reflection and photon refraction into the TiO 2 surface coating. This work explores aqueous phase LED-irradiated optical fibers for treating organic pollutants and for the first time proposes a dual-mechanistic approach to light delivery and photocatalytic performance. Degradation of a probe organic pollutant was evaluated as a function of optical fiber coating thickness, fiber length, and photocatalyst attachment method and compared against the performance of an equivalent catalyst mass in a completely mixed slurry reactor. Measured and simulated photon fluence through the optical fibers decreased as a function of fiber length, coating thickness, or TiO 2 mass externally coated on the fiber. Thinner TiO 2 coatings achieved faster pollutant removal rates from solution, and dip coating performed better than sol-gel attachment methods. TiO 2 attached to optical fibers achieved a 5-fold higher quantum yield compared against an equivalent mass of TiO 2 suspended in a slurry solution.

  12. Polarization sensitivity of ordered and random antireflective surface structures in silica and spinel

    NASA Astrophysics Data System (ADS)

    Frantz, J. A.; Selby, J.; Busse, L. E.; Shaw, L. B.; Aggarwal, I. D.; Sanghera, J. S.

    2018-02-01

    Both ordered and random anti-reflective surface structures (ARSS) have been shown to increase the transmission of an optical surface to >99.9%. These structures are of great interest as an alternative to traditional thin film anti-reflection (AR) coatings for a variety of reasons. Unlike traditional AR coatings, they are patterned directly into the surface of an optic rather than deposited on its surface and are thus not prone to the delamination under thermal cycling that can occur with thin film coatings. Their laser-induced damage thresholds can also be considerably higher. In addition, they provide AR performance over a larger spectral and angular range. It has been previously demonstrated that random ARSSs in silica are remarkably insensitive to incident polarization, with nearly zero variation in transmittance with respect to polarization of the incident beam at fixed wavelength for angles of incidence up to at least 30°. In this work, we evaluate polarization sensitivity of ARSS as a function of wavelength for both random and ordered ARSS. We demonstrate that ordered ARSS is significantly more sensitive to polarization than random ARSS and explain the reason for this difference. In the case of ordered ARSS, we observe significant differences as a function of wavelength, with the transmittance of s- and p-polarized light diverging near the diffraction edge. We present results for both silica and spinel samples and discuss differences observed for these two sets of samples.

  13. Steric and electrostatic surface forces on sulfonated PEG graft surfaces with selective albumin adsorption.

    PubMed

    Bremmell, Kristen E; Britcher, Leanne; Griesser, Hans J

    2013-06-01

    Addition of ionized terminal groups to PEG graft layers may cause additional interfacial forces to modulate the net interfacial interactions between PEG graft layers and proteins. In this study we investigated the effect of terminal sulfonate groups, characterizing PEG-aldehyde (PEG-CHO) and sulfonated PEG (PEG-SO3) graft layers by XPS and colloid probe AFM interaction force measurements as a function of ionic strength, in order to determine surface forces relevant to protein resistance and models of bio-interfacial interaction of such graft coatings. On the PEG-CHO surface the measured interaction force does not alter with ionic strength, typical of a repulsive steric barrier coating. An analogous repulsive interaction force of steric origin was also observed on the PEG-SO3 graft coating; however, the net interaction force changed with ionic strength. Interaction forces were modelled by steric and electrical double layer interaction theories, with fitting to a scaling theory model enabling determination of the spacing and stretching of the grafted chains. Albumin, fibrinogen, and lysozyme did not adsorb on the PEG-CHO coating, whereas the PEG graft with terminal sulfonate groups showed substantial adsorption of albumin but not fibrinogen or lysozyme from 0.15 M salt solutions. Under lower ionic strength conditions albumin adsorption was again minimized as a result of the increased electrical double-layer interaction observed with the PEG-SO3 modified surface. This unique and unexpected adsorption behaviour of albumin provides an alternative explanation to the "negative cilia" model used by others to rationalize observed thromboresistance on PEG-sulfonate coatings. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Reducing bacteria and macrophage density on nanophase hydroxyapatite coated onto titanium surfaces without releasing pharmaceutical agents

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Garima; Yazici, Hilal; Webster, Thomas J.

    2015-04-01

    Reducing bacterial density on titanium implant surfaces has been a major concern because of the increasing number of nosocomial infections. Controlling the inflammatory response post implantation has also been an important issue for medical devices due to the detrimental effects of chronic inflammation on device performance. It has recently been demonstrated that manipulating medical device surface properties including chemistry, roughness and wettability can control both infection and inflammation. Here, we synthesized nanophase (that is, materials with one dimension in the nanoscale) hydroxyapatite coatings on titanium to reduce bacterial adhesion and inflammatory responses (as measured by macrophage functions) and compared such results to bare titanium and plasma sprayed hydroxyapatite titanium coated surfaces used clinically today. This approach is a pharmaceutical-free approach to inhibit infection and inflammation due to the detrimental side effects of any drug released in the body. Here, nanophase hydroxyapatite was synthesized in sizes ranging from 110-170 nm and was subsequently coated onto titanium samples using electrophoretic deposition. Results indicated that smaller nanoscale hydroxyapatite features on titanium surfaces alone decreased bacterial attachment in the presence of gram negative (P. aeruginosa), gram positive (S. aureus) and ampicillin resistant gram-negative (E. coli) bacteria as well as were able to control inflammatory responses; properties which should lead to their further investigation for improved medical applications.

  15. Biocompatibility and anti-microbiological activity characterization of novel coatings for dental implants: A primer for non-biologists

    NASA Astrophysics Data System (ADS)

    Monsees, Thomas

    2016-08-01

    With regard to biocompatibility, the cardinal requirement for dental implants and other medical devices that are in long-term contact with tissue is that the material does not cause any adverse effect to the patient. To warrant stability and function of the implant, proper osseointegration is a further prerequisite. Cells interact with the implant surface as the interface between bulk material and biological tissue. Whereas structuring, deposition of a thin film or other modifications of the surface are crucial parameters in determining favorable adhesion of cells, corrosion of metal surfaces and release of ions can affect cell viability. Both parameters are usually tested using in vitro cytotoxicity and adhesion assays with bone or fibroblasts cells. For bioactive surface modifications, further tests should be considered for biocompatibility evaluation. Depending on the type of modification, this may include analysis of specific cell functions or the determination of antimicrobial activities. The latter is of special importance as bacteria and yeast present in the oral cavity can be introduced during the implantation process and this may lead to chronic infections and implant failure. An antimicrobial coating of the implant is a way to avoid that. This review describes the essential biocompatibility assays for evaluation of new implant materials required by ISO 10993 and also gives an overview on recent test methods for specific coatings of dental implants.

  16. Double-chimera proteins to enhance recruitment of endothelial cells and their progenitor cells.

    PubMed

    Behjati, M; Kazemi, M; Hashemi, M; Zarkesh-Esfahanai, S H; Bahrami, E; Hashemi-Beni, B; Ahmadi, R

    2013-08-20

    Enhanced attraction of selective vascular reparative cells is of great importance in order to increase vascular patency after endovascular treatments. We aimed to evaluate efficient attachment of endothelial cells and their progenitors on surfaces coated with mixture of specific antibodies, L-selectin and VE-cadherin, with prohibited platelet attachment. The most efficient conditions for coating of L-selectin-Fc chimera and VE-cadherin-Fc chimera proteins were first determined by protein coating on ELISA plates. The whole processes were repeated on titanium substrates, which are commonly used to coat stents. Endothelial progenitor cells (EPCs) and human umbilical vein endothelial cells (HUVECs) were isolated and characterized by flow cytometry. Cell attachment, growth, proliferation, viability and surface cytotoxicity were evaluated using nuclear staining and MTT assay. Platelet and cell attachment were evaluated using scanning electron microscopy. Optimal concentration of each protein for surface coating was 50 ng/ml. The efficacy of protein coating was both heat and pH independent. Calcium ions had significant impact on simultaneous dual-protein coating (P<0.05). Coating stability data revealed more than one year stability for these coated proteins at 4°C. L-selectin and VE-cadherin (ratio of 50:50) coated surface showed highest EPC and HUVEC attachment, viability and proliferation compared to single protein coated and non-coated titanium surfaces (P<0.05). This double coated surface did not show any cytotoxic effect. Surfaces coated with L-selectin and VE-cadherin are friendly surface for EPC and endothelial cell attachment with less platelet attachment. These desirable factors make the L-selectin and VE-cadherin coated surfaces perfect candidate endovascular device. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Sporulation Temperature Reveals a Requirement for CotE in the Assembly of both the Coat and Exosporium Layers of Bacillus cereus Spores.

    PubMed

    Bressuire-Isoard, Christelle; Bornard, Isabelle; Henriques, Adriano O; Carlin, Frédéric; Broussolle, Véronique

    2016-01-01

    The Bacillus cereus spore surface layers consist of a coat surrounded by an exosporium. We investigated the interplay between the sporulation temperature and the CotE morphogenetic protein in the assembly of the surface layers of B. cereus ATCC 14579 spores and on the resulting spore properties. The cotE deletion affects the coat and exosporium composition of the spores formed both at the suboptimal temperature of 20°C and at the optimal growth temperature of 37°C. Transmission electron microscopy revealed that ΔcotE spores had a fragmented and detached exosporium when formed at 37°C. However, when produced at 20°C, ΔcotE spores showed defects in both coat and exosporium attachment and were susceptible to lysozyme and mutanolysin. Thus, CotE has a role in the assembly of both the coat and exosporium, which is more important during sporulation at 20°C. CotE was more represented in extracts from spores formed at 20°C than at 37°C, suggesting that increased synthesis of the protein is required to maintain proper assembly of spore surface layers at the former temperature. ΔcotE spores formed at either sporulation temperature were impaired in inosine-triggered germination and resistance to UV-C and H2O2 and were less hydrophobic than wild-type (WT) spores but had a higher resistance to wet heat. While underscoring the role of CotE in the assembly of B. cereus spore surface layers, our study also suggests a contribution of the protein to functional properties of additional spore structures. Moreover, it also suggests a complex relationship between the function of a spore morphogenetic protein and environmental factors such as the temperature during spore formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Size and Aging Effects on Antimicrobial Efficiency of Silver Nanoparticles Coated on Polyamide Fabrics Activated by Atmospheric DBD Plasma.

    PubMed

    Zille, Andrea; Fernandes, Margarida M; Francesko, Antonio; Tzanov, Tzanko; Fernandes, Marta; Oliveira, Fernando R; Almeida, Luís; Amorim, Teresa; Carneiro, Noémia; Esteves, Maria F; Souto, António P

    2015-07-01

    This work studies the surface characteristics, antimicrobial activity, and aging effect of plasma-pretreated polyamide 6,6 (PA66) fabrics coated with silver nanoparticles (AgNPs), aiming to identify the optimum size of nanosilver exhibiting antibacterial properties suitable for the manufacture of hospital textiles. The release of bactericidal Ag(+) ions from a 10, 20, 40, 60, and 100 nm AgNPs-coated PA66 surface was a function of the particles' size, number, and aging. Plasma pretreatment promoted both ionic and covalent interactions between AgNPs and the formed oxygen species on the fibers, favoring the deposition of smaller-diameter AgNPs that consequently showed better immediate and durable antimicrobial effects against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. Surprisingly, after 30 days of aging, a comparable bacterial growth inhibition was achieved for all of the fibers treated with AgNPs <100 nm in size. The Ag(+) in the coatings also favored the electrostatic stabilization of the plasma-induced functional groups on the PA66 surface, thereby retarding the aging process. At the same time, the size-related ratio (Ag(+)/Ag(0)) of the AgNPs between 40 and 60 nm allowed for the controlled release of Ag(+) rather than bulk silver. Overall, the results suggest that instead of reducing the size of the AgNPs, which is associated with higher toxicity, similar long-term effects can be achieved with larger NPs (40-60 nm), even in lower concentrations. Because the antimicrobial efficiency of AgNPs larger than 30 nm is mainly ruled by the release of Ag(+) over time and not by the size and number of the AgNPs, this parameter is crucial for the development of efficient antimicrobial coatings on plasma-treated surfaces and contributes to the safety and durability of clothing used in clinical settings.

  19. Method of coating metal surfaces to form protective metal coating thereon

    DOEpatents

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof.

  20. Method of coating metal surfaces to form protective metal coating thereon

    DOEpatents

    Krikorian, O.H.; Curtis, P.G.

    1992-03-31

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.

  1. Ice Nucleation of Bare and Sulfuric Acid-coated Mineral Dust Particles and Implication for Cloud Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Gourihar R.; Sanders, Cassandra N.; Zhang, Kai

    2014-08-27

    Ice nucleation properties of different dust species coated with soluble material are not well understood. We determined the ice nucleation ability of bare and sulfuric acid coated mineral dust particles as a function of temperature (-25 to -35 deg C) and relative humidity with respect to water (RHw). Five different mineral dust species: Arizona test dust (ATD), illite, montmorillonite, quartz and kaolinite were dry dispersed and size-selected at 150 nm and exposed to sulfuric acid vapors in the coating apparatus. The condensed sulfuric acid soluble mass fraction per particle was estimated from the cloud condensation nuclei activated fraction measurements. Themore » fraction of dust particles nucleating ice at various temperatures and RHw was determined using a compact ice chamber. In water-subsaturated conditions, compared to bare dust particles, we found that only coated ATD particles showed suppression of ice nucleation ability while other four dust species did not showed the effect of coating on the fraction of particles nucleating ice. The results suggest that interactions between the dust surface and sulfuric acid vapor are important, such that interactions may or may not modify the surface via chemical reactions with sulfuric acid. At water-supersaturated conditions we did not observed the effect of coating, i.e. the bare and coated dust particles had similar ice nucleation behavior.« less

  2. Altered Calcium Dynamics in Cardiac Cells Grown on Silane-Modified Surfaces

    PubMed Central

    Ravenscroft-Chang, Melissa S.; Stohlman, Jayna; Molnar, Peter; Natarajan, Anupama; Canavan, Heather E.; Teliska, Maggie; Stancescu, Maria; Krauthamer, Victor; Hickman, J.J.

    2013-01-01

    Chemically defined surfaces were created using self-assembled monolayers (SAMs) of hydrophobic and hydrophilic silanes as models for implant coatings, and the morphology and physiology of cardiac myocytes plated on these surfaces were studied in vitro. We focused on changes in intracellular Ca2+ because of its essential role in regulating heart cell function. The SAM-modified coverslips were analyzed using X-ray Photoelectron Spectroscopy to verify composition. The morphology and physiology of the cardiac cells were examined using fluorescence microscopy and intracellular Ca2+ imaging. The imaging experiments used the fluorescent ratiometric dye fura-2, AM to establish both the resting Ca2+ concentration and the dynamic responses to electrical stimulation. A significant difference in excitation-induced Ca2+ changes on the different silanated surfaces was observed. However, no significant change was noted based on the morphological analysis. This result implies a difference in internal Ca2+ dynamics, and thus cardiac function, occurs when the composition of the surface is different, and this effect is independent of cellular morphology. This finding has implications for histological examination of tissues surrounding implants, the choice of materials that could be beneficial as implant coatings and understanding of cell-surface interactions in cardiac systems. PMID:19828193

  3. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance.

    PubMed

    Rasouli, Rahimeh; Barhoum, Ahmed; Uludag, Hasan

    2018-05-10

    The emerging field of nanostructured implants has enormous scope in the areas of medical science and dental implants. Surface nanofeatures provide significant potential solutions to medical problems by the introduction of better biomaterials, improved implant design, and surface engineering techniques such as coating, patterning, functionalization and molecular grafting at the nanoscale. This review is of an interdisciplinary nature, addressing the history and development of dental implants and the emerging area of nanotechnology in dental implants. After a brief introduction to nanotechnology in dental implants and the main classes of dental implants, an overview of different types of nanomaterials (i.e. metals, metal oxides, ceramics, polymers and hydrides) used in dental implant together with their unique properties, the influence of elemental compositions, and surface morphologies and possible applications are presented from a chemical point of view. In the core of this review, the dental implant materials, physical and chemical fabrication techniques and the role of nanotechnology in achieving ideal dental implants have been discussed. Finally, the critical parameters in dental implant design and available data on the current dental implant surfaces that use nanotopography in clinical dentistry have been discussed.

  4. Formation of high heat resistant coatings by using gas tunnel type plasma spraying.

    PubMed

    Kobayashi, A; Ando, Y; Kurokawa, K

    2012-06-01

    Zirconia sprayed coatings are widely used as thermal barrier coatings (TBC) for high temperature protection of metallic structures. However, their use in diesel engine combustion chamber components has the long run durability problems, such as the spallation at the interface between the coating and substrate due to the interface oxidation. Although zirconia coatings have been used in many applications, the interface spallation problem is still waiting to be solved under the critical conditions such as high temperature and high corrosion environment. The gas tunnel type plasma spraying developed by the author can make high quality ceramic coatings such as Al2O3 and ZrO2 coating compared to other plasma spraying method. A high hardness ceramic coating such as Al2O3 coating by the gas tunnel type plasma spraying, were investigated in the previous study. The Vickers hardness of the zirconia (ZrO2) coating increased with decreasing spraying distance, and a higher Vickers hardness of about Hv = 1200 could be obtained at a shorter spraying distance of L = 30 mm. ZrO2 coating formed has a high hardness layer at the surface side, which shows the graded functionality of hardness. In this study, ZrO2 composite coatings (TBCs) with Al2O3 were deposited on SS304 substrates by gas tunnel type plasma spraying. The performance such as the mechanical properties, thermal behavior and high temperature oxidation resistance of the functionally graded TBCs was investigated and discussed. The resultant coating samples with different spraying powders and thickness are compared in their corrosion resistance with coating thickness as variables. Corrosion potential was measured and analyzed corresponding to the microstructure of the coatings. High Heat Resistant Coatings, Gas Tunnel Type Plasma Spraying, Hardness,

  5. Covalent Functionalization of NiTi Surfaces with Bioactive Peptide Amphiphile Nanofibers

    PubMed Central

    Sargeant, Timothy D.; Rao, Mukti S.; Koh, Chung-Yan

    2009-01-01

    Surface modification enables the creation of bioactive implants using traditional material substrates without altering the mechanical properties of the bulk material. For applications such as bone plates and stents, it is desirable to modify the surface of metal alloy substrates to facilitate cellular attachment, proliferation, and possibly differentiation. In this work we present a general strategy for altering the surface chemistry of nickel-titanium shape memory alloy (NiTi) in order to covalently attach self-assembled peptide amphiphile (PA) nanofibers with bioactive functions. Bioactivity in the systems studied here includes biological adhesion and proliferation of osteoblast and endothelial cell types. The optimized surface treatment creates a uniform TiO2 layer with low levels of Ni on the NiTi surface, which is subsequently covered with an aminopropylsilane coating using a novel, lower temperature vapor deposition method. This method produces an aminated surface suitable for covalent attachment of PA molecules containing terminal carboxylic acid groups. The functionalized NiTi surfaces have been characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and atomic force microscopy (AFM). These techniques offer evidence that the treated metal surfaces consist primarily of TiO2 with very little Ni, and also confirm the presence of the aminopropylsilane overlayer. Self-assembled PA nanofibers presenting the biological peptide adhesion sequence Arg-Gly-Asp-Ser are capable of covalently anchoring to the treated substrate, as demonstrated by spectrofluorimetry and AFM. Cell culture and scanning electron microscopy (SEM) demonstrate cellular adhesion, spreading, and proliferation on these functionalized metal surfaces. Furthermore, these experiments demonstrate that covalent attachment is crucial for creating robust PA nanofiber coatings, leading to confluent cell monolayers. PMID:18083225

  6. Quantitative characterization of material surface — Application to Ni + Mo electrolytic composite coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubisztal, J., E-mail: julian.kubisztal@us.edu.pl

    A new approach to numerical analysis of maps of material surface has been proposed and discussed in detail. It was concluded that the roughness factor RF and the root mean square roughness S{sub q} show a saturation effect with increasing size of the analysed maps what allows determining the optimal map dimension representative of the examined material. A quantitative method of determining predominant direction of the surface texture based on the power spectral density function is also proposed and discussed. The elaborated method was applied in surface analysis of Ni + Mo composite coatings. It was shown that co-deposition ofmore » molybdenum particles in nickel matrix leads to an increase in surface roughness. In addition, a decrease in size of the embedded Mo particles in Ni matrix causes an increase of both the surface roughness and the surface texture. It was also stated that the relation between the roughness factor and the double layer capacitance C{sub dl} of the studied coatings is linear and allows determining the double layer capacitance of the smooth nickel electrode. - Highlights: •Optimization of the procedure for the scanning of the material surface •Quantitative determination of the surface roughness and texture intensity •Proposition of the parameter describing privileged direction of the surface texture •Determination of the double layer capacitance of the smooth electrode.« less

  7. Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application.

    PubMed

    Li, Wen; Xu, Dawei; Hu, Yan; Cai, Kaiyong; Lin, Yingcheng

    2014-06-01

    To develop Ti implants with potent antibacterial activity, a novel "sandwich-type" structure of sulfhydrylated chitosan (Chi-SH)/gelatin (Gel) polyelectrolyte multilayer films embedding silver (Ag) nanoparticles was coated onto titanium substrate using a spin-assisted layer-by-layer assembly technique. Ag ions would be enriched in the polyelectrolyte multilayer films via the specific interactions between Ag ions and -HS groups in Chi-HS, thus leading to the formation of Ag nanoparticles in situ by photo-catalytic reaction (ultraviolet irradiation). Contact angle measurement and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were employed to monitor the construction of Ag-containing multilayer on titanium surface, respectively. The functional multilayered films on titanium substrate [Ti/PEI/(Gel/Chi-SH/Ag) n /Gel] could efficiently inhibit the growth and activity of Bacillus subtitles and Escherichia coli onto titanium surface. Moreover, studies in vitro confirmed that Ti substrates coating with functional multilayer films remained the biological functions of osteoblasts, which was reflected by cell morphology, cell viability and ALP activity measurements. This study provides a simple, versatile and generalized methodology to design functional titanium implants with good cyto-compatibility and antibacterial activity for potential clinical applications.

  8. Chemistry and stability of thiol based polyethylene glycol surface coatings on colloidal gold and their relationship to protein adsorption and clearance in vivo

    NASA Astrophysics Data System (ADS)

    Carpinone, Paul

    Nanomaterials have presented a wide range of novel biomedical applications, with particular emphasis placed on advances in imaging and treatment delivery. Of the many particulate nanomaterials researched for biomedical applications, gold is one of the most widely used. Colloidal gold has been of great interest due to its chemical inertness and its ability to perform multiple functions, such as drug delivery, localized heating of tissues (hyperthermia), and imaging (as a contrast agent). It is also readily functionalized through the use of thiols, which spontaneously form sulfur to gold bonds with the surface. Polyethylene glycol (PEG) is the most widely used coating material for these particles as it provides both steric stability to the suspension and protein resistance. These properties extend the circulation time of the particles in blood, and consequently the efficacy of the treatment. Despite widespread use of PEG coated gold particles, the coating chemistry and stability of these particles are largely unknown. The goal of this work was to identify the mechanisms leading to degradation and stability of thiol based polyethylene glycol coatings on gold particles and to relate this behavior to protein adsorption and clearance in vivo. The results indicate that the protective PEG coating is susceptible to sources of oxidation (including dissolved oxygen) and competing adsorbates, among other factors. The quality of commercially available thiolated PEG reagents was also found to play a key role in the quality and protein resistance of the final PEG coating. Analysis of the stability of these coatings indicated that they rapidly degrade under physiological conditions, leading to the onset of protein adsorption when exposed to plasma or blood. Paralleling the protein adsorption behavior and onset of coating degradation observed in vitro, blood clearance of parenterally administered PEG coated particles in mice began after approximately 2h of circulation time. Taken together, the data presented in this work indicates that the stability of the PEG coating and the many factors affecting it represent a fundamental limitation to the use of these particles.

  9. Effect of surface topological structure and chemical modification of flame sprayed aluminum coatings on the colonization of Cylindrotheca closterium on their surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Xiuyong; He, Xiaoyan; Suo, Xinkun; Huang, Jing; Gong, Yongfeng; Liu, Yi; Li, Hua

    2016-12-01

    Biofouling is one of the major problems for the coatings used for protecting marine infrastructures during their long-term services. Regulation in surface structure and local chemistry is usually the key for adjusting antifouling performances of the coatings. In this study, flame sprayed multi-layered aluminum coatings with micropatterned surfaces were constructed and the effects of their surface structure and chemistry on the settlement of typical marine diatoms were investigated. Micropatterned topographical morphology of the coatings was constructed by employing steel mesh as a shielding plate during the coating deposition. A silicone elastomer layer for sealing and interconnection was further brush-coated on the micropatterned coatings. Additional surface modification was made using zwitterionic molecules via DOPA linkage. The surface-modified coatings resist effectively colonization of Cylindrotheca closterium. This is explained by the quantitative examination of a simplified conditioning layer that deteriorated adsorption of bovine calf serum proteins on the zwitterionic molecule-treated samples is revealed. The colonization behaviors of the marine diatoms are markedly influenced by the micropatterned topographical morphology. Either the surface micropatterning or the surface modification by zwitterionic molecules enhances antimicrobial ability of the coatings. However, the combined micropatterned structure and zwitterionic modification do not show synergistic effect. The results give insight into anti-corrosion/fouling applications of the modified aluminum coatings in the marine environment.

  10. Effect of the Cold-Sprayed Aluminum Coating-Substrate Interface Morphology on Bond Strength for Aircraft Repair Application

    NASA Astrophysics Data System (ADS)

    Blochet, Quentin; Delloro, Francesco; N'Guyen, Franck; Jeulin, Dominique; Borit, François; Jeandin, Michel

    2017-04-01

    This article is dealing with the effects of surface preparation of the substrate on aluminum cold-sprayed coating bond strength. Different sets of AA2024-T3 specimens have been coated with pure Al 1050 feedstock powder, using a conventional cold spray coating technique. The sets were grit-blasted (GB) before coating. The study focuses on substrate surface topography evolution before coating and coating-substrate interface morphology after coating. To study coating adhesion by LASAT® technique for each set, specimens with and without preceding GB treatment were tested in load-controlled conditions. Then, several techniques were used to evaluate the effects of substrate surface treatment on the final coating mechanical properties. Irregularities induced by the GB treatment modify significantly the interface morphology. Results showed that particle anchoring was improved dramatically by the presence of craters. The substrate surface was characterized by numerous anchors. Numerical simulation results exhibited the increasing deformation of particle onto the grit-blasted surface. In addition, results showed a strong relationship between the coating-substrate bond strength on the deposited material and surface preparation.

  11. The role of surface elasticity in liquid film formation

    NASA Astrophysics Data System (ADS)

    Champougny, Lorene; Scheid, Benoit; Restagno, Frederic; Rio, Emmanuelle; Laboratoire de Physique des Solides Team; TIPS-Fluid Physics Unit Team

    2014-11-01

    The formation of thin liquid films, either free standing (soap films) or deposited on a solid substrate (coated films), is of utmost importance for many applications, ranging from the control of foam stability to surface functionalization. In this work, the behavior of thin liquid films during their generation from a surfactant solution is investigated through comparison between a hydrodynamic model including surface elasticity and experiments. ``Twin'' models are proposed to describe the coating of films onto a solid plate (Landau-Levich-Derjaguin configuration) as well as soap film pulling (Frankel configuration) in a single framework. Experimental data are successfully fitted using the models, surface elasticity being the only adjustable parameter. For a given surfactant solution, the analyses of soap and coated films both yield the same value for the effective surface elasticity, showing that it is an intrinsic parameter of a surfactant solution. Conversely, we demonstrate that Frankel- or Landau-Levich-like experiments can be used in practice as surface rheometers to determine the numerical value of the (effective) surface elasticity of a solution, especially for values lower than those measurable by classical devices. L.C. was supported by ANR F2F. B.S. thanks the F.R.S.-FNRS for funding as well as the IAP-MicroMAST project.

  12. Enhancement of surface durability of space materials and structures in LEO environment

    NASA Astrophysics Data System (ADS)

    Gudimenko, Y.; Ng, R.; Kleiman, J. I.; Iskanderova, Z. A.; Tennyson, R. C.; Hughes, P. C.; Milligan, D.; Grigorevski, A.; Shuiski, M.; Kiseleva, L.; Edwards, D.; Finckenor, M.

    2003-09-01

    Results of on-going program that involves surface modification treatments of thin polymer films and various organic-based thermal control coatings by an innovative Photosil surface modification technology for space durability improvement are presented, as well as results of ground-based testing in an oxygen plasma asher and in fast atomic oxygen (FAO) beam facility. In addition, independent ground-based FAO + VUV test results from NASA Marshall Space Flight Center (MSFC) are also presented. Recent results are presented to further improve the AO durability of conductive thermal control paints, never previously treated by the Photosil process. The thermal control coatings evaluated in this program represent existing commercially available space-approved materials and experimental coatings, which are still under development. Functional properties and performance characteristics, such as AO stability, thermal optical properties, surface resistivity, and outgassing characteristics of pristine and treated materials were also verified. FAO+VUV exposure tests results revealed that some of the successfully treated materials did not show any mass loss or surface morphology change, thus indicating good protection from the severe oxidative environment. A few complementary surface analysis techniques, such as X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) have been used to examine the composition and structure of the protective surface-modified layer.

  13. Method of bonding functional surface materials to substrates and applications in microtechnology and anti-fouling

    DOEpatents

    Feng, Xiangdong; Liu, Jun; Liang, Liang

    2001-01-01

    A simple and effective method to bond a thin coating of poly(N-isopropylacylamide) (NIPAAm) on a glass surface by UV photopolymerization, and the use of such a coated surface in nano and micro technology applications. A silane coupling agent with a dithiocarbamate group is provided as a photosensitizer preferably, (N,N'-diethylamine) dithiocarbamoylpropyl-(trimethoxy) silane (DATMS). The thiocarbamate group of the sensitizer is then bonded to the glass surface by coupling the silane agent with the hydroxyl groups on the glass surface. The modified surface is then exposed to a solution of NIPAAm and a crosslinking agent which may be any organic molecule having an acrylamide group and at least two double bonds in its structure, such as N, N'-methylenebisacrylamide, and a polar solvent which may be any polar liquid which will dissolve the monomer and the crosslinking agent such as acetone, water, ethanol, or combinations thereof. By exposing the glass surface to a UV light, free radicals are generated in the thiocarbamate group which then bonds to the crosslinking agent and the NIPAAm. Upon bonding, the crosslinking agent and the NIPAAm polymerize to form a thin coating of PNIPAAm bonded to the glass. Depending upon the particular configuration of the glass, the properties of the PNIPAAm allow applications in micro and nano technology.

  14. Method of bonding functional surface materials to substrates and applications in microtechnology and antifouling

    DOEpatents

    Feng, Xiangdong; Liu, Jun; Liang, Liang

    1999-01-01

    A simple and effective method to bond a thin coating of poly(N-isopropylacylamide) (NIPAAm) on a glass surface by UV photopolymerization, and the use of such a coated surface in nano and micro technology applications. A silane coupling agent with a dithiocarbamate group is provided as a photosensitizer, preferably, (N,N'-diethylamine)dithiocarbamoylpropyl-(trimethoxy)silane (DATMS). The thiocarbamate group of the sensitizer is then bonded to the glass surface by coupling the silane agent with the hydroxyl groups on the glass surface. The modified surface is then exposed to a solution of NIPAAm and a crosslinking agent which may be any organic molecule having an acrylamide group and at least two double bonds in its structure, such as N,N'-methylenebisacrylamide, and a polar solvent which may be any polar liquid which will dissolve the monomer and the crosslinking agent such as acetone, water, ethanol, or combinations thereof. By exposing the glass surface to a UV light, free radicals are generated in the thiocarbamate group which then bonds to the crosslinking agent and the NIPAAm. Upon bonding, the crosslinking agent and the NIPAAm polymerize to form a thin coating of PNIPAAm bonded to the glass. Depending upon the particular configuration of the glass, the properties of the PNIPAAm allow applications in micro and nano technology.

  15. Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic protein-2 on magnesium alloys for enhanced corrosion resistance and bone regeneration.

    PubMed

    Jiang, Yanan; Wang, Bi; Jia, Zhanrong; Lu, Xiong; Fang, Liming; Wang, Kefeng; Ren, Fuzeng

    2017-10-01

    Magnesium alloys have the great potential to be used as orthopedic implants due to their biodegradability and mechanical resemblance to human cortical bone. However, the rapid degradation in physiological environment with the evolution of hydrogen gas release hinders their clinical applications. In this study, we developed a novel functional and biocompatible coating strategy through polydopamine mediated assembly of hydroxyapatite nanoparticles and growth factor, bone morphogenetic protein-2 (BMP-2), onto the surface of AZ31 Mg alloys. Such functional coating has strong bonding with the substrate and can increase surface hydrophilicity of magnesium alloys. In vitro electrochemical corrosion and hydrogen evolution tests demonstrate that the coating can significantly enhance the corrosion resistance and therefore slow down the degradation of AZ31 Mg alloys. In vitro cell culture reveals that immobilization of HA nanoparticles and BMP-2 can obviously promote cell adhesion and proliferation. Furthermore, in vivo implantation tests indicate that with the synergistic effects of HA nanoparticles and BMP-2, the coating does not cause obvious inflammatory response and can significantly reduce the biodegradation rate of the magnesium alloys and induce the new bone formation adjacent to the implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2750-2761, 2017. © 2017 Wiley Periodicals, Inc.

  16. Amphotericin B channels in phospholipid membrane-coated nanoporous silicon surfaces: implications for photovoltaic driving of ions across membranes.

    PubMed

    Yilma, Solomon; Liu, Nangou; Samoylov, Alexander; Lo, Ting; Brinker, C Jeffrey; Vodyanoy, Vitaly

    2007-03-15

    The antimycotic agent amphotericin B (AmB) functions by forming complexes with sterols to form ion channels that cause membrane leakage. When AmB and cholesterol mixed at 2:1 ratio were incorporated into phospholipid bilayer membranes formed on the tip of patch pipettes, ion channel current fluctuations with characteristic open and closed states were observed. These channels were also functional in phospholipid membranes formed on nanoporous silicon surfaces. Electrophysiological studies of AmB-cholesterol mixtures that were incorporated into phospholipid membranes formed on the surface of nanoporous (6.5 nm pore diameter) silicon plates revealed large conductance ion channels ( approximately 300 pS) with distinct open and closed states. Currents through the AmB-cholesterol channels on nanoporous silicon surfaces can be driven by voltage applied via conventional electrical circuits or by photovoltaic electrical potential entirely generated when the nanoporous silicon surface is illuminated with a narrow laser beam. Electrical recordings made during laser illumination of AmB-cholesterol containing membrane-coated nanoporous silicon surfaces revealed very large conductance ion channels with distinct open and closed states. Our findings indicate that nanoporous silicon surfaces can serve as mediums for ion-channel-based biosensors. The photovoltaic properties of nanoporous silicon surfaces show great promise for making such biosensors addressable via optical technologies.

  17. Colloidal stability of CeO2 nanoparticles coated with either natural organic matter or organic polymers under various hydrochemical conditions

    NASA Astrophysics Data System (ADS)

    Dippon, Urs; Pabst, Silke; Klitzke, Sondra

    2016-04-01

    The worldwide marked for engineered nanoparticles (ENPs) is growing and concerns on the environmental fate- and toxicity of ENPs are rising. Understanding the transport of ENPs within and between environmental compartments such as surface water and groundwater is crucial for exposition modeling, risk assessment and ultimately the protection of drinking water resources. The transport of ENPs is strongly influenced by the surface properties and aggregation behavior of the particles, which is strongly controlled by synthetic and natural organic coatings. Both, surface properties and aggregation characteristics are also key properties for the industrial application of ENPs, which leads to the development and commercialization of an increasing number of surface-functionalized ENPs. These include metals and oxides such as Cerium dioxide (CeO2) with various organic coatings. Therefore, we investigate CeO2 ENPs with different surface coatings such as weakly anionic polyvinyl alcohol (PVA) or strongly anionic poly acrylic acid (PAA) with respect to their colloidal stability in aqueous matrix under various hydrochemical conditions (pH, ionic strength) and their transport behavior in sand filter columns. Furthermore, we investigate the interaction of naturally occurring organic matter (NOM) with CeO2 ENPs and its effect on surface charge (zeta potential), colloidal stability and transport. While uncoated CeO2 ENPs aggregate at pH > 4 in aqueous matrix, our results show that PAA and PVA surface coatings as well as NOM sorbed to CeO2-NP surfaces can stabilize CeO2 ENPs under neutral and alkaline pH conditions in 1 mM KCl solution. Under slightly acidic conditions, differences between the three particle types were observed. PVA can stabilize particle suspensions in presence of 1 mM KCl at pH > 4.3, PAA at pH >4.0 and NOM at >3.2. While the presence of KCl did not influence particle size of NOM-CeO2 ENPs, CaCl2 at >2 mM lead to aggregation. Further results on the influence of KCl and CaCl2 on aggregation of coated CeO2 ENPs and transport in sand filter columns will be presented.

  18. Cavitation resistance of surface composition "Steel-Ni-TiNi-TiNiZr-cBNCo", formed by High-Velocity Oxygen-Fuel spraying

    NASA Astrophysics Data System (ADS)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The object of the study is a multilayered surface composition "Steel - a Multicomponent material with Shape Memory Effect - a wear-resistant layer" under conditions of cavitation effects in sea water. Multicomponent TiNi-based coatings with addition of alloying elements such as Zr in an amount up to 10% mass, allow to create a composite material with a gradient of properties at the interface of layers, which gives new properties to coatings and improves their performance significantly. The use of materials with shape memory effect (SME) as surface layers or in the composition of surface layered compositions allows to provide an effective reaction of materials to the influence of external factors and adaptation to external influences. The surface composite layer cBN-10%Co has high hardness and strength, which ensures its resistance to shock cyclic influences of collapsing caverns. The increased roughness of the surface of a solid surface composite in the form of strong columnar structures ensures the crushing of vacuum voids, redistributing their effect on the entire surface, and not concentrating them in certain zones. In addition, the gradient structure of the multilayer composite coating TiNi-Ti33Ni49Zr18-cBN-10%Co Co makes it possible to create conditions for the relaxation of stresses created by the variable impact load of cavitation caverns and the manifestation of compensating internal forces due to thermo-elastic martensitic transformations of SME materials. The cavitation resistance of the coating TiNi-Ti33Ni49Zr18-cBN-10%Co according to the criterion of mass wear is 15-20 times higher than that of the base material without coating and 10-12 times higher than that of the TiNi-TiNiZr coating. The proposed architecture of the multifunctional gradient composition, "steel-Ni-TiNi- Ti33Ni49Zr18-cBN-10%Co", each layer of which has its functional purpose, allows to increase the service life of parts operating under conditions of cavitation-fatigue loading in corrosive environments.

  19. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility.

    PubMed

    Hagemann, Nikolas; Joseph, Stephen; Schmidt, Hans-Peter; Kammann, Claudia I; Harter, Johannes; Borch, Thomas; Young, Robert B; Varga, Krisztina; Taherymoosavi, Sarasadat; Elliott, K Wade; McKenna, Amy; Albu, Mihaela; Mayrhofer, Claudia; Obst, Martin; Conte, Pellegrino; Dieguez-Alonso, Alba; Orsetti, Silvia; Subdiaga, Edisson; Behrens, Sebastian; Kappler, Andreas

    2017-10-20

    Amending soil with biochar (pyrolized biomass) is suggested as a globally applicable approach to address climate change and soil degradation by carbon sequestration, reducing soil-borne greenhouse-gas emissions and increasing soil nutrient retention. Biochar was shown to promote plant growth, especially when combined with nutrient-rich organic matter, e.g., co-composted biochar. Plant growth promotion was explained by slow release of nutrients, although a mechanistic understanding of nutrient storage in biochar is missing. Here we identify a complex, nutrient-rich organic coating on co-composted biochar that covers the outer and inner (pore) surfaces of biochar particles using high-resolution spectro(micro)scopy and mass spectrometry. Fast field cycling nuclear magnetic resonance, electrochemical analysis and gas adsorption demonstrated that this coating adds hydrophilicity, redox-active moieties, and additional mesoporosity, which strengthens biochar-water interactions and thus enhances nutrient retention. This implies that the functioning of biochar in soil is determined by the formation of an organic coating, rather than biochar surface oxidation, as previously suggested.

  20. Microstructure and Properties of Thermally Sprayed Functionally Graded Coatings for Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Sutter, J. K.

    2003-01-01

    The use of polymer matrix composites (PMCs) in the gas flow path of advanced turbine engines offers significant benefits for aircraft engine performance but their useful lifetime is limited by their poor erosion resistance. High velocity oxy-fuel (HVOF) sprayed polymer/cermet functionally graded (FGM) coatings are being investigated as a method to address this technology gap by providing erosion and oxidation protection to polymer matrix composites. The FGM coating structures are based on a polyimide matrix filled with varying volume fractions of WC-Co. The graded coating architecture was produced using a combination of internal and external feedstock injection, via two computer-controlled powder feeders and controlled substrate preheating. Porosity, coating thickness and volume fraction of the WC-Co filler retained in the coatings were determined using standard metallographic techniques and computer image analysis. The pull-off strength (often referred to as the adhesive strength) of the coatings was evaluated according to the ASTM D 4541 standard test method, which measured the greatest normal tensile force that the coating could withstand. Adhesive/cohesive strengths were determined for three different types of coating structures and compared based on the maximum indicated load and the surface area loaded. The nature and locus of the fractures were characterized according to the percent of adhesive and/or cohesive failure, and the tested interfaces and layers involved were analyzed by Scanning Electron Microscopy.

  1. Antibacterial isoeugenol coating on stainless steel and polyethylene surfaces prevents biofilm growth.

    PubMed

    Nielsen, C K; Subbiahdoss, G; Zeng, G; Salmi, Z; Kjems, J; Mygind, T; Snabe, T; Meyer, R L

    2018-01-01

    Pathogenic bacteria can spread between individuals or between food items via the surfaces they share. Limiting the survival of pathogens on surfaces, therefore, presents an opportunity to limit at least one route of how pathogens spread. In this study, we propose that a simple coating with the essential oil isoeugenol can be used to circumvent the problem of bacterial transfer via surfaces. Two commonly used materials, stainless steel and polyethylene, were coated by physical adsorption, and the coatings were characterized by Raman spectroscopy, atomic force microscopy and water contact angle measurements. We quantified and visualized the colonization of coated and uncoated surfaces by three bacteria: Staphylococcus aureus, Listeria monocytogenes and Pseudomonas fluorescens. No viable cells were detected on surfaces coated with isoeugenol. The isoeugenol coating prepared with simple adsorption proved effective in preventing biofilm formation on stainless steel and polyethylene surfaces. The result was caused by the antibacterial effect of isoeugenol, as the coating did not diminish the adhesive properties of the surface. Our study demonstrates that a simple isoeugenol coating can prevent biofilm formation of S. aureus, L. monocytogenes and P. fluorescens on two commonly used surfaces. © 2017 The Society for Applied Microbiology.

  2. Effect of surface roughness of hydroxyapatite-coated titanium on the bone-implant interface shear strength.

    PubMed

    Hayashi, K; Inadome, T; Tsumura, H; Nakashima, Y; Sugioka, Y

    1994-11-01

    We have investigated the bone-implant interface shear strength of hydroxyapatite (HA)-coated Ti-6Al-4V (HA-coating A) (roughness average, Ra = 3.4 +/- 0.5 microns) and HA-coated Ti-6Al-4V with a rougher surface (HA-coating B) (Ra = 8.4 +/- 1.8 microns). There was no significant difference between HA-coating A and HA-coating B implants with respect to the bone-implant interface shear strength as determined in push-out tests using the transcortical model in adult dogs. The bone-implant interface shear strength of bead-coated porous Ti-6Al-4V was significantly greater than that of both HA-coating A and HA-coating B implants. The failure site, as determined by scanning electron microscopy, was the coating-substrate interface, not the coating-bone interface. This indicates a need to protect the HA coating from the direct shear forces. HA coating enhances early bone growth into the porous surface of the implant. Long-term fixation should depend on bone anchoring to this porous surface. Hydroxyapatite coatings must be developed which do not obstruct the pores of the surface of the implant.

  3. Deposition kinetics of quantum dots and polystyrene latex nanoparticles onto alumina: role of water chemistry and particle coating.

    PubMed

    Quevedo, Ivan R; Olsson, Adam L J; Tufenkji, Nathalie

    2013-03-05

    A clear understanding of the factors controlling the deposition behavior of engineered nanoparticles (ENPs), such as quantum dots (QDs), is necessary for predicting their transport and fate in natural subsurface environments and in water filtration processes. A quartz crystal microbalance with dissipation monitoring (QCM-D) was used to study the effect of particle surface coatings and water chemistry on the deposition of commercial QDs onto Al2O3. Two carboxylated QDs (CdSe and CdTe) with different surface coatings were compared with two model nanoparticles: sulfate-functionalized (sPL) and carboxyl-modified (cPL) polystyrene latex. Deposition rates were assessed over a range of ionic strengths (IS) in simple electrolyte (KCl) and in electrolyte supplemented with two organic molecules found in natural waters; namely, humic acid and rhamnolipid. The Al2O3 collector used here is selected to be representative of oxide patches found on the surface of aquifer or filter grains. Deposition studies showed that ENP deposition rates on bare Al2O3 generally decreased with increasing salt concentration, with the exception of the polyacrylic-acid (PAA) coated CdTe QD which exhibited unique deposition behavior due to changes in the conformation of the PAA coating. QD deposition rates on bare Al2O3 were approximately 1 order of magnitude lower than those of the polystyrene latex nanoparticles, likely as a result of steric stabilization imparted by the QD surface coatings. Adsorption of humic acid or rhamnolipid on the Al2O3 surface resulted in charge reversal of the collector and subsequent reduction in the deposition rates of all ENPs. Moreover, the ratio of the two QCM-D output parameters, frequency and dissipation, revealed key structural information of the ENP-collector interface; namely, on bare Al2O3, the latex particles were rigidly attached as compared to the more loosely attached QDs. This study emphasizes the importance of considering the nature of ENP coatings as well as organic molecule adsorption onto particle and collector surfaces to avoid underestimating ENP mobility in natural and engineered aquatic environments.

  4. Effect of absorbing coating on ablation of diamond by IR laser pulses

    NASA Astrophysics Data System (ADS)

    Kononenko, T. V.; Pivovarov, P. A.; Khomich, A. A.; Khmel'nitskii, R. A.; Konov, V. I.

    2018-03-01

    We study the possibility of increasing the efficiency and quality of laser ablation microprocessing of diamond by preliminary forming an absorbing layer on its surface. The laser pulses having a duration of 1 ps and 10 ns at a wavelength of 1030 nm irradiate the polycrystalline diamond surface coated by a thin layer of titanium or graphite. We analyse the dynamics of the growth of the crater depth as a function of the number of pulses and the change in optical transmission of the ablated surface. It is found that under irradiation by picosecond pulses the preliminary graphitisation allows one to avoid the laser-induced damage of the internal diamond volume until the appearance of a self-maintained graphitised layer. The absorbing coating (both graphite and titanium) much stronger affects ablation by nanosecond pulses, since it reduces the ablation threshold by more than an order of magnitude and allows full elimination of a laser-induced damage of deep regions of diamond and uncontrolled explosive ablation in the nearsurface layer.

  5. Characterization of in situ synthesized TiB 2 reinforcements in iron-based composite coating

    NASA Astrophysics Data System (ADS)

    Zhang, Panpan; Wang, Xibao; Guo, Lijie; Cai, Lijuan; Sun, Hongling

    2011-12-01

    TiB2 reinforced iron-based composite coatings can be fabricated on the mild steel substrate with a powder mixture of Ti and B4C by plasma transferred arc (PTA) powder surfacing process. Characterizations of the TiB2 reinforcements in the coated surface were investigated in this paper. The experimental work enables the following findings to be obtained: (i) acicular shaped and blocky formed TiB2 phases could be synthesized in situ using PTA powder surfacing process in the iron-based composite coating. (ii) Gradient distributions of TiB2 reinforcements appeared in the composite coating from both the vertical and horizontal direction of the coating's cross-section. Significant changes of the size, shape and volume fraction for TiB2 particles appeared in different regions of the surface coating, due to the effects of the dilution rate and mass density. (iii) Values of coating dilution could have profound impacts on the characterization of TiB2 reinforcements in the coated surfaces. With the increase of coating dilution, TiB2 grain tends to be acicular shaped at the edge of the surface coating, while it remains to be granular formed in the center of the composite coating.

  6. Method for smoothing the surface of a protective coating

    DOEpatents

    Sangeeta, D.; Johnson, Curtis Alan; Nelson, Warren Arthur

    2001-01-01

    A method for smoothing the surface of a ceramic-based protective coating which exhibits roughness is disclosed. The method includes the steps of applying a ceramic-based slurry or gel coating to the protective coating surface; heating the slurry/gel coating to remove volatile material; and then further heating the slurry/gel coating to cure the coating and bond it to the underlying protective coating. The slurry/gel coating is often based on yttria-stabilized zirconia, and precursors of an oxide matrix. Related articles of manufacture are also described.

  7. Phenol adsorption on surface-functionalized iron oxide nanoparticles: modeling of the kinetics, isotherm, and mechanism

    NASA Astrophysics Data System (ADS)

    Yoon, Soon Uk; Mahanty, Biswanath; Ha, Hun Moon; Kim, Chang Gyun

    2016-06-01

    Phenol adsorption from aqueous solution was carried out using uncoated and methyl acrylic acid (MAA)-coated iron oxide nanoparticles (NPs), having size <10 nm, as adsorbents. Batch adsorption studies revealed that the phenol removal efficiency of MAA-coated NPs (950 mg g-1) is significantly higher than that of uncoated NPs (550 mg g-1) under neutral to acidic conditions. However, this improvement disappears above pH 9. The adsorption data under optimized conditions (pH 7) were modeled with pseudo-first- and pseudo-second-order kinetics and subjected to Freundlich and Langmuir isotherms. The analysis determined that pseudo-second-order kinetics and the Freundlich model are appropriate for both uncoated and MAA-coated NPs (all R 2 > 0.98). X-ray photoelectron spectroscopy analysis of pristine and phenol-adsorbed NPs revealed core-level binding energy and charge for Fe(2 s) and O(1 s) on the NP surfaces. The calculations suggest that phenol adsorption onto MAA-coated NPs is a charge transfer process, where the adsorbate (phenol) acts as an electron donor and the NP surface (Fe, O) as an electron acceptor. However, a physisorption process appears to be the relevant mechanism for uncoated NPs.

  8. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers

    DOE PAGES

    Vogel, Nicolas; Belisle, Rebecca A.; Hatton, Benjamin; ...

    2013-07-31

    A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly locked into the structures and, owing to its fluidic nature, forms a defect-free, self-healing interface that eliminates the pinning of a second liquid applied to its surface, leading to efficient liquid repellency, prevention of adsorption of liquid-borne contaminants, and reduction of ice adhesion strength. We further show howmore » this method can be applied to locally pattern the repellent character of the substrate, thus opening opportunities to spatially confine any simple or complex fluids. The coating is highly defect-tolerant due to its interconnected, honeycomb wall structure, and repellency prevails after the application of strong shear forces and mechanical damage. The regularity of the coating allows us to understand and predict the stability or failure of repellency as a function of lubricant layer thickness and defect distribution based on a simple geometric model.« less

  9. Formation of Me-O-Si covalent bonds at the interface between polysilazane and stainless steel

    NASA Astrophysics Data System (ADS)

    Amouzou, Dodji; Fourdrinier, Lionel; Maseri, Fabrizio; Sporken, Robert

    2014-11-01

    In earlier works, we demonstrated the potential of polysilazane (PSZ) coatings for a use as insulating layers in Cu(In,Ga)Se2 (CIGS) solar cells prepared on steels substrates and showed a good adhesion between PSZ coatings and both AISI316 and AISI430 steels. In the present paper, spectroscopic techniques are used to elucidate the reason of such adhesion. X-ray Photoelectron Spectroscopy (XPS) was used to investigate surfaces for the two steel substrates and showed the presence of metal oxides and metal hydroxides at the top surface. XPS has been also used to probe interfaces between substrates and PSZ, and metallosiloxane (Me-O-Si) covalent bonds have been detected. These results were confirmed by Infra-Red Reflection Absorption Spectroscopy (IRRAS) analyses since vibrations related to Cr-O-Si and Fe-O-Si compounds were detected. Thus, the good adhesion between steel substrates and PSZ coatings was explained by covalent bonding through chemical reactions between PSZ precursors and hydroxide functional groups present on top surface of the two types of steel. Based on these results, an adhesion mechanism between steel substrates and PSZ coatings is proposed.

  10. Elaboration of nano-structured grafted polymeric surface.

    PubMed

    Vrlinic, Tjasa; Debarnot, Dominique; Mozetic, Miran; Vesel, Alenka; Kovac, Janez; Coudreuse, Arnaud; Legeay, Gilbert; Poncin-Epaillard, Fabienne

    2011-10-15

    The surface grafting of multi-polymeric materials can be achieved by grafting as components such as polymers poly(N-isopropylacrylamide) and/or surfactant molecules (hexatrimethylammonium bromide, polyoxyethylene sorbitan monolaurate). The chosen grafting techniques, i.e. plasma activation followed by coating, allow a large spectrum of functional groups that can be inserted on the surface controlling the surface properties like adhesion, wettability and biocompatibility. The grafted polypropylene surfaces were characterized by contact angle analyses, XPS and AFM analyses. The influence of He plasma activation, of the coating parameters such as concentrations of the various reactive agents are discussed in terms of hydrophilic character, chemical composition and morphologic surface heterogeneity. The plasma pre-activation was shown inevitable for a permanent polymeric grafting. PNIPAM was grafted alone or with a mixture of the surfactant molecules. Depending on the individual proportion of each component, the grafted surfaces are shown homogeneous or composed of small domains of one component leading to a nano-structuration of the grafted surface. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Terahertz NDE for Metallic Surface Roughness Evaluation

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.

    2006-01-01

    Metallic surface roughness in a nominally smooth surface is a potential indication of material degradation or damage. When the surface is coated or covered with an opaque dielectric material, such as paint or insulation, then inspecting for surface changes becomes almost impossible. Terahertz NDE is a method capable of penetrating the coating and inspecting the metallic surface. The terahertz frequency regime is between 100 GHz and 10 THz and has a free space wavelength of 300 micrometers at 1 THz. Pulsed terahertz radiation, can be generated and detected using optical excitation of biased semiconductors with femtosecond laser pulses. The resulting time domain signal is 320 picoseconds in duration. In this application, samples are inspected with a commercial terahertz NDE system that scans the sample and generates a set of time-domain signals that are a function of the backscatter from the metallic surface. Post processing is then performed in the time and frequency domains to generate C-scan type images that show scattering effects due to surface non-uniformity.

  12. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Pal, Partha P.; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V.; Kurochkin, Alexey V.; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I.; Nasibulin, Albert G.

    2016-12-01

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  13. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition.

    PubMed

    Pal, Partha P; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I; Nasibulin, Albert G

    2016-12-02

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  14. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    NASA Astrophysics Data System (ADS)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Kadir, Mohammed Rafiq Abdul

    2014-12-01

    Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process.

  15. Degradation of nonmodified and rhodium modified aluminide coating deposited on CMSX 4 superalloy.

    PubMed

    Zagula-Yavorska, Maryana; Wierzbińska, Małgorzata; Gancarczyk, Kamil; Sieniawski, Jan

    2016-07-01

    The Ni-base superalloy CMSX 4 used in the turbine blades of aircraft engines was coated with rhodium layer (0.5-μm thick). Next coated CMSX 4 superalloy was aluminized by the CVD method. The rhodium modified aluminide coating and nonmodified aluminide coating were oxidized at 1100°C at the air atmosphere. The rhodium modified aluminide coating showed about twice better oxidation resistance than the nonmodified one. The spallation equal 62% of the total area was observed on the surface of the nonmodified coating whereas only 36% spallation area was observed on the surface of the rhodium modified aluminide coating after the oxidation test. The oxide layer formed on the surface of the nonmodified coating was composed of nonprotective (Ni,Cr)Al2 O4 and (Ni,Cr)O phases. Aluminium in the coating reacts with oxygen, forming a protective α-Al2 O3 oxide on the surface of the rhodium modified aluminide coating. When the oxide cracks and spalls due to oxidation, additional aluminium from the coating diffuses to the surface to form the oxide. The presence of protective Al2 O3 oxide on the surface of the rhodium modified aluminide coating slows coating degradation. Therefore, rhodium modified aluminide coating has better oxidation resistance than the nonmodified one. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  16. Processing and Characterization of Functionally Graded Hydroxyapatite Coatings for Biomedical Implants

    NASA Astrophysics Data System (ADS)

    Bai, Xiao

    Hydroxyapatite [Ca10(PO4)6(OH) 2, HA] has been widely applied as a coating on various biomedical bone/dental implants to improve biocompatibility and bioactivity. It has been observed that primary reasons leading to implantation failure of commercial HA coated implants processed by plasma spraying are the poor mechanical properties of coatings and infections accompanied by implantation. It has been also reported an ideal coating should be able to stimulate new bone growth at the initial stage of implantation and stay stable both mechanically and chemically thereafter. This research has investigated a functionally graded hydroxyapatite (FGHA) coating that is capable of improving the stability of implants, facilitating recovery, and preventing infections after implantation. A series of FGHA coatings with incorporated Ag 0 ˜ 13.53 wt. % has been deposited onto Ti substrate using ion beam assisted deposition (IBAD) with in-situ heat treatment. The compositional, microstructural, mechanical, and biological properties of coatings have been analyzed via various tests. The relationship among processing parameters, coating properties and biological behaviors has been established and the processing parameters for processing FGHA coatings with/without incorporated Ag have been optimized. Microstructure observations of coating cross section via transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) for set temperature coatings deposited at 450°C ˜ 750°C reveals that in-situ substrate temperature is the primary factor controlling the crystallinity of the coatings. The microstructure observation of cross section via TEM/STEM for both FGHA coatings with/without incorporated Ag has shown that coatings are dense and have a gradually decreased crystallinity from substrate/coating interface to top surface. In particular, the interface has an atomically intermixed structure; the region near the interface has a columnar grain structure whereas the region near coating top surface is mostly amorphous. TEM/STEM observation of FGHA coating with incorporated Ag has also demonstrated that the metallic silver particles in size of 10 ˜ 50 nm distribute at the coating cross section throughout the coating thickness. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis have shown that coatings consist of HA and various calcium phosphate compounds. The pull off tests have shown that the average adhesion strength of FGHA coatings (both with and without Ag) to substrate are in the range of 83.44 +/- 5.71 ˜ 89.36 +/- 5.13 MPa. Further optical observation of pull off area of coating shows that no coating delamination is observed and epoxy failure is dominant, indicating a well-boned interface and a strong coating itself. It has been concluded that the high adhesion strength of coating to substrate is attributed to the atomic intermixed interface and dense structure of coating, which is resulted from the increased mobility of coating atoms at high substrate temperature under bombardment of assisted ion beam. Culture tests have shown a distinct increase in osteoblast cell attachment to FGHA surface after 24 hours culture test when compared to blank Ti controls. Both calcium and silver release tests of Ag-doped FGHA coatings have shown the release rate is high at the initial stage and it steadily decreases, which is the expected performance of FGHA coatings. Antibacterial test using S. aureus has revealed that Ag doped FGHA coatings show an inhibitory effect when compared to coating without Ag and blank Ti. In particular, with higher amounts of Ag in coatings, the inhibition of S. aureus is stronger. Cytotoxicity test indicates that the FGHA coating with the highest amounts of Ag shows a negative effect on the osteoblast response.

  17. Microbial adhesion on novel yttria-stabilized tetragonal zirconia (Y-TZP) implant surfaces with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coatings.

    PubMed

    Schienle, Stefanie; Al-Ahmad, Ali; Kohal, Ralf Joachim; Bernsmann, Falk; Adolfsson, Erik; Montanaro, Laura; Palmero, Paola; Fürderer, Tobias; Chevalier, Jérôme; Hellwig, Elmar; Karygianni, Lamprini

    2016-09-01

    Biomaterial surfaces are at high risk for initial microbial colonization, persistence, and concomitant infection. The rationale of this study was to assess the initial adhesion on novel implant surfaces of Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans upon incubation. The tested samples were 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) samples with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coating (A) and 3Y-TZP samples coated with ceria-stabilized zirconia-based (Ce-TZP) composite and a-C:H:N (B). Uncoated 3Y-TZP samples (C) and bovine enamel slabs (BES) served as controls. Once the surface was characterized, the adherent microorganisms were quantified by estimating the colony-forming units (CFUs). Microbial vitality was assessed by live/dead staining, and microbial-biomaterial surface topography was visualized by scanning electron microscopy (SEM). Overall, A and B presented the lowest CFU values for all microorganisms, while C sheltered significantly less E. faecalis, P. aeruginosa, and C. albicans than BES. Compared to the controls, B demonstrated the lowest vitality values for E. coli (54.12 %) and C. albicans (67.99 %). Interestingly, A (29.24 %) exhibited higher eradication rates for S. aureus than B (13.95 %). Within the limitations of this study, a-C:H:N-coated 3Y-TZP surfaces tended to harbor less initially adherent microorganisms and selectively interfered with their vitality. This could enable further investigation of the new multi-functional zirconia surfaces to confirm their favorable antimicrobial properties in vivo.

  18. 40 CFR 63.5743 - What standards must I meet for aluminum recreational boat surface coating operations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aluminum recreational boat surface coating operations? 63.5743 Section 63.5743 Protection of Environment... Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5743 What standards must I meet for aluminum recreational boat surface coating operations? (a) For...

  19. Effect of Inhibitor Agents Addition on Corrosion Resistance Performance of Titania Sol-Gel Coatings Applied on 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shanaghi, Ali; Chu, Paul K.; Moradi, Hadi

    Hybrid organic-inorganic coatings are deposited on 304 stainless steel substrates by the sol-gel technique to improve the corrosion resistance. A titania-based nanostructured hybrid sol-gel coating is impregnated with three different microencapsulated healing agents (inhibitors) including cerium, Benzotriazole (BTA), and 8-Hydroxyquinoline (8H). Field-emission scanning electron microscopy (FE-SEM) and electrochemical impedance spectroscopy (EIS) are performed to investigate the barrier performance properties. The optimum conditions to achieve corrosion protective coatings for 304 stainless steel were determined. The Nyquist plots demonstrate that the activation time of the coating containing 8H as an organic healing agent shows improved behavior when compared to other coatings including cerium and BTA. Cerium as an inorganic healing agent is second and BTA is third and minimum. An increase in the impedance parameters such as resistance and capacitance as a function of immersion time is achieved in a 3.5wt.% NaCl solution by using healing agents such as BTA. Actually, over the course of immersion, the barrier performance behavior of the coatings changes and reduction of the impedance observed from the coatings containing Ce and 8H discloses deterioration of the protection system after immersion for 96h of immersion in the 3.5% NaCl solution. However, after 96h of immersion time, the concentration of chloride ions is high and causes increase in defects, micro cracks, hole on the surface of hybrid titania nanostructured coating containing Ce and 8H by destruction of coating, and also hybrid titania nanostructured coating containing BTA; BTA is released from coating to improve the resistance of passive film, which is created on the surface.

  20. Effect of Metal Ion Etching on the Tribological, Mechanical and Microstructural Properties of TiN-COATED d2 Tool Steel Using Cae Pvd Technique

    NASA Astrophysics Data System (ADS)

    Ali, Mubarak; Hamzah, Esah Binti; Hj. Mohd Toff, Mohd Radzi

    A study has been made on TiN coatings deposited on D2 tool steel substrates by using commercially available cathodic arc evaporation, physical vapor deposition technique. The goal of this work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness, coefficient of friction and surface roughness of TiN coating deposited on tool steel, which is vastly use in tool industry for various applications. A pin-on-disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating at various ion etching rates. The tribo-test showed that the minimum value recorded for friction coefficient was 0.386 and 0.472 with standard deviation of 0.056 and 0.036 for the coatings deposited at zero and 16 min ion etching. The differences in friction coefficient and surface roughness was mainly associated with the macrodroplets, which was produced during etching stage. The coating deposited for 16 min metal ion etching showed the maximum hardness, i.e., about five times higher than uncoated one and 1.24 times to the coating deposited at zero ion etching. After friction test, the wear track was observed by using field emission scanning electron microscope. The coating deposited for zero ion etching showed small amounts of macrodroplets as compared to the coating deposited for 16 min ion etching. The elemental composition on the wear scar were investigated by means of energy dispersive X-ray, indicate no further TiN coating on wear track. A considerable improvement in TiN coatings was recorded as a function of various ion etching rates.

Top