Sample records for functional tata box

  1. Nuclear factor ETF specifically stimulates transcription from promoters without a TATA box.

    PubMed

    Kageyama, R; Merlino, G T; Pastan, I

    1989-09-15

    Transcription factor ETF stimulates the expression of the epidermal growth factor receptor (EGFR) gene which does not have a TATA box in the promoter region. Here, we show that ETF recognizes various GC-rich sequences including stretches of deoxycytidine or deoxyguanosine residues and GC boxes with similar affinities. ETF also binds to TATA boxes but with a lower affinity. ETF stimulated in vitro transcription from several promoters without TATA boxes but had little or no effect on TATA box-containing promoters even though they had strong ETF-binding sites. These inactive ETF-binding sites became functional when placed upstream of the EGFR promoter whose own ETF-binding sites were removed. Furthermore, when a TATA box was introduced into the EGFR promoter, the responsiveness to ETF was abolished. These results indicate that ETF is a specific transcription factor for promoters which do not contain TATA elements.

  2. Full trans-activation mediated by the immediate-early protein of equine herpesvirus 1 requires a consensus TATA box, but not its cognate binding sequence.

    PubMed

    Kim, Seong K; Shakya, Akhalesh K; O'Callaghan, Dennis J

    2016-01-04

    The immediate-early protein (IEP) of equine herpesvirus 1 (EHV-1) has extensive homology to the IEP of alphaherpesviruses and possesses domains essential for trans-activation, including an acidic trans-activation domain (TAD) and binding domains for DNA, TFIIB, and TBP. Our data showed that the IEP directly interacted with transcription factor TFIIA, which is known to stabilize the binding of TBP and TFIID to the TATA box of core promoters. When the TATA box of the EICP0 promoter was mutated to a nonfunctional TATA box, IEP-mediated trans-activation was reduced from 22-fold to 7-fold. The IEP trans-activated the viral promoters in a TATA motif-dependent manner. Our previous data showed that the IEP is able to repress its own promoter when the IEP-binding sequence (IEBS) is located within 26-bp from the TATA box. When the IEBS was located at 100 bp upstream of the TATA box, IEP-mediated trans-activation was very similar to that of the minimal IE(nt -89 to +73) promoter lacking the IEBS. As the distance from the IEBS to the TATA box decreased, IEP-mediated trans-activation progressively decreased, indicating that the IEBS located within 100 bp from the TATA box sequence functions as a distance-dependent repressive element. These results indicated that IEP-mediated full trans-activation requires a consensus TATA box of core promoters, but not its binding to the cognate sequence (IEBS). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Full trans–activation mediated by the immediate–early protein of equine herpesvirus 1 requires a consensus TATA box, but not its cognate binding sequence

    PubMed Central

    Kim, Seong K.; Shakya, Akhalesh K.; O'Callaghan, Dennis J.

    2015-01-01

    The immediate-early protein (IEP) of equine herpesvirus 1 (EHV-1) has extensive homology to the IEP of alphaherpesviruses and possesses domains essential for trans-activation, including an acidic trans-activation domain (TAD) and binding domains for DNA, TFIIB, and TBP. Our data showed that the IEP directly interacted with transcription factor TFIIA, which is known to stabilize the binding of TBP and TFIID to the TATA box of core promoters. When the TATA box of the EICP0 promoter was mutated to a nonfunctional TATA box, IEP-mediated trans-activation was reduced from 22-fold to 7-fold. The IEP trans-activated the viral promoters in a TATA motif-dependent manner. Our previous data showed that the IEP is able to repress its own promoter when the IEP-binding sequence (IEBS) is located within 26-bp from the TATA box. When the IEBS was located at 100 bp upstream of the TATA box, IEP-mediated trans-activation was very similar to that of the minimal IE(nt −89 to +73) promoter lacking the IEBS. As the distance from the IEBS to the TATA box decreased, IEP-mediated trans-activation progressively decreased, indicating that the IEBS located within 100 bp from the TATA box sequence functions as a distance-dependent repressive element. These results indicated that IEP-mediated full trans-activation requires a consensus TATA box of core promoters, but not its binding to the cognate sequence (IEBS). PMID:26541315

  4. TRF2 and the evolution of the bilateria

    PubMed Central

    Duttke, Sascha H.C.; Doolittle, Russell F.; Wang, Yuan-Liang

    2014-01-01

    The development of a complex body plan requires a diversity of regulatory networks. Here we consider the concept of TATA-box-binding protein (TBP) family proteins as “system factors” that each supports a distinct set of transcriptional programs. For instance, TBP activates TATA-box-dependent core promoters, whereas TBP-related factor 2 (TRF2) activates TATA-less core promoters that are dependent on a TCT or downstream core promoter element (DPE) motif. These findings led us to investigate the evolution of TRF2. TBP occurs in Archaea and eukaryotes, but TRF2 evolved prior to the emergence of the bilateria and subsequent to the evolutionary split between bilaterians and nonbilaterian animals. Unlike TBP, TRF2 does not bind to the TATA box and could thus function as a new system factor that is largely independent of TBP. We postulate that this TRF2-based system served as the foundation for new transcriptional programs, such as those involved in triploblasty and body plan development, that facilitated the evolution of bilateria. PMID:25274724

  5. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs.

    PubMed

    Zhang, Yijun; Fan, Miaomiao; Zhang, Xue; Huang, Feng; Wu, Kang; Zhang, Junsong; Liu, Jun; Huang, Zhuoqiong; Luo, Haihua; Tao, Liang; Zhang, Hui

    2014-12-01

    The TATA box represents one of the most prevalent core promoters where the pre-initiation complexes (PICs) for gene transcription are assembled. This assembly is crucial for transcription initiation and well regulated. Here we show that some cellular microRNAs (miRNAs) are associated with RNA polymerase II (Pol II) and TATA box-binding protein (TBP) in human peripheral blood mononuclear cells (PBMCs). Among them, let-7i sequence specifically binds to the TATA-box motif of interleukin-2 (IL-2) gene and elevates IL-2 mRNA and protein production in CD4(+) T-lymphocytes in vitro and in vivo. Through direct interaction with the TATA-box motif, let-7i facilitates the PIC assembly and transcription initiation of IL-2 promoter. Several other cellular miRNAs, such as mir-138, mir-92a or mir-181d, also enhance the promoter activities via binding to the TATA-box motifs of insulin, calcitonin or c-myc, respectively. In agreement with the finding that an HIV-1-encoded miRNA could enhance viral replication through targeting the viral promoter TATA-box motif, our data demonstrate that the interaction with core transcription machinery is a novel mechanism for miRNAs to regulate gene expression. © 2014 Zhang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  6. Role of indirect readout mechanism in TATA box binding protein-DNA interaction.

    PubMed

    Mondal, Manas; Choudhury, Devapriya; Chakrabarti, Jaydeb; Bhattacharyya, Dhananjay

    2015-03-01

    Gene expression generally initiates from recognition of TATA-box binding protein (TBP) to the minor groove of DNA of TATA box sequence where the DNA structure is significantly different from B-DNA. We have carried out molecular dynamics simulation studies of TBP-DNA system to understand how the DNA structure alters for efficient binding. We observed rigid nature of the protein while the DNA of TATA box sequence has an inherent flexibility in terms of bending and minor groove widening. The bending analysis of the free DNA and the TBP bound DNA systems indicate presence of some similar structures. Principal coordinate ordination analysis also indicates some structural features of the protein bound and free DNA are similar. Thus we suggest that the DNA of TATA box sequence regularly oscillates between several alternate structures and the one suitable for TBP binding is induced further by the protein for proper complex formation.

  7. Stereochemical analysis of the functional significance of the conserved inverted CCAAT and TATA elements in the rat bone sialoprotein gene promoter.

    PubMed

    Su, Ming; Lee, Daniel; Ganss, Bernhard; Sodek, Jaro

    2006-04-14

    Basal transcription of the bone sialoprotein gene is mediated by highly conserved inverted CCAAT (ICE; ATTGG) and TATA elements (TTTATA) separated by precisely 21 nucleotides. Here we studied the importance of the relative position and orientation of the CCAAT and TATA elements in the proximal promoter by measuring the transcriptional activity of a series of mutated reporter constructs in transient transfection assays. Whereas inverting the TTTATA (wild type) to a TATAAA (consensus TATA) sequence increased transcription slightly, transcription was reduced when the flanking dinucleotides were also inverted. In contrast, reversing the ATTGG (wild type; ICE) to a CCAAT (RICE) sequence caused a marked reduction in transcription, whereas both transcription and NF-Y binding were progressively increased with the simultaneous inversion of flanking nucleotides (f-RICE-f). Reducing the distance between the ICE and TATA elements produced cyclical changes in transcriptional activity that correlated with progressive alterations in the relative positions of the CCAAT and TATA elements on the face of the DNA helix. Minimal transcription was observed after 5 nucleotides were deleted (equivalent to approximately one half turn of the helix), whereas transcription was fully restored after deleting 10 nucleotides (approximately one full turn of the DNA helix), transcriptional activity being progressively lost with deletions beyond 10 nucleotides. In comparison, when deletions were made with the ICE in the reversed (f-RICE-f) orientation transcriptional activity was progressively lost with no recovery. These results show that, although transcription can still occur when the CCAAT box is reversed and/or displaced relative to the TATA box, the activity is dependent upon the flexibility of the intervening DNA helix needed to align the NF-Y complex on the CCAAT box with preinitiation complex proteins that bind to the TATA box. Thus, the precise location and orientation of the CCAAT element is necessary for optimizing basal transcription of the bone sialoprotein gene.

  8. Architecture of TAF11/TAF13/TBP complex suggests novel regulation properties of general transcription factor TFIID

    PubMed Central

    Gupta, Kapil; Watson, Aleksandra A; Baptista, Tiago; Scheer, Elisabeth; Chambers, Anna L; Koehler, Christine; Zou, Juan; Obong-Ebong, Ima; Kandiah, Eaazhisai; Temblador, Arturo; Round, Adam; Forest, Eric; Man, Petr; Bieniossek, Christoph; Laue, Ernest D; Lemke, Edward A; Rappsilber, Juri; Robinson, Carol V; Devys, Didier

    2017-01-01

    General transcription factor TFIID is a key component of RNA polymerase II transcription initiation. Human TFIID is a megadalton-sized complex comprising TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). TBP binds to core promoter DNA, recognizing the TATA-box. We identified a ternary complex formed by TBP and the histone fold (HF) domain-containing TFIID subunits TAF11 and TAF13. We demonstrate that TAF11/TAF13 competes for TBP binding with TATA-box DNA, and also with the N-terminal domain of TAF1 previously implicated in TATA-box mimicry. In an integrative approach combining crystal coordinates, biochemical analyses and data from cross-linking mass-spectrometry (CLMS), we determine the architecture of the TAF11/TAF13/TBP complex, revealing TAF11/TAF13 interaction with the DNA binding surface of TBP. We identify a highly conserved C-terminal TBP-interaction domain (CTID) in TAF13, which is essential for supporting cell growth. Our results thus have implications for cellular TFIID assembly and suggest a novel regulatory state for TFIID function. PMID:29111974

  9. TRF2 and the evolution of the bilateria.

    PubMed

    Duttke, Sascha H C; Doolittle, Russell F; Wang, Yuan-Liang; Kadonaga, James T

    2014-10-01

    The development of a complex body plan requires a diversity of regulatory networks. Here we consider the concept of TATA-box-binding protein (TBP) family proteins as "system factors" that each supports a distinct set of transcriptional programs. For instance, TBP activates TATA-box-dependent core promoters, whereas TBP-related factor 2 (TRF2) activates TATA-less core promoters that are dependent on a TCT or downstream core promoter element (DPE) motif. These findings led us to investigate the evolution of TRF2. TBP occurs in Archaea and eukaryotes, but TRF2 evolved prior to the emergence of the bilateria and subsequent to the evolutionary split between bilaterians and nonbilaterian animals. Unlike TBP, TRF2 does not bind to the TATA box and could thus function as a new system factor that is largely independent of TBP. We postulate that this TRF2-based system served as the foundation for new transcriptional programs, such as those involved in triploblasty and body plan development, that facilitated the evolution of bilateria. © 2014 Duttke et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Molecular Cloning of a cDNA Encoding for Taenia solium TATA-Box Binding Protein 1 (TsTBP1) and Study of Its Interactions with the TATA-Box of Actin 5 and Typical 2-Cys Peroxiredoxin Genes.

    PubMed

    Rodríguez-Lima, Oscar; García-Gutierrez, Ponciano; Jiménez, Lucía; Zarain-Herzberg, Ángel; Lazzarini, Roberto; Landa, Abraham

    2015-01-01

    TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5) and 2-Cys peroxiredoxin (Ts2-CysPrx) gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene.

  11. TFIIA changes the conformation of the DNA in TBP/TATA complexes and increases their kinetic stability.

    PubMed

    Hieb, Aaron R; Halsey, Wayne A; Betterton, Meredith D; Perkins, Thomas T; Kugel, Jennifer F; Goodrich, James A

    2007-09-21

    Eukaryotic mRNA transcription by RNA polymerase II is a highly regulated complex reaction involving numerous proteins. In order to control tissue and promoter specific gene expression, transcription factors must work in concert with each other and with the promoter DNA to form the proper architecture to activate the gene of interest. The TATA binding protein (TBP) binds to TATA boxes in core promoters and bends the TATA DNA. We have used quantitative solution fluorescence resonance energy transfer (FRET) and gel-based FRET (gelFRET) to determine the effect of TFIIA on the conformation of the DNA in TBP/TATA complexes and on the kinetic stability of these complexes. Our results indicate that human TFIIA decreases the angle to which human TBP bends consensus TATA DNA from 104 degrees to 80 degrees when calculated using a two-kink model. The kinetic stability of TBP/TATA complexes was greatly reduced by increasing the KCl concentration from 50 mM to 140 mM, which is more physiologically relevant. TFIIA significantly enhanced the kinetic stability of TBP/TATA complexes, thereby attenuating the effect of higher salt concentrations. We also found that TBP bent non-consensus TATA DNA to a lesser degree than consensus TATA DNA and complexes between TBP and a non-consensus TATA box were kinetically unstable even at 50 mM KCl. Interestingly, TFIIA increased the calculated bend angle and kinetic stability of complexes on a non-consensus TATA box, making them similar to those on a consensus TATA box. Our data show that TFIIA induces a conformational change within the TBP/TATA complex that enhances its stability under both in vitro and physiological salt conditions. Furthermore, we present a refined model for the effect that TFIIA has on DNA conformation that takes into account potential changes in bend angle as well as twist angle.

  12. Molecular Cloning of a cDNA Encoding for Taenia solium TATA-Box Binding Protein 1 (TsTBP1) and Study of Its Interactions with the TATA-Box of Actin 5 and Typical 2-Cys Peroxiredoxin Genes

    PubMed Central

    Rodríguez-Lima, Oscar; García-Gutierrez, Ponciano; Jiménez, Lucía; Zarain-Herzberg, Ángel; Lazzarini, Roberto; Landa, Abraham

    2015-01-01

    TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5) and 2-Cys peroxiredoxin (Ts2-CysPrx) gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene. PMID:26529408

  13. The human immunodeficiency virus type 1 long terminal repeat specifies two different transcription complexes, only one of which is regulated by Tat.

    PubMed Central

    Lu, X; Welsh, T M; Peterlin, B M

    1993-01-01

    The human immunodeficiency virus type 1 long terminal repeat sets up two different transcription complexes, which have been called processive and nonprocessive complexes. By mutating and substituting cis-acting sequences, we mapped elements of the human immunodeficiency virus long terminal repeat that are responsible for creating each transcription complex. Whereas processive complexes are efficiently assembled by upstream promoter elements in the absence of the TATA box, nonprocessive complexes absolutely require the TATA box. Moreover, the TATA box alone can set up these nonprocessive complexes, and nonprocessive but not processive complexes are trans activated by Tat. Finally, a strong DNA-binding site between the TATA box and trans-activation-responsive region interferes with either the assembly or movement of these nonprocessive complexes and diminishes the effects of Tat. Thus, Tat affects a critical step in the formation of elongation-competent transcription complexes. Images PMID:8445708

  14. Does TATA matter? A structural exploration of the selectivity determinants in its complexes with TATA box-binding protein.

    PubMed Central

    Pastor, N; Pardo, L; Weinstein, H

    1997-01-01

    The binding of the TATA box-binding protein (TBP) to a TATA sequence in DNA is essential for eukaryotic basal transcription. TBP binds in the minor groove of DNA, causing a large distortion of the DNA helix. Given the apparent stereochemical equivalence of AT and TA basepairs in the minor groove, DNA deformability must play a significant role in binding site selection, because not all AT-rich sequences are bound effectively by TBP. To gain insight into the precise role that the properties of the TATA sequence have in determining the specificity of the DNA substrates of TBP, the solution structure and dynamics of seven DNA dodecamers have been studied by using molecular dynamics simulations. The analysis of the structural properties of basepair steps in these TATA sequences suggests a reason for the preference for alternating pyrimidine-purine (YR) sequences, but indicates that these properties cannot be the sole determinant of the sequence specificity of TBP. Rather, recognition depends on the interplay between the inherent deformability of the DNA and steric complementarity at the molecular interface. Images FIGURE 2 PMID:9251783

  15. The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants

    PubMed Central

    Bakó, László; Umeda, Masaaki; Tiburcio, Antonio F.; Schell, Jeff; Koncz, Csaba

    2003-01-01

    The bacterial virulence protein VirD2 plays an important role in nuclear import and chromosomal integration of Agrobacterium-transferred DNA in fungal, plant, animal, and human cells. Here we show that in nuclei of alfalfa cells, VirD2 interacts with and is phosphorylated by CAK2Ms, a conserved plant ortholog of cyclin-dependent kinase-activating kinases. CAK2Ms binds to and phosphorylates the C-terminal regulatory domain of RNA polymerase II largest subunit, which can recruit the TATA box-binding protein. VirD2 is found in tight association with the TATA box-binding protein in vivo. These results indicate that recognition of VirD2 is mediated by widely conserved nuclear factors in eukaryotes. PMID:12900506

  16. Spatial Organization of the Core Region of Yeast TFIIIB-DNA Complexes

    PubMed Central

    Persinger, Jim; Sengupta, Sarojini M.; Bartholomew, Blaine

    1999-01-01

    The interaction of yeast TFIIIB with the region upstream of the SUP4 tRNATyr gene was extensively probed by use of photoreactive phosphodiesters, deoxyuridines, and deoxycytidines that are site specifically incorporated into DNA. The TATA binding protein (TBP) was found to be in close proximity to the minor groove of a TATA-like DNA sequence that starts 30 nucleotides upstream of the start site of transcription. TBP was cross-linked to the phosphate backbone of DNA from bp −30 to −20 in the nontranscribed strand and from bp −28 to −24 in the transcribed strand (+1 denotes the start site of transcription). Most of the major groove of DNA in this region was shown not to be in close proximity to TBP, thus resembling the binding of TBP to the TATA box, with one notable exception. TBP was shown to interact with the major groove of DNA primarily at bp −23 and to a lesser degree at bp −25 in the transcribed strand. The stable interaction of TBP with the major groove at bp −23 was shown to require the B" subunit of TFIIIB. The S4 helix and flanking region of TBP were shown to be proximal to the major groove of DNA by peptide mapping of the region of TBP cross-linked at bp −23. Thus, TBP in the TFIIIB-SUP4 gene promoter region is bound in the same direction as TBP bound to the TATA box with respect to the transcription start site. The B" and TFIIB-related factor (BRF) subunits of TFIIIB are positioned on opposite sides of the TBP-DNA core of the TFIIIB complex, as indicated by correlation of cross-linking data to the crystal structure of the TBP-TATA box complex. Evidence is given for BRF binding near the C-terminal stirrup of TBP, similar to that of TFIIB near the TBP-TATA box complex. The protein clamp formed around the TBP-DNA complex by BRF and B" would help explain the long half-life of the TFIIIB-DNA complex and its resistance to polyanions and high salt. The path of DNA traversing the surface of TBP at the 3′ end of the TATA-like element in the SUP4 tRNA gene is not the same as that of TBP bound to a TATA box element, as shown by the cross-linking of TBP at bp −23. PMID:10373570

  17. Characterization of cis-acting elements required for autorepression of the equine herpesvirus 1 IE gene

    PubMed Central

    Kim, Seongman; Dai, Gan; O’Callaghan, Dennis J.; Kim, Seong Kee

    2012-01-01

    The immediate-early protein (IEP), the major regulatory protein encoded by the IE gene of equine herpesvirus 1 (EHV-1), plays a crucial role as both transcription activator and repressor during a productive lytic infection. To investigate the mechanism by which the EHV-1 IEP inhibits its own promoter, IE promoter-luciferase reporter plasmids containing wild-type and mutant IEP-binding site (IEBS) were constructed and used for luciferase reporter assays. The IEP inhibited transcription from its own promoter in the presence of a consensus IEBS (5’-ATCGT-3’) located near the transcription initiation site but did not inhibit when the consensus sequence was deleted. To determine whether the distance between the TATA box and the IEBS affects transcriptional repression, the IEBS was displaced from the original site by the insertion of synthetic DNA sequences. Luciferase reporter assays revealed that the IEP is able to repress its own promoter when the IEBS is located within 26-bp from the TATA box. We also found that the proper orientation and position of the IEBS were required for the repression by the IEP. Interestingly, the level of repression was significantly reduced when a consensus TATA sequence was deleted from the promoter region, indicating that the IEP efficiently inhibits its own promoter in a TATA box-dependent manner. Taken together, these results suggest that the EHV-1 IEP delicately modulates autoregulation of its gene through the consensus IEBS that is near the transcription initiation site and the TATA box. PMID:22265772

  18. Characterization of cis-acting elements required for autorepression of the equine herpesvirus 1 IE gene.

    PubMed

    Kim, Seongman; Dai, Gan; O'Callaghan, Dennis J; Kim, Seong Kee

    2012-04-01

    The immediate-early protein (IEP), the major regulatory protein encoded by the IE gene of equine herpesvirus 1 (EHV-1), plays a crucial role as both transcription activator and repressor during a productive lytic infection. To investigate the mechanism by which the EHV-1 IEP inhibits its own promoter, IE promoter-luciferase reporter plasmids containing wild-type and mutant IEP-binding site (IEBS) were constructed and used for luciferase reporter assays. The IEP inhibited transcription from its own promoter in the presence of a consensus IEBS (5'-ATCGT-3') located near the transcription initiation site but did not inhibit when the consensus sequence was deleted. To determine whether the distance between the TATA box and the IEBS affects transcriptional repression, the IEBS was displaced from the original site by the insertion of synthetic DNA sequences. Luciferase reporter assays revealed that the IEP is able to repress its own promoter when the IEBS is located within 26-bp from the TATA box. We also found that the proper orientation and position of the IEBS were required for the repression by the IEP. Interestingly, the level of repression was significantly reduced when a consensus TATA sequence was deleted from the promoter region, indicating that the IEP efficiently inhibits its own promoter in a TATA box-dependent manner. Taken together, these results suggest that the EHV-1 IEP delicately modulates autoregulation of its gene through the consensus IEBS that is near the transcription initiation site and the TATA box. Copyright © 2012. Published by Elsevier B.V.

  19. Mechanism of selective recruitment of RNA polymerases II and III to snRNA gene promoters.

    PubMed

    Dergai, Oleksandr; Cousin, Pascal; Gouge, Jerome; Satia, Karishma; Praz, Viviane; Kuhlman, Tracy; Lhôte, Philippe; Vannini, Alessandro; Hernandez, Nouria

    2018-05-01

    RNA polymerase II (Pol II) small nuclear RNA (snRNA) promoters and type 3 Pol III promoters have highly similar structures; both contain an interchangeable enhancer and "proximal sequence element" (PSE), which recruits the SNAP complex (SNAPc). The main distinguishing feature is the presence, in the type 3 promoters only, of a TATA box, which determines Pol III specificity. To understand the mechanism by which the absence or presence of a TATA box results in specific Pol recruitment, we examined how SNAPc and general transcription factors required for Pol II or Pol III transcription of SNAPc-dependent genes (i.e., TATA-box-binding protein [TBP], TFIIB, and TFIIA for Pol II transcription and TBP and BRF2 for Pol III transcription) assemble to ensure specific Pol recruitment. TFIIB and BRF2 could each, in a mutually exclusive fashion, be recruited to SNAPc. In contrast, TBP-TFIIB and TBP-BRF2 complexes were not recruited unless a TATA box was present, which allowed selective and efficient recruitment of the TBP-BRF2 complex. Thus, TBP both prevented BRF2 recruitment to Pol II promoters and enhanced BRF2 recruitment to Pol III promoters. On Pol II promoters, TBP recruitment was separate from TFIIB recruitment and enhanced by TFIIA. Our results provide a model for specific Pol recruitment at SNAPc-dependent promoters. © 2018 Dergai et al.; Published by Cold Spring Harbor Laboratory Press.

  20. A TATA binding protein mutant with increased affinity for DNA directs transcription from a reversed TATA sequence in vivo.

    PubMed

    Spencer, J Vaughn; Arndt, Karen M

    2002-12-01

    The TATA-binding protein (TBP) nucleates the assembly and determines the position of the preinitiation complex at RNA polymerase II-transcribed genes. We investigated the importance of two conserved residues on the DNA binding surface of Saccharomyces cerevisiae TBP to DNA binding and sequence discrimination. Because they define a significant break in the twofold symmetry of the TBP-TATA interface, Ala100 and Pro191 have been proposed to be key determinants of TBP binding orientation and transcription directionality. In contrast to previous predictions, we found that substitution of an alanine for Pro191 did not allow recognition of a reversed TATA box in vivo; however, the reciprocal change, Ala100 to proline, resulted in efficient utilization of this and other variant TATA sequences. In vitro assays demonstrated that TBP mutants with the A100P and P191A substitutions have increased and decreased affinity for DNA, respectively. The TATA binding defect of TBP with the P191A mutation could be intragenically suppressed by the A100P substitution. Our results suggest that Ala100 and Pro191 are important for DNA binding and sequence recognition by TBP, that the naturally occurring asymmetry of Ala100 and Pro191 is not essential for function, and that a single amino acid change in TBP can lead to elevated DNA binding affinity and recognition of a reversed TATA sequence.

  1. Molecular architecture of the hsp70 promoter after deletion of the TATA box or the upstream regulation region.

    PubMed Central

    Weber, J A; Taxman, D J; Lu, Q; Gilmour, D S

    1997-01-01

    GAGA factor, TFIID, and paused polymerase are present on the hsp70 promoter in Drosophila melanogaster prior to transcriptional activation. In order to investigate the interplay between these components, mutant constructs were analyzed after they had been transformed into flies on P elements. One construct lacked the TATA box and the other lacked the upstream regulatory region where GAGA factor binds. Transcription of each mutant during heat shock was at least 50-fold less than that of a normal promoter construct. Before and after heat shock, both mutant promoters were found to adopt a DNase I hypersensitive state that included the region downstream from the transcription start site. High-resolution analysis of the DNase I cutting pattern identified proteins that could be contributing to the hypersensitivity. GAGA factor footprints were clearly evident in the upstream region of the TATA deletion construct, and a partial footprint possibly caused by TFIID was evident on the TATA box of the upstream deletion construct. Permanganate treatment of intact salivary glands was used to further characterize each promoter construct. Paused polymerase and TFIID were readily detected on the normal promoter construct, whereas both deletions exhibited reduced levels of each of these factors. Hence both the TATA box and the upstream region are required to efficiently recruit TFIID and a paused polymerase to the promoter prior to transcriptional activation. In contrast, GAGA factor appears to be capable of binding and establishing a DNase I hypersensitive region in the absence of TFIID and polymerase. Interestingly, purified GAGA factor was found to bind near the transcription start site, and the strength of this interaction was increased by the presence of the upstream region. GAGA factor alone might be capable of establishing an open chromatin structure that encompasses the upstream regulatory region as well as the core promoter region, thus facilitating the binding of TFIID. PMID:9199313

  2. Using FRET to Measure the Angle at Which a Protein Bends DNA: TBP Binding a TATA Box as a Model System

    ERIC Educational Resources Information Center

    Kugel, Jennifer F.

    2008-01-01

    An undergraduate biochemistry laboratory experiment that will teach the technique of fluorescence resonance energy transfer (FRET) while analyzing protein-induced DNA bending is described. The experiment uses the protein TATA binding protein (TBP), which is a general transcription factor that recognizes and binds specific DNA sequences known as…

  3. RNA Polymerase III promoter screen uncovers a novel noncoding RNA family conserved in Caenorhabditis and other clade V nematodes.

    PubMed

    Gruber, Andreas R

    2014-07-10

    RNA Polymerase III is a highly specialized enzyme complex responsible for the transcription of a very distinct set of housekeeping noncoding RNAs including tRNAs, 7SK snRNA, Y RNAs, U6 snRNA, and the RNA components of RNaseP and RNaseMRP. In this work we have utilized the conserved promoter structure of known RNA Polymerase III transcripts consisting of characteristic sequence elements termed proximal sequence elements (PSE) A and B and a TATA-box to uncover a novel RNA Polymerase III-transcribed, noncoding RNA family found to be conserved in Caenorhabditis as well as other clade V nematode species. Homology search in combination with detailed sequence and secondary structure analysis revealed that members of this novel ncRNA family evolve rapidly, and only maintain a potentially functional small stem structure that links the 5' end to the very 3' end of the transcript and a small hairpin structure at the 3' end. This is most likely required for efficient transcription termination. In addition, our study revealed evidence that canonical C/D box snoRNAs are also transcribed from a PSE A-PSE B-TATA-box promoter in Caenorhabditis elegans. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Interactions between the cytomegalovirus promoter and the estrogen response element: implications for design of estrogen-responsive reporter plasmids.

    PubMed

    Derecka, K; Wang, C K; Flint, A P F

    2006-07-01

    We aimed to produce an estrogen-responsive reporter plasmid that would permit monitoring of estrogen receptor function in the uterus in vivo. The plasmid pBL-tk-CAT(+)ERE was induced by estrogen in bovine endometrial stromal cells. When the CAT gene was replaced by the secreted alkaline phosphatase SeAP, the resulting construct pBL-tk-SeAP(+)ERE remained estrogen responsive. However when the tk promoter was replaced by the cytomegalovirus (cmv) promoter, the resulting plasmid (pBL-cmv-SeAP(+)ERE) was not estrogen responsive. Inhibition of ERE function was not due to an effect in trans or due to lack of estrogen receptor. It was not due to an interaction between the cmv promoter and the SeAP gene. cmv promoter function was dependent on NF-kappaB, and mutagenesis in the NF-kappaB sites reduced basal reporter expression without imparting responsiveness to estrogen. A mutation in the TATA box also failed to impart estrogen responsiveness. Modeling of DNA accessibility indicated the ERE was inserted at a site accessible to transcription factors. We conclude that the cmv promoter inhibits ERE function in cis when the two sequences are located in the same construct, and that this effect does not involve an interaction between cmv and reporter gene, NF-kappaB sites or the TATA box, or DNA inaccessibility.

  5. The Ability to Associate with Activation Domains in vitro is not Required for the TATA Box-Binding Protein to Support Activated Transcription in vivo

    NASA Astrophysics Data System (ADS)

    Tansey, William P.; Herr, Winship

    1995-11-01

    The TATA box-binding protein (TBP) interacts in vitro with the activation domains of many viral and cellular transcription factors and has been proposed to be a direct target for transcriptional activators. We have examined the functional relevance of activator-TBP association in vitro to transcriptional activation in vivo. We show that alanine substitution mutations in a single loop of TBP can disrupt its association in vitro with the activation domains of the herpes simplex virus activator VP16 and of the human tumor suppressor protein p53; these mutations do not, however, disrupt the transcriptional response of TBP to either activation domain in vivo. Moreover, we show that a region of VP16 distinct from its activation domain can also tightly associate with TBP in vitro, but fails to activate transcription in vivo. These data suggest that the ability of TBP to interact with activation domains in vitro is not directly relevant to its ability to support activated transcription in vivo.

  6. Molecular cloning of the transcription factor TFIIB homolog from Sulfolobus shibatae.

    PubMed Central

    Qureshi, S A; Khoo, B; Baumann, P; Jackson, S P

    1995-01-01

    The Archaea (archaebacteria) constitute a group of prokaryotes that are phylogenetically distinct from Eucarya (eukaryotes) and Bacteria (eubacteria). Although Archaea possess only one RNA polymerase, evidence suggests that their transcriptional apparatus is similar to that of Eucarya. For example, Archaea contain a homolog of the TATA-binding protein which interacts with the TATA-box like A-box sequence upstream of many archaeal genes. Here, we report the cloning of a Sulfolobus shibatae gene that encodes a protein (transcription factor TFB) with striking homology to the eukaryotic basal transcription factor TFIIB. We show by primer extension analysis that transcription of the S. shibatae TFB gene initiates 27 bp downstream from a consensus A-box element. Significantly, S. shibatae TFB contains an N-terminal putative metal-binding region and two imperfect direct repeats--structural features that are well conserved in eukaryotic TFIIBs. This suggests that TFB may perform analogous functions in Archaea and Eucarya. Consistent with this, we demonstrate that S. shibatae TFB promotes the binding of S. shibatae TBP to the A-box element of the Sulfolobus 16S/23S rRNA gene. Finally, we show that S. shibatae TFB is significantly more related to TFB of the archaeon Pyrococcus woesei than it is to eukaryotic TFIIBs. These data suggest that TFB arose in the common archaeal/eukaryotic ancestor and that the lineages leading to P. woesei and S. shibatae separated after the divergence of the archaeal and eukaryotic lines of descent. Images Fig. 2 Fig. 3 PMID:7597084

  7. Dynamics of TBP binding to the TATA box

    NASA Astrophysics Data System (ADS)

    Schluesche, Peter; Heiss, Gregor; Meisterernst, Michael; Lamb, Don C.

    2008-02-01

    Gene expression is highly controlled and regulated in living cells. One of the first steps in gene transcription is recognition of the promoter site by the TATA box Binding Protein (TBP). TBP recruits other transcriptions factors and eventually the RNA polymerase II to transcribe the DNA in mRNA. We developed a single pair Förster Resonance Energy Transfer (spFRET) assay to investigate the mechanism of gene regulation. Here, we apply this assay to investigate the initial binding process of TBP to the adenovirus major late (AdML) promoter site. From the spFRET measurements, we were able to identify two conformations of the TBP-DNA complex that correspond to TBP bound in the correct and the opposite orientation. Increased incubation times or the presence of the transcription factor TFIIA improved the alignment of TBP on the promoter site. Binding of TBP to the TATA box shows a rich dynamics with abrupt transitions between multiple FRET states. A frame-wise histogram analysis revealed the presence of at least six discrete states, showing that TBP binding is more complicated than previously thought. Hence, the spFRET assay is very sensitive to the conformation of the TBP-DNA complex and is very promising tool for investigating the pathway of TBP binding in detail.

  8. Simian Virus 40 Large T Antigen Interacts with Human TFIIB-Related Factor and Small Nuclear RNA-Activating Protein Complex for Transcriptional Activation of TATA-Containing Polymerase III Promoters

    PubMed Central

    Damania, Blossom; Mital, Renu; Alwine, James C.

    1998-01-01

    The TATA-binding protein (TBP) is common to the basal transcription factors of all three RNA polymerases, being associated with polymerase-specific TBP-associated factors (TAFs). Simian virus 40 large T antigen has previously been shown to interact with the TBP-TAFII complexes, TFIID (B. Damania and J. C. Alwine, Genes Dev. 10:1369–1381, 1996), and the TBP-TAFI complex, SL1 (W. Zhai, J. Tuan, and L. Comai, Genes Dev. 11:1605–1617, 1997), and in both cases these interactions are critical for transcriptional activation. We show a similar mechanism for activation of the class 3 polymerase III (pol III) promoter for the U6 RNA gene. Large T antigen can activate this promoter, which contains a TATA box and an upstream proximal sequence element but cannot activate the TATA-less, intragenic VAI promoter (a class 2, pol III promoter). Mutants of large T antigen that cannot activate pol II promoters also fail to activate the U6 promoter. We provide evidence that large T antigen can interact with the TBP-containing pol III transcription factor human TFIIB-related factor (hBRF), as well as with at least two of the three TAFs in the pol III-specific small nuclear RNA-activating protein complex (SNAPc). In addition, we demonstrate that large T antigen can cofractionate and coimmunoprecipitate with the hBRF-containing complex TFIIIB derived from HeLa cells infected with a recombinant adenovirus which expresses large T antigen. Hence, similar to its function with pol I and pol II promoters, large T antigen interacts with TBP-containing, basal pol III transcription factors and appears to perform a TAF-like function. PMID:9488448

  9. Analysis of a cis-Acting Element Involved in Regulation by Estrogen of Human Angiotensinogen Gene Expression.

    PubMed

    Zhao, Yan-Yan; Sun, Kai-Lai; Ashok, Kumar

    1998-01-01

    The work was aimed to identify the estrogen responsive element in the human angiotensinogen gene. The nucleotide sequence between the transcription initiation site and TATA box in angiotensinogen gene promoter was found to be strongly homologous with the consensus estrogen responsive element. This sequence was confirmed as the estrogen responsive element (HAG ERE) by electrophoretic mobility shift assay. The recombinant expression vectors were constructed in which chloramphenicol acetyltransferase (CAT) reporter gene was driven by angiotensinogen core promoter with HAG ERE of by TK core promoter with multiplied HAG ERE, and were used in cotransfection with the human estrogen receptor expression vector into HepG(2) cells; CAT assays showed an increase of the CAT activity on 17beta-estradiol treatment in those transfectants. These results suggest that the human angiotensinogen gene is transcriptionally up-regulated by estrogen through the estrogen responsive element near TATA box of the promoter.

  10. Differential utilization of TATA box-binding protein (TBP) and TBP-related factor 1 (TRF1) at different classes of RNA polymerase III promoters.

    PubMed

    Verma, Neha; Hung, Ko-Hsuan; Kang, Jin Joo; Barakat, Nermeen H; Stumph, William E

    2013-09-20

    In the fruit fly Drosophila melanogaster, RNA polymerase III transcription was found to be dependent not upon the canonical TATA box-binding protein (TBP) but instead upon the TBP-related factor 1 (TRF1) (Takada, S., Lis, J. T., Zhou, S., and Tjian, R. (2000) Cell 101, 459-469). Here we confirm that transcription of fly tRNA genes requires TRF1. However, we unexpectedly find that U6 snRNA gene promoters are occupied primarily by TBP in cells and that knockdown of TBP, but not TRF1, inhibits U6 transcription in cells. Moreover, U6 transcription in vitro effectively utilizes TBP, whereas TBP cannot substitute for TRF1 to promote tRNA transcription in vitro. Thus, in fruit flies, different classes of RNA polymerase III promoters differentially utilize TBP and TRF1 for the initiation of transcription.

  11. RNA polymerase II components and Rrn7 form a preinitiation complex on the HomolD box to promote ribosomal protein gene expression in Schizosaccharomyces pombe.

    PubMed

    Montes, Matías; Moreira-Ramos, Sandra; Rojas, Diego A; Urbina, Fabiola; Käufer, Norbert F; Maldonado, Edio

    2017-02-01

    In Schizosaccharomyces pombe, ribosomal protein gene (RPG) promoters contain a TATA box analog, the HomolD box, which is bound by the Rrn7 protein. Despite the importance of ribosome biogenesis for cell survival, the mechanisms underlying RPG transcription remain unknown. In this study, we found that components of the RNA polymerase II (RNAPII) system, consisting of the initiation or general transcription factors (GTFs) TFIIA, IIB, IIE, TATA-binding protein (TBP) and the RNAPII holoenzyme, interacted directly with Rrn7 in vitro, and were able to form a preinitiation complex (PIC) on the HomolD box. PIC complex formation follows an ordered pathway on these promoters. The GTFs and RNAPII can also be cross-linked to HomolD-containing promoters in vivo. In an in vitro reconstituted transcription system, RNAPII components and Rrn7 were necessary for HomolD-directed transcription. The Mediator complex was required for basal transcription from those promoters in whole cell extract (WCE). The Med17 subunit of Mediator also can be cross-linked to the promoter region of HomolD-containing promoters in vivo, suggesting the presence of the Mediator complex on HomolD box-containing promoters. Together, these data show that components of the RNAPII machinery and Rrn7 participate in the PIC assembly on the HomolD box, thereby directing RPG transcription. © 2017 Federation of European Biochemical Societies.

  12. Shikonins, phytocompounds from Lithospermum erythrorhizon, inhibit the transcriptional activation of human tumor necrosis factor alpha promoter in vivo.

    PubMed

    Staniforth, Vanisree; Wang, Sheng-Yang; Shyur, Lie-Fen; Yang, Ning-Sun

    2004-02-13

    Tumor necrosis factor alpha (TNF-alpha) contributes to the pathogenesis of both acute and chronic inflammatory diseases and has been a target for the development of new anti-inflammatory drugs. Shikonins, the naphthoquinone pigments present in the root tissues of Lithospermum erythrorhizon Sieb. et Zucc. (Boraginaceae), have been reported to exert anti-inflammatory effects both in vitro and in vivo. In this study, we evaluated the effects of shikonin and its derivatives on the transcriptional activation of human TNF-alpha promoter in a gene gun-transfected mouse skin system by using a luciferase reporter gene assay. The crude plant extract of L. erythrorhizon as well as derived individual compounds shikonin, isobutyryl shikonin, acetyl shikonin, dimethylacryl shikonin and isovaleryl shikonin showed significant dose-dependent inhibition of TNF-alpha promoter activation. Among the tested compounds, shikonin and isobutyryl shikonin exhibited the highest inhibition of TNF-alpha promoter activation and also showed significant suppression of transgenic human TNF-alpha mRNA expression and protein production. We demonstrated that shikonin-inhibitory response was retained in the core TNF-alpha promoter region containing the TATA box and a 48-bp downstream sequence relative to the transcription start site. Further our results indicated that shikonin suppressed the basal transcription and activator-regulated transcription of TNF-alpha by inhibiting the binding of transcription factor IID protein complex (TATA box-binding protein) to TATA box. These in vivo results suggest that shikonins inhibit the transcriptional activation of the human TNF-alpha promoter through interference with the basal transcription machinery. Thus, shikonins may have clinical potential as anti-inflammatory therapeutics.

  13. TATA Binding Protein Discriminates between Different Lesions on DNA, Resulting in a Transcription Decrease

    PubMed Central

    Coin, Frédéric; Frit, Philippe; Viollet, Benoit; Salles, Bernard; Egly, Jean-Marc

    1998-01-01

    DNA damage recognition by basal transcription factors follows different mechanisms. Using transcription-competition, nitrocellulose filter binding, and DNase I footprinting assays, we show that, although the general transcription factor TFIIH is able to target any kind of lesion which can be repaired by the nucleotide excision repair pathway, TATA binding protein (TBP)-TFIID is more selective in damage recognition. Only genotoxic agents which are able to induce kinked DNA structures similar to the one for the TATA box in its TBP complex are recognized. Indeed, DNase I footprinting patterns reveal that TBP protects equally 4 nucleotides upstream and 6 nucleotides downstream from the A-T (at position −29 of the noncoding strand) of the adenovirus major late promoter and from the G-G of a cisplatin-induced 1,2-d(GpG) cross-link. Together, our results may partially explain differences in transcription inhibition rates following DNA damage. PMID:9632775

  14. TATA box-binding protein (TBP) is a constituent of the polymerase I-specific transcription initiation factor TIF-IB (SL1) bound to the rRNA promoter and shows differential sensitivity to TBP-directed reagents in polymerase I, II, and III transcription factors.

    PubMed

    Radebaugh, C A; Matthews, J L; Geiss, G K; Liu, F; Wong, J M; Bateman, E; Camier, S; Sentenac, A; Paule, M R

    1994-01-01

    The role of the Acanthamoeba castellanii TATA-binding protein (TBP) in transcription was examined. Specific antibodies against the nonconserved N-terminal domain of TBP were used to verify the presence of TBP in the fundamental transcription initiation factor for RNA polymerase I, TIF-IB, and to demonstrate that TBP is part of the committed initiation complex on the rRNA promoter. The same antibodies inhibit transcription in all three polymerase systems, but they do so differentially. Oligonucleotide competitors were used to evaluate the accessibility of the TATA-binding site in TIF-IB, TFIID, and TFIIIB. The results suggest that insertion of TBP into the polymerase II and III factors is more similar than insertion into the polymerase I factor.

  15. Engineering Promoter Architecture in Oleaginous Yeast Yarrowia lipolytica.

    PubMed

    Shabbir Hussain, Murtaza; Gambill, Lauren; Smith, Spencer; Blenner, Mark A

    2016-03-18

    Eukaryotic promoters have a complex architecture to control both the strength and timing of gene transcription spanning up to thousands of bases from the initiation site. This complexity makes rational fine-tuning of promoters in fungi difficult to predict; however, this very same complexity enables multiple possible strategies for engineering promoter strength. Here, we studied promoter architecture in the oleaginous yeast, Yarrowia lipolytica. While recent studies have focused on upstream activating sequences, we systematically examined various components common in fungal promoters. Here, we examine several promoter components including upstream activating sequences, proximal promoter sequences, core promoters, and the TATA box in autonomously replicating expression plasmids and integrated into the genome. Our findings show that promoter strength can be fine-tuned through the engineering of the TATA box sequence, core promoter, and upstream activating sequences. Additionally, we identified a previously unreported oleic acid responsive transcription enhancement in the XPR2 upstream activating sequences, which illustrates the complexity of fungal promoters. The promoters engineered here provide new genetic tools for metabolic engineering in Y. lipolytica and provide promoter engineering strategies that may be useful in engineering other non-model fungal systems.

  16. Mutations on the DNA Binding Surface of TBP Discriminate between Yeast TATA and TATA-Less Gene Transcription

    PubMed Central

    Kamenova, Ivanka; Warfield, Linda

    2014-01-01

    Most RNA polymerase (Pol) II promoters lack a TATA element, yet nearly all Pol II transcription requires TATA binding protein (TBP). While the TBP-TATA interaction is critical for transcription at TATA-containing promoters, it has been unclear whether TBP sequence-specific DNA contacts are required for transcription at TATA-less genes. Transcription factor IID (TFIID), the TBP-containing coactivator that functions at most TATA-less genes, recognizes short sequence-specific promoter elements in metazoans, but analogous promoter elements have not been identified in Saccharomyces cerevisiae. We generated a set of mutations in the yeast TBP DNA binding surface and found that most support growth of yeast. Both in vivo and in vitro, many of these mutations are specifically defective for transcription of two TATA-containing genes with only minor defects in transcription of two TATA-less, TFIID-dependent genes. TBP binds several TATA-less promoters with apparent high affinity, but our results suggest that this binding is not important for transcription activity. Our results are consistent with the model that sequence-specific TBP-DNA contacts are not important at yeast TATA-less genes and suggest that other general transcription factors or coactivator subunits are responsible for recognition of TATA-less promoters. Our results also explain why yeast TBP derivatives defective for TATA binding appear defective in activated transcription. PMID:24865972

  17. Mutations on the DNA binding surface of TBP discriminate between yeast TATA and TATA-less gene transcription.

    PubMed

    Kamenova, Ivanka; Warfield, Linda; Hahn, Steven

    2014-08-01

    Most RNA polymerase (Pol) II promoters lack a TATA element, yet nearly all Pol II transcription requires TATA binding protein (TBP). While the TBP-TATA interaction is critical for transcription at TATA-containing promoters, it has been unclear whether TBP sequence-specific DNA contacts are required for transcription at TATA-less genes. Transcription factor IID (TFIID), the TBP-containing coactivator that functions at most TATA-less genes, recognizes short sequence-specific promoter elements in metazoans, but analogous promoter elements have not been identified in Saccharomyces cerevisiae. We generated a set of mutations in the yeast TBP DNA binding surface and found that most support growth of yeast. Both in vivo and in vitro, many of these mutations are specifically defective for transcription of two TATA-containing genes with only minor defects in transcription of two TATA-less, TFIID-dependent genes. TBP binds several TATA-less promoters with apparent high affinity, but our results suggest that this binding is not important for transcription activity. Our results are consistent with the model that sequence-specific TBP-DNA contacts are not important at yeast TATA-less genes and suggest that other general transcription factors or coactivator subunits are responsible for recognition of TATA-less promoters. Our results also explain why yeast TBP derivatives defective for TATA binding appear defective in activated transcription. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. B1-induced caspase-independent apoptosis in MCF-7 cells is mediated by down-regulation of Bcl-2 via p53 binding to P2 promoter TATA box

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Xin; Xu Ke; Xu Yufang

    The Bcl-2 family contains a panel of proteins which are conserved regulators of apoptosis in mammalian cells, like the anti-apoptotic protein Bcl-2. According to its significant role in altering susceptibility to apoptosis, the deciphering of the mechanism of Bcl-2 expression modulation may be crucial for identifying therapeutics strategies for cancer. Treatment with naphthalimide-based DNA intercalators, including M2-A and R16, generally leads to a decrease in Bcl-2 intracellular amounts. Whereas the interest for these chemotherapeutics is accompanied by advances in the fundamental understanding of their anticancer properties, the molecular mechanism underlying changes in Bcl-2 expression remains poorly understood. We report heremore » that p53 contributes to Bcl-2 down-regulation induced by B1, a novel naphthalimide-based DNA intercalating agent. Indeed, the decrease in Bcl-2 protein levels observed during B1-induced apoptosis was correlated to the decrease in mRNA levels, as a result of the inhibition of Bcl-2 transcription and promoter activity. In this context, we evaluated p53 contribution in the Bcl-2 transcriptional down-regulation. We found a significant increase of p53 binding to P{sub 2} promoter TATA box in MCF7 cells by chromatin immunoprecipitation. These data suggest that B1-induced caspase-independent apoptosis in MCF-7 cells is associated with the activation of p53 and the down-regulation of Bcl-2. Our study strengthens the links between p53 and Bcl-2 at a transcriptional level, upon naphthalimide-based DNA intercalator treatment. - Research Highlights: > B1 induced apoptosis in MCF-7 cells, following a transcriptional decrease in Bcl-2. > B1 treatment triggered p53 activation and leads to a p53-dependent down-regulation of Bcl-2. > B1 induced significant increase of p53 binding to Bcl-2 P{sub 2} promoter TATA box.« less

  19. Genomic sequences of murine gamma B- and gamma C-crystallin-encoding genes: promoter analysis and complete evolutionary pattern of mouse, rat and human gamma-crystallins.

    PubMed

    Graw, J; Liebstein, A; Pietrowski, D; Schmitt-John, T; Werner, T

    1993-12-22

    The murine genes, gamma B-cry and gamma C-cry, encoding the gamma B- and gamma C-crystallins, were isolated from a genomic DNA library. The complete nucleotide (nt) sequences of both genes were determined from 661 and 711 bp, respectively, upstream from the first exon to the corresponding polyadenylation sites, comprising more than 2650 and 2890 bp, respectively. The new sequences were compared to the partial cDNA sequences available for the murine gamma B-cry and gamma C-cry, as well as to the corresponding genomic sequences from rat and man, at both the nt and predicted amino acid (aa) sequence levels. In the gamma B-cry promoter region, a canonical CCAAT-box, a TATA-box, putative NF-I and C/EBP sites were detected. An R-repeat is inserted 366 bp upstream from the transcription start point. In contrast, the gamma C-cry promoter does not contain a CCAAT-box, but some other putative binding sites for transcription factors (AP-2, UBP-1, LBP-1) were located by computer analysis. The promoter regions of all six gamma-cry from mouse, rat and human, except human psi gamma F-cry, were analyzed for common sequence elements. A complex sequence element of about 70-80 bp was found in the proximal promoter, which contains a gamma-cry-specific and almost invariant sequence (crygpel) of 14 nt, and ends with the also invariant TATA-box. Within the complex sequence element, a minimum of three further features specific for the gamma A-, gamma B- and gamma D/E/F-cry genes can be defined, at least two of which were recently shown to be functional. In addition to these four sequence elements, a subtype-specific structure of inverted repeats with different-sized spacers can be deduced from the multiple sequence alignment. A phylogenetic analysis based on the promoter region, as well as the complete exon 3 of all gamma-cry from mouse, rat and man, suggests separation of only five gamma-cry subtypes (gamma A-, gamma B-, gamma C-, gamma D- and gamma E/F-cry) prior to species separation.

  20. Mutations in the histone fold domain of the TAF12 gene show synthetic lethality with the TAF1 gene lacking the TAF N-terminal domain (TAND) by different mechanisms from those in the SPT15 gene encoding the TATA box-binding protein (TBP)

    PubMed Central

    Kobayashi, Akiko; Miyake, Tsuyoshi; Kawaichi, Masashi; Kokubo, Tetsuro

    2003-01-01

    The general transcription factor TFIID, composed of the TATA box-binding protein (TBP) and 14 TBP-associated factors (TAFs), is important for both basal and regulated transcription by RNA polymerase II. Although it is well known that the TAF N-terminal domain (TAND) at the amino-terminus of the TAF1 protein binds to TBP and thereby inhibits TBP function in vitro, the physiological role of this domain remains obscure. In our previous study, we screened for mutations that cause lethality when co-expressed with the TAF1 gene lacking TAND (taf1-ΔTAND) and identified two ΔTAND synthetic lethal (nsl) mutations as those in the SPT15 gene encoding TBP. In this study we isolated another nsl mutation in the same screen and identified it to be a mutation in the histone fold domain (HFD) of the TAF12 gene. Several other HFD mutations of this gene also exhibit nsl phenotypes, and all of them are more or less impaired in transcriptional activation in vivo. Interestingly, a set of genes affected in the taf1-ΔTAND mutant is similarly affected in the taf12 HFD mutants but not in the nsl mutants of TBP. Therefore, we discovered that the nsl mutations of these two genes cause lethality in the taf1-ΔTAND mutant by different mechanisms. PMID:12582246

  1. Multivalent DNA-binding properties of the HMG-1 proteins.

    PubMed Central

    Maher, J F; Nathans, D

    1996-01-01

    HMG-I proteins are DNA-binding proteins thought to affect the formation and function of transcription complexes. Each protein contains three DNA-binding motifs, known as AT-hooks, that bind in the minor groove of AT tracts in DNA. Multiple AT-hooks within a polypeptide chain should contact multiple AT tracts, but the rules governing these interactions have not been defined. In this study, we demonstrate that high-affinity binding uses two or three appropriately spaced AT tracts as a single multivalent binding site. These principles have implications for binding to regulatory elements such as the interferon beta enhancer, TATA boxes, and serum response elements. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8692884

  2. Characterization of Transcription from TATA-Less Promoters: Identification of a New Core Promoter Element XCPE2 and Analysis of Factor Requirements

    PubMed Central

    Anish, Ramakrishnan; Hossain, Mohammad B.; Jacobson, Raymond H.; Takada, Shinako

    2009-01-01

    Background More than 80% of mammalian protein-coding genes are driven by TATA-less promoters which often show multiple transcriptional start sites (TSSs). However, little is known about the core promoter DNA sequences or mechanisms of transcriptional initiation for this class of promoters. Methodology/Principal Findings Here we identify a new core promoter element XCPE2 (X core promoter element 2) (consensus sequence: A/C/G-C-C/T-C-G/A-T-T-G/A-C-C/A+1-C/T) that can direct specific transcription from the second TSS of hepatitis B virus X gene mRNA. XCPE2 sequences can also be found in human promoter regions and typically appear to drive one of the start sites within multiple TSS-containing TATA-less promoters. To gain insight into mechanisms of transcriptional initiation from this class of promoters, we examined requirements of several general transcription factors by in vitro transcription experiments using immunodepleted nuclear extracts and purified factors. Our results show that XCPE2-driven transcription uses at least TFIIB, either TFIID or free TBP, RNA polymerase II (RNA pol II) and the MED26-containing mediator complex but not Gcn5. Therefore, XCPE2-driven transcription can be carried out by a mechanism which differs from previously described TAF-dependent mechanisms for initiator (Inr)- or downstream promoter element (DPE)-containing promoters, the TBP- and SAGA (Spt-Ada-Gcn5-acetyltransferase)-dependent mechanism for yeast TATA-containing promoters, or the TFTC (TBP-free-TAF-containing complex)-dependent mechanism for certain Inr-containing TATA-less promoters. EMSA assays using XCPE2 promoter and purified factors further suggest that XCPE2 promoter recognition requires a set of factors different from those for TATA box, Inr, or DPE promoter recognition. Conclusions/Significance We identified a new core promoter element XCPE2 that are found in multiple TSS-containing TATA-less promoters. Mechanisms of promoter recognition and transcriptional initiation for XCPE2-driven promoters appear different from previously shown mechanisms for classical promoters that show single “focused” TSSs. Our studies provide insight into novel mechanisms of RNA Pol II transcription from multiple TSS-containing TATA-less promoters. PMID:19337366

  3. Structural organization and chromosomal assignment of the mouse embryonic TEA domain-containing factor (ETF) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kazuo; Yasunami, Michio; Matsuda, Yoichi

    1996-09-01

    Embryonic TEA domain-containing factor (ETF) belongs to the family of proteins structurally related to transcriptional enhancer factor-1 (TEF-1) and is implicated in neural development. Isolation and characterization of the cosmid clones encoding the mouse ETF gene (Etdf) revealed that Etdf spans approximately 17.9 kb and consists of 12 exons. The exon-intron structure of Etdf closely resembles that of the Drosophila scalloped gene, indicating that these genes may have evolved from a common ancestor. Then multiple transcription initiation sites revealed by S1 protection and primer extension analyses are consistent with the absence of the canonical TATA and CAAT boxes in themore » 5{prime}-flanking region, which contains many potential regulatory sequences, such as the E-box, N-box, Sp1 element, GATA-1 element, TAATGARAT element, and B2 short interspersed element (SINE) as well as several direct and inverted repeat sequences. The Etdf locus was assigned to the proximal region of mouse chromosome 7 using fluorescence in situ hybridization and linkage mapping analyses. These results provide the molecular basis for studying the regulation, in vivo function, and evolution of Etdf. 29 refs., 5 figs., 1 tab.« less

  4. Structural organization and chromosomal assignment of the mouse embryonic TEA domain-containing factor (ETF) gene.

    PubMed

    Suzuki, K; Yasunami, M; Matsuda, Y; Maeda, T; Kobayashi, H; Terasaki, H; Ohkubo, H

    1996-09-01

    Embryonic TEA domain-containing factor (ETF) belongs to the family of proteins structurally related to transcriptional enhancer factor-1 (TEF-1) and is implicated in neural development. Isolation and characterization of the cosmid clones encoding the mouse ETF gene (Etdf) revealed that Etdf spans approximately 17.9 kb and consists of 12 exons. The exon-intron structure of Etdf closely resembles that of the Drosophila scalloped gene, indicating that these genes may have evolved from a common ancestor. The multiple transcription initiation sites revealed by S1 protection and primer extension analyses are consistent with the absence of the canonical TATA and CAAT boxes in the 5'-flanking region, which contains many potential regulatory sequences, such as the E-box, N-box, Sp1 element, GATA-1 element, TAATGARAT element, and B2 short interspersed element (SINE) as well as several direct and inverted repeat sequences. The Etdf locus was assigned to the proximal region of mouse chromosome 7 using fluorescence in situ hybridization and linkage mapping analyses. These results provide the molecular basis for studying the regulation, in vivo function, and evolution of Etdf.

  5. Characterization of the human UDP-galactose:ceramide galactosyltransferase gene promoter.

    PubMed

    Tencomnao, T; Yu, R K; Kapitonov, D

    2001-02-16

    UDP-galactose:ceramide galactosyltransferase (CGT, EC 2.4.1.45) is a key enzyme in the biosynthesis of galactocerebroside, the most abundant glycosphingolipid in the myelin sheath. An 8 kb fragment upstream from the transcription initiation site of CGT gene was isolated from a human genomic DNA library. Primer extension analysis revealed a single transcription initiation site 329 bp upstream from the ATG start codon. Neither a consensus TATA nor a CCAAT box was identified in the proximity to the transcription start site; however, this region contains a high GC content and multiple putative regulatory elements. To investigate the transcriptional regulation of CGT, a series of 5' deletion constructs of the 5'-flanking region were generated and cloned upstream from the luciferase reporter gene. By comparing promoter activity in the human oligodendroglioma (HOG) and human neuroblastoma (LAN-5) cell lines, we found that the CGT promoter functions in a cell type-specific manner. Three positive cis-acting regulatory regions were identified, including a proximal region at -292/-256 which contains the potential binding sites for known transcription factors (TFs) such as Ets and SP1 (GC box), a distal region at -747/-688 comprising a number of binding sites such as the ERE half-site, NF1-like, TGGCA-BP, and CRE, and a third positive cis-acting region distally localized at -1325/-1083 consisting of binding sites for TFs such as nitrogen regulatory, TCF-1, TGGCA-BP, NF-IL6, CF1, bHLH, NF1-like, GATA, and gamma-IRE. A negative cis-acting domain localized in a far distal region at -1594/-1326 was also identified. Our results suggest the presence of both positive and negative cis-regulatory regions essential for the cell-specific expression in the TATA-less promoter of the human CGT gene.

  6. Diversity in TAF proteomics: consequences for cellular differentiation and migration.

    PubMed

    Kazantseva, Jekaterina; Palm, Kaia

    2014-09-19

    Development is a highly controlled process of cell proliferation and differentiation driven by mechanisms of dynamic gene regulation. Specific DNA binding factors for establishing cell- and tissue-specific transcriptional programs have been characterised in different cell and animal models. However, much less is known about the role of "core transcription machinery" during cell differentiation, given that general transcription factors and their spatiotemporally patterned activity govern different aspects of cell function. In this review, we focus on the role of TATA-box associated factor 4 (TAF4) and its functional isoforms generated by alternative splicing in controlling lineage-specific differentiation of normal mesenchymal stem cells and cancer stem cells. In the light of our recent findings, induction, control and maintenance of cell differentiation status implies diversification of the transcription initiation apparatus orchestrated by alternative splicing.

  7. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Das, Ranjan; Sengupta, Dibyendu N

    2008-12-01

    Sucrose phosphate synthase (SPS) (EC 2.3.1.14) is the key regulatory component in sucrose formation in banana (Musa acuminata subgroup Cavendish, cv Giant governor) fruit during ripening. This report illustrates differential transcriptional responses of banana SPS gene following ethylene, auxin, wounding, low temperature and different photoperiods during ripening in banana fruit. Whereas ethylene strongly stimulated SPS transcript accumulation, auxin and cold treatment only marginally increased the abundance of SPS mRNA level, while wounding negatively regulated SPS gene expression. Conversely, SPS transcript level was distinctly increased by constant exposure to white light. Protein level, enzymatic activity of SPS and sucrose synthesis were substantially increased by ethylene and increased exposure to white light conditions as compared to other treatments. To further study the transcriptional regulation of SPS in banana fruit, the promoter region of SPS gene was cloned and some cis-acting regulatory elements such as a reverse GCC-box ERE, two ARE motifs (TGTCTC), one LTRE (CCGAA), a GAGA-box (GAGA...) and a GATA-box LRE (GATAAG) were identified along with the TATA and CAAT-box. DNA-protein interaction studies using these cis-elements indicated a highly specific cis-trans interaction in the banana nuclear extract. Furthermore, we specifically studied the light responsive characteristics of GATA-box containing synthetic as well as native banana SPS promoter. Transient expression assays using banana SPS promoter have also indicated the functional importance of the SPS promoter in regulating gene expression. Together, these results provide insights into the transcriptional regulation of banana SPS gene in response to phytohormones and other environmental factors during fruit ripening.

  8. Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish.

    PubMed

    Callard, G V; Tchoudakova, A V; Kishida, M; Wood, E

    2001-12-01

    Teleost fish are characterized by exceptionally high levels of brain estrogen biosynthesis when compared to the brains of other vertebrates or to the ovaries of the same fish. Goldfish (Carassius auratus) and zebrafish (Danio rerio) have utility as complementary models for understanding the molecular basis and functional significance of exaggerated neural estrogen biosynthesis. Multiple cytochrome P450 aromatase (P450arom) cDNAs that derive from separate gene loci (cyp19a and cyp19b) are differentially expressed in brain (P450aromB>A) and ovary (P450aromA>B) and have a different developmental program (B>A) and response to estrogen upregulation (B only). As measured by increased P450aromB mRNA, a functional estrogen response system is first detected 24-48 h post-fertilization (hpf), consistent with the onset of estrogen receptor (ER) expression (alpha, beta, and gamma). The 5'-flanking region of the cyp19b gene has a TATA box, two estrogen response elements (EREs), an ERE half-site (ERE1/2), a nerve growth factor inducible-B protein (NGFI-B)/Nur77 responsive element (NBRE) binding site, and a sequence identical to the zebrafish GATA-2 gene neural specific enhancer. The cyp19a promoter region has TATA and CAAT boxes, a steroidogenic factor-1 (SF-1) binding site, and two aryl hydrocarbon receptor (AhR)/AhR nuclear translocator factor (ARNT) binding motifs. Both genes have multiple potential SRY/SOX binding sites (16 and 8 in cyp19b and cyp19a, respectively). Luciferase reporters have basal promoter activity in GH3 cells, but differences (a>b) are opposite to fish pituitary (b>a). When microinjected into fertilized zebrafish eggs, a cyp19b promoter-driven green fluorescent protein (GFP) reporter (but not cyp19a) is expressed in neurons of 30-48 hpf embryos, most prominently in retinal ganglion cells (RGCs) and their projections to optic tectum. Further studies are required to identify functionally relevant cis-elements and cellular factors, and to determine the regulatory role of estrogen in neurodevelopment.

  9. Tenebrio molitor antifreeze protein gene identification and regulation.

    PubMed

    Qin, Wensheng; Walker, Virginia K

    2006-02-15

    The yellow mealworm, Tenebrio molitor, is a freeze susceptible, stored product pest. Its winter survival is facilitated by the accumulation of antifreeze proteins (AFPs), encoded by a small gene family. We have now isolated 11 different AFP genomic clones from 3 genomic libraries. All the clones had a single coding sequence, with no evidence of intervening sequences. Three genomic clones were further characterized. All have putative TATA box sequences upstream of the coding regions and multiple potential poly(A) signal sequences downstream of the coding regions. A TmAFP regulatory region, B1037, conferred transcriptional activity when ligated to a luciferase reporter sequence and after transfection into an insect cell line. A 143 bp core promoter including a TATA box sequence was identified. Its promoter activity was increased 4.4 times by inserting an exotic 245 bp intron into the construct, similar to the enhancement of transgenic expression seen in several other systems. The addition of a duplication of the first 120 bp sequence from the 143 bp core promoter decreased promoter activity by half. Although putative hormonal response sequences were identified, none of the five hormones tested enhanced reporter activity. These studies on the mechanisms of AFP transcriptional control are important for the consideration of any transfer of freeze-resistance phenotypes to beneficial hosts.

  10. Functional Analysis of the Twin-Arginine Translocation Pathway in Corynebacterium glutamicum ATCC 13869▿

    PubMed Central

    Kikuchi, Yoshimi; Date, Masayo; Itaya, Hiroshi; Matsui, Kazuhiko; Wu, Long-Fei

    2006-01-01

    Compared to those of other gram-positive bacteria, the genetic structure of the Corynebacterium glutamicum Tat system is unique in that it contains the tatE gene in addition to tatA, tatB, and tatC. The tatE homologue has been detected only in the genomes of gram-negative enterobacteria. To assess the function of the C. glutamicum Tat pathway, we cloned the tatA, tatB, tatC, and tatE genes from C. glutamicum ATCC 13869 and constructed mutants carrying deletions of each tat gene or of both the tatA and tatE genes. Using green fluorescent protein (GFP) fused with the twin-arginine signal peptide of the Escherichia coli TorA protein, we demonstrated that the minimal functional Tat system required TatA and TatC. TatA and TatE provide overlapping function. Unlike the TatB proteins from gram-negative bacteria, C. glutamicum TatB was dispensable for Tat function, although it was required for maximal efficiency of secretion. The signal peptide sequence of the isomaltodextranase (IMD) of Arthrobacter globiformis contains a twin-arginine motif. We showed that both IMD and GFP fused with the signal peptide of IMD were secreted via the C. glutamicum Tat pathway. These observations indicate that IMD is a bona fide Tat substrate and imply great potential of the C. glutamicum Tat system for industrial production of heterologous folded proteins. PMID:16997984

  11. Molecular cloning and characterization of SoxB2 gene from Zhikong scallop Chlamys farreri

    NASA Astrophysics Data System (ADS)

    He, Yan; Bao, Zhenmin; Guo, Huihui; Zhang, Yueyue; Zhang, Lingling; Wang, Shi; Hu, Jingjie; Hu, Xiaoli

    2013-11-01

    The Sox proteins play critical roles during the development of animals, including sex determination and central nervous system development. In this study, the SoxB2 gene was cloned from a mollusk, the Zhikong scallop ( Chlamys farreri), and characterized with respect to phylogeny and tissue distribution. The full-length cDNA and genomic DNA sequences of C. farreri SoxB2 ( Cf SoxB2) were obtained by rapid amplification of cDNA ends and genome walking, respectively, using a partial cDNA fragment from the highly conserved DNA-binding domain, i.e., the High Mobility Group (HMG) box. The full-length cDNA sequence of Cf SoxB2 was 2 048 bp and encoded 268 amino acids protein. The genomic sequence was 5 551 bp in length with only one exon. Several conserved elements, such as the TATA-box, GC-box, CAAT-box, GATA-box, and Sox/sry-sex/testis-determining and related HMG box factors, were found in the promoter region. Furthermore, real-time quantitative reverse transcription PCR assays were carried out to assess the mRNA expression of Cf SoxB 2 in different tissues. SoxB2 was highly expressed in the mantle, moderately in the digestive gland and gill, and weakly expressed in the gonad, kidney and adductor muscle. In male and female gonads at different developmental stages of reproduction, the expression levels of Cf SoxB2 were similar. Considering the specific expression and roles of SoxB 2 in other animals, in particular vertebrates, and the fact that there are many pallial nerves in the mantle, cerebral ganglia in the digestive gland and gill nerves in gill, we propose a possible essential role in nervous tissue function for Sox B 2 in C. farreri.

  12. Severe and rapidly progressing cognitive phenotype in a SCA17-family with only marginally expanded CAG/CAA repeats in the TATA-box binding protein gene: a case report.

    PubMed

    Nielsen, Troels Tolstrup; Mardosiene, Skirmante; Løkkegaard, Annemette; Stokholm, Jette; Ehrenfels, Susanne; Bech, Sara; Friberg, Lars; Nielsen, Jens Kellberg; Nielsen, Jørgen E

    2012-08-13

    The autosomal dominant spinocerebellar ataxias (SCAs) confine a group of rare and heterogeneous disorders, which present with progressive ataxia and numerous other features e.g. peripheral neuropathy, macular degeneration and cognitive impairment, and a subset of these disorders is caused by CAG-repeat expansions in their respective genes. The diagnosing of the SCAs is often difficult due to the phenotypic overlap among several of the subtypes and with other neurodegenerative disorders e.g. Huntington's disease. We report a family in which the proband had rapidly progressing cognitive decline and only subtle cerebellar symptoms from age 42. Sequencing of the TATA-box binding protein gene revealed a modest elongation of the CAG/CAA-repeat of only two repeats above the non-pathogenic threshold of 41, confirming a diagnosis of SCA17. Normally, repeats within this range show reduced penetrance and result in a milder disease course with slower progression and later age of onset. Thus, this case presented with an unusual phenotype. The current case highlights the diagnostic challenge of neurodegenerative disorders and the need for a thorough clinical and paraclinical examination of patients presenting with rapid cognitive decline to make a precise diagnosis on which further genetic counseling and initiation of treatment modalities can be based.

  13. Epigenetic Control of Gonadal Aromatase (cyp19a1) in Temperature-Dependent Sex Determination of Red-Eared Slider Turtles

    PubMed Central

    Matsumoto, Yuiko; Buemio, Alvin; Chu, Randy; Vafaee, Mozhgon; Crews, David

    2013-01-01

    In the red-eared slider turtle (Trachemys scripta), a species with temperature-dependent sex determination (TSD), the expression of the aromatase gene during gonad development is strictly limited to the female-producing temperature. The underlying mechanism remains unknown. In this study, we identified the upstream 5′-flanking region of the aromatase gene, gonad-specific promoter, and the temperature-dependent DNA methylation signatures during gonad development in the red-eared slider turtle. The 5′-flanking region of the slider aromatase exhibited sequence similarities to the aromatase genes of the American alligator, chicken, quail, and zebra finch. A putative TATA box was located 31 bp upstream of the gonad-specific transcription start site. DNA methylation at the CpG sites between the putative binding sites of the fork head domain factor (FOX) and vertebrate steroidogenic factor 1 (SF1) and adjacent TATA box in the promoter region were significantly lower in embryonic gonads at the female-producing temperature compared the male-producing temperature. A shift from male- to female-, but not from female- to male-, producing temperature changed the level of DNA methylation in gonads. Taken together these results indicate that the temperature, particularly female-producing temperature, allows demethylation at the specific CpG sites of the promoter region which leads the temperature-specific expression of aromatase during gonad development. PMID:23762231

  14. Tissue expression analysis, cloning and characterization of the 5'-regulatory region of the bovine FABP3 gene.

    PubMed

    Li, Anning; Wu, Lijuan; Wang, Xiaoyu; Xin, Yaping; Zan, Linsen

    2016-09-01

    Fatty acid binding protein 3 (FABP3) is a member of the FABP family which bind fatty acids and have an important role in fatty acid metabolism. A large number of studies have shown that the genetic polymorphisms of FABP3 are positively correlated with intramuscular fat (IMF) content in domestic animals, however, the function and transcriptional characteristics of FABP3 in cattle remain unclear. Real-time PCR analysis revealed that bovine FABP3 was highly expressed in cardiac tissue. The 5'-regulatory region of bovine FABP3 was cloned and its transcription initiation sites were identified. Sequence analysis showed that many transcriptional factor binding sites including TATA-box and CCAAT-box were present on the 5'-flanking region of bovine FABP3, and four CpG islands were found on nucleotides from -891 to +118. Seven serial deletion constructs of the 5'-regulatory region evaluated in dual-luciferase reporter assay indicated that its core promoter was 384 base pairs upstream from the transcription initiation site. The transcriptional factor binding sites RXRα, KLF15, CREB and Sp1 were conserved in the core promoter of cattle, sheep, pigs and dogs. These results provide further understanding of the function and regulation mechanism of bovine FABP3.

  15. Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks.

    PubMed

    Umarov, Ramzan Kh; Solovyev, Victor V

    2017-01-01

    Accurate computational identification of promoters remains a challenge as these key DNA regulatory regions have variable structures composed of functional motifs that provide gene-specific initiation of transcription. In this paper we utilize Convolutional Neural Networks (CNN) to analyze sequence characteristics of prokaryotic and eukaryotic promoters and build their predictive models. We trained a similar CNN architecture on promoters of five distant organisms: human, mouse, plant (Arabidopsis), and two bacteria (Escherichia coli and Bacillus subtilis). We found that CNN trained on sigma70 subclass of Escherichia coli promoter gives an excellent classification of promoters and non-promoter sequences (Sn = 0.90, Sp = 0.96, CC = 0.84). The Bacillus subtilis promoters identification CNN model achieves Sn = 0.91, Sp = 0.95, and CC = 0.86. For human, mouse and Arabidopsis promoters we employed CNNs for identification of two well-known promoter classes (TATA and non-TATA promoters). CNN models nicely recognize these complex functional regions. For human promoters Sn/Sp/CC accuracy of prediction reached 0.95/0.98/0,90 on TATA and 0.90/0.98/0.89 for non-TATA promoter sequences, respectively. For Arabidopsis we observed Sn/Sp/CC 0.95/0.97/0.91 (TATA) and 0.94/0.94/0.86 (non-TATA) promoters. Thus, the developed CNN models, implemented in CNNProm program, demonstrated the ability of deep learning approach to grasp complex promoter sequence characteristics and achieve significantly higher accuracy compared to the previously developed promoter prediction programs. We also propose random substitution procedure to discover positionally conserved promoter functional elements. As the suggested approach does not require knowledge of any specific promoter features, it can be easily extended to identify promoters and other complex functional regions in sequences of many other and especially newly sequenced genomes. The CNNProm program is available to run at web server http://www.softberry.com.

  16. Comprehensive annotation of Glossina pallidipes salivary gland hypertrophy virus from Ethiopian tsetse flies: a proteogenomics approach

    PubMed Central

    Kariithi, Henry M.; Cousserans, François; Parker, Nicolas J.; İnce, İkbal Agah; Scully, Erin D.; Boeren, Sjef; Geib, Scott M.; Mekonnen, Solomon; Vlak, Just M.; Parker, Andrew G.; Vreysen, Marc J. B.; Bergoin, Max

    2016-01-01

    Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) can establish asymptomatic and symptomatic infection in its tsetse fly host. Here, we present a comprehensive annotation of the genome of an Ethiopian GpSGHV isolate (GpSGHV-Eth) compared with the reference Ugandan GpSGHV isolate (GpSGHV-Uga; GenBank accession number EF568108). GpSGHV-Eth has higher salivary gland hypertrophy syndrome prevalence than GpSGHV-Uga. We show that the GpSGHV-Eth genome has 190 291 nt, a low G+C content (27.9 %) and encodes 174 putative ORFs. Using proteogenomic and transcriptome mapping, 141 and 86 ORFs were mapped by transcripts and peptides, respectively. Furthermore, of the 174 ORFs, 132 had putative transcriptional signals [TATA-like box and poly(A) signals]. Sixty ORFs had both TATA-like box promoter and poly(A) signals, and mapped by both transcripts and peptides, implying that these ORFs encode functional proteins. Of the 60 ORFs, 10 ORFs are homologues to baculovirus and nudivirus core genes, including three per os infectivity factors and four RNA polymerase subunits (LEF4, 5, 8 and 9). Whereas GpSGHV-Eth and GpSGHV-Uga are 98.1 % similar at the nucleotide level, 37 ORFs in the GpSGHV-Eth genome had nucleotide insertions (n = 17) and deletions (n = 20) compared with their homologues in GpSGHV-Uga. Furthermore, compared with the GpSGHV-Uga genome, 11 and 24 GpSGHV ORFs were deleted and novel, respectively. Further, 13 GpSGHV-Eth ORFs were non-canonical; they had either CTG or TTG start codons instead of ATG. Taken together, these data suggest that GpSGHV-Eth and GpSGHV-Uga represent two different lineages of the same virus. Genetic differences combined with host and environmental factors possibly explain the differential GpSGHV pathogenesis observed in different G. pallidipes colonies. PMID:26801744

  17. A Milestone in Cancer Research and Treatment in India

    Cancer.gov

    Tata Memorial Center is celebrating 75 years of leadership service towards cancer control and research in India. In honor of this anniversary, TMC is hosting A Conference of New Ideas in Cancer – Challenging Dogmas on February 26-28th, 2016 as part of its platinum jubilee events. CGH Director, Dr. Ted Trimble, will give a plenary talk: "Thinking Outside the Box in Cancer Research - Perspectives from the US NCI” in the session titled: Future of Cancer Research: US and European perspectives.

  18. TAF(II)170 interacts with the concave surface of TATA-binding protein to inhibit its DNA binding activity.

    PubMed

    Pereira, L A; van der Knaap, J A; van den Boom, V; van den Heuvel, F A; Timmers, H T

    2001-11-01

    The human RNA polymerase II transcription factor B-TFIID consists of TATA-binding protein (TBP) and the TBP-associated factor (TAF) TAF(II)170 and can rapidly redistribute over promoter DNA. Here we report the identification of human TBP-binding regions in human TAF(II)170. We have defined the TBP interaction domain of TAF(II)170 within three amino-terminal regions: residues 2 to 137, 290 to 381, and 380 to 460. Each region contains a pair of Huntington-elongation-A subunit-Tor repeats and exhibits species-specific interactions with TBP family members. Remarkably, the altered-specificity TBP mutant (TBP(AS)) containing a triple mutation in the concave surface is defective for binding the TAF(II)170 amino-terminal region of residues 1 to 504. Furthermore, within this region the TAF(II)170 residues 290 to 381 can inhibit the interaction between Drosophila TAF(II)230 (residues 2 to 81) and TBP through competition for the concave surface of TBP. Biochemical analyses of TBP binding to the TATA box indicated that TAF(II)170 region 290-381 inhibits TBP-DNA complex formation. Importantly, the TBP(AS) mutant is less sensitive to TAF(II)170 inhibition. Collectively, our results support a mechanism in which TAF(II)170 induces high-mobility DNA binding by TBP through reversible interactions with its concave DNA binding surface.

  19. Cloning and characterization of the mouse XPAC gene.

    PubMed Central

    van Oostrom, C T; de Vries, A; Verbeek, S J; van Kreijl, C F; van Steeg, H

    1994-01-01

    Xeroderma Pigmentosum is a human disease, which is, among others, characterized by a high incidence of (sunlight induced) skin cancer, due to a defect in nucleotide excision repair (NER). The human DNA repair gene XPAC corrects this defect in cells isolated from Xeroderma Pigmentosum complementation group A (XP-A) patients. To enable the development of a transgenic mouse model for XP-A by gene targeting in embryonic stem cells, we cloned and characterized the mouse homologue of the XPAC gene. The mouse XPAC gene was found to consist of 6 exons, spanning approximately 21 kb. The nucleotide sequence of the exons is identical to that of the also cloned the mouse XPAC cDNA. Furthermore, the deduced amino acid sequence of the XPAC protein is the same as the one published previously by Tanaka et al. From CAT assay analysis, the promoter of the XPAC gene appeared to be located within 313 bp upstream of the assumed transcriptional start site. Like the promoters of other eukaryotic DNA repair genes (i.e. ERCC-1 and XPBC/ERCC-3), the mouse XPAC promoter region lacks classical promoter elements like TATA-, GC- and CAAT boxes. However, it contains an unique polypyrimidine-rich box, which is so far only found in genes encoding DNA repair enzymes. The function of this box in the regulation of transcription is still unclear. PMID:8127648

  20. Identification of a novel promoter from banana aquaporin family gene (MaTIP1;2) which responses to drought and salt-stress in transgenic Arabidopsis thaliana.

    PubMed

    Song, Shun; Xu, Yi; Huang, Dongmei; Miao, Hongxia; Liu, Juhua; Jia, Caihong; Hu, Wei; Valarezo, Ana Valeria; Xu, Biyu; Jin, Zhiqiang

    2018-07-01

    Drought and salt stresses often affect plant growth and crop yields. Identification of promoters involved in drought and salt stress responses is of great significance for genetic improvement of crop resistance. Our previous studies showed that aquaporin can respond to drought and salt stresses, but its promoter has not yet been reported in plants. In the present study, cis-acting elements of MaAQP family member promoters were systematically analyzed in banana. Expression of MaTIP1; 2 was induced by drought and salt stresses but not sensitive to cold stress, waterlogging stress, or mechanical damage, and its promoter contained five stress-related cis-acting elements. The MaTIP1; 2 promoter (841 bp upstream of translation initiation site) from banana (Musa acuminata L. AAA group cv. Brazilian) was isolated through genome walking polymerase chain reaction, and found to contain a TATA Box, CAAT box, ABRE element, CCGTCC box, CGTCA motif, and TCA element. Transformation of the MaTIP1; 2 promoter into Arabidopsis to assess its function indicated that it responds to both drought and salt stress treatments. These results suggest that MaTIP1; 2 utilization may improve drought and salt stresses resistance of the transgenic plants by promoting banana aquaporin expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Structure and genomic organization of the human B1 receptor gene for kinins (BDKRB1).

    PubMed

    Bachvarov, D R; Hess, J F; Menke, J G; Larrivée, J F; Marceau, F

    1996-05-01

    Two subtypes of mammalian bradykinin receptors, B1 and B2 (BDKRB1 and BDKRB2), have been defined based on their pharmacological properties. The B1 type kinin receptors have weak affinity for intact BK or Lys-BK but strong affinity for kinin metabolites without the C-terminal arginine (e.g., des-Arg9-BK and Lys-des-Arg9-BK, also called des-Arg10-kallidin), which are generated by kininase I. The B1 receptor expression is up-regulated following tissue injury and inflammation (hyperemia, exudation, hyperalgesia, etc.). In the present study, we have cloned and sequenced the gene encoding human B1 receptor from a human genomic library. The human B1 receptor gene contains three exons separated by two introns. The first and the second exon are noncoding, while the coding region and the 3'-flanking region are located entirely on the third exon. The exon-intron arrangement of the human B1 receptor gene shows significant similarity with the genes encoding the B2 receptor subtype in human, mouse, and rat. Sequence analysis of the 5'-flanking region revealed the presence of a consensus TATA box and of numerous candidate transcription factor binding sequences. Primer extension experiments have shown the existence of multiple transcription initiation sites situated downstream and upstream from the consensus TATA box. Genomic Southern blot analysis indicated that the human B1 receptor is encoded by a single-copy gene.

  2. A novel male sterility-fertility restoration system in plants for hybrid seed production

    PubMed Central

    Singh, Surendra Pratap; Singh, Sudhir P.; Pandey, Tripti; Singh, Ram Rakshpal; Sawant, Samir V.

    2015-01-01

    Hybrid seeds are used for stimulated crop production, as they harness heterosis. The achievement of complete male-sterility in the female-parent and the restored-fertility in F1-hybrids are the major bottlenecks in the commercial hybrid seed production. Here, we report a male sterility–fertility restoration system by engineering the inmost nutritive anther wall layer tapetum of female and male parents. In the female parent, high–level, and stringent expression of Arabidopsis autophagy–related gene BECLIN1 was achieved in the tapetum, which altered the tapetal degeneration program, leading to male sterility. This works on our previously demonstrated expression cassette based on functional complementation of TATA-box mutant (TGTA) promoter and TATA-binding protein mutant3 (TBPm3), with modification by conjugating Long Hypocotyle in Far-Red1 fragment (HFR1NT131) with TBPm3 (HFR1NT131-TBPm3) to exercise regulatory control over it. In the male parent, tapetum–specific Constitutive photo-morphogenesis1 (COP1) was expressed. The F1 obtained by crossing these engineered parents showed decreased BECLIN1 expression, which was further completely abolished when COP1-mutant (COP1L105A) was used as a male parent, leading to normal tapetal development and restored fertility. The system works on COP1-HFR1 interaction and COP1–mediated degradation of TBPm3 pool (HFR1NT131-TBPm3). The system can be deployed for hybrid seed production in agricultural crops. PMID:26073981

  3. A novel male sterility-fertility restoration system in plants for hybrid seed production.

    PubMed

    Singh, Surendra Pratap; Singh, Sudhir P; Pandey, Tripti; Singh, Ram Rakshpal; Sawant, Samir V

    2015-06-15

    Hybrid seeds are used for stimulated crop production, as they harness heterosis. The achievement of complete male-sterility in the female-parent and the restored-fertility in F1-hybrids are the major bottlenecks in the commercial hybrid seed production. Here, we report a male sterility-fertility restoration system by engineering the in most nutritive anther wall layer tapetum of female and male parents. In the female parent, high-level, and stringent expression of Arabidopsis autophagy-related gene BECLIN1 was achieved in the tapetum, which altered the tapetal degeneration program, leading to male sterility. This works on our previously demonstrated expression cassette based on functional complementation of TATA-box mutant (TGTA) promoter and TATA-binding protein mutant3 (TBPm3), with modification by conjugating Long Hypocotyle in Far-Red1 fragment (HFR1(NT131)) with TBPm3 (HFR1(NT131)-TBPm3) to exercise regulatory control over it. In the male parent, tapetum-specific Constitutive photo-morphogenesis1 (COP1) was expressed. The F1 obtained by crossing these engineered parents showed decreased BECLIN1 expression, which was further completely abolished when COP1-mutant (COP1(L105A)) was used as a male parent, leading to normal tapetal development and restored fertility. The system works on COP1-HFR1 interaction and COP1-mediated degradation of TBPm3 pool (HFR1(NT131)-TBPm3). The system can be deployed for hybrid seed production in agricultural crops.

  4. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals.

    PubMed

    Preußner, Marco; Goldammer, Gesine; Neumann, Alexander; Haltenhof, Tom; Rautenstrauch, Pia; Müller-McNicoll, Michaela; Heyd, Florian

    2017-08-03

    The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The Role of the EGF Receptor and Vitamins A and D in Development and Progression of Breast Cancer to More Malignant Hormones Independent Phenotypes

    DTIC Science & Technology

    1999-09-01

    parathyroid hormone (46) and rat bone sialoprotein (47) genes are perhaps the most frequently cited examples of negative transcriptional regulation...specific to BT549 cells. A similar mechanism has been postulated to explain the vitamin D mediated suppression of the rat bone sialoprotein gene through a...Yamauchi M, Freedman LP, Sodek J 1996 Identification of a vitamin D3-response element that overlaps a unique inverted TATA box in the rat bone sialoprotein

  6. The Wnt-1 (int-1) oncogene promoter and its mechanism of activation by insertion of proviral DNA of the mouse mammary tumor virus.

    PubMed Central

    Nusse, R; Theunissen, H; Wagenaar, E; Rijsewijk, F; Gennissen, A; Otte, A; Schuuring, E; van Ooyen, A

    1990-01-01

    Wnt-1 (int-1) is a cellular oncogene often activated by insertion of proviral DNA of the mouse mammary tumor virus. We have mapped the 5' end and the promoter area of the Wnt-1 gene by nuclease protection and primer extension assays. In differentiating P19 embryonal carcinoma cells, in which Wnt-1 is naturally expressed, two start sites of transcription were found, one preceded by two TATA boxes and one preceded by several GC boxes. In P19 cells, a 1-kilobase upstream sequence of Wnt-1 was able to confer differentiation-specific expression on a heterologous gene. We have investigated how Wnt-1 transcription was affected by mouse mammary tumor virus proviral integrations in various configurations near the promoters of the gene. One provirus has been inserted in the 5' nontranslated part of Wnt-1, in the same transcriptional orientation, and has functionally replaced the Wnt-1 promoters. Wnt-1 transcription in this tumor starts in the right long terminal repeat of the provirus, with considerable readthrough transcription from the left long terminal repeat. Another provirus has been inserted in the orientation opposite that of Wnt-1 into a GC box, disrupting the first Wnt-1 transcription start site but not the downstream start site. Most insertions have not structurally altered the Wnt-1 transcripts and have enhanced the activity of the normal two promoters. Images PMID:1695322

  7. DNA sequence requirements for the accurate transcription of a protein-coding plastid gene in a plastid in vitro system from mustard (Sinapis alba L.)

    PubMed Central

    Link, Gerhard

    1984-01-01

    A nuclease-treated plastid extract from mustard (Sinapis alba L.) allows efficient transcription of cloned plastid DNA templates. In this in vitro system, the major runoff transcript of the truncated gene for the 32 000 mol. wt. photosystem II protein was accurately initiated from a site close to or identical with the in vivo start site. By using plasmids with deletions in the 5'-flanking region of this gene as templates, a DNA region required for efficient and selective initiation was detected ˜28-35 nucleotides upstream of the transcription start site. This region contains the sequence element TTGACA, which matches the consensus sequence for prokaryotic `−35' promoter elements. In the absence of this region, a region ˜13-27 nucleotides upstream of the start site still enables a basic level of specific transcription. This second region contains the sequence element TATATAA, which matches the consensus sequence for the `TATA' box of genes transcribed by RNA polymerase II (or B). The region between the `TATA'-like element and the transcription start site is not sufficient but may be required for specific transcription of the plastid gene. This latter region contains the sequence element TATACT, which resembles the prokaryotic `−10' (Pribnow) box. Based on the structural and transcriptional features of the 5' upstream region, a `promoter switch' mechanism is proposed, which may account for the developmentally regulated expression of this plastid gene. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Figure 5. PMID:16453540

  8. Regulation of the intronic promoter of rat estrogen receptor alpha gene, responsible for truncated estrogen receptor product-1 expression.

    PubMed

    Schausi, Diane; Tiffoche, Christophe; Thieulant, Marie-Lise

    2003-07-01

    We have characterized the intronic promoter of the rat estrogen receptor (ER) alpha gene, responsible for the lactotrope-specific truncated ER product (TERP)-1 isoform expression. Transcriptional regulation was investigated by transient transfections using 5'-deletion constructs. TERP promoter constructs were highly active in MMQ cells, a pure lactotrope cell line, whereas a low basal activity was detected in alphaT3-1 gonadotrope cells or in COS-7 monkey kidney cells. Serial deletion analysis revealed that 1) a minimal -693-bp region encompassing the TATA box is sufficient to allow lactotrope-specific expression; 2) the promoter contains strong positive cis-acting elements both in the distal and proximal regions, and 3) the region spanning the -1698/-1194 region includes repressor elements. Transient transfection studies, EMSAs, and gel shifts demonstrated that estrogen activates the TERP promoter via an estrogen-responsive element (ERE1) located within the proximal region. Mutation of ERE1 site completely abolishes the estradiol-dependent transcription, indicating that ERE1 site is sufficient to confer estrogen responsiveness to TERP promoter. In addition, ERalpha action was synergized by transfection of the pituitary-specific factor Pit-1. EMSAs showed that a single Pit-1 DNA binding element in the vicinity of the TATA box is sufficient to confer response by the TERP promoter. In conclusion, we demonstrated, for the first time, that TERP promoter regulation involves ERE and Pit-1 cis-elements and corresponding trans-acting factors, which could play a role in the physiological changes that occur in TERP-1 transcription in lactotrope cells.

  9. Both positive and negative regulatory elements mediate expression of a photoregulated CAB gene from Nicotiana plumbaginifolia.

    PubMed Central

    Castresana, C; Garcia-Luque, I; Alonso, E; Malik, V S; Cashmore, A R

    1988-01-01

    We have analyzed promoter regulatory elements from a photoregulated CAB gene (Cab-E) isolated from Nicotiana plumbaginifolia. These studies have been performed by introducing chimeric gene constructs into tobacco cells via Agrobacterium tumefaciens-mediated transformation. Expression studies on the regenerated transgenic plants have allowed us to characterize three positive and one negative cis-acting elements that influence photoregulated expression of the Cab-E gene. Within the upstream sequences we have identified two positive regulatory elements (PRE1 and PRE2) which confer maximum levels of photoregulated expression. These sequences contain multiple repeated elements related to the sequence-ACCGGCCCACTT-. We have also identified within the upstream region a negative regulatory element (NRE) extremely rich in AT sequences, which reduces the level of gene expression in the light. We have defined a light regulatory element (LRE) within the promoter region extending from -396 to -186 bp which confers photoregulated expression when fused to a constitutive nopaline synthase ('nos') promoter. Within this region there is a 132-bp element, extending from -368 to -234 bp, which on deletion from the Cab-E promoter reduces gene expression from high levels to undetectable levels. Finally, we have demonstrated for a full length Cab-E promoter conferring high levels of photoregulated expression, that sequences proximal to the Cab-E TATA box are not replaceable by corresponding sequences from a 'nos' promoter. This contrasts with the apparent equivalence of these Cab-E and 'nos' TATA box-proximal sequences in truncated promoters conferring low levels of photoregulated expression. Images PMID:2901343

  10. Conserved structure and inferred evolutionary history of long terminal repeats (LTRs)

    PubMed Central

    2013-01-01

    Background Long terminal repeats (LTRs, consisting of U3-R-U5 portions) are important elements of retroviruses and related retrotransposons. They are difficult to analyse due to their variability. The aim was to obtain a more comprehensive view of structure, diversity and phylogeny of LTRs than hitherto possible. Results Hidden Markov models (HMM) were created for 11 clades of LTRs belonging to Retroviridae (class III retroviruses), animal Metaviridae (Gypsy/Ty3) elements and plant Pseudoviridae (Copia/Ty1) elements, complementing our work with Orthoretrovirus HMMs. The great variation in LTR length of plant Metaviridae and the few divergent animal Pseudoviridae prevented building HMMs from both of these groups. Animal Metaviridae LTRs had the same conserved motifs as retroviral LTRs, confirming that the two groups are closely related. The conserved motifs were the short inverted repeats (SIRs), integrase recognition signals (5´TGTTRNR…YNYAACA 3´); the polyadenylation signal or AATAAA motif; a GT-rich stretch downstream of the polyadenylation signal; and a less conserved AT-rich stretch corresponding to the core promoter element, the TATA box. Plant Pseudoviridae LTRs differed slightly in having a conserved TATA-box, TATATA, but no conserved polyadenylation signal, plus a much shorter R region. The sensitivity of the HMMs for detection in genomic sequences was around 50% for most models, at a relatively high specificity, suitable for genome screening. The HMMs yielded consensus sequences, which were aligned by creating an HMM model (a ‘Superviterbi’ alignment). This yielded a phylogenetic tree that was compared with a Pol-based tree. Both LTR and Pol trees supported monophyly of retroviruses. In both, Pseudoviridae was ancestral to all other LTR retrotransposons. However, the LTR trees showed the chromovirus portion of Metaviridae clustering together with Pseudoviridae, dividing Metaviridae into two portions with distinct phylogeny. Conclusion The HMMs clearly demonstrated a unitary conserved structure of LTRs, supporting that they arose once during evolution. We attempted to follow the evolution of LTRs by tracing their functional foundations, that is, acquisition of RNAse H, a combined promoter/ polyadenylation site, integrase, hairpin priming and the primer binding site (PBS). Available information did not support a simple evolutionary chain of events. PMID:23369192

  11. Regulation of the human ascorbate transporter SVCT2 exon 1b gene by zinc-finger transcription factors

    PubMed Central

    Qiao, Huan; May, James M.

    2011-01-01

    The sodium-dependent vitamin C transporter (SVCT) 2 is crucial for ascorbate uptake in metabolically active and specialized tissues. The present study focused on the gene regulation of the SVCT2 exon 1b, which is ubiquitously expressed in human and mouse tissues. Although the human SVCT2 exon 1b promoter doesn’t contain a classical TATA-box, we found that it does contain a functional initiator (Inr) that binds YY1 and interacts with upstream Sp1/Sp3 elements in the proximal promoter region. These elements in turn play a critical role in regulating YY1-mediated transcription of the exon 1b gene. Formation of YY1/Sp complexes on the promoter is required for its optional function. YY1 with Sp1 or Sp3 synergistically enhanced exon 1b promoter activity as well as the endogenous SVCT2 protein expression. Further, in addition to Sp1/Sp3 both EGR-1 and -2 were detected in the protein complexes that bound the three GC boxes bearing overlapping binding sites for EGR/WT1 and Sp1/3. The EGR family factors, WT1 and MAZ were found to differentially regulate exon 1b promoter activity. These results show that differential occupancy of transcription factors on the GC-rich consensus sequences in SVCT2 exon 1b promoter contributes to the regulation of cell and tissue expression of SVCT2. PMID:21335086

  12. Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription.

    PubMed

    Muth, V; Nadaud, S; Grummt, I; Voit, R

    2001-03-15

    Mammalian rRNA genes are preceded by a terminator element that is recognized by the transcription termination factor TTF-I. In exploring the functional significance of the promoter-proximal terminator, we found that TTF-I associates with the p300/CBP-associated factor PCAF, suggesting that TTF-I may target histone acetyltransferase to the rDNA promoter. We demonstrate that PCAF acetylates TAF(I)68, the second largest subunit of the TATA box-binding protein (TBP)-containing factor TIF-IB/SL1, and acetylation enhances binding of TAF(I)68 to the rDNA promoter. Moreover, PCAF stimulates RNA polymerase I (Pol I) transcription in a reconstituted in vitro system. Consistent with acetylation of TIF-IB/SL1 being required for rDNA transcription, the NAD(+)-dependent histone deacetylase mSir2a deacetylates TAF(I)68 and represses Pol I transcription. The results demonstrate that acetylation of the basal Pol I transcription machinery has functional consequences and suggest that reversible acetylation of TIF-IB/SL1 may be an effective means to regulate rDNA transcription in response to external signals.

  13. Functional characterization of the 5'-flanking and the promoter region of the human UCP3 (hUCP3) gene.

    PubMed

    Tu, N; Chen, H; Winnikes, U; Reinert, I; Pirke, K M; Lentes, K U

    2000-09-22

    Uncoupling protein-3 (UCP3) is considered as an important regulator of energy expenditure and thermogenesis in humans. To get insight into the mechanisms regulating its expression we have cloned and characterized about 5 kb of the 5'-flanking region of the human UCP3 (hUCP3) gene. 5'-RACE analysis suggested a single transcription initiation site 187 bp upstream from the translational start site. The promoter region contains both TATA and CAAT boxes as well as consensus motifs for PPRE, TRE, CRE and muscle-specific factors like MyoD and MEF2 sites. Functional characterization of a 3 kb hUCP3 promoter fragment in multiple cell lines using a CAT-ELISA identified a cis-acting negative regulatory element between -2983 and -982 while the region between -982 and -284 showed greatly increased basal promoter activity suggesting the presence of a strong enhancer element. Promoter activity was particularly enhanced in the murine skeletal muscle cell line C2C12 reflecting the tissue-selective expression pattern of UCP3.

  14. Molecular cloning and functional characterization of the promoter region of the human uncoupling protein-2 gene.

    PubMed

    Tu, N; Chen, H; Winnikes, U; Reinert, I; Marmann, G; Pirke, K M; Lentes, K U

    1999-11-19

    As a member of the uncoupling protein family, UCP2 is ubiquitously expressed in rodents and humans, implicating a major role in thermogenesis. To analyze promoter function and regulatory motifs involved in the transcriptional regulation of UCP2 gene expression, 3.3 kb of 5'-flanking region of the human UCP2 (hUCP2) gene have been cloned. Sequence analysis showed that the promoter region of hUCP2 lacks a classical TATA or CAAT box, however, appeared GC-rich resulting in the presence of several Sp-1 motifs and Ap-1/-2 binding sites near the transcription initiation site. Functional characterization of human UCP2 promoter-CAT fusion constructs in transient expression assays showed that minimal promoter activity was observed within 65 bp upstream of the transcriptional start site (+1). 75 bp further upstream (from nt -141 to -66) a strong cis-acting regulatory element (or enhancer) was identified, which significantly enhanced basal promoter activity. The regulation of human UCP2 gene expression involves complex interactions among positive and negative regulatory elements distributed over a minimum of 3.3 kb of the promoter region. Copyright 1999 Academic Press.

  15. In vitro mapping of Myotonic Dystrophy (DM) gene promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storbeck, C.J.; Sabourin, L.; Baird, S.

    1994-09-01

    The Myotonic Dystrophy Kinase (DMK) gene has been cloned and shared homology to serine/threonine protein kinases. Overexpression of this gene in stably transfected mouse myoblasts has been shown to inhibit fusion into myotubes while myoblasts stably transfected with an antisense construct show increased fusion potential. These experiments, along with data showing that the DM gene is highly expressed in muscle have highlighted the possibility of DMK being involved in myogenesis. The promoter region of the DM gene lacks a consensus TATA box and CAAT box, but harbours numerous transcription binding sites. Clones containing extended 5{prime} upstream sequences (UPS) of DMKmore » only weakly drive the reporter gene chloramphenicol acetyl transferase (CAT) when transfected into C2C12 mouse myoblasts. However, four E-boxes are present in the first intron of the DM gene and transient assays show increased expression of the CAT gene when the first intron is present downstream of these 5{prime} UPS in an orientation dependent manner. Comparison between mouse and human sequence reveals that the regions in the first intron where the E-boxes are located are highly conserved. The mapping of the promoter and the importance of the first intron in the control of DMK expression will be presented.« less

  16. Theoretical estimates of exposure timescales of protein binding sites on DNA regulated by nucleosome kinetics.

    PubMed

    Parmar, Jyotsana J; Das, Dibyendu; Padinhateeri, Ranjith

    2016-02-29

    It is being increasingly realized that nucleosome organization on DNA crucially regulates DNA-protein interactions and the resulting gene expression. While the spatial character of the nucleosome positioning on DNA has been experimentally and theoretically studied extensively, the temporal character is poorly understood. Accounting for ATPase activity and DNA-sequence effects on nucleosome kinetics, we develop a theoretical method to estimate the time of continuous exposure of binding sites of non-histone proteins (e.g. transcription factors and TATA binding proteins) along any genome. Applying the method to Saccharomyces cerevisiae, we show that the exposure timescales are determined by cooperative dynamics of multiple nucleosomes, and their behavior is often different from expectations based on static nucleosome occupancy. Examining exposure times in the promoters of GAL1 and PHO5, we show that our theoretical predictions are consistent with known experiments. We apply our method genome-wide and discover huge gene-to-gene variability of mean exposure times of TATA boxes and patches adjacent to TSS (+1 nucleosome region); the resulting timescale distributions have non-exponential tails. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. The PPE2 protein of Mycobacterium tuberculosis translocates to host nucleus and inhibits nitric oxide production

    PubMed Central

    Bhat, Khalid Hussain; Srivastava, Shruti; Kotturu, Sandeep Kumar; Ghosh, Sudip; Mukhopadhyay, Sangita

    2017-01-01

    Mycobacterium tuberculosis, the bacterium that causes tuberculosis, is one of the most successful pathogens of humans. It has evolved several adaptive skills and evasion mechanisms to hijack the immunologically educated host to suit its intracellular lifestyle. Here, we show that one of the unique PPE family member proteins of M. tuberculosis, PPE2, can limit nitric oxide (NO) production by inhibiting inos gene transcription. PPE2 protein has a leucine zipper DNA-binding motif and a functional nuclear localization signal. PPE2 was translocated into the macrophage nucleus via the classical importin α/β pathway where it interacted with a GATA-binding site overlapping with the TATA box of inos promoter and inhibited NO production. PPE2 prolonged intracellular survival of a surrogate bacterium M. smegmatis in vitro as well as in vivo. This information are likely to improve our knowledge of host-pathogen interactions during M. tuberculosis infection which is crucial for designing effective anti-TB therapeutics. PMID:28071726

  18. Transcriptional Protein Sp1 Regulates LEDGF Transcription by Directly Interacting with Its Cis-Elements in GC-Rich Region of TATA-Less Gene Promoter

    PubMed Central

    Singh, Dhirendra P.; Bhargavan, Biju; Chhunchha, Bhavana; Kubo, Eri; Kumar, Anil; Fatma, Nigar

    2012-01-01

    LEDGF/p75 interacts with DNA/protein to regulate gene expression and function. Despite the recognized diversity of function of LEDGF/p75, knowledge of its transregulation is in its infancy. Here we report that LEDGF/p75 gene is TATA-less, contains GC-rich cis elements and is transcriptionally regulated by Sp1 involving small ubiquitin-like modifier (Sumo1). Using different cell lines, we showed that Sp1 overexpression increased the level of LEDGF/p75 protein and mRNA expression in a concentration-dependent fashion. In contrast, RNA interference depletion of intrinsic Sp1 or treatment with artemisinin, a Sp1 inhibitor, reduced expression of LEDGF/p75, suggesting Sp1-mediated regulation of LEDGF/p75. In silico analysis disclosed three evolutionarily conserved, putative Sp1 sites within LEDGF/p75 proximal promoter (−170/+1 nt). DNA-binding and transactivation assays using deletion and point mutation constructs of LEDGF/p75 promoter-CAT revealed that all Sp1 sites (−50/−43, −109/−102 and −146/−139) differentially regulate LEDGF/p75. Cotransfection studies with Sp1 in Drosophila cells that were Sp1-deficient, showed increased LEDGF/p75 transcription, while in lens epithelial cells (LECs) promoter activity was inhibited by artemisinin. These events were correlated with levels of endogenous Sp1-dependent LEDGF/p75 expression, and higher resistance to UVB-induced cell death. ChIP and transactivation assays showed that Sumoylation of Sp1 repressed its transcriptional activity as evidenced through its reduced binding to GC-box and reduced ability to activate LEDGF/p75 transcription. As whole, results revealed the importance of Sp1 in regulating expression of LEDGF/p75 gene and add to our knowledge of the factors that control LEDGF/p75 within cellular microenvironments, potentially providing a foundation for LEDGF/p75 expression-based transcription therapy. PMID:22615874

  19. Influence of 5'-flanking sequence on 4.5SI RNA gene transcription by RNA polymerase III.

    PubMed

    Gogolevskaya, Irina K; Stasenko, Danil V; Tatosyan, Karina A; Kramerov, Dmitri A

    2018-05-01

    Short nuclear 4.5SI RNA can be found in three related rodent families. Its function remains unknown. The genes of 4.5SI RNA contain an internal promoter of RNA polymerase III composed of the boxes A and B. Here, the effect of the sequence immediately upstream of the mouse 4.5SI RNA gene on its transcription was studied. The gene with deletions and substitutions in the 5'-flanking sequence was used to transfect HeLa cells and its transcriptional activity was evaluated from the cellular level of 4.5SI RNA. Single-nucleotide substitutions in the region adjacent to the transcription start site (positions -2 to -8) decreased the expression activity of the gene down to 40%-60% of the control. The substitution of the conserved pentanucleotide AGAAT (positions -14 to -18) could either decrease (43%-56%) or increase (134%) the gene expression. A TATA-like box (TACATGA) was found at positions -24 to -30 of the 4.5SI RNA gene. Its replacement with a polylinker fragment of the vector did not decrease the transcription level, while its replacement with a GC-rich sequence almost completely (down to 2%-5%) suppressed the transcription of the 4.5SI RNA gene. The effect of plasmid sequences bordering the gene on its transcription by RNA polymerase III is discussed.

  20. Characterization and expression analysis of Toll-like receptor 3 cDNA from Atlantic salmon (Salmo salar).

    PubMed

    Vidal, R; González, R; Gil, F

    2015-06-10

    Innate pathway activation is fundamental for early anti-viral defense in fish, but currently there is insufficient understanding of how salmonid fish identify viral molecules and activate these pathways. The Toll-like receptor (TLR) is believed to play a crucial role in host defense of pathogenic microbes in the innate immune system. In the present study, the full-length cDNA of Salmo salar TLR3 (ssTLR3) was cloned. The ssTLR3 cDNA sequence was 6071 bp long, containing an open reading frame of 2754 bp and encoding 971 amino acids. The TLR group motifs, such as leucine-rich repeat (LRR) domains and Toll-interleukin-1 receptor (TIR) domains, were maintained in ssTLR3, with sixteen LRR domains and one TIR domain. In contrast to descriptions of the TLR3 in rainbow trout and the murine (TATA-less), we found a putative TATA box in the proximal promoter region 29 bp upstream of the transcription start point of ssTLR3. Multiple-sequence alignment analysis of the ssTLR3 protein-coding sequence with other known TLR3 sequences showed the sequence to be conserved among all species analyzed, implying that the function of the TLR3 had been sustained throughout evolution. The ssTLR3 mRNA expression patterns were measured using real-time PCR. The results revealed that TLR3 is widely expressed in various healthy tissues. Individuals challenged with infectious pancreatic necrosis virus and immunostimulated with polyinosinic:polycytidylic acid exhibited increased expression of TLR3 at the mRNA level, indicating that ssTLR3 may be involved in pathogen recognition in the early innate immune system.

  1. 75 FR 24747 - TATA Technologies Incorporated, a Subsidiary of TATA Technologies Limited, Formally Known as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... Certification Regarding Eligibility To Apply for Worker Adjustment Assistance In accordance with Section 223 of... Certification of Eligibility to Apply for Worker Adjustment Assistance on January 21, 2010, applicable to workers of Tata Technologies Incorporated, a subsidiary of TATA Technologies Limited, Novi, Michigan. The...

  2. 75 FR 21352 - Tata Technologies Incorporated; A Subsidiary of Tata Technologies Limited: Formally Known As...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... Certification Regarding Eligibility To Apply for Worker Adjustment Assistance In accordance with section 223 of... Certification of Eligibility to Apply for Worker Adjustment Assistance on January 21, 2010, applicable to workers of Tata Technologies Incorporated, a subsidiary of TATA Technologies Limited, Novi, Michigan. The...

  3. Cloning and characterization of largemouth bass ( Micropterus salmoides) myostatin encoding gene and its promoter

    NASA Astrophysics Data System (ADS)

    Li, Shengjie; Bai, Junjie; Wang, Lin

    2008-08-01

    Myostatin or GDF-8, a member of the transforming growth factor-β (TGF-β) superfamily, has been demonstrated to be a negative regulator of skeletal muscle mass in mammals. In the present study, we obtained a 5.64 kb sequence of myostatin encoding gene and its promoter from largemouth bass ( Micropterus salmoides). The myostatin encoding gene consisted of three exons (488 bp, 371 bp and 1779 bp, respectively) and two introns (390 bp and 855 bp, respectively). The intron-exon boundaries were conservative in comparison with those of mammalian myostatin encoding genes, whereas the size of introns was smaller than that of mammals. Sequence analysis of 1.569 kb of the largemouth bass myostatin gene promoter region revealed that it contained two TATA boxes, one CAAT box and nine putative E-boxes. Putative muscle growth response elements for myocyte enhancer factor 2 (MEF2), serum response factor (SRF), activator protein 1 (AP1), etc., and muscle-specific Mt binding site (MTBF) were also detected. Some of the transcription factor binding sites were conserved among five teleost species. This information will be useful for studying the transcriptional regulation of myostatin in fish.

  4. A novel member of the SAF (scaffold attachment factor)-box protein family inhibits gene expression and induces apoptosis

    PubMed Central

    Chan, Ching Wan; Lee, Youn-Bok; Uney, James; Flynn, Andrea; Tobias, Jonathan H.; Norman, Michael

    2007-01-01

    The SLTM [SAF (scaffold attachment factor)-like transcription modulator] protein contains a SAF-box DNA-binding motif and an RNA-binding domain, and shares an overall identity of 34% with SAFB1 {scaffold attachment factor-B1; also known as SAF-B (scaffold attachment factor B), HET [heat-shock protein 27 ERE (oestrogen response element) and TATA-box-binding protein] or HAP (heterogeneous nuclear ribonucleoprotein A1-interacting protein)}. Here, we show that SLTM is localized to the cell nucleus, but excluded from nucleoli, and to a large extent it co-localizes with SAFB1. In the nucleus, SLTM has a punctate distribution and it does not co-localize with SR (serine/arginine) proteins. Overexpression of SAFB1 has been shown to exert a number of inhibitory effects, including suppression of oestrogen signalling. Although SLTM also suppressed the ability of oestrogen to activate a reporter gene in MCF-7 breast-cancer cells, inhibition of a constitutively active β-galactosidase gene suggested that this was primarily the consequence of a generalized inhibitory effect on transcription. Measurement of RNA synthesis, which showed a particularly marked inhibition of [3H]uridine incorporation into mRNA, supported this conclusion. In addition, analysis of cell-cycle parameters, chromatin condensation and cytochrome c release showed that SLTM induced apoptosis in a range of cultured cell lines. Thus the inhibitory effects of SLTM on gene expression appear to result from generalized down-regulation of mRNA synthesis and initiation of apoptosis consequent upon overexpressing the protein. While indicating a crucial role for SLTM in cellular function, these results also emphasize the need for caution when interpreting phenotypic changes associated with manipulation of protein expression levels. PMID:17630952

  5. [Exon-intron structure of the fet5+ gene of Schizosaccharomyces pombe and physical mapping of genome encompassing regions].

    PubMed

    Shpakovskiĭ, G V; Lebedenko, E N

    1998-01-01

    Plasmid pYUK3 bearing the fet5+ gene of Schizosaccharomyces pombe was isolated from a genomic library of the fission yeast, and a detailed physical map of the whole genomic insert (ca. 9.6 Kbp) was constructed. The primary structure of the fet5+ gene and its flanking regions is established. The gene contains a single 45-bp intron in its distal part. A typical TATA-box (TATAAG) was found in the 5'-noncoding region ca. 50 bp upstream of the putative start of transcription, and the 3'-noncoding region contains AT-rich palindromes, which are probably involved in termination of the fet5+ transcription. A previously unidentified gene of Sz. pombe encoding a protein with some similarity to one of the transcriptional activators from the TBP (TATA-binding protein) group of SPT factors of transcription was found in the vicinity of the fet5+ gene. Taking into account that cDNA of the fet5(+)-gene was isolated as a suppressor of the genetic-defect of nuclear RNA polymerases I-III (Bioorg. Khim., 1997, vol. 23, No 3, pp. 234-237), this vicinity may be the first evidence of possible clustering, in the genome of the fission yeast, of genes participating in transcription regulation.

  6. Organization of the human [zeta]-crystallin/quinone reductase gene (CRYZ)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, P.; Rao, P.V.; Zigler, J.S. Jr.

    1994-05-15

    [zeta]-Crystallin is a protein highly expressed in the lens of guinea pigs and camels, where it comprises about 10% of the total soluble protein. It has recently been characterized as a novel quinone oxidoreductase present in a variety of mammalian tissues. The authors report here the isolation and characterization of the human [zeta]-crystallin gene (CRYZ) and its processed pseudogene. The functional gene is composed of nine exons and spans about 20 kb. The 5[prime]-flanking region of the gene is rich in G and C (58%) and lacks TATA and CAAT boxes. Previous analysis of the guinea pig gene revealed themore » presence of two different promoters, one responsible for the high lens-specific expression and the other for expression at the enzymatic level in numerous tissues. Comparative analysis with the guinea pig gene shows that a region of [approximately]2.5 kb that includes the promoter responsible for the high expression in the lens in guinea pig is not present in the human gene. 34 refs., 6 figs., 1 tab.« less

  7. Libraries of Synthetic TALE-Activated Promoters: Methods and Applications.

    PubMed

    Schreiber, T; Tissier, A

    2016-01-01

    The discovery of proteins with programmable DNA-binding specificities triggered a whole array of applications in synthetic biology, including genome editing, regulation of transcription, and epigenetic modifications. Among those, transcription activator-like effectors (TALEs) due to their natural function as transcription regulators, are especially well-suited for the development of orthogonal systems for the control of gene expression. We describe here the construction and testing of libraries of synthetic TALE-activated promoters which are under the control of a single TALE with a given DNA-binding specificity. These libraries consist of a fixed DNA-binding element for the TALE, a TATA box, and variable sequences of 19 bases upstream and 43 bases downstream of the DNA-binding element. These libraries were cloned using a Golden Gate cloning strategy making them usable as standard parts in a modular cloning system. The broad range of promoter activities detected and the versatility of these promoter libraries make them valuable tools for applications in the fine-tuning of expression in metabolic engineering projects or in the design and implementation of regulatory circuits. © 2016 Elsevier Inc. All rights reserved.

  8. Isolation of the endosperm-specific LPAAT gene promoter from coconut (Cocos nucifera L.) and its functional analysis in transgenic rice plants.

    PubMed

    Xu, Li; Ye, Rongjian; Zheng, Yusheng; Wang, Zhekui; Zhou, Peng; Lin, Yongjun; Li, Dongdong

    2010-09-01

    As one of the key tropical crops, coconut (Cocos nucifera L.) is a member of the monocotyledonous family Aracaceae (Palmaceae). In this study, we amplified the upstream region of an endosperm-specific expression gene, Lysophosphatidyl acyltransferase (LPAAT), from the coconut genomic DNA by chromosome walking. In this sequence, we found several types of promoter-related elements including TATA-box, CAAT-box and Skn1-motif. In order to further examine its function, three different 5'-deletion fragments were inserted into pBI101.3, a plant expression vector harboring the LPAAT upstream sequence, leading to pBI101.3-L1, pBI101.3-L2 and pBI101.3-L3, respectively. We obtained transgenic plants of rice by Agrobacterium-mediated callus transformation and plant regeneration and detected the expression of gus gene by histochemical staining and fluorometric determination. We found that gus gene driven by the three deletion fragments was specifically expressed in the endosperm of rice seeds, but not in the empty vector of pBI101.3 and other tissues. The highest expression level of GUS was at 15 DAF in pBI101.3-L3 and pBI101.3-L2 transgenic lines, while the same level was detected at 10 DAF in pBI101.3-L1. The expression driven by the whole fragment was up to 1.76- and 2.8-fold higher than those driven by the -817 bp and -453 bp upstream fragments, and 10.7-fold higher than that driven by the vector without the promoter. Taken together, our results strongly suggest that these promoter fragments from coconut have a significant potential in genetically improving endosperm in main crops.

  9. The HIP1 initiator element plays a role in determining the in vitro requirement of the dihydrofolate reductase gene promoter for the C-terminal domain of RNA polymerase II.

    PubMed

    Buermeyer, A B; Thompson, N E; Strasheim, L A; Burgess, R R; Farnham, P J

    1992-05-01

    We examined the ability of purified RNA polymerase (RNAP) II lacking the carboxy-terminal heptapeptide repeat domain (CTD), called RNAP IIB, to transcribe a variety of promoters in HeLa extracts in which endogenous RNAP II activity was inhibited with anti-CTD monoclonal antibodies. Not all promoters were efficiently transcribed by RNAP IIB, and transcription did not correlate with the in vitro strength of the promoter or with the presence of a consensus TATA box. This was best illustrated by the GC-rich, non-TATA box promoters of the bidirectional dihydrofolate reductase (DHFR)-REP-encoding locus. Whereas the REP promoter was transcribed by RNAP IIB, the DHFR promoter remained inactive after addition of RNAP IIB to the antibody-inhibited reactions. However, both promoters were efficiently transcribed when purified RNAP with an intact CTD was added. We analyzed a series of promoter deletions to identify which cis elements determine the requirement for the CTD of RNAP II. All of the promoter deletions of both DHFR and REP retained the characteristics of their respective full-length promoters, suggesting that the information necessary to specify the requirement for the CTD is contained within approximately 65 bp near the initiation site. Furthermore, a synthetic minimal promoter of DHFR, consisting of a single binding site for Sp1 and a binding site for the HIP1 initiator cloned into a bacterial vector sequence, required RNAP II with an intact CTD for activity in vitro. Since the synthetic minimal promoter of DHFR and the smallest REP promoter deletion are both activated by Sp1, the differential response in this assay does not result from upstream activators. However, the sequences around the start sites of DHFR and REP are not similar and our data suggest that they bind different proteins. Therefore, we propose that specific initiator elements are important for determination of the requirement of some promoters for the CTD.

  10. E1A promoter of bovine adenovirus type 3.

    PubMed

    Xing, Li; Tikoo, Suresh Kumar

    2006-12-01

    Conserved motifs of eukaryotic gene promoters, such as TATA box and CAAT box sequences, of E1A of human adenoviruses (e.g human adenovirus 5) lie between the left inverted terminal repeat (ITR) and the ATG of E1A. However, analysis of the left end of the bovine adenovirus 3 (BAdV-3) genome revealed that the conserved sequences of the E1A promoter are present only in the ITR. As such, the promoter activity of ITR was tested in the context of a BAdV-3 vector or a plasmid-based system. Different regions of the left end of the BAdV-3 genome initiated transcription of the red fluorescent protein gene in a plasmid-based system. Moreover, BAdV-3 mutants in which the open reading frame of E1A was placed immediately downstream of the ITR produced E1A transcript and could be propagated in non-E1A-complementing Madin-Darby bovine kidney cells. These results suggest that the left ITR contains the sole BAdV-3 E1A promoter.

  11. The Prefoldin Complex Regulates Chromatin Dynamics during Transcription Elongation

    PubMed Central

    Millán-Zambrano, Gonzalo; Rodríguez-Gil, Alfonso; Peñate, Xenia; de Miguel-Jiménez, Lola; Morillo-Huesca, Macarena; Krogan, Nevan; Chávez, Sebastián

    2013-01-01

    Transcriptional elongation requires the concerted action of several factors that allow RNA polymerase II to advance through chromatin in a highly processive manner. In order to identify novel elongation factors, we performed systematic yeast genetic screening based on the GLAM (Gene Length-dependent Accumulation of mRNA) assay, which is used to detect defects in the expression of long transcription units. Apart from well-known transcription elongation factors, we identified mutants in the prefoldin complex subunits, which were among those that caused the most dramatic phenotype. We found that prefoldin, so far involved in the cytoplasmic co-translational assembly of protein complexes, is also present in the nucleus and that a subset of its subunits are recruited to chromatin in a transcription-dependent manner. Prefoldin influences RNA polymerase II the elongation rate in vivo and plays an especially important role in the transcription elongation of long genes and those whose promoter regions contain a canonical TATA box. Finally, we found a specific functional link between prefoldin and histone dynamics after nucleosome remodeling, which is consistent with the extensive network of genetic interactions between this factor and the machinery regulating chromatin function. This study establishes the involvement of prefoldin in transcription elongation, and supports a role for this complex in cotranscriptional histone eviction. PMID:24068951

  12. The prefoldin complex regulates chromatin dynamics during transcription elongation.

    PubMed

    Millán-Zambrano, Gonzalo; Rodríguez-Gil, Alfonso; Peñate, Xenia; de Miguel-Jiménez, Lola; Morillo-Huesca, Macarena; Krogan, Nevan; Chávez, Sebastián

    2013-01-01

    Transcriptional elongation requires the concerted action of several factors that allow RNA polymerase II to advance through chromatin in a highly processive manner. In order to identify novel elongation factors, we performed systematic yeast genetic screening based on the GLAM (Gene Length-dependent Accumulation of mRNA) assay, which is used to detect defects in the expression of long transcription units. Apart from well-known transcription elongation factors, we identified mutants in the prefoldin complex subunits, which were among those that caused the most dramatic phenotype. We found that prefoldin, so far involved in the cytoplasmic co-translational assembly of protein complexes, is also present in the nucleus and that a subset of its subunits are recruited to chromatin in a transcription-dependent manner. Prefoldin influences RNA polymerase II the elongation rate in vivo and plays an especially important role in the transcription elongation of long genes and those whose promoter regions contain a canonical TATA box. Finally, we found a specific functional link between prefoldin and histone dynamics after nucleosome remodeling, which is consistent with the extensive network of genetic interactions between this factor and the machinery regulating chromatin function. This study establishes the involvement of prefoldin in transcription elongation, and supports a role for this complex in cotranscriptional histone eviction.

  13. Core Promoter Functions in the Regulation of Gene Expression of Drosophila Dorsal Target Genes*

    PubMed Central

    Zehavi, Yonathan; Kuznetsov, Olga; Ovadia-Shochat, Avital; Juven-Gershon, Tamar

    2014-01-01

    Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters consist of core promoter motifs, e.g. the initiator, TATA box, and the downstream core promoter element (DPE), which confer specific properties to the core promoter. Here, we explored the importance of core promoter functions in the dorsal-ventral developmental gene regulatory network. This network includes multiple genes that are activated by different nuclear concentrations of Dorsal, an NFκB homolog transcription factor, along the dorsal-ventral axis. We show that over two-thirds of Dorsal target genes contain DPE sequence motifs, which is significantly higher than the proportion of DPE-containing promoters in Drosophila genes. We demonstrate that multiple Dorsal target genes are evolutionarily conserved and functionally dependent on the DPE. Furthermore, we have analyzed the activation of key Dorsal target genes by Dorsal, as well as by another Rel family transcription factor, Relish, and the dependence of their activation on the DPE motif. Using hybrid enhancer-promoter constructs in Drosophila cells and embryo extracts, we have demonstrated that the core promoter composition is an important determinant of transcriptional activity of Dorsal target genes. Taken together, our results provide evidence for the importance of core promoter composition in the regulation of Dorsal target genes. PMID:24634215

  14. Assembling the Tat protein translocase

    PubMed Central

    Alcock, Felicity; Stansfeld, Phillip J; Basit, Hajra; Habersetzer, Johann; Baker, Matthew AB; Palmer, Tracy; Wallace, Mark I; Berks, Ben C

    2016-01-01

    The twin-arginine protein translocation system (Tat) transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membranes of plant chloroplasts. The Tat transporter is assembled from multiple copies of the membrane proteins TatA, TatB, and TatC. We combine sequence co-evolution analysis, molecular simulations, and experimentation to define the interactions between the Tat proteins of Escherichia coli at molecular-level resolution. In the TatBC receptor complex the transmembrane helix of each TatB molecule is sandwiched between two TatC molecules, with one of the inter-subunit interfaces incorporating a functionally important cluster of interacting polar residues. Unexpectedly, we find that TatA also associates with TatC at the polar cluster site. Our data provide a structural model for assembly of the active Tat translocase in which substrate binding triggers replacement of TatB by TatA at the polar cluster site. Our work demonstrates the power of co-evolution analysis to predict protein interfaces in multi-subunit complexes. DOI: http://dx.doi.org/10.7554/eLife.20718.001 PMID:27914200

  15. Molecular Characterization and Transcriptional Regulation Analysis of the Bovine PDHB Gene.

    PubMed

    Li, Anning; Zhang, Yaran; Zhao, Zhidong; Wang, Mingming; Zan, Linsen

    2016-01-01

    The pyruvate dehydrogenase beta subunit (PDHB) is a subunit of pyruvate dehydrogenase (E1), which catalyzes pyruvate into acetyl-CoA and provides a linkage between the tricarboxylic acid cycle (TCA) and the glycolysis pathway. Previous studies demonstrated PDHB to be positively related to the intramuscular fat (IMF) content. However, the transcriptional regulation of PDHB remains unclear. In our present study, the cDNA of bovine PDHB was cloned and the genomic structure was analyzed. The phylogenetic tree showed bovine PDHB to be closely related to goat and sheep, and least related to chicken. Spatial expression pattern analysis revealed the products of bovine PDHB to be widely expressed with the highest level in the fat of testis. To understand the transcriptional regulation of bovine PDHB, 1899 base pairs (bp) of the 5'-regulatory region was cloned. Sequence analysis neither found consensus TATA-box nor CCAAT-box in the 5'-flanking region of bovine PDHB. However, a CpG island was predicted from nucleotides -284 to +117. Serial deletion constructs of the 5'-flanking region, evaluated in dual-luciferase reporter assay, revealed the core promoter to be located 490bp upstream from the transcription initiation site (+1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP) in combination with asite-directed mutation experiment indicated both myogenin (MYOG) and the CCAAT/enhancer-binding protein beta (C/EBPß) to be important transcription factors for bovine PDHB in skeletal muscle cells and adipocytes. Our results provide an important basis for further investigation of the bovine PDHB function and regulation in cattle.

  16. Characterization of carotenoid hydroxylase gene promoter in Haematococcus pluvialis.

    PubMed

    Meng, C X; Wei, W; Su, Z- L; Qin, S

    2006-10-01

    Astaxanthin, a high-value ketocarotenoid is mainly used in fish aquaculture. It also has potential in human health due to its higher antioxidant capacity than beta-carotene and vitamin E. The unicellular green alga Haematococcus pluvialis is known to accumulate astaxanthin in response to environmental stresses, such as high light intensity and salt stress. Carotenoid hydroxylase plays a key role in astaxanthin biosynthesis in H. pluvialis. In this paper, we report the characterization of a promoter-like region (-378 to -22 bp) of carotenoid hydroxylase gene by cloning, sequence analysis and functional verification of its 919 bp 5'-flanking region in H. pluvialis. The 5'-flanking region was characterized using micro-particle bombardment method and transient expression of LacZ reporter gene. Results of sequence analysis showed that the 5'-flanking region might have putative cis-acting elements, such as ABA (abscisic acid)-responsive element (ABRE), C-repeat/dehydration responsive element (C-repeat/DRE), ethylene-responsive element (ERE), heat-shock element (HSE), wound-responsive element (WUN-motif), gibberellin-responsive element (P-box), MYB-binding site (MBS) etc., except for typical TATA and CCAAT boxes. Results of 5' deletions construct and beta-galactosidase assays revealed that a highest promoter-like region might exist from -378 to -22 bp and some negative regulatory elements might lie in the region from -919 to -378 bp. Results of site-directed mutagenesis of a putative C-repeat/DRE and an ABRE-like motif in the promoter-like region (-378 to -22 bp) indicated that the putative C-repeat/DRE and ABRE-like motif might be important for expression of carotenoid hydroxylase gene.

  17. Molecular Characterization and Transcriptional Regulation Analysis of the Bovine PDHB Gene

    PubMed Central

    Li, Anning; Zhang, Yaran; Zhao, Zhidong; Wang, Mingming; Zan, Linsen

    2016-01-01

    The pyruvate dehydrogenase beta subunit (PDHB) is a subunit of pyruvate dehydrogenase (E1), which catalyzes pyruvate into acetyl-CoA and provides a linkage between the tricarboxylic acid cycle (TCA) and the glycolysis pathway. Previous studies demonstrated PDHB to be positively related to the intramuscular fat (IMF) content. However, the transcriptional regulation of PDHB remains unclear. In our present study, the cDNA of bovine PDHB was cloned and the genomic structure was analyzed. The phylogenetic tree showed bovine PDHB to be closely related to goat and sheep, and least related to chicken. Spatial expression pattern analysis revealed the products of bovine PDHB to be widely expressed with the highest level in the fat of testis. To understand the transcriptional regulation of bovine PDHB, 1899 base pairs (bp) of the 5’-regulatory region was cloned. Sequence analysis neither found consensus TATA-box nor CCAAT-box in the 5’-flanking region of bovine PDHB. However, a CpG island was predicted from nucleotides -284 to +117. Serial deletion constructs of the 5’-flanking region, evaluated in dual-luciferase reporter assay, revealed the core promoter to be located 490bp upstream from the transcription initiation site (+1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP) in combination with asite-directed mutation experiment indicated both myogenin (MYOG) and the CCAAT/enhancer-binding protein beta (C/EBPß) to be important transcription factors for bovine PDHB in skeletal muscle cells and adipocytes. Our results provide an important basis for further investigation of the bovine PDHB function and regulation in cattle. PMID:27379520

  18. Scleraxis is a transcriptional activator that regulates the expression of Tenomodulin, a marker of mature tenocytes and ligamentocytes.

    PubMed

    Shukunami, Chisa; Takimoto, Aki; Nishizaki, Yuriko; Yoshimoto, Yuki; Tanaka, Seima; Miura, Shigenori; Watanabe, Hitomi; Sakuma, Tetsushi; Yamamoto, Takashi; Kondoh, Gen; Hiraki, Yuji

    2018-02-16

    Tenomodulin (Tnmd) is a type II transmembrane glycoprotein predominantly expressed in tendons and ligaments. We found that scleraxis (Scx), a member of the Twist-family of basic helix-loop-helix transcription factors, is a transcriptional activator of Tnmd expression in tenocytes. During embryonic development, Scx expression preceded that of Tnmd. Tnmd expression was nearly absent in tendons and ligaments of Scx-deficient mice generated by transcription activator-like effector nucleases-mediated gene disruption. Tnmd mRNA levels were dramatically decreased during serial passages of rat tenocytes. Scx silencing by small interfering RNA significantly suppressed endogenous Tnmd mRNA levels in tenocytes. Mouse Tnmd contains five E-box sites in the ~1-kb 5'-flanking region. A 174-base pair genomic fragment containing a TATA box drives transcription in tenocytes. Enhancer activity was increased in the upstream region (-1030 to -295) of Tnmd in tenocytes, but not in NIH3T3 and C3H10T1/2 cells. Preferential binding of both Scx and Twist1 as a heterodimer with E12 or E47 to CAGATG or CATCTG and transactivation of the 5'-flanking region were confirmed by electrophoresis mobility shift and dual luciferase assays, respectively. Scx directly transactivates Tnmd via these E-boxes to positively regulate tenocyte differentiation and maturation.

  19. A novel class I Chitinase from Hippophae rhamnoides: Indications for participating in ICE-CBF cold stress signaling pathway.

    PubMed

    Kashyap, Prakriti; Deswal, Renu

    2017-06-01

    Plant chitinases are the members of PR (Pathogenesis related) proteins family and protect plants from biotic and abiotic stress. A novel chitinase HrCHI1 (Accession number JQ289153) of 954bp ORF encoding 317 amino acids protein was cloned, expressed and characterized from seabuckthorn, a cold/freeze tolerant shrub. The 3D structure (predicted with I-TASSER server) showed highest homology with Oryza sativa class I chitinase (PDB 2dkvA). Putative promoter region (obtained by genome walking) showed GCC box, E-boxes, the binding site for bHLH proteins and DRE elements, the CBF (C-repeat binding factor) binding site besides TATA and CAAT boxes. The gel shift assay with the nuclear extract indicated that the HrCHI1 might be participating in CBF/ERF dependent cold stress signaling pathway. The quantitative transcript profiling supported this observation as cold induced expression of HrCBF peaked earlier (at 1h) while HrCHI1 peaked latter (after 3h) indicating HrCHI1 expression might be induced by HrCBF. Further, HrCHI1 expression was methyl jasmonate (MeJa) dependent and salicylic acid (SA) independent. HrCHI1 was expressed in E. coli and purified using chitin affinity chromatography. It showed 512U/mg chitinase hydrolytic activity and resolved as a 34kDa spot with a slightly basic pI (8.5) on a 2-D gel. The E. coli cells containing recombinant chitinase showed higher rate of growth in cold in comparison with the cells containing the empty vector. In conclusion, we have isolated and characterized a cold responsive basic class I chitinase which is regulated by MeJa and seems to be functioning via CBF/ERF dependent cold stress signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Functional analysis of the promoter of the molt-inhibiting hormone (mih) gene in mud crab Scylla paramamosain.

    PubMed

    Zhang, Xin; Huang, Danping; Jia, Xiwei; Zou, Zhihua; Wang, Yilei; Zhang, Ziping

    2018-04-01

    In this study, the 5'-flanking region of molt-inhibiting hormone (MIH) gene was cloned by Tail-PCR. It is 2024 bp starting from the translation initiation site, and 1818 bp starting from the predicted transcription start site. Forecast analysis results by the bioinformatics software showed that the transcription start site is located at 207 bp upstream of the start codon ATG, and TATA box is located at 240 bp upstream of the start codon ATG. Potential transcription factor binding sites include Sp1, NF-1, Oct-1, Sox-2, RAP1, and so on. There are two CpG islands, located at -25- +183 bp and -1451- -1316 bp respectively. The transfection results of luciferase reporter constructs showed that the core promoter region was located in the fragment -308 bp to -26 bp. NF-kappaB and RAP1 were essential for mih basal transcriptional activity. There are three kinds of polymorphism CA in the 5'-flanking sequence, and they can influence mih promoter activity. These findings provide a genetic foundation of the further research of mih transcription regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Molecular Cloning, Expression Profile and 5′ Regulatory Region Analysis of Two Chemosensory Protein Genes from the Diamondback Moth, Plutella xylostella

    PubMed Central

    Gong, Liang; Zhong, Guo-Hua; Hu, Mei-Ying; Luo, Qian; Ren, Zhen-Zhen

    2010-01-01

    Chemosensory proteins play an important role in transporting chemical compounds to their receptors on dendrite membranes. In this study, two full-length cDNA codings for chemosensory proteins of Plutella xylostella (Lepidoptera: Plutellidae) were obtained by RACE-PCR. PxylCSP3 and Pxyl-CSP4, with GenBank accession numbers ABM92663 and ABM92664, respectively, were cloned and sequenced. The gene sequences both consisted of three exons and two introns. RT-PCR analysis showed that Pxyl-CSP3 and Pxyl-CSP4 had different expression patterns in the examined developmental stages, but were expressed in all larval stages. Phylogenetic analysis indicated that lepidopteran insects consist of three branches, and Pxyl-CSP3 and Pxyl-CSP4 belong to different branches. The 5′regulatory regions of Pxyl-CSP3 and Pxyl-CSP4 were isolated and analyzed, and the results consist of not only the core promoter sequences (TATA-box), but also several transcriptional elements (BR-C Z4, Hb, Dfd, CF2-II, etc.). This study provides clues to better understanding the various physiological functions of CSPs in P. xylostella and other insects. PMID:21073345

  2. c-Jun binds the N terminus of human TAF(II)250 to derepress RNA polymerase II transcription in vitro.

    PubMed

    Lively, T N; Ferguson, H A; Galasinski, S K; Seto, A G; Goodrich, J A

    2001-07-06

    c-Jun is an oncoprotein that activates transcription of many genes involved in cell growth and proliferation. We studied the mechanism of transcriptional activation by human c-Jun in a human RNA polymerase II transcription system composed of highly purified recombinant and native transcription factors. Transcriptional activation by c-Jun depends on the TATA-binding protein (TBP)-associated factor (TAF) subunits of transcription factor IID (TFIID). Protein-protein interaction assays revealed that c-Jun binds with high specificity to the largest subunit of human TFIID, TAF(II)250. The region of TAF(II)250 bound by c-Jun lies in the N-terminal 163 amino acids. This same region of TAF(II)250 binds to TBP and represses its interaction with TATA boxes, thereby decreasing DNA binding by TFIID. We hypothesized that c-Jun is capable of derepressing the effect of the TAF(II)250 N terminus on TFIID-driven transcription. In support of this hypothesis, we found that c-Jun increased levels of TFIID-driven transcription in vitro when added at high concentrations to a DNA template lacking activator protein 1 (AP-1) sites. Moreover, c-Jun blocked the repression of TBP DNA binding caused by the N terminus of TAF(II)250. In addition to revealing a mechanism by which c-Jun activates transcription, our studies provide the first evidence that an activator can bind directly to the N terminus of TAF(II)250 to derepress RNA polymerase II transcription in vitro.

  3. Identification and Analysis of Mot3, a Zinc Finger Protein That Binds to the Retrotransposon Ty Long Terminal Repeat (δ) in Saccharomyces cerevisiae

    PubMed Central

    Madison, Jon M.; Dudley, Aimée M.; Winston, Fred

    1998-01-01

    Spt3 and Mot1 are two transcription factors of Saccharomyces cerevisiae that are thought to act in a related fashion to control the function of TATA-binding protein (TBP). Current models suggest that while Spt3 and Mot1 do not directly interact, they do function in a related fashion to stabilize the TBP-TATA interaction at particular promoters. Consistent with this model, certain combinations of spt3 and mot1 mutations are inviable. To identify additional proteins related to Spt3 and Mot1 functions, we screened for high-copy-number suppressors of the mot1 spt3 inviability. This screen identified a previously unstudied gene, MOT3, that encodes a zinc finger protein. We show that Mot3 binds in vitro to three sites within the retrotransposon Ty long terminal repeat (δ) sequence. One of these sites is immediately 5′ of the δ TATA region. Although a mot3 null mutation causes no strong phenotypes, it does cause some mild phenotypes, including a very modest increase in Ty mRNA levels, partial suppression of transcriptional defects caused by a mot1 mutation, and partial suppression of an spt3 mutation. These results, in conjunction with those of an independent study of Mot3 (A. Grishin, M. Rothenberg, M. A. Downs, and K. J. Blumer, Genetics, in press), suggest that this protein plays a varied role in gene expression that may be largely redundant with other factors. PMID:9528759

  4. Combined Chromatin and Expression Analysis Reveals Specific Regulatory Mechanisms within Cytokine Genes in the Macrophage Early Immune Response

    PubMed Central

    Emanuelsson, Olof; Sennblad, Bengt; Pirmoradian Najafabadi, Mohammad; Folkersen, Lasse; Mälarstig, Anders; Lagergren, Jens; Eriksson, Per; Hamsten, Anders; Odeberg, Jacob

    2012-01-01

    Macrophages play a critical role in innate immunity, and the expression of early response genes orchestrate much of the initial response of the immune system. Macrophages undergo extensive transcriptional reprogramming in response to inflammatory stimuli such as Lipopolysaccharide (LPS). To identify gene transcription regulation patterns involved in early innate immune responses, we used two genome-wide approaches - gene expression profiling and chromatin immunoprecipitation-sequencing (ChIP-seq) analysis. We examined the effect of 2 hrs LPS stimulation on early gene expression and its relation to chromatin remodeling (H3 acetylation; H3Ac) and promoter binding of Sp1 and RNA polymerase II phosphorylated at serine 5 (S5P RNAPII), which is a marker for transcriptional initiation. Our results indicate novel and alternative gene regulatory mechanisms for certain proinflammatory genes. We identified two groups of up-regulated inflammatory genes with respect to chromatin modification and promoter features. One group, including highly up-regulated genes such as tumor necrosis factor (TNF), was characterized by H3Ac, high CpG content and lack of TATA boxes. The second group, containing inflammatory mediators (interleukins and CCL chemokines), was up-regulated upon LPS stimulation despite lacking H3Ac in their annotated promoters, which were low in CpG content but did contain TATA boxes. Genome-wide analysis showed that few H3Ac peaks were unique to either +/−LPS condition. However, within these, an unpacking/expansion of already existing H3Ac peaks was observed upon LPS stimulation. In contrast, a significant proportion of S5P RNAPII peaks (approx 40%) was unique to either condition. Furthermore, data indicated a large portion of previously unannotated TSSs, particularly in LPS-stimulated macrophages, where only 28% of unique S5P RNAPII peaks overlap annotated promoters. The regulation of the inflammatory response appears to occur in a very specific manner at the chromatin level for specific genes and this study highlights the level of fine-tuning that occurs in the immune response. PMID:22384210

  5. [Construction of a general AAV vector regulated by minimal and artificial hypoxic-responsive element].

    PubMed

    Nie, Xiao-wei; Sun, Li-jun; Hao, Yue-wen; Yang, Guang-xiao; Wang, Quan-ying

    2011-03-01

    To synthesize the minimal and artificial HRE, and to insert it into the anterior extremity of CMV promoter of a AAV plasmid, and then to construct the AAV regulated by hypoxic-responsive element which was introduced into 293 cell by method of Ca3(PO4)2 using three plasmids. Thus obtaining the adenoassociated virus vector regulated by hypoxic-responsive element was possibly used for gene therapy in ischemia angiocardiopathy and cerebrovascular disease. Artificially synthesize the 36 bp nucleotide sequences of four connection in series HIF-binding sites A/GCGTG(4×HBS)and a 35 bp nucleotide sequences spacing inserted into anterior extremity of CMV promoter TATA Box, then amplified by PCR. The cDNA fragment was confirmed to be right by DNA sequencing. Molecular biology routine method was used to construct a AAV vector regulated by minimal hypoxic-responsive element after the normal CMV promoter in AAV vector was replaced by the CMV promoter included minimal hypoxic-responsive element. Then, NT4-6His-PR39 fusogenic peptide was inserted into MCS of the plasmid, the recombinant AAV vector was obtained by three plasmid co-transfection in 293 cells, in which we can also investigate the expression of 6×His using immunochemistry in hypoxia environment. Artificial HRE was inserted into anterior extremity of CMV promoter and there was a correct spacing between the HRE and the TATA-box. The DNA sequencing and restriction enzyme digestion results indicated that the AAV regulated by hypoxic-responsive element was successfully constructed. Compared to the control group, the expressions of 6×His was significantly increased in the experimental groups in hypoxia environment, which confirmed that the AAV effectually regulated by the minimal HRE was inserted into anterior extremity of CMV promoter. The HRE is inserted into anterior extremity of CMV promoter to lack incision enzyme recognition site by PCR. And eukaryotic expression vector regulated by hypoxic-responsive is constructed. The AAV effectually regulated by the minimal HRE inserted into anterior extremity of CMV promoter. The vector is successfully constructed and it has important theoretical and practical value in the synteresis and therapy of ischemia angiocardiopathy and cerebrovascular disease.

  6. Evolution of UCP1 Transcriptional Regulatory Elements Across the Mammalian Phylogeny

    PubMed Central

    Gaudry, Michael J.; Campbell, Kevin L.

    2017-01-01

    Uncoupling protein 1 (UCP1) permits non-shivering thermogenesis (NST) when highly expressed in brown adipose tissue (BAT) mitochondria. Exclusive to placental mammals, BAT has commonly been regarded to be advantageous for thermoregulation in hibernators, small-bodied species, and the neonates of larger species. While numerous regulatory control motifs associated with UCP1 transcription have been proposed for murid rodents, it remains unclear whether these are conserved across the eutherian mammal phylogeny and hence essential for UCP1 expression. To address this shortcoming, we conducted a broad comparative survey of putative UCP1 transcriptional regulatory elements in 139 mammals (135 eutherians). We find no evidence for presence of a UCP1 enhancer in monotremes and marsupials, supporting the hypothesis that this control region evolved in a stem eutherian ancestor. We additionally reveal that several putative promoter elements (e.g., CRE-4, CCAAT) identified in murid rodents are not conserved among BAT-expressing eutherians, and together with the putative regulatory region (PRR) and CpG island do not appear to be crucial for UCP1 expression. The specificity and importance of the upTRE, dnTRE, URE1, CRE-2, RARE-2, NBRE, BRE-1, and BRE-2 enhancer elements first described from rats and mice are moreover uncertain as these motifs differ substantially—but generally remain highly conserved—in other BAT-expressing eutherians. Other UCP1 enhancer motifs (CRE-3, PPRE, and RARE-3) as well as the TATA box are also highly conserved in nearly all eutherian lineages with an intact UCP1. While these transcriptional regulatory motifs are generally also maintained in species where this gene is pseudogenized, the loss or degeneration of key basal promoter (e.g., TATA box) and enhancer elements in other UCP1-lacking lineages make it unlikely that the enhancer region is pleiotropic (i.e., co-regulates additional genes). Importantly, differential losses of (or mutations within) putative regulatory elements among the eutherian lineages with an intact UCP1 suggests that the transcriptional control of gene expression is not highly conserved in this mammalian clade. PMID:28979209

  7. Structure of TatA Paralog, TatE, Suggests a Structurally Homogeneous Form of Tat Protein Translocase That Transports Folded Proteins of Differing Diameter

    PubMed Central

    Baglieri, Jacopo; Beck, Daniel; Vasisht, Nishi; Smith, Corinne J.; Robinson, Colin

    2012-01-01

    The twin-arginine translocation (Tat) system transports folded proteins across bacterial and plant thylakoid membranes. Most current models for the translocation mechanism propose the coalescence of a substrate-binding TatABC complex with a separate TatA complex. In Escherichia coli, TatA complexes are widely believed to form the translocation pore, and the size variation of TatA has been linked to the transport of differently sized substrates. Here, we show that the TatA paralog TatE can substitute for TatA and support translocation of Tat substrates including AmiA, AmiC, and TorA. However, TatE is found as much smaller, discrete complexes. Gel filtration and blue native electrophoresis suggest sizes between ∼50 and 110 kDa, and single-particle processing of electron micrographs gives size estimates of 70–90 kDa. Three-dimensional models of the two principal TatE complexes show estimated diameters of 6–8 nm and potential clefts or channels of up to 2.5 nm diameter. The ability of TatE to support translocation of the 90-kDa TorA protein suggests alternative translocation models in which single TatA/E complexes do not contribute the bulk of the translocation channel. The homogeneity of both the TatABC and the TatE complexes further suggests that a discrete Tat translocase can translocate a variety of substrates, presumably through the use of a flexible channel. The presence and possible significance of double- or triple-ring TatE forms is discussed. PMID:22190680

  8. SCA17 repeat expansion: mildly expanded CAG/CAA repeat alleles in neurological disorders and the functional implications.

    PubMed

    Chen, Chiung-Mei; Lee, Li-Ching; Soong, Bing-Wen; Fung, Hon-Chung; Hsu, Wen-Chuin; Lin, Pei-Ying; Huang, Hui-Ju; Chen, Fen-Lin; Lin, Cheng-Yueh; Lee-Chen, Guey-Jen; Wu, Yih-Ru

    2010-03-01

    Spinocerebellar ataxia type 17 (SCA17) involves the expression of a CAG/CAA expansion mutation in the gene encoding TATA-box binding protein (TBP), a general transcription initiation factor. The spectrum of SCA17 clinical presentation is broad. We screened for triplet expansion in the TBP gene in Taiwanese Parkinson's disease (PD), Alzheimer's disease (AD) and atypical parkinsonism and investigated the functional implication of expanded alleles using lymphoblastoid cells as a model. A total of 6 mildly expanded alleles (44-46) were identified in patients group. The frequency of the individuals carrying expanded alleles in PD (3/602 [0.5%]), AD (2/245 [0.8%]) and atypical parkinsonism (1/44 [2.3%]) is not significant as compared to that in the control subjects (0/644 [0.0%]). In lymphoblastoid cells, HSPA5, HSPA8 and HSPB1 expression levels in cells with expanded TBP were significantly lower than that of the control cells. Although not significantly, the levels of PARK7 protein isoforms 6.1 and 6.4 are notably increased in SCA17 lymphoblastoid cells. Treatment of TBH (tert-butyl hydroperoxide) significantly increases cell death in the cells with mildly expanded TBP. Our findings expand the spectrum of SCA17 phenotype and may contribute to our understanding of the disease. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Redundant role of tissue-selective TAF(II)105 in B lymphocytes.

    PubMed

    Freiman, Richard N; Albright, Shane R; Chu, Leslie E; Zheng, Shuang; Liang, Hong-Erh; Sha, William C; Tjian, Robert

    2002-09-01

    Regulated gene expression is a complex process achieved through the function of multiple protein factors acting in concert at a given promoter. The transcription factor TFIID is a central component of the machinery regulating mRNA synthesis by RNA polymerase II. This large multiprotein complex is composed of the TATA box binding protein (TBP) and several TBP-associated factors (TAF(II)s). The recent discovery of multiple TBP-related factors and tissue-specific TAF(II)s suggests the existence of specialized TFIID complexes that likely play a critical role in regulating transcription in a gene- and tissue-specific manner. The tissue-selective factor TAF(II)105 was originally identified as a component of TFIID derived from a human B-cell line. In this report we demonstrate the specific induction of TAF(II)105 in cultured B cells in response to bacterial lipopolysaccharide (LPS). To examine the in vivo role of TAF(II)105, we have generated TAF(II)105-null mice by homologous recombination. Here we show that B-lymphocyte development is largely unaffected by the absence of TAF(II)105. TAF(II)105-null B cells can proliferate in response to LPS, produce relatively normal levels of resting antibodies, and can mount an immune response by producing antigen-specific antibodies in response to immunization. Taken together, we conclude that the function of TAF(II)105 in B cells is likely redundant with the function of other TAF(II)105-related cellular proteins.

  10. The basic leucine zipper domain of c-Jun functions in transcriptional activation through interaction with the N terminus of human TATA-binding protein-associated factor-1 (human TAF(II)250).

    PubMed

    Lively, Tricia N; Nguyen, Tuan N; Galasinski, Shelly K; Goodrich, James A

    2004-06-18

    We previously reported that c-Jun binds directly to the N-terminal 163 amino acids of Homo sapiens TATA-binding protein-associated factor-1 (hsTAF1), causing a derepression of transcription factor IID (TFIID)-driven transcription (Lively, T. N., Ferguson, H. A., Galasinski, S. K., Seto, A. G., and Goodrich, J. A. (2001) J. Biol. Chem. 276, 25582-25588). This region of hsTAF1 binds TATA-binding protein to repress TFIID DNA binding and transcription. Here we show that the basic leucine zipper domain of c-Jun, which allows for DNA binding and homodimerization, is necessary and sufficient for interaction with hsTAF1. Interestingly, the isolated basic leucine zipper domain of c-Jun was able to derepress TFIID-directed basal transcription in vitro. Moreover, when the N-terminal region of hsTAF1 was added to in vitro transcription reactions and overexpressed in cells, it blocked c-Jun activation. c-Fos, another basic leucine zipper protein, did not interact with hsTAF1, but c-Fos/c-Jun heterodimers did bind the N terminus of hsTAF1. Our studies show that, in addition to dimerization and DNA binding, the well characterized basic leucine zipper domain of c-Jun functions in transcriptional activation by binding to the N terminus of hsTAF1 to derepress transcription.

  11. Cloning and characterization of pyruvate carboxylase gene responsible for calcium malate overproduction in Penicillium viticola 152 and its expression analysis.

    PubMed

    Khan, Ibrar; Qayyum, Sadia; Ahmed, Shehzad; Maqbool, Farhana; Tauseef, Isfahan; Haleem, Kashif Syed; Chi, Zhen-Ming

    2017-03-20

    In this study, a pyruvate carboxylase gene (PYC) from a marine fungus Penicillium viticola 152 isolated from marine algae was cloned and characterized by using Genome Walking method. An open reading frame (ORF) of The PYC gene (accession number: KM593097) had 3582bp encoding 1193 amino acid protein (isoelectric point: 5.01) with a calculated molecular weight of 131.2757kDa. A putative promoter (intronless) of the gene was located at -666bp and contained a TATA box, several CAAT boxes, the 5'-SYGGRG-3' and a 5'-HGATAR-3' sequences. A consensus polyadenylation site (AATAAA) was also observed at +10bp downstream of the ORF. The protein deduced from the PYC gene had no signal peptide, was a homotetramer (4), and had the four functional domains. Furthermore, PYC protein also had three potential N-linked glycosylation sites, among them, -N-S-T-I- at 36 amino acid, -N-G-T-V- at 237 amino acid, and -N-G-S-S- at 517 amino acid were the most possible N-glycosylation sites. After expression of the PYC gene of P. viticola 152 in medium supplemented with CSL and biotin, it was found that the specific pyruvate carboxylase activity in MA production medium supplemented with CSL was much higher (0.5U/mg) than in MA medium supplemented with biotin (0.3U/mg), suggesting that optimal concentration of CSL is required for increased expression of the PYC gene, which is responsible for high level production of malic acid in P. viticola 152 strain. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Identification and characterization of Kaposi's sarcoma-associated herpesvirus open reading frame 11 promotor activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Lei

    2008-01-01

    Open reading frame 11 (ORF11) of Kaposi's sarcoma-associated herpesvirus belongs to a herpesviral homologous protein family shared by some members of the gamma- herpesvirus subfamily. Little is known about this ORF11 homologous protein family. We have characterized an unknown open reading frame, ORF11, located adjacent and in the opposite orientation to a well-characterized viral IL-6 gene. Northern blot analysis reveals that ORF11 is expressed during the KSHV lytic cycle with delayed-early transcription kinetics. We have determined the 5{prime} and 3{prime} untranslated region of the unspliced ORF11 transcript and identified both the transcription start site and the transcription termination site. Coremore » promoter region, representing ORF11 promoter activity, was mapped to a 159nt fragment 5{prime} most proximal to the transcription start site. A functional TATA box was identified in the core promoter region. Interestingly, we found that ORF11 transcriptional activation is not responsive to Rta, the KSHV lytic switch protein. We also discovered that part of the ORF11 promoter region, the 209nt fragment upstream of the transcription start site, was repressed by phorbol esters. Our data help to understand transcription regulation of ORF11 and to elucidate roles of ORF11 in KSHV pathogenesis and life cycle.« less

  13. Cloning the promoter for transforming growth factor-beta type III receptor. Basal and conditional expression in fetal rat osteoblasts

    NASA Technical Reports Server (NTRS)

    Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.

    1999-01-01

    Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.

  14. Organization of the human gene for nucleobindin (NUC) and its chromosomal assignment to 19q13.2-q13.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Keiji; Kurosawa, Yoshikazu; Hirai, Momoki

    1996-06-01

    Nucleobindin (Nuc) was first identified as a secreted protein of 55 kDa that promotes production of DNA-specific antibodies in lupus-prone MRL/lpr mice. Analysis of cDNA that encoded Nuc revealed that the protein is composed of a signal peptide, a DNA-binding site, two calcium-binding motifs (EF-hand motifs), and a leucine zipper. In the present study, we analysed the organization of the human gene for Nuc (NUC). It consists of 13 exons that are distributed in a region of 32 kb. The functional motifs listed above are encoded in corresponding exons. NUC was expressed in all organs examined. Comparison of nucleotide sequencesmore » in the promotre regions between human and mouse NCU genes revealed several conserved sequences. Among them, two Sp1-binding sites and a CCAAT box are of particular interest. The promoter is of the TATA-less type, and transcription starts at multiple sites in both the human and the mouse genes. These features suggest that NUC might normally play a role as a housekeeping gene. NUC was located at human chromosome 19q13.2-q13.4. 25 refs., 4 figs., 1 tab.« less

  15. The complete sequence and promoter activity of the human A-raf-1 gene (ARAF1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.E.; Beck, T.W.; Brennscheidt, U.

    1994-03-01

    The raf proto-oncogenes encode cytoplasmic protein serine/threonine kinases, which play a critical role in cell growth and development. One of these, A-raf-1 (human gene symbol, ARAF1), which is predominantly expressed in mouse urogenital tissues, has been mapped to an evolutionarily conserved linkage group composed of ARAF1, SYN1, TIMP, and properdin located at human chromosome Xp11.2. The authors have isolated human genomic DNA clones containing the expressed gene (ARAF1) on the X chromosome and a pseudogene (ARAF2) on chromosome 7p12-q11.21. Analysis of the nucleotide sequence from the ARAF1 genomic clones demonstrated that it consists of 16 exons encoded by minimally 10,776more » nucleotides. The major transcriptional start site (+1) was determined by RNase protection and primer extension assays. Promoter activity was confirmed by functional assays using DNA fragments fused to a CAT reporter gene. The ARAF1 minimal promoter, located between nucleotides -59 and +93, has a low G + C content and lacks consensus TATA and Inr sequences but shows sequence similarity at position -1 to the E box that is known to interact with USF and TFII-I transcription factors. 65 refs., 7 figs., 1 tab.« less

  16. The genomic organization of the Fanconi anemia group A (FAA) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ianzano, L.; Centra, M.; Savino, M.

    1997-05-01

    Fanconi anemia (FA) is a genetically heterogeneous disease involving at least five genes on the basis of complementation analysis (FAA to FAE). The FAA gene has been recently isolated by two independent approaches, positional and functional cloning. In the present study we describe the genomic structure of the FAA gene. The gene contains 43 exons spanning approximately 80 kb as determined by the alignment of four cosmids and the fine localization of the first and the last exons in restriction fragments of these clones. Exons range from 34 to 188 bp. All but three of the splice sites were consistentmore » with the ag-gt rule. We also describe three alternative splicing events in cDNA clones that result in the loss of exon 37, a 23-bp deletion at the 5{prime} end of exon 41. Sequence analysis of the 5{prime} region upstream of the putative transcription start site showed no obvious TATA and CAAT boxes, but did show a GC-rich region, typical of housekeeping genes. Knowledge of the structure of the FAA gene will provide an invaluable resource for the discovery of mutations in the gene that accounts for about 60-66% of FA patients. 24 refs., 3 figs., 1 tab.« less

  17. Cellular Retinoic Acid Binding Proteins: Genomic and Non-genomic Functions and their Regulation.

    PubMed

    Wei, Li-Na

    Cellular retinoic acid binding proteins (CRABPs) are high-affinity retinoic acid (RA) binding proteins that mainly reside in the cytoplasm. In mammals, this family has two members, CRABPI and II, both highly conserved during evolution. The two proteins share a very similar structure that is characteristic of a "β-clam" motif built up from10-strands. The proteins are encoded by two different genes that share a very similar genomic structure. CRABPI is widely distributed and CRABPII has restricted expression in only certain tissues. The CrabpI gene is driven by a housekeeping promoter, but can be regulated by numerous factors, including thyroid hormones and RA, which engage a specific chromatin-remodeling complex containing either TRAP220 or RIP140 as coactivator and corepressor, respectively. The chromatin-remodeling complex binds the DR4 element in the CrabpI gene promoter to activate or repress this gene in different cellular backgrounds. The CrabpII gene promoter contains a TATA-box and is rapidly activated by RA through an RA response element. Biochemical and cell culture studies carried out in vitro show the two proteins have distinct biological functions. CRABPII mainly functions to deliver RA to the nuclear RA receptors for gene regulation, although recent studies suggest that CRABPII may also be involved in other cellular events, such as RNA stability. In contrast, biochemical and cell culture studies suggest that CRABPI functions mainly in the cytoplasm to modulate intracellular RA availability/concentration and to engage other signaling components such as ERK activity. However, these functional studies remain inconclusive because knocking out one or both genes in mice does not produce definitive phenotypes. Further studies are needed to unambiguously decipher the exact physiological activities of these two proteins.

  18. A model for genesis of transcription systems.

    PubMed

    Burton, Zachary F; Opron, Kristopher; Wei, Guowei; Geiger, James H

    2016-01-01

    Repeating sequences generated from RNA gene fusions/ligations dominate ancient life, indicating central importance of building structural complexity in evolving biological systems. A simple and coherent story of life on earth is told from tracking repeating motifs that generate α/β proteins, 2-double-Ψ-β-barrel (DPBB) type RNA polymerases (RNAPs), general transcription factors (GTFs), and promoters. A general rule that emerges is that biological complexity that arises through generation of repeats is often bounded by solubility and closure (i.e., to form a pseudo-dimer or a barrel). Because the first DNA genomes were replicated by DNA template-dependent RNA synthesis followed by RNA template-dependent DNA synthesis via reverse transcriptase, the first DNA replication origins were initially 2-DPBB type RNAP promoters. A simplifying model for evolution of promoters/replication origins via repetition of core promoter elements is proposed. The model can explain why Pribnow boxes in bacterial transcription (i.e., (-12)TATAATG(-6)) so closely resemble TATA boxes (i.e., (-31)TATAAAAG(-24)) in archaeal/eukaryotic transcription. The evolution of anchor DNA sequences in bacterial (i.e., (-35)TTGACA(-30)) and archaeal (BRE(up); BRE for TFB recognition element) promoters is potentially explained. The evolution of BRE(down) elements of archaeal promoters is potentially explained.

  19. Chromatin potentiates transcription

    PubMed Central

    Nagai, Shigeki; Davis, Ralph E.; Mattei, Pierre Jean; Eagen, Kyle Patrick; Kornberg, Roger D.

    2017-01-01

    Chromatin isolated from the chromosomal locus of the PHO5 gene of yeast in a transcriptionally repressed state was transcribed with 12 pure proteins (80 polypeptides): RNA polymerase II, six general transcription factors, TFIIS, the Pho4 gene activator protein, and the SAGA, SWI/SNF, and Mediator complexes. Contrary to expectation, a nucleosome occluding the TATA box and transcription start sites did not impede transcription but rather, enhanced it: the level of chromatin transcription was at least sevenfold greater than that of naked DNA, and chromatin gave patterns of transcription start sites closely similar to those occurring in vivo, whereas naked DNA gave many aberrant transcripts. Both histone acetylation and trimethylation of H3K4 (H3K4me3) were important for chromatin transcription. The nucleosome, long known to serve as a general gene repressor, thus also performs an important positive role in transcription. PMID:28137832

  20. Nucleotide sequences of bovine alpha S1- and kappa-casein cDNAs.

    PubMed Central

    Stewart, A F; Willis, I M; Mackinlay, A G

    1984-01-01

    The nucleotide sequences corresponding to bovine alpha S1- and kappa-casein mRNAs are presented. An unusual alpha S1-casein cDNA has been characterised whose 5' end commences upstream from its putative TATA box. The alpha S1-casein mRNA is compared to rat alpha-casein mRNA and two components of divergence are identified. Firstly, the two sequences have diverged at a high point mutation rate and the rate of amino acid replacement by this mechanism is at least as great as the rate of divergence of any other part of the mRNAs. Secondly, the protein coding sequence has been subjected to several insertion/deletion events, one of which may be an example of exon shuffling . The kappa-casein mRNA sequence verifies the proposition that it has arisen from a different ancestral gene to the other caseins. Images PMID:6328443

  1. Human immunodeficiency virus type 1 LTR TATA and TAR region sequences required for transcriptional regulation.

    PubMed Central

    Garcia, J A; Harrich, D; Soultanakis, E; Wu, F; Mitsuyasu, R; Gaynor, R B

    1989-01-01

    The human immunodeficiency virus (HIV) type 1 LTR is regulated at the transcriptional level by both cellular and viral proteins. Using HeLa cell extracts, multiple regions of the HIV LTR were found to serve as binding sites for cellular proteins. An untranslated region binding protein UBP-1 has been purified and fractions containing this protein bind to both the TAR and TATA regions. To investigate the role of cellular proteins binding to both the TATA and TAR regions and their potential interaction with other HIV DNA binding proteins, oligonucleotide-directed mutagenesis of both these regions was performed followed by DNase I footprinting and transient expression assays. In the TATA region, two direct repeats TC/AAGC/AT/AGCTGC surround the TATA sequence. Mutagenesis of both of these direct repeats or of the TATA sequence interrupted binding over the TATA region on the coding strand, but only a mutation of the TATA sequence affected in vivo assays for tat-activation. In addition to TAR serving as the site of binding of cellular proteins, RNA transcribed from TAR is capable of forming a stable stem-loop structure. To determine the relative importance of DNA binding proteins as compared to secondary structure, oligonucleotide-directed mutations in the TAR region were studied. Local mutations that disrupted either the stem or loop structure were defective in gene expression. However, compensatory mutations which restored base pairing in the stem resulted in complete tat-activation. This indicated a significant role for the stem-loop structure in HIV gene expression. To determine the role of TAR binding proteins, mutations were constructed which extensively changed the primary structure of the TAR region, yet left stem base pairing, stem energy and the loop sequence intact. These mutations resulted in decreased protein binding to TAR DNA and defects in tat-activation, and revealed factor binding specifically to the loop DNA sequence. Further mutagenesis which inverted this stem and loop mutation relative to the HIV LTR mRNA start site resulted in even larger decreases in tat-activation. This suggests that multiple determinants, including protein binding, the loop sequence, and RNA or DNA secondary structure, are important in tat-activation and suggests that tat may interact with cellular proteins binding to DNA to increase HIV gene expression. Images PMID:2721501

  2. Specific TATAA and bZIP requirements suggest that HTLV-I Tax has transcriptional activity subsequent to the assembly of an initiation complex

    PubMed Central

    Ching, Yick-Pang; Chun, Abel CS; Chin, King-Tung; Zhang, Zhi-Qing; Jeang, Kuan-Teh; Jin, Dong-Yan

    2004-01-01

    Background Human T-cell leukemia virus type I (HTLV-I) Tax protein is a transcriptional regulator of viral and cellular genes. In this study we have examined in detail the determinants for Tax-mediated transcriptional activation. Results Whereas previously the LTR enhancer elements were thought to be the sole Tax-targets, herein, we find that the core HTLV-I TATAA motif also provides specific responsiveness not seen with either the SV40 or the E1b TATAA boxes. When enhancer elements which can mediate Tax-responsiveness were compared, the authentic HTLV-I 21-bp repeats were found to be the most effective. Related bZIP factors such as CREB, ATF4, c-Jun and LZIP are often thought to recognize the 21-bp repeats equivalently. However, amongst bZIP factors, we found that CREB, by far, is preferred by Tax for activation. When LTR transcription was reconstituted by substituting either κB or serum response elements in place of the 21-bp repeats, Tax activated these surrogate motifs using surfaces which are different from that utilized for CREB interaction. Finally, we employed artificial recruitment of TATA-binding protein to the HTLV-I promoter in "bypass" experiments to show for the first time that Tax has transcriptional activity subsequent to the assembly of an initiation complex at the promoter. Conclusions Optimal activation of the HTLV-I LTR by Tax specifically requires the core HTLV-I TATAA promoter, CREB and the 21-bp repeats. In addition, we also provide the first evidence for transcriptional activity of Tax after the recruitment of TATA-binding protein to the promoter. PMID:15285791

  3. Characterization of a species-specific repetitive DNA from a highly endangered wild animal, Rhinoceros unicornis, and assessment of genetic polymorphism by microsatellite associated sequence amplification (MASA).

    PubMed

    Ali, S; Azfer, M A; Bashamboo, A; Mathur, P K; Malik, P K; Mathur, V B; Raha, A K; Ansari, S

    1999-03-04

    We have cloned and sequenced a 906bp EcoRI repeat DNA fraction from Rhinoceros unicornis genome. The contig pSS(R)2 is AT rich with 340 A (37.53%), 187 C (20.64%), 173 G (19.09%) and 206 T (22.74%). The sequence contains MALT box, NF-E1, Poly-A signal, lariat consensus sequences, TATA box, translational initiation sequences and several stop codons. Translation of the contig showed seven different types of protein motifs, among which, EGF-like domain cysteine pattern signatures and Bowman-Birk serine protease inhibitor family signatures were prominent. The presence of eukaryotic transcriptional elements, protein signatures and analysis of subset sequences in the 5' region from 1 to 165nt indicating coding potential (test code value=0.97) suggest possible regulatory and/or functional role(s) of these sequences in the rhino genome. Translation of the complementary strand from 906 to 706nt and 190 to 2nt showed proteins of more than 7kDa rich in non-polar residues. This suggests that pSS(R)2 is either a part of, or adjacent to, a functional gene. The contig contains mostly non-consecutive simple repeat units from 2 to 17nt with varying frequencies, of which four base motifs were found to be predominant. Zoo-blot hybridization revealed that pSS(R)2 sequences are unique to R. unicornis genome because they do not cross-hybridize, even with the genomic DNA of South African black rhino Diceros bicornis. Southern blot analysis of R. unicornis genomic DNA with pSS(R)2 and other synthetic oligo probes revealed a high level of genetic homogeneity, which was also substantiated by microsatellite associated sequence amplification (MASA). Owing to its uniqueness, the pSS(R)2 probe has a potential application in the area of conservation biology for unequivocal identification of horn or other body tissues of R. unicornis. The evolutionary aspect of this repeat fraction in the context of comparative genome analysis is discussed.

  4. Molecular and analysis of a phenylalanine ammonia-lyase gene (LrPAL2) from Lycoris radiata.

    PubMed

    Jiang, Yumei; Xia, Bing; Liang, Lijian; Li, Xiaodan; Xu, Sheng; Peng, Feng; Wang, Ren

    2013-03-01

    Phenylalanine ammonia-lyase (PAL), the first enzyme of phenylpropanoid biosynthesis, participates in the biosynthesis of flavonoids, lignins, stilbenes and many other compounds. In this study, we cloned a 2,326 bp full-length PAL2 gene from Lycoris radiata by using degenerate oligonucleotide primer PCR (DOP-PCR) and the rapid amplification of cDNA ends method. The cDNA contains a 2,124 bp coding region encoding 707 amino acids. The LrPAL2 shares about 77.0 % nucleic acid identity and 83 % amino acid identity with LrPAL1. Furthermore, genome sequence analysis demonstrated that LrPAL2 gene contains one intron and two exons. The 5' flanking sequence of LrPAL2 was also cloned by self-formed adaptor PCR (SEFA-PCR), and a group of putative cis-acting elements such as TATA box, CAAT box, G box, TC-rich repeats, CGTCA motif and TCA-element were identified. The LrPAL2 was detected in all tissues examined, with high abundance in bulbs at leaf sprouting stage and in petals at blooming stage. Besides, LrPAL2 drastically responded to MJ, SNP and UV, moderately responded to GA and SA, and a little increased under wounding. Comparison of LrPAL2 expression and LrPAL1 expression demonstrated that LrPAL2 can be more significantly induced than LrPAL1 under the above treatments, and LrPAL2 transcripts accumulated prominently at blooming stage, especially in petals, while LrPAL1 transcripts did not accumulated significantly at blooming stage. All these results suggested that LrPAL2 might play distinct roles in different branches of the phenylpropanoid pathway.

  5. Structural characterization and regulatory element analysis of the heart isoform of cytochrome c oxidase VIa

    NASA Technical Reports Server (NTRS)

    Wan, B.; Moreadith, R. W.; Blomqvist, C. G. (Principal Investigator)

    1995-01-01

    In order to investigate the mechanism(s) governing the striated muscle-specific expression of cytochrome c oxidase VIaH we have characterized the murine gene and analyzed its transcriptional regulatory elements in skeletal myogenic cell lines. The gene is single copy, spans 689 base pairs (bp), and is comprised of three exons. The 5'-ends of transcripts from the gene are heterogeneous, but the most abundant transcript includes a 5'-untranslated region of 30 nucleotides. When fused to the luciferase reporter gene, the 3.5-kilobase 5'-flanking region of the gene directed the expression of the heterologous protein selectively in differentiated Sol8 cells and transgenic mice, recapitulating the pattern of expression of the endogenous gene. Deletion analysis identified a 300-bp fragment sufficient to direct the myotube-specific expression of luciferase in Sol8 cells. The region lacks an apparent TATA element, and sequence motifs predicted to bind NRF-1, NRF-2, ox-box, or PPAR factors known to regulate other nuclear genes encoding mitochondrial proteins are not evident. Mutational analysis, however, identified two cis-elements necessary for the high level expression of the reporter protein: a MEF2 consensus element at -90 to -81 bp and an E-box element at -147 to -142 bp. Additional E-box motifs at closely located positions were mutated without loss of transcriptional activity. The dependence of transcriptional activation of cytochrome c oxidase VIaH on cis-elements similar to those found in contractile protein genes suggests that the striated muscle-specific expression is coregulated by mechanisms that control the lineage-specific expression of several contractile and cytosolic proteins.

  6. Characterization of the human gene (TBXAS1) encoding thromboxane synthase.

    PubMed

    Miyata, A; Yokoyama, C; Ihara, H; Bandoh, S; Takeda, O; Takahashi, E; Tanabe, T

    1994-09-01

    The gene encoding human thromboxane synthase (TBXAS1) was isolated from a human EMBL3 genomic library using human platelet thromboxane synthase cDNA as a probe. Nucleotide sequencing revealed that the human thromboxane synthase gene spans more than 75 kb and consists of 13 exons and 12 introns, of which the splice donor and acceptor sites conform to the GT/AG rule. The exon-intron boundaries of the thromboxane synthase gene were similar to those of the human cytochrome P450 nifedipine oxidase gene (CYP3A4) except for introns 9 and 10, although the primary sequences of these enzymes exhibited 35.8% identity each other. The 1.2-kb of the 5'-flanking region sequence contained potential binding sites for several transcription factors (AP-1, AP-2, GATA-1, CCAAT box, xenobiotic-response element, PEA-3, LF-A1, myb, basic transcription element and cAMP-response element). Primer-extension analysis indicated the multiple transcription-start sites, and the major start site was identified as an adenine residue located 142 bases upstream of the translation-initiation site. However, neither a typical TATA box nor a typical CAAT box is found within the 100-b upstream of the translation-initiation site. Southern-blot analysis revealed the presence of one copy of the thromboxane synthase gene per haploid genome. Furthermore, a fluorescence in situ hybridization study revealed that the human gene for thromboxane synthase is localized to band q33-q34 of the long arm of chromosome 7. A tissue-distribution study demonstrated that thromboxane synthase mRNA is widely expressed in human tissues and is particularly abundant in peripheral blood leukocyte, spleen, lung and liver. The low but significant levels of mRNA were observed in kidney, placenta and thymus.

  7. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway

    PubMed Central

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4, were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses (Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass. PMID:28559903

  8. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway.

    PubMed

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4 , were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses ( Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass.

  9. Isolation, characterization, and structure analysis of a vacuolar processing enzyme gene (MhVPEγ) from Malus hupehensis (Pamp) Rehd.

    PubMed

    Ran, Kun; Yang, Hongqiang; Sun, Xiaoli; Li, Qiang; Jiang, Qianqian; Zhang, Weiwei; Shen, Wei

    2014-05-01

    Vacuolar processing enzymes (VPEs) have received considerable attention recently, as they exhibit caspase-1-like cleavage activity and regulate the process of PCD. However, knowledge about their detailed characteristics and structures is relatively limited. In this study, a gamma vacuolar processing enzyme gene, MhVPEγ, has been isolated from the leaves of Malus hupehensis (Ramp) Rehd. var pinyiensis Jiang. MhVPEγ coded-translated protein sequence comprised of 494 amino acids with a signal peptide and a transmembrane helix structure at N-terminal, peptidase_C13 domain, and vacuolar sorting signal at C-terminal. Consequently, genomic walking approach was performed for the isolation of its upstream sequence. Computational analysis demonstrated several motifs of the promoter exhibiting hypothetic MeJA, ABA, and light-induced characteristics, as well as some typical domains universally discovered in promoter, such as TATA-box and CAAT-box. MhVPEγ transcript level was enhanced during wounding treatment, and WUN-motif, as one of the cis-acting regulatory elements existing in the upstream sequence perhaps regulates its expression. In silico-constructed 3D models revealed that MhCPYL successively interacts with MhVPEγ like that of "Induced Fit-Lock and Key" model, providing molecular conformation evidence that CPY is a direct substrate of VPEγ. This study is the first stride to understand the molecular mechanism of VPEγ and CPYL interactions.

  10. Gene structure and functional characterization of growth hormone in dogfish, Squalus acanthias.

    PubMed

    Moriyama, Shunsuke; Oda, Mayumi; Yamazaki, Tomohide; Yamaguchi, Kiyoko; Amiya, Noriko; Takahashi, Akiyoshi; Amano, Masafumi; Goto, Tomoaki; Nozaki, Masumi; Meguro, Hiroshi; Kawauchi, Hiroshi

    2008-06-01

    Dogfish (Squalus acanthias) growth hormone (GH) was identified by cDNA cloning and protein purification from the pituitary gland. Dogfish GH cDNA encoded a prehormone of 210 amino acids (aa). Sequence analysis of purified GH revealed that the prehormone is composed of a signal peptide of 27 aa and a mature protein of 183 aa. Dogfish GH showed 94% sequence identity with blue shark GH, and also showed 37-66%, 26%, and 48-67% sequence identity with GH from osteichtyes, an agnathan, and tetrapods. The site of production was identified through immunocytochemistry to be cells of the proximal pars distalis of the pituitary gland. Dogfish GH stimulates both insulin-like growth factor-I and II mRNA levels in dogfish liver in vitro. The dogfish GH gene consisted of five exons and four introns, the same as in lamprey, teleosts such as cypriniforms and siluriforms, and tetrapods. The 5'-flanking region within 1082 bp of the transcription start site contained consensus sequences for the TATA box, Pit-1/GHF-1, CRE, TRE, and ERE. These results show that the endocrine mechanism for growth stimulation by the GH-IGF axis was established at an early stage of vertebrate evolution, and that the 5-exon-type gene organization might reflect the structure of the ancestral gene for the GH gene family.

  11. TFIIB-facilitated recruitment of preinitiation complexes by a TAF-independent mechanism.

    PubMed

    Hori, Roderick T; Xu, Shuping; Hu, Xianyuan; Pyo, Sung

    2004-01-01

    Gene activators contain activation domains that are thought to recruit limiting components of the transcription machinery to a core promoter. VP16, a viral gene activator, has served as a model for studying the mechanistic aspects of transcriptional activation from yeast to human. The VP16 activation domain can be divided into two modules--an N-terminal subdomain (VPN) and a C-terminal subdomain (VPC). This study demonstrates that VPC stimulates core promoters that are either independent or dependent on TAFs (TATA-box Binding Protein-Associated Factors). In contrast, VPN only activates the TAF-independent core promoter and this activity increases in a synergistic fashion when VPN is dimerized (VPN2). Compared to one copy of VPN (VPN1), VPN2 also displays a highly cooperative increase in binding hTFIIB. The increased TFIIB binding correlates with VPN2's increased ability to recruit a complex containing TFIID, TFIIA and TFIIB. However, VPN1 and VPN2 do not increase the assembly of a complex containing only TFIID and TFIIA. The VPN subdomain also facilitates assembly of a complex containing TBP:TFIIA:TFIIB, which lacks TAFs, and provides a mechanism that could function at TAF-independent promoters. Taken together, these results suggest the interaction between VPN and TFIIB potentially initiate a network of contacts allowing the activator to indirectly tether TFIID or TBP to DNA.

  12. TFIIB-facilitated recruitment of preinitiation complexes by a TAF-independent mechanism

    PubMed Central

    Hori, Roderick T.; Xu, Shuping; Hu, Xianyuan; Pyo, Sung

    2004-01-01

    Gene activators contain activation domains that are thought to recruit limiting components of the transcription machinery to a core promoter. VP16, a viral gene activator, has served as a model for studying the mechanistic aspects of transcriptional activation from yeast to human. The VP16 activation domain can be divided into two modules—an N-terminal subdomain (VPN) and a C-terminal subdomain (VPC). This study demonstrates that VPC stimulates core promoters that are either independent or dependent on TAFs (TATA-box Binding Protein-Associated Factors). In contrast, VPN only activates the TAF-independent core promoter and this activity increases in a synergistic fashion when VPN is dimerized (VPN2). Compared to one copy of VPN (VPN1), VPN2 also displays a highly cooperative increase in binding hTFIIB. The increased TFIIB binding correlates with VPN2's increased ability to recruit a complex containing TFIID, TFIIA and TFIIB. However, VPN1 and VPN2 do not increase the assembly of a complex containing only TFIID and TFIIA. The VPN subdomain also facilitates assembly of a complex containing TBP:TFIIA:TFIIB, which lacks TAFs, and provides a mechanism that could function at TAF-independent promoters. Taken together, these results suggest the interaction between VPN and TFIIB potentially initiate a network of contacts allowing the activator to indirectly tether TFIID or TBP to DNA. PMID:15272087

  13. Books and DVDs Offer Excellent Resources for Childbirth Education Classes

    PubMed Central

    Shilling, Teri

    2006-01-01

    In this column, reviewers offer perspectives and comments on the second edition of The Labor Progress Handbook, a book by Penny Simkin and Ruth Ancheta; What Babies Want, a documentary directed by Debby Takikawa; A Pleasing Birth, a book by Raymond De Vries; and Baby Tata, a DVD production by Baby Tata LLC.

  14. PPARγ and NF-κB regulate the gene promoter activity of their shared repressor, TNIP1

    PubMed Central

    Gurevich, Igor; Zhang, Carmen; Encarnacao, Priscilla C.; Struzynski, Charles P.; Livings, Sarah E.; Aneskievich, Brian J.

    2011-01-01

    Human TNFAIP3 interacting protein 1 (TNIP1) has diverse functions including support of HIV replication through its interaction with viral Nef and matrix proteins, reduction of TNFα-induced signaling through its interaction with NF-κB pathway proteins, and corepression of agonist-bound retinoic acid receptors and peroxisome proliferator-activated receptors (PPAR). The wide tissue distribution of TNIP1 provides the opportunity to influence numerous cellular responses in these roles and defining control of TNIP1 expression would be central to improved understanding of its impact on cell function. We cloned 6kb of the human TNIP1 promoter and performed predictive and functional analyses to identify regulatory elements. The promoter region proximal to the transcription start site is GC-rich without a recognizable TATA box. In contrast to this proximal ~500bp region, 6kb of the promoter increased reporter construct constitutive activity over five-fold. Throughout the 6kb length, in silico analysis identified several potential binding sites for both constitutive and inducible transcription factors; among the latter were candidate NF-κB binding sequences and peroxisome proliferator response elements (PPREs). We tested NF-κB and PPAR regulation of the endogenous TNIP1 gene and cloned promoter by expression studies, electrophoretic mobility shift assays, and chromatin immunoprecipitations. We validated NF-κB sites in the TNIP1 promoter proximal and distal regions as well as one PPRE in the distal region. The ultimate control of the TNIP1 promoter is likely to be a combination of constitutive transcription factors and those subject to activation such as NF-κB and PPAR. PMID:22001530

  15. Structure-Function Analysis of the Drosophila melanogaster Caudal Transcription Factor Provides Insights into Core Promoter-preferential Activation.

    PubMed

    Shir-Shapira, Hila; Sharabany, Julia; Filderman, Matan; Ideses, Diana; Ovadia-Shochat, Avital; Mannervik, Mattias; Juven-Gershon, Tamar

    2015-07-10

    Regulation of RNA polymerase II transcription is critical for the proper development, differentiation, and growth of an organism. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters encompass the RNA start site and consist of functional elements such as the TATA box, initiator, and downstream core promoter element (DPE), which confer specific properties to the core promoter. We have previously discovered that Drosophila Caudal, which is a master regulator of genes involved in development and differentiation, is a DPE-specific transcriptional activator. Here, we show that the mouse Caudal-related homeobox (Cdx) proteins (mCdx1, mCdx2, and mCdx4) are also preferential core promoter transcriptional activators. To elucidate the mechanism that enables Caudal to preferentially activate DPE transcription, we performed structure-function analysis. Using a systematic series of deletion mutants (all containing the intact DNA-binding homeodomain) we discovered that the C-terminal region of Caudal contributes to the preferential activation of the fushi tarazu (ftz) Caudal target gene. Furthermore, the region containing both the homeodomain and the C terminus of Caudal was sufficient to confer core promoter-preferential activation to the heterologous GAL4 DNA-binding domain. Importantly, we discovered that Drosophila CREB-binding protein (dCBP) is a co-activator for Caudal-regulated activation of ftz. Strikingly, dCBP conferred the ability to preferentially activate the DPE-dependent ftz reporter to mini-Caudal proteins that were unable to preferentially activate ftz transcription themselves. Taken together, it is the unique combination of dCBP and Caudal that enables the co-activation of ftz in a core promoter-preferential manner. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Increased global transcription activity as a mechanism of replication stress in cancer

    PubMed Central

    Kotsantis, Panagiotis; Silva, Lara Marques; Irmscher, Sarah; Jones, Rebecca M.; Folkes, Lisa; Gromak, Natalia; Petermann, Eva

    2016-01-01

    Cancer is a disease associated with genomic instability that often results from oncogene activation. This in turn leads to hyperproliferation and replication stress. However, the molecular mechanisms that underlie oncogene-induced replication stress are still poorly understood. Oncogenes such as HRASV12 promote proliferation by upregulating general transcription factors to stimulate RNA synthesis. Here we investigate whether this increase in transcription underlies oncogene-induced replication stress. We show that in cells overexpressing HRASV12, elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which together with R-loop accumulation results in replication fork slowing and DNA damage. Furthermore, overexpression of TBP alone causes the hallmarks of oncogene-induced replication stress, including replication fork slowing, DNA damage and senescence. Consequently, we reveal that increased transcription can be a mechanism of oncogene-induced DNA damage, providing a molecular link between upregulation of the transcription machinery and genomic instability in cancer. PMID:27725641

  17. Increased global transcription activity as a mechanism of replication stress in cancer.

    PubMed

    Kotsantis, Panagiotis; Silva, Lara Marques; Irmscher, Sarah; Jones, Rebecca M; Folkes, Lisa; Gromak, Natalia; Petermann, Eva

    2016-10-11

    Cancer is a disease associated with genomic instability that often results from oncogene activation. This in turn leads to hyperproliferation and replication stress. However, the molecular mechanisms that underlie oncogene-induced replication stress are still poorly understood. Oncogenes such as HRAS V12 promote proliferation by upregulating general transcription factors to stimulate RNA synthesis. Here we investigate whether this increase in transcription underlies oncogene-induced replication stress. We show that in cells overexpressing HRAS V12 , elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which together with R-loop accumulation results in replication fork slowing and DNA damage. Furthermore, overexpression of TBP alone causes the hallmarks of oncogene-induced replication stress, including replication fork slowing, DNA damage and senescence. Consequently, we reveal that increased transcription can be a mechanism of oncogene-induced DNA damage, providing a molecular link between upregulation of the transcription machinery and genomic instability in cancer.

  18. Rat prostatic steroid binding protein: DNA sequence and transcript maps of the two C3 genes.

    PubMed Central

    Hurst, H C; Parker, M G

    1983-01-01

    In the rat there are two non-allelic genes C3(1) and C3(2) for the C3 polypeptide of prostatic steroid binding protein. We have cloned and sequenced both genes and show that only C3(1) is responsible for the production of authentic C3. Although there is a marked difference in their transcriptional activity, the two genes share extensive DNA sequence homology there being only one base difference from nucleotide - 235 to within the first intron. Transcript mapping has shown that there are two distinct C3 transcripts which share a unique 3' terminus but have 5' termini 38 bases apart each preceded by a 'TATA' box homology. Interestingly, an identical repetitive element is present just upstream of both genes. Both families of transcripts, which are produced in a ratio of 18:1, are coordinately regulated by testosterone. Images Fig. 3. Fig. 4. Fig. 5. PMID:6685625

  19. Transcription initiation complex structures elucidate DNA opening.

    PubMed

    Plaschka, C; Hantsche, M; Dienemann, C; Burzinski, C; Plitzko, J; Cramer, P

    2016-05-19

    Transcription of eukaryotic protein-coding genes begins with assembly of the RNA polymerase (Pol) II initiation complex and promoter DNA opening. Here we report cryo-electron microscopy (cryo-EM) structures of yeast initiation complexes containing closed and open DNA at resolutions of 8.8 Å and 3.6 Å, respectively. DNA is positioned and retained over the Pol II cleft by a network of interactions between the TATA-box-binding protein TBP and transcription factors TFIIA, TFIIB, TFIIE, and TFIIF. DNA opening occurs around the tip of the Pol II clamp and the TFIIE 'extended winged helix' domain, and can occur in the absence of TFIIH. Loading of the DNA template strand into the active centre may be facilitated by movements of obstructing protein elements triggered by allosteric binding of the TFIIE 'E-ribbon' domain. The results suggest a unified model for transcription initiation with a key event, the trapping of open promoter DNA by extended protein-protein and protein-DNA contacts.

  20. A novel herbicide-inducible male sterility system.

    PubMed

    Zhang, Jinhui; Zhang, Wenlu; Yen, Yang; Long, Hai; Deng, Guangbing; Pan, Zhifen; Yu, Maoqun

    2010-11-01

    Heterosis is a phenomenon that first-generation offspring perform better than their parents. Conventional breeding methods have their shortcomings. It would be optimal to construct inducible male sterile plants. We developed a novel system for creating male sterile transgenic plants by downregulating the specific expression of the glyphosate tolerance CP4 EPSPS gene in male reproductive tissues. Transcriptional repression was achieved by manipulating DNA binding proteins with their specific corresponding sites. We transferred the CP4 EPSPS gene driven by a modified CaMV 35S promoter with three tetracycline operator copies in the vicinity of the TATA box and tetracycline repressor gene under the control of an anther-specific promoter Osg6B to Arabidopsis thaliana. As a result, we successfully obtained controllable transgenic plants: the whole plant could tolerate exposure of glyphosate but the male tissue was sensitive. The novel inducible male sterility system is applied and easy to handle, so it might be applicable to a wide range of crop plants. 2010 Society of Chemical Industry

  1. Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice

    PubMed Central

    Huang, Shanshan; Yang, Su; Guo, Jifeng; Yan, Sen; Gaertig, Marta A.; Li, Shihua; Li, Xiao-Jiang

    2015-01-01

    SUMMARY In polyglutamine (polyQ) diseases, large polyQ repeats cause juvenile cases with different symptoms than adult-onset patients, who carry smaller expanded polyQ repeats. The mechanisms behind the differential pathology mediated by different polyQ repeat lengths remain unknown. By studying knock-in mouse models of spinal cerebellar ataxia-17 (SCA17), we found that a large polyQ (105 glutamines) in the TATA box-binding protein (TBP) preferentially causes muscle degeneration and reduces the expression of muscle-specific genes. Direct expression of TBP with different polyQ repeats in mouse muscle revealed that muscle degeneration is mediated only by the large polyQ repeats. Different polyQ repeats differentially alter TBP’s interaction with neuronal and muscle-specific transcription factors. As a result, the large polyQ repeat decreases the association of MyoD with TBP and DNA promoters. Our findings suggest that specific alterations in protein interactions by large polyQ repeats may account for the unique pathology in juvenile polyQ diseases. PMID:26387956

  2. Identification of appropriate reference genes for human mesenchymal stem cell analysis by quantitative real-time PCR.

    PubMed

    Li, Xiuying; Yang, Qiwei; Bai, Jinping; Xuan, Yali; Wang, Yimin

    2015-01-01

    Normalization to a reference gene is the method of choice for quantitative reverse transcription-PCR (RT-qPCR) analysis. The stability of reference genes is critical for accurate experimental results and conclusions. We have evaluated the expression stability of eight commonly used reference genes found in four different human mesenchymal stem cells (MSC). Using geNorm, NormFinder and BestKeeper algorithms, we show that beta-2-microglobulin and peptidyl-prolylisomerase A were the optimal reference genes for normalizing RT-qPCR data obtained from MSC, whereas the TATA box binding protein was not suitable due to its extensive variability in expression. Our findings emphasize the significance of validating reference genes for qPCR analyses. We offer a short list of reference genes to use for normalization and recommend some commercially-available software programs as a rapid approach to validate reference genes. We also demonstrate that the two reference genes, β-actin and glyceraldehyde-3-phosphate dehydrogenase, are frequently used are not always successful in many cases.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, J.; Liu, C.; Koopman, W.J.

    Ligation of the Fas cell-surface molecule induces apoptosis. Defective Fas-mediated apoptosis has been associated with spontaneous autoimmunity in mice. Using human Fas/Apo-1 cDNA as a probe, the authors have molecularly cloned and characterized the human Fas chromosomal gene. The gene consists of nine exons and spans more than 26 kilobases of DNA. The lengths of introns vary from > 14 kilobases at the 5` end of the gene to 152 base pairs upstream of the exon encoding the transmembrane domain. The domain structure of the human Fas is encoded by an exon or a set of exons. Primer extension analysismore » revealed three major transcription initiation sites. The promoter region lacked canonical {open_quotes}TATA{close_quotes} and {open_quotes}CAAT{close_quotes} boxes but was a {open_quotes}GC-rich{close_quotes} sequence, and contained consensus sequences for AP-1, GF-1, NY-Y, CP-2, EBP20, and c-myb. These data provide the first characterization of the human Fas gene and insight into its regulatory region. 54 refs., 3 figs., 1 tab.« less

  4. Promoter analysis of the membrane protein gp64 gene of the cellular slime mold Polysphondylium pallidum.

    PubMed

    Takaoka, N; Fukuzawa, M; Saito, T; Sakaitani, T; Ochiai, H

    1999-10-28

    We cloned a genomic fragment of the membrane protein gp64 gene of the cellular slime mold Polysphondylium pallidum by inverse PCR. Primer extension analysis identified a major transcription start site 65 bp upstream of the translation start codon. The promoter region of the gp64 gene contains sequences homologous to a TATA box at position -47 to -37 and to an initiator (Inr, PyPyCAPyPyPyPy) at position -3 to +5 from the transcription start site. Successively truncated segments of the promoter were tested for their ability to drive expression of the beta-galactosidase reporter gene in transformed cells; also the difference in activity between growth conditions was compared. The results indicated that there are two positive vegetative regulatory elements extending between -187 and -62 bp from the transcription start site of the gp64 promoter; also their activity was two to three times higher in the cells grown with bacteria in shaken suspension than in the cells grown in an axenic medium.

  5. Activation of silenced cytokine gene promoters by the synergistic effect of TBP-TALE and VP64-TALE activators.

    PubMed

    Anthony, Kim; More, Abhijit; Zhang, Xiaoliu

    2014-01-01

    Recent work has shown that the combinatorial use of multiple TALE activators can selectively activate certain cellular genes in inaccessible chromatin regions. In this study, we aimed to interrogate the activation potential of TALEs upon transcriptionally silenced immune genes in the context of non-immune cells. We designed a unique strategy, in which a single TALE fused to the TATA-box binding protein (TBP-TALE) is coupled with multiple VP64-TALE activators. We found that our strategy is significantly more potent than multiple TALE activators alone in activating expression of IL-2 and GM-CSF in diverse cell origins in which both genes are otherwise completely silenced. Chromatin analysis revealed that the gene activation was due in part to displacement of a distinctly positioned nucleosome. These studies provide a novel epigenetic mechanism for artificial gene induction and have important implications for targeted cancer immunotherapy, DNA vaccine development, as well as rational design of TALE activators.

  6. Activation of Silenced Cytokine Gene Promoters by the Synergistic Effect of TBP-TALE and VP64-TALE Activators

    PubMed Central

    Anthony, Kim; More, Abhijit; Zhang, Xiaoliu

    2014-01-01

    Recent work has shown that the combinatorial use of multiple TALE activators can selectively activate certain cellular genes in inaccessible chromatin regions. In this study, we aimed to interrogate the activation potential of TALEs upon transcriptionally silenced immune genes in the context of non-immune cells. We designed a unique strategy, in which a single TALE fused to the TATA-box binding protein (TBP-TALE) is coupled with multiple VP64-TALE activators. We found that our strategy is significantly more potent than multiple TALE activators alone in activating expression of IL-2 and GM-CSF in diverse cell origins in which both genes are otherwise completely silenced. Chromatin analysis revealed that the gene activation was due in part to displacement of a distinctly positioned nucleosome. These studies provide a novel epigenetic mechanism for artificial gene induction and have important implications for targeted cancer immunotherapy, DNA vaccine development, as well as rational design of TALE activators. PMID:24755922

  7. Non-canonical TAF complexes regulate active promoters in human embryonic stem cells.

    PubMed

    Maston, Glenn A; Zhu, Lihua Julie; Chamberlain, Lynn; Lin, Ling; Fang, Minggang; Green, Michael R

    2012-11-13

    The general transcription factor TFIID comprises the TATA-box-binding protein (TBP) and approximately 14 TBP-associated factors (TAFs). Here we find, unexpectedly, that undifferentiated human embryonic stem cells (hESCs) contain only six TAFs (TAFs 2, 3, 5, 6, 7 and 11), whereas following differentiation all TAFs are expressed. Directed and global chromatin immunoprecipitation analyses reveal an unprecedented promoter occupancy pattern: most active genes are bound by only TAFs 3 and 5 along with TBP, whereas the remaining active genes are bound by TBP and all six hESC TAFs. Consistent with these results, hESCs contain a previously undescribed complex comprising TAFs 2, 6, 7, 11 and TBP. Altering the composition of hESC TAFs, either by depleting TAFs that are present or ectopically expressing TAFs that are absent, results in misregulated expression of pluripotency genes and induction of differentiation. Thus, the selective expression and use of TAFs underlies the ability of hESCs to self-renew.DOI:http://dx.doi.org/10.7554/eLife.00068.001.

  8. 76 FR 76375 - Fresh Garlic From the People's Republic of China: Preliminary Results of the 2009-2010...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... Department is using Tata Tea Ltd.'s (Tata Tea) unconsolidated 2010/2011 financial statements as the basis for... considered tea processing to be sufficiently similar to garlic processing in that neither product is highly processed or preserved prior to sale.\\35\\ Accordingly, the Department finds that non- integrated tea...

  9. Indian Institute of Technology Bombay and Tata Memorial Centre Join the International Efforts in Clinical Proteogenomics Cancer Research | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute’s (NCI) Office of Cancer Clinical Proteomics Research, part of the National Institutes of Health, along with the Indian Institute of Technology Bombay (IITB) and Tata Memorial Centre (TMC) have signed a Memorandum of Understanding (MOU) on clinical proteogenomics cancer research. The MOU between NCI, IITB, and Tata Memorial Centre represents the thirtieth and thirty-first institutions and the twelfth country to join the International Cancer Proteogenome Consortium (ICPC). The purpose of the MOU is to facilitate scientific and programmatic collaborations between NCI, IITB, and TMC in basic and clinical proteogenomic studies leading to patient care and public dissemination and information sharing to the research community.

  10. Computational Predictions Provide Insights into the Biology of TAL Effector Target Sites

    PubMed Central

    Grau, Jan; Wolf, Annett; Reschke, Maik; Bonas, Ulla; Posch, Stefan; Boch, Jens

    2013-01-01

    Transcription activator-like (TAL) effectors are injected into host plant cells by Xanthomonas bacteria to function as transcriptional activators for the benefit of the pathogen. The DNA binding domain of TAL effectors is composed of conserved amino acid repeat structures containing repeat-variable diresidues (RVDs) that determine DNA binding specificity. In this paper, we present TALgetter, a new approach for predicting TAL effector target sites based on a statistical model. In contrast to previous approaches, the parameters of TALgetter are estimated from training data computationally. We demonstrate that TALgetter successfully predicts known TAL effector target sites and often yields a greater number of predictions that are consistent with up-regulation in gene expression microarrays than an existing approach, Target Finder of the TALE-NT suite. We study the binding specificities estimated by TALgetter and approve that different RVDs are differently important for transcriptional activation. In subsequent studies, the predictions of TALgetter indicate a previously unreported positional preference of TAL effector target sites relative to the transcription start site. In addition, several TAL effectors are predicted to bind to the TATA-box, which might constitute one general mode of transcriptional activation by TAL effectors. Scrutinizing the predicted target sites of TALgetter, we propose several novel TAL effector virulence targets in rice and sweet orange. TAL-mediated induction of the candidates is supported by gene expression microarrays. Validity of these targets is also supported by functional analogy to known TAL effector targets, by an over-representation of TAL effector targets with similar function, or by a biological function related to pathogen infection. Hence, these predicted TAL effector virulence targets are promising candidates for studying the virulence function of TAL effectors. TALgetter is implemented as part of the open-source Java library Jstacs, and is freely available as a web-application and a command line program. PMID:23526890

  11. Herpes Simplex Virus 2 Latency-Associated Transcript (LAT) region mutations do not identify a role for LAT-Associated Micro RNAs in viral reactivation in the Guinea Pig Genital Model.

    PubMed

    Kawamura, Yoshiki; Bosch-Marce, Marta; Tang, Shuang; Patel, Amita; Krause, Philip R

    2018-05-02

    Despite the long-standing observation that herpes simplex virus (HSV) Latency-Associated Transcript (LAT) promoter-deletion viruses show impaired recurrence phenotypes in relevant animal models, the mechanism by which these sequences exert this phenotypic effect is unknown. We constructed and evaluated four mutant HSV-2 viruses with targeted mutations in the LAT promoter and LAT-associated miRNAs affecting (1) the LAT TATA box, (2) the LAT ICP4-binding site, (3) miR-I and miR-II (miR-I/II), which both target ICP34.5, and (4) miR-III, which targets ICP0. While the LAT-TATA box mutant caused milder acute infections than wild-type (WT), there was no difference in recurrence phenotype between these viruses. LAT and miRNA expression during latency were not impaired by this mutation, suggesting that other promoter elements may be more important for latent HSV-2 LAT expression. Mutation of the LAT ICP4-binding site also did not cause an in vivo phenotypic difference between mutant and WT viruses. Acute infection and reactivation from latency of the miR-I/II mutant was similar to that of its rescuant, although slightly reduced in severity relative to the wild-type virus. The miR-III mutant also exhibited WT phenotypes in acute and recurrent phases of infection. While not ruling out an effect of these elements in human latency or reactivation, these findings do not identify a specific role for LAT or LAT-associated miRNAs in the HSV-2 LAT promoter deletion phenotype in guinea pigs. Thus, other sequences in this region may play a more important role in the long-studied LAT-associated phenotype in animals. IMPORTANCE While it has been known for several decades that specific HSV-1 and HSV-2 sequences near the LAT promoter are required for efficient viral reactivation in animal models, the mechanism is still not known. We constructed four mutant viruses with the goal of identifying critical sequence elements and of specifically testing the hypothesis that microRNAs that are expressed during latency play a role. Determination that specific LAT promoter sequences and miRNA sequences do not influence viral reactivation of HSV-2 helps to narrow down the search for the mechanism by which the virus controls its latency and recurrence phenotype. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  12. Promoter characteristics of two cyp19 genes differentially expressed in the brain and ovary of teleost fish.

    PubMed

    Tchoudakova, A; Kishida, M; Wood, E; Callard, G V

    2001-11-01

    Teleost fish are characterized by exceptionally high levels of neural estrogen biosynthesis when compared with the brains of other vertebrates or to the ovaries of the same fish. Two P450arom mRNAs which derive from separate gene loci (cyp19a and cyp19b) are differentially expressed in brain (b>a) and ovary (a>b) and have a different developmental program (b>a) and estrogen upregulation (b only). A polymerase chain reaction (PCR)-based genomic walking strategy was used to isolate the 5'-flanking regions of the goldfish (Carassius auratus) cyp19 genes. Sequence analysis of the cyp19b gene approximately 1.8 kb upstream of the transcription start site revealed a TATA box at nucleotide (nt) -30, two estrogen responsive elements (EREs; nt -351 and -211) and a consensus binding site (NBRE) for nerve growth factor inducible-B protein (NGFI-B/Nur77) at -286, which includes another ERE half-site. Also present were a sequence at nt -399 (CCCTCCT) required for neural specificity of the zebrafish GATA-2 gene, and 16 copies of an SRY/SOX binding motif. The 5'-flanking region ( approximately 1.0 kb) of the cyp19a gene had TATA (nt -48) and CAAT (nt -71) boxes, a steroidogenic factor-1 (SF-1) binding site (nt -265), eight copies of the SRY/SOX motif, and two copies of a recognition site for binding the arylhydrocarbon receptor (AhR)/AhR nuclear translocator factor (ARNT) heterodimer. Both genes had elements previously identified in the brain specific exon I promoter of the mouse aromatase gene. Cyp19a- and -b/luciferase constructs showed basal promoter activity in aromatase-expressing rodent pituitary (GH3) cells, but differences (a>b) did not reflect expression in fish pituitary in vivo (b>a), implying a lack of appropriate cell factors. Consistent with the onset of cyp19b expression in zebrafish embryos, microinjection of a green fluorescent protein (GFP) reporter plasmid into fertilized eggs revealed labeling in neural tissues at 30-48 h post-fertilization (hpf), most prominently in retinal ganglion cells (RGC) and axon-like projections to the optic tectum. Expression of a cyp19a/GFP reporter was not detectable up to 72 hpf. Tandem analysis of cyp19a and cyp19b promoters in living zebrafish embryos can be a useful approach for identifying cis-elements and cellular factors involved in the correct tissue-specific, spatial, temporal and estrogen regulated expression of aromatase genes during CNS and gonadal development.

  13. Structure and expression of the human XPBC/ERCC-3 gene involved in DNA repair disorders xeroderma pigmentosum and Cockayne's syndrome.

    PubMed Central

    Weeda, G; Ma, L B; van Ham, R C; van der Eb, A J; Hoeijmakers, J H

    1991-01-01

    The human XPBC/ERCC-3 was cloned by virtue of its ability to correct the excision repair defect of UV-sensitive rodent mutants of complementation group 3. The gene appeared to be in addition implicated in the human, cancer prone repair disorder xeroderma pigmentosum group B, which is also associated with Cockayne's syndrome. Here we present the genomic architecture of the gene and its expression. The XPBC/ERCC-3 gene consists of at least 14 exons spread over approximately 45 kb. Notably, the donor splice site of the third exon contains a GC instead of the canonical GT dinucleotide. The promoter region, first exon and intron comprise a CpG island with several putative GC boxes. The promoter was confined to a region of 260 bp upstream of the presumed cap site and acts bidirectionally. Like the promoter of another excision repair gene, ERCC-1, it lacks classical promoter elements such as CAAT and TATA boxes, but it shares with ERCC-1 a hitherto unknown 12 nucleotide sequence element, preceding a polypyrimidine track. Despite the presence of (AU)-rich elements in the 3'-untranslated region, which are thought to be associated with short mRNA half-life actinomycin-D experiments indicate that the mRNA is very stable (t 1/2 greater than 3h). Southern blot analysis revealed the presence of XPBC/ERCC-3 cross-hybridizing fragments elsewhere in the genome, which may belong to a related gene. Images PMID:1956789

  14. Cloning the uteroglobin gene promoter from the relic volcano rabbit (Romerolagus diazi) reveals an ancient estrogen-response element.

    PubMed

    Acosta-MontesdeOca, Adriana; Zariñán, Teresa; Macías, Héctor; Pérez-Solís, Marco A; Ulloa-Aguirre, Alfredo; Gutiérrez-Sagal, Rubén

    2012-05-01

    To gain further insight on the estrogen-dependent transcriptional regulation of the uteroglobin (UG) gene, we cloned the 5'-flanking region of the UG gene from the phylogenetically ancient volcano rabbit (Romerolagus diazi; Rd). The cloned region spans 812 base pairs (bp; -812/-1) and contains a noncanonical TATA box (TACA). The translation start site is 48 bp downstream from the putative transcription initiation site (AGA), and is preceded by a consensus Kozak box. Comparison of the Rd-UG gene with that previously isolated from rabbits (Oryctolagus cuniculus) showed 93% in sequence identity as well as a number of conserved cis-acting elements, including the estrogen-response element (ERE; -265/-251), which differs from the consensus by two nucleotides. In MCF-7 cells, 17β-estradiol (E(2)) induced transcription of a luciferase reporter driven by the Rd-UG promoter in a similar manner as in an equivalent rabbit UG reporter; the Rd-UG promoter was 30% more responsive to E(2) than the rabbit promoter. Mutagenesis studies on the Rd-ERE confirmed this cis-element as a target of E(2) as two luciferase mutant reporters of the Rd-promoter, one with the rabbit and the other with the consensus ERE, were more responsive to the hormone than the wild-type reporter. Gel shift and super-shift assays showed that estrogen receptor-α indeed binds to the imperfect palindromic sequence of the Rd-ERE. Copyright © 2012 Wiley Periodicals, Inc.

  15. Molecular organization of the 5S rDNA gene type II in elasmobranchs.

    PubMed

    Castro, Sergio I; Hleap, Jose S; Cárdenas, Heiber; Blouin, Christian

    2016-01-01

    The 5S rDNA gene is a non-coding RNA that can be found in 2 copies (type I and type II) in bony and cartilaginous fish. Previous studies have pointed out that type II gene is a paralog derived from type I. We analyzed the molecular organization of 5S rDNA type II in elasmobranchs. Although the structure of the 5S rDNA is supposed to be highly conserved, our results show that the secondary structure in this group possesses some variability and is different than the consensus secondary structure. One of these differences in Selachii is an internal loop at nucleotides 7 and 112. These mutations observed in the transcribed region suggest an independent origin of the gene among Batoids and Selachii. All promoters were highly conserved with the exception of BoxA, possibly due to its affinity to polymerase III. This latter enzyme recognizes a dT4 sequence as stop signal, however in Rajiformes this signal was doubled in length to dT8. This could be an adaptation toward a higher efficiency in the termination process. Our results suggest that there is no TATA box in elasmobranchs in the NTS region. We also provide some evidence suggesting that the complexity of the microsatellites present in the NTS region play an important role in the 5S rRNA gene since it is significantly correlated with the length of the NTS.

  16. Molecular organization of the 5S rDNA gene type II in elasmobranchs

    PubMed Central

    Castro, Sergio I.; Hleap, Jose S.; Cárdenas, Heiber; Blouin, Christian

    2016-01-01

    ABSTRACT The 5S rDNA gene is a non-coding RNA that can be found in 2 copies (type I and type II) in bony and cartilaginous fish. Previous studies have pointed out that type II gene is a paralog derived from type I. We analyzed the molecular organization of 5S rDNA type II in elasmobranchs. Although the structure of the 5S rDNA is supposed to be highly conserved, our results show that the secondary structure in this group possesses some variability and is different than the consensus secondary structure. One of these differences in Selachii is an internal loop at nucleotides 7 and 112. These mutations observed in the transcribed region suggest an independent origin of the gene among Batoids and Selachii. All promoters were highly conserved with the exception of BoxA, possibly due to its affinity to polymerase III. This latter enzyme recognizes a dT4 sequence as stop signal, however in Rajiformes this signal was doubled in length to dT8. This could be an adaptation toward a higher efficiency in the termination process. Our results suggest that there is no TATA box in elasmobranchs in the NTS region. We also provide some evidence suggesting that the complexity of the microsatellites present in the NTS region play an important role in the 5S rRNA gene since it is significantly correlated with the length of the NTS. PMID:26488198

  17. Regulatory elements involved in tax-mediated transactivation of the HTLV-I LTR.

    PubMed

    Seeler, J S; Muchardt, C; Podar, M; Gaynor, R B

    1993-10-01

    HTLV-I is the etiologic agent of adult T-cell leukemia. In this study, we investigated the regulatory elements and cellular transcription factors which function in modulating HTLV-I gene expression in response to the viral transactivator protein, tax. Transfection experiments into Jurkat cells of a variety of site-directed mutants in the HTLV-1 LTR indicated that each of the three motifs A, B, and C within the 21-bp repeats, the binding sites for the Ets family of proteins, and the TATA box all influenced the degree of tax-mediated activation. Tax is also able to activate gene expression of other viral and cellular promoters. Tax activation of the IL-2 receptor and the HIV-1 LTR is mediated through NF-kappa B motifs. Interestingly, sequences in the 21-bp repeat B and C motifs contain significant homology with NF-kappa B regulatory elements. We demonstrated that an NF-kappa B binding protein, PRDII-BF1, but not the rel protein, bound to the B and C motifs in the 21-bp repeat. PRDII-BF1 was also able to stimulate activation of HTLV-I gene expression by tax. The role of the Ets proteins on modulating tax activation was also studied. Ets 1 but not Ets 2 was capable of increasing the degree of tax activation of the HTLV-I LTR. These results suggest that tax activates gene expression by either direct or indirect interaction with several cellular transcription factors that bind to the HTLV-I LTR.

  18. Transcription initiation from the dihydrofolate reductase promoter is positioned by HIP1 binding at the initiation site.

    PubMed

    Means, A L; Farnham, P J

    1990-02-01

    We have identified a sequence element that specifies the position of transcription initiation for the dihydrofolate reductase gene. Unlike the functionally analogous TATA box that directs RNA polymerase II to initiate transcription 30 nucleotides downstream, the positioning element of the dihydrofolate reductase promoter is located directly at the site of transcription initiation. By using DNase I footprint analysis, we have shown that a protein binds to this initiator element. Transcription initiated at the dihydrofolate reductase initiator element when 28 nucleotides were inserted between it and all other upstream sequences, or when it was placed on either side of the DNA helix, suggesting that there is no strict spatial requirement between the initiator and an upstream element. Although neither a single Sp1-binding site nor a single initiator element was sufficient for transcriptional activity, the combination of one Sp1-binding site and the dihydrofolate reductase initiator element cloned into a plasmid vector resulted in transcription starting at the initiator element. We have also shown that the simian virus 40 late major initiation site has striking sequence homology to the dihydrofolate reductase initiation site and that the same, or a similar, protein binds to both sites. Examination of the sequences at other RNA polymerase II initiation sites suggests that we have identified an element that is important in the transcription of other housekeeping genes. We have thus named the protein that binds to the initiator element HIP1 (Housekeeping Initiator Protein 1).

  19. Identification of the promoter of the myelomonocytic leukocyte integrin CD11b.

    PubMed Central

    Hickstein, D D; Baker, D M; Gollahon, K A; Back, A L

    1992-01-01

    The CD11b (or macrophage-1 antigen; MAC-1) subunit of the leukocyte integrin family forms a noncovalently associated heterodimeric structure with the CD18 (beta) subunit on the surface of human granulocytes and monocyte/macrophages, where it enables these myeloid cells to participate in a variety of adherence-related activities. Expression of the CD11b subunit is restricted to cells of the myelomonocytic lineage and depends upon the stage of differentiation with the most mature myeloid cells expressing the highest levels of CD11b. To study the regulation of CD11b expression, a genomic clone corresponding to the 5' region of the CD11b gene was isolated from a human chromosome 16 library. Primer extension and RNase protection assays identified two major transcriptional start sites, located 90 base pairs and 54 base pairs upstream from the initiation methionine. DNA sequence analysis of 1.7 kilobases of the 5' flanking sequence of the CD11b gene indicated the absence of a "CAAT" or "TATA" box; however, potential binding sites for the transcription activators Sp1, PU.1, ets, and AP-2 are present, as well as retinoic acid response elements. The 1.7-kilobase CD11b promoter sequence displayed functional activity in transient transfection assays in the monocytic cell line THP-1 and the myeloid cell line HL-60. In contrast, this 1.7-kilobase promoter sequence did not display functional activity in the Jurkat T-lymphoid cell line. Detailed characterization of the CD11b promoter sequence should provide insight into the molecular events regulating the tissue-specific and developmental stage-specific expression of the CD11b molecule in myelomonocytic cells. Images PMID:1347945

  20. A minimal murine Msx-1 gene promoter. Organization of its cis-regulatory motifs and their role in transcriptional activation in cells in culture and in transgenic mice.

    PubMed

    Takahashi, T; Guron, C; Shetty, S; Matsui, H; Raghow, R

    1997-09-05

    To dissect the cis-regulatory elements of the murine Msx-1 promoter, which lacks a conventional TATA element, a putative Msx-1 promoter DNA fragment (from -1282 to +106 base pairs (bp)) or its congeners containing site-specific alterations were fused to luciferase reporter and introduced into NIH3T3 and C2C12 cells, and the expression of luciferase was assessed in transient expression assays. The functional consequences of the sequential 5' deletions of the promotor revealed that multiple positive and negative regulatory elements participate in regulating transcription of the Msx-1 gene. Surprisingly, however, the optimal expression of Msx-1 promoter in either NIH3T3 or C2C12 cells required only 165 bp of the upstream sequence to warrant detailed examination of its structure. Therefore, the functional consequences of site-specific deletions and point mutations of the cis-acting elements of the minimal Msx-1 promoter were systematically examined. Concomitantly, potential transcriptional factor(s) interacting with the cis-acting elements of the minimal promoter were also studied by gel electrophoretic mobility shift assays and DNase I footprinting. Combined analyses of the minimal promoter by DNase I footprinting, electrophoretic mobility shift assays, and super shift assays with specific antibodies revealed that 5'-flanking regions from -161 to -154 and from -26 to -13 of the Msx-1 promoter contains an authentic E box (proximal E box), capable of binding a protein immunologically related to the upstream stimulating factor 1 (USF-1) and a GC-rich sequence motif which can bind to Sp1 (proximal Sp1), respectively. Additionally, we observed that the promoter activation was seriously hampered if the proximal E box was removed or mutated, and the promoter activity was eliminated completely if the proximal Sp1 site was similarly altered. Absolute dependence of the Msx-1 minimal promoter on Sp1 could be demonstrated by transient expression assays in the Sp1-deficient Drosophila cell line cotransfected with Msx-1-luciferase and an Sp1 expression vector pPacSp1. The transgenic mice embryos containing -165/106-bp Msx-1 promoter-LacZ DNA in their genomes abundantly expressed beta-galactosidase in maxillae and mandibles and in the cellular primordia involved in the formation of the meninges and the bones of the skull. Thus, the truncated murine Msx-1 promoter can target expression of a heterologous gene in the craniofacial tissues of transgenic embryos known for high level of expression of the endogenous Msx-1 gene and found to be severely defective in the Msx-1 knock-out mice.

  1. ISOLATION OF THE REGULATORY REGIONS AND GENOMIC ORGANIZATION OF THE PORCINE α1,3-GALACTOSYLTRANSFERASE GENE1

    PubMed Central

    Koike, Chihiro; Friday, Robert P.; Nakashima, Izumi; Luppi, Patrizia; Fung, John J.; Rao, Abdul S.; Starzl, Thomas E.; Trucco, Massimo

    2010-01-01

    Background α1,3-galactosyltransferase (α1,3GT) is an enzyme that produces carbohydrate chains termed αGal epitopes found in most mammals, although some species of higher primates, including human, are notable exceptions. The evolutionary origin of the lost α1,3GT enzyme activity is not yet known, although it has been suggested that the promoter activity of this gene in the ancestors of higher primates was inactivated. Methods We used 5′-or 3′-RACE, GenomeWalking, reverse transcriptase polymerase chain reaction (RT-PCR) and dual Luciferase reporter assay for identification of the full-length cDNA, which includes the transcription initiation site and the promoter region of porcine α1,3GT gene. Results The region around exon 1 is guanine and cytosine (GC)-rich (about 70%), comprising a CpG island spanning more than 1.5 kbp. The 5′-flanking region of exon 1 contains multiple transcription factor consensus motifs, including GC-box, SP1, AP2, and GATA-box sites, in the absence of TATA or CAAT-box sequences. The entire gene consists of three 5′ noncoding and six coding region exons spanning more than 52 kbp. Detailed analysis of α1,3GT transcripts revealed two major alternative splicing patterns in the 5′-untranslated region (5′-UTR) and evidence for minor splicing activity that occurs in a tissue-specific manner. Interspecies comparison of 5′-UTR shows minimal homology between porcine and murine sequences except for exon 2, which suggests that the regulatory regions differ among species. Conclusions These observations have important implications for experiments involving genetic manipulation of the α1,3GT gene in transgenic animals in terms of promoter utilization, and particularly in genetically engineering cells for the animal cloning technology by nuclear transfer. PMID:11087141

  2. The genomic structure of the human UFO receptor.

    PubMed

    Schulz, A S; Schleithoff, L; Faust, M; Bartram, C R; Janssen, J W

    1993-02-01

    Using a DNA transfection-tumorigenicity assay we have recently identified the UFO oncogene. It encodes a tyrosine kinase receptor characterized by the juxtaposition of two immunoglobulin-like and two fibronectin type III repeats in its extracellular domain. Here we describe the genomic organization of the human UFO locus. The UFO receptor is encoded by 20 exons that are distributed over a region of 44 kb. Different isoforms of UFO mRNA are generated by alternative splicing of exon 10 and differential usage of two imperfect polyadenylation sites resulting in the presence or absence of 1.5-kb 3' untranslated sequences. Primer extension and S1 nuclease analyses revealed multiple transcriptional initiation sites including a major site 169 bp upstream of the translation start site. The promoter region is GC rich, lacks TATA and CAAT boxes, but contains potential recognition sites for a variety of trans-acting factors, including Sp1, AP-2 and the cyclic AMP response element-binding protein. Proto-UFO and its oncogenic counterpart exhibit identical cDNA and promoter regions sequences. Possible modes of UFO activation are discussed.

  3. Structure of Radical-Induced Cell Death1 Hub Domain Reveals a Common αα-Scaffold for Disorder in Transcriptional Networks.

    PubMed

    Bugge, Katrine; Staby, Lasse; Kemplen, Katherine R; O'Shea, Charlotte; Bendsen, Sidsel K; Jensen, Mikael K; Olsen, Johan G; Skriver, Karen; Kragelund, Birthe B

    2018-05-01

    Communication within cells relies on a few protein nodes called hubs, which organize vast interactomes with many partners. Frequently, hub proteins are intrinsically disordered conferring multi-specificity and dynamic communication. Conversely, folded hub proteins may organize networks using disordered partners. In this work, the structure of the RST domain, a unique folded hub, is solved by nuclear magnetic resonance spectroscopy and small-angle X-ray scattering, and its complex with a region of the transcription factor DREB2A is provided through data-driven HADDOCK modeling and mutagenesis analysis. The RST fold is unique, but similar structures are identified in the PAH (paired amphipathic helix), TAFH (TATA-box-associated factor homology), and NCBD (nuclear coactivator binding domain) domains. We designate them as a group the αα hubs, as they share an αα-hairpin super-secondary motif, which serves as an organizing platform for malleable helices of varying topology. This allows for partner adaptation, exclusion, and selection. Our findings provide valuable insights into structural features enabling signaling fidelity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Non-canonical TAF complexes regulate active promoters in human embryonic stem cells

    PubMed Central

    Maston, Glenn A; Zhu, Lihua Julie; Chamberlain, Lynn; Lin, Ling; Fang, Minggang; Green, Michael R

    2012-01-01

    The general transcription factor TFIID comprises the TATA-box-binding protein (TBP) and approximately 14 TBP-associated factors (TAFs). Here we find, unexpectedly, that undifferentiated human embryonic stem cells (hESCs) contain only six TAFs (TAFs 2, 3, 5, 6, 7 and 11), whereas following differentiation all TAFs are expressed. Directed and global chromatin immunoprecipitation analyses reveal an unprecedented promoter occupancy pattern: most active genes are bound by only TAFs 3 and 5 along with TBP, whereas the remaining active genes are bound by TBP and all six hESC TAFs. Consistent with these results, hESCs contain a previously undescribed complex comprising TAFs 2, 6, 7, 11 and TBP. Altering the composition of hESC TAFs, either by depleting TAFs that are present or ectopically expressing TAFs that are absent, results in misregulated expression of pluripotency genes and induction of differentiation. Thus, the selective expression and use of TAFs underlies the ability of hESCs to self-renew. DOI: http://dx.doi.org/10.7554/eLife.00068.001 PMID:23150797

  5. 75 FR 1495 - Certain Hot-Rolled Carbon Steel Flat Products From India: Preliminary Results of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ...The Department of Commerce (the Department) is conducting an administrative review of the countervailing duty (CVD) order on certain hot-rolled carbon steel flat products from India for the period of review (POR) January 1, 2008, through December 31, 2008. These preliminary results cover one company Tata Steel Limited (Tata). For the information on the net subsidy rate for the reviewed company, see the ``Preliminary Results of Review'' section.

  6. The Twin-Arginine Translocation Pathway in α-Proteobacteria Is Functionally Preserved Irrespective of Genomic and Regulatory Divergence

    PubMed Central

    Nuñez, Pablo A.; Soria, Marcelo; Farber, Marisa D.

    2012-01-01

    The twin-arginine translocation (Tat) pathway exports fully folded proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Although much progress has been made in unraveling the molecular mechanism and biochemical characterization of the Tat system, little is known concerning its functionality and biological role to confer adaptive skills, symbiosis or pathogenesis in the α-proteobacteria class. A comparative genomic analysis in the α-proteobacteria class confirmed the presence of tatA, tatB, and tatC genes in almost all genomes, but significant variations in gene synteny and rearrangements were found in the order Rickettsiales with respect to the typically described operon organization. Transcription of tat genes was confirmed for Anaplasma marginale str. St. Maries and Brucella abortus 2308, two α-proteobacteria with full and partial intracellular lifestyles, respectively. The tat genes of A. marginale are scattered throughout the genome, in contrast to the more generalized operon organization. Particularly, tatA showed an approximately 20-fold increase in mRNA levels relative to tatB and tatC. We showed Tat functionality in B. abortus 2308 for the first time, and confirmed conservation of functionality in A. marginale. We present the first experimental description of the Tat system in the Anaplasmataceae and Brucellaceae families. In particular, in A. marginale Tat functionality is conserved despite operon splitting as a consequence of genome rearrangements. Further studies will be required to understand how the proper stoichiometry of the Tat protein complex and its biological role are achieved. In addition, the predicted substrates might be the evidence of role of the Tat translocation system in the transition process from a free-living to a parasitic lifestyle in these α-proteobacteria. PMID:22438962

  7. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    PubMed Central

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs. The majority of discovered motifs match experimentally characterized cis-regulatory elements. These results provide a good starting point for further experimental analysis of plant seed-specific promoters and our methodology can be used to unravel more transcriptional regulatory mechanisms in plants and other eukaryotes. PMID:19843335

  8. Identification and characterisation of a previously unknown drought tolerance-associated microRNA in barley.

    PubMed

    Zhou, Hui; Hussain, Syed Sarfraz; Hackenberg, Michael; Bazanova, Natalia; Eini, Omid; Li, Jie; Gustafson, Perry; Shi, Bujun

    2018-04-22

    Drought is the most serious abiotic stress, which causes crop losses on worldwide scale. The present study identified a previously unknown microRNA (designated as hvu-miRX) of 21 nucleotides (nt) in barley. Its precursor (designated pre-miRX) and primary transcript (designated pri-miRX) were also identified, with lengths of 73 nt and 559 nt, respectively. The identified upstream sequence of pri-miRX contains both the TATA box and the CAAT box, which are both required for transcription initiation. Transient promoter activation assays showed that the core promoter region of pri-miRX ranged 500 nt from the transcription start site. In transgenic barley over-expressing the wheat DREB3 transcription factor (TaDREB3) caused hvu-miRX to be highly expressed as compared to the same miRNA in non-transgenic barley. However, the high expression was not directly associated with TaDREB3. Genomic analysis revealed that the hvu-miRX gene was a single copy located on the short arm of chromosome 2 and appeared to be only conserved in Triticeae, but not in other plant species. Notably, transgenic barley overexpressing hvu-miRX showed drought tolerance. Degradome library analysis and other tests showed that hvu-miRX targeted various genes including transcription factors via the cleavage mode. Our data open an excellent opportunity to develop drought stress tolerant cereals with hvu-miRX. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Heterologous gene expression driven by carbonic anhydrase gene promoter in Dunaliella salina

    NASA Astrophysics Data System (ADS)

    Chai, Yurong; Lu, Yumin; Wang, Tianyun; Hou, Weihong; Xue, Lexun

    2006-12-01

    Dunaliella salina, a halotolerant unicellular green alga without a rigid cell wall, can live in salinities ranging from 0.05 to 5 mol/L NaCl. These features of D. salina make it an ideal host for the production of antibodies, oral vaccine, and commercially valuable polypeptides. To produce high level of heterologous proteins from D. salina, highly efficient promoters are required to drive expression of target genes under controlled condition. In the present study, we cloned a 5' franking region of 1.4 kb from the carbonic anhydrase ( CAH) gene of D. salina by genomic walking and PCR. The fragment was ligated to the pMD18-T vector and characterized. Sequence analysis indicated that this region contained conserved motifs, including a TATA- like box and CAAT-box. Tandem (GT)n repeats that had a potential role of transcriptional control, were also found in this region. The transcription start site (TSS) of the CAH gene was determined by 5' RACE and nested PCR method. Transformation assays showed that the 1.4 kb fragment was able to drive expression of the selectable bar (bialaphos resistance) gene when the fusion was transformed into D. salina by biolistics. Northern blotting hybridizations showed that the bar transcript was most abundant in cells grown in 2 mol/L NaCl, and less abundant in 0.5 mol/L NaCl, indicating that expression of the bar gene was induced at high salinity. These results suggest the potential use of the CAH gene promoter to induce the expression of heterologous genes in D. salina under varied salt condition.

  10. U6 small nuclear RNA is transcribed by RNA polymerase III.

    PubMed Central

    Kunkel, G R; Maser, R L; Calvet, J P; Pederson, T

    1986-01-01

    A DNA fragment homologous to U6 small nuclear RNA was isolated from a human genomic library and sequenced. The immediate 5'-flanking region of the U6 DNA clone had significant homology with a potential mouse U6 gene, including a "TATA box" at a position 26-29 nucleotides upstream from the transcription start site. Although this sequence element is characteristic of RNA polymerase II promoters, the U6 gene also contained a polymerase III "box A" intragenic control region and a typical run of five thymines at the 3' terminus (noncoding strand). The human U6 DNA clone was accurately transcribed in a HeLa cell S100 extract lacking polymerase II activity. U6 RNA transcription in the S100 extract was resistant to alpha-amanitin at 1 microgram/ml but was completely inhibited at 200 micrograms/ml. A comparison of fingerprints of the in vitro transcript and of U6 RNA synthesized in vivo revealed sequence congruence. U6 RNA synthesis in isolated HeLa cell nuclei also displayed low sensitivity to alpha-amanitin, in contrast to U1 and U2 RNA transcription, which was inhibited greater than 90% at 1 microgram/ml. In addition, U6 RNA synthesized in isolated nuclei was efficiently immunoprecipitated by an antibody against the La antigen, a protein known to bind most other RNA polymerase III transcripts. These results establish that, in contrast to the polymerase II-directed transcription of mammalian genes for U1-U5 small nuclear RNAs, human U6 RNA is transcribed by RNA polymerase III. Images PMID:3464970

  11. Functional characterization of Pol III U6 promoters for gene knockdown and knockout in Plutella xylostella.

    PubMed

    Huang, Yuping; Wang, Yajun; Zeng, Baosheng; Liu, Zhaoxia; Xu, Xuejiao; Meng, Qian; Huang, Yongping; Yang, Guang; Vasseur, Liette; Gurr, Geoff M; You, Minsheng

    2017-10-01

    RNA polymerase type III (Pol-III) promoters such as U6 are commonly used to express small RNAs, including short hairpin RNAs (shRNAs) and single guide RNAs (sgRNAs). Functional U6 promoters are widely used in CRISPR systems, and their characterization can facilitate genome editing of non-model organisms. In the present study, six U6 small nuclear RNA (snRNA) promoters containing two conserved elements of a proximal sequence element (PSEA) and a TATA box, were identified and characterized in the diamondback moth (Plutella xylostella) genome. Relative efficiency of the U6 promoters to express shRNA induced EGFP knockdown was tested in a P. xylostella cell line, revealing that the PxU6:3 promoter had the strongest expression effect. Further work with the PxU6:3 promoter showed its efficacy in EGFP knockout using CRISPR/Cas9 system in the cells. The expression plasmids with versatile Pxabd-A gene specific sgRNA driven by the PxU6:3 promoter, combined with Cas9 mRNA, could induce mutagenesis at specific genomic loci in vivo. The phenotypes induced by sgRNA expression plasmids were similar to those done in vitro transcription sgRNAs. A plasmid with two tandem arranged PxU6:3:sgRNA expression cassettes targeting Pxabd-A loci was generated, which caused a 28,856 bp fragment deletion, suggesting that the multi-sgRNA expression plasmid can be used for multi-targeting. Our work indicates that U6 snRNA promoters can be used for functional studies of genes with the approach of reverse genetics in P. xylostella. These essential promoters also provide valuable potential for CRISPR-derived gene drive as a tactic for population control in this globally significant pest. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Architecture of the Yeast RNA Polymerase II Open Complex and Regulation of Activity by TFIIF

    PubMed Central

    Fishburn, James

    2012-01-01

    To investigate the function and architecture of the open complex state of RNA polymerase II (Pol II), Saccharomyces cerevisiae minimal open complexes were assembled by using a series of heteroduplex HIS4 promoters, TATA binding protein (TBP), TFIIB, and Pol II. The yeast system demonstrates great flexibility in the position of active open complexes, spanning 30 to 80 bp downstream from TATA, consistent with the transcription start site scanning behavior of yeast Pol II. TFIIF unexpectedly modulates the activity of the open complexes, either repressing or stimulating initiation. The response to TFIIF was dependent on the sequence of the template strand within the single-stranded bubble. Mutations in the TFIIB reader and linker region, which were inactive on duplex DNA, were suppressed by the heteroduplex templates, showing that a major function of the TFIIB reader and linker is in the initiation or stabilization of single-stranded DNA. Probing of the architecture of the minimal open complexes with TFIIB-FeBABE [TFIIB–p-bromoacetamidobenzyl–EDTA-iron(III)] derivatives showed that the TFIIB core domain is surprisingly positioned away from Pol II, and the addition of TFIIF repositions the TFIIB core domain to the Pol II wall domain. Together, our results show an unexpected architecture of minimal open complexes and the regulation of activity by TFIIF and the TFIIB core domain. PMID:22025674

  13. Effects of a sitting boxing program on upper limb function, balance, gait, and quality of life in stroke patients.

    PubMed

    Park, Junhyuck; Gong, Jihwan; Yim, Jongeun

    2017-01-01

    Boxing training including traditional stretching, muscular strength training, and duration training would be considered to be effective for improved functional stretching, dynamic balance, walking speed, and quality of life. We aimed to investigate upper limb function, balance, gait, and quality of life in stroke patients before and after a sitting boxing program. Twenty-six participants were randomly allocated to a boxing group (n = 13) and control group (n = 13) after the upper limb function, balance, gait, and quality of Life were recorded. The boxing group underwent a sitting boxing program (3 times/week) as well as conventional physical therapy (3 times/week) for 6 weeks. The control group only underwent conventional physical therapy (3 times/week) for 6 weeks. The Manual Functional Test (MFT), non-affected hand grip, Berg Balance Scale (BBS), velocity moment with eye opened, 10-m Walk Test (10 MWT), and Stroke-Specific Quality of Life questionnaire (SS-QOL) were significantly improved in the boxing group (p < 0.05) and showed significantly greater improvements in the boxing group compared to the control group (p < 0.05) after 6 weeks. The sitting boxing program group had positive effects on upper extremity function, balance, gait, and quality of life in stroke patients.

  14. Small gene family encoding an eggshell (chorion) protein of the human parasite Schistosoma mansoni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobek, L.A.; Rekosh, D.M.; Lo Verde, P.T.

    1988-08-01

    The authors isolated six independent genomic clones encoding schistosome chorion or eggshell proteins from a Schistosoma mansoni genomic library. A linkage map of five of the clones spanning 35 kilobase pairs (kbp) of the S. mansoni genome was constructed. The region contained two eggshell protein genes closely linked, separated by 7.5 kbp of intergenic DNA. The two genes of the cluster were arranged in the same orientation, that is, they were transcribed from the same strand. The sixth clone probably represents a third copy of the eggshell gene that is not contained within the 35-kbp region. The 5- end ofmore » the mRNA transcribed from these genes was defined by primer extension directly off the RNA. The ATCAT cap site sequence was homologous to a silkmoth chorion PuTCATT cap site sequence, where Pu indicates any purine. DNA sequence analysis showed that there were no introns in these genes. The DNA sequences of the three genes were very homologous to each other and to a cDNA clone, pSMf61-46, differing only in three or four nucleotices. A multiple TATA box was located at positions -23 to -31, and a CAAAT sequence was located at -52 upstream of the eggshell transcription unit. Comparison of sequences in regions further upstream with silkmoth and Drosophila sequences revealed very short elements that were shared. One such element, TCACGT, recently shown to be an essential cis-regulatory element for silkmoth chorion gene promoter function, was found at a similar position in all three organisms.« less

  15. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene.

    PubMed

    Itzhaki, H; Maxson, J M; Woodson, W R

    1994-09-13

    The increased production of ethylene during carnation petal senescence regulates the transcription of the GST1 gene encoding a subunit of glutathione-S-transferase. We have investigated the molecular basis for this ethylene-responsive transcription by examining the cis elements and trans-acting factors involved in the expression of the GST1 gene. Transient expression assays following delivery of GST1 5' flanking DNA fused to a beta-glucuronidase receptor gene were used to functionally define sequences responsible for ethylene-responsive expression. Deletion analysis of the 5' flanking sequences of GST1 identified a single positive regulatory element of 197 bp between -667 and -470 necessary for ethylene-responsive expression. The sequences within this ethylene-responsive region were further localized to 126 bp between -596 and -470. The ethylene-responsive element (ERE) within this region conferred ethylene-regulated expression upon a minimal cauliflower mosaic virus-35S TATA-box promoter in an orientation-independent manner. Gel electrophoresis mobility-shift assays and DNase I footprinting were used to identify proteins that bind to sequences within the ERE. Nuclear proteins from carnation petals were shown to specifically interact with the 126-bp ERE and the presence and binding of these proteins were independent of ethylene or petal senescence. DNase I footprinting defined DNA sequences between -510 and -488 within the ERE specifically protected by bound protein. An 8-bp sequence (ATTTCAAA) within the protected region shares significant homology with promoter sequences required for ethylene responsiveness from the tomato fruit-ripening E4 gene.

  16. Characterization of the rat RALDH1 promoter. A functional CCAAT and octamer motif are critical for basal promoter activity.

    PubMed

    Guimond, Julie; Devost, Dominic; Brodeur, Helene; Mader, Sylvie; Bhat, Pangala V

    2002-12-12

    Retinal dehydrogenase type 1 (RALDH1) catalyzes the oxidation of retinal to retinoic acid (RA), a metabolite of vitamin A important for embryogenesis and tissue differentiation. Rat RALDH1 is expressed to high levels in developing kidney, and in stomach, intestine epithelia. To understand the mechanisms of the transcriptional regulation of rat RALDH1, we cloned a 1360-base pair (bp) 5'-flanking region of RALDH1 gene. Using luciferase reporter constructs transfected into HEK 293 and LLCPK (kidney-derived) cells, basal promoter activity was associated with sequences between -80 and +43. In this minimal promoter region, TATA and CCAAT cis-acting elements as well as SP1, AP1 and octamer (Oct)-binding sites were present. The CCAAT box and Oct-binding site, located between positions -72 and -68 and -56 and -49, respectively, were shown by deletion analysis and site-directed mutation to be critical for promoter activity. Nuclear extracts from kidney cells contain proteins specifically binding the Oct and CCAAT sequences, resulting in the formation of six complexes, while different patterns of complexes were observed with non-kidney cell extracts. Gel shift assays using either single or double mutations of the Oct and CCAAT sequences as well as super shift assays demonstrated single and double occupancy of these two sites by Oct-1 and CBF-A. In addition, unidentified proteins also bound the Oct motif specifically in the absence of CBF-A binding. These results demonstrate specific involvement of Oct and CCAAT-binding proteins in the regulation of RALDH1 gene.

  17. Non-functional plastid ndh gene fragments are present in the nuclear genome of Norway spruce (Picea abies L. Karsch): insights from in silico analysis of nuclear and organellar genomes.

    PubMed

    Ranade, Sonali Sachin; García-Gil, María Rosario; Rosselló, Josep A

    2016-04-01

    Many genes have been lost from the prokaryote plastidial genome during the early events of endosymbiosis in eukaryotes. Some of them were definitively lost, but others were relocated and functionally integrated to the host nuclear genomes through serial events of gene transfer during plant evolution. In gymnosperms, plastid genome sequencing has revealed the loss of ndh genes from several species of Gnetales and Pinaceae, including Norway spruce (Picea abies). This study aims to trace the ndh genes in the nuclear and organellar Norway spruce genomes. The plastid genomes of higher plants contain 11 ndh genes which are homologues of mitochondrial genes encoding subunits of the proton-pumping NADH-dehydrogenase (nicotinamide adenine dinucleotide dehydrogenase) or complex I (electron transport chain). Ndh genes encode 11 NDH polypeptides forming the Ndh complex (analogous to complex I) which seems to be primarily involved in chloro-respiration processes. We considered ndh genes from the plastidial genome of four gymnosperms (Cryptomeria japonica, Cycas revoluta, Ginkgo biloba, Podocarpus totara) and a single angiosperm species (Arabidopsis thaliana) to trace putative homologs in the nuclear and organellar Norway spruce genomes using tBLASTn to assess the evolutionary fate of ndh genes in Norway spruce and to address their genomic location(s), structure, integrity and functionality. The results obtained from tBLASTn were subsequently analyzed by performing homology search for finding ndh specific conserved domains using conserved domain search. We report the presence of non-functional plastid ndh gene fragments, excepting ndhE and ndhG genes, in the nuclear genome of Norway spruce. Regulatory transcriptional elements like promoters, TATA boxes and enhancers were detected in the upstream regions of some ndh fragments. We also found transposable elements in the flanking regions of few ndh fragments suggesting nuclear rearrangements in those regions. These evidences support the hypothesis that, at least in Picea, ndh translocations from the plastid to the nuclear genome have occurred, and that there might have been a functional machinery at some time during evolution to accommodate them within a nuclear-encoded environment, or attempts to form it.

  18. Multiple splicing events involved in regulation of human aromatase expression by a novel promoter, I.6.

    PubMed

    Shozu, M; Zhao, Y; Bulun, S E; Simpson, E R

    1998-04-01

    The expression of aromatase is regulated in a tissue-specific fashion through alternative use of multiple promoter-specific first exons. To date, eight different first exons have been reported in human aromatase, namely I.1., I.2, I.3. I.4, I.5, PII, 2a, and 1f. Recently, we have found a new putative exon I in a RACE-generated library of THP-1 cells and have conducted studies to characterize this new exon I. We confirmed that the constructs containing -1552/+17 or less flanking sequence of this exon function as a promoter in THP-1 cells, JEG-3 cells and osteoblast-like cells obtained from a human fetus. Results of transfection assays using a series of deletion constructs and mutation constructs indicate that a 1-bp mismatch of the consensus TATA-like box (TTTAAT) and the consensus sequence of the initiator site, which is located 45 bp downstream of the putative TATA box, were functioning cooperatively as a core promoter. The putative transcription site was confirmed by the results of RT-PCR southern blot analysis. We examined the regulation and the expression of this exon, I.6, in several human cells and tissues by RT-PCR Southern blot analysis. THP-1 cells (mononuclear leukemic origin) and JEG-3 cells (choriocarcinoma origin) expressed exon I.6 in serum-free media. The level of expression was increased by serum and phorbol myristyl acetate (PMA) in both cell lines. Adipose stromal cells also expressed exon I.6 in the presence of PMA. In fetal osteoblasts, the expression of exon I.6 was increased most effectively by serum and less so by dexamethasone (DEX) + IL-1beta and DEX + IL-11, whereas induction by serum was suppressed by the addition of DEX. The level of expression was low in granulosa cells in culture and did not change with forskolin. On the other hand, dibutyryl cAMP suppressed PMA-stimulated expression of exon I.6 in THP-1 cells and adipose stromal cells. This result supports the hypothesis that the expression of exon I.6 is regulated mainly via an AP-1 binding site that is found upstream of the initiator site of the promoter region. Expression of exon I.6-specific transcripts was examined in several human tissues. Testis and bone obtained from normal adults expressed exon I.6. Testicular tumor and hepatic carcinoma expressed high levels of exon I.6, whereas granulosa cell tumor did not. Fetal liver and bone also showed a significant level of exon I.6 expression, but not so much as testicular tumor and hepatic tumor. Several splicing variants of exon I.6 were detected especially in THP-1 and JEG-3 cells, and to a lesser extent in primary cultures and tissue samples. These variants were identified as an unspliced form, a form spliced at the end of exon I.4, a form spliced at the end of exon I.3 (truncated) and a form spliced 220 bp downstream of the 3' end of exon I.6. The last variant revealed a new splicing site. Because most of the splicing variants contain the sequence specific for exon I.3, RT-PCR specific for exon I.3 can coamplify these splicing variants of exon I.6 transcripts. These results suggests that it is necessary to examine the expression of I.6 in tissues that are known to express exon I.3 such as breast adipose tissue, in which promoter usage of exon I of the aromatase gene switches from exon I.4 to I.3 in the course of malignant transformation.

  19. Impact of higher-order heme degradation products on hepatic function and hemodynamics.

    PubMed

    Seidel, Raphael A; Claudel, Thierry; Schleser, Franziska A; Ojha, Navin K; Westerhausen, Matthias; Nietzsche, Sandor; Sponholz, Christoph; Cuperus, Frans; Coldewey, Sina M; Heinemann, Stefan H; Pohnert, Georg; Trauner, Michael; Bauer, Michael

    2017-08-01

    Biliverdin and bilirubin were previously considered end products of heme catabolism; now, however, there is evidence for further degradation to diverse bioactive products. Z-BOX A and Z-BOX B arise upon oxidation with unknown implications for hepatocellular function and integrity. We studied the impact of Z-BOX A and B on hepatic functions and explored their alterations in health and cholestatic conditions. Functional implications and mechanisms were investigated in rats, hepatocytic HepG2 and HepaRG cells, human immortalized hepatocytes, and isolated perfused livers. Z-BOX A and B were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in acute and acute-on-chronic liver failure and hereditary unconjugated hyperbilirubinemia. Z-BOX A and B are found in similar amounts in humans and rodents under physiological conditions. Serum concentrations increased ∼20-fold during cholestatic liver failure in humans (p<0.001) and in hereditary deficiency of bilirubin glucuronidation in rats (p<0.001). Pharmacokinetic studies revealed shorter serum half-life of Z-BOX A compared to its regio-isomer Z-BOX B (p=0.035). While both compounds were taken up by hepatocytes, Z-BOX A was enriched ∼100-fold and excreted in bile. Despite their reported vasoconstrictive properties in the brain vasculature, BOXes did not affect portal hemodynamics. Both Z-BOX A and B showed dose-dependent cytotoxicity, affected the glutathione redox state, and differentially modulated activity of Rev-erbα and Rev-erbβ. Moreover, BOXes-triggered remodeling of the hepatocellular cytoskeleton. Our data provide evidence that higher-order heme degradation products, namely Z-BOX A and B, impair hepatocellular integrity and might mediate intra- and extrahepatic cytotoxic effects previously attributed to hyperbilirubinemia. Degradation of the blood pigment heme yields the bile pigment bilirubin and the oxidation products Z-BOX A and Z-BOX B. Serum concentrations of these bioactive molecules increase in jaundice and can impair liver function and integrity. Amounts of Z-BOX A and Z-BOX B that are observed during liver failure in humans have profound effects on hepatic function when added to cultured liver cells or infused into healthy rats. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  20. Genomic structure, promoter identification, and chromosomal mapping of a mouse nuclear orphan receptor expressed in embryos and adult testes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.H.; Wei, Li-Na; Copeland, N.G.

    We have isolated and characterized overlapping genomic clones containing the complete transcribed region of a newly isolated mouse cDNA encoding an orphan receptor expressed specifically in midgestation embryos and adult testis. This gene spans a distance of more than 50 kb and is organized into 13 exons. The transcription initiation site is located at the 158th nucleotide upstream from the translation initiation codon. All the exon/intron junction sequences follow the GT/AG rule. Based upon Northern blot analysis and the size of the transcribed region of the gene, its transcript was determined to be approximately 2.5 kb. Within approximately 500 hpmore » upstream from the transcription initiation site, several immune response regulatory elements were identified but no TATA box was located. This gene was mapped to the distal region of mouse chromosome 10 and its locus has been designated Tr2-11. Immunohistochemical studies show that the Tr2-11 protein is present mainly in advanced germ cell populations of mature testes and that Tr2-11 gene expression is dramatically decreased in vitamin A-depleted animals. 23 refs., 7 figs.« less

  1. Modulating ectopic gene expression levels by using retroviral vectors equipped with synthetic promoters.

    PubMed

    Ferreira, Joshua P; Peacock, Ryan W S; Lawhorn, Ingrid E B; Wang, Clifford L

    2011-12-01

    The human cytomegalovirus and elongation factor 1α promoters are constitutive promoters commonly employed by mammalian expression vectors. These promoters generally produce high levels of expression in many types of cells and tissues. To generate a library of synthetic promoters capable of generating a range of low, intermediate, and high expression levels, the TATA and CAAT box elements of these promoters were mutated. Other promoter variants were also generated by random mutagenesis. Evaluation using plasmid vectors integrated at a single site in the genome revealed that these various synthetic promoters were capable of expression levels spanning a 40-fold range. Retroviral vectors were equipped with the synthetic promoters and evaluated for their ability to reproduce the graded expression demonstrated by plasmid integration. A vector with a self-inactivating long terminal repeat could neither reproduce the full range of expression levels nor produce stable expression. Using a second vector design, the different synthetic promoters enabled stable expression over a broad range of expression levels in different cell lines. The online version of this article (doi:10.1007/s11693-011-9089-0) contains supplementary material, which is available to authorized users.

  2. Leukocyte common antigen-related phosphatase (LRP) gene structure: Conservation of the genomic organization of transmembrane protein tyrosine phosphatases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, E.C.C.; Mullersman, J.E.; Thomas, M.L.

    1993-07-01

    The leukocyte common antigen-related protein tyrosine phosphatase (LRP) is a widely expressed transmembrane glycoprotein thought to be involved in cell growth and differentiation. Similar to most other transmembrane protein tyrosine phosphatases, LRP contains two tandem cytoplasmic phosphatase domains. To understand further the regulation and evolution of LRP, the authors have isolated and characterized mouse [lambda] genomic clones. Thirteen genomic clones could be divided into two non-overlapping clusters. The first cluster contained the transcription initiation site and the exon encoding most of the 5[prime] untranslated region. The second cluster contained the remaining exons encoding the protein and the 3[prime] untranslated region.more » The gene consists of 22 exons spanning over 75 kb. The distance between exon 1 and exon 2 is at least 25 kb. Characterization of the 5[prime] ends of LRP mRNA by S1 nuclease protection identifies putative initiation start sites within a G/C-rich region. The upstream region does not contain a TATA box. Comparison of the LRP gene structure to the mammalian protein tyrosine phosphatase gene, CD45, shows striking similarities in size and genomic organization. 29 refs., 5 figs., 1 tab.« less

  3. Cloning of murine RNA polymerase I-specific TAF factors: conserved interactions between the subunits of the species-specific transcription initiation factor TIF-IB/SL1.

    PubMed

    Heix, J; Zomerdijk, J C; Ravanpay, A; Tjian, R; Grummt, I

    1997-03-04

    Promoter selectivity for all three classes of eukaryotic RNA polymerases is brought about by multimeric protein complexes containing TATA box binding protein (TBP) and specific TBP-associated factors (TAFs). Unlike class II- and III-specific TBP-TAF complexes, the corresponding murine and human class I-specific transcription initiation factor TIF-IB/SL1 exhibits a pronounced selectivity for its homologous promoter. As a first step toward understanding the molecular basis of species-specific promoter recognition, we cloned the cDNAs encoding the three mouse pol I-specific TBP-associated factors (TAFIs) and compared the amino acid sequences of the murine TAFIs with their human counterparts. The four subunits from either species can form stable chimeric complexes that contain stoichiometric amounts of TBP and TAFIs, demonstrating that differences in the primary structure of human and mouse TAFIs do not dramatically alter the network of protein-protein contacts responsible for assembly of the multimeric complex. Thus, primate vs. rodent promoter selectivity mediated by the TBP-TAFI complex is likely to be the result of cumulative subtle differences between individual subunits that lead to species-specific properties of RNA polymerase I transcription.

  4. Comparative analysis on the structural features of the 5' flanking region of κ-casein genes from six different species

    PubMed Central

    Gerencsér, Ákos; Barta, Endre; Boa, Simon; Kastanis, Petros; Bösze, Zsuzsanna; Whitelaw, C Bruce A

    2002-01-01

    κ-casein plays an essential role in the formation, stabilisation and aggregation of milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. We determined the 5'-flanking sequences for the murine, rabbit and human κ-casein genes and compared them to the published ruminant sequences. The most conserved region was not the proximal promoter region but an approximately 400 bp long region centred 800 bp upstream of the TATA box. This region contained two highly conserved MGF/STAT5 sites with common spacing relative to each other. In this region, six conserved short stretches of similarity were also found which did not correspond to known transcription factor consensus sites. On the contrary to ruminant and human 5' regulatory sequences, the rabbit and murine 5'-flanking regions did not harbour any kind of repetitive elements. We generated a phylogenetic tree of the six species based on multiple alignment of the κ-casein sequences. This study identified conserved candidate transcriptional regulatory elements within the κ-casein gene promoter. PMID:11929628

  5. Effect of dihydrotestosterone on the expression of mucin 1 and the activity of Wnt signaling in mouse corneal epithelial cells.

    PubMed

    Qin, Li; Pei, Cheng; Kang, Qian-Yan; Liu, Zhao; Li, Li

    2016-01-01

    To explore the effects of the androgen dihydrotestosterone on the expression of mucin 1 (MUC1) and the activity of Wnt signaling in mouse corneal epithelial cells. Primary mouse corneal epithelial cells were isolated from the corneas of BALB/c mice. Quantitative real-time polymerase chain reaction, immunofluorescence and Western blot analysis were used to quantify the differential expression of selected genes. The androgen receptor was silenced by transfecting cells with androgen receptor shRNAs. TOP-Flash and FOP-flash reporter plasmids were used to measure β-catenin-driven transcription. Dihydrotestosterone treatment increased MUC1 expression and activated the Wnt signaling pathway and led to the translocation of β-catenin and upregulation of the Wnt downstream target gene TATA box binding protein and urokinase plasminogen activator. These effects were prevented by downregulating the androgen receptor. Androgens may protect against dry eye by regulating the expression of MUC1 which is stimulated by the activation of Wnt signaling via the androgen receptor. An understanding of the mechanisms associated with androgen-mediated protection against dry eye is an important step in developing new therapies for this disease.

  6. Genomic Structure of the Luciferase Gene from the Bioluminescent Beetle, Nyctophila cf. Caucasica

    PubMed Central

    Day, John C.; Chaichi, Mohammad J.; Najafil, Iraj; Whiteley, Andrew S.

    2006-01-01

    The gene coding for beetle luciferase, the enzyme responsible for bioluminescence in over two thousand coleopteran species has, to date, only been characterized from one Palearctic species of Lampyridae. Here we report the characterization of the luciferase gene from a female beetle of an Iranian lampyrid species, Nyctophila cf. caucasica (Coleoptera:Lampyridae). The luciferase gene was composed of seven exons, coding for 547 amino acids, separated by six introns spanning 1976 bp of genomic DNA. The deduced amino acid sequences of the luciferase gene of N. caucasica showed 98.9% homology to that of the Palearctic species Lampyris noctiluca. Analysis of the 810 bp upstream region of the luciferase gene revealed three TATA boxes and several other consensus transcriptional factor recognition sequences presenting evidence for a putative core promoter region conserved in Lampyrinae from -190 through to -155 upstream of the luciferase start codon. Along with the core promoter region the luciferase gene was compared with orthologous sequences from other lampyrid species and found to have greatest identity to Lampyris turkistanicus and Lampyris noctiluca. The significant sequence identity to the former is discussed in relation to taxonomic issues of Iranian lampyrids. PMID:20298115

  7. Earth Observations taken by the Expedition 35 Crew

    NASA Image and Video Library

    2013-04-08

    ISS035-E-18006 (8 April 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station photographed this image of Tata Sabaya Volcano, located in the Altiplano region of Bolivia. The volcano rises to a summit elevation of 5430 meters above sea level. While its current form is that of a “youthful” stratovolcano, the regional geological evidence indicates an older, eventful history, according to scientists. The scientists say that prior to approximately 12,000 years ago (during the late Pleistocene Epoch), a large debris avalanche was formed by collapse of the ancestral Tata Sabaya volcano. Debris from the avalanche swept into the nearby Salar de Coipasa –at that time filled with a lake larger than today – significantly changing its northwestern coastline. Timing of the event is obtained from tufa deposits formed on debris islands during a high stand of the Coipasa lake – illustrating the geological principle of cross-cutting relationships, in that the debris avalanche had to have occurred before the tufa deposits were formed in the lake. The Tata Sabaya stratovolcano is located at image center. Several young lava flows are visible on the northwestern and western flanks of the volcano. Peaks visible to the northeast and southwest appear to be volcanoes as well, but unlike Tata Sabaya there is no record of recent activity from either of them (according to the Smithsonian National Museum of Natural History’s Global Volcanism Program). As the Altiplano became more arid and the Coipasa Lake shrank, much of the hummocky terrain of the debris avalanche became exposed over an area of more than 300 square kilometers. The hummocky terrain is clearly visible at image right. White salt deposits of the salar surround many of the individual hummocks, making them “islands” once again.

  8. Structural and functional differences in the dio1 gene in mice with inherited type 1 deiodinase deficiency.

    PubMed

    Maia, A L; Berry, M J; Sabbag, R; Harney, J W; Larsen, P R

    1995-08-01

    The type 1 deiodinase (D1) provides the major portion of the circulating T3 in vertebrates. In C3H and certain other inbred mice, liver and kidney D1 activity is 5- to 10-fold lower than in the common phenotype, C57. The lower D1 levels are paralleled by a decreased normal-sized dio1 mRNA and hyperthyroxinemia. Low activity cosegregates with a restriction fragment length variant (RFLV) in both inbred and recombinant strains, indicating it is due to differences in the dio1 gene. The exonic structure and the deduced amino acid sequences are identical for both strains and highly homologous to that of the rat. The RFLV is due to an approximately 150-base pair expansion of repetitive sequences in the second intron of the C3H gene, but this segment does not differentially affect the transient expression of a human GH gene. The promoter and 5'-flanking regions of the C3H and C57 dio1 genes are very similar and are GC rich without TATA or CCAAT boxes. However, functional assays of 1.5-kilobase 5'-flanking dio1-CAT constructs showed 2- to 3-fold higher activity of the C57-CAT constructs. Deletion mutants showed that sequences between -705 and -162 were the cause of this. In this region, the only major difference between the two genes is a 21-base pair insert containing five CTG repeats in the C3H promoter. This difference also cosegregates with low D1 activity and the intron RFLV in four other mouse strains. The correlation of the CTG repeat insert with both in vitro and in vivo expression and the absence of other significant sequence differences in the 5'-flanking region argue that this is the major explanation for the impaired expression of the dio1 gene and the resulting hyperthyroxinemia of the C3H mouse.

  9. Fanconi Anemia Core Complex Gene Promoters Harbor Conserved Transcription Regulatory Elements

    PubMed Central

    Meier, Daniel; Schindler, Detlev

    2011-01-01

    The Fanconi anemia (FA) gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M) that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS). In the 5′ region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3′ regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs), and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters. PMID:21826217

  10. Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements.

    PubMed

    Meier, Daniel; Schindler, Detlev

    2011-01-01

    The Fanconi anemia (FA) gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M) that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS). In the 5' region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3' regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs), and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters.

  11. Cloning and functional analysis of the promoters that upregulate carotenogenic gene expression during flower development in Gentiana lutea.

    PubMed

    Zhu, Changfu; Yang, Qingjie; Ni, Xiuzhen; Bai, Chao; Sheng, Yanmin; Shi, Lianxuan; Capell, Teresa; Sandmann, Gerhard; Christou, Paul

    2014-04-01

    Over the last two decades, many carotenogenic genes have been cloned and used to generate metabolically engineered plants producing higher levels of carotenoids. However, comparatively little is known about the regulation of endogenous carotenogenic genes in higher plants, and this restricts our ability to predict how engineered plants will perform in terms of carotenoid content and composition. During petal development in the Great Yellow Gentian (Gentiana lutea), carotenoid accumulation, the formation of chromoplasts and the upregulation of several carotenogenic genes are temporally coordinated. We investigated the regulatory mechanisms responsible for this coordinated expression by isolating five G. lutea carotenogenic gene (GlPDS, GlZDS, GlLYCB, GlBCH and GlLYCE) promoters by inverse polymerase chain reaction (PCR). Each promoter was sufficient for developmentally regulated expression of the gusA reporter gene following transient expression in tomato (Solanum lycopersicum cv. Micro-Tom). Interestingly, the GlLYCB and GlBCH promoters drove high levels of gusA expression in chromoplast-containing mature green fruits, but low levels in chloroplast-containing immature green fruits, indicating a strict correlation between promoter activity, tomato fruit development and chromoplast differentiation. As well as core promoter elements such as TATA and CAAT boxes, all five promoters together with previously characterized GlZEP promoter contained three common cis-regulatory motifs involved in the response to methyl jasmonate (CGTCA) and ethylene (ATCTA), and required for endosperm expression (Skn-1_motif, GTCAT). These shared common cis-acting elements may represent binding sites for transcription factors responsible for co-regulation. Our data provide insight into the regulatory basis of the coordinated upregulation of carotenogenic gene expression during flower development in G. lutea. © 2013 Scandinavian Plant Physiology Society.

  12. Insights into soybean transcriptome reconfiguration under hypoxic stress: Functional, regulatory, structural, and compositional characterization.

    PubMed

    Nakayama, Thiago J; Rodrigues, Fabiana A; Neumaier, Norman; Marcolino-Gomes, Juliana; Molinari, Hugo B C; Santiago, Thaís R; Formighieri, Eduardo F; Basso, Marcos F; Farias, José R B; Emygdio, Beatriz M; de Oliveira, Ana C B; Campos, Ângela D; Borém, Aluízio; Harmon, Frank G; Mertz-Henning, Liliane M; Nepomuceno, Alexandre L

    2017-01-01

    Soybean (Glycine max) is one of the major crops worldwide and flooding stress affects the production and expansion of cultivated areas. Oxygen is essential for mitochondrial aerobic respiration to supply the energy demand of plant cells. Because oxygen diffusion in water is 10,000 times lower than in air, partial (hypoxic) or total (anoxic) oxygen deficiency is important component of flooding. Even when oxygen is externally available, oxygen deficiency frequently occurs in bulky, dense or metabolically active tissues such as phloem, meristems, seeds, and fruits. In this study, we analyzed conserved and divergent root transcriptional responses between flood-tolerant Embrapa 45 and flood-sensitive BR 4 soybean cultivars under hypoxic stress conditions with RNA-seq. To understand how soybean genes evolve and respond to hypoxia, stable and differentially expressed genes were characterized structurally and compositionally comparing its mechanistic relationship. Between cultivars, Embrapa 45 showed less up- and more down-regulated genes, and stronger induction of phosphoglucomutase (Glyma05g34790), unknown protein related to N-terminal protein myristoylation (Glyma06g03430), protein suppressor of phyA-105 (Glyma06g37080), and fibrillin (Glyma10g32620). RNA-seq and qRT-PCR analysis of non-symbiotic hemoglobin (Glyma11g12980) indicated divergence in gene structure between cultivars. Transcriptional changes for genes in amino acids and derivative metabolic process suggest involvement of amino acids metabolism in tRNA modifications, translation accuracy/efficiency, and endoplasmic reticulum stress in both cultivars under hypoxia. Gene groups differed in promoter TATA box, ABREs (ABA-responsive elements), and CRT/DREs (C-repeat/dehydration-responsive elements) frequency. Gene groups also differed in structure, composition, and codon usage, indicating biological significances. Additional data suggests that cis-acting ABRE elements can mediate gene expression independent of ABA in soybean roots under hypoxia.

  13. B cell receptor accessory molecule CD79α: Characterisation and expression analysis in a cartilaginous fish, the spiny dogfish (Squalus acanthias)

    PubMed Central

    Li, Ronggai; Wang, Tiehui; Bird, Steve; Zou, Jun; Dooley, Helen; Secombes, Christopher J.

    2013-01-01

    CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5′ flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies. PMID:23454429

  14. B cell receptor accessory molecule CD79α: characterisation and expression analysis in a cartilaginous fish, the spiny dogfish (Squalus acanthias).

    PubMed

    Li, Ronggai; Wang, Tiehui; Bird, Steve; Zou, Jun; Dooley, Helen; Secombes, Christopher J

    2013-06-01

    CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5' flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Design and implementation of ergonomic performance measurement system at a steel plant in India.

    PubMed

    Ray, Pradip Kumar; Tewari, V K

    2012-01-01

    Management of Tata Steel, the largest steel making company of India in the private sector, felt the need to develop a framework to determine the levels of ergonomic performance at its different workplaces. The objectives of the study are manifold: to identify and characterize the ergonomic variables for a given worksystem with regard to work efficiency, operator safety, and working conditions, to design a comprehensive Ergonomic Performance Indicator (EPI) for quantitative determination of the ergonomic status and maturity of a given worksystem. The study team of IIT Kharagpur consists of three faculty members and the management of Tata Steel formed a team of eleven members for implementation of EPI model. In order to design and develop the EPI model with total participation and understanding of the concerned personnel of Tata Steel, a three-phase action plan for the project was prepared. The project consists of three phases: preparation and data collection, detailed structuring and validation of EPI model. Identification of ergonomic performance factors, development of interaction matrix, design of assessment tool, and testing and validation of assessment tool (EPI) in varied situations are the major steps in these phases. The case study discusses in detail the EPI model and its applications.

  16. "Insight" in pigeons: absence of means-end processing in displacement tests.

    PubMed

    Cook, Robert G; Fowler, Catherine

    2014-03-01

    The understanding of functional relations between action and consequence is a critical component of intelligence. To examine this linkage in pigeons, we investigated their understanding of the relations of the elements tested in an extension of Köhler's box stacking task to this species. In the experiments, the pigeons had to move a spatially displaced box under an out-of-reach target. Experiment 1 successfully replicated and extended the previous finding showing that when separately trained to move a box and stand on it to peck the target, pigeons can synthesize these behaviors to solve the single-box displacement problem quickly on their first attempt. Experiment 2 tested whether pigeons, when given a simultaneous choice between two boxes with identical reinforcement histories, would selectively choose the box with the correct functional affordance (i.e., permitting standing) to solve the problem rather than a non-functional one. Their extensive, equivalent, and undirected behavior in moving both boxes during these tests suggests the pigeons did not possess a means-end understanding of the functional properties of the boxes. Instead, their results were consistent with an analysis of their earlier synthetic behavior as being due to the temporal and spatial relations of the physical elements in the task and their prior learned behaviors.

  17. Genome-wide characterization and analysis of F-box protein-encoding genes in the Malus domestica genome.

    PubMed

    Cui, Hao-Ran; Zhang, Zheng-Rong; Lv, Wei; Xu, Jia-Ning; Wang, Xiao-Yun

    2015-08-01

    The F-box protein family is a large family that is characterized by conserved F-box domains of approximately 40-50 amino acids in the N-terminus. F-box proteins participate in diverse cellular processes, such as development of floral organs, signal transduction and response to stress, primarily as a component of the Skp1-cullin-F-box (SCF) complex. In this study, using a global search of the apple genome, 517 F-box protein-encoding genes (F-box genes for short) were identified and further subdivided into 12 groups according to the characterization of known functional domains, which suggests the different potential functions or processes that they were involved in. Among these domains, the galactose oxidase domain was analyzed for the first time in plants, and this domain was present with or without the Kelch domain. The F-box genes were distributed in all 17 apple chromosomes with various densities and tended to form gene clusters. Spatial expression profile analysis revealed that F-box genes have organ-specific expression and are widely expressed in all organs. Proteins that contained the galactose oxidase domain were highly expressed in leaves, flowers and seeds. From a fruit ripening expression profile, 166 F-box genes were identified. The expressions of most of these genes changed little during maturation, but five of them increased significantly. Using qRT-PCR to examine the expression of F-box genes encoding proteins with domains related to stress, the results revealed that F-box proteins were up- or down-regulated, which suggests that F-box genes were involved in abiotic stress. The results of this study helped to elucidate the functions of F-box proteins, especially in Rosaceae plants.

  18. S-Boxes Based on Affine Mapping and Orbit of Power Function

    NASA Astrophysics Data System (ADS)

    Khan, Mubashar; Azam, Naveed Ahmed

    2015-06-01

    The demand of data security against computational attacks such as algebraic, differential, linear and interpolation attacks has been increased as a result of rapid advancement in the field of computation. It is, therefore, necessary to develop such cryptosystems which can resist current cryptanalysis and more computational attacks in future. In this paper, we present a multiple S-boxes scheme based on affine mapping and orbit of the power function used in Advanced Encryption Standard (AES). The proposed technique results in 256 different S-boxes named as orbital S-boxes. Rigorous tests and comparisons are performed to analyse the cryptographic strength of each of the orbital S-boxes. Furthermore, gray scale images are encrypted by using multiple orbital S-boxes. Results and simulations show that the encryption strength of the orbital S-boxes against computational attacks is better than that of the existing S-boxes.

  19. Functional redundancy and/or ongoing pseudogenization among F-box protein genes expressed in Arabidopsis male gametophyte.

    PubMed

    Ikram, Sobia; Durandet, Monique; Vesa, Simona; Pereira, Serge; Guerche, Philippe; Bonhomme, Sandrine

    2014-06-01

    F-box protein genes family is one of the largest gene families in plants, with almost 700 predicted genes in the model plant Arabidopsis. F-box proteins are key components of the ubiquitin proteasome system that allows targeted protein degradation. Transcriptome analyses indicate that half of these F-box protein genes are found expressed in microspore and/or pollen, i.e., during male gametogenesis. To assess the role of F-box protein genes during this crucial developmental step, we selected 34 F-box protein genes recorded as highly and specifically expressed in pollen and isolated corresponding insertion mutants. We checked the expression level of each selected gene by RT-PCR and confirmed pollen expression for 25 genes, but specific expression for only 10 of the 34 F-box protein genes. In addition, we tested the expression level of selected F-box protein genes in 24 mutant lines and showed that 11 of them were null mutants. Transmission analysis of the mutations to the progeny showed that none of the single mutations was gametophytic lethal. These unaffected transmission efficiencies suggested leaky mutations or functional redundancy among F-box protein genes. Cytological observation of the gametophytes in the mutants confirmed these results. Combinations of mutations in F-box protein genes from the same subfamily did not lead to transmission defect either, further highlighting functional redundancy and/or a high proportion of pseudogenes among these F-box protein genes.

  20. Physcomitrella MADS-box genes regulate water supply and sperm movement for fertilization.

    PubMed

    Koshimizu, Shizuka; Kofuji, Rumiko; Sasaki-Sekimoto, Yuko; Kikkawa, Masahide; Shimojima, Mie; Ohta, Hiroyuki; Shigenobu, Shuji; Kabeya, Yukiko; Hiwatashi, Yuji; Tamada, Yosuke; Murata, Takashi; Hasebe, Mitsuyasu

    2018-01-01

    MIKC classic (MIKC C )-type MADS-box genes encode transcription factors that function in various developmental processes, including angiosperm floral organ identity. Phylogenetic analyses of the MIKC C -type MADS-box family, including genes from non-flowering plants, suggest that the increased numbers of these genes in flowering plants is related to their functional divergence; however, their precise functions in non-flowering plants and their evolution throughout land plant diversification are unknown. Here, we show that MIKC C -type MADS-box genes in the moss Physcomitrella patens function in two ways to enable fertilization. Analyses of protein localization, deletion mutants and overexpression lines of all six genes indicate that three MIKC C -type MADS-box genes redundantly regulate cell division and growth in the stems for appropriate external water conduction, as well as the formation of sperm with motile flagella. The former function appears to be maintained in the flowering plant lineage, while the latter was lost in accordance with the loss of sperm.

  1. Nopaline-type Ti plasmid of Agrobacterium encodes a VirF-like functional F-box protein.

    PubMed

    Lacroix, Benoît; Citovsky, Vitaly

    2015-11-20

    During Agrobacterium-mediated genetic transformation of plants, several bacterial virulence (Vir) proteins are translocated into the host cell to facilitate infection. One of the most important of such translocated factors is VirF, an F-box protein produced by octopine strains of Agrobacterium, which presumably facilitates proteasomal uncoating of the invading T-DNA from its associated proteins. The presence of VirF also is thought to be involved in differences in host specificity between octopine and nopaline strains of Agrobacterium, with the current dogma being that no functional VirF is encoded by nopaline strains. Here, we show that a protein with homology to octopine VirF is encoded by the Ti plasmid of the nopaline C58 strain of Agrobacterium. This protein, C58VirF, possesses the hallmarks of functional F-box proteins: it contains an active F-box domain and specifically interacts, via its F-box domain, with SKP1-like (ASK) protein components of the plant ubiquitin/proteasome system. Thus, our data suggest that nopaline strains of Agrobacterium have evolved to encode a functional F-box protein VirF.

  2. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants

    PubMed Central

    Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter

    2014-01-01

    Background and Aims MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. Methods The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Key Results Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11–14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14–16 Type II MADS-box genes. Conclusions The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is the first that provides a comprehensive overview of MADS-box genes in conifers and thus will provide a framework for future work on MADS-box genes in seed plants. PMID:24854168

  3. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases.

    PubMed

    Wiborg, Jakob; O'Shea, Charlotte; Skriver, Karen

    2008-08-01

    The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s respectively, but no productive interaction was observed with the UBC15 E2 tested. The activity of AtPUB54 [Arabidopsis thaliana (thale cress) plant U-box 54 protein] was dependent on Trp(266) in the E2-binding cleft, and the E2 selectivity was changed by substitution of this position. The function of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis-trans isomerization of peptidyl-prolyl bonds and dissolving protein aggregates. In conclusion, both typical and atypical Arabidopsis U-box proteins were active E3s. The overlap in the E3/E2 selectivity suggests that in vivo specificity is not determined only by the E3-E2 interactions, but also by other parameters, e.g. co-existence or interactions with additional domains. The biochemical functions of AtPUB49 suggest that the protein can be involved in folding or degradation of protein substrates. Similar functions can also be retained within a protein complex with separate chaperone and U-box proteins.

  4. One foot out the door: limb function during swimming in terrestrial versus aquatic turtles.

    PubMed

    Young, Vanessa K Hilliard; Vest, Kaitlyn G; Rivera, Angela R V; Espinoza, Nora R; Blob, Richard W

    2017-01-01

    Specialization for a new habitat often entails a cost to performance in the ancestral habitat. Although aquatic lifestyles are ancestral among extant cryptodiran turtles, multiple lineages, including tortoises (Testudinidae) and emydid box turtles (genus Terrapene), independently specialized for terrestrial habitats. To what extent is swimming function retained in such lineages despite terrestrial specialization? Because tortoises diverged from other turtles over 50 Ma, but box turtles did so only 5 Ma, we hypothesized that swimming kinematics for box turtles would more closely resemble those of aquatic relatives than those of tortoises. To test this prediction, we compared high-speed video of swimming Russian tortoises (Testudo horsfieldii), box turtles (Terrapene carolina) and two semi-aquatic emydid species: sliders (Trachemys scripta) and painted turtles (Chrysemys picta). We identified different kinematic patterns between limbs. In the forelimb, box turtle strokes most resemble those of tortoises; for the hindlimb, box turtles are more similar to semi-aquatic species. Such patterns indicate functional convergence of the forelimb of terrestrial species, whereas the box turtle hindlimb exhibits greater retention of ancestral swimming motions. © 2017 The Author(s).

  5. One foot out the door: limb function during swimming in terrestrial versus aquatic turtles

    PubMed Central

    Vest, Kaitlyn G.; Rivera, Angela R. V.; Espinoza, Nora R.; Blob, Richard W.

    2017-01-01

    Specialization for a new habitat often entails a cost to performance in the ancestral habitat. Although aquatic lifestyles are ancestral among extant cryptodiran turtles, multiple lineages, including tortoises (Testudinidae) and emydid box turtles (genus Terrapene), independently specialized for terrestrial habitats. To what extent is swimming function retained in such lineages despite terrestrial specialization? Because tortoises diverged from other turtles over 50 Ma, but box turtles did so only 5 Ma, we hypothesized that swimming kinematics for box turtles would more closely resemble those of aquatic relatives than those of tortoises. To test this prediction, we compared high-speed video of swimming Russian tortoises (Testudo horsfieldii), box turtles (Terrapene carolina) and two semi-aquatic emydid species: sliders (Trachemys scripta) and painted turtles (Chrysemys picta). We identified different kinematic patterns between limbs. In the forelimb, box turtle strokes most resemble those of tortoises; for the hindlimb, box turtles are more similar to semi-aquatic species. Such patterns indicate functional convergence of the forelimb of terrestrial species, whereas the box turtle hindlimb exhibits greater retention of ancestral swimming motions. PMID:28123109

  6. A new approach way for white organic light-emitting diodes based on single emitting layer and large stokes shift.

    PubMed

    Kim, Beomjin; Park, Youngil; Shin, Yunseop; Lee, Jiwon; Shin, Hwangyu; Park, Jongwook

    2014-07-01

    New red dopant, DPPZ based on porphyrin moiety was synthesized. DPPZ showed UV-Vis and PL maximum values of 412 and 638 nm, indicating the large stokes shift. New blue host compound, TATa was also synthesized and used for co-mixed white emission. TATa exhibited UV-Vis. and PL maximum values of 403 nm and 463 nm in film state. Thus, when two compounds are used as co-mixed emitter in OLED device, there is no energy transfer from blue emission of TATa to DPPZ due to large stokes shift of DPPZ. Based on the PL result, it is available to realize two-colored white in PL and EL spectra. As a result of this, two-mixed compounds showed vivid their own PL emission peaks of 466 and 638 nm in film state. Also, white OLED device using two-mixed compounds system was fabricated. EL spectrum shows 481 and 646 nm peaks and two separate EL peaks. As the operation voltage is increased from 8 to 11 V, EL spectrum does not change the peak shape and maximum wavelength values. EL performance of white device showed 0.041 cd/A, 0.018 Im/W, and CIE (0.457, 0.331) at 8 V.

  7. Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning.

    PubMed

    Gutiérrez, Gabriel; Millán-Zambrano, Gonzalo; Medina, Daniel A; Jordán-Pla, Antonio; Pérez-Ortín, José E; Peñate, Xenia; Chávez, Sebastián

    2017-12-07

    TFIIS stimulates RNA cleavage by RNA polymerase II and promotes the resolution of backtracking events. TFIIS acts in the chromatin context, but its contribution to the chromatin landscape has not yet been investigated. Co-transcriptional chromatin alterations include subtle changes in nucleosome positioning, like those expected to be elicited by TFIIS, which are elusive to detect. The most popular method to map nucleosomes involves intensive chromatin digestion by micrococcal nuclease (MNase). Maps based on these exhaustively digested samples miss any MNase-sensitive nucleosomes caused by transcription. In contrast, partial digestion approaches preserve such nucleosomes, but introduce noise due to MNase sequence preferences. A systematic way of correcting this bias for massively parallel sequencing experiments is still missing. To investigate the contribution of TFIIS to the chromatin landscape, we developed a refined nucleosome-mapping method in Saccharomyces cerevisiae. Based on partial MNase digestion and a sequence-bias correction derived from naked DNA cleavage, the refined method efficiently mapped nucleosomes in promoter regions rich in MNase-sensitive structures. The naked DNA correction was also important for mapping gene body nucleosomes, particularly in those genes whose core promoters contain a canonical TATA element. With this improved method, we analyzed the global nucleosomal changes caused by lack of TFIIS. We detected a general increase in nucleosomal fuzziness and more restricted changes in nucleosome occupancy, which concentrated in some gene categories. The TATA-containing genes were preferentially associated with decreased occupancy in gene bodies, whereas the TATA-like genes did so with increased fuzziness. The detected chromatin alterations correlated with functional defects in nascent transcription, as revealed by genomic run-on experiments. The combination of partial MNase digestion and naked DNA correction of the sequence bias is a precise nucleosomal mapping method that does not exclude MNase-sensitive nucleosomes. This method is useful for detecting subtle alterations in nucleosome positioning produced by lack of TFIIS. Their analysis revealed that TFIIS generally contributed to nucleosome positioning in both gene promoters and bodies. The independent effect of lack of TFIIS on nucleosome occupancy and fuzziness supports the existence of alternative chromatin dynamics during transcription elongation.

  8. Structural basis for recognition and remodeling of the TBP:DNA:NC2 complex by Mot1

    PubMed Central

    Butryn, Agata; Schuller, Jan M; Stoehr, Gabriele; Runge-Wollmann, Petra; Förster, Friedrich; Auble, David T; Hopfner, Karl-Peter

    2015-01-01

    Swi2/Snf2 ATPases remodel substrates such as nucleosomes and transcription complexes to control a wide range of DNA-associated processes, but detailed structural information on the ATP-dependent remodeling reactions is largely absent. The single subunit remodeler Mot1 (modifier of transcription 1) dissociates TATA box-binding protein (TBP):DNA complexes, offering a useful system to address the structural mechanisms of Swi2/Snf2 ATPases. Here, we report the crystal structure of the N-terminal domain of Mot1 in complex with TBP, DNA, and the transcription regulator negative cofactor 2 (NC2). Our data show that Mot1 reduces DNA:NC2 interactions and unbends DNA as compared to the TBP:DNA:NC2 state, suggesting that Mot1 primes TBP:NC2 displacement in an ATP-independent manner. Electron microscopy and cross-linking data suggest that the Swi2/Snf2 domain of Mot1 associates with the upstream DNA and the histone fold of NC2, thereby revealing parallels to some nucleosome remodelers. This study provides a structural framework for how a Swi2/Snf2 ATPase interacts with its substrate DNA:protein complex. DOI: http://dx.doi.org/10.7554/eLife.07432.001 PMID:26258880

  9. Properties of an intergenic terminator and start site switch that regulate IMD2 transcription in yeast.

    PubMed

    Jenks, M Harley; O'Rourke, Thomas W; Reines, Daniel

    2008-06-01

    The IMD2 gene in Saccharomyces cerevisiae is regulated by intracellular guanine nucleotides. Regulation is exerted through the choice of alternative transcription start sites that results in synthesis of either an unstable short transcript terminating upstream of the start codon or a full-length productive IMD2 mRNA. Start site selection is dictated by the intracellular guanine nucleotide levels. Here we have mapped the polyadenylation sites of the upstream, unstable short transcripts that form a heterogeneous family of RNAs of approximately 200 nucleotides. The switch from the upstream to downstream start sites required the Rpb9 subunit of RNA polymerase II. The enzyme's ability to locate the downstream initiation site decreased exponentially as the start was moved downstream from the TATA box. This suggests that RNA polymerase II's pincer grip is important as it slides on DNA in search of a start site. Exosome degradation of the upstream transcripts was highly dependent upon the distance between the terminator and promoter. Similarly, termination was dependent upon the Sen1 helicase when close to the promoter. These findings extend the emerging concept that distinct modes of termination by RNA polymerase II exist and that the distance of the terminator from the promoter, as well as its sequence, is important for the pathway chosen.

  10. [Divergence of paralogous growth-hormone-encoding genes and their promoters in Salmonidae].

    PubMed

    Kamenskaya, D N; Pankova, M V; Atopkin, D M; Brykov, V A

    2017-01-01

    In many fish species, including salmonids, the growth-hormone is encoded by two duplicated paralogous genes, gh1 and gh2. Both genes were already in place at the time of divergence of species in this group. A comparison of the entire sequence of these genes of salmonids has shown that their conserved regions are associated with exons, while their most variable regions correspond to introns. Introns C and D include putative regulatory elements (sites Pit-1, CRE, and ERE), that are also conserved. In chars, the degree of polymorphism of gh2 gene is 2-3 times as large as that in gh1 gene. However, a comparison across all Salmonidae species would not extent this observation to other species. In both these chars' genes, the promoters are conserved mainly because they correspond to putative regulatory sequences (TATA box, binding sites for the pituitary transcription factor Pit-1 (F1-F4), CRE, GRE and RAR/RXR elements). The promoter of gh2 gene has a greater degree of polymorphism compared with gh1 gene promoter in all investigated species of salmonids. The observed differences in the rates of accumulation of changes in growth hormone encoding paralogs could be explained by differences in the intensity of selection.

  11. Regulation of catalase expression in healthy and cancerous cells.

    PubMed

    Glorieux, Christophe; Zamocky, Marcel; Sandoval, Juan Marcelo; Verrax, Julien; Calderon, Pedro Buc

    2015-10-01

    Catalase is an important antioxidant enzyme that dismutates hydrogen peroxide into water and molecular oxygen. The catalase gene has all the characteristics of a housekeeping gene (no TATA box, no initiator element sequence, high GC content in promoter) and a core promoter that is highly conserved among species. We demonstrate in this review that within this core promoter, the presence of DNA binding sites for transcription factors, such as NF-Y and Sp1, plays an essential role in the positive regulation of catalase expression. Additional transcription factors, such as FoxO3a, are also involved in this regulatory process. There is strong evidence that the protein Akt/PKB in the PI3K signaling pathway plays a major role in the expression of catalase by modulating the activity of FoxO3a. Over the past decade, other transcription factors (PPARγ, Oct-1, etc.), as well as genetic, epigenetic, and posttranscriptional processes, have emerged as crucial contributors to the regulation of catalase expression. Altered expression levels of catalase have been reported in cancer tissues compared to their normal counterparts. Deciphering the molecular mechanisms that regulate catalase expression could, therefore, be of crucial importance for the future development of pro-oxidant cancer chemotherapy. Copyright © 2015. Published by Elsevier Inc.

  12. Divergent gene copies in the asexual class Bdelloidea (Rotifera) separated before the bdelloid radiation or within bdelloid families.

    PubMed

    Mark Welch, David B; Cummings, Michael P; Hillis, David M; Meselson, Matthew

    2004-02-10

    Rotifers of the asexual class Bdelloidea are unusual in possessing two or more divergent copies of every gene that has been examined. Phylogenetic analysis of the heat-shock gene hsp82 and the TATA-box-binding protein gene tbp in multiple bdelloid species suggested that for each gene, each copy belonged to one of two lineages that began to diverge before the bdelloid radiation. Such gene trees are consistent with the two lineages having descended from former alleles that began to diverge after meiotic segregation ceased or from subgenomes of an alloploid ancestor of the bdelloids. However, the original analyses of bdelloid gene-copy divergence used only a single outgroup species and were based on parsimony and neighbor joining. We have now used maximum likelihood and Bayesian inference methods and, for hsp82, multiple outgroups in an attempt to produce more robust gene trees. Here we report that the available data do not unambiguously discriminate between gene trees that root the origin of hsp82 and tbp copy divergence before the bdelloid radiation and those which indicate that the gene copies began to diverge within bdelloid families. The remarkable presence of multiple diverged gene copies in individual genomes is nevertheless consistent with the loss of sex in an ancient ancestor of bdelloids.

  13. Cloning of murine RNA polymerase I-specific TAF factors: Conserved interactions between the subunits of the species-specific transcription initiation factor TIF-IB/SL1

    PubMed Central

    Heix, Jutta; Zomerdijk, Joost C. B. M.; Ravanpay, Ali; Tjian, Robert; Grummt, Ingrid

    1997-01-01

    Promoter selectivity for all three classes of eukaryotic RNA polymerases is brought about by multimeric protein complexes containing TATA box binding protein (TBP) and specific TBP-associated factors (TAFs). Unlike class II- and III-specific TBP–TAF complexes, the corresponding murine and human class I-specific transcription initiation factor TIF-IB/SL1 exhibits a pronounced selectivity for its homologous promoter. As a first step toward understanding the molecular basis of species-specific promoter recognition, we cloned the cDNAs encoding the three mouse pol I-specific TBP-associated factors (TAFIs) and compared the amino acid sequences of the murine TAFIs with their human counterparts. The four subunits from either species can form stable chimeric complexes that contain stoichiometric amounts of TBP and TAFIs, demonstrating that differences in the primary structure of human and mouse TAFIs do not dramatically alter the network of protein–protein contacts responsible for assembly of the multimeric complex. Thus, primate vs. rodent promoter selectivity mediated by the TBP–TAFI complex is likely to be the result of cumulative subtle differences between individual subunits that lead to species-specific properties of RNA polymerase I transcription. PMID:9050847

  14. Characterization of Cer-1 cis-regulatory region during early Xenopus development.

    PubMed

    Silva, Ana Cristina; Filipe, Mário; Steinbeisser, Herbert; Belo, José António

    2011-05-01

    Cerberus-related molecules are well-known Wnt, Nodal, and BMP inhibitors that have been implicated in different processes including anterior–posterior patterning and left–right asymmetry. In both mouse and frog, two Cerberus-related genes have been isolated, mCer-1 and mCer-2, and Xcer and Xcoco, respectively. Until now, little is known about the mechanisms involved in their transcriptional regulation. Here, we report a heterologous analysis of the mouse Cerberus-1 gene upstream regulatory regions, responsible for its expression in the visceral endodermal cells. Our analysis showed that the consensus sequences for a TATA, CAAT, or GC boxes were absent but a TGTGG sequence was present at position -172 to -168 bp, relative to the ATG. Using a series of deletion constructs and transient expression in Xenopus embryos, we found that a fragment of 1.4 kb of Cer-1 promoter sequence could reproduce the endogenous expression pattern of Xenopus cerberus. A 0.7-kb mcer-1 upstream region was able to drive reporter expression to the involuting mesendodermal cells, while further deletions abolished reporter gene expression. Our results suggest that although no sequence similarity was found between mouse and Xenopus cerberus cis-regulatory regions, the signaling cascades regulating cerberus expression, during gastrulation, is conserved.

  15. Isolation of a promoter region in mouse cytochrome P450 3A (Cyp3A16) gene and its transcriptional control.

    PubMed

    Itoh, S; Abe, Y; Kubo, A; Okuda, M; Shimoji, M; Nakayama, K; Kamataki, T

    1997-02-07

    An 11.5 kb fragment of the mouse Cyp3a16 gene containing the 5' flanking region was isolated from the lambda DASHII mouse genomic library. A part of the 5' flanking region and the first exon of Cyp3a16 gene were sequenced. S1 mapping analysis showed the presence of two transcriptional initiation sites. The first exon was completely identical to Cyp3a16 cDNA. The identity of 5' flanking sequences between Cyp3a16 and Cyp3a11 genes was about 69%. A typical TATA box and a basic transcription element (BTE) were found as seen with other CYP3A genes from various animal species Moreover, some putative transcriptional regulatory elements were also found in addition to the sequence motif seen for the formation of Z-type DNA. To examine the transcriptional activity of Cyp3a11 gene, DNA fragments in the 5'-flanking region of the gene were inserted front of the luciferase structural gene, and the constructs were transfected in primary hepatocytes. The analysis of the luciferase activity indicated that the region between -146 and -56 was necessary for the transcription of CYP3a16 gene.

  16. “Insight” in Pigeons: Absence of Means-End Processing in Displacement Tests

    PubMed Central

    Cook, Robert G.; Fowler, Catherine

    2013-01-01

    The understanding of functional relations between action and consequence is a critical component of intelligence. To examine this linkage in pigeons, we investigated their understanding of the relations of the elements tested in an extension of Köhler's box-stacking task to this species (Epstein et al. 1984). In the experiments, the pigeons had to move a spatially displaced box under an out-of-reach target. Experiment 1 successfully replicated and extended the previous finding showing that when separately trained to move a box and stand on it to peck the target, pigeons can synthesize these behaviors to solve the single-box displacement problem quickly on their first attempt. Experiment 2 tested whether pigeons, when given a simultaneous choice among two boxes with identical reinforcement histories, would selectively choose the box with the correct functional affordance (i.e., permitting standing) to solve the problem rather than a nonfunctional one. Their extensive, equivalent, and undirected behavior in moving both boxes during these tests suggests the pigeons did not possess a means-end understanding of the functional properties of the boxes. Instead, their results were consistent with an analysis of their earlier synthetic behavior as being due to the temporal and spatial relations of the physical elements in the task and their prior learned behaviors. PMID:23774955

  17. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants.

    PubMed

    Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter

    2014-11-01

    MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11-14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14-16 Type II MADS-box genes. The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is the first that provides a comprehensive overview of MADS-box genes in conifers and thus will provide a framework for future work on MADS-box genes in seed plants. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. TATA-binding protein-associated factor 7 regulates polyamine transport activity and polyamine analog-induced apoptosis.

    PubMed

    Fukuchi, Junichi; Hiipakka, Richard A; Kokontis, John M; Nishimura, Kazuhiro; Igarashi, Kazuei; Liao, Shutsung

    2004-07-16

    Identification of the polyamine transporter gene will be useful for modulating polyamine accumulation in cells and should be a good target for controlling cell proliferation. Polyamine transport activity in mammalian cells is critical for accumulation of the polyamine analog methylglyoxal bis(guanylhydrazone) (MGBG) that induces apoptosis, although a gene responsible for transport activity has not been identified. Using a retroviral gene trap screen, we generated MGBG-resistant Chinese hamster ovary (CHO) cells to identify genes involved in polyamine transport activity. One gene identified by the method encodes TATA-binding protein-associated factor 7 (TAF7), which functions not only as one of the TAFs, but also a coactivator for c-Jun. TAF7-deficient cells had decreased capacity for polyamine uptake (20% of CHO cells), decreased AP-1 activation, as well as resistance to MGBG-induced apoptosis. Stable expression of TAF7 in TAF7-deficient cells restored transport activity (55% of CHO cells), AP-1 gene transactivation (100% of CHO cells), and sensitivity to MGBG-induced apoptosis. Overexpression of TAF7 in CHO cells did not increase transport activity, suggesting that TAF7 may be involved in the maintenance of basal activity. c-Jun NH2-terminal kinase inhibitors blocked MGBG-induced apoptosis without alteration of polyamine transport. Decreased TAF7 expression, by RNA interference, in androgen-independent human prostate cancer LN-CaP104-R1 cells resulted in lower polyamine transport activity (25% of control) and resistance to MGBG-induced growth arrest. Taken together, these results reveal a physiological function of TAF7 as a basal regulator for mammalian polyamine transport activity and MGBG-induced apoptosis.

  19. 75 FR 1029 - International Trade Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... manufacturers (equipment and devices including laboratory, emergency, diagnostic, physiotherapy, and orthopedic... in Chennai, and Wockhard and the Tata Institute of Fundamental Research in Mumbai. The three cities...

  20. Helicopter Maritime Environment Trainer: Operator Manual (Simulateur D’Entrainement Virtuel Maritime: Manuel de L’Operateur)

    DTIC Science & Technology

    2011-06-01

    73 Figure 10 . Cereal Box Device Window...120 Figure 30 . Cereal Box Device Window... Cereal Box Device Functions ...................................................................................... 77 Table 19 ... Entries of Settings

  1. The DEAD-box helicase eIF4A: paradigm or the odd one out?

    PubMed

    Andreou, Alexandra Z; Klostermeier, Dagmar

    2013-01-01

    DEAD-box helicases catalyze the ATP-dependent unwinding of RNA duplexes. They share a helicase core formed by two RecA-like domains that carries a set of conserved motifs contributing to ATP binding and hydrolysis, RNA binding and duplex unwinding. The translation initiation factor eIF4A is the founding member of the DEAD-box protein family, and one of the few examples of DEAD-box proteins that consist of a helicase core only. It is an RNA-stimulated ATPase and a non-processive helicase that unwinds short RNA duplexes. In the catalytic cycle, a series of conformational changes couples the nucleotide cycle to RNA unwinding. eIF4A has been considered a paradigm for DEAD-box proteins, and studies of its function have revealed the governing principles underlying the DEAD-box helicase mechanism. However, as an isolated helicase core, eIF4A is rather the exception, not the rule. Most helicase modules in other DEAD-box proteins are modified, some by insertions into the RecA-like domains, and the majority by N- and C-terminal appendages. While the basic catalytic function resides within the helicase core, its modulation by insertions, additional domains or a network of interaction partners generates the diversity of DEAD-box protein functions in the cell. This review summarizes the current knowledge on eIF4A and its regulation, and discusses to what extent eIF4A serves as a model DEAD-box protein.

  2. Novel functions of prototype foamy virus Gag glycine- arginine-rich boxes in reverse transcription and particle morphogenesis.

    PubMed

    Müllers, Erik; Uhlig, Tobias; Stirnnagel, Kristin; Fiebig, Uwe; Zentgraf, Hanswalter; Lindemann, Dirk

    2011-02-01

    Prototype foamy virus (PFV) Gag lacks the characteristic orthoretroviral Cys-His motifs that are essential for various steps of the orthoretroviral replication cycle, such as RNA packaging, reverse transcription, infectivity, integration, and viral assembly. Instead, it contains three glycine-arginine-rich boxes (GR boxes) in its C terminus that putatively represent a functional equivalent. We used a four-plasmid replication-deficient PFV vector system, with uncoupled RNA genome packaging and structural protein translation, to analyze the effects of deletion and various substitution mutations within each GR box on particle release, particle-associated protein composition, RNA packaging, DNA content, infectivity, particle morphology, and intracellular localization. The degree of viral particle release by all mutants was similar to that of the wild type. Only minimal effects on Pol encapsidation, exogenous reverse transcriptase (RT) activity, and genomic viral RNA packaging were observed. In contrast, particle-associated DNA content and infectivity were drastically reduced for all deletion mutants and were undetectable for all alanine substitution mutants. Furthermore, GR box I mutants had significant changes in particle morphology, and GR box II mutants lacked the typical nuclear localization pattern of PFV Gag. Finally, it could be shown that GR boxes I and III, but not GR box II, can functionally complement each other. It therefore appears that, similar to the orthoretroviral Cys-His motifs, the PFV Gag GR boxes are important for RNA encapsidation, genome reverse transcription, and virion infectivity as well as for particle morphogenesis.

  3. Comparative analysis of profitability of honey production using traditional and box hives.

    PubMed

    Al-Ghamdi, Ahmed A; Adgaba, Nuru; Herab, Ahmed H; Ansari, Mohammad J

    2017-07-01

    Information on the profitability and productivity of box hives is important to encourage beekeepers to adopt the technology. However, comparative analysis of profitability and productivity of box and traditional hives is not adequately available. The study was carried out on 182 beekeepers using cross sectional survey and employing a random sampling technique. The data were analyzed using descriptive statistics, analysis of variance (ANOVA), the Cobb-Douglas (CD) production function and partial budgeting. The CD production function revealed that supplementary bee feeds, labor and medication were statistically significant for both box and traditional hives. Generally, labor for bee management, supplementary feeding, and medication led to productivity differences of approximately 42.83%, 7.52%, and 5.34%, respectively, between box and traditional hives. The study indicated that productivity of box hives were 72% higher than traditional hives. The average net incomes of beekeepers using box and traditional hives were 33,699.7 SR/annum and 16,461.4 SR/annum respectively. The incremental net benefit of box hives over traditional hives was nearly double. Our study results clearly showed the importance of adoption of box hives for better productivity of the beekeeping subsector.

  4. Structural features of diverse Pin-II proteinase inhibitor genes from Capsicum annuum.

    PubMed

    Mahajan, Neha S; Dewangan, Veena; Lomate, Purushottam R; Joshi, Rakesh S; Mishra, Manasi; Gupta, Vidya S; Giri, Ashok P

    2015-02-01

    The proteinase inhibitor (PI) genes from Capsicum annuum were characterized with respect to their UTR, introns and promoter elements. The occurrence of PIs with circularly permuted domain organization was evident. Several potato inhibitor II (Pin-II) type proteinase inhibitor (PI) genes have been analyzed from Capsicum annuum (L.) with respect to their differential expression during plant defense response. However, complete gene characterization of any of these C. annuum PIs (CanPIs) has not been carried out so far. Complete gene architectures of a previously identified CanPI-7 (Beads-on-string, Type A) and a member of newly isolated Bracelet type B, CanPI-69 are reported in this study. The 5' UTR (untranslated region), 3'UTR, and intronic sequences of both the CanPI genes were obtained. The genomic sequence of CanPI-7 exhibited, exon 1 (49 base pair, bp) and exon 2 (740 bp) interrupted by a 294-bp long type I intron. We noted the occurrence of three multi-domain PIs (CanPI-69, 70, 71) with circularly permuted domain organization. CanPI-69 was found to possess exon 1 (49 bp), exon 2 (551 bp) and a 584-bp long type I intron. The upstream sequence analysis of CanPI-7 and CanPI-69 predicted various transcription factor-binding sites including TATA and CAAT boxes, hormone-responsive elements (ABRELATERD1, DOFCOREZM, ERELEE4), and a defense-responsive element (WRKY71OS). Binding of transcription factors such as zinc finger motif MADS-box and MYB to the promoter regions was confirmed using electrophoretic mobility shift assay followed by mass spectrometric identification. The 3' UTR analysis for 25 CanPI genes revealed unique/distinct 3' UTR sequence for each gene. Structures of three domain CanPIs of type A and B were predicted and further analyzed for their attributes. This investigation of CanPI gene architecture will enable the better understanding of the genetic elements present in CanPIs.

  5. Les structures de la couverture Néoprotérozoïque terminal et Paléozoïque de la région de Tata, Anti-Atlas centre-occidental, Maroc: déformation polyphasée, ou interactions socle/couverture pendant l'orogenèse hercynienne?The structures of the Late Neoproterozoic and Early Palæozoic cover of the Tata area, western Anti-Atlas, Morocco: polyphased deformation or basement/cover interactions during the Variscan orogeny?

    NASA Astrophysics Data System (ADS)

    Faik, F.; Belfoul, M. A.; Bouabdelli, M.; Hassenforder, B.

    2001-05-01

    The western Anti-Atlas was formed by a Precambrian basement in the core of anticlines, surrounded by a Neoproterozoic and Palæozoic cover. The structural study of the Tata regional rocks shows a heterogeneous deformation, characterised especially by two types of folds in two orthogonal directions: north-south to north-northeast-south-southwest-trending and east-west-trending. The north-south structures are present in all of the Palæozoic cover and belong to the major Variscan compression of Late Carboniferous age by a comparison of the other domains of the western Anti-Atlas. Alternatively, east-west folding is assigned only to the lower part of the cover and consists of a ductile heterogeneous deformation, especially marked at the basement-cover interface. These folds are associated with a subhorizontal cleavage, indicating a southern vergence of the structures. A discussion of the age and the tectonic style of these structures is proposed, as well as their significance within the Variscan belt along the northern margin of the West African Craton.

  6. DEAD-box Helicases as Integrators of RNA, Nucleotide and Protein Binding

    PubMed Central

    Putnam, Andrea A.

    2013-01-01

    DEAD-box helicases perform diverse cellular functions in virtually all steps of RNA metabolism from Bacteria to Humans. Although DEAD-box helicases share a highly conserved core domain, the enzymes catalyze a wide range of biochemical reactions. In addition to the well established RNA unwinding and corresponding ATPase activities, DEAD-box helicases promote duplex formation and displace proteins from RNA. They can also function as assembly platforms for larger ribonucleoprotein complexes, and as metabolite sensors. This review aims to provide a perspective on the diverse biochemical features of DEAD-box helicases and connections to structural information. We discuss these data in the context of a model that views the enzymes as integrators of RNA, nucleotide, and protein binding. PMID:23416748

  7. MADS-box genes and floral development: the dark side.

    PubMed

    Heijmans, Klaas; Morel, Patrice; Vandenbussche, Michiel

    2012-09-01

    The origin of the flower during evolution has been a crucial step in further facilitating plants to colonize a wide range of different niches on our planet. The >250 000 species of flowering plants existing today display an astonishing diversity in floral architecture. For this reason, the flower is a very attractive subject for evolutionary developmental (evo-devo) genetics studies. Research during the last two decades has provided compelling evidence that the origin and functional diversification of MIKC(c) MADS-box transcription factors has played a critical role during evolution of flowering plants. As master regulators of floral organ identity, MADS-box proteins are at the heart of the classic ABC model for floral development. Despite the enormous progress made in the field of floral development, there still remain aspects that are less well understood. Here we highlight some of the dark corners within our current knowledge on MADS-box genes and flower development, which would be worthwhile investigating in more detail in future research. These include the general question of to what extent MADS-box gene functions are conserved between species, the function of TM8-clade MADS-box genes which so far have remained uncharacterized, the divergence within the A-function, and post-transcriptional regulation of the ABC-genes.

  8. Detection and quantification of RNA 2′-O-methylation and pseudouridylation

    PubMed Central

    Karijolich, John

    2016-01-01

    RNA-guided RNA modification is a naturally occurring process that introduces 2′-O-methylation and pseudouridylation into rRNA, spliceosomal snRNA and several other types of RNA. The Box C/D ribonucleoproteins (RNP) and Box H/ACA RNP, each containing one unique guide RNA (Box C/D RNA or Box H/ACA RNA) and a set of core proteins, are responsible for 2′-O-methylation and pseudouridylation respectively. Box C/D RNA and Box H/ACA RNA provide the modification specificity through base pairing with their RNA substrate. These post-transcriptional modifications could profoundly alter the properties and functions of substrate RNAs. Thus it is desirable to establish reliable and standardized modification methods to study biological functions of modified nucleotides in RNAs. Here, we present several sensitive and efficient methods and protocols for detecting and quantifying post-transcriptional 2′-O-methylation and pseudouridylation. PMID:26853326

  9. Identification and expression analysis of the SQUAMOSA promoter-binding protein (SBP)-box gene family in Prunus mume.

    PubMed

    Xu, Zongda; Sun, Lidan; Zhou, Yuzhen; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2015-10-01

    SQUAMOSA promoter-binding protein (SBP)-box family genes encode plant-specific transcription factors that play crucial roles in plant development, especially flower and fruit development. However, little information on this gene family is available for Prunus mume, an ornamental and fruit tree widely cultivated in East Asia. To explore the evolution of SBP-box genes in Prunus and explore their functions in flower and fruit development, we performed a genome-wide analysis of the SBP-box gene family in P. mume. Fifteen SBP-box genes were identified, and 11 of them contained an miR156 target site. Phylogenetic and comprehensive bioinformatics analyses revealed that different groups of SBP-box genes have undergone different evolutionary processes and varied in their length, structure, and motif composition. Purifying selection has been the main selective constraint on both paralogous and orthologous SBP-box genes. In addition, the sequences of orthologous SBP-box genes did not diverge widely after the split of P. mume and Prunus persica. Expression analysis of P. mume SBP-box genes revealed their diverse spatiotemporal expression patterns. Three duplicated SBP-box genes may have undergone subfunctionalization in Prunus. Most of the SBP-box genes showed high transcript levels in flower buds and young fruit. The four miR156-nontargeted genes were upregulated during fruit ripening. Together, these results provide information about the evolution of SBP-box genes in Prunus. The expression analysis lays the foundation for further research on the functions of SBP-box genes in P. mume and other Prunus species, especially during flower and fruit development.

  10. 49 CFR 173.340 - Tear gas devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... functioning elements must be packed in one box, and the gross weight of the outer box may not exceed 35 kg (77... inner packagings must be packed in one outer box, and the gross weight of the outer box may not exceed... similar devices must be packaged in one of the following packagings conforming to the requirements of part...

  11. 49 CFR 173.340 - Tear gas devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... functioning elements must be packed in one box, and the gross weight of the outer box may not exceed 35 kg (77... inner packagings must be packed in one outer box, and the gross weight of the outer box may not exceed... similar devices must be packaged in one of the following packagings conforming to the requirements of part...

  12. Mechanical properties of tantalum-based ceramic coatings for biomedical applications

    NASA Astrophysics Data System (ADS)

    Donkov, N.; Walkowicz, J.; Zavaleyev, V.; Zykova, A.; Safonov, V.; Dudin, S.; Yakovin, S.

    2018-03-01

    The properties were studied of Ta, Ta2O5 and Ta/Ta2O5 coatings deposited by reactive magnetron sputtering on stainless steel (AISI 316) substrates. The compositional, structural and morphological parameters of the coatings were investigated by means of X-ray photoemission spectroscopy (XPS), energy dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). The roughness parameters, adhesion strength, hardness, elastic modulus, and H/E ratio were evaluated by standard techniques. The hardness parameters of the Ta2O5 and Ta/Ta2O5 coatings increased in comparison with pure Ta films, while the relatively low Young’s modulus was related to high elastic recovery and high resistance to cracking. The tantalum-based coatings possessed good biomechanical parameters for advanced implant and stent applications.

  13. Functional interplay between Mediator and TFIIB in preinitiation complex assembly in relation to promoter architecture

    PubMed Central

    Eychenne, Thomas; Novikova, Elizaveta; Barrault, Marie-Bénédicte; Alibert, Olivier; Boschiero, Claire; Peixeiro, Nuno; Cornu, David; Redeker, Virginie; Kuras, Laurent; Nicolas, Pierre; Werner, Michel; Soutourina, Julie

    2016-01-01

    Mediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches. We revealed an essential function of the Mediator middle module exerted through its Med10 subunit, implicating a key interaction between Mediator and TFIIB. We showed that this Mediator–TFIIB link has a global role on PIC assembly genome-wide. Moreover, the amplitude of Mediator's effect on PIC formation is gene-dependent and is related to the promoter architecture in terms of TATA elements, nucleosome occupancy, and dynamics. This study thus provides mechanistic insights into the coordinated function of Mediator and TFIIB in PIC assembly in different chromatin contexts. PMID:27688401

  14. Genome-wide survey and expression analysis of F-box genes in chickpea.

    PubMed

    Gupta, Shefali; Garg, Vanika; Kant, Chandra; Bhatia, Sabhyata

    2015-02-13

    The F-box genes constitute one of the largest gene families in plants involved in degradation of cellular proteins. F-box proteins can recognize a wide array of substrates and regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence, among others. However, little is known about the F-box genes in the important legume crop, chickpea. The available draft genome sequence of chickpea allowed us to conduct a genome-wide survey of the F-box gene family in chickpea. A total of 285 F-box genes were identified in chickpea which were classified based on their C-terminal domain structures into 10 subfamilies. Thirteen putative novel motifs were also identified in F-box proteins with no known functional domain at their C-termini. The F-box genes were physically mapped on the 8 chickpea chromosomes and duplication events were investigated which revealed that the F-box gene family expanded largely due to tandem duplications. Phylogenetic analysis classified the chickpea F-box genes into 9 clusters. Also, maximum syntenic relationship was observed with soybean followed by Medicago truncatula, Lotus japonicus and Arabidopsis. Digital expression analysis of F-box genes in various chickpea tissues as well as under abiotic stress conditions utilizing the available chickpea transcriptome data revealed differential expression patterns with several F-box genes specifically expressing in each tissue, few of which were validated by using quantitative real-time PCR. The genome-wide analysis of chickpea F-box genes provides new opportunities for characterization of candidate F-box genes and elucidation of their function in growth, development and stress responses for utilization in chickpea improvement.

  15. Non-Black-Box Simulation from One-Way Functions and Applications to Resettable Security

    DTIC Science & Technology

    2012-11-05

    from 2001, Barak (FOCS’01) introduced a novel non-black-box simulation technique. This technique enabled the construc- tion of new cryptographic...primitives, such as resettably-sound zero-knowledge arguments, that cannot be proven secure using just black-box simulation techniques. The work of Barak ... Barak requires the existence of collision-resistant hash functions, and a very recent result by Bitansky and Paneth (FOCS’12) instead requires the

  16. Deciphering the molecular mechanisms underlying the binding of the TWIST1/E12 complex to regulatory E-box sequences

    PubMed Central

    Bouard, Charlotte; Terreux, Raphael; Honorat, Mylène; Manship, Brigitte; Ansieau, Stéphane; Vigneron, Arnaud M.; Puisieux, Alain; Payen, Léa

    2016-01-01

    Abstract The TWIST1 bHLH transcription factor controls embryonic development and cancer processes. Although molecular and genetic analyses have provided a wealth of data on the role of bHLH transcription factors, very little is known on the molecular mechanisms underlying their binding affinity to the E-box sequence of the promoter. Here, we used an in silico model of the TWIST1/E12 (TE) heterocomplex and performed molecular dynamics (MD) simulations of its binding to specific (TE-box) and modified E-box sequences. We focused on (i) active E-box and inactive E-box sequences, on (ii) modified active E-box sequences, as well as on (iii) two box sequences with modified adjacent bases the AT- and TA-boxes. Our in silico models were supported by functional in vitro binding assays. This exploration highlighted the predominant role of protein side-chain residues, close to the heart of the complex, at anchoring the dimer to DNA sequences, and unveiled a shift towards adjacent ((-1) and (-1*)) bases and conserved bases of modified E-box sequences. In conclusion, our study provides proof of the predictive value of these MD simulations, which may contribute to the characterization of specific inhibitors by docking approaches, and their use in pharmacological therapies by blocking the tumoral TWIST1/E12 function in cancers. PMID:27151200

  17. Genome-Wide Analyses of the Soybean F-Box Gene Family in Response to Salt Stress

    PubMed Central

    Jia, Qi; Xiao, Zhi-Xia; Wong, Fuk-Ling; Sun, Song; Liang, Kang-Jing; Lam, Hon-Ming

    2017-01-01

    The F-box family is one of the largest gene families in plants that regulate diverse life processes, including salt responses. However, the knowledge of the soybean F-box genes and their roles in salt tolerance remains limited. Here, we conducted a genome-wide survey of the soybean F-box family, and their expression analysis in response to salinity via in silico analysis of online RNA-sequencing (RNA-seq) data and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to predict their potential functions. A total of 725 potential F-box proteins encoded by 509 genes were identified and classified into 9 subfamilies. The gene structures, conserved domains and chromosomal distributions were characterized. There are 76 pairs of duplicate genes identified, including genome-wide segmental and tandem duplication events, which lead to the expansion of the number of F-box genes. The in silico expression analysis showed that these genes would be involved in diverse developmental functions and play an important role in salt response. Our qRT-PCR analysis confirmed 12 salt-responding F-box genes. Overall, our results provide useful information on soybean F-box genes, especially their potential roles in salt tolerance. PMID:28417911

  18. Genome-Wide Analyses of the Soybean F-Box Gene Family in Response to Salt Stress.

    PubMed

    Jia, Qi; Xiao, Zhi-Xia; Wong, Fuk-Ling; Sun, Song; Liang, Kang-Jing; Lam, Hon-Ming

    2017-04-12

    The F-box family is one of the largest gene families in plants that regulate diverse life processes, including salt responses. However, the knowledge of the soybean F-box genes and their roles in salt tolerance remains limited. Here, we conducted a genome-wide survey of the soybean F-box family, and their expression analysis in response to salinity via in silico analysis of online RNA-sequencing (RNA-seq) data and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to predict their potential functions. A total of 725 potential F-box proteins encoded by 509 genes were identified and classified into 9 subfamilies. The gene structures, conserved domains and chromosomal distributions were characterized. There are 76 pairs of duplicate genes identified, including genome-wide segmental and tandem duplication events, which lead to the expansion of the number of F-box genes. The in silico expression analysis showed that these genes would be involved in diverse developmental functions and play an important role in salt response. Our qRT-PCR analysis confirmed 12 salt-responding F-box genes. Overall, our results provide useful information on soybean F-box genes, especially their potential roles in salt tolerance.

  19. Transfection and heat-inducible expression of molluscan promoter-luciferase reporter gene constructs in the Biomphalaria glabrata embryonic snail cell line.

    PubMed

    Yoshino, T P; Wu, X J; Liu, H D

    1998-09-01

    Studies were initiated to begin developing a genetic transformation system for cells derived from the freshwater gastropod, Biomphalaria glabrata, an intermediate host of the human blood fluke Schistosoma mansoni. Using a 70-kD heat-shock protein (HSP70) cDNA probe obtained from the B. glabrata embryonic (Bge) cell line, we cloned from Bge cells a complete HSP70 gene including a 1-kb genomic DNA fragment in its 5'-flanking region containing sequences indicative of a HSP promoter. Identified in the 5'-half (416 nucleotides) of this genomic fragment were TATA and CAAT boxes, two putative transcription initiation sites, and a series of palindromic DNA repeats with shared homology to the heat-shock element consensus sequence (Bge HSP70(0.5k) promoter). The 3'-half of this upstream flanking region was comprised of a 508-base intron located immediately 5' of the ATG start codon. To determine the functionality of the putative snail promoter sequence, Bge HSP promoter/luciferase (Luc) reporter gene constructs were introduced into Bge cells by N-(1-(2,3-dioleoyloxy) propyl)-N,N,N-trimethylammonium methylsulfate (DOTAP)-mediated transfection methods, and assayed for Luc activity 48 hr following a 1.5-hr heat-shock treatment (40 degrees C). Compared with control vectors or the Bge HSP70(0.5k/1.0k) promoter constructs at 26 degrees C, a 10- to 300-fold increase in Luc expression was obtained only in the Bge HSP70 promoter/Luc-transfected cells following heat-shock. Results of transfection experiments demonstrate that the Bge HSP70(0.5k) DNA segment contains appropriate promoter sequences for driving temperature-inducible gene expression in the Bge snail cell line. This report represents the first isolation and functional characterization of an inducible promoter from a freshwater gastropod mollusc. Successful transient expression of a foreign reporter gene in Bge cells using a homologous, inducible promoter sequence now paves the way for development of methods for stable integration and expression of snail genes of interest into the Bge cell line.

  20. Diversity and Evolution of Bacterial Twin Arginine Translocase Protein, TatC, Reveals a Protein Secretion System That Is Evolving to Fit Its Environmental Niche

    PubMed Central

    Simone, Domenico; Bay, Denice C.; Leach, Thorin; Turner, Raymond J.

    2013-01-01

    Background The twin-arginine translocation (Tat) protein export system enables the transport of fully folded proteins across a membrane. This system is composed of two integral membrane proteins belonging to TatA and TatC protein families and in some systems a third component, TatB, a homolog of TatA. TatC participates in substrate protein recognition through its interaction with a twin arginine leader peptide sequence. Methodology/Principal Findings The aim of this study was to explore TatC diversity, evolution and sequence conservation in bacteria to identify how TatC is evolving and diversifying in various bacterial phyla. Surveying bacterial genomes revealed that 77% of all species possess one or more tatC loci and half of these classes possessed only tatC and tatA genes. Phylogenetic analysis of diverse TatC homologues showed that they were primarily inherited but identified a small subset of taxonomically unrelated bacteria that exhibited evidence supporting lateral gene transfer within an ecological niche. Examination of bacilli tatCd/tatCy isoform operons identified a number of known and potentially new Tat substrate genes based on their frequent association to tatC loci. Evolutionary analysis of these Bacilli isoforms determined that TatCy was the progenitor of TatCd. A bacterial TatC consensus sequence was determined and highlighted conserved and variable regions within a three dimensional model of the Escherichia coli TatC protein. Comparative analysis between the TatC consensus sequence and Bacilli TatCd/y isoform consensus sequences revealed unique sites that may contribute to isoform substrate specificity or make TatA specific contacts. Synonymous to non-synonymous nucleotide substitution analyses of bacterial tatC homologues determined that tatC sequence variation differs dramatically between various classes and suggests TatC specialization in these species. Conclusions/Significance TatC proteins appear to be diversifying within particular bacterial classes and its specialization may be driven by the substrates it transports and the environment of its host. PMID:24236045

  1. Capitalized design of smart medicine box for elderly person based on quality function deployment (QFD)

    NASA Astrophysics Data System (ADS)

    Lestari, Brina Cindy; Dewi, Dyah Santhi; Widodo, Rusminto Tjatur

    2017-11-01

    The elderly who has a particular disease need to take some medicines in everyday with correct dosages and appropriate by time schedules. However, the elderly frequently forget to take medicines because of their memory weakened. Consequently, the product innovation of elderly healthcare is required for helping elderly takes some medicine more easily. This research aims to develop a smart medicine box by applying quality function deployment method. The first step is identifying elderly requirements through an ethnographic approach by interviewing thirty-two of elderly people as respondents. Then, the second step is translated elderly requirements to technical parameter for designing a smart medicine box. The smart box design is focused on two main requirements which have highest importance rating including alarm reminder for taking medicine and automatic medicine box. Finally, the prototype design has been created and tested by using usability method. The result shown that 90% from ten respondents have positive respond on the feature of smart medicine box. The voice of alarm reminder smart medicine box is easy to understand by elderly people for taking medicines.

  2. 3-Hydroxy-3-methylglutaryl CoA lyase (HL): Mouse and human HL gene (HMGCL) cloning and detection of large gene deletions in two unrelated HL-deficient patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.P.; Robert, M.F.; Mitchell, G.A.

    1996-04-01

    3-hydroxy-3-methylglutaryl CoA lyase (HL, EC 4.1.3.4) catalyzes the cleavage of 3-hydroxy-3-methylglutaryl CoA to acetoacetic acid and acetyl CoA, the final reaction of both ketogenesis and leucine catabolism. Autosomal-recessive HL deficiency in humans results in episodes of hypoketotic hypoglycemia and coma. Using a mouse HL cDNA as a probe, we isolated a clone containing the full-length mouse HL gene that spans about 15 kb of mouse chromosome 4 and contains nine exons. The promoter region of the mouse HL gene contains elements characteristic of a housekeeping gene: a CpG island containing multiple Sp1 binding sites surrounds exon 1, and neither amore » TATA nor a CAAT box are present. We identified multiple transcription start sites in the mouse HL gene, 35 to 9 bases upstream of the translation start codon. We also isolated two human HL genomic clones that include HL exons 2 to 9 within 18 kb. The mouse and human HL genes (HGMW-approved symbol HMGCL) are highly homologous, with identical locations of intron-exon junctions. By genomic Southern blot analysis and exonic PCR, was found 2 of 33 HL-deficient probands to be homozygous for large deletions in the HL gene. 26 refs., 4 figs., 2 tabs.« less

  3. Identification of the Pr1 Gene Product Completes the Anthocyanin Biosynthesis Pathway of Maize

    PubMed Central

    Sharma, Mandeep; Cortes-Cruz, Moises; Ahern, Kevin R.; McMullen, Michael; Brutnell, Thomas P.; Chopra, Surinder

    2011-01-01

    In maize, mutations in the pr1 locus lead to the accumulation of pelargonidin (red) rather than cyanidin (purple) pigments in aleurone cells where the anthocyanin biosynthetic pathway is active. We characterized pr1 mutation and isolated a putative F3′H encoding gene (Zmf3′h1) and showed by segregation analysis that the red kernel phenotype is linked to this gene. Genetic mapping using SNP markers confirms its position on chromosome 5L. Furthermore, genetic complementation experiments using a CaMV 35S::ZmF3′H1 promoter–gene construct established that the encoded protein product was sufficient to perform a 3′-hydroxylation reaction. The Zmf3′h1-specific transcripts were detected in floral and vegetative tissues of Pr1 plants and were absent in pr1. Four pr1 alleles were characterized: two carry a 24 TA dinucleotide repeat insertion in the 5′-upstream promoter region, a third has a 17-bp deletion near the TATA box, and a fourth contains a Ds insertion in exon1. Genetic and transcription assays demonstrated that the pr1 gene is under the regulatory control of anthocyanin transcription factors red1 and colorless1. The cloning and characterization of pr1 completes the molecular identification of all genes encoding structural enzymes of the anthocyanin pathway of maize. PMID:21385724

  4. Promoter mapping of the mouse Tcp-10bt gene in transgenic mice identifies essential male germ cell regulatory sequences.

    PubMed

    Ewulonu, U K; Snyder, L; Silver, L M; Schimenti, J C

    1996-03-01

    Transgenic mice were generated to localize essential promoter elements in the mouse testis-expressed Tcp-10 genes. These genes are expressed exclusively in male germ cells, and exhibit a diffuse range of transcriptional start sites, possibly due to the absence of a TATA box. A series of transgene constructs containing different amounts of 5' flanking DNA revealed that all sequences necessary for appropriate temporal and tissue-specific transcription of Tcp-10 reside between positions -1 to -973. All transgenic animals containing these sequences expressed a chimeric transgene at high levels, in a pattern that paralleled the endogenous genes. These experiments further defined a 227 bp fragment from -746 to -973 that was absolutely essential for expression. In a gel-shift assay, this 227-bp fragment bound nuclear protein from testis, but not other tissues, to yield two retarded bands. Sequence analysis of this fragment revealed a half-site for the AP-2 transcription factor recognition sequence. Gel shift assays using native or mutant oligonucleotides demonstrated that the putative AP-2 recognition sequence was essential for generating the retarded bands. Since the binding activity is testis-specific, but AP-2 expression is not exclusive to male germ cells, it is possible that transcription of Tcp-10 requires interaction between AP-2 and a germ cell-specific transcription factor.

  5. Molecular characterization of previously elusive badnaviruses associated with symptomatic cacao in the New World.

    PubMed

    Chingandu, Nomatter; Zia-Ur-Rehman, Muhammad; Sreenivasan, Thyail N; Surujdeo-Maharaj, Surendra; Umaharan, Pathmanathan; Gutierrez, Osman A; Brown, Judith K

    2017-05-01

    Suspected virus-like symptoms were observed in cacao plants in Trinidad during 1943, and the viruses associated with these symptoms were designated as strains A and B of cacao Trinidad virus (CTV). However, viral etiology has not been demonstrated for either phenotype. Total DNA was isolated from symptomatic cacao leaves exhibiting the CTV A and B phenotypes and subjected to Illumina HiSeq and Sanger DNA sequencing. Based on de novo assembly, two apparently full-length badnavirus genomes of 7,533 and 7,454 nucleotides (nt) were associated with CTV strain A and B, respectively. The Trinidad badnaviral genomes contained four open reading frames, three of which are characteristic of other known badnaviruses, and a fourth that is present in only some badnaviruses. Both badnaviral genomes harbored hallmark caulimovirus-like features, including a tRNA Met priming site, a TATA box, and a polyadenylation-like signal. Pairwise comparisons of the RT-RNase H region indicated that the Trinidad isolates share 57-71% nt sequence identity with other known badnaviruses. Based on the system for badnavirus species demarcation in which viruses with less than 80% nt sequence identity in the RT-RNase gene are considered members of separate species, these isolates represent two previously unidentified badnaviruses, herein named cacao mild mosaic virus and cacao yellow vein banding virus, making them the first cacao-infecting badnaviruses identified thus far in the Western Hemisphere.

  6. Characterization of the human peroxisome proliferator activated receptor delta gene and its expression.

    PubMed

    Skogsberg, J; Kannisto, K; Roshani, L; Gagne, E; Hamsten, A; Larsson, C; Ehrenborg, E

    2000-07-01

    Peroxisome proliferator activated receptors (PPARs) are nuclear receptors regulating the expression of genes involved in lipid and glucose metabolism. Three different PPARs; alpha (PPARA), gamma (PPARG) and delta (PPARD) have been characterized and they are distinguished from each other by tissue distribution and cell activation. In this study, the structure and detailed chromosomal localization of the human PPARD gene was determined. Three genomic clones containing the PPARD gene was isolated from a human P1 library. The gene spans approximately 85 kb of DNA and consists of 9 exons and 8 introns with exons ranging in size from 84 bp to 2.3 kb and introns ranging from 180 bp to 50 kb. All splice acceptor and donor sites conform to the consensus sequences including the AG-GT motif. Although PPARD lacks a TATA box, the gene is transcribed from a unique start site located 380 bp upstream of the ATG initiation codon. The 5' and 3' ends were mapped by rapid amplification of cDNA ends and the mRNA size of PPARD based upon the structure of the gene is 3803 bp. In addition, the chromosomal sublocalization of PPARD was determined by radiation hybrid mapping. The PPARD gene is located at 14 cR from the colipase gene and 15 cR from the serine kinase gene at chromosomal region 6p21.2.

  7. Specific DNA binding of a potential transcriptional regulator, inosine 5'-monophosphate dehydrogenase-related protein VII, to the promoter region of a methyl coenzyme m reductase I-encoding operon retrieved from Methanothermobacter thermautotrophicus strain DeltaH.

    PubMed

    Shinzato, Naoya; Enoki, Miho; Sato, Hiroaki; Nakamura, Kohei; Matsui, Toru; Kamagata, Yoichi

    2008-10-01

    Two methyl coenzyme M reductases (MCRs) encoded by the mcr and mrt operons of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus DeltaH are expressed in response to H(2) availability. In the present study, cis elements and trans-acting factors responsible for the gene expression of MCRs were investigated by using electrophoretic mobility shift assay (EMSA) and affinity particle purification. A survey of their operator regions by EMSA with protein extracts from mrt-expressing cultures restricted them to 46- and 41-bp-long mcr and mrt upstream regions, respectively. Affinity particle purification of DNA-binding proteins conjugated with putative operator regions resulted in the retrieval of a protein attributed to IMP dehydrogenase-related protein VII (IMPDH VII). IMPDH VII is predicted to have a winged helix-turn-helix DNA-binding motif and two cystathionine beta-synthase domains, and it has been suspected to be an energy-sensing module. EMSA with oligonucleotide probes with unusual sequences showed that the binding site of IMPDH VII mostly overlaps the factor B-responsible element-TATA box of the mcr operon. The results presented here suggest that IMPDH VII encoded by MTH126 is a plausible candidate for the transcriptional regulator of the mcr operon in this methanogen.

  8. Insight into the expression variation of metal-responsive genes in the seedling of date palm (Phoenix dactylifera).

    PubMed

    Chaâbene, Zayneb; Rorat, Agnieszka; Rekik Hakim, Imen; Bernard, Fabien; Douglas, Grubb C; Elleuch, Amine; Vandenbulcke, Franck; Mejdoub, Hafedh

    2018-04-01

    Phytochelatin synthase and metallothionein gene expressions were monitored via qPCR in order to investigate the molecular mechanisms involved in Cd and Cr detoxification in date palm (Phoenix dactylifera). A specific reference gene validation procedure using BestKeeper, NormFinder and geNorm programs allowed selection of the three most stable reference genes in a context of Cd or Cr contamination among six reference gene candidates, namely elongation factor α1, actin, aldehyde dehydrogenase, SAND family, tubulin 6 and TaTa box binding protein. Phytochelatin synthase (pcs) and metallothionein (mt) encoding gene expression were induced from the first days of exposure. At low Cd stress (0.02 mM), genes were still up-regulated until 60th day of exposure. At the highest metal concentrations, however, pcs and mt gene expressions decreased. pcs encoding gene was significantly up-regulated under Cr exposure, and was more responsive to increasing Cr concentration than mt encoding gene. Moreover, exposure to Cd or Cr influenced clearly seed germination and hypocotyls elongation. Thus, the results have proved that both analyzed genes participate in metal detoxification and their expression is regulated at transcriptional level in date palm subjected to Cr and Cd stress. Consequently, variations of expression of mt and pcs genes may serve as early-warning biomarkers of metal stress in this species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Identification of stable reference genes for quantitative PCR in cells derived from chicken lymphoid organs.

    PubMed

    Borowska, D; Rothwell, L; Bailey, R A; Watson, K; Kaiser, P

    2016-02-01

    Quantitative polymerase chain reaction (qPCR) is a powerful technique for quantification of gene expression, especially genes involved in immune responses. Although qPCR is a very efficient and sensitive tool, variations in the enzymatic efficiency, quality of RNA and the presence of inhibitors can lead to errors. Therefore, qPCR needs to be normalised to obtain reliable results and allow comparison. The most common approach is to use reference genes as internal controls in qPCR analyses. In this study, expression of seven genes, including β-actin (ACTB), β-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-glucuronidase (GUSB), TATA box binding protein (TBP), α-tubulin (TUBAT) and 28S ribosomal RNA (r28S), was determined in cells isolated from chicken lymphoid tissues and stimulated with three different mitogens. The stability of the genes was measured using geNorm, NormFinder and BestKeeper software. The results from both geNorm and NormFinder were that the three most stably expressed genes in this panel were TBP, GAPDH and r28S. BestKeeper did not generate clear answers because of the highly heterogeneous sample set. Based on these data we will include TBP in future qPCR normalisation. The study shows the importance of appropriate reference gene normalisation in other tissues before qPCR analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Identification of suitable reference genes in bone marrow stromal cells from osteoarthritic donors.

    PubMed

    Schildberg, Theresa; Rauh, Juliane; Bretschneider, Henriette; Stiehler, Maik

    2013-11-01

    Bone marrow stromal cells (BMSCs) are key cellular components for musculoskeletal tissue engineering strategies. Furthermore, recent data suggest that BMSCs are involved in the development of Osteoarthritis (OA) being a frequently occurring degenerative joint disease. Reliable reference genes for the molecular evaluation of BMSCs derived from donors exhibiting OA as a primary co-morbidity have not been reported on yet. Hence, the aim of the study was to identify reference genes suitable for comparative gene expression analyses using OA-BMSCs. Passage 1 bone marrow derived BMSCs were isolated from n=13 patients with advanced stage idiopathic hip osteoarthritis and n=15 age-matched healthy donors. The expression of 31 putative reference genes was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) using a commercially available TaqMan(®) assay. Calculating the coefficient of variation (CV), mRNA expression stability was determined and afterwards validated using geNorm and NormFinder algorithms. Importin 8 (IPO8), TATA box binding protein (TBP), and cancer susceptibility candidate 3 (CASC3) were identified as the most stable reference genes. Notably, commonly used reference genes, e.g. beta-actin (ACTB) and beta-2-microglobulin (B2M) were among the most unstable genes. For normalization of gene expression data of OA-BMSCs the combined use of IPO8, TBP, and CASC3 gene is recommended. © 2013.

  11. TAF(II)250: a transcription toolbox.

    PubMed

    Wassarman, D A; Sauer, F

    2001-08-01

    Activation of RNA-polymerase-II-dependent transcription involves conversion of signals provided by gene-specific activator proteins into the synthesis of messenger RNA. This conversion requires dynamic structural changes in chromatin and assembly of general transcription factors (GTFs) and RNA polymerase II at core promoter sequence elements surrounding the transcription start site of genes. One hallmark of transcriptional activation is the interaction of DNA-bound activators with coactivators such as the TATA-box binding protein (TBP)-associated factors (TAF(II)s) within the GTF TFIID. TAF(II)250 possesses a variety of activities that are likely to contribute to the initial steps of RNA polymerase II transcription. TAF(II)250 is a scaffold for assembly of other TAF(II)s and TBP into TFIID, TAF(II)250 binds activators to recruit TFIID to particular promoters, TAF(II)250 regulates binding of TBP to DNA, TAF(II)250 binds core promoter initiator elements, TAF(II)250 binds acetylated lysine residues in core histones, and TAF(II)250 possesses protein kinase, ubiquitin-activating/conjugating and acetylase activities that modify histones and GTFs. We speculate that these activities achieve two goals--(1) they aid in positioning and stabilizing TFIID at particular promoters, and (2) they alter chromatin structure at the promoter to allow assembly of GTFs--and we propose a model for how TAF(II)250 converts activation signals into active transcription.

  12. Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume.

    PubMed

    Xu, Zongda; Zhang, Qixiang; Sun, Lidan; Du, Dongliang; Cheng, Tangren; Pan, Huitang; Yang, Weiru; Wang, Jia

    2014-10-01

    MADS-box genes encode transcription factors that play crucial roles in plant development, especially in flower and fruit development. To gain insight into this gene family in Prunus mume, an important ornamental and fruit plant in East Asia, and to elucidate their roles in flower organ determination and fruit development, we performed a genome-wide identification, characterisation and expression analysis of MADS-box genes in this Rosaceae tree. In this study, 80 MADS-box genes were identified in P. mume and categorised into MIKC, Mα, Mβ, Mγ and Mδ groups based on gene structures and phylogenetic relationships. The MIKC group could be further classified into 12 subfamilies. The FLC subfamily was absent in P. mume and the six tandemly arranged DAM genes might experience a species-specific evolution process in P. mume. The MADS-box gene family might experience an evolution process from MIKC genes to Mδ genes to Mα, Mβ and Mγ genes. The expression analysis suggests that P. mume MADS-box genes have diverse functions in P. mume development and the functions of duplicated genes diverged after the duplication events. In addition to its involvement in the development of female gametophytes, type I genes also play roles in male gametophytes development. In conclusion, this study adds to our understanding of the roles that the MADS-box genes played in flower and fruit development and lays a foundation for selecting candidate genes for functional studies in P. mume and other species. Furthermore, this study also provides a basis to study the evolution of the MADS-box family.

  13. Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts

    PubMed Central

    Dron, Michel; Clouse, Steven D.; Dixon, Richard A.; Lawton, Michael A.; Lamb, Christopher J.

    1988-01-01

    To investigate the mechanisms underlying activation of plant defenses against microbial attack we have studied elicitor regulation of a chimeric gene comprising the 5′ flanking region of a defense gene encoding the phytoalexin biosynthetic enzyme chalcone synthase fused to a bacterial chloramphenicol acetyltransferase gene. Glutathione or fungal elicitor caused a rapid, marked but transient expression of the chimeric gene electroporated into soybean protoplasts. The response closely resembled that of endogenous chalcone synthase genes in suspension cultured cells. Functional analysis of 5′ deletions suggests that promoter activity is determined by an elicitor-regulated activator located between the “TATA box” and nucleotide position -173 and an upstream silencer between -173 and -326. These cis-acting elements function in the transduction of the elicitation signal to initiate elaboration of an inducible defense response. Images PMID:16593981

  14. Dysregulation of gene expression in the striatum of BACHD rats expressing full-length mutant huntingtin and associated abnormalities on molecular and protein levels.

    PubMed

    Yu-Taeger, Libo; Bonin, Michael; Stricker-Shaver, Janice; Riess, Olaf; Nguyen, Hoa Huu Phuc

    2017-05-01

    Huntington disease (HD) is an autosomal dominantly inherited neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for the huntingtin protein (HTT). Mutant HTT (mHTT) has been proposed to cause neuronal dysfunction and neuronal loss through multiple mechanisms. Transcriptional changes may be a core pathogenic feature of HD. Utilizing the Affymetrix platform we performed a genome-wide RNA expression analysis in two BACHD transgenic rat lines (TG5 and TG9) at 12 months of age, both of which carry full-length human mHTT but with different expression levels. By defining the threshold of significance at p < 0.01, we found 1608 genes and 871 genes differentially expressed in both TG5 and TG9 rats when compared to the wild type littermates, respectively. We only chose the highly up-/down-regulated genes for further analysis by setting an additional threshold of 1.5 fold change. Comparing gene expression profiles of human HD brains and BACHD rats revealed a high concordance in both functional and IPA (Ingenuity Pathway Analysis) canonical pathways relevant to HD. In addition, we investigated the causes leading to gene expression changes at molecular and protein levels in BACHD rats including the involvement of polyQ-containing transcription factors TATA box-binding protein (TBP), Sp1 and CBP as well as the chromatin structure. We demonstrate that the BACHD rat model recapitulates the gene expression changes of the human disease supporting its role as a preclinical research animal model. We also show for the first time that TFIID complex formation is reduced, while soluble TBP is increased in an HD model. This finding suggests that mHTT is a competitor instead of a recruiter of polyQ-containing transcription factors in the transcription process in HD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of the adenovirus 2 late promoter on simian virus 40 transcription and replication.

    PubMed Central

    Grass, D S; Manley, J L

    1986-01-01

    A 100-base-pair fragment of adenovirus 2 (Ad2) DNA encompassing the major late transcriptional promoter was inserted into the simian virus 40 (SV40) late promoter region at SV40 nucleotide 294 to study the effects of a strong TATA box-containing promoter on SV40 late transcription. pSVAdE contains the insert in an orientation such that it would promote transcription towards the origin and early region of SV40, while the insert is in the opposite orientation in pSVAdL. Nuclease S1 analysis with 5'-end-labeled probes showed that in cells transfected with pSVAdE, the late mRNA initiation sites are essentially the same as in wild type, demonstrating that an insert of 100 base pairs can have no effect on utilization of the SV40 late start sites. In pSVAdL-transfected cells, however, the major late viral initiation site is now in the insert at +1 with respect to the Ad2 major late cap site. However, all of the SV40 initiation sites are still utilized and with the same efficiency relative to each other as in wild type. Thus, it appears that the Ad2 late promoter and the SV40 late promoter can function independently on the same DNA molecule, even when one promoter is embedded within the other. By using cytosine arabinoside to block DNA replication and thereby inhibit the onset of late expression, it has been shown that both the Ad2 late promoter and the SV40 late promoter have similar requirement for DNA replication in this context. In addition, pSVAdL showed dramatically diminished virus viability and VPI expression compared with both wildtype and pSVAdE. Possible explanations for this unexpected finding are discussed. Images PMID:3001338

  16. Insights into soybean transcriptome reconfiguration under hypoxic stress: Functional, regulatory, structural, and compositional characterization

    PubMed Central

    Rodrigues, Fabiana A.; Neumaier, Norman; Marcolino-Gomes, Juliana; Molinari, Hugo B. C.; Santiago, Thaís R.; Formighieri, Eduardo F.; Basso, Marcos F.; Farias, José R. B.; Emygdio, Beatriz M.; de Oliveira, Ana C. B.; Campos, Ângela D.; Borém, Aluízio; Harmon, Frank G.; Mertz-Henning, Liliane M.; Nepomuceno, Alexandre L.

    2017-01-01

    Soybean (Glycine max) is one of the major crops worldwide and flooding stress affects the production and expansion of cultivated areas. Oxygen is essential for mitochondrial aerobic respiration to supply the energy demand of plant cells. Because oxygen diffusion in water is 10,000 times lower than in air, partial (hypoxic) or total (anoxic) oxygen deficiency is important component of flooding. Even when oxygen is externally available, oxygen deficiency frequently occurs in bulky, dense or metabolically active tissues such as phloem, meristems, seeds, and fruits. In this study, we analyzed conserved and divergent root transcriptional responses between flood-tolerant Embrapa 45 and flood-sensitive BR 4 soybean cultivars under hypoxic stress conditions with RNA-seq. To understand how soybean genes evolve and respond to hypoxia, stable and differentially expressed genes were characterized structurally and compositionally comparing its mechanistic relationship. Between cultivars, Embrapa 45 showed less up- and more down-regulated genes, and stronger induction of phosphoglucomutase (Glyma05g34790), unknown protein related to N-terminal protein myristoylation (Glyma06g03430), protein suppressor of phyA-105 (Glyma06g37080), and fibrillin (Glyma10g32620). RNA-seq and qRT-PCR analysis of non-symbiotic hemoglobin (Glyma11g12980) indicated divergence in gene structure between cultivars. Transcriptional changes for genes in amino acids and derivative metabolic process suggest involvement of amino acids metabolism in tRNA modifications, translation accuracy/efficiency, and endoplasmic reticulum stress in both cultivars under hypoxia. Gene groups differed in promoter TATA box, ABREs (ABA-responsive elements), and CRT/DREs (C-repeat/dehydration-responsive elements) frequency. Gene groups also differed in structure, composition, and codon usage, indicating biological significances. Additional data suggests that cis-acting ABRE elements can mediate gene expression independent of ABA in soybean roots under hypoxia. PMID:29145496

  17. A Unique HMG-Box Domain of Mouse Maelstrom Binds Structured RNA but Not Double Stranded DNA

    PubMed Central

    Genzor, Pavol; Bortvin, Alex

    2015-01-01

    Piwi-interacting piRNAs are a major and essential class of small RNAs in the animal germ cells with a prominent role in transposon control. Efficient piRNA biogenesis and function require a cohort of proteins conserved throughout the animal kingdom. Here we studied Maelstrom (MAEL), which is essential for piRNA biogenesis and germ cell differentiation in flies and mice. MAEL contains a high mobility group (HMG)-box domain and a Maelstrom-specific domain with a presumptive RNase H-fold. We employed a combination of sequence analyses, structural and biochemical approaches to evaluate and compare nucleic acid binding of mouse MAEL HMG-box to that of canonical HMG-box domain proteins (SRY and HMGB1a). MAEL HMG-box failed to bind double-stranded (ds)DNA but bound to structured RNA. We also identified important roles of a novel cluster of arginine residues in MAEL HMG-box in these interactions. Cumulatively, our results suggest that the MAEL HMG-box domain may contribute to MAEL function in selective processing of retrotransposon RNA into piRNAs. In this regard, a cellular role of MAEL HMG-box domain is reminiscent of that of HMGB1 as a sentinel of immunogenic nucleic acids in the innate immune response. PMID:25807393

  18. Downstream promoter interactions of TFIID TAFs facilitate transcription reinitiation

    PubMed Central

    Joo, Yoo Jin; Ficarro, Scott B.; Soares, Luis M.; Chun, Yujin; Marto, Jarrod A.; Buratowski, Stephen

    2017-01-01

    TFIID binds promoter DNA to recruit RNA polymerase II and other basal factors for transcription. Although the TATA-binding protein (TBP) subunit of TFIID is necessary and sufficient for in vitro transcription, the TBP-associated factor (TAF) subunits recognize downstream promoter elements, act as coactivators, and interact with nucleosomes. In yeast nuclear extracts, transcription induces stable TAF binding to downstream promoter DNA, promoting subsequent activator-independent transcription reinitiation. In vivo, promoter responses to TAF mutations correlate with the level of downstream, rather than overall, Taf1 cross-linking. We propose a new model in which TAFs function as reinitiation factors, accounting for the differential responses of promoters to various transcription factor mutations. PMID:29203645

  19. EKG-based detection of deep brain stimulation in fMRI studies.

    PubMed

    Fiveland, Eric; Madhavan, Radhika; Prusik, Julia; Linton, Renee; Dimarzio, Marisa; Ashe, Jeffrey; Pilitsis, Julie; Hancu, Ileana

    2018-04-01

    To assess the impact of synchronization errors between the assumed functional MRI paradigm timing and the deep brain stimulation (DBS) on/off cycling using a custom electrocardiogram-based triggering system METHODS: A detector for measuring and predicting the on/off state of cycling deep brain stimulation was developed and tested in six patients in office visits. Three-electrode electrocardiogram measurements, amplified by a commercial bio-amplifier, were used as input for a custom electronics box (e-box). The e-box transformed the deep brain stimulation waveforms into transistor-transistor logic pulses, recorded their timing, and propagated it in time. The e-box was used to trigger task-based deep brain stimulation functional MRI scans in 5 additional subjects; the impact of timing accuracy on t-test values was investigated in a simulation study using the functional MRI data. Following locking to each patient's individual waveform, the e-box was shown to predict stimulation onset with an average absolute error of 112 ± 148 ms, 30 min after disconnecting from the patients. The subsecond accuracy of the e-box in predicting timing onset is more than adequate for our slow varying, 30-/30-s on/off stimulation paradigm. Conversely, the experimental deep brain stimulation onset prediction accuracy in the absence of the e-box, which could be off by as much as 4 to 6 s, could significantly decrease activation strength. Using this detector, stimulation can be accurately synchronized to functional MRI acquisitions, without adding any additional hardware in the MRI environment. Magn Reson Med 79:2432-2439, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Chapter 1: Sinonasal anatomy and function.

    PubMed

    Dalgorf, Dustin M; Harvey, Richard J

    2013-01-01

    An understanding of paranasal sinus anatomy based on important fixed landmarks rather than variable anatomy is critical to ensure safe and complete surgery. The concept of the paranasal surgical box defines the anatomic limits of dissection. The boundaries of the surgical box include the middle turbinate medially, orbital wall laterally, and skull base superiorly. The "vertical component" of the surgical box defines the boundaries of the frontal recess and includes the middle turbinate and intersinus septum medially, medial orbital wall and orbital roof laterally, nasofrontal beak anteriorly, and skull base and posterior table of frontal sinus posteriorly. The paranasal sinuses are divided into anterior, posterior, and sphenoidal functional cavities based on their distinct drainage pathways into the nose. The ultimate goal of surgery is to create a functional sinus cavity. Application of the paranasal surgical box and its vertical component enables the surgeon to view the limits of dissection with a single position of the endoscope. This will ensure complete dissection of the functional sinonasal compartments and effectively avoid leaving behind disconnected cells from the surgical cavity, mucocele formation, mucous recirculation, overcome obstructive phenomenon and enable maximal delivery of topical therapy in the post-operative setting. This article reviews the structure and function of the nasal cartilages and turbinates. It also describes the concept of the paranasal surgical box, key anatomical landmarks and limits of dissection. Normal anatomy and common variants of normal anatomy are discussed.

  1. The puzzle box as a simple and efficient behavioral test for exploring impairments of general cognition and executive functions in mouse models of schizophrenia.

    PubMed

    Ben Abdallah, Nada M-B; Fuss, Johannes; Trusel, Massimo; Galsworthy, Michael J; Bobsin, Kristin; Colacicco, Giovanni; Deacon, Robert M J; Riva, Marco A; Kellendonk, Christoph; Sprengel, Rolf; Lipp, Hans-Peter; Gass, Peter

    2011-01-01

    Deficits in executive functions are key features of schizophrenia. Rodent behavioral paradigms used so far to find animal correlates of such deficits require extensive effort and time. The puzzle box is a problem-solving test in which mice are required to complete escape tasks of increasing difficulty within a limited amount of time. Previous data have indicated that it is a quick but highly reliable test of higher-order cognitive functioning. We evaluated the use of the puzzle box to explore executive functioning in five different mouse models of schizophrenia: mice with prefrontal cortex and hippocampus lesions, mice treated sub-chronically with the NMDA-receptor antagonist MK-801, mice constitutively lacking the GluA1 subunit of AMPA-receptors, and mice over-expressing dopamine D2 receptors in the striatum. All mice displayed altered executive functions in the puzzle box, although the nature and extent of the deficits varied between the different models. Deficits were strongest in hippocampus-lesioned and GluA1 knockout mice, while more subtle deficits but specific to problem solving were found in the medial prefrontal-lesioned mice, MK-801-treated mice, and in mice with striatal overexpression of D2 receptors. Data from this study demonstrate the utility of the puzzle box as an effective screening tool for executive functions in general and for schizophrenia mouse models in particular. Published by Elsevier Inc.

  2. How Do Symbols Affect 3- to 4-Year-Olds' Executive Function? Evidence from a Reverse-Contingency Task

    ERIC Educational Resources Information Center

    Apperly, Ian A.; Carroll, Daniel J.

    2009-01-01

    In two experiments, 330 3- to 4-year-olds competed for stickers in a game in which the optimal response strategy was to point to an empty box that their opponent would receive in order to obtain a baited box for themselves. When the baited box contained stickers, children showed a strong tendency to point at the baited box and therefore lose the…

  3. Initial mass function of planetesimals formed by the streaming instability

    NASA Astrophysics Data System (ADS)

    Schäfer, Urs; Yang, Chao-Chin; Johansen, Anders

    2017-01-01

    The streaming instability is a mechanism to concentrate solid particles into overdense filaments that undergo gravitational collapse and form planetesimals. However, it remains unclear how the initial mass function of these planetesimals depends on the box dimensions of numerical simulations. To resolve this, we perform simulations of planetesimal formation with the largest box dimensions to date, allowing planetesimals to form simultaneously in multiple filaments that can only emerge within such large simulation boxes. In our simulations, planetesimals with sizes between 80 km and several hundred kilometers form. We find that a power law with a rather shallow exponential cutoff at the high-mass end represents the cumulative birth mass function better than an integrated power law. The steepness of the exponential cutoff is largely independent of box dimensions and resolution, while the exponent of the power law is not constrained at the resolutions we employ. Moreover, we find that the characteristic mass scale of the exponential cutoff correlates with the mass budget in each filament. Together with previous studies of high-resolution simulations with small box domains, our results therefore imply that the cumulative birth mass function of planetesimals is consistent with an exponentially tapered power law with a power-law exponent of approximately -1.6 and a steepness of the exponential cutoff in the range of 0.3-0.4.

  4. J functions for the process ud→WA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardin, D. Yu., E-mail: bardin@nu.jinr.ru; Kalinovskaya, L. V., E-mail: kalinov@mail.cern.ch; Uglov, E. D., E-mail: e.uglov@gmail.com

    In this paper we present a description of the universal approach for analytic calculations for a certain class of J functions for six topologies of the boxes for the process ud → WA. These functions J arise at the reduction of the infrared divergent box diagrams. The standard Passarino–Veltman reduction of the four-point box diagram with an internal photon line connecting two external lines on the mass shell leads to infrared-divergent and mass-singular D{sub 0} functions. In the system SANC a systematic procedure is adopted to separate both types of singularities into the simplest objects, namely C{sub 0} functions. Themore » functions J, in turn, are represented as certain linear combinations of the standard D{sub 0} and C{sub 0} functions. The subtracted J functions are free of both types of singularities and are expressed as explicit and compact linear combinations of dilogarithm functions. We present extensive comparisons of numerical results of SANC with those obtained with the aid of the LoopTools package.« less

  5. Genetics Home Reference: COG5-congenital disorder of glycosylation

    MedlinePlus

    ... in my area? Other Names for This Condition carbohydrate deficient glycoprotein syndrome type IIi CDG IIi CDG2I ... the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF). ...

  6. 49 CFR 173.340 - Tear gas devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transportation. Not more than 50 tear gas devices and 50 functioning elements must be packed in one box, and the... fiber box with suitable padding. Not more than 30 inner packagings must be packed in one outer box, and... similar devices must be packaged in one of the following packagings conforming to the requirements of part...

  7. 49 CFR 173.340 - Tear gas devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... transportation. Not more than 50 tear gas devices and 50 functioning elements must be packed in one box, and the... fiber box with suitable padding. Not more than 30 inner packagings must be packed in one outer box, and... similar devices must be packaged in one of the following packagings conforming to the requirements of part...

  8. Cloning, Characterization, Regulation, and Function of Dormancy-Associated MADS-Box Genes from Leafy Spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are SHORT VEGETATIVE PHASE–Like MADS box transcription factors linked to endodormancy induction. We have cloned and characterized several cDNA and genomic clones of DAM genes from the model perennial weed leafy spurge (Euphorbia esula). We present evidence fo...

  9. The First Derivative of an Exponential Function with the "White Box/Black Box" Didactical Principle and Observations with GeoGebra

    ERIC Educational Resources Information Center

    Budinski, Natalija; Subramaniam, Stephanie

    2013-01-01

    This paper shows how GeoGebra--a dynamic mathematics software--can be used to experiment, visualize and connect various concepts such as function, first derivative, slope, and tangent line. Students were given an assignment to determine the first derivative of the exponential function that they solved while experimenting with GeoGebra. GeoGebra…

  10. Genomic Organization, Phylogenetic Comparison and Differential Expression of the SBP-Box Family Genes in Grape

    PubMed Central

    Hou, Hongmin; Li, Jun; Gao, Min; Singer, Stacy D.; Wang, Hao; Mao, Linyong; Fei, Zhangjun; Wang, Xiping

    2013-01-01

    Background The SBP-box gene family is specific to plants and encodes a class of zinc finger-containing transcription factors with a broad range of functions. Although SBP-box genes have been identified in numerous plants including green algae, moss, silver birch, snapdragon, Arabidopsis, rice and maize, there is little information concerning SBP-box genes, or the corresponding miR156/157, function in grapevine. Methodology/Principal Findings Eighteen SBP-box gene family members were identified in Vitis vinifera, twelve of which bore sequences that were complementary to miRNA156/157. Phylogenetic reconstruction demonstrated that plant SBP-domain proteins could be classified into seven subgroups, with the V. vinifera SBP-domain proteins being more closely related to SBP-domain proteins from dicotyledonous angiosperms than those from monocotyledonous angiosperms. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologs of several grape SBP genes were found in corresponding syntenic blocks of Arabidopsis. Expression analysis of the grape SBP-box genes in various organs and at different stages of fruit development in V. quinquangularis ‘Shang-24’ revealed distinct spatiotemporal patterns. While the majority of the grape SBP-box genes lacking a miR156/157 target site were expressed ubiquitously and constitutively, most genes bearing a miR156/157 target site exhibited distinct expression patterns, possibly due to the inhibitory role of the microRNA. Furthermore, microarray data mining and quantitative real-time RT-PCR analysis identified several grape SBP-box genes that are potentially involved in the defense against biotic and abiotic stresses. Conclusion The results presented here provide a further understanding of SBP-box gene function in plants, and yields additional insights into the mechanism of stress management in grape, which may have important implications for the future success of this crop. PMID:23527172

  11. Molecular and functional characterization of the promoter of ETS2, the human c-ets-2 gene.

    PubMed Central

    Mavrothalassitis, G J; Watson, D K; Papas, T S

    1990-01-01

    The 5' end of the human c-ets-2 gene, ETS2, was cloned and characterized. The major transcription initiation start sites were identified, and the pertinent sequences surrounding the ETS2 promoter were determined. The promoter region of ETS2 does not possess typical "TATA" and "CAAT" elements. However, this promoter contains several repeat regions, as well as two consensus AP2 binding sites and three putative Sp1 sites. There is also a palindromic region similar to the serum response element of the c-fos gene, located 1400 base pairs (bp) upstream from the first major transcription initiation site. A G + C-rich sequence (GC element) with dyad symmetry can be seen in the ETS2 promoter, immediately following an unusually long (approximately 250-bp) polypurine-polypyrimidine tract. A series of deletion fragments from the putative promoter region were ligated in front of the bacterial chloramphenicol acetyltransferase gene and tested for activity following transfection into HeLa cells. The 5' boundary of the region needed for maximum promoter activity was found to be 159 bp upstream of the major initiation site. This region of 159 bp contains putative binding sites for transcription factors Sp1 and AP2 (one for each), the GC element, one small forward repeat, one inverted repeat, and half of the polypurine-pyrimidine tract. The promoter of ETS2 (within the polypyrimidine tract) serves to illustrate an alternative structure that may be present in genes with "TATA-less" promoters. Images PMID:2405393

  12. The DNA binding site specificity and antiproliferative property of ternary Pt(II) and Zn(II) complexes of phenanthroline and N,N'-ethylenediaminediacetic acid.

    PubMed

    Nakamura, Yusuke; Taruno, Yoko; Sugimoto, Masashi; Kitamura, Yusuke; Seng, Hoi Ling; Kong, Siew Ming; Ng, Chew Hee; Chikira, Makoto

    2013-03-14

    The binding site specificity of the ternary complexes, [M(II)(phen)(edda)] (M(II) = Pt(2+) and Zn(2+); phen = 1,10-phenanthroline; edda = N,N'-ethylenediaminediacetic acid), for the self-complementary oligonucleotides (ODNs), ds(C(1)G(2)C(3)G(4)A(5)A(6)T(7)T(8)C(9)G(10)C(11)G(12))(2) (ODN1) and ds(C(1)G(2)C(3)G(4)T(5)A(6)T(7)A(8)C(9)G(10)C(11)G(12))(2) (ODN2), was studied by NMR measurements. The results indicated that [Pt(ii)(phen)(edda)] was partially intercalated between C(3)/G(10) and G(4)/C(9) base pairs of ODN1 and ODN2 in the major grooves, whereas [Zn(II)(phen)(edda)] was bound specifically to the TATA region of ODN2 in the minor groove and to the terminal G(2)/C(11) base pair of ODN1 in the major groove. The preference for the TATA sequence over the AATT sequence in the binding of [Zn(phen)(edda)] was attributed to the wider minor groove width of the TATA sequence. The bindings of the complexes to ct-DNA were also studied by UV, CD, and fluorescence spectroscopy. Additionally, the antiproliferative property of [Pt(II)(phen)(edda)] towards MCF7 breast cancer cells and normal MCF10-A cells was compared with that of [Zn(II)(phen)(edda)].

  13. T-Box Genes in the Kidney and Urinary Tract.

    PubMed

    Kispert, A

    2017-01-01

    T-box (Tbx) genes encode an ancient group of transcription factors that play important roles in patterning, specification, proliferation, and differentiation programs in vertebrate organogenesis. This is testified by severe organ malformation syndromes in mice homozygous for engineered null alleles of specific T-box genes and by the large number of human inherited organ-specific diseases that have been linked to mutations in these genes. One of the organ systems that has not been associated with loss of specific T-box gene function in human disease for long is the excretory system. However, this has changed with the finding that mutations in TBX18, a member of a vertebrate-specific subgroup within the Tbx1-subfamily of T-box transcription factor genes, cause congenital anomalies of the kidney and urinary tract, predominantly hydroureter and ureteropelvic junction obstruction. Gene expression analyses, loss-of-function studies, and lineage tracing in the mouse suggest a primary role for this transcription factor in specifying the ureteric mesenchyme in the common anlage of the kidney, the ureter, and the bladder. We review the function of Tbx18 in ureterogenesis and discuss the body of evidence that Tbx18 and other members of the T-box gene family, namely, Tbx1, Tbx2, Tbx3, and Tbx20, play additional roles in development and homeostasis of other components of the excretory system in vertebrates. © 2017 Elsevier Inc. All rights reserved.

  14. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malusx domestica)

    PubMed Central

    Kumar, Gulshan; Arya, Preeti; Gupta, Khushboo; Randhawa, Vinay; Acharya, Vishal; Singh, Anil Kumar

    2016-01-01

    The MADS-box transcription factors play essential roles in various processes of plant growth and development. In the present study, phylogenetic analysis of 142 apple MADS-box proteins with that of other dicotyledonous species identified six putative Dormancy-Associated MADS-box (DAM) and four putative Flowering Locus C-like (FLC-like) proteins. In order to study the expression of apple MADS-box genes, RNA-seq analysis of 3 apical and 5 spur bud stages during dormancy, 6 flower stages and 7 fruit development stages was performed. The dramatic reduction in expression of two MdDAMs, MdMADS063 and MdMADS125 and two MdFLC-like genes, MdMADS135 and MdMADS136 during dormancy release suggests their role as flowering-repressors in apple. Apple orthologs of Arabidopsis genes, FLOWERING LOCUS T, FRIGIDA, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 and LEAFY exhibit similar expression patterns as reported in Arabidopsis, suggesting functional conservation in floral signal integration and meristem determination pathways. Gene ontology enrichment analysis of predicted targets of DAM revealed their involvement in regulation of reproductive processes and meristematic activities, indicating functional conservation of SVP orthologs (DAM) in apple. This study provides valuable insights into the functions of MADS-box proteins during apple phenology, which may help in devising strategies to improve important traits in apple. PMID:26856238

  15. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malusx domestica).

    PubMed

    Kumar, Gulshan; Arya, Preeti; Gupta, Khushboo; Randhawa, Vinay; Acharya, Vishal; Singh, Anil Kumar

    2016-02-09

    The MADS-box transcription factors play essential roles in various processes of plant growth and development. In the present study, phylogenetic analysis of 142 apple MADS-box proteins with that of other dicotyledonous species identified six putative Dormancy-Associated MADS-box (DAM) and four putative Flowering Locus C-like (FLC-like) proteins. In order to study the expression of apple MADS-box genes, RNA-seq analysis of 3 apical and 5 spur bud stages during dormancy, 6 flower stages and 7 fruit development stages was performed. The dramatic reduction in expression of two MdDAMs, MdMADS063 and MdMADS125 and two MdFLC-like genes, MdMADS135 and MdMADS136 during dormancy release suggests their role as flowering-repressors in apple. Apple orthologs of Arabidopsis genes, FLOWERING LOCUS T, FRIGIDA, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 and LEAFY exhibit similar expression patterns as reported in Arabidopsis, suggesting functional conservation in floral signal integration and meristem determination pathways. Gene ontology enrichment analysis of predicted targets of DAM revealed their involvement in regulation of reproductive processes and meristematic activities, indicating functional conservation of SVP orthologs (DAM) in apple. This study provides valuable insights into the functions of MADS-box proteins during apple phenology, which may help in devising strategies to improve important traits in apple.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Juliane

    MISO is an optimization framework for solving computationally expensive mixed-integer, black-box, global optimization problems. MISO uses surrogate models to approximate the computationally expensive objective function. Hence, derivative information, which is generally unavailable for black-box simulation objective functions, is not needed. MISO allows the user to choose the initial experimental design strategy, the type of surrogate model, and the sampling strategy.

  17. Analysis of CFB, a cytokinin-responsive gene of Arabidopsis thaliana encoding a novel F-box protein regulating sterol biosynthesis.

    PubMed

    Brenner, Wolfram G; Leuendorf, Jan Erik; Cortleven, Anne; Martin, Laetitia B B; Schaller, Hubert; Schmülling, Thomas

    2017-05-17

    Protein degradation by the ubiquitin-26S proteasome pathway is important for the regulation of cellular processes, but the function of most F-box proteins relevant to substrate recognition is unknown. We describe the analysis of the gene Cytokinin-induced F-box encoding (CFB, AT3G44326), identified in a meta-analysis of cytokinin-related transcriptome studies as one of the most robust cytokinin response genes. F-box domain-dependent interaction with the E3 ubiquitin ligase complex component ASK1 classifies CFB as a functional F-box protein. Apart from F-box and transmembrane domains, CFB contains no known functional domains. CFB is expressed in all plant tissues, predominantly in root tissue. A ProCFB:GFP-GUS fusion gene showed strongest expression in the lateral root cap and during lateral root formation. CFB-GFP fusion proteins were mainly localized in the nucleus and the cytosol but also at the plasma membrane. cfb mutants had no discernible phenotype, but CFB overexpressing plants showed several defects, such as a white upper inflorescence stem, similar to the hypomorphic cycloartenol synthase mutant cas1-1. Both CFB overexpressing plants and cas1-1 mutants accumulated the CAS1 substrate 2,3-oxidosqualene in the white stem tissue, the latter even more after cytokinin treatment, indicating impairment of CAS1 function. This suggests that CFB may link cytokinin and the sterol biosynthesis pathway. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Compound Heterozygosity for Y Box Proteins Causes Sterility Due to Loss of Translational Repression

    PubMed Central

    Sharma, Manju; Dearth, Andrea; Smith, Benjamin; Braun, Robert E.

    2015-01-01

    The Y-box proteins YBX2 and YBX3 bind RNA and DNA and are required for metazoan development and fertility. However, possible functional redundancy between YBX2 and YBX3 has prevented elucidation of their molecular function as RNA masking proteins and identification of their target RNAs. To investigate possible functional redundancy between YBX2 and YBX3, we attempted to construct Ybx2 -/- ;Ybx3 -/- double mutants using a previously reported Ybx2 -/- model and a newly generated global Ybx3 -/- model. Loss of YBX3 resulted in reduced male fertility and defects in spermatid differentiation. However, homozygous double mutants could not be generated as haploinsufficiency of both Ybx2 and Ybx3 caused sterility characterized by extensive defects in spermatid differentiation. RNA sequence analysis of mRNP and polysome occupancy in single and compound Ybx2/3 heterozygotes revealed loss of translational repression almost exclusively in the compound Ybx2/3 heterozygotes. RNAseq analysis also demonstrated that Y-box protein dose-dependent loss of translational regulation was inversely correlated with the presence of a Y box recognition target sequence, suggesting that Y box proteins bind RNA hierarchically to modulate translation in a range of targets. PMID:26646932

  19. Specialized rules of gene transcription in male germ cells: the CREM paradigm.

    PubMed

    Monaco, Lucia; Kotaja, Noora; Fienga, Giulia; Hogeveen, Kevin; Kolthur, Ullas S; Kimmins, Sarah; Brancorsini, Stefano; Macho, Betina; Sassone-Corsi, Paolo

    2004-12-01

    Specialized transcription complexes that coordinate the differentiation programme of spermatogenesis have been found in germ cells, which display specific differences in the components of the general transcription machinery. The TATA-binding protein family and its associated cofactors, for example, show upregulated expression in testis. In this physiological context, transcriptional control mediated by the activator cAMP response element modulator (CREM) represents an established paradigm. Somatic cell activation by CREM requires its phosphorylation at a unique regulatory site (Ser117) and subsequent interaction with the ubiquitous coactivator CREB-binding protein. In testis, CREM transcriptional activity is controlled through interaction with a tissue-specific partner, activator of CREM in the testis (ACT), which confers a powerful, phosphorylation-independent activation capacity. The function of ACT was found to be regulated by the testis-specific kinesin KIF17b. Here we discuss some aspects of the testis-specific transcription machinery, whose function is essential for the process of spermatogenesis.

  20. FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations.

    PubMed

    Neumann, Manuela; Bentmann, Eva; Dormann, Dorothee; Jawaid, Ali; DeJesus-Hernandez, Mariely; Ansorge, Olaf; Roeber, Sigrun; Kretzschmar, Hans A; Munoz, David G; Kusaka, Hirofumi; Yokota, Osamu; Ang, Lee-Cyn; Bilbao, Juan; Rademakers, Rosa; Haass, Christian; Mackenzie, Ian R A

    2011-09-01

    Accumulation of the DNA/RNA binding protein fused in sarcoma as cytoplasmic inclusions in neurons and glial cells is the pathological hallmark of all patients with amyotrophic lateral sclerosis with mutations in FUS as well as in several subtypes of frontotemporal lobar degeneration, which are not associated with FUS mutations. The mechanisms leading to inclusion formation and fused in sarcoma-associated neurodegeneration are only poorly understood. Because fused in sarcoma belongs to a family of proteins known as FET, which also includes Ewing's sarcoma and TATA-binding protein-associated factor 15, we investigated the potential involvement of these other FET protein family members in the pathogenesis of fused in sarcoma proteinopathies. Immunohistochemical analysis of FET proteins revealed a striking difference among the various conditions, with pathology in amyotrophic lateral sclerosis with FUS mutations being labelled exclusively for fused in sarcoma, whereas fused in sarcoma-positive inclusions in subtypes of frontotemporal lobar degeneration also consistently immunostained for TATA-binding protein-associated factor 15 and variably for Ewing's sarcoma. Immunoblot analysis of proteins extracted from post-mortem tissue of frontotemporal lobar degeneration with fused in sarcoma pathology demonstrated a relative shift of all FET proteins towards insoluble protein fractions, while genetic analysis of the TATA-binding protein-associated factor 15 and Ewing's sarcoma gene did not identify any pathogenic variants. Cell culture experiments replicated the findings of amyotrophic lateral sclerosis with FUS mutations by confirming the absence of TATA-binding protein-associated factor 15 and Ewing's sarcoma alterations upon expression of mutant fused in sarcoma. In contrast, all endogenous FET proteins were recruited into cytoplasmic stress granules upon general inhibition of Transportin-mediated nuclear import, mimicking the findings in frontotemporal lobar degeneration with fused in sarcoma pathology. These results allow a separation of fused in sarcoma proteinopathies caused by FUS mutations from those without a known genetic cause based on neuropathological features. More importantly, our data imply different pathological processes underlying inclusion formation and cell death between both conditions; the pathogenesis in amyotrophic lateral sclerosis with FUS mutations appears to be more restricted to dysfunction of fused in sarcoma, while a more global and complex dysregulation of all FET proteins is involved in the subtypes of frontotemporal lobar degeneration with fused in sarcoma pathology.

  1. Methylation guide RNA evolution in archaea: structure, function and genomic organization of 110 C/D box sRNA families across six Pyrobaculum species.

    PubMed

    Lui, Lauren M; Uzilov, Andrew V; Bernick, David L; Corredor, Andrea; Lowe, Todd M; Dennis, Patrick P

    2018-05-16

    Archaeal homologs of eukaryotic C/D box small nucleolar RNAs (C/D box sRNAs) guide precise 2'-O-methyl modification of ribosomal and transfer RNAs. Although C/D box sRNA genes constitute one of the largest RNA gene families in archaeal thermophiles, most genomes have incomplete sRNA gene annotation because reliable, fully automated detection methods are not available. We expanded and curated a comprehensive gene set across six species of the crenarchaeal genus Pyrobaculum, particularly rich in C/D box sRNA genes. Using high-throughput small RNA sequencing, specialized computational searches and comparative genomics, we analyzed 526 Pyrobaculum C/D box sRNAs, organizing them into 110 families based on synteny and conservation of guide sequences which determine methylation targets. We examined gene duplications and rearrangements, including one family that has expanded in a pattern similar to retrotransposed repetitive elements in eukaryotes. New training data and inclusion of kink-turn secondary structural features enabled creation of an improved search model. Our analyses provide the most comprehensive, dynamic view of C/D box sRNA evolutionary history within a genus, in terms of modification function, feature plasticity, and gene mobility.

  2. Cofactor-dependent specificity of a DEAD-box protein.

    PubMed

    Young, Crystal L; Khoshnevis, Sohail; Karbstein, Katrin

    2013-07-16

    DEAD-box proteins, a large class of RNA-dependent ATPases, regulate all aspects of gene expression and RNA metabolism. They can facilitate dissociation of RNA duplexes and remodeling of RNA-protein complexes, serve as ATP-dependent RNA-binding proteins, or even anneal duplexes. These proteins have highly conserved sequence elements that are contained within two RecA-like domains; consequently, their structures are nearly identical. Furthermore, crystal structures of DEAD-box proteins with bound RNA reveal interactions exclusively between the protein and the RNA backbone. Together, these findings suggest that DEAD-box proteins interact with their substrates in a nonspecific manner, which is confirmed in biochemical experiments. Nevertheless, this contrasts with the need to target these enzymes to specific substrates in vivo. Using the DEAD-box protein Rok1 and its cofactor Rrp5, which both function during maturation of the small ribosomal subunit, we show here that Rrp5 provides specificity to the otherwise nonspecific biochemical activities of the Rok1 DEAD-domain. This finding could reconcile the need for specific substrate binding of some DEAD-box proteins with their nonspecific binding surface and expands the potential roles of cofactors to specificity factors. Identification of helicase cofactors and their RNA substrates could therefore help define the undescribed roles of the 19 DEAD-box proteins that function in ribosome assembly.

  3. Functional interplay between Mediator and TFIIB in preinitiation complex assembly in relation to promoter architecture.

    PubMed

    Eychenne, Thomas; Novikova, Elizaveta; Barrault, Marie-Bénédicte; Alibert, Olivier; Boschiero, Claire; Peixeiro, Nuno; Cornu, David; Redeker, Virginie; Kuras, Laurent; Nicolas, Pierre; Werner, Michel; Soutourina, Julie

    2016-09-15

    Mediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches. We revealed an essential function of the Mediator middle module exerted through its Med10 subunit, implicating a key interaction between Mediator and TFIIB. We showed that this Mediator-TFIIB link has a global role on PIC assembly genome-wide. Moreover, the amplitude of Mediator's effect on PIC formation is gene-dependent and is related to the promoter architecture in terms of TATA elements, nucleosome occupancy, and dynamics. This study thus provides mechanistic insights into the coordinated function of Mediator and TFIIB in PIC assembly in different chromatin contexts. © 2016 Eychenne et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Bounding the Failure Probability Range of Polynomial Systems Subject to P-box Uncertainties

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2012-01-01

    This paper proposes a reliability analysis framework for systems subject to multiple design requirements that depend polynomially on the uncertainty. Uncertainty is prescribed by probability boxes, also known as p-boxes, whose distribution functions have free or fixed functional forms. An approach based on the Bernstein expansion of polynomials and optimization is proposed. In particular, we search for the elements of a multi-dimensional p-box that minimize (i.e., the best-case) and maximize (i.e., the worst-case) the probability of inner and outer bounding sets of the failure domain. This technique yields intervals that bound the range of failure probabilities. The offset between this bounding interval and the actual failure probability range can be made arbitrarily tight with additional computational effort.

  5. A fast identification algorithm for Box-Cox transformation based radial basis function neural network.

    PubMed

    Hong, Xia

    2006-07-01

    In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.

  6. Update: the role of FoxP3 in allergic disease.

    PubMed

    Paik, Young; Dahl, Matthew; Fang, Deyu; Calhoun, Karen

    2008-06-01

    T-regulatory cells play a key role in allergic and asthmatic inflammatory airway diseases. This review discusses the importance of a critical gene associated with T-regulatory cells. Forkhead box P3 is a forkhead-winged helix transcription factor gene involved in immune function in allergy and asthma. Recently, many functions of forkhead box P3 and its influence on the immune system have been elucidated. T-regulatory cells that are CD4+CD25+ and express forkhead box P3, influence the development and expression of atopy and allergic response. The exact mechanisms are not yet delineated, but multiple recent studies provide greater understanding of the mechanism of forkhead box P3 and its influence on these T-regulatory cells. Greater understanding of the molecular and immunological mechanisms underlying the T-regulatory cells and forkhead box P3 will permit the development of targeted treatment modalities to influence disease processes such as allergic rhinitis and bronchial asthma.

  7. 78 FR 12360 - PNC Bank, National Association, Retail Bank Franklin, PA; PNC Bank, National Association, Retail...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... at Tata Consultancy Services'' in India. The request also states that the ``other facilities within... Chester, Illinois facilities are ``over 90 miles away resulting in a 2-hour one-way commute.'' The request...

  8. Second Graders Learn Animal Adaptations through Form and Function Analogy Object Boxes

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Baldwin, Samantha; Schell, Robert

    2008-01-01

    This study examined the use of form and function analogy object boxes to teach second graders (n = 21) animal adaptations. The study used a pretest-posttest design to examine animal adaptation content learned through focused analogy activities as compared with reading and Internet searches for information about adaptations of animals followed by…

  9. AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia.

    PubMed

    Zhou, Fengbiao; Liu, Yi; Rohde, Christian; Pauli, Cornelius; Gerloff, Dennis; Köhn, Marcel; Misiak, Danny; Bäumer, Nicole; Cui, Chunhong; Göllner, Stefanie; Oellerich, Thomas; Serve, Hubert; Garcia-Cuellar, Maria-Paz; Slany, Robert; Maciejewski, Jaroslaw P; Przychodzen, Bartlomiej; Seliger, Barbara; Klein, Hans-Ulrich; Bartenhagen, Christoph; Berdel, Wolfgang E; Dugas, Martin; Taketo, Makoto Mark; Farouq, Daneyal; Schwartz, Schraga; Regev, Aviv; Hébert, Josée; Sauvageau, Guy; Pabst, Caroline; Hüttelmaier, Stefan; Müller-Tidow, Carsten

    2017-07-01

    Leukaemogenesis requires enhanced self-renewal, which is induced by oncogenes. The underlying molecular mechanisms remain incompletely understood. Here, we identified C/D box snoRNAs and rRNA 2'-O-methylation as critical determinants of leukaemic stem cell activity. Leukaemogenesis by AML1-ETO required expression of the groucho-related amino-terminal enhancer of split (AES). AES functioned by inducing snoRNA/RNP formation via interaction with the RNA helicase DDX21. Similarly, global loss of C/D box snoRNAs with concomitant loss of rRNA 2'-O-methylation resulted in decreased leukaemia self-renewal potential. Genomic deletion of either C/D box snoRNA SNORD14D or SNORD35A suppressed clonogenic potential of leukaemia cells in vitro and delayed leukaemogenesis in vivo. We further showed that AML1-ETO9a, MYC and MLL-AF9 all enhanced snoRNA formation. Expression levels of C/D box snoRNAs in AML patients correlated closely with in vivo frequency of leukaemic stem cells. Collectively, these findings indicate that induction of C/D box snoRNA/RNP function constitutes an important pathway in leukaemogenesis.

  10. Large-scale expensive black-box function optimization

    NASA Astrophysics Data System (ADS)

    Rashid, Kashif; Bailey, William; Couët, Benoît

    2012-09-01

    This paper presents the application of an adaptive radial basis function method to a computationally expensive black-box reservoir simulation model of many variables. An iterative proxy-based scheme is used to tune the control variables, distributed for finer control over a varying number of intervals covering the total simulation period, to maximize asset NPV. The method shows that large-scale simulation-based function optimization of several hundred variables is practical and effective.

  11. Transcriptional Activation Signals Found in the Epstein-Barr Virus (EBV) Latency C Promoter Are Conserved in the Latency C Promoter Sequences from Baboon and Rhesus Monkey EBV-Like Lymphocryptoviruses (Cercopithicine Herpesviruses 12 and 15)

    PubMed Central

    Fuentes-Pananá, Ezequiel M.; Swaminathan, Sankar; Ling, Paul D.

    1999-01-01

    The Epstein-Barr virus (EBV) EBNA2 protein is a transcriptional activator that controls viral latent gene expression and is essential for EBV-driven B-cell immortalization. EBNA2 is expressed from the viral C promoter (Cp) and regulates its own expression by activating Cp through interaction with the cellular DNA binding protein CBF1. Through regulation of Cp and EBNA2 expression, EBV controls the pattern of latent protein expression and the type of latency established. To gain further insight into the important regulatory elements that modulate Cp usage, we isolated and sequenced the Cp regions corresponding to nucleotides 10251 to 11479 of the EBV genome (−1079 to +144 relative to the transcription initiation site) from the EBV-like lymphocryptoviruses found in baboons (herpesvirus papio; HVP) and Rhesus macaques (RhEBV). Sequence comparison of the approximately 1,230-bp Cp regions from these primate viruses revealed that EBV and HVP Cp sequences are 64% conserved, EBV and RhEBV Cp sequences are 66% conserved, and HVP and RhEBV Cp sequences are 65% conserved relative to each other. Approximately 50% of the residues are conserved among all three sequences, yet all three viruses have retained response elements for glucocorticoids, two positionally conserved CCAAT boxes, and positionally conserved TATA boxes. The putative EBNA2 100-bp enhancers within these promoters contain 54 conserved residues, and the binding sites for CBF1 and CBF2 are well conserved. Cp usage in the HVP- and RhEBV-transformed cell lines was detected by S1 nuclease protection analysis. Transient-transfection analysis showed that promoters of both HVP and RhEBV are responsive to EBNA2 and that they bind CBF1 and CBF2 in gel mobility shift assays. These results suggest that similar mechanisms for regulation of latent gene expression are conserved among the EBV-related lymphocryptoviruses found in nonhuman primates. PMID:9847397

  12. Transcriptional activation signals found in the Epstein-Barr virus (EBV) latency C promoter are conserved in the latency C promoter sequences from baboon and Rhesus monkey EBV-like lymphocryptoviruses (cercopithicine herpesviruses 12 and 15).

    PubMed

    Fuentes-Pananá, E M; Swaminathan, S; Ling, P D

    1999-01-01

    The Epstein-Barr virus (EBV) EBNA2 protein is a transcriptional activator that controls viral latent gene expression and is essential for EBV-driven B-cell immortalization. EBNA2 is expressed from the viral C promoter (Cp) and regulates its own expression by activating Cp through interaction with the cellular DNA binding protein CBF1. Through regulation of Cp and EBNA2 expression, EBV controls the pattern of latent protein expression and the type of latency established. To gain further insight into the important regulatory elements that modulate Cp usage, we isolated and sequenced the Cp regions corresponding to nucleotides 10251 to 11479 of the EBV genome (-1079 to +144 relative to the transcription initiation site) from the EBV-like lymphocryptoviruses found in baboons (herpesvirus papio; HVP) and Rhesus macaques (RhEBV). Sequence comparison of the approximately 1,230-bp Cp regions from these primate viruses revealed that EBV and HVP Cp sequences are 64% conserved, EBV and RhEBV Cp sequences are 66% conserved, and HVP and RhEBV Cp sequences are 65% conserved relative to each other. Approximately 50% of the residues are conserved among all three sequences, yet all three viruses have retained response elements for glucocorticoids, two positionally conserved CCAAT boxes, and positionally conserved TATA boxes. The putative EBNA2 100-bp enhancers within these promoters contain 54 conserved residues, and the binding sites for CBF1 and CBF2 are well conserved. Cp usage in the HVP- and RhEBV-transformed cell lines was detected by S1 nuclease protection analysis. Transient-transfection analysis showed that promoters of both HVP and RhEBV are responsive to EBNA2 and that they bind CBF1 and CBF2 in gel mobility shift assays. These results suggest that similar mechanisms for regulation of latent gene expression are conserved among the EBV-related lymphocryptoviruses found in nonhuman primates.

  13. α-Phellandrene alters expression of genes associated with DNA damage, cell cycle, and apoptosis in murine leukemia WEHI-3 cells.

    PubMed

    Lin, Jen-Jyh; Yu, Chien-Chih; Lu, Kung-Wen; Chang, Shu-Jen; Yu, Fu-Shun; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-08-01

    α-phellandrene (α-PA) is a cyclic monoterpene, present in natural plants such as Schinus molle L. α-PA promotes immune responses in mice in vivo. However, there is no available information on whether α-PA affects gene expression in leukemia cells. The present study determined effects of α-PA on expression levels of genes associated with DNA damage, cell cycle and apoptotic cell death in mouse leukemia WEHI-3 cells. WEHI-3 cells were treated with 10 μM α-PA for 24 h, cells were harvested and total RNA was extracted, and gene expression was analyzed by cDNA microarray. Results indicated that α-PA up-regulated 10 genes 4-fold, 13 by over 3-fold and 175 by over 2-fold; 21 genes were down-regulated by over 4-fold, 26 genes by over 3-fold and expression of 204 genes was altered by at leas 2-fold compared with the untreated control cells. DNA damage-associated genes such as DNA damage-inducer transcript 4 and DNA fragmentation factor were up-regulated by 4-fold and over 2-fold, respectively; cell-cycle check point genes such as cyclin G2 and cyclin-dependent kinases inhibitor 2D and IA (p21) were up-regulated by over 3-fold and over 2-fold, respectively; apoptosis-associated genes such as BCL2/adenovirus EIB interacting protein 3, XIAP-associated factor 1, BCL2 modifying factor, caspase-8 and FADD-like apoptosis regulator were over 2-fold up-regulated. Furthermore, DNA damage-associated gene TATA box binding protein was over 4-fold down-regulated, and D19Ertd652c (DNA segment) over 2-fold down-regulated; cell cycle-associated gene cyclin E2 was over 2-fold down-regulated; apoptosis associated gene growth arrest-specific 5 was over 9-fold down-regulated, Gm5426 (ATP synthase) was over 3-fold down-regulated, and death box polypeptide 33 was over 2-fold down-regulated. Based on these observations, α-PA altered gene expression in WEHI-3 cells in vitro. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43.

    PubMed

    Boogerd, Kees-Jan; Wong, L Y Elaine; Christoffels, Vincent M; Klarenbeek, Meinke; Ruijter, Jan M; Moorman, Antoon F M; Barnett, Phil

    2008-06-01

    T-box factors Tbx2 and Tbx3 play key roles in the development of the cardiac conduction system, atrioventricular canal, and outflow tract of the heart. They regulate the gap-junction-encoding gene Connexin43 (Cx43) and other genes critical for heart development and function. Discovering protein partners of Tbx2 and Tbx3 will shed light on the mechanisms by which these factors regulate these gene programs. Employing an yeast 2-hybrid screen and subsequent in vitro pull-down experiments we demonstrate that muscle segment homeobox genes Msx1 and Msx2 are able to bind the cardiac T-box proteins Tbx2, Tbx3, and Tbx5. This interaction, as that of the related Nkx2.5 protein, is supported by the T-box and homeodomain alone. Overlapping spatiotemporal expression patterns of Msx1 and Msx2 together with the T-box genes during cardiac development in mouse and chicken underscore the biological significance of this interaction. We demonstrate that Msx proteins together with Tbx2 and Tbx3 suppress Cx43 promoter activity and down regulate Cx43 gene activity in a rat heart-derived cell line. Using chromatin immunoprecipitation analysis we demonstrate that Msx1 can bind the Cx43 promoter at a conserved binding site located in close proximity to a previously defined T-box binding site, and that the activity of Msx proteins on this promoter appears dependent in the presence of Tbx3. Msx1 and Msx2 can function in concert with the T-box proteins to suppress Cx43 and other working myocardial genes.

  15. Molecular cloning and characterization of the promoter region of the porcine apolipoprotein E gene.

    PubMed

    Xia, Jihan; Hu, Bingjun; Mu, Yulian; Xin, Leilei; Yang, Shulin; Li, Kui

    2014-05-01

    Apolipoprotein E (APOE), a component of lipoproteins plays an important role in the transport and metabolism of cholesterol, and is associated with hyperlipoproteinemia and Alzheimer's disease. In order to further understand the characterization of APOE gene, the promoter of APOE gene of Landrace pigs was analyzed in the present study. The genomic structure and amino acid sequence in pigs were analyzed and found to share high similarity in those of human but low similarity in promoter region. Real-time PCR revealed the APOE gene expression pattern of pigs in diverse tissues. The highest expression level was observed in liver, relatively low expression in other tissues, especially in stomach and muscle. Furthermore, the promoter expressing in Hepa 1-6 was significantly better at driving luciferase expression compared with C2C12 cell. After analysis of porcine APOE gene promoter regions, potential transcription factor binding sites were predicted and two GC signals, a TATA box were indicated. Results of promoter activity analysis indicated that one of potential regulatory elements was located in the region -669 to -259, which was essential for a high expression of the APOE gene. Promoter mutation and deletion analysis further suggested that the C/EBPA binding site within the APOE promoter was responsible for the regulation of APOE transcription. Electrophoretic mobility shift assays also showed the binding site of the transcription factor C/EBPA. This study advances our knowledge of the promoter of the porcine APOE gene.

  16. Structure of the human gene encoding the protein repair L-isoaspartyl (D-aspartyl) O-methyltransferase.

    PubMed

    DeVry, C G; Tsai, W; Clarke, S

    1996-11-15

    The protein L-isoaspartyl/D-aspartyl O-methyltransferase (EC 2.1.1.77) catalyzes the first step in the repair of proteins damaged in the aging process by isomerization or racemization reactions at aspartyl and asparaginyl residues. A single gene has been localized to human chromosome 6 and multiple transcripts arising through alternative splicing have been identified. Restriction enzyme mapping, subcloning, and DNA sequence analysis of three overlapping clones from a human genomic library in bacteriophage P1 indicate that the gene spans approximately 60 kb and is composed of 8 exons interrupted by 7 introns. Analysis of intron/exon splice junctions reveals that all of the donor and acceptor splice sites are in agreement with the mammalian consensus splicing sequence. Determination of transcription initiation sites by primer extension analysis of poly(A)+ mRNA from human brain identifies multiple start sites, with a major site 159 nucleotides upstream from the ATG start codon. Sequence analysis of the 5'-untranslated region demonstrates several potential cis-acting DNA elements including SP1, ETF, AP1, AP2, ARE, XRE, CREB, MED-1, and half-palindromic ERE motifs. The promoter of this methyltransferase gene lacks an identifiable TATA box but is characterized by a CpG island which begins approximately 723 nucleotides upstream of the major transcriptional start site and extends through exon 1 and into the first intron. These features are characteristic of housekeeping genes and are consistent with the wide tissue distribution observed for this methyltransferase activity.

  17. The chicken skeletal alpha-actin gene promoter region exhibits partial dyad symmetry and a capacity to drive bidirectional transcription.

    PubMed Central

    Grichnik, J M; French, B A; Schwartz, R J

    1988-01-01

    The chicken skeletal alpha-actin gene promoter region (-202 to -12) provides myogenic transcriptional specificity. This promoter contains partial dyad symmetry about an axis at nucleotide -108 and in transfection experiments is capable of directing transcription in a bidirectional manner. At least three different transcription initiation start sites, oriented toward upstream sequences, were mapped 25 to 30 base pairs from TATA-like regions. The opposing transcriptional activity was potentiated upon the deletion of sequences proximal to the alpha-actin transcription start site. Thus, sequences which serve to position RNA polymerase for alpha-actin transcription may allow, in their absence, the selection of alternative and reverse-oriented start sites. Nuclear runoff transcription assays of embryonic muscle indicated that divergent transcription may occur in vivo but with rapid turnover of nuclear transcripts. Divergent transcriptional activity enabled us to define the 3' regulatory boundary of the skeletal alpha-actin promoter which retains a high level of myogenic transcriptional activity. The 3' regulatory border was detected when serial 3' deletions bisected the element (-91 CCAAA TATGG -82) which reduced transcriptional activity by 80%. Previously we showed that disruption of its upstream counterpart (-127 CCAAAGAAGG -136) resulted in about a 90% decrease in activity. These element pairs, which we describe as CCAAT box-associated repeats, are conserved in all sequenced vertebrate sarcomeric actin genes and may act in a cooperative manner to facilitate transcription in myogenic cells. Images PMID:3211124

  18. Molecular cloning and characterization of RGA1 encoding a G protein alpha subunit from rice (Oryza sativa L. IR-36).

    PubMed

    Seo, H S; Kim, H Y; Jeong, J Y; Lee, S Y; Cho, M J; Bahk, J D

    1995-03-01

    A cDNA clone, RGA1, was isolated by using a GPA1 cDNA clone of Arabidopsis thaliana G protein alpha subunit as a probe from a rice (Oryza sativa L. IR-36) seedling cDNA library from roots and leaves. Sequence analysis of genomic clone reveals that the RGA1 gene has 14 exons and 13 introns, and encodes a polypeptide of 380 amino acid residues with a calculated molecular weight of 44.5 kDa. The encoded protein exhibits a considerable degree of amino acid sequence similarity to all the other known G protein alpha subunits. A putative TATA sequence (ATATGA), a potential CAAT box sequence (AGCAATAC), and a cis-acting element, CCACGTGG (ABRE), known to be involved in ABA induction are found in the promoter region. The RGA1 protein contains all the consensus regions of G protein alpha subunits except the cysteine residue near the C-terminus for ADP-ribosylation by pertussis toxin. The RGA1 polypeptide expressed in Escherichia coli was, however, ADP-ribosylated by 10 microM [adenylate-32P] NAD and activated cholera toxin. Southern analysis indicates that there are no other genes similar to the RGA1 gene in the rice genome. Northern analysis reveals that the RGA1 mRNA is 1.85 kb long and expressed in vegetative tissues, including leaves and roots, and that its expression is regulated by light.

  19. Proteomic identification of an embryo-specific 1Cys-Prx promoter and analysis of its activity in transgenic rice.

    PubMed

    Kim, Je Hein; Jung, In Jung; Kim, Dool Yi; Fanata, Wahyu Indra; Son, Bo Hwa; Yoo, Jae Yong; Harmoko, Rikno; Ko, Ki Seong; Moon, Jeong Chan; Jang, Ho Hee; Kim, Woe Yeon; Kim, Jae-Yean; Lim, Chae Oh; Lee, Sang Yeol; Lee, Kyun Oh

    2011-04-29

    Proteomic analysis of a rice callus led to the identification of 10 abscisic acid (ABA)-induced proteins as putative products of the embryo-specific promoter candidates. 5'-flanking sequence of 1 Cys-Prx, a highly-induced protein gene, was cloned and analyzed. The transcription initiation site of 1 Cys-Prx maps 96 nucleotides upstream of the translation initiation codon and a TATA-box and putative seed-specific cis-acting elements, RYE and ABRE, are located 26, 115 and 124 bp upstream of the transcription site, respectively. β-glucuronidase (GUS) expression driven by the 1 Cys-Prx promoters was strong in the embryo and aleurone layer and the activity reached up to 24.9 ± 3.3 and 40.5 ± 2.1 pmol (4 MU/min/μg protein) in transgenic rice seeds and calluses, respectively. The activity of the 1 Cys-Prx promoters is much higher than that of the previously-identified embryo-specific promoters, and comparable to that of strong endosperm-specific promoters in rice. GUS expression driven by the 1 Cys-Prx promoters has been increased by ABA treatment and rapidly induced by wounding in callus and at the leaf of the transgenic plants, respectively. Furthermore, ectopic expression of the GUS construct in Arabidopsis suggested that the 1 Cys-Prx promoter also has strong activity in seeds of dicot plants. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Nucleotide sequence and structural organization of the human vasopressin pituitary receptor (V3) gene.

    PubMed

    René, P; Lenne, F; Ventura, M A; Bertagna, X; de Keyzer, Y

    2000-01-04

    In the pituitary, vasopressin triggers ACTH release through a specific receptor subtype, termed V3 or V1b. We cloned the V3 cDNA and showed that its expression was almost exclusive to pituitary corticotrophs and some corticotroph tumors. To study the determinants of this tissue specificity, we have now cloned the gene for the human (h) V3 receptor and characterized its structure. It is composed of two exons, spanning 10kb, with the coding region interrupted between transmembrane domains 6 and 7. We established that the transcription initiation site is located 498 nucleotides upstream of the initiator codon and showed that two polyadenylation sites may be used, while the most frequent is the most downstream. Sequence analysis of the promoter region showed no TATA box but identified consensus binding motifs for Sp1, CREB, and half sites of the estrogen receptor binding site. However comparison with another corticotroph-specific gene, proopiomelanocortin, did not identify common regulatory elements in the two promoters except for a short GC-rich region. Unexpectedly, hV3 gene analysis revealed that a formerly cloned 'artifactual' hV3 cDNA indeed corresponded to a spliced antisense transcript, overlapping the 5' part of the coding sequence in exon 1 and the promoter region. This transcript, hV3rev, was detected in normal pituitary and in many corticotroph tumors expressing hV3 sense mRNA and may therefore play a role in hV3 gene expression.

  1. LDB1-mediated enhancer looping can be established independent of mediator and cohesin.

    PubMed

    Krivega, Ivan; Dean, Ann

    2017-08-21

    Mechanistic studies in erythroid cells indicate that LDB1, as part of a GATA1/TAL1/LMO2 complex, brings erythroid-expressed genes into proximity with enhancers for transcription activation. The role of co-activators in establishing this long-range interaction is poorly understood. Here we tested the contributions of the RNA Pol II pre-initiation complex (PIC), mediator and cohesin to establishment of locus control region (LCR)/β-globin proximity. CRISPR/Cas9 editing of the β-globin promoter to eliminate the RNA Pol II PIC by deleting the TATA-box resulted in loss of transcription, but enhancer-promoter interaction was unaffected. Additional deletion of the promoter GATA1 site eliminated LDB1 complex and mediator occupancy and resulted in loss of LCR/β-globin proximity. To separate the roles of LDB1 and mediator in LCR looping, we expressed a looping-competent but transcription-activation deficient form of LDB1 in LDB1 knock down cells: LCR/β-globin proximity was restored without mediator core occupancy. Further, Cas9-directed tethering of mutant LDB1 to the β-globin promoter forced LCR loop formation in the absence of mediator or cohesin occupancy. Moreover, ENCODE data and our chromatin immunoprecipitation results indicate that cohesin is almost completely absent from validated and predicted LDB1-regulated erythroid enhancer-gene pairs. Thus, lineage specific factors largely mediate enhancer-promoter looping in erythroid cells independent of mediator and cohesin. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  2. Identification of a domain within human TAF(I)48, a subunit of Selectivity Factor 1, that interacts with helix 2 of TBP.

    PubMed

    Xu, Shuping; Hori, Roderick T

    2004-09-01

    RNA polymerase I transcription in human cells requires Selectivity Factor 1, a multisubunit complex composed of the TATA-box-binding protein (TBP) and three TBP-associated factors (TAFs) called TAF(I)48, TAF(I)63 and TAF(I)110. Each of the Selectivity Factor 1 subunits binds directly to the other three components, but these interactions have not been characterized. This study is the initial identification and analysis of a TBP-binding domain within a Selectivity Factor 1 TAF. The interaction between human TBP and human TAF(I)48 was initially examined using the yeast two-hybrid assay, and a TBP-binding domain was identified in the carboxyl-terminus of human (h)TAF(I)48. Consistent with this result, the hTAF(I)48 carboxyl-terminus was able to bind directly to TBP in protein-protein interaction assays. When mutations were introduced into the hTAF(I)48 carboxyl-terminus, we identified changes in uncharged and positive residues that affect its interaction with TBP. By examining TBP mutants, residues within and adjacent to helix 2 of TBP, previously demonstrated to interact with subunits of other TBP-containing complexes [Transcription Factor IID (TFIID) and TFIIIB] were also found to diminish its affinity for the carboxyl-terminus of hTAF(I)48. The regions of hTAF(I)48 and TBP that interact are compared to those identified within other complexes containing TBP.

  3. Mechanism underlying berberine's effects on HSP70/TNFα under heat stress: Correlation with the TATA boxes.

    PubMed

    Jiang, Jing-Fei; Lei, Fan; Yuan, Zhi-Yi; Wang, Yu-Gang; Wang, Xin-Pei; Yan, Xiao-Jin; Yu, Xuan; Xing, Dong-Ming; DU, Li-Jun

    2017-03-01

    Heat stress can stimulate an increase in body temperature, which is correlated with increased expression of heat shock protein 70 (HSP70) and tumor necrosis factor α (TNFα). The exact mechanism underlying the HSP70 and TNFα induction is unclear. Berberine (BBR) can significantly inhibit the temperature rise caused by heat stress, but the mechanism responsible for the BBR effect on HSP70 and TNFα signaling has not been investigated. The aim of the present study was to explore the relationship between the expression of HSP70 and TNFα and the effects of BBR under heat conditions, using in vivo and in vitro models. The expression levels of HSP70 and TNFα were determined using RT-PCR and Western blotting analyses. The results showed that the levels of HSP70 and TNFα were up-regulated under heat conditions (40 °C). HSP70 acted as a chaperone to maintain TNFα homeostasis with rising the temperature, but knockdown of HSP70 could not down-regulate the level of TNFα. Furthermore, TNFα could not influence the expression of HSP70 under normal and heat conditions. BBR targeted both HSP70 and TNFα by suppressing their gene transcription, thereby decreasing body temperature under heat conditions. In conclusion, BBR has a potential to be developed as a therapeutic strategy for suppressing the thermal effects in hot environments. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  4. Probing the DNA kink structure induced by the hyperthermophilic chromosomal protein Sac7d

    PubMed Central

    Chen, Chin-Yu; Ko, Tzu-Ping; Lin, Ting-Wan; Chou, Chia-Cheng; Chen, Chun-Jung; Wang, Andrew H.-J.

    2005-01-01

    Sac7d, a small, abundant, sequence-general DNA-binding protein from the hyperthermophilic archaeon Sulfolobus acidocaldarius, causes a single-step sharp kink in DNA (∼60°) via the intercalation of both Val26 and Met29. These two amino acids were systematically changed in size to probe their effects on DNA kinking. Eight crystal structures of five Sac7d mutant–DNA complexes have been analyzed. The DNA-binding pattern of the V26A and M29A single mutants is similar to that of the wild-type, whereas the V26A/M29A protein binds DNA without side chain intercalation, resulting in a smaller overall bending (∼50°). The M29F mutant inserts the Phe29 side chain orthogonally to the C2pG3 step without stacking with base pairs, inducing a sharp kink (∼80°). In the V26F/M29F-GCGATCGC complex, Phe26 intercalates deeply into DNA bases by stacking with the G3 base, whereas Phe29 is stacked on the G15 deoxyribose, in a way similar to those used by the TATA box-binding proteins. All mutants have reduced DNA-stabilizing ability, as indicated by their lower Tm values. The DNA kink patterns caused by different combinations of hydrophobic side chains may be relevant in understanding the manner by which other minor groove-binding proteins interact with DNA. PMID:15653643

  5. Fatty acid composition and desaturase gene expression in flax (Linum usitatissimum L.).

    PubMed

    Thambugala, Dinushika; Cloutier, Sylvie

    2014-11-01

    Little is known about the relationship between expression levels of fatty acid desaturase genes during seed development and fatty acid (FA) composition in flax. In the present study, we looked at promoter structural variations of six FA desaturase genes and their relative expression throughout seed development. Computational analysis of the nucleotide sequences of the sad1, sad2, fad2a, fad2b, fad3a and fad3b promoters showed several basic transcriptional elements including CAAT and TATA boxes, and several putative target-binding sites for transcription factors, which have been reported to be involved in the regulation of lipid metabolism. Using semi-quantitative reverse transcriptase PCR, the expression patterns throughout seed development of the six FA desaturase genes were measured in six flax genotypes that differed for FA composition but that carried the same desaturase isoforms. FA composition data were determined by phenotyping the field grown genotypes over four years in two environments. All six genes displayed a bell-shaped pattern of expression peaking at 20 or 24 days after anthesis. Sad2 was the most highly expressed. The expression of all six desaturase genes did not differ significantly between genotypes (P = 0.1400), hence there were no correlations between FA desaturase gene expression and variations in FA composition in relatively low, intermediate and high linolenic acid genotypes expressing identical isoforms for all six desaturases. These results provide further clues towards understanding the genetic factors responsible for FA composition in flax.

  6. Transcriptome-wide analysis of DEAD-box RNA helicase gene family in an Antarctic psychrophilic alga Chlamydomonas sp. ICE-L.

    PubMed

    Liu, Chenlin; Huang, Xiaohang

    2015-09-01

    DEAD-box RNA helicase family proteins have been identified in almost all living organisms. Some of them play a crucial role in adaptation to environmental changes and stress response, especially in the low-temperature acclimation in different kinds of organisms. Compared with the full swing study in plants and bacteria, the characters and functions of DEAD-box family proteins had not been surveyed in algae. To identify genes critical for freezing acclimation in algae, we screened DEAD-box RNA helicase genes from the transcriptome sequences of a psychrophilic microalga Chlamydomonas sp. ICE-L which was isolated from Antarctic sea ice. Totally 39 DEAD-box RNA helicase genes had been identified. Most of the DEAD-box RNA helicase have 1:1 homologous relationships in Chlamydomonas reinhardtii and Chlamydomonas sp. ICE-L with several exceptions. The homologous proteins in ICE-L to the helicases critical for cold or freezing tolerance in Arabidopsis thaliana had been identified based on phylogenetic comparison studies. The response of these helicase genes is not always identical in the Chlamydomonas sp. ICE-L and Arabidopsis under the same low-temperature treatment. The expression of several DEAD-box RNA helicase genes including CiRH5, CiRH25, CiRH28, and CiRH55 were significantly up-regulated under freezing treatment of ICE-L and their function in freezing acclimation of ICE-L deserved further investigation.

  7. T-Box Genes in Drosophila Mesoderm Development.

    PubMed

    Reim, I; Frasch, M; Schaub, C

    2017-01-01

    In Drosophila there are eight genes encoding transcription factors of the T-box family, which are known to exert a variety of crucial developmental functions during ectodermal patterning processes, neuronal cell specification, mesodermal tissue development, and the development of extraembryonic tissues. In this review, we focus on the prominent roles of Drosophila T-box genes in mesodermal tissues. First, we describe the contributions of brachyenteron (byn) and optomotor-blind-related-gene-1 (org-1) to the development of the visceral mesoderm. Second, we provide an overview on the functions of the three Dorsocross paralogs (Doc1-3) and the two Tbx20-related paralogs (midline and H15) during Drosophila heart development. Third, we portray the roles of org-1 and midline/H15 in the specification of individual body wall and organ-attached muscles, including the function of org-1 in the transdifferentiation of certain heart-attached muscles during metamorphosis. The functional analysis of these evolutionarily conserved T-box genes, along with their interactions with other types of transcription factors and various signaling pathways, has provided key insights into the regulation of Drosophila visceral mesoderm, muscle, and heart development. © 2017 Elsevier Inc. All rights reserved.

  8. Molecular Characterization of LubX: Functional Divergence of the U-Box Fold by Legionella pneumophila.

    PubMed

    Quaile, Andrew T; Urbanus, Malene L; Stogios, Peter J; Nocek, Boguslaw; Skarina, Tatiana; Ensminger, Alexander W; Savchenko, Alexei

    2015-08-04

    LubX is part of the large arsenal of effectors in Legionella pneumophila that are translocated into the host cytosol during infection. Despite such unique features as the presence of two U-box motifs and its targeting of another effector SidH, the molecular basis of LubX activity remains poorly understood. Here we show that the N terminus of LubX is able to activate an extended number of ubiquitin-conjugating (E2) enzymes including UBE2W, UBEL6, and all tested members of UBE2D and UBE2E families. Crystal structures of LubX alone and in complex with UBE2D2 revealed drastic molecular diversification between the two U-box domains, with only the N-terminal U-box retaining E2 recognition features typical for its eukaryotic counterparts. Extensive mutagenesis followed by functional screening in a yeast model system captured functionally important LubX residues including Arg121, critical for interactions with SidH. Combined, these data provide a new molecular insight into the function of this unique pathogenic factor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Dissecting CNBP, a zinc-finger protein required for neural crest development, in its structural and functional domains.

    PubMed

    Armas, Pablo; Agüero, Tristán H; Borgognone, Mariana; Aybar, Manuel J; Calcaterra, Nora B

    2008-10-17

    Cellular nucleic-acid-binding protein (CNBP) plays an essential role in forebrain and craniofacial development by controlling cell proliferation and survival to mediate neural crest expansion. CNBP binds to single-stranded nucleic acids and displays nucleic acid chaperone activity in vitro. The CNBP family shows a conserved modular organization of seven Zn knuckles and an arginine-glycine-glycine (RGG) box between the first and second Zn knuckles. The participation of these structural motifs in CNBP biochemical activities has still not been addressed. Here, we describe the generation of CNBP mutants that dissect the protein into regions with structurally and functionally distinct properties. Mutagenesis approaches were followed to generate: (i) an amino acid replacement that disrupted the fifth Zn knuckle; (ii) N-terminal deletions that removed the first Zn knuckle and the RGG box, or the RGG box alone; and (iii) a C-terminal deletion that eliminated the three last Zn knuckles. Mutant proteins were overexpressed in Escherichia coli, purified, and used to analyze their biochemical features in vitro, or overexpressed in Xenopus laevis embryos to study their function in vivo during neural crest cell development. We found that the Zn knuckles are required, but not individually essential, for CNBP biochemical activities, whereas the RGG box is essential for RNA-protein binding and nucleic acid chaperone activity. Removal of the RGG box allowed CNBP to preserve a weak single-stranded-DNA-binding capability. A mutant mimicking the natural N-terminal proteolytic CNBP form behaved as the RGG-deleted mutant. By gain-of-function and loss-of-function experiments in Xenopus embryos, we confirmed the participation of CNBP in neural crest development, and we demonstrated that the CNBP mutants lacking the N-terminal region or the RGG box alone may act as dominant negatives in vivo. Based on these data, we speculate about the existence of a specific proteolytic mechanism for the regulation of CNBP biochemical activities during neural crest development.

  10. The regulation of the Z- and G-box containing promoters by light signaling components, SPA1 and MYC2, in Arabidopsis.

    PubMed

    Gangappa, Sreeramaiah N; Maurya, Jay P; Yadav, Vandana; Chattopadhyay, Sudip

    2013-01-01

    Although many transcription factors and regulatory proteins have been identified and functionally characterized in light signaling pathways, photoperception to transcription remains largely fragmented. The Z-box is one of the LREs (Light responsive elements) that plays important role in the regulation of transcription during light-controlled Arabidopsis seedling development. The involvement of photoreceptors in the modulation of the activity of the Z-box containing promoters has been demonstrated. However, the role of downstream signaling components such as SPA1 and MYC2/ZBF1, which are functionally interrelated, remains unknown. In this study, we have investigated the regulation of the Z-box containing synthetic and native promoters by SPA1 and MYC2 by using stable transgenic lines. Our studies suggest that SPA1 negatively regulates the expression of CAB1 native promoter. MYC2 negatively regulates the activity of Z- and/or G-box containing synthetic as well as native promoters irrespective of light quality. Moreover, MYC2 negatively regulates the expression of Z/G-NOS101-GUS even in the darkness. Furthermore, analyses of tissue specific expression in adult plants suggest that MYC2 strongly regulates the activity of Z- and G-box containing promoters specifically in leaves and stems. In roots, whereas MYC2 positively regulates the activity of the Z-box containing synthetic promoter, it does not seem to control the activity of the G-box containing promoters. Taken together, these results provide insights into SPA1- and MYC2-mediated transcriptional regulation of the Z- and G-box containing promoters in light signaling pathways.

  11. Small molecule therapeutics targeting F-box proteins in cancer.

    PubMed

    Liu, Yuan; Mallampalli, Rama K

    2016-02-01

    The ubiquitin proteasome system (UPS) plays vital roles in maintaining protein equilibrium mainly through proteolytic degradation of targeted substrates. The archetypical SCF ubiquitin E3 ligase complex contains a substrate recognition subunit F-box protein that recruits substrates to the catalytic ligase core for its polyubiquitylation and subsequent proteasomal degradation. Several well-characterized F-box proteins have been demonstrated that are tightly linked to neoplasia. There is mounting information characterizing F-box protein-substrate interactions with the rationale to develop unique therapeutics for cancer treatment. Here we review that how F-box proteins function in cancer and summarize potential small molecule inhibitors for cancer therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Ionic modulation of QPX stability as a nano-switch regulating gene expression in neurons

    NASA Astrophysics Data System (ADS)

    Baghaee Ravari, Soodeh

    G-quadruplexes (G-QPX) have been the subject of intense research due to their unique structural configuration and potential applications, particularly their functionality in biological process as a novel type of nano--switch. They have been found in critical regions of the human genome such as telomeres, promoter regions, and untranslated regions of RNA. About 50% of human DNA in promoters has G-rich regions with the potential to form G-QPX structures. A G-QPX might act mechanistically as an ON/OFF switch, regulating gene expression, meaning that the formation of G-QPX in a single strand of DNA disrupts double stranded DNA, prevents the binding of transcription factors (TF) to their recognition sites, resulting in gene down-regulation. Although there are numerous studies on biological roles of G-QPXs in oncogenes, their potential formation in neuronal cells, in particular upstream of transcription start sites, is poorly investigated. The main focus of this research is to identify stable G-QPXs in the 97bp active promoter region of the choline acetyltransferase (ChAT) gene, the terminal enzyme involved in synthesis of the neurotransmitter acetylcholine, and to clarify ionic modulation of G-QPX nanostructures through the mechanism of neural action potentials. Different bioinformatics analyses (in silico), including the QGRS, quadparser and G4-Calculator programs, have been used to predict stable G-QPX in the active promoter region of the human ChAT gene, located 1000bp upstream from the TATA box. The results of computational studies (using those three different algorithms) led to the identification of three consecutive intramolecular G-QPX structures in the negative strand (ChAT G17-2, ChAT G17, and ChAT G29) and one intramolecular G-QPX structure in the positive strand (ChAT G30). Also, the results suggest the possibility that nearby G-runs in opposed DNA strands with a short distance of each other may be able to form a stable intermolecular G-QPX involving two DNA complementary strands (ds ChAT G21). Formation of G-QPX structures, by blocking the availability of the transcription factor binding site (TFBS) on double stranded DNA, can interfere with transcriptional activation. This suggests that there is competition between TFBS binding to dsDNA and the conversion to high order non-B form secondary structures (G-QPXs) in the active promoter region. TFBS mapping analysis of the active promoter region of the human ChAT gene revealed that it contains multiple consensus AP-2alpha and Sp1 binding sites and consensus sites for other TF, including multiple sites for GR-alpha, Pax-5, p53 and GC box proteins. (Abstract shortened by ProQuest.).

  13. New Mars meteorite fall in Morocco: collecting observations and determining the spatial distribution in the strewnfield

    NASA Astrophysics Data System (ADS)

    Ibhi, Abderrahmane

    2013-01-01

    The existence of Martian meteorites in the region of Tissint (Tata, Morocco) dropped by a very bright fireball on July 18, 2011, had been notified to a group of scientists of the Ibn Zohr University of Agadir, Morocco, at the beginning of January 2012, by a nomad of Tata who had found a small fragment in the region. As soon as a scientific expedition arrived at the place of the meteorite fall, the members of the laboratory of Geo-heritage and Geo-materials Science started gathering information and collecting the debris of this Martian meteorite. The Tissint fireball has been observed and reported by numerous witnesses across the southeastern Morocco. The event was extremely valuable to the scientific community: it was the brightest and most comprehensively observed fireball in Morocco's known astronomical history. We are now in a position to draw the distribution ellipse of the fall, which starts at Jbel Al Gallab and continues in east-southeastern direction, above big rocky plateaus.

  14. Initial assembly steps of a translocase for folded proteins

    PubMed Central

    Blümmel, Anne-Sophie; Haag, Laura A.; Eimer, Ekaterina; Müller, Matthias; Fröbel, Julia

    2015-01-01

    The so-called Tat (twin-arginine translocation) system transports completely folded proteins across cellular membranes of archaea, prokaryotes and plant chloroplasts. Tat-directed proteins are distinguished by a conserved twin-arginine (RR-) motif in their signal sequences. Many Tat systems are based on the membrane proteins TatA, TatB and TatC, of which TatB and TatC are known to cooperate in binding RR-signal peptides and to form higher-order oligomeric structures. We have now elucidated the fine architecture of TatBC oligomers assembled to form closed intramembrane substrate-binding cavities. The identification of distinct homonymous and heteronymous contacts between TatB and TatC suggest that TatB monomers coalesce into dome-like TatB structures that are surrounded by outer rings of TatC monomers. We also show that these TatBC complexes are approached by TatA protomers through their N-termini, which thereby establish contacts with TatB and membrane-inserted RR-precursors. PMID:26068441

  15. Zebrafish U6 small nuclear RNA gene promoters contain a SPH element in an unusual location.

    PubMed

    Halbig, Kari M; Lekven, Arne C; Kunkel, Gary R

    2008-09-15

    Promoters for vertebrate small nuclear RNA (snRNA) genes contain a relatively simple array of transcriptional control elements, divided into proximal and distal regions. Most of these genes are transcribed by RNA polymerase II (e.g., U1, U2), whereas the U6 gene is transcribed by RNA polymerase III. Previously identified vertebrate U6 snRNA gene promoters consist of a proximal sequence element (PSE) and TATA element in the proximal region, plus a distal region with octamer (OCT) and SphI postoctamer homology (SPH) elements. We have found that zebrafish U6 snRNA promoters contain the SPH element in a novel proximal position immediately upstream of the TATA element. The zebrafish SPH element is recognized by SPH-binding factor/selenocysteine tRNA gene transcription activating factor/zinc finger protein 143 (SBF/Staf/ZNF143) in vitro. Furthermore, a zebrafish U6 promoter with a defective SPH element is inefficiently transcribed when injected into embryos.

  16. Overexpression of the cucumber LEAFY homolog CFL and hormone treatments alter flower development in gloxinia (Sinningia speciosa).

    PubMed

    Zhang, Ming-Zhe; Ye, Dan; Wang, Li-Lin; Pang, Ji-Liang; Zhang, Yu-Hong; Zheng, Ke; Bian, Hong-Wu; Han, Ning; Pan, Jian-Wei; Wang, Jun-Hui; Zhu, Mu-Yuan

    2008-07-01

    Leafy (LFY) and LFY-like genes control the initiation of floral meristems and regulate MADS-box genes in higher plants. The Cucumber-FLO-LFY (CFL) gene, a LFY homolog in Cucumis sativus L. is expressed in the primordia, floral primordia, and each whirl of floral organs during the early stage of flower development. In this study, functions of CFL in flower development were investigated by overexpressing the CFL gene in gloxinia (Sinningia speciosa). Our results show that constitutive CFL overexpression significantly promote early flowering without gibberellin (GA(3)) supplement, suggesting that CFL can serve functionally as a LFY homolog in gloxinia. Moreover, GA(3) and abscisic acid (ABA) treatments could modulate the expression of MADS-box genes in opposite directions. GA(3) resembles the overexpression of CFL in the expression of MADS-box genes and the regeneration of floral buds, but ABA inhibits the expression of MADS-box genes and flower development. These results suggest that CFL and downstream MADS-box genes involved in flower development are regulated by GA(3) and ABA.

  17. Compensated Box-Jenkins transfer function for short term load forecast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breipohl, A.; Yu, Z.; Lee, F.N.

    In the past years, the Box-Jenkins ARIMA method and the Box-Jenkins transfer function method (BJTF) have been among the most commonly used methods for short term electrical load forecasting. But when there exists a sudden change in the temperature, both methods tend to exhibit larger errors in the forecast. This paper demonstrates that the load forecasting errors resulting from either the BJ ARIMA model or the BJTF model are not simply white noise, but rather well-patterned noise, and the patterns in the noise can be used to improve the forecasts. Thus a compensated Box-Jenkins transfer method (CBJTF) is proposed tomore » improve the accuracy of the load prediction. Some case studies have been made which result in about a 14-33% reduction of the root mean square (RMS) errors of the forecasts, depending on the compensation time period as well as the compensation method used.« less

  18. Using Form and Function Analogy Object Boxes to Teach Human Body Systems

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Furletti, Charles

    2004-01-01

    This study compares the use of form and function analogy object boxes to more traditional lecture and worksheet instruction during a 10th-grade unit on human body systems. The study was conducted with two classes (N = 32) of mixed ability students at a high-needs rural high school in central New York State. The study used a pretest/posttest…

  19. Augmented twin-nonlinear two-box behavioral models for multicarrier LTE power amplifiers.

    PubMed

    Hammi, Oualid

    2014-01-01

    A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.

  20. A deterministic global optimization using smooth diagonal auxiliary functions

    NASA Astrophysics Data System (ADS)

    Sergeyev, Yaroslav D.; Kvasov, Dmitri E.

    2015-04-01

    In many practical decision-making problems it happens that functions involved in optimization process are black-box with unknown analytical representations and hard to evaluate. In this paper, a global optimization problem is considered where both the goal function f (x) and its gradient f‧ (x) are black-box functions. It is supposed that f‧ (x) satisfies the Lipschitz condition over the search hyperinterval with an unknown Lipschitz constant K. A new deterministic 'Divide-the-Best' algorithm based on efficient diagonal partitions and smooth auxiliary functions is proposed in its basic version, its convergence conditions are studied and numerical experiments executed on eight hundred test functions are presented.

  1. Molecular characterization and expression analysis of Triticum aestivum squamosa-promoter binding protein-box genes involved in ear development.

    PubMed

    Zhang, Bin; Liu, Xia; Zhao, Guangyao; Mao, Xinguo; Li, Ang; Jing, Ruilian

    2014-06-01

    Wheat (Triticum aestivum L.) is one of the most important crops in the world. Squamosa-promoter binding protein (SBP)-box genes play a critical role in regulating flower and fruit development. In this study, 10 novel SBP-box genes (TaSPL genes) were isolated from wheat ((Triticum aestivum L.) cultivar Yanzhan 4110). Phylogenetic analysis classified the TaSPL genes into five groups (G1-G5). The motif combinations and expression patterns of the TaSPL genes varied among the five groups with each having own distinctive characteristics: TaSPL20/21 in G1 and TaSPL17 in G2 mainly expressed in the shoot apical meristem and the young ear, and their expression levels responded to development of the ear; TaSPL6/15 belonging to G3 were upregulated and TaSPL1/23 in G4 were downregulated during grain development; the gene in G5 (TaSPL3) expressed constitutively. Thus, the consistency of the phylogenetic analysis, motif compositions, and expression patterns of the TaSPL genes revealed specific gene structures and functions. On the other hand, the diverse gene structures and different expression patterns suggested that wheat SBP-box genes have a wide range of functions. The results also suggest a potential role for wheat SBP-box genes in ear development. This study provides a significant beginning of functional analysis of SBP-box genes in wheat. © 2014 The Authors. Journal of Integrative Plant Biology Published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  2. Multiple circadian transcriptional elements cooperatively regulate cell-autonomous transcriptional oscillation of Period3, a mammalian clock gene.

    PubMed

    Matsumura, Ritsuko; Akashi, Makoto

    2017-09-29

    Cell-autonomous oscillation in clock gene expression drives circadian rhythms. The development of comprehensive analytical techniques, such as bioinformatics and ChIP-sequencing, has enabled the genome-wide identification of potential circadian transcriptional elements that regulate the transcriptional oscillation of clock genes. However, detailed analyses using traditional biochemical and molecular-biological approaches, such as binding and reporter assays, are still necessary to determine whether these potential circadian transcriptional elements are actually functional and how significantly they contribute to driving transcriptional oscillation. Here, we focused on the molecular mechanism of transcriptional oscillations in the mammalian clock gene Period3 ( Per3 ). The PER3 protein is essential for robust peripheral clocks and is a key component in circadian output processes. We found three E box-like elements located upstream of human Per3 transcription start sites that additively contributed to cell-autonomous transcriptional oscillation. However, we also found that Per3 is still expressed in a circadian manner when all three E box-like elements are functionally impaired. We noted that Per3 transcription was activated by the synergistic actions of two D box-like elements and the three E box-like elements, leading to a drastic increase in circadian amplitude. Interestingly, circadian expression of Per3 was completely disrupted only when all five transcriptional elements were functionally impaired. These results indicate that three E box-like and two D box-like elements cooperatively and redundantly regulate cell-autonomous transcriptional oscillation of Per3 . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Role of the Box C/D Motif in Localization of Small Nucleolar RNAs to Coiled Bodies and Nucleoli

    PubMed Central

    Narayanan, Aarthi; Speckmann, Wayne; Terns, Rebecca; Terns, Michael P.

    1999-01-01

    Small nucleolar RNAs (snoRNAs) are a large family of eukaryotic RNAs that function within the nucleolus in the biogenesis of ribosomes. One major class of snoRNAs is the box C/D snoRNAs named for their conserved box C and box D sequence elements. We have investigated the involvement of cis-acting sequences and intranuclear structures in the localization of box C/D snoRNAs to the nucleolus by assaying the intranuclear distribution of fluorescently labeled U3, U8, and U14 snoRNAs injected into Xenopus oocyte nuclei. Analysis of an extensive panel of U3 RNA variants showed that the box C/D motif, comprised of box C′, box D, and the 3′ terminal stem of U3, is necessary and sufficient for the nucleolar localization of U3 snoRNA. Disruption of the elements of the box C/D motif of U8 and U14 snoRNAs also prevented nucleolar localization, indicating that all box C/D snoRNAs use a common nucleolar-targeting mechanism. Finally, we found that wild-type box C/D snoRNAs transiently associate with coiled bodies before they localize to nucleoli and that variant RNAs that lack an intact box C/D motif are detained within coiled bodies. These results suggest that coiled bodies play a role in the biogenesis and/or intranuclear transport of box C/D snoRNAs. PMID:10397754

  4. The F-box family genes as key elements in response to salt, heavy mental, and drought stresses in Medicago truncatula.

    PubMed

    Song, Jian Bo; Wang, Yan Xiang; Li, Hai Bo; Li, Bo Wen; Zhou, Zhao Sheng; Gao, Shuai; Yang, Zhi Min

    2015-07-01

    F-box protein is a subunit of Skp1-Rbx1-Cul1-F-box protein (SCF) complex with typically conserved F-box motifs of approximately 40 amino acids and is one of the largest protein families in eukaryotes. F-box proteins play critical roles in selective and specific protein degradation through the 26S proteasome. In this study, we bioinformatically identified 972 putative F-box proteins from Medicago truncatula genome. Our analysis showed that in addition to the conserved motif, the F-box proteins have several other functional domains in their C-terminal regions (e.g., LRRs, Kelch, FBA, and PP2), some of which were found to be M. truncatula species-specific. By phylogenetic analysis of the F-box motifs, these proteins can be classified into three major families, and each family can be further grouped into more subgroups. Analysis of the genomic distribution of F-box genes on M. truncatula chromosomes revealed that the evolutional expansion of F-box genes in M. truncatula was probably due to localized gene duplications. To investigate the possible response of the F-box genes to abiotic stresses, both publicly available and customer-prepared microarrays were analyzed. Most of the F-box protein genes can be responding to salt and heavy metal stresses. Real-time PCR analysis confirmed that some of the F-box protein genes containing heat, drought, salicylic acid, and abscisic acid responsive cis-elements were able to respond to the abiotic stresses.

  5. Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response

    PubMed Central

    2014-01-01

    Background Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA“s” and PthC“s” of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange. Results Based on, 1) the TAL effector-DNA binding code, 2) gene expression data of Xc and XaC-infiltrated sweet orange leaves, and 3) citrus hypocotyls transformed with PthA2, PthA4 or PthC1, we have identified a collection of Citrus sinensis genes potentially targeted by Xc and XaC TAL effectors. Our results suggest that similar with other strains of Xanthomonas TAL effectors, PthA2 and PthA4, and PthC1 to some extent, functionally converge. In particular, towards induction of genes involved in the auxin and gibberellin synthesis and response, cell division, and defense response. We also present evidence indicating that the TAL effectors act as transcriptional repressors and that the best scoring predicted DNA targets of PthA“s” and PthC“s” in citrus promoters predominantly overlap with or localize near to TATA boxes of core promoters, supporting the idea that TAL effectors interact with the host basal transcriptional machinery to recruit the RNA pol II and start transcription. Conclusions The identification of PthA“s” and PthC“s” targets, such as the LOB (LATERAL ORGAN BOUNDARY) and CCNBS genes that we report here, is key for the understanding of the canker symptoms development during host susceptibility, or the defenses of sweet orange against the canker bacteria. We have narrowed down candidate targets to a few, which pointed out the host metabolic pathways explored by the pathogens. PMID:24564253

  6. Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response.

    PubMed

    Pereira, Andre L A; Carazzolle, Marcelo F; Abe, Valeria Y; de Oliveira, Maria L P; Domingues, Mariane N; Silva, Jaqueline C; Cernadas, Raul A; Benedetti, Celso E

    2014-02-25

    Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA"s" and PthC"s" of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange. Based on, 1) the TAL effector-DNA binding code, 2) gene expression data of Xc and XaC-infiltrated sweet orange leaves, and 3) citrus hypocotyls transformed with PthA2, PthA4 or PthC1, we have identified a collection of Citrus sinensis genes potentially targeted by Xc and XaC TAL effectors. Our results suggest that similar with other strains of Xanthomonas TAL effectors, PthA2 and PthA4, and PthC1 to some extent, functionally converge. In particular, towards induction of genes involved in the auxin and gibberellin synthesis and response, cell division, and defense response. We also present evidence indicating that the TAL effectors act as transcriptional repressors and that the best scoring predicted DNA targets of PthA"s" and PthC"s" in citrus promoters predominantly overlap with or localize near to TATA boxes of core promoters, supporting the idea that TAL effectors interact with the host basal transcriptional machinery to recruit the RNA pol II and start transcription. The identification of PthA"s" and PthC"s" targets, such as the LOB (lateral organ boundary) and CCNBS genes that we report here, is key for the understanding of the canker symptoms development during host susceptibility, or the defenses of sweet orange against the canker bacteria. We have narrowed down candidate targets to a few, which pointed out the host metabolic pathways explored by the pathogens.

  7. The SANT domain of human MI-ER1 interacts with Sp1 to interfere with GC box recognition and repress transcription from its own promoter.

    PubMed

    Ding, Zhihu; Gillespie, Laura L; Mercer, F Corinne; Paterno, Gary D

    2004-07-02

    To gain insight into the regulation of hmi-er1 expression, we cloned a human genomic DNA fragment containing one of the two hmi-er1 promoters and consisting of 1460 bp upstream of the translation initiation codon of hMI-ER1. Computer-assisted sequence analysis revealed that the hmi-er1 promoter region contains a CpG island but lacks an identifiable TATA element, initiator sequence and downstream promoter element. This genomic DNA was able to direct transcription of a luciferase reporter gene in a variety of human cell lines, and the minimal promoter was shown to be located within-68/+144 bp. Several putative Sp1 binding sites were identified, and we show that Sp1 can bind to the hmi-er1 minimal promoter and increase transcription, suggesting that the level of hmi-er1 expression may depend on the availability of Sp1 protein. Functional analysis revealed that hMI-ER1 represses Sp1-activated transcription from the minimal promoter by a histone deacetylase-independent mechanism. Chromatin immunoprecipitation analysis demonstrated that both Sp1 and hMI-ER1 are associated with the chromatin of the hmi-er1 promoter and that overexpression of hMI-ER1 in cell lines that allow Tet-On-inducible expression resulted in loss of detectable Sp1 from the endogenous hmi-er1 promoter. The mechanism by which this occurs does not involve binding of hMI-ER1 to cis-acting elements. Instead, we show that hMI-ER1 physically associates with Sp1 and that endogenous complexes containing the two proteins could be detected in vivo. Furthermore, hMI-ER1 specifically interferes with binding of Sp1 to the hmi-er1 minimal promoter as well as to an Sp1 consensus oligonucleotide. Deletion analysis revealed that this interaction occurs through a region containing the SANT domain of hMI-ER1. Together, these data reveal a functional role for the SANT domain in the action of co-repressor regulatory factors and suggest that the association of hMI-ER1 with Sp1 represents a novel mechanism for the negative regulation of Sp1 target promoters.

  8. MADS-Box gene diversity in seed plants 300 million years ago.

    PubMed

    Becker, A; Winter, K U; Meyer, B; Saedler, H; Theissen, G

    2000-10-01

    MADS-box genes encode a family of transcription factors which control diverse developmental processes in flowering plants ranging from root development to flower and fruit development. Through phylogeny reconstructions, most of these genes can be subdivided into defined monophyletic gene clades whose members share similar expression patterns and functions. Therefore, the establishment of the diversity of gene clades was probably an important event in land plant evolution. In order to determine when these clades originated, we isolated cDNAs of 19 different MADS-box genes from Gnetum gnemon, a gymnosperm model species and thus a representative of the sister group of the angiosperms. Phylogeny reconstructions involving all published MADS-box genes were then used to identify gene clades containing putative orthologs from both angiosperm and gymnosperm lineages. Thus, the minimal number of MADS-box genes that were already present in the last common ancestor of extant gymnosperms and angiosperms was determined. Comparative expression studies involving pairs of putatively orthologous genes revealed a diversity of patterns that has been largely conserved since the time when the angiosperm and gymnosperm lineages separated. Taken together, our data suggest that there were already at least seven different MADS-box genes present at the base of extant seed plants about 300 MYA. These genes were probably already quite diverse in terms of both sequence and function. In addition, our data demonstrate that the MADS-box gene families of extant gymnosperms and angiosperms are of similar complexities.

  9. Genome-Wide Identification and Expression of Xenopus F-Box Family of Proteins.

    PubMed

    Saritas-Yildirim, Banu; Pliner, Hannah A; Ochoa, Angelica; Silva, Elena M

    2015-01-01

    Protein degradation via the multistep ubiquitin/26S proteasome pathway is a rapid way to alter the protein profile and drive cell processes and developmental changes. Many key regulators of embryonic development are targeted for degradation by E3 ubiquitin ligases. The most studied family of E3 ubiquitin ligases is the SCF ubiquitin ligases, which use F-box adaptor proteins to recognize and recruit target proteins. Here, we used a bioinformatics screen and phylogenetic analysis to identify and annotate the family of F-box proteins in the Xenopus tropicalis genome. To shed light on the function of the F-box proteins, we analyzed expression of F-box genes during early stages of Xenopus development. Many F-box genes are broadly expressed with expression domains localized to diverse tissues including brain, spinal cord, eye, neural crest derivatives, somites, kidneys, and heart. All together, our genome-wide identification and expression profiling of the Xenopus F-box family of proteins provide a foundation for future research aimed to identify the precise role of F-box dependent E3 ubiquitin ligases and their targets in the regulatory circuits of development.

  10. Distinct regions of the interleukin-7 receptor regulate different Bcl2 family members.

    PubMed

    Jiang, Qiong; Li, Wen Qing; Hofmeister, Robert R; Young, Howard A; Hodge, David R; Keller, Jonathan R; Khaled, Annette R; Durum, Scott K

    2004-07-01

    The antiapoptotic function of the interleukin-7 (IL-7) receptor is related to regulation of three members of the Bcl2 family: synthesis of Bcl2, phosphorylation of Bad, and cytosolic retention of Bax. Here we show that, in an IL-7-dependent murine T-cell line, different regions of the IL-7 receptor initiate the signal transduction pathways that regulate these proteins. Both Box1 and Y449 are required to signal Bcl2 synthesis and Bax cytosolic retention. This suggests a sequential model in which Jak1, which binds to Box1, is first activated and then phosphorylates Y449, leading to Bcl2 and Bax regulation, accounting for approximately 90% of the survival function. Phosphorylation of Bad required Box1 but not Y449, suggesting that Jak1 also initiates an additional signaling cascade that accounts for approximately 10% of the survival function. Stat5 was activated from the Y449 site but only partially accounted for the survival signal. Proliferation required both Y449 and Box1. Thymocyte development in vivo showed that deletion of Y449 eliminated 90% of alphabeta T-cell development and completely eliminated gammadelta T-cell development, whereas deleting Box 1 completely eliminated both alphabeta and gammadelta T-cell development. Thus the IL-7 receptor controls at least two distinct pathways, in addition to Stat5, that are required for cell survival.

  11. A Network of HMG-box Transcription Factors Regulates Sexual Cycle in the Fungus Podospora anserina

    PubMed Central

    Ait Benkhali, Jinane; Coppin, Evelyne; Brun, Sylvain; Peraza-Reyes, Leonardo; Martin, Tom; Dixelius, Christina; Lazar, Noureddine; van Tilbeurgh, Herman; Debuchy, Robert

    2013-01-01

    High-mobility group (HMG) B proteins are eukaryotic DNA-binding proteins characterized by the HMG-box functional motif. These transcription factors play a pivotal role in global genomic functions and in the control of genes involved in specific developmental or metabolic pathways. The filamentous ascomycete Podospora anserina contains 12 HMG-box genes. Of these, four have been previously characterized; three are mating-type genes that control fertilization and development of the fruit-body, whereas the last one encodes a factor involved in mitochondrial DNA stability. Systematic deletion analysis of the eight remaining uncharacterized HMG-box genes indicated that none were essential for viability, but that seven were involved in the sexual cycle. Two HMG-box genes display striking features. PaHMG5, an ortholog of SpSte11 from Schizosaccharomyces pombe, is a pivotal activator of mating-type genes in P. anserina, whereas PaHMG9 is a repressor of several phenomena specific to the stationary phase, most notably hyphal anastomoses. Transcriptional analyses of HMG-box genes in HMG-box deletion strains indicated that PaHMG5 is at the hub of a network of several HMG-box factors that regulate mating-type genes and mating-type target genes. Genetic analyses revealed that this network also controls fertility genes that are not regulated by mating-type transcription factors. This study points to the critical role of HMG-box members in sexual reproduction in fungi, as 11 out of 12 members were involved in the sexual cycle in P. anserina. PaHMG5 and SpSte11 are conserved transcriptional regulators of mating-type genes, although P. anserina and S. pombe diverged 550 million years ago. Two HMG-box genes, SOX9 and its upstream regulator SRY, also play an important role in sex determination in mammals. The P. anserina and S. pombe mating-type genes and their upstream regulatory factor form a module of HMG-box genes analogous to the SRY/SOX9 module, revealing a commonality of sex regulation in animals and fungi. PMID:23935511

  12. Guidelines for Conducting a Training Effectiveness Evaluation (TEE). Volume 1. TEE Evaluator’s Handbook

    DTIC Science & Technology

    1985-02-01

    by drawing prerequisite lines, the relationships between all subordinate skills and knowledges and the terminal objective. Thus, for purposes of...functions, tasks, or skills below it, rate the relationship of the performances shown in the superordinate box to those in the subordinate boxes...A useful format for displaying performance relationships between team functions and subordinate tasks or communication and coordination skills

  13. Structure-function analysis of mouse Sry reveals dual essential roles of the C-terminal polyglutamine tract in sex determination.

    PubMed

    Zhao, Liang; Ng, Ee Ting; Davidson, Tara-Lynne; Longmuss, Enya; Urschitz, Johann; Elston, Marlee; Moisyadi, Stefan; Bowles, Josephine; Koopman, Peter

    2014-08-12

    The mammalian sex-determining factor SRY comprises a conserved high-mobility group (HMG) box DNA-binding domain and poorly conserved regions outside the HMG box. Mouse Sry is unusual in that it includes a C-terminal polyglutamine (polyQ) tract that is absent in nonrodent SRY proteins, and yet, paradoxically, is essential for male sex determination. To dissect the molecular functions of this domain, we generated a series of Sry mutants, and studied their biochemical properties in cell lines and transgenic mouse embryos. Sry protein lacking the polyQ domain was unstable, due to proteasomal degradation. Replacing this domain with irrelevant sequences stabilized the protein but failed to restore Sry's ability to up-regulate its key target gene SRY-box 9 (Sox9) and its sex-determining function in vivo. These functions were restored only when a VP16 transactivation domain was substituted. We conclude that the polyQ domain has important roles in protein stabilization and transcriptional activation, both of which are essential for male sex determination in mice. Our data disprove the hypothesis that the conserved HMG box domain is the only functional domain of Sry, and highlight an evolutionary paradox whereby mouse Sry has evolved a novel bifunctional module to activate Sox9 directly, whereas SRY proteins in other taxa, including humans, seem to lack this ability, presumably making them dependent on partner proteins(s) to provide this function.

  14. Augmented Twin-Nonlinear Two-Box Behavioral Models for Multicarrier LTE Power Amplifiers

    PubMed Central

    2014-01-01

    A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients. PMID:24624047

  15. Genome-wide identification and analysis of the MADS-box gene family in apple.

    PubMed

    Tian, Yi; Dong, Qinglong; Ji, Zhirui; Chi, Fumei; Cong, Peihua; Zhou, Zongshan

    2015-01-25

    The MADS-box gene family is one of the most widely studied families in plants and has diverse developmental roles in flower pattern formation, gametophyte cell division and fruit differentiation. Although the genome-wide analysis of this family has been performed in some species, little is known regarding MADS-box genes in apple (Malus domestica). In this study, 146 MADS-box genes were identified in the apple genome and were phylogenetically clustered into six subgroups (MIKC(c), MIKC*, Mα, Mβ, Mγ and Mδ) with the MADS-box genes from Arabidopsis and rice. The predicted apple MADS-box genes were distributed across all 17 chromosomes at different densities. Additionally, the MADS-box domain, exon length, gene structure and motif compositions of the apple MADS-box genes were analysed. Moreover, the expression of all of the apple MADS-box genes was analysed in the root, stem, leaf, flower tissues and five stages of fruit development. All of the apple MADS-box genes, with the exception of some genes in each group, were expressed in at least one of the tissues tested, which indicates that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the apple. To the best of our knowledge, this report describes the first genome-wide analysis of the apple MADS-box gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. HMGB1 a-Box Reverses Brain Edema and Deterioration of Neurological Function in a Traumatic Brain Injury Mouse Model.

    PubMed

    Yang, Lijun; Wang, Feng; Yang, Liang; Yuan, Yunchao; Chen, Yan; Zhang, Gengshen; Fan, Zhenzeng

    2018-01-01

    Traumatic brain injury (TBI) is a complex neurological injury in young adults lacking effective treatment. Emerging evidences suggest that inflammation contributes to the secondary brain injury following TBI, including breakdown of the blood brain barrier (BBB), subsequent edema and neurological deterioration. High mobility group box-1 (HMGB1) has been identified as a key cytokine in the inflammation reaction following TBI. Here, we investigated the therapeutic efficacy of HMGB1 A-box fragment, an antagonist competing with full-length HMGB1 for receptor binding, against TBI. TBI was induced by controlled cortical impact (CCI) in adult male mice. HMGB1 A-box fragment was given intravenously at 2 mg/kg/day for 3 days after CCI. HMGB1 A-box-treated CCI mice were compared with saline-treated CCI mice and sham mice in terms of BBB disruption evaluated by Evan's blue extravasation, brain edema by brain water content, cell death by propidium iodide staining, inflammation by Western blot and ELISA assay for cytokine productions, as well as neurological functions by the modified Neurological Severity Score, wire grip and beam walking tests. HMGB1 A-box reversed brain damages in the mice following TBI. It significantly reduced brain edema by protecting integrity of the BBB, ameliorated cell degeneration, and decreased expression of pro-inflammatory cytokines released in injured brain after TBI. These cellular and molecular effects were accompanied by improved behavioral performance in TBI mice. Notably, HMGB1 A-box blocked IL-1β-induced HMGB1 release, and preferentially attenuated TLR4, Myd88 and P65 in astrocyte cultures. Our data suggest that HMGB1 is involved in CCI-induced TBI, which can be inhibited by HMGB1 A-box fragment. Therefore, HMGB1 A-box fragment may have therapeutic potential for the secondary brain damages in TBI. © 2018 The Author(s). Published by S. Karger AG, Basel.

  17. Power Scaling of Petroleum Field Sizes and Movie Box Office Earnings.

    NASA Astrophysics Data System (ADS)

    Haley, J. A.; Barton, C. C.

    2017-12-01

    The size-cumulative frequency distribution of petroleum fields has long been shown to be power scaling, Mandelbrot, 1963, and Barton and Scholz, 1995. The scaling exponents for petroleum field volumes range from 0.8 to 1.08 worldwide and are used to assess the size and number of undiscovered fields. The size-cumulative frequency distribution of movie box office earnings also exhibits a power scaling distribution for domestic, overseas, and worldwide gross box office earnings for the top 668 earning movies released between 1939 and 2016 (http://www.boxofficemojo.com/alltime/). Box office earnings were reported in the dollars-of-the-day and were converted to 2015 U.S. dollars using the U.S. consumer price index (CPI) for domestic and overseas earnings. Because overseas earnings are not reported by country and there is no single inflation index appropriate for all overseas countries. Adjusting the box office earnings using the CPI index has two effects on the power functions fit. The first is that the scaling exponent has a narrow range (2.3 - 2.5) between the three data sets; and second, the scatter of the data points fit by the power function is reduced. The scaling exponents for the adjusted value are; 2.3 for domestic box office earnings, 2.5 for overseas box office earnings, and 2.5 worldwide box office earnings. The smaller the scaling exponent the greater the proportion of all earnings is contributed by a smaller proportion of all the movies: where E = P (a-2)/(a-1) where E is the percentage of earnings, P is the percentage of all movies in the data set. The scaling exponents for box office earnings (2.3 - 2.5) means that approximately 20% of the top earning movies contribute 70-55% of all the earnings for domestic, worldwide earnings respectively.

  18. General Aviation Aircraft Utilization in the Construction Industry.

    DTIC Science & Technology

    1987-01-01

    York), Vol.45, no.11, Nov 1975, pg 82-86 6. Hinze, Jimmie and Pannullo, John 1978 "Safety; Function of Job Control" Journal of the Construction...Long, Daniel S., Taylor, John E. and McCarthy, Jack 1986 "Cessna Aircraft Cabin Door Mount for Photographic and Videographic Cameras" Photogrammetric...PIKE INDUSTRIES RD #2 BOX 91 CHILTON NH 03276 ARTHUR WHITCOMB INC BOX 747 KEENE NH 03431 SCHIAVONE CONSTR CO BOX 1179 SECAUCUS N,, 07094 J. W. JOES 8800

  19. The Survival Motor Neuron Protein Forms Soluble Glycine Zipper Oligomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Renee; Gupta, Kushol; Ninan, Nisha S.

    2012-11-01

    The survival motor neuron (SMN) protein forms the oligomeric core of a multiprotein complex that functions in spliceosomal snRNP biogenesis. Loss of function mutations in the SMN gene cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. Nearly half of the known SMA patient missense mutations map to the SMN YG-box, a highly conserved oligomerization domain of unknown structure that contains a (YxxG)3 motif. Here, we report that the SMN YG-box forms helical oligomers similar to the glycine zippers found in transmembrane channel proteins. A network of tyrosine-glycine packing between helices drives formation of soluble YG-box oligomers,more » providing a structural basis for understanding SMN oligomerization and for relating defects in oligomerization to the mutations found in SMA patients. These results have important implications for advancing our understanding of SMN function and glycine zipper-mediated helix-helix interactions.« less

  20. Orientia tsutsugamushi Strain Ikeda Ankyrin Repeat-Containing Proteins Recruit SCF1 Ubiquitin Ligase Machinery via Poxvirus-Like F-Box Motifs.

    PubMed

    Beyer, Andrea R; VieBrock, Lauren; Rodino, Kyle G; Miller, Daniel P; Tegels, Brittney K; Marconi, Richard T; Carlyon, Jason A

    2015-10-01

    A rising theme among intracellular microbes is the delivery of ankyrin repeat-containing effectors (Anks) that interact with target proteins to co-opt host cell functions. Orientia tsutsugamushi, an obligate intracellular bacterium and the etiologic agent of scrub typhus, encodes one of the largest Ank repertoires of any sequenced microorganism. They have been previously identified as type 1 secretion system substrates. Here, in silico and manual sequence analyses revealed that a large proportion of O. tsutsugamushi strain Ikeda Anks bear a eukaryotic/poxvirus-like F-box motif, which is known to recruit host cell SCF1 ubiquitin ligase machinery. We assessed the Anks for the ability to serve as F-box proteins. Coimmunoprecipitation assays demonstrated that F-box-containing Anks interact with overexpressed and/or endogenous SCF1 components. When coexpressed with FLAG-Ank4_01 or FLAG-Ank9, a glutathione S-transferase (GST)-tagged version of the SCF1 component SKP1 localized to subcellular sites of FLAG-Ank accumulation. The abilities of recombinant Anks to interact and colocalize with SKP1 were F-box dependent. GST-SKP1 precipitated O. tsutsugamushi-derived Ank9 from infected host cells, verifying both that the pathogen expresses Ank9 during infection and the protein's capability to bind SKP1. Aligning O. tsutsugamushi, poxviral, and eukaryotic F-box sequences delineated three F-box residues that are highly conserved and likely to be functionally important. Substitution of these residues ablated the ability of GFP-Ank9 to interact with GST-SKP1. These results demonstrate that O. tsutsugamushi strain Ikeda Anks can co-opt host cell polyubiquitination machinery, provide the first evidence that an O. tsutsugamushi Ank does so during infection, and advance overall understanding of microbial F-box proteins. Ankyrin repeat-containing proteins (Anks) are important virulence factors of intracellular bacteria that mediate protein-protein interactions with host cell targets. Orientia tsutsugamushi, which causes a debilitating infection called scrub typhus in one of the most densely populated regions of the world, encodes one of the largest Ank armamentariums of any sequenced bacterium. This study demonstrates that O. tsutsugamushi strain Ikeda Anks also bear F-box motifs that interact with host cell polyubiquitination machinery. By proving that an Orientia-derived Ank interacts with SKP1 in infected cells, this evidences the first bona fide Orientia effector and the first example of an endogenous F-box-containing Ank-mammalian-host ligand interaction for any intracellular bacterium. Also, importantly, this work identifies key residues that are essential for microbial F-box function. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Orientia tsutsugamushi Strain Ikeda Ankyrin Repeat-Containing Proteins Recruit SCF1 Ubiquitin Ligase Machinery via Poxvirus-Like F-Box Motifs

    PubMed Central

    Beyer, Andrea R.; VieBrock, Lauren; Rodino, Kyle G.; Miller, Daniel P.; Tegels, Brittney K.; Marconi, Richard T.

    2015-01-01

    ABSTRACT A rising theme among intracellular microbes is the delivery of ankyrin repeat-containing effectors (Anks) that interact with target proteins to co-opt host cell functions. Orientia tsutsugamushi, an obligate intracellular bacterium and the etiologic agent of scrub typhus, encodes one of the largest Ank repertoires of any sequenced microorganism. They have been previously identified as type 1 secretion system substrates. Here, in silico and manual sequence analyses revealed that a large proportion of O. tsutsugamushi strain Ikeda Anks bear a eukaryotic/poxvirus-like F-box motif, which is known to recruit host cell SCF1 ubiquitin ligase machinery. We assessed the Anks for the ability to serve as F-box proteins. Coimmunoprecipitation assays demonstrated that F-box-containing Anks interact with overexpressed and/or endogenous SCF1 components. When coexpressed with FLAG-Ank4_01 or FLAG-Ank9, a glutathione S-transferase (GST)-tagged version of the SCF1 component SKP1 localized to subcellular sites of FLAG-Ank accumulation. The abilities of recombinant Anks to interact and colocalize with SKP1 were F-box dependent. GST-SKP1 precipitated O. tsutsugamushi-derived Ank9 from infected host cells, verifying both that the pathogen expresses Ank9 during infection and the protein's capability to bind SKP1. Aligning O. tsutsugamushi, poxviral, and eukaryotic F-box sequences delineated three F-box residues that are highly conserved and likely to be functionally important. Substitution of these residues ablated the ability of GFP-Ank9 to interact with GST-SKP1. These results demonstrate that O. tsutsugamushi strain Ikeda Anks can co-opt host cell polyubiquitination machinery, provide the first evidence that an O. tsutsugamushi Ank does so during infection, and advance overall understanding of microbial F-box proteins. IMPORTANCE Ankyrin repeat-containing proteins (Anks) are important virulence factors of intracellular bacteria that mediate protein-protein interactions with host cell targets. Orientia tsutsugamushi, which causes a debilitating infection called scrub typhus in one of the most densely populated regions of the world, encodes one of the largest Ank armamentariums of any sequenced bacterium. This study demonstrates that O. tsutsugamushi strain Ikeda Anks also bear F-box motifs that interact with host cell polyubiquitination machinery. By proving that an Orientia-derived Ank interacts with SKP1 in infected cells, this evidences the first bona fide Orientia effector and the first example of an endogenous F-box-containing Ank–mammalian-host ligand interaction for any intracellular bacterium. Also, importantly, this work identifies key residues that are essential for microbial F-box function. PMID:26170417

  2. Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp140.

    PubMed

    Yang, Y; Isaac, C; Wang, C; Dragon, F; Pogacic, V; Meier, U T

    2000-02-01

    Small nucleolar ribonucleoprotein particles (snoRNPs) mainly catalyze the modification of rRNA. The two major classes of snoRNPs, box H/ACA and box C/D, function in the pseudouridylation and 2'-O-methylation, respectively, of specific nucleotides. The emerging view based on studies in yeast is that each class of snoRNPs is composed of a unique set of proteins. Here we present a characterization of mammalian snoRNPs. We show that the previously characterized NAP57 is specific for box H/ACA snoRNPs, whereas the newly identified NAP65, the rat homologue of yeast Nop5/58p, is a component of the box C/D class. Using coimmunoprecipitation experiments, we show that the nucleolar and coiled-body protein Nopp140 interacts with both classes of snoRNPs. This interaction is corroborated in vivo by the exclusive depletion of snoRNP proteins from nucleoli in cells transfected with a dominant negative Nopp140 construct. Interestingly, RNA polymerase I transcription is arrested in nucleoli depleted of snoRNPs, raising the possibility of a feedback mechanism between rRNA modification and transcription. Moreover, the Nopp140-snoRNP interaction appears to be conserved in yeast, because depletion of Srp40p, the yeast Nopp140 homologue, in a conditional lethal strain induces the loss of box H/ACA small nucleolar RNAs. We propose that Nopp140 functions as a chaperone of snoRNPs in yeast and vertebrate cells.

  3. Conserved Composition of Mammalian Box H/ACA and Box C/D Small Nucleolar Ribonucleoprotein Particles and Their Interaction with the Common Factor Nopp140

    PubMed Central

    Yang, Yunfeng; Isaac, Cynthia; Wang, Chen; Dragon, François; Pogac̆ić, Vanda; Meier, U. Thomas

    2000-01-01

    Small nucleolar ribonucleoprotein particles (snoRNPs) mainly catalyze the modification of rRNA. The two major classes of snoRNPs, box H/ACA and box C/D, function in the pseudouridylation and 2′-O-methylation, respectively, of specific nucleotides. The emerging view based on studies in yeast is that each class of snoRNPs is composed of a unique set of proteins. Here we present a characterization of mammalian snoRNPs. We show that the previously characterized NAP57 is specific for box H/ACA snoRNPs, whereas the newly identified NAP65, the rat homologue of yeast Nop5/58p, is a component of the box C/D class. Using coimmunoprecipitation experiments, we show that the nucleolar and coiled-body protein Nopp140 interacts with both classes of snoRNPs. This interaction is corroborated in vivo by the exclusive depletion of snoRNP proteins from nucleoli in cells transfected with a dominant negative Nopp140 construct. Interestingly, RNA polymerase I transcription is arrested in nucleoli depleted of snoRNPs, raising the possibility of a feedback mechanism between rRNA modification and transcription. Moreover, the Nopp140-snoRNP interaction appears to be conserved in yeast, because depletion of Srp40p, the yeast Nopp140 homologue, in a conditional lethal strain induces the loss of box H/ACA small nucleolar RNAs. We propose that Nopp140 functions as a chaperone of snoRNPs in yeast and vertebrate cells. PMID:10679015

  4. F-box genes: Genome-wide expansion, evolution and their contribution to pollen growth in pear (Pyrus bretschneideri).

    PubMed

    Wang, Guo-Ming; Yin, Hao; Qiao, Xin; Tan, Xu; Gu, Chao; Wang, Bao-Hua; Cheng, Rui; Wang, Ying-Zhen; Zhang, Shao-Ling

    2016-12-01

    F-box gene family, as one of the largest gene families in plants, plays crucial roles in regulating plant development, reproduction, cellular protein degradation and responses to biotic and abiotic stresses. However, comprehensive analysis of the F-box gene family in pear (Pyrus bretschneideri Rehd.) and other Rosaceae species has not been reported yet. Herein, we identified a total of 226 full-length F-box genes in pear for the first time. And these genes were further divided into various subgroups based on specific domains and phylogenetic analysis. Intriguingly, we observed that whole-genome duplication and dispersed duplication have a major contribution to F-box family expansion. Furthermore, the dynamic evolution for different modes of gene duplication was dissected. Interestingly, we found that dispersed and tandem duplicate have been evolving at a high rate. In addition, we found that F-box genes exhibited functional specificity based on GO analysis, and most of the F-box genes were significantly enriched in the protein binding (GO: 0005515) term, supporting that F-box genes might play a critical role for gene regulation in pear. Transcriptome and digital expression profiles revealed that F-box genes are involved in the development of multiple pear tissues. Overall, these results will set stage for elaborating the biological role of F-box genes in pear and other plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. The plant G box promoter sequence activates transcription in Saccharomyces cerevisiae and is bound in vitro by a yeast activity similar to GBF, the plant G box binding factor.

    PubMed Central

    Donald, R G; Schindler, U; Batschauer, A; Cashmore, A R

    1990-01-01

    G box and I box sequences of the Arabidopsis thaliana ribulose-bisphosphate-1,5-carboxylase small subunit (RBCS) promoter are required for expression mediated by the Arabidopsis rbcS-1A promoter in transgenic tobacco plants and are bound in vitro by factors from plant nuclear extracts termed GBF and GA-1, respectively. We show here that a -390 to -60 rbcS-1A promoter fragment containing the G box and two I boxes activates transcription from a truncated iso-1-cytochrome c (CYC1) gene promoter in Saccharomyces cerevisiae. Mutagenesis of either the rbcS-1A G box or both I box sequences eliminated the expression mediated by this fragment. When polymerized, I box oligonucleotides were also capable of enhancing expression from the truncated CYC1 promoter. Single-copy G box sequences from the Arabidopsis rbcS-1A, Arabidopsis Adh and tomato rbcS-3A promoters were more potent activators and were used in mobility shift assays to identify a DNA binding activity in yeast functionally similar to GBF. In methylation interference experiments, the binding specificity of the yeast protein was indistinguishable from that obtained with plant nuclear extracts. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2161333

  6. The human serotonin 5-HT{sub 2C} receptor: Complete cDNA, genomic structure, and alternatively spliced variant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Enzhong; Zhu, Lingyu; Zhao, Lingyun

    1996-08-01

    The complete 4775-nt cDNA encoding the human serotonin 5-HT{sub 2C} receptor (5-HT{sub 2C}R), a G-protein-coupled receptor, has been isolated. It contains a 1377-nt coding region flanked by a 728-nt 5{prime}-untranslated region and a 2670-nt 3{prime}-untranslated region. By using the cloned 5-HT{sub 2C}R cDNA probe, the complete human gene for this receptor has been isolated and shown to contain six exons and five introns spanning at least 230 kb of DNA. The coding region of the human 5-HT{sub 2C}R gene is interrupted by three introns, and the positions of the intron/exon junctions are conserved between the human and the rodent genes.more » In addition, an alternatively spliced 5-HT{sub 2C}R RNA that contains a 95-nt deletion in the region coding for the second intracellular loop and the fourth transmembrane domain of the receptor has been identified. This deletion leads to a frameshift and premature termination so that the short isoform RNA encodes a putative protein of 248 amino acids. The ratio for the short isoform over the 5-HT{sub 2C}R RNA was found to be higher in choroid plexus tumor than in normal brain tissue, suggesting the possibility of differential regulation of the 5-HT{sub 2C}R gene in different neural tissues or during tumorigenesis. Transcription of the human 5-HT{sub 2C}R gene was found to be initiated at multiple sites. No classical TATA-box sequence was found at the appropriate location, and the 5{prime}-flanking sequence contains many potential transcription factor-binding sites. A 7.3-kb 5{prime}-flanking 5-HT{sub 2C}R DNA directed the efficient expression of a luciferase reported gene in SK-N-SH and IMR32 neuroblastoma cells, indicating that is contains a functional promoter. 69 refs., 8 figs., 1 tab.« less

  7. Methanosarcina acetivorans 16S rRNA and transcription factor nucleotide fluctuation with implications in exobiology and pathology

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Tremberger, G., Jr.; Cheung, E.; Subramaniam, R.; Sullivan, R.; Schneider, P.; Flamholz, A.; Marchese, P.; Hiciano, O.; Yao, H.; Lieberman, D.; Cheung, T.

    2008-08-01

    Cultures of the methane-producing archaea Methanosarcina, have recently been isolated from Alaskan sediments. It has been proposed that methanogens are strong candidates for exobiological life in extreme conditions. The spatial environmental gradients, such as those associated with the polygons on Mars' surface, could have been produced by past methanogenesis activity. The 16S rRNA gene has been used routinely to classify phenotypes. Using the fractal dimension of nucleotide fluctuation, a comparative study of the 16S rRNA nucleotide fluctuation in Methanosarcina acetivorans C2A, Deinococcus radiodurans, and E. coli was conducted. The results suggest that Methanosarcina acetivorans has the lowest fractal dimension, consistent with its ancestral position in evolution. Variation in fluctuation complexity was also detected in the transcription factors. The transcription factor B (TFB) was found to have a higher fractal dimension as compared to transcription factor E (TFE), consistent with the fact that a single TFB in Methanosarcina acetivorans can code three different TATA box proteins. The average nucleotide pair-wise free energy of the DNA repair genes was found to be highest for Methanosarcina acetivorans, suggesting a relatively weak bonding, which is consistent with its low prevalence in pathology. Multitasking capacity comparison of type-I and type-II topoisomerases has been shown to correlate with fractal dimension using the methicillin-resistant strain MRSA 252. The analysis suggests that gene adaptation in a changing chemical environment can be measured in terms of bioinformatics. Given that the radiation resistant Deinococcus radiodurans is a strong candidate for an extraterrestrial origin and that the cold temperature Psychrobacter cryohalolentis K5 can function in Siberian permafrost, the fractal dimension comparison in this study suggests that a chemical resistant methanogen could exist in extremely cold conditions (such as that which existed on early Mars) where demands on gene activity are low. In addition, the comparative study of the Methanococcoides burtonii cold shock domain sequence has provided further support for the correlation between multitasking capacity and fractal dimension.

  8. Low-pass sequencing for microbial comparative genomics

    PubMed Central

    Goo, Young Ah; Roach, Jared; Glusman, Gustavo; Baliga, Nitin S; Deutsch, Kerry; Pan, Min; Kennedy, Sean; DasSarma, Shiladitya; Victor Ng, Wailap; Hood, Leroy

    2004-01-01

    Background We studied four extremely halophilic archaea by low-pass shotgun sequencing: (1) the metabolically versatile Haloarcula marismortui; (2) the non-pigmented Natrialba asiatica; (3) the psychrophile Halorubrum lacusprofundi and (4) the Dead Sea isolate Halobaculum gomorrense. Approximately one thousand single pass genomic sequences per genome were obtained. The data were analyzed by comparative genomic analyses using the completed Halobacterium sp. NRC-1 genome as a reference. Low-pass shotgun sequencing is a simple, inexpensive, and rapid approach that can readily be performed on any cultured microbe. Results As expected, the four archaeal halophiles analyzed exhibit both bacterial and eukaryotic characteristics as well as uniquely archaeal traits. All five halophiles exhibit greater than sixty percent GC content and low isoelectric points (pI) for their predicted proteins. Multiple insertion sequence (IS) elements, often involved in genome rearrangements, were identified in H. lacusprofundi and H. marismortui. The core biological functions that govern cellular and genetic mechanisms of H. sp. NRC-1 appear to be conserved in these four other halophiles. Multiple TATA box binding protein (TBP) and transcription factor IIB (TFB) homologs were identified from most of the four shotgunned halophiles. The reconstructed molecular tree of all five halophiles shows a large divergence between these species, but with the closest relationship being between H. sp. NRC-1 and H. lacusprofundi. Conclusion Despite the diverse habitats of these species, all five halophiles share (1) high GC content and (2) low protein isoelectric points, which are characteristics associated with environmental exposure to UV radiation and hypersalinity, respectively. Identification of multiple IS elements in the genome of H. lacusprofundi and H. marismortui suggest that genome structure and dynamic genome reorganization might be similar to that previously observed in the IS-element rich genome of H. sp. NRC-1. Identification of multiple TBP and TFB homologs in these four halophiles are consistent with the hypothesis that different types of complex transcriptional regulation may occur through multiple TBP-TFB combinations in response to rapidly changing environmental conditions. Low-pass shotgun sequence analyses of genomes permit extensive and diverse analyses, and should be generally useful for comparative microbial genomics. PMID:14718067

  9. Appropriate 'housekeeping' genes for use in expression profiling the effects of environmental estrogens in fish

    PubMed Central

    Filby, Amy L; Tyler, Charles R

    2007-01-01

    Background Attempts to develop a mechanistic understanding of the effects of environmental estrogens on fish are increasingly conducted at the level of gene expression. Appropriate application of real-time PCR in such studies requires the use of a stably expressed 'housekeeping' gene as an internal control to normalize for differences in the amount of starting template between samples. Results We sought to identify appropriate genes for use as internal controls in experimental treatments with estrogen by analyzing the expression of eight functionally distinct 'housekeeping' genes (18S ribosomal RNA [18S rRNA], ribosomal protein l8 [rpl8], elongation factor 1 alpha [ef1a], glucose-6-phosphate dehydrogenase [g6pd], beta actin [bactin], glyceraldehyde-3-phosphate dehydrogenase [gapdh], hypoxanthine phosphoribosyltransferase 1 [hprt1], and tata box binding protein [tbp]) following exposure to the environmental estrogen, 17α-ethinylestradiol (EE2), in the fathead minnow (Pimephales promelas). Exposure to 10 ng/L EE2 for 21 days down-regulated the expression of ef1a, g6pd, bactin and gapdh in the liver, and bactin and gapdh in the gonad. Some of these effects were gender-specific, with bactin in the liver and gapdh in the gonad down-regulated by EE2 in males only. Furthermore, when ef1a, g6pd, bactin or gapdh were used for normalization, the hepatic expression of two genes of interest, vitellogenin (vtg) and cytochrome P450 1A (cyp1a) following exposure to EE2 was overestimated. Conclusion Based on the data presented, we recommend 18S rRNA, rpl8, hprt1 and/or tbp, but not ef1a, g6pd, bactin and/or gapdh, as likely appropriate internal controls in real-time PCR studies of estrogens effects in fish. Our studies show that pre-validation of control genes considering the scope and nature of the experiments to be performed, including both gender and tissue type, is critical for accurate assessments of the effects of environmental estrogens on gene expression in fish. PMID:17288598

  10. Genomic structure and chromosomal mapping of the human CD22 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, G.L.; Kozlow, E.; Kehrl, J.H.

    1993-06-01

    The human CD22 gene is expressed specifically in B lymphocytes and likely has an important function in cell-cell interactions. A nearly full length human CD22 cDNA clone was used to isolate genomic clones that span the CD22 gene. The CD22 gene is spread over 22 kb of DNA and is composed of 15 exons. The first exon contains the major transcriptional start sites. The translation initiation codon is located in exon 3, which also encodes a portion of the signal peptide. Exons 4 to 10 encode the seven Ig domains of CD22, exon 11 encodes the transmembrane domain, exons 12more » to 15 encode the intracytoplasmic domain of CD22, and exon 15 also contains the 3' untranslated region. A minor form of CD22 mRNA likely results from splicing of exon 5 to exon 8, skipping exons 6 and 7. A 4.6-kb Xbal fragment of the CD22 gene was used to map the chromosomal location of CD22 by fluorescence in situ hybridization. The hybridization locus was identified by combining fluorescent images of the probe with the chromosomal banding pattern generated by an Alu probe. The results demonstrate the CD22 is located within the band region q13.1 of chromosome 19. Two closely clustered major transcription start sites and several minor start sites were mapped by primer extension. Similarly to many other lymphoid-specific genes, the CD22 promoter lacks an obvious TATA box. Approximately 4 kb of DNA 5' of the transcription start sites were sequenced and found to contain multiple Alu elements. Potential binding sites for the transcriptional factors NF-kB, AP-1, and Oct-2 are located within 300 bp 5' of the major transcription start sites. A 400-bp fragment (bp -339 through +71) of the CD22 promoter region was subcloned into a pGEM-chloramphenicol acetyltransferase vector and after transfection into B and T cells was found to be active in both B and T cells. 45 refs., 7 figs., 2 tabs.« less

  11. A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.).

    PubMed

    Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui

    2014-02-10

    The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants.

  12. A Novel F-Box Protein CaF-Box Is Involved in Responses to Plant Hormones and Abiotic Stress in Pepper (Capsicum annuum L.)

    PubMed Central

    Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui

    2014-01-01

    The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants. PMID:24518684

  13. Multiple interactions amongst floral homeotic MADS box proteins.

    PubMed Central

    Davies, B; Egea-Cortines, M; de Andrade Silva, E; Saedler, H; Sommer, H

    1996-01-01

    Most known floral homeotic genes belong to the MADS box family and their products act in combination to specify floral organ identity by an unknown mechanism. We have used a yeast two-hybrid system to investigate the network of interactions between the Antirrhinum organ identity gene products. Selective heterodimerization is observed between MADS box factors. Exclusive interactions are detected between two factors, DEFICIENS (DEF) and GLOBOSA (GLO), previously known to heterodimerize and control development of petals and stamens. In contrast, a third factor, PLENA (PLE), which is required for reproductive organ development, can interact with the products of MADS box genes expressed at early, intermediate and late stages. We also demonstrate that heterodimerization of DEF and GLO requires the K box, a domain not found in non-plant MADS box factors, indicating that the plant MADS box factors may have different criteria for interaction. The association of PLENA and the temporally intermediate MADS box factors suggests that part of their function in mediating between the meristem and organ identity genes is accomplished through direct interaction. These data reveal an unexpectedly complex network of interactions between the factors controlling flower development and have implications for the determination of organ identity. Images PMID:8861961

  14. A New Set of ESTs from Chickpea (Cicer arietinum L.) Embryo Reveals Two Novel F-Box Genes, CarF-box_PP2 and CarF-box_LysM, with Potential Roles in Seed Development

    PubMed Central

    Gupta, Shefali; Garg, Vanika; Bhatia, Sabhyata

    2015-01-01

    Considering the economic importance of chickpea (C. arietinum L.) seeds, it is important to understand the mechanisms underlying seed development for which a cDNA library was constructed from 6 day old chickpea embryos. A total of 8,186 ESTs were obtained from which 4,048 high quality ESTs were assembled into 1,480 unigenes that majorly encoded genes involved in various metabolic and regulatory pathways. Of these, 95 ESTs were found to be involved in ubiquitination related protein degradation pathways and 12 ESTs coded specifically for putative F-box proteins. Differential transcript accumulation of these putative F-box genes was observed in chickpea tissues as evidenced by quantitative real-time PCR. Further, to explore the role of F-box proteins in chickpea seed development, two F-box genes were selected for molecular characterization. These were named as CarF-box_PP2 and CarF-box_LysM depending on their C-terminal domains, PP2 and LysM, respectively. Their highly conserved structures led us to predict their target substrates. Subcellular localization experiment revealed that CarF-box_PP2 was localized in the cytoplasm and CarF-box_LysM was localized in the nucleus. We demonstrated their physical interactions with SKP1 protein, which validated that they function as F-box proteins in the formation of SCF complexes. Sequence analysis of their promoter regions revealed certain seed specific cis-acting elements that may be regulating their preferential transcript accumulation in the seed. Overall, the study helped in expanding the EST database of chickpea, which was further used to identify two novel F-box genes having a potential role in seed development. PMID:25803812

  15. Mechanical Design and Analysis of LCLS II 2 K Cold Box

    NASA Astrophysics Data System (ADS)

    Yang, S.; Dixon, K.; Laverdure, N.; Rath, D.; Bevins, M.; Bai, H.; Kaminski, S.; Ravindranath, V.

    2017-12-01

    The mechanical design and analysis of the LCLS II 2 K cold box are presented. Its feature and functionality are discussed. ASME B31.3 was used to design its internal piping, and compliance of the piping code was ensured through flexibility analysis. The 2 K cold box was analyzed using ANSYS 17.2; the requirements of the applicable codes—ASME Section VIII Division 2 and ASCE 7-10—were satisfied. Seismic load was explicitly considered in both analyses.

  16. TPA can overcome the requirement for EIa and together act synergistically in stimulating expression of the adenovirus EIII promoter.

    PubMed Central

    Buckbinder, L; Miralles, V J; Reinberg, D

    1989-01-01

    We have examined the control of gene expression from the adenovirus early region III (Ad-EIII) promoter, which contains two previously defined elements, the AP1 and ATF sites. We found that the AP1 element is capable of mediating activation by the adenovirus immediate early (EIa) gene products. Consistent with studies demonstrating that the AP1 site mediates signal transduction in response to 12-O-tetradecanoylphorbol 13-acetate (TPA) we have shown that TPA can activate Ad-EIII expression and overcome the requirement for EIa. Together TPA and EIa elicited a synergistic response in expression from the Ad-EIII promoter during both transient expression assays and viral infections. This synergistic effect required the AP1 element. An EIII promoter construct, in which sequences upstream of the TATA box had been replaced with four AP1 sites, was responsive to TPA and EIa and in combination promoted the synergistic effect. The analysis of specific factors involved in transcription from the Ad-EIII indicated that proteins recognizing the ATF and AP1 sites were important in expression from this promoter in vitro. Purification of protein factors that specifically stimulated EIII expression resulted in the isolation of a set of factors of the AP1 family. Affinity purified AP1 recognized and activated transcription through both the AP1 and ATF elements. In addition, a protein fraction was identified with DNA binding activity specific for the ATF element. This fraction was dependent on the ATF site for transcriptional activity. Images PMID:2531661

  17. Multiple bidirectional initiations and terminations of transcription in the Marek's disease virus long repeat regions.

    PubMed Central

    Chen, X B; Velicer, L F

    1991-01-01

    Marek's disease is an oncogenic disease of chickens caused by a herpesvirus, Marek's disease virus (MDV). Serial in vitro passage of pathogenic MDV results in amplification of a 132-bp direct repeat in the MDV genome's TRL and IRL repeat regions and loss of tumorigenicity. This led to the hypothesis that upon such expansion, one or more tumor-inducing genes fail to be expressed. In this report a group of cDNAs mapping in the expanded regions were isolated from a pathogenic MDV strain in which the 132-bp direct repeat number was found to range between one and seven. Partial cDNA sequencing and S1 nuclease protection analysis revealed that the corresponding transcripts are either initiated or terminated within or near the expanded regions at multiple sites in both rightward and leftward directions. Furthermore, each 132-bp repeat contains one TATA box and two polyadenylation consensus sequences in each direction. These RNAs contain a partial copy or one or more full copies of the 132-bp direct repeat at either their 5' or 3' end. Northern (RNA) blot analysis showed that the majority of transcripts are 1.8 kb in size, while the minor species range in size from 0.67 to 3.1 kb. Together, these data raise the possibility that the 132-bp direct repeat, and indirectly its copy number, may be involved in the regulation of transcriptional initiation and termination and therefore in the generation of four groups of transcripts from the TRL and IRL, although this remains to be demonstrated. Images PMID:1850022

  18. Mechanism of estrogen activation of c-myc oncogene expression.

    PubMed

    Dubik, D; Shiu, R P

    1992-08-01

    The estrogen receptor complex is a known trans-acting factor that regulates transcription of specific genes through an interaction with a specific estrogen-responsive cis-acting element (ERE). In previous studies we have shown that in estrogen-responsive human breast cancer cells estrogen rapidly activates c-myc expression. This activated expression occurs through enhanced transcription and does not require the synthesis of new protein intermediates; therefore, an ERE is present in the human c-myc gene regulatory region. To localize the ERE, constructs containing varying lengths of the c-myc 5'-flanking region ranging from -2327 to +25 (relative to the P1 promoter) placed adjacent to the chloramphenicol acetyl transferase reporter gene (CAT) were prepared. They were used in transient transfection studies in MCF-7 and HeLa cells co-transfected with an estrogen receptor expression vector. These studies reveal that all constructs containing the P2 promoter region exhibited estrogen-regulated CAT expression and that a 116-bp region upstream and encompassing the P2 TATA box is necessary for this activity. Analysis of this 116-bp region failed to identify a cis-acting element with sequences resembling the consensus ERE; however, co-transfection studies with mutant estrogen receptor expression vectors showed that the DNA-binding domain of the receptor is essential for estrogen-regulated CAT gene expression. We have also observed that anti-estrogen receptor complexes can weakly trans-activate from this 116-bp region but fail to do so from the ERE-containing ApoVLDLII-CAT construct. To explain these results we propose a new mechanism of estrogen trans-activation in the c-myc gene promoter.

  19. Characterization of a Thioredoxin-1 Gene from Taenia solium and Its Encoding Product

    PubMed Central

    Jiménez, Lucía; Rodríguez-Lima, Oscar; Ochoa-Sánchez, Alicia; Landa, Abraham

    2015-01-01

    Taenia solium thioredoxin-1 gene (TsTrx-1) has a length of 771 bp with three exons and two introns. The core promoter gene presents two putative stress transcription factor binding sites, one putative TATA box, and a transcription start site (TSS). TsTrx-1 mRNA is expressed higher in larvae than in adult. This gene encodes a protein of 107 amino acids that presents the Trx active site (CGPC), the classical secondary structure of the thioredoxin fold, and the highest degree of identity with the Echinococcus granulosus Trx. A recombinant TsTrx-1 (rTsTrx-1) was produced in Escherichia coli with redox activity. Optimal activity for rTsTrx-1 was at pH 6.5 in the range of 15 to 25°C. The enzyme conserved activity for 3 h and lost it in 24 h at 37°C. rTsTrx-1 lost 50% activity after 1 h and lost activity completely in 24 h at temperatures higher than 55°C. Best storage temperature for rTsTrx-1 was at −70°C. It was inhibited by high concentrations of H2O2 and methylglyoxal (MG), but it was inhibited neither by NaCl nor by anti-rTsTrx-1 rabbit antibodies that strongly recognized a ~12 kDa band in extracts from several parasites. These TsTrx-1 properties open the opportunity to study its role in relationship T. solium-hosts. PMID:26090410

  20. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes.

    PubMed

    Zaborowska, Justyna; Taylor, Alice; Roeder, Robert G; Murphy, Shona

    2012-01-01

    Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.

  1. Activation of IFN-beta element by IRF-1 requires a posttranslational event in addition to IRF-1 synthesis.

    PubMed Central

    Watanabe, N; Sakakibara, J; Hovanessian, A G; Taniguchi, T; Fujita, T

    1991-01-01

    Expression of the Type I IFN (i.e., IFN-alpha s and IFN-beta) genes is efficiently induced by viruses at the transcriptional level. This induction is mediated by at least two types of positive regulatory elements located in the human IFN-beta gene promoter: (1) the repeated elements which bind both the transcriptional activator IRF-1 and the repressor IRF-2 (IRF-elements; IRF-Es), and (2) the kappa B element (kappa B-E), which binds NF kappa B and is located between the IRF-Es and the TATA box. In this study we demonstrate that a promoter containing synthetic IRF-E, which displays high affinity for the IRFs can be efficiently activated by Newcastle disease virus (NDV). In contrast, such activation was either very weak or nil when cells were treated by IFN-beta or tumor necrosis factor-alpha (TNF-alpha), despite the fact they both efficiently induce de novo synthesis of the short-lived IRF-1 in L929 cells. In fact, efficient activation of the IRF-E apparently requires an event in addition to de novo IRF-1 induction, which can be elicited by NDV even in the presence of protein synthesis inhibitor, cycloheximide. Moreover, efficient activation of the IRF-E by NDV is specifically inhibited by the protein kinase inhibitor, Staurosporin. Hence our results suggest the importance of IRF-1 synthesis and post-translational modification event(s), possibly phosphorylation for the efficient activation of IRF-Es, which are otherwise under negative regulation by IRF-2. Images PMID:1886766

  2. Regulator of G protein signaling 4 is a novel target of GATA-6 transcription factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yonggang; Li, Fang; Xiao, Xiao

    GATA transcription factors regulate an array of genes important in cell proliferation and differentiation. Here we report the identification of regulator of G protein signaling 4 (RGS4) as a novel target for GATA-6 transcription factor. Although three sites (a, b, c) within the proximal region of rabbit RGS4 promoter for GATA transcription factors were predicted by bioinformatics analysis, only GATA-a site (16 bp from the core TATA box) is essential for RGS4 transcriptional regulation. RT-PCR analysis demonstrated that only GATA-6 was highly expressed in rabbit colonic smooth muscle cells but GATA-4/6 were expressed in cardiac myocytes and GATA-1/2/3 expressed inmore » blood cells. Adenovirus-mediated expression of GATA-6 but not GATA-1 significantly increased the constitutive and IL-1β-induced mRNA expression of the endogenous RGS4 in colonic smooth muscle cells. IL-1β stimulation induced GATA-6 nuclear translocation and increased GATA-6 binding to RGS4 promoter. These data suggest that GATA factor could affect G protein signaling through regulating RGS4 expression, and GATA signaling may develop as a future therapeutic target for RGS4-related diseases. - Highlights: • GATA-6 is highly expressed in colonic smooth muscle cells. • RGS4 is a novel target for GATA-6 transcription factor. • GATA-a response element is essential to regulate the core promoter of RGS4. • GATA-6 regulates IL-1β-induced RGS4 upregulation.« less

  3. 5' diversity of human hepatic PXR (NR1I2) transcripts and identification of the major transcription initiation site.

    PubMed

    Kurose, Kouichi; Koyano, Satoru; Ikeda, Shinobu; Tohkin, Masahiro; Hasegawa, Ryuichi; Sawada, Jun-Ichi

    2005-05-01

    The human pregnane X receptor (PXR) is a crucial regulator of the genes encoding several major cytochrome P450 enzymes and transporters, such as CYP3A4 and MDR1, but its own transcriptional regulation remains unclear. To elucidate the transcriptional mechanisms of human PXR gene, we first endeavored to identify the transcription initiation site of human PXR using 5'-RACE. Five types of 5'-variable transcripts (a, b, c, d, and e) with common exon 2 sequence were found, and comparison of these sequences with the genomic sequence suggested that their 5' diversity is derived from initiation by alternative promoters and alternative splicing. None of the exons found in our study contain any new in-frame coding regions. Newly identified introns IVS-a and IVS-b were found to have CT-AC splice sites that do not follow the GT-AG rule of conventional donor and acceptor splice sites. Of the five types of 5' variable transcripts identified, RT-PCR showed that type-a was the major transcript type. Four transcription initiation sites (A-D) for type-a transcript were identified by 5'-RACE using GeneRacer RACE Ready cDNA (human liver) constructed by the oligo-capping method. Putative TATA boxes were located approximately 30 bp upstream from the transcriptional start sites of the major transcript (C) and the longest minor transcript (A) expressed in the human liver. These results indicate that the initiation of transcription of human PXR is more complex than previously reported.

  4. Knockdown of Zebrafish Lumican Gene (zlum) Causes Scleral Thinning and Increased Size of Scleral Coats*

    PubMed Central

    Yeh, Lung-Kun; Liu, Chia-Yang; Kao, Winston W.-Y.; Huang, Chang-Jen; Hu, Fung-Rong; Chien, Chung-Liang; Wang, I-Jong

    2010-01-01

    The lumican gene (lum), which encodes one of the major keratan sulfate proteoglycans (KSPGs) in the vertebrate cornea and sclera, has been linked to axial myopia in humans. In this study, we chose zebrafish (Danio rerio) as an animal model to elucidate the role of lumican in the development of axial myopia. The zebrafish lumican gene (zlum) spans ∼4.6 kb of the zebrafish genome. Like human (hLUM) and mouse (mlum), zlum consists of three exons, two introns, and a TATA box-less promoter at the 5′-flanking region of the transcription initiation site. Sequence analysis of the cDNA predicts that zLum encodes 344 amino acids. zLum shares 51% amino acid sequence identity with human lumican. Similar to hLUM and mlum, zlum mRNA is expressed in the eye and many other tissues, such as brain, muscle, and liver as well. Transgenic zebrafish harboring an enhanced GFP reporter gene construct downstream of a 1.7-kb zlum 5′-flanking region displayed enhanced GFP expression in the cornea and sclera, as well as throughout the body. Down-regulation of zlum expression by antisense zlum morpholinos manifested ocular enlargement resembling axial myopia due to disruption of the collagen fibril arrangement in the sclera and resulted in scleral thinning. Administration of muscarinic receptor antagonists, e.g. atropine and pirenzepine, effectively subdued the ocular enlargement caused by morpholinos in in vivo zebrafish larvae assays. The observation suggests that zebrafish can be used as an in vivo model for screening compounds in treating myopia. PMID:20551313

  5. Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices

    DOEpatents

    Conder, A.D.; Haigh, R.E.; Hugenberg, K.F.

    1995-09-26

    An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place. 7 figs.

  6. Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices

    DOEpatents

    Conder, Alan D.; Haigh, Ronald E.; Hugenberg, Keith F.

    1995-01-01

    An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place.

  7. E-box-independent regulation of transcription and differentiation by MYC.

    PubMed

    Uribesalgo, Iris; Buschbeck, Marcus; Gutiérrez, Arantxa; Teichmann, Sophia; Demajo, Santiago; Kuebler, Bernd; Nomdedéu, Josep F; Martín-Caballero, Juan; Roma, Guglielmo; Benitah, Salvador Aznar; Di Croce, Luciano

    2011-10-23

    MYC proto-oncogene is a key player in cell homeostasis that is commonly deregulated in human carcinogenesis(1). MYC can either activate or repress target genes by forming a complex with MAX (ref. 2). MYC also exerts MAX-independent functions that are not yet fully characterized(3). Cells possess an intrinsic pathway that can abrogate MYC-MAX dimerization and E-box interaction, by inducing phosphorylation of MYC in a PAK2-dependent manner at three residues located in its helix-loop-helix domain(4). Here we show that these carboxy-terminal phosphorylation events switch MYC from an oncogenic to a tumour-suppressive function. In undifferentiated cells, MYC-MAX is targeted to the promoters of retinoic-acid-responsive genes by its direct interaction with the retinoic acid receptor-α (RARα). MYC-MAX cooperates with RARα to repress genes required for differentiation, in an E-box-independent manner. Conversely, on C-terminal phosphorylation of MYC during differentiation, the complex switches from a repressive to an activating function, by releasing MAX and recruiting transcriptional co-activators. Phospho-MYC synergizes with retinoic acid to eliminate circulating leukaemic cells and to decrease the level of tumour invasion. Our results identify an E-box-independent mechanism for transcriptional regulation by MYC that unveils previously unknown functions for MYC in differentiation. These may be exploited to develop alternative targeted therapies.

  8. Army Strong, Superintendent Savvy

    ERIC Educational Resources Information Center

    Mellon, Ericka

    2011-01-01

    Brigadier General Anthony "Tony" Tata of the U.S. Army had one of those "ah-ha" moments in April 2006 when, on the eve of an operation he was heading in Afghanistan, an Al Qaeda rocket shattered a nearby school. The attack killed a teacher and seven students and wounded dozens more. The rocket incident eventually nudged Tata…

  9. Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB

    PubMed Central

    Fröbel, Julia; Rose, Patrick; Lausberg, Frank; Blümmel, Anne-Sophie; Freudl, Roland; Müller, Matthias

    2012-01-01

    The twin-arginine translocation (Tat) pathway of bacteria and plant chloroplasts mediates the transmembrane transport of folded proteins, which harbour signal sequences with a conserved twin-arginine motif. Many Tat translocases comprise the three membrane proteins TatA, TatB and TatC. TatC was previously shown to be involved in recognizing twin-arginine signal peptides. Here we show that beyond recognition, TatC mediates the transmembrane insertion of a twin-arginine signal sequence, thereby translocating the signal sequence cleavage site across the bilayer. In the absence of TatB, this can lead to the removal of the signal sequence even from a translocation-incompetent substrate. Hence interaction of twin-arginine signal peptides with TatB counteracts their premature cleavage uncoupled from translocation. This capacity of TatB is not shared by the homologous TatA protein. Collectively our results suggest that TatC is an insertase for twin-arginine signal peptides and that translocation-proficient signal sequence recognition requires the concerted action of TatC and TatB. PMID:23250441

  10. Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB.

    PubMed

    Fröbel, Julia; Rose, Patrick; Lausberg, Frank; Blümmel, Anne-Sophie; Freudl, Roland; Müller, Matthias

    2012-01-01

    The twin-arginine translocation (Tat) pathway of bacteria and plant chloroplasts mediates the transmembrane transport of folded proteins, which harbour signal sequences with a conserved twin-arginine motif. Many Tat translocases comprise the three membrane proteins TatA, TatB and TatC. TatC was previously shown to be involved in recognizing twin-arginine signal peptides. Here we show that beyond recognition, TatC mediates the transmembrane insertion of a twin-arginine signal sequence, thereby translocating the signal sequence cleavage site across the bilayer. In the absence of TatB, this can lead to the removal of the signal sequence even from a translocation-incompetent substrate. Hence interaction of twin-arginine signal peptides with TatB counteracts their premature cleavage uncoupled from translocation. This capacity of TatB is not shared by the homologous TatA protein. Collectively our results suggest that TatC is an insertase for twin-arginine signal peptides and that translocation-proficient signal sequence recognition requires the concerted action of TatC and TatB.

  11. A novel transcription initiation factor (TIF), TIF-IE, is required for homogeneous Acanthamoeba castellanii TIF-IB (SL1) to form a committed complex.

    PubMed

    Radebaugh, C A; Kubaska, W M; Hoffman, L H; Stiffler, K; Paule, M R

    1998-10-16

    The fundamental transcription initiation factor (TIF) for ribosomal RNA expression by eukaryotic RNA polymerase I, TIF-IB, has been purified to near homogeneity from Acanthamoeba castellanii using standard techniques. The purified factor consists of the TATA-binding protein and four TATA-binding protein-associated factors with relative molecular weights of 145,000, 99,000, 96,000, and 91,000. This yields a calculated native molecular weight of 460, 000, which compares well with its mass determined by scanning transmission electron microscopy (493,000) and its sedimentation rate, which is close to RNA polymerase I (515,000). Both impure and nearly homogeneous TIF-IB exhibit an apparent equilibrium dissociation constant of 56 +/- 3 pM. However, although impure TIF-IB can form a promoter-DNA complex resistant to challenge by other promoter-containing DNAs, near homogeneous TIF-IB cannot do so. An additional transcription factor, dubbed TIF-IE, restores the ability of near homogeneous TIF-IB to sequester DNA into a committed complex.

  12. MToolBox: a highly automated pipeline for heteroplasmy annotation and prioritization analysis of human mitochondrial variants in high-throughput sequencing

    PubMed Central

    Diroma, Maria Angela; Santorsola, Mariangela; Guttà, Cristiano; Gasparre, Giuseppe; Picardi, Ernesto; Pesole, Graziano; Attimonelli, Marcella

    2014-01-01

    Motivation: The increasing availability of mitochondria-targeted and off-target sequencing data in whole-exome and whole-genome sequencing studies (WXS and WGS) has risen the demand of effective pipelines to accurately measure heteroplasmy and to easily recognize the most functionally important mitochondrial variants among a huge number of candidates. To this purpose, we developed MToolBox, a highly automated pipeline to reconstruct and analyze human mitochondrial DNA from high-throughput sequencing data. Results: MToolBox implements an effective computational strategy for mitochondrial genomes assembling and haplogroup assignment also including a prioritization analysis of detected variants. MToolBox provides a Variant Call Format file featuring, for the first time, allele-specific heteroplasmy and annotation files with prioritized variants. MToolBox was tested on simulated samples and applied on 1000 Genomes WXS datasets. Availability and implementation: MToolBox package is available at https://sourceforge.net/projects/mtoolbox/. Contact: marcella.attimonelli@uniba.it Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25028726

  13. Characterization, Expression and Function of DORMANCY ASSOCIATED MADS-BOX Genes from Leafy Spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY ASSOCIATED MADS-BOX (DAM) genes are related to AGAMOUS-LIKE 24 and SHORT VEGETATIVE PHASE genes of arabidopsis and are differentially regulated coordinately with endodormancy induction and release in buds of several perennial plant species. DAM genes were first shown to directly impact endo...

  14. Cloning, characterization, regulation, and function of dormancy-associated MADS-BOX genes from leafy spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are transcription factors that have been linked to endodormancy induction. The evergrowing mutation in peach, which renders it incapable of entering endodormancy, resulted from a deletion in a series of DAM genes (Bielenberg et al. 2008). Likewise, DAM genes ...

  15. Cloning, Characterization, Regulation, and Function of DORMANCY-ASSOCIATED MADS-BOX Genes from Leafy Spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are transcription factors that have been linked to endodormancy induction. The evergrowing mutation in peach, which renders it incapable of entering endodormancy, resulted from a deletion in a series of DAM genes (Bielenberg et al. 2008). Likewise, DAM genes ...

  16. Schistosoma haematobium detection in snails by DraI PCR and Sh110/Sm-Sl PCR: further evidence of the interruption of schistosomiasis transmission in Morocco

    PubMed Central

    2014-01-01

    Background This is the first study in Morocco to estimate snail infection rates at the last historic transmission sites of schistosomiasis, known to be free from new infection among humans since 2004. Screening of large numbers of snails for infection is one way to confirm that Schistosoma haematobium transmission has stopped and does not resurge. Methods A total of 2703 Bulinus truncatus snails were collected from 24 snail habitats in five provinces of Morocco: Errachidia, El Kelaa des Sraghna, Tata, Beni Mellal, and Chtouka Ait Baha. All visible snails were collected with a scoop net or by hand. We used waders and gloves as simple precautions. Snails were morphologically identified according to Moroccan Health Ministry guide of schistosomiasis (1982). All snails were analyzed in pools by molecular tool, using primers from the newly identified repeated DNA sequence, termed DraI, in the S. haematobium group. To distinguish S. bovis and S. haematobium, the snails were analyzed by Sh110/Sm-Sl PCR that was specific of S. haematobium. Results The results showed that snails from Errachidia, Chtouka Ait Baha, sector of Agoujgal in Tata and sector of Mbarkiya in El kelaa des Sraghna were negative for DraI PCR; but, snails from remaining snail habitats of El Kelaa des Sraghna, Tata and Beni Mellal were positive. This led to suggest the presence of circulating schistosome species (S. haematobium, S. bovis or others) within these positive snail habitats. Subsequently, confirmation with S. haematobium species specific molecular assay, Sh110/Sm-Sl PCR, showed that none of the collected snails were infected by S. haematobium in all historic endemic areas. Conclusion The absence of S. haematobium infection in snails supports the argument of S. haematobium transmission interruption in Morocco. PMID:24962624

  17. High-mobility group (HMG) protein HMG-1 and TATA-binding protein-associated factor TAF(II)30 affect estrogen receptor-mediated transcriptional activation.

    PubMed

    Verrier, C S; Roodi, N; Yee, C J; Bailey, L R; Jensen, R A; Bustin, M; Parl, F F

    1997-07-01

    The estrogen receptor (ER) belongs to a family of ligand-inducible nuclear receptors that exert their effects by binding to cis-acting DNA elements in the regulatory region of target genes. The detailed mechanisms by which ER interacts with the estrogen response element (ERE) and affects transcription still remain to be elucidated. To study the ER-ERE interaction and transcription initiation, we employed purified recombinant ER expressed in both the baculovirus-Sf9 and his-tagged bacterial systems. The effect of high-mobility group (HMG) protein HMG-1 and purified recombinant TATA-binding protein-associated factor TAF(II)30 on ER-ERE binding and transcription initiation were assessed by electrophoretic mobility shift assay and in vitro transcription from an ERE-containing template (pERE2LovTATA), respectively. We find that purified, recombinant ER fails to bind to ERE in spite of high ligand-binding activity and electrophoretic and immunological properties identical to ER in MCF-7 breast cancer cells. HMG-1 interacts with ER and promotes ER-ERE binding in a concentration- and time-dependent manner. The effectiveness of HMG-1 to stimulate ER-ERE binding in the electrophoretic mobility shift assay depends on the sequence flanking the ERE consensus as well as the position of the latter in the oligonucleotide. We find that TAF(II)30 has no effect on ER-ERE binding either alone or in combination with ER and HMG-1. Although HMG-1 promotes ER-ERE binding, it fails to stimulate transcription initiation either in the presence or absence of hormone. In contrast, TAF(II)30, while not affecting ER-ERE binding, stimulates transcription initiation 20-fold in the presence of HMG-1. These results indicate that HMG-1 and TAF(II)30 act in sequence, the former acting to promote ER-ERE binding followed by the latter to stimulate transcription initiation.

  18. Latency-associated transcript (LAT) exon 1 controls herpes simplex virus species-specific phenotypes: reactivation in the guinea pig genital model and neuron subtype-specific latent expression of LAT.

    PubMed

    Bertke, Andrea S; Patel, Amita; Imai, Yumi; Apakupakul, Kathleen; Margolis, Todd P; Krause, Philip R

    2009-10-01

    Herpes simplex virus 1 (HSV-1) and HSV-2 cause similar acute infections but differ in their abilities to reactivate from trigeminal and lumbosacral dorsal root ganglia. During latency, HSV-1 and HSV-2 also preferentially express their latency-associated transcripts (LATs) in different sensory neuronal subtypes that are positive for A5 and KH10 markers, respectively. Chimeric virus studies showed that LAT region sequences influence both of these viral species-specific phenotypes. To further map the LAT region sequences responsible for these phenotypes, we constructed the chimeric virus HSV2-LAT-E1, in which exon 1 (from the LAT TATA to the intron splice site) was replaced by the corresponding sequence from HSV-1 LAT. In intravaginally infected guinea pigs, HSV2-LAT-E1 reactivated inefficiently relative to the efficiency of its rescuant and wild-type HSV-2, but it yielded similar levels of viral DNA, LAT, and ICP0 during acute and latent infection. HSV2-LAT-E1 preferentially expressed the LAT in A5+ neurons (as does HSV-1), while the chimeric viruses HSV2-LAT-P1 (LAT promoter swap) and HSV2-LAT-S1 (LAT sequence swap downstream of the promoter) exhibited neuron subtype-specific latent LAT expression phenotypes more similar to that of HSV-2 than that of HSV-1. Rescuant viruses displayed the wild-type HSV-2 phenotypes of efficient reactivation in the guinea pig genital model and a tendency to express LAT in KH10+ neurons. The region that is critical for HSV species-specific differences in latency and reactivation thus lies between the LAT TATA and the intron splice site, and minor differences in the 5' ends of chimeric sequences in HSV2-LAT-E1 and HSV2-LAT-S1 point to sequences immediately downstream of the LAT TATA.

  19. Latency-Associated Transcript (LAT) Exon 1 Controls Herpes Simplex Virus Species-Specific Phenotypes: Reactivation in the Guinea Pig Genital Model and Neuron Subtype-Specific Latent Expression of LAT▿

    PubMed Central

    Bertke, Andrea S.; Patel, Amita; Imai, Yumi; Apakupakul, Kathleen; Margolis, Todd P.; Krause, Philip R.

    2009-01-01

    Herpes simplex virus 1 (HSV-1) and HSV-2 cause similar acute infections but differ in their abilities to reactivate from trigeminal and lumbosacral dorsal root ganglia. During latency, HSV-1 and HSV-2 also preferentially express their latency-associated transcripts (LATs) in different sensory neuronal subtypes that are positive for A5 and KH10 markers, respectively. Chimeric virus studies showed that LAT region sequences influence both of these viral species-specific phenotypes. To further map the LAT region sequences responsible for these phenotypes, we constructed the chimeric virus HSV2-LAT-E1, in which exon 1 (from the LAT TATA to the intron splice site) was replaced by the corresponding sequence from HSV-1 LAT. In intravaginally infected guinea pigs, HSV2-LAT-E1 reactivated inefficiently relative to the efficiency of its rescuant and wild-type HSV-2, but it yielded similar levels of viral DNA, LAT, and ICP0 during acute and latent infection. HSV2-LAT-E1 preferentially expressed the LAT in A5+ neurons (as does HSV-1), while the chimeric viruses HSV2-LAT-P1 (LAT promoter swap) and HSV2-LAT-S1 (LAT sequence swap downstream of the promoter) exhibited neuron subtype-specific latent LAT expression phenotypes more similar to that of HSV-2 than that of HSV-1. Rescuant viruses displayed the wild-type HSV-2 phenotypes of efficient reactivation in the guinea pig genital model and a tendency to express LAT in KH10+ neurons. The region that is critical for HSV species-specific differences in latency and reactivation thus lies between the LAT TATA and the intron splice site, and minor differences in the 5′ ends of chimeric sequences in HSV2-LAT-E1 and HSV2-LAT-S1 point to sequences immediately downstream of the LAT TATA. PMID:19641003

  20. The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK-Receptor Interactions.

    PubMed

    Ferrao, Ryan; Lupardus, Patrick J

    2017-01-01

    The Janus kinases (JAKs) are non-receptor tyrosine kinases essential for signaling in response to cytokines and interferons and thereby control many essential functions in growth, development, and immune regulation. JAKs are unique among tyrosine kinases for their constitutive yet non-covalent association with class I and II cytokine receptors, which upon cytokine binding bring together two JAKs to create an active signaling complex. JAK association with cytokine receptors is facilitated by N-terminal FERM and SH2 domains, both of which are classical mediators of peptide interactions. Together, the JAK FERM and SH2 domains mediate a bipartite interaction with two distinct receptor peptide motifs, the proline-rich "Box1" and hydrophobic "Box2," which are present in the intracellular domain of cytokine receptors. While the general sidechain chemistry of Box1 and Box2 peptides is conserved between receptors, they share very weak primary sequence homology, making it impossible to posit why certain JAKs preferentially interact with and signal through specific subsets of cytokine receptors. Here, we review the structure and function of the JAK FERM and SH2 domains in light of several recent studies that reveal their atomic structure and elucidate interaction mechanisms with both the Box1 and Box2 receptor motifs. These crystal structures demonstrate how evolution has repurposed the JAK FERM and SH2 domains into a receptor-binding module that facilitates interactions with multiple receptors possessing diverse primary sequences.

  1. MicroRNA regulation of F-box proteins and its role in cancer.

    PubMed

    Wu, Zhao-Hui; Pfeffer, Lawrence M

    2016-02-01

    MicroRNAs (miRNAs) are small endogenous non-coding RNAs, which play critical roles in cancer development by suppressing gene expression at the post-transcriptional level. In general, oncogenic miRNAs are upregulated in cancer, while miRNAs that act as tumor suppressors are downregulated, leading to decreased expression of tumor suppressors and upregulated oncogene expression, respectively. F-box proteins function as the substrate-recognition components of the SKP1-CUL1-F-box (SCF)-ubiquitin ligase complex for the degradation of their protein targets by the ubiquitin-proteasome system. Therefore F-box proteins and miRNAs both negatively regulate target gene expression post-transcriptionally. Since each miRNA is capable of fine-tuning the expression of multiple target genes, multiple F-box proteins may be suppressed by the same miRNA. Meanwhile, one F-box proteins could be regulated by several miRNAs in different cancer types. In this review, we will focus on miRNA-mediated downregulation of various F-box proteins, the resulting stabilization of F-box protein substrates and the impact of these processes on human malignancies. We provide insight into how the miRNA: F-box protein axis may regulate cancer progression and metastasis. We also consider the broader role of F-box proteins in the regulation of pathways that are independent of the ubiquitin ligase complex and how that impacts on oncogenesis. The area of miRNAs and the F-box proteins that they regulate in cancer is an emerging field and will inform new strategies in cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses.

    PubMed

    Song, Jianbo; Mo, Xiaowei; Yang, Haiqi; Yue, Luming; Song, Jun; Mo, Beixin

    2017-01-01

    The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula.

  3. Genome-wide identification of the MADS-box transcription factor family in pear (Pyrus bretschneideri) reveals evolution and functional divergence.

    PubMed

    Wang, Runze; Ming, Meiling; Li, Jiaming; Shi, Dongqing; Qiao, Xin; Li, Leiting; Zhang, Shaoling; Wu, Jun

    2017-01-01

    MADS-box transcription factors play significant roles in plant developmental processes such as floral organ conformation, flowering time, and fruit development. Pear ( Pyrus ), as the third-most crucial temperate fruit crop, has been fully sequenced. However, there is limited information about the MADS family and its functional divergence in pear. In this study, a total of 95 MADS-box genes were identified in the pear genome, and classified into two types by phylogenetic analysis. Type I MADS-box genes were divided into three subfamilies and type II genes into 14 subfamilies. Synteny analysis suggested that whole-genome duplications have played key roles in the expansion of the MADS family, followed by rearrangement events. Purifying selection was the primary force driving MADS-box gene evolution in pear, and one gene pairs presented three codon sites under positive selection. Full-scale expression information for PbrMADS genes in vegetative and reproductive organs was provided and proved by transcriptional and reverse transcription PCR analysis. Furthermore, the PbrMADS11(12) gene, together with partners PbMYB10 and PbbHLH3 was confirmed to activate the promoters of the structural genes in anthocyanin pathway of red pear through dual luciferase assay. In addition, the PbrMADS11 and PbrMADS12 were deduced involving in the regulation of anthocyanin synthesis response to light and temperature changes. These results provide a solid foundation for future functional analysis of PbrMADS genes in different biological processes, especially of pigmentation in pear.

  4. Genome-wide identification of the MADS-box transcription factor family in pear (Pyrus bretschneideri) reveals evolution and functional divergence

    PubMed Central

    Li, Jiaming; Shi, Dongqing; Qiao, Xin; Li, Leiting; Zhang, Shaoling

    2017-01-01

    MADS-box transcription factors play significant roles in plant developmental processes such as floral organ conformation, flowering time, and fruit development. Pear (Pyrus), as the third-most crucial temperate fruit crop, has been fully sequenced. However, there is limited information about the MADS family and its functional divergence in pear. In this study, a total of 95 MADS-box genes were identified in the pear genome, and classified into two types by phylogenetic analysis. Type I MADS-box genes were divided into three subfamilies and type II genes into 14 subfamilies. Synteny analysis suggested that whole-genome duplications have played key roles in the expansion of the MADS family, followed by rearrangement events. Purifying selection was the primary force driving MADS-box gene evolution in pear, and one gene pairs presented three codon sites under positive selection. Full-scale expression information for PbrMADS genes in vegetative and reproductive organs was provided and proved by transcriptional and reverse transcription PCR analysis. Furthermore, the PbrMADS11(12) gene, together with partners PbMYB10 and PbbHLH3 was confirmed to activate the promoters of the structural genes in anthocyanin pathway of red pear through dual luciferase assay. In addition, the PbrMADS11 and PbrMADS12 were deduced involving in the regulation of anthocyanin synthesis response to light and temperature changes. These results provide a solid foundation for future functional analysis of PbrMADS genes in different biological processes, especially of pigmentation in pear. PMID:28924499

  5. Structure-Function Relationships in Human Testis-determining Factor SRY

    PubMed Central

    Racca, Joseph D.; Chen, Yen-Shan; Maloy, James D.; Wickramasinghe, Nalinda; Phillips, Nelson B.; Weiss, Michael A.

    2014-01-01

    Human testis determination is initiated by SRY, a Y-encoded architectural transcription factor. Mutations in SRY cause 46 XY gonadal dysgenesis with female somatic phenotype (Swyer syndrome) and confer a high risk of malignancy (gonadoblastoma). Such mutations cluster in the SRY high mobility group (HMG) box, a conserved motif of specific DNA binding and bending. To explore structure-function relationships, we constructed all possible substitutions at a site of clinical mutation (W70L). Our studies thus focused on a core aromatic residue (position 15 of the consensus HMG box) that is invariant among SRY-related HMG box transcription factors (the SOX family) and conserved as aromatic (Phe or Tyr) among other sequence-specific boxes. In a yeast one-hybrid system sensitive to specific SRY-DNA binding, the variant domains exhibited reduced (Phe and Tyr) or absent activity (the remaining 17 substitutions). Representative nonpolar variants with partial or absent activity (Tyr, Phe, Leu, and Ala in order of decreasing side-chain volume) were chosen for study in vitro and in mammalian cell culture. The clinical mutation (Leu) was found to markedly impair multiple biochemical and cellular activities as respectively probed through the following: (i) in vitro assays of specific DNA binding and protein stability, and (ii) cell culture-based assays of proteosomal degradation, nuclear import, enhancer DNA occupancy, and SRY-dependent transcriptional activation. Surprisingly, however, DNA bending is robust to this or the related Ala substitution that profoundly impairs box stability. Together, our findings demonstrate that the folding, trafficking, and gene-regulatory function of SRY requires an invariant aromatic “buttress” beneath its specific DNA-bending surface. PMID:25258310

  6. Information technology: opening the box.

    PubMed

    Nussbaum, G M

    1998-09-01

    If you thought managed care was a tough nut to crack, wait until you have to start making decisions about your organization's information technology (IT). Information systems are complex and expensive, they can take years to implement, and, once installed, they need costly and regular upgrades. But for a contemporary clinical organization to function, this technology is as essential as power and water. For many years, information technology was seen as a black box, impenetrable and beyond real understanding. If done with knowledge and care, however, cracking the box opens up possibilities, not ruin.

  7. Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points

    NASA Astrophysics Data System (ADS)

    Regis, Rommel G.

    2014-02-01

    This article develops two new algorithms for constrained expensive black-box optimization that use radial basis function surrogates for the objective and constraint functions. These algorithms are called COBRA and Extended ConstrLMSRBF and, unlike previous surrogate-based approaches, they can be used for high-dimensional problems where all initial points are infeasible. They both follow a two-phase approach where the first phase finds a feasible point while the second phase improves this feasible point. COBRA and Extended ConstrLMSRBF are compared with alternative methods on 20 test problems and on the MOPTA08 benchmark automotive problem (D.R. Jones, Presented at MOPTA 2008), which has 124 decision variables and 68 black-box inequality constraints. The alternatives include a sequential penalty derivative-free algorithm, a direct search method with kriging surrogates, and two multistart methods. Numerical results show that COBRA algorithms are competitive with Extended ConstrLMSRBF and they generally outperform the alternatives on the MOPTA08 problem and most of the test problems.

  8. Unconventional bearing capacity analysis and optimization of multicell box girders.

    PubMed

    Tepic, Jovan; Doroslovacki, Rade; Djelosevic, Mirko

    2014-01-01

    This study deals with unconventional bearing capacity analysis and the procedure of optimizing a two-cell box girder. The generalized model which enables the local stress-strain analysis of multicell girders was developed based on the principle of cross-sectional decomposition. The applied methodology is verified using the experimental data (Djelosevic et al., 2012) for traditionally formed box girders. The qualitative and quantitative evaluation of results obtained for the two-cell box girder is realized based on comparative analysis using the finite element method (FEM) and the ANSYS v12 software. The deflection function obtained by analytical and numerical methods was found consistent provided that the maximum deviation does not exceed 4%. Multicell box girders are rationally designed support structures characterized by much lower susceptibility of their cross-sectional elements to buckling and higher specific capacity than traditionally formed box girders. The developed local stress model is applied for optimizing the cross section of a two-cell box carrier. The author points to the advantages of implementing the model of local stresses in the optimization process and concludes that the technological reserve of bearing capacity amounts to 20% at the same girder weight and constant load conditions.

  9. Sensory Information Systems Program

    DTIC Science & Technology

    2012-03-06

    cochlear implants. Developed by Dr. Les Atlas, U. Wash. Dr. Jay Rebenstein will develop commercial applications. TO: AFRL-- Eglin: Measurements and...wide field-of-view optic flow http://www.avl.umd.edu/ Microautonomous Systems and Technology Autonomous Steering: Transition to Army MAST 10...Wehling ( AFRL/RW): Neural analysis of optic flow . S. Sane ( Tata Institute): Insect multisensory integration 20 DISTRIBUTION A: Approved

  10. Genome-wide identification and characterisation of F-box family in maize.

    PubMed

    Jia, Fengjuan; Wu, Bingjiang; Li, Hui; Huang, Jinguang; Zheng, Chengchao

    2013-11-01

    F-box-containing proteins, as the key components of the protein degradation machinery, are widely distributed in higher plants and are considered as one of the largest known families of regulatory proteins. The F-box protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, systematic analysis of the F-box family in maize (Zea mays) has not been reported yet. In this paper, we identified and characterised the maize F-box genes in a genome-wide scale, including phylogenetic analysis, chromosome distribution, gene structure, promoter analysis and gene expression profiles. A total of 359 F-box genes were identified and divided into 15 subgroups by phylogenetic analysis. The F-box domain was relatively conserved, whereas additional motifs outside the F-box domain may indicate the functional diversification of maize F-box genes. These genes were unevenly distributed in ten maize chromosomes, suggesting that they expanded in the maize genome because of tandem and segmental duplication events. The expression profiles suggested that the maize F-box genes had temporal and spatial expression patterns. Putative cis-acting regulatory DNA elements involved in abiotic stresses were observed in maize F-box gene promoters. The gene expression profiles under abiotic stresses also suggested that some genes participated in stress responsive pathways. Furthermore, ten genes were chosen for quantitative real-time PCR analysis under drought stress and the results were consistent with the microarray data. This study has produced a comparative genomics analysis of the maize ZmFBX gene family that can be used in further studies to uncover their roles in maize growth and development.

  11. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.)

    PubMed Central

    Yang, Congcong; Ding, Puyang; Liu, Yaxi; Qiao, Linyi; Chang, Zhijian; Geng, Hongwei; Wang, Penghao; Jiang, Qiantao; Wang, Jirui; Chen, Guoyue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin

    2017-01-01

    The MADS-box genes encode transcription factors with key roles in plant growth and development. A comprehensive analysis of the MADS-box gene family in bread wheat (Triticum aestivum) has not yet been conducted, and our understanding of their roles in stress is rather limited. Here, we report the identification and characterization of the MADS-box gene family in wheat. A total of 180 MADS-box genes classified as 32 Mα, 5 Mγ, 5 Mδ, and 138 MIKC types were identified. Evolutionary analysis of the orthologs among T. urartu, Aegilops tauschii and wheat as well as homeologous sequences analysis among the three sub-genomes in wheat revealed that gene loss and chromosomal rearrangements occurred during and/or after the origin of bread wheat. Forty wheat MADS-box genes that were expressed throughout the investigated tissues and development stages were identified. The genes that were regulated in response to both abiotic stresses (i.e., phosphorus deficiency, drought, heat, and combined drought and heat) and biotic stresses (i.e., Fusarium graminearum, Septoria tritici, stripe rust and powdery mildew) were detected as well. A few notable MADS-box genes were specifically expressed in a single tissue and those showed relatively higher expression differences between the stress and control treatment. The expression patterns of considerable MADS-box genes differed from those of their orthologs in Brachypodium, rice, and Arabidopsis. Collectively, the present study provides new insights into the possible roles of MADS-box genes in response to stresses and will be valuable for further functional studies of important candidate MADS-box genes. PMID:28742823

  12. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.).

    PubMed

    Ma, Jian; Yang, Yujie; Luo, Wei; Yang, Congcong; Ding, Puyang; Liu, Yaxi; Qiao, Linyi; Chang, Zhijian; Geng, Hongwei; Wang, Penghao; Jiang, Qiantao; Wang, Jirui; Chen, Guoyue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin

    2017-01-01

    The MADS-box genes encode transcription factors with key roles in plant growth and development. A comprehensive analysis of the MADS-box gene family in bread wheat (Triticum aestivum) has not yet been conducted, and our understanding of their roles in stress is rather limited. Here, we report the identification and characterization of the MADS-box gene family in wheat. A total of 180 MADS-box genes classified as 32 Mα, 5 Mγ, 5 Mδ, and 138 MIKC types were identified. Evolutionary analysis of the orthologs among T. urartu, Aegilops tauschii and wheat as well as homeologous sequences analysis among the three sub-genomes in wheat revealed that gene loss and chromosomal rearrangements occurred during and/or after the origin of bread wheat. Forty wheat MADS-box genes that were expressed throughout the investigated tissues and development stages were identified. The genes that were regulated in response to both abiotic stresses (i.e., phosphorus deficiency, drought, heat, and combined drought and heat) and biotic stresses (i.e., Fusarium graminearum, Septoria tritici, stripe rust and powdery mildew) were detected as well. A few notable MADS-box genes were specifically expressed in a single tissue and those showed relatively higher expression differences between the stress and control treatment. The expression patterns of considerable MADS-box genes differed from those of their orthologs in Brachypodium, rice, and Arabidopsis. Collectively, the present study provides new insights into the possible roles of MADS-box genes in response to stresses and will be valuable for further functional studies of important candidate MADS-box genes.

  13. Effect of virtual reality-based rehabilitation on upper-extremity function in patients with brain tumor: controlled trial.

    PubMed

    Yoon, Jisun; Chun, Min Ho; Lee, Sook Joung; Kim, Bo Ryun

    2015-06-01

    The aim of this study was to evaluate the benefit of virtual reality-based rehabilitation on upper-extremity function in patients with brain tumor. Patients with upper-extremity dysfunction were divided into age-matched and tumor type-matched two groups. The intervention group performed the virtual reality program 30 mins per session for 9 sessions and conventional occupational therapy 30 mins per session for 6 sessions for 3 wks, whereas the control group received conventional occupational therapy alone 30 mins per session for 15 sessions for 3 wks. The Box and Block test, the Manual Function test, and the Fugl-Meyer scale were used to evaluate upper-extremity function. The Korean version of the Modified Barthel Index was used to assess activities of daily living. Forty patients completed the study (20 for each group). Each group exhibited significant posttreatment improvements in the Box and Block test, Manual Function test, Fugl-Meyer scale, and Korean version of the Modified Barthel Index scores. The Box and Block test, the Fugl-Meyer scale, and the Manual Function test showed greater improvements in shoulder/elbow/forearm function in the intervention group and hand function in the control group. Virtual reality-based rehabilitation combined with conventional occupational therapy may be more effective than conventional occupational therapy, especially for proximal upper-extremity function in patients with brain tumor. Further studies considering hand function, such as use of virtual reality programs that targeting hand use, are required.

  14. Box C/D sRNA stem ends act as stabilizing anchors for box C/D di-sRNPs

    PubMed Central

    Yip, W. S. Vincent; Shigematsu, Hideki; Taylor, David W.; Baserga, Susan J.

    2016-01-01

    Ribosomal RNA (rRNA) modifications are essential for ribosome function in all cellular organisms. Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze 2′-O-methylation, one rRNA modification type in Eukarya and Archaea. Negatively stained electron microscopy (EM) models of archaeal box C/D sRNPs have demonstrated the dimeric sRNP (di-sRNP) architecture, which has been corroborated by nuclear magnetic resonance (NMR) studies. Due to limitations of the structural techniques, the orientation of the box C/D sRNAs has remained unclear. Here, we have used cryo-EM to elucidate the sRNA orientation in a M. jannaschii box C/D di-sRNP. The cryo-EM reconstruction suggests a parallel orientation of the two sRNAs. Biochemical and structural analyses of sRNPs assembled with mutant sRNAs indicate a potential interaction between the sRNA stem ends. Our results suggest that the parallel arrangement of the sRNAs juxtaposes their stem ends into close proximity to allow for a stabilizing interaction that helps maintain the di-sRNP architecture. PMID:27342279

  15. Phylogenomics of MADS-Box Genes in Plants - Two Opposing Life Styles in One Gene Family.

    PubMed

    Gramzow, Lydia; Theißen, Günter

    2013-09-12

    The development of multicellular eukaryotes, according to their body plan, is often directed by members of multigene families that encode transcription factors. MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR)-box genes form one of those families controlling nearly all major aspects of plant development. Knowing the complete complement of MADS-box genes in sequenced plant genomes will allow a better understanding of the evolutionary patterns of these genes and the association of their evolution with the evolution of plant morphologies. Here, we have applied a combination of automatic and manual annotations to identify the complete set of MADS-box genes in 17 plant genomes. Furthermore, three plant genomes were reanalyzed and published datasets were used for four genomes such that more than 2,600 genes from 24 species were classified into the two types of MADS-box genes, Type I and Type II. Our results extend previous studies, highlighting the remarkably different evolutionary patterns of Type I and Type II genes and provide a basis for further studies on the evolution and function of MADS-box genes.

  16. Mortality of riparian box elder from sediment mobilization and extended inundation

    USGS Publications Warehouse

    Friedman, Jonathan M.; Auble, Gregor T.

    1999-01-01

    To explore how high flows limit the streamward extent of riparian vegetation we quantified the effects of sediment mobilization and extended inundation on box elder (Acer negundo) saplings along the cobble-bed Gunnison River in Black Canyon of the Gunnison National Monument, Colorado, USA. We counted and aged box elders in 144 plots of 37.2 m2, and combined a hydraulic model with the hydrologic record to determine the maximum shear stress and number of growing-season days inundated for each plot in each year of the record. We quantified the effects of the two mortality factors by calculating the extreme values survived during the lifetime of trees sampled in 1994 and by recounting box elders in the plots following a high flow in 1995. Both mortality factors can be modeled as threshold functions; box elders are killed either by inundation for more than 85 days during the growing season or by shear stress that exceeds the critical value for mobilization of the underlying sediment particles. Construction of upstream reservoirs in the 1960s and 1970s reduced the proportion of the canyon bottom annually cleared of box elders by high flows. Furthermore, because the dams decreased the magnitude of high flows more than their duration, flow regulation has decreased the importance of sediment mobilization relative to extended inundation. We use the threshold functions and cross-section data to develop a response surface predicting the proportion of the canyon bottom cleared at any combination of flow magnitude and duration. This response surface allows vegetation removal to be incorporated into quantitative multi-objective water management decisions.

  17. A Novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors.

    PubMed

    van Verk, Marcel C; Pappaioannou, Dimitri; Neeleman, Lyda; Bol, John F; Linthorst, Huub J M

    2008-04-01

    PR-1a is a salicylic acid-inducible defense gene of tobacco (Nicotiana tabacum). One-hybrid screens identified a novel tobacco WRKY transcription factor (NtWRKY12) with specific binding sites in the PR-1a promoter at positions -564 (box WK(1)) and -859 (box WK(2)). NtWRKY12 belongs to the class of transcription factors in which the WRKY sequence is followed by a GKK rather than a GQK sequence. The binding sequence of NtWRKY12 (WK box TTTTCCAC) deviated significantly from the consensus sequence (W box TTGAC[C/T]) shown to be recognized by WRKY factors with the GQK sequence. Mutation of the GKK sequence in NtWRKY12 into GQK or GEK abolished binding to the WK box. The WK(1) box is in close proximity to binding sites in the PR-1a promoter for transcription factors TGA1a (as-1 box) and Myb1 (MBSII box). Expression studies with PR-1a promoterbeta-glucuronidase (GUS) genes in stably and transiently transformed tobacco indicated that NtWRKY12 and TGA1a act synergistically in PR-1a expression induced by salicylic acid and bacterial elicitors. Cotransfection of Arabidopsis thaliana protoplasts with 35SNtWRKY12 and PR-1aGUS promoter fusions showed that overexpression of NtWRKY12 resulted in a strong increase in GUS expression, which required functional WK boxes in the PR-1a promoter.

  18. Mutations in the F-box gene SNEEZY result in decreased arabidopsis GA signaling

    USDA-ARS?s Scientific Manuscript database

    We previously reported that the SLEEPY1 (SLY1) homolog, F-box gene SNEEZY/SLEEPY2 (SNE/SLY2), can partly replace SLY1 in gibberellin (GA) hormone signaling through interaction with DELLAs RGA and GAI. To determine whether SNE normally functions in GA signaling, we characterized the phenotypes of tw...

  19. The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses

    PubMed Central

    Yang, Haiqi; Yue, Luming; Song, Jun

    2017-01-01

    The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula. PMID:28771553

  20. F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana

    PubMed Central

    Baute, Joke; Polyn, Stefanie; De Block, Jolien; Blomme, Jonas; Van Lijsebettens, Mieke

    2017-01-01

    F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates. PMID:28340173

  1. Identification of a Skp1-like protein interacting with SFB, the pollen S determinant of the gametophytic self-incompatibility in Prunus.

    PubMed

    Matsumoto, Daiki; Yamane, Hisayo; Abe, Kazuyuki; Tao, Ryutaro

    2012-07-01

    Many species in Rosaceae, Solanaceae, and Plantaginaceae exhibit S-RNase-based self-incompatibility (SI). In this system, the pistil and pollen specificities are determined by S-RNase and the S locus F-box protein, respectively. The pollen S determinant F-box protein in Prunus (Rosaceae) is referred to by two different terms, SFB (for S-haplotype-specific F-box protein) and SLF (for S locus F box), whereas it is called SLF in Solanaceae and Plantaginaceae. Prunus SFB is thought to be a molecule indispensable for its cognate S-RNase to exert cytotoxicity and to arrest pollen tube growth in incompatible reactions. Although recent studies have demonstrated the molecular function of SCF(SLF) in the SI reaction of Solanaceae and Plantaginaceae, how SFB participates in the Prunus SI mechanism remains to be elucidated. Here we report the identification of sweet cherry (Prunus avium) SFB (PavSFB)-interacting Skp1-like1 (PavSSK1) using a yeast (Saccharomyces cerevisiae) two-hybrid screening against the pollen cDNA library. Phylogenetic analysis showed that PavSSK1 belongs to the same clade as Antirrhinum hispanicum SLF-interacting Skp1-like1 and Petunia hybrida SLF-interacting Skp1-like1 (PhSSK1). In yeast, PavSSK1 interacted not only with PavSFBs from different S haplotypes and Cullin1-likes (PavCul1s), but also with S-locus F-box-likes. A pull-down assay confirmed the interactions between PavSSK1 and PavSFB and between PavSSK1 and PavCul1s. These results collectively indicate that PavSSK1 could be a functional component of the SCF complex and that PavSFB may function as a component of the SCF complex. We discuss the molecular function of PavSFB in self-/nonself-recognition in the gametophytic SI of Prunus.

  2. Identification of a Skp1-Like Protein Interacting with SFB, the Pollen S Determinant of the Gametophytic Self-Incompatibility in Prunus1[W

    PubMed Central

    Matsumoto, Daiki; Yamane, Hisayo; Abe, Kazuyuki; Tao, Ryutaro

    2012-01-01

    Many species in Rosaceae, Solanaceae, and Plantaginaceae exhibit S-RNase-based self-incompatibility (SI). In this system, the pistil and pollen specificities are determined by S-RNase and the S locus F-box protein, respectively. The pollen S determinant F-box protein in Prunus (Rosaceae) is referred to by two different terms, SFB (for S-haplotype-specific F-box protein) and SLF (for S locus F box), whereas it is called SLF in Solanaceae and Plantaginaceae. Prunus SFB is thought to be a molecule indispensable for its cognate S-RNase to exert cytotoxicity and to arrest pollen tube growth in incompatible reactions. Although recent studies have demonstrated the molecular function of SCFSLF in the SI reaction of Solanaceae and Plantaginaceae, how SFB participates in the Prunus SI mechanism remains to be elucidated. Here we report the identification of sweet cherry (Prunus avium) SFB (PavSFB)-interacting Skp1-like1 (PavSSK1) using a yeast (Saccharomyces cerevisiae) two-hybrid screening against the pollen cDNA library. Phylogenetic analysis showed that PavSSK1 belongs to the same clade as Antirrhinum hispanicum SLF-interacting Skp1-like1 and Petunia hybrida SLF-interacting Skp1-like1 (PhSSK1). In yeast, PavSSK1 interacted not only with PavSFBs from different S haplotypes and Cullin1-likes (PavCul1s), but also with S-locus F-box-likes. A pull-down assay confirmed the interactions between PavSSK1 and PavSFB and between PavSSK1 and PavCul1s. These results collectively indicate that PavSSK1 could be a functional component of the SCF complex and that PavSFB may function as a component of the SCF complex. We discuss the molecular function of PavSFB in self-/nonself-recognition in the gametophytic SI of Prunus. PMID:22548785

  3. Functional and Structural Insights of the Zinc-Finger HIT protein family members Involved in Box C/D snoRNP Biogenesis.

    PubMed

    Bragantini, Benoit; Tiotiu, Decebal; Rothé, Benjamin; Saliou, Jean-Michel; Marty, Hélène; Cianférani, Sarah; Charpentier, Bruno; Quinternet, Marc; Manival, Xavier

    2016-06-05

    Zf–HIT family members share the zf–HIT domain (ZHD), which is characterized by a fold in “treble-clef” through interleaved CCCC and CCHC ZnF motifs that both bind a zinc atom. Six proteins containing ZHD are present in human and three in yeast proteome, all belonging to multimodular RNA/protein complexes involved in gene regulation, chromatin remodeling, and snoRNP assembly. An interesting characteristic of the cellular complexes that ensure these functions is the presence of the RuvBL1/2/Rvb1/2 ATPases closely linked with zf–HIT proteins. Human ZNHIT6/BCD1 and its counterpart in yeast Bcd1p were previously characterized as assembly factors of the box C/D snoRNPs. Our data reveal that the ZHD of Bcd1p is necessary but not sufficient for yeast growth and that the motif has no direct RNA-binding capacity but helps Bcd1p maintain the box C/D snoRNAs level in steady state. However, we demonstrated that Bcd1p interacts nonspecifically with RNAs depending on their length. Interestingly, the ZHD of Bcd1p is functionally interchangeable with that of Hit1p, another box C/D snoRNP assembly factor belonging to the zf–HIT family. This prompted us to use NMR to solve the 3D structures of ZHD from yeast Bcd1p and Hit1p to highlight the structural similarity in the zf–HIT family. We identified structural features associated with the requirement of Hit1p and Bcd1p ZHD for cell growth and box C/D snoRNA stability under heat stress. Altogether, our data suggest an important role of ZHD could be to maintain functional folding to the rest of the protein, especially under heat stress conditions.

  4. Sequencing of Seven Haloarchaeal Genomes Reveals Patterns of Genomic Flux

    PubMed Central

    Lynch, Erin A.; Langille, Morgan G. I.; Darling, Aaron; Wilbanks, Elizabeth G.; Haltiner, Caitlin; Shao, Katie S. Y.; Starr, Michael O.; Teiling, Clotilde; Harkins, Timothy T.; Edwards, Robert A.; Eisen, Jonathan A.; Facciotti, Marc T.

    2012-01-01

    We report the sequencing of seven genomes from two haloarchaeal genera, Haloferax and Haloarcula. Ease of cultivation and the existence of well-developed genetic and biochemical tools for several diverse haloarchaeal species make haloarchaea a model group for the study of archaeal biology. The unique physiological properties of these organisms also make them good candidates for novel enzyme discovery for biotechnological applications. Seven genomes were sequenced to ∼20×coverage and assembled to an average of 50 contigs (range 5 scaffolds - 168 contigs). Comparisons of protein-coding gene compliments revealed large-scale differences in COG functional group enrichment between these genera. Analysis of genes encoding machinery for DNA metabolism reveals genera-specific expansions of the general transcription factor TATA binding protein as well as a history of extensive duplication and horizontal transfer of the proliferating cell nuclear antigen. Insights gained from this study emphasize the importance of haloarchaea for investigation of archaeal biology. PMID:22848480

  5. Prediction of new ground-state crystal structure of T a2O5

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Kawazoe, Yoshiyuki

    2018-03-01

    Tantalum pentoxide (T a2O5 ) is a wide-gap semiconductor which has important technological applications. Despite the enormous efforts from both experimental and theoretical studies, the ground-state crystal structure of T a2O5 is not yet uniquely determined. Based on first-principles calculations in combination with evolutionary algorithm, we identify a triclinic phase of T a2O5 , which is energetically much more stable than any phases or structural models reported previously. Characterization of the static and dynamical properties of the phase reveals the common features shared with previous metastable phases of T a2O5 . In particular, we show that the d spacing of ˜3.8 Å found in the x-ray diffraction patterns of many previous experimental works is actually the radius of the second Ta-Ta coordination shell as defined by radial distribution functions.

  6. Novel mechanism and factor for regulation by HIV-1 Tat.

    PubMed Central

    Zhou, Q; Sharp, P A

    1995-01-01

    Tat regulation of human immunodeficiency virus (HIV) transcription is unique because of its specificity for an RNA target, TAR, and its ability to increase the efficiency of elongation by polymerase. A reconstituted reaction that is Tat-specific and TAR-dependent for activation of HIV transcription has been used to identify and partially purify a cellular activity that is required for trans-activation by Tat, but not by other activators. In the reaction, Tat stimulates the efficiency of elongation by polymerase, whereas Sp1 and other DNA sequence-specific transcription factors activate the rate of initiation. Furthermore, while TATA binding protein (TBP)-associated factors (TAFs) in the TFIID complex are required for activation by transcription factors, they are dispensable for Tat function. Thus, Tat acts through a novel mechanism, which is mediated by a specific host cellular factor, to stimulate HIV-1 gene expression. Images PMID:7835343

  7. Analysis of white box test of cyber-physical system

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zhang, Lichen

    2017-05-01

    The Cyber-Physical System is a complex system in which the information system is closely integrated with the physical system. Through the environment detection and the combination of computing, communication and control process, the physical real-time perception and dynamic control function are realized. CPS is another information revolution after the Internet, and his presence will change the way people interact with the physical world. In this paper, the concept of CPS and white box testing is introduced, and then the white box test for CPS hardware, software, network and system is discussed in detail. Finally, the research on CPS is prospected.

  8. Allosteric regulation of rhomboid intramembrane proteolysis.

    PubMed

    Arutyunova, Elena; Panwar, Pankaj; Skiba, Pauline M; Gale, Nicola; Mak, Michelle W; Lemieux, M Joanne

    2014-09-01

    Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases. © 2014 The Authors.

  9. Allosteric regulation of rhomboid intramembrane proteolysis

    PubMed Central

    Arutyunova, Elena; Panwar, Pankaj; Skiba, Pauline M; Gale, Nicola; Mak, Michelle W; Lemieux, M Joanne

    2014-01-01

    Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases. PMID:25009246

  10. Analysis of polyglutamine-coding repeats in the TATA-binding protein in different human populations and in patients with schizophrenia an bipolar affective disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinsztein, D.C.; Leggo, J.; Crow, T.J.

    A new class of disease (including Huntington disease, Kennedy disease, and spinocerebellar ataxias types 1 and 3) results from abnormal expansions of CAG trinucleotides in the coding regions of genes. In all of these diseases the CAG repeats are thought to be translated into polyglutamine tracts. There is accumulating evidence arguing for CAG trinucleotide expansions as one of the causative disease mutations in schizophrenia and bipolar affective disorder. We and others believe that the TATA-binding protein (TBP) is an important candidate to investigate in these diseases as it contains a highly polymorphic stretch of glutamine codons, which are close tomore » the threshold length where the polyglutamine tracts start to be associated with disease. Thus, we examined the lengths of this polyglutamine repeat in normal unrelated East Anglians, South African Blacks, sub-Saharan Africans mainly from Nigeria, and Asian Indians. We also examined 43 bipolar affective disorder patients and 65 schizophrenic patients. The range of polyglutamine tract-lengths that we found in humans was from 26-42 codons. No patients with bipolar affective disorder and schizophrenia had abnormal expansions at this locus. 22 refs., 1 tab.« less

  11. Functional substitution for TAF(II)250 by a retroposed homolog that is expressed in human spermatogenesis.

    PubMed

    Wang, P Jeremy; Page, David C

    2002-09-15

    TAF(II)250, the largest subunit of the general transcription factor TFIID, is expressed from the human X chromosome, at least in somatic cells. In male meiosis, however, the sex chromosomes are transcriptionally silenced, while the autosomes remain active. How then are protein-encoding genes transcribed during human male meiosis? Here we present a novel autosomal human gene, TAF1L, which is homologous to TAF(II)250 and is expressed specifically in the testis, apparently in germ cells. We hypothesize that during male meiosis, transcription of protein-encoding genes relies upon TAF1L as a functional substitute for TAF(II)250. Like TAF(II)250, the human TAF1L protein can bind directly to TATA-binding protein, an essential component of TFIID. Most importantly, transfection with human TAF1L rescued the temperature-sensitive lethality of a hamster cell line mutant in TAF(II)250. TAF1L lacks introns and evidently arose by retroposition of a processed TAF(II)250 mRNA during primate evolution. The observation that TAF1L can functionally replace TAF(II)250 provides experimental support for the hypothesis that during male meiosis, autosomes provide cellular functions usually supplied by the X chromosome in somatic cells.

  12. Guide-substrate base-pairing requirement for box H/ACA RNA-guided RNA pseudouridylation.

    PubMed

    De Zoysa, Meemanage D; Wu, Guowei; Katz, Raviv; Yu, Yi-Tao

    2018-06-05

    Box H/ACA RNAs are a group of small RNAs found in abundance in eukaryotes (as well as in archaea). Although their sequences differ, eukaryotic box H/ACA RNAs all share the same unique hairpin-hinge-hairpin-tail structure. Almost all of them function as guides that primarily direct pseudouridylation of rRNAs and spliceosomal snRNAs at specific sites. Although box H/ACA RNA-guided pseudouridylation has been extensively studied, the detailed rules governing this reaction, especially those concerning the guide RNA-substrate RNA base-pairing interactions that determine the specificity and efficiency of pseudouridylation, are still not exactly clear. This is particularly relevant given that the lengths of the guide sequences involved in base-pairing vary from one box H/ACA RNA to another. Here, we carry out a detailed investigation into guide-substrate base-pairing interactions, and identify the minimum number of base-pairs (8), required for RNA-guided pseudouridylation. In addition, we find that the pseudouridylation pocket, present in each hairpin of box H/ACA RNA, exhibits flexibility in fitting slightly different substrate sequences. Our results are consistent across three independent pseudouridylation pockets tested, suggesting that our findings are generally applicable to box H/ACA RNA-guided RNA pseudouridylation. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Plk2 regulated centriole duplication is dependent on its localization to the centrioles and a functional polo-box domain.

    PubMed

    Cizmecioglu, Onur; Warnke, Silke; Arnold, Marc; Duensing, Stefan; Hoffmann, Ingrid

    2008-11-15

    In mammalian cells, the centrosome consists of a pair of centrioles and amorphous pericentriolar material. The centrosome duplicates once per cell cycle. Polo like kinases (Plks) perform crucial functions in cell cycle progression and during mitosis. The polo-like kinase-2, Plk2, is activated near the G(1)/S phase transition, and plays an important role in the reproduction of centrosomes. In this study, we show that the polo-box of Plk2 is required both for association to the centrosome and centriole duplication. Mutation of critical sites in the Plk2 polo-box prevents centrosomal localization and impairs centriole duplication. Plk2 is localized to centrosomes during early G(1) phase where it only associates to the mother centriole and then distributes equally to both mother and daughter centrioles at the onset of S phase. Furthermore, our results imply that Plk2 mediated centriole duplication is dependent on Plk4 function. In addition, we find that siRNA-mediated downregulation of Plk2 leads to the formation of abnormal mitotic spindles confirming that Plk2 may have a function in the reproduction of centrioles.

  14. Quark-hadron duality constraints on $$\\gamma Z$$ box corrections to parity-violating elastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Nathan L.; Blunden, Peter G.; Melnitchouk, Wally

    2015-12-08

    We examine the interference \\gamma Z box corrections to parity-violating elastic electron--proton scattering in the light of the recent observation of quark-hadron duality in parity-violating deep-inelastic scattering from the deuteron, and the approximate isospin independence of duality in the electromagnetic nucleon structure functions down to Q 2 \\approx 1 GeV 2. Assuming that a similar behavior also holds for the \\gamma Z proton structure functions, we find that duality constrains the γ Z box correction to the proton's weak charge to be Re V γ Z V = (5.4 \\pm 0.4) \\times 10 -3 at the kinematics of the Qmore » weak experiment. Within the same model we also provide estimates of the γ Z corrections for future parity-violating experiments, such as MOLLER at Jefferson Lab and MESA at Mainz.« less

  15. Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes.

    PubMed

    Dreni, Ludovico; Zhang, Dabing

    2016-03-01

    AGL6 is an ancient subfamily of MADS-box genes found in both gymnosperms and angiosperms. Its functions remained elusive despite the fact that the MADS-box genes and the ABC model have been studied for >20 years. Nevertheless, recent discoveries in petunia, rice, and maize support its involvement in the 'E' function of floral development, very similar to the closely related AGL2 (SEPALLATA) subfamily which has been well characterized. The known functions of AGL6 span from ancient conserved roles to new functions acquired in specific plant families. The AGL6 genes are involved in floral meristem regulation, in floral organs, and ovule (integument) and seed development, and have possible roles in both male and female germline and gametophyte development. In grasses, they are also important for the development of the first whorl of the flower, whereas in Arabidopsis they may play additional roles before floral meristem formation. This review covers these recent insights and some other aspects that are not yet fully elucidated, which deserve more studies in the future. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Brane boxes, anomalies, bending, and tadpoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leigh, R.G.; Rozali, M.

    1999-01-01

    Certain classes of chiral four-dimensional gauge theories may be obtained as the world volume theories of D5-branes are suspended between networks of NS5-branes, the so-called brane box models. In this paper, we derive the stringy consistency conditions placed on these models, and show that they are equivalent to an anomaly cancellation of the gauge theories. We derive these conditions in the orbifold theories which are {ital T} dual to the elliptic brane box models. Specifically, we show that the expression for tadpoles for unphysical twisted Ramond-Ramond 4-form fields in the orbifold theory are proportional to the gauge anomalies of themore » brane box theory. Thus string consistency is equivalent to world volume gauge anomaly cancellation. Furthermore, we find additional cylinder amplitudes which give the {beta} functions of the gauge theory. We show how these correspond to bending of the NS-branes in the brane box theory. {copyright} {ital 1998} {ital The American Physical Society}« less

  17. Redundant CArG Box Cis-motif Activity Mediates SHATTERPROOF2 Transcriptional Regulation during Arabidopsis thaliana Gynoecium Development

    PubMed Central

    Sehra, Bhupinder; Franks, Robert G.

    2017-01-01

    In the Arabidopsis thaliana seed pod, pod shatter and seed dispersal properties are in part determined by the development of a longitudinally orientated dehiscence zone (DZ) that derives from cells of the gynoecial valve margin (VM). Transcriptional regulation of the MADS protein encoding transcription factors genes SHATTERPROOF1 (SHP1) and SHATTERPROOF2 (SHP2) are critical for proper VM identity specification and later on for DZ development. Current models of SHP1 and SHP2 regulation indicate that the transcription factors FRUITFULL (FUL) and REPLUMLESS (RPL) repress these SHP genes in the developing valve and replum domains, respectively. Thus the expression of the SHP genes is restricted to the VM. FUL encodes a MADS-box containing transcription factor that is predicted to act through CArG-box containing cis-regulatory motifs. Here we delimit functional modules within the SHP2 cis-regulatory region and examine the functional importance of CArG box motifs within these regulatory regions. We have characterized a 2.2kb region upstream of the SHP2 translation start site that drives early and late medial domain expression in the gynoecium, as well as expression within the VM and DZ. We identified two separable, independent cis-regulatory modules, a 1kb promoter region and a 700bp enhancer region, that are capable of giving VM and DZ expression. Our results argue for multiple independent cis-regulatory modules that support SHP2 expression during VM development and may contribute to the robustness of SHP2 expression in this tissue. Additionally, three closely positioned CArG box motifs located in the SHP2 upstream regulatory region were mutated in the context of the 2.2kb reporter construct. Mutating simultaneously all three CArG boxes caused a moderate de-repression of the SHP2 reporter that was detected within the valve domain, suggesting that these CArG boxes are involved in SHP2 repression in the valve. PMID:29085379

  18. Linguistic Mediation of Children's Performance in a New Symbolic Understanding Task

    ERIC Educational Resources Information Center

    Homer, Bruce D.; Petroff, Natalya; Hayward, Elizabeth O.

    2013-01-01

    The effects of language on symbolic functioning were examined using the "boxes task," a new symbolic understanding task based on DeLoache's model task. Children ("N" = 32; ages 2;4--3;8) observed an object being hidden in a stack of four boxes and were then asked to retrieve a similar object in the same location from a set of…

  19. 76 FR 62111 - Self-Regulatory Organizations; NASDAQ OMX BX; Notice of Filing and Immediate Effectiveness of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-65447; File No. SR-BX-2011-067] Self-Regulatory Organizations; NASDAQ OMX BX; Notice of Filing and Immediate Effectiveness of a Proposed Rule Change To Provide an Optional Functionality for a BOX Options Participant To Prevent Its Market Maker or Proprietary Broker-Dealer Orders Entered in BOX...

  20. Structural basis for corepressor assembly by the orphan nuclear receptor TLX

    PubMed Central

    Zhou, X. Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten

    2015-01-01

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression. PMID:25691470

  1. The effects of road crossings on prairie stream habitat and function

    USGS Publications Warehouse

    Bouska, Wesley W.; Keane, Timothy; Paukert, Craig P.

    2010-01-01

    Improperly designed stream crossing structures may alter the form and function of stream ecosystems and habitat and prohibit the movement of aquatic organisms. Stream sections adjoining five concrete box culverts, five low-water crossings (concrete slabs vented by one or multiple culverts), and two large, single corrugated culvert vehicle crossings in eastern Kansas streams were compared to reference reaches using a geomorphologic survey and stream classification. Stream reaches were also compared upstream and downstream of crossings, and crossing measurements were used to determine which crossing design best mimicked the natural dimensions of the adjoining stream. Four of five low-water crossings, three of five box culverts, and one of two large, single corrugated pipe culverts changed classification from upstream to downstream of the crossings. Mean riffle spacing upstream at low-water crossings (8.6 bankfull widths) was double that of downstream reaches (mean 4.4 bankfull widths) but was similar upstream and downstream of box and corrugated pipe culverts. There also appeared to be greater deposition of fine sediments directly upstream of these designs. Box and corrugated culverts were more similar to natural streams than low-water crossings at transporting water, sediments, and debris during bankfull flows.

  2. Structural basis for corepressor assembly by the orphan nuclear receptor TLX

    DOE PAGES

    Zhi, Xiaoyong; Zhou, X. Edward; He, Yuanzheng; ...

    2015-02-15

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conservedmore » ALXXLXXY motif of the Atro box. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression.« less

  3. Functional Characterization of the Serine-Rich Tract of Varicella-Zoster Virus IE62.

    PubMed

    Kim, Seong K; Shakya, Akhalesh K; Kim, Seongman; O'Callaghan, Dennis J

    2016-01-15

    The immediate early 62 protein (IE62) of varicella-zoster virus (VZV), a major viral trans-activator, initiates the virus life cycle and is a key component of pathogenesis. The IE62 possesses several domains essential for trans-activation, including an acidic trans-activation domain (TAD), a serine-rich tract (SRT), and binding domains for USF, TFIIB, and TATA box binding protein (TBP). Transient-transfection assays showed that the VZV IE62 lacking the SRT trans-activated the early VZV ORF61 promoter at only 16% of the level of the full-length IE62. When the SRT of IE62 was replaced with the SRT of equine herpesvirus 1 (EHV-1) IEP, its trans-activation activity was completely restored. Herpes simplex virus 1 (HSV-1) ICP4 that lacks a TAD very weakly (1.5-fold) trans-activated the ORF61 promoter. An IE62 TAD-ICP4 chimeric protein exhibited trans-activation ability (10.2-fold), indicating that the IE62 TAD functions with the SRT of HSV-1 ICP4 to trans-activate viral promoters. When the serine and acidic residues of the SRT were replaced with Ala, Leu, and Gly, trans-activation activities of the modified IE62 proteins IE62-SRTΔSe and IE62-SRTΔAc were reduced to 46% and 29% of wild-type activity, respectively. Bimolecular complementation assays showed that the TAD of IE62, EHV-1 IEP, and HSV-1 VP16 interacted with Mediator 25 in human melanoma MeWo cells. The SRT of IE62 interacted with the nucleolar-ribosomal protein EAP, which resulted in the formation of globular structures within the nucleus. These results suggest that the SRT plays an important role in VZV viral gene expression and replication. The immediate early 62 protein (IE62) of varicella-zoster virus (VZV) is a major viral trans-activator and is essential for viral growth. Our data show that the serine-rich tract (SRT) of VZV IE62, which is well conserved within the alphaherpesviruses, is needed for trans-activation mediated by the acidic trans-activation domain (TAD). The TADs of IE62, EHV-1 IEP, and HSV-1 VP16 interacted with cellular Mediator 25 in bimolecular complementation assays. The interaction of the IE62 SRT with nucleolar-ribosomal protein EAP resulted in the formation of globular structures within the nucleus. Understanding the mechanisms by which the TAD and SRT of IE62 contribute to the function of this essential regulatory protein is important in understanding the gene program of this human pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Functional Characterization of the Serine-Rich Tract of Varicella-Zoster Virus IE62

    PubMed Central

    Shakya, Akhalesh K.; Kim, Seongman; O'Callaghan, Dennis J.

    2015-01-01

    ABSTRACT The immediate early 62 protein (IE62) of varicella-zoster virus (VZV), a major viral trans-activator, initiates the virus life cycle and is a key component of pathogenesis. The IE62 possesses several domains essential for trans-activation, including an acidic trans-activation domain (TAD), a serine-rich tract (SRT), and binding domains for USF, TFIIB, and TATA box binding protein (TBP). Transient-transfection assays showed that the VZV IE62 lacking the SRT trans-activated the early VZV ORF61 promoter at only 16% of the level of the full-length IE62. When the SRT of IE62 was replaced with the SRT of equine herpesvirus 1 (EHV-1) IEP, its trans-activation activity was completely restored. Herpes simplex virus 1 (HSV-1) ICP4 that lacks a TAD very weakly (1.5-fold) trans-activated the ORF61 promoter. An IE62 TAD-ICP4 chimeric protein exhibited trans-activation ability (10.2-fold), indicating that the IE62 TAD functions with the SRT of HSV-1 ICP4 to trans-activate viral promoters. When the serine and acidic residues of the SRT were replaced with Ala, Leu, and Gly, trans-activation activities of the modified IE62 proteins IE62-SRTΔSe and IE62-SRTΔAc were reduced to 46% and 29% of wild-type activity, respectively. Bimolecular complementation assays showed that the TAD of IE62, EHV-1 IEP, and HSV-1 VP16 interacted with Mediator 25 in human melanoma MeWo cells. The SRT of IE62 interacted with the nucleolar-ribosomal protein EAP, which resulted in the formation of globular structures within the nucleus. These results suggest that the SRT plays an important role in VZV viral gene expression and replication. IMPORTANCE The immediate early 62 protein (IE62) of varicella-zoster virus (VZV) is a major viral trans-activator and is essential for viral growth. Our data show that the serine-rich tract (SRT) of VZV IE62, which is well conserved within the alphaherpesviruses, is needed for trans-activation mediated by the acidic trans-activation domain (TAD). The TADs of IE62, EHV-1 IEP, and HSV-1 VP16 interacted with cellular Mediator 25 in bimolecular complementation assays. The interaction of the IE62 SRT with nucleolar-ribosomal protein EAP resulted in the formation of globular structures within the nucleus. Understanding the mechanisms by which the TAD and SRT of IE62 contribute to the function of this essential regulatory protein is important in understanding the gene program of this human pathogen. PMID:26537679

  5. Isolation of a thyroid hormone-responsive gene by immunoprecipitation of thyroid hormone receptor-DNA complexes.

    PubMed Central

    Bigler, J; Eisenman, R N

    1994-01-01

    Thyroid hormone (T3) receptor (TR) is a ligand-dependent transcription factor that acts through specific binding sites in the promoter region of target genes. In order to identify new genes that are regulated by T3, we used anti-TR antiserum to immunoprecipitate TR-DNA complexes from GH4 cell nuclei that had previously been treated with a restriction enzyme. Screening of the immunopurified, cloned DNA for TR binding sites by electrophoretic mobility shift assay yielded 53 positive clones. A subset of these clones was specifically immunoprecipitated with anti-TR antiserum and may therefore represent biologically significant binding sites. One of these clones, clone 122, was characterized in detail. It includes sequences highly related to the NICER long terminal repeat-like element and contains three TR binding sites as determined by DNase I footprinting. Two of the clone 122 TR binding sites are located upstream of the TATA box, and one is located downstream. The TR binding site downstream from the promoter was necessary and sufficient to confer T3-dependent regulation in transient transfection experiments. Expression of a reporter construct under the control of the clone 122 promoter region was activated by TR in the absence of ligand and returned to basal levels after T3 addition. Clone 122 sequences hybridize to at least two different mRNAs of approximately 6 and 10 kb from GH4 cells. The levels of both of these mRNAs increased upon removal of T3. Our studies suggest that specific immunoprecipitation of chromatin allows identification of binding sites and target genes for transcription factors. Images PMID:7935476

  6. CREB, NF-Y and MEIS1 conserved binding sites are essential to balance Myostatin promoter/enhancer activity during early myogenesis.

    PubMed

    Grade, Carla Vermeulen Carvalho; Mantovani, Carolina Stefano; Fontoura, Marina Alves; Yusuf, Faisal; Brand-Saberi, Beate; Alvares, Lúcia Elvira

    2017-10-01

    Myostatin (MSTN) is a strong inhibitor of skeletal muscle growth in human and other vertebrates. Its transcription is controlled by a proximal promoter/enhancer (Mstn P/E) containing a TATA box besides CREB, NF-Y, MEIS1 and FXR transcription factor binding sites (TFBSs), which are conserved throughout evolution. The aim of this work was to investigate the role of these TFBSs on Mstn P/E activity and evaluate the potential of their putative ligands as Mstn trans regulators. Mstn P/E mutant constructs were used to establish the role of conserved TFBSs using dual-luciferase assays. Expression analyses were performed by RT-PCR and in situ hybridization in C2C12 myoblasts and E10.5 mouse embryos, respectively. Our results revealed that CREB, NF-Y and MEIS1 sites are required to balance Mstn P/E activity, keeping Mstn transcription within basal levels during myoblast proliferation. Furthermore, our data showed that NF-Y site is essential, although not sufficient, to mediate Mstn P/E transcriptional activity. In turn, CREB and MEIS1 binding sites seem to depend on the presence of NF-Y site to induce Mstn P/E. FXR appears not to confer any effect on Mstn P/E activity, except in the absence of all other conserved TFBS. Accordingly, expression studies pointed to CREB, NF-Y and MEIS1 but not to FXR factors as possible regulators of Mstn transcription in the myogenic context. Altogether, our findings indicated that CREB, NF-Y and MEIS1 conserved sites are essential to control basal Mstn transcription during early myogenesis, possibly by interacting with these or other related factors.

  7. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer

    PubMed Central

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip

    2016-01-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  8. Sp1 upregulates the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes.

    PubMed

    Watanabe, Keijirou; Hida, Mariko; Sasaki, Takako; Yano, Hiroyuki; Kawano, Kenji; Yoshioka, Hidekatsu; Matsuo, Noritaka

    2016-02-01

    Type XI collagen is a cartilage-specific extracellular matrix, and is important for collagen fibril formation and skeletal morphogenesis. We have previously reported that NF-Y regulated the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes (Hida et. al. In Vitro Cell. Dev. Biol. Anim. 2014). However, the mechanism of the Col11a1 gene regulation in chondrocytes has not been fully elucidated. In this study, we further characterized the proximal promoter activity of the mouse Col11a1 gene in chondrocytes. Cell transfection experiments with deletion and mutation constructs indicated that the downstream region of the NF-Y binding site (-116 to +1) is also necessary to regulate the proximal promoter activity of the mouse Col11a1 gene. This minimal promoter region has no TATA box and GC-rich sequence; we therefore examined whether the GC-rich sequence (-96 to -67) is necessary for the transcription regulation of the Col11a1 gene. Luciferase assays using a series of mutation constructs exhibited that the GC-rich sequence is a critical element of Col11a1 promoter activity in chondrocytes. Moreover, in silico analysis of this region suggested that one of the most effective candidates was transcription factor Sp1. Consistent with the prediction, overexpression of Sp1 significantly increased the promoter activity. Furthermore, knockdown of Sp1 expression by siRNA transfection suppressed the proximal promoter activity and the expression of endogenous transcript of the mouse Col11a1 gene. Taken together, these results indicate that the transcription factor Sp1 upregulates the proximal promoter activity of the mouse Col11a1 gene in chondrocytes.

  9. Sustained expression of a neuron-specific isoform of the Taf1 gene in development stages and aging in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambaldorj, Jamiyansuren; Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585; Central Scientific Research Laboratory, Institute of Medical Sciences, Ulaanbaatar

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer We identified the mouse homologue of neuron-specific TAF1 (N-Taf1). Black-Right-Pointing-Pointer Taf1 mRNA was expressed in most tissues and cell lines. Black-Right-Pointing-Pointer N-Taf1 mRNA was expressed in the brain and Neuroblastoma N2a cell lines. Black-Right-Pointing-Pointer Taf1 and N-Taf1 showed different expression profile in development stage and aging. -- Abstract: TATA-box binding protein associated factor 1 (TAF1) protein is the largest and the essential component of the TFIID complex in the pathway of RNA polymerase II-mediated gene transcription, and it regulates transcription of a large number of genes related to cell division. The neuron-specific isoform of the TAF1 gene (N-TAF1),more » which we reported previously, may have an essential role in neurons through transcriptional regulation of many neuron-specific genes. In the present study, we cloned the full-length cDNA that encodes the mouse homologue of N-TAF1 (N-Taf1) protein. By carrying out of real time RT-PCR, we investigated the expression analysis of the N-Taf1 mRNA in mouse tissues and cell lines. As well as the human N-TAF1, the N-Taf1 showed limited expression in the brain and neuroblastoma, whereas Taf1 expressed elsewhere. Furthermore, in mouse embryo head or mouse brain, mRNA expression of TAF1 changes dramatically during development but N-Taf1 showed sustained expression. Our result suggests that the N-Taf1 gene has an important role in non-dividing neuronal cell rather than in cell division and proliferation during neurogenesis.« less

  10. Reference gene stability of a synanthropic fly, Chrysomya megacephala.

    PubMed

    Wang, Xiaoyun; Xiong, Mei; Wang, Jialu; Lei, Chaoliang; Zhu, Fen

    2015-10-29

    Stable reference genes are essential for accurate normalization in gene expression studies with reverse transcription quantitative polymerase chain reaction (qPCR). A synanthropic fly, Chrysomya megacephala, is a well known medical vector and forensic indicator. Unfortunately, previous studies did not look at the stability of reference genes used in C. megacephala. In this study, the expression level of Actin, ribosomal protein L8 (Rpl8), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), elongation factor 1α (EF1), α-tubulin (α-TUB), β-tubulin (β-TUB), TATA binding box (TBP), 18S rRNA (18S) and ribosomal protein S7 (Rps7) were evaluated for their stability using online software RefFinder, which combines the normal software of the ΔCt method, BestKeeper, Normfinder, and geNorm. Moreover the number of suitable reference gene pairs was also suggested by Excel-based geNorm. The expression levels of these reference genes were evaluated under different experimental conditions with special perspectives of forensic applications: developmental stages (eggs, first, second and third instar larvae, pupae and adults); food sources of larvae (pork, fish and chicken); feeding larvae with drugs (untreated control, Estazolam and Marvelon); feeding larvae with heavy metals (untreated control, cadmium and zinc); tissues of adults (head, thorax, abdomen, legs and wings). According to RefFinder, EF1 was the most suitable reference gene of developmental stages, food and tissues; 18S and GAPDH were the most suitable reference genes for drugs and heavy metals, respectively, which could be widely used for quantification of target gene expression with qPCR in C. megacephala. Suitable reference gene pairs were also suggested by geNorm. This fundamental but vital work should facilitate the gene studies of related biological processes and deepen the understanding in physiology, toxicology, and especially medical and forensic entomology of C. megacephala.

  11. Cu,Zn superoxide dismutase: cloning and analysis of the Taenia solium gene and Taenia crassiceps cDNA.

    PubMed

    Parra-Unda, Ricardo; Vaca-Paniagua, Felipe; Jiménez, Lucia; Landa, Abraham

    2012-01-01

    Cytosolic Cu,Zn superoxide dismutase (Cu,Zn-SOD) catalyzes the dismutation of superoxide (O(2)(-)) to oxygen and hydrogen peroxide (H(2)O(2)) and plays an important role in the establishment and survival of helminthes in their hosts. In this work, we describe the Taenia solium Cu,Zn-SOD gene (TsCu,Zn-SOD) and a Taenia crassiceps (TcCu,Zn-SOD) cDNA. TsCu,Zn-SOD gene that spans 2.841 kb, and has three exons and two introns; the splicing junctions follow the GT-AG rule. Analysis in silico of the gene revealed that the 5'-flanking region has three putative TATA and CCAAT boxes, and transcription factor binding sites for NF1 and AP1. The transcription start site was a C, located at 22 nucleotides upstream of the translation start codon (ATG). Southern blot analysis showed that TcCu,Zn-SOD and TsCu,Zn-SOD genes are encoded by a single copy. The deduced amino acid sequences of TsCu,Zn-SOD gene and TcCu,Zn-SOD cDNA reveal 98.47% of identity, and the characteristic motives, including the catalytic site and β-barrel structure of the Cu,Zn-SOD. Proteomic and immunohistochemical analysis indicated that Cu,Zn-SOD does not have isoforms, is distributed throughout the bladder wall and is concentrated in the tegument of T. solium and T. crassiceps cysticerci. Expression analysis revealed that TcCu,Zn-SOD mRNA and protein expression levels do not change in cysticerci, even upon exposure to O(2)(-) (0-3.8 nmol/min) and H(2)O(2) (0-2mM), suggesting that this gene is constitutively expressed in these parasites. Published by Elsevier Inc.

  12. Genetic susceptibility to Gilbert's syndrome in a valencian population; efficacy of the fasting test.

    PubMed

    Torres, A K; Escartín, N; Monzó, C; Guzmán, C; Ferrer, I; González-Muñoz, C; Peña, P; Monzó, V; Marcaida, G; Rodríguez-López, R

    To describe the populational distribution of the UGT1A1*28 variant (genetic variant code rs8175347) located in the promotor of the UGT gene and correlate its genotypes with the results of the fasting test, as well as its relationship with the biochemical disorder of Gilbert's syndrome (GS) in a Valencian population. We studied the prevalence of the genotypes (TA) 6/6 (TA) 6/7 and (TA) 7/7 of the deleterious variant rs8175347 in 144 patients with hyperbilirubinemia, 38 of whom had previously undergone the fasting test to diagnose GS, and in 150 control patients. By analysing the genomic region of the TATA box of the UGT1A1 gene promotor using Sanger sequencing, we established the correlation between the rs8175347 genotypes and the fasting test results and with the patients' biochemical disorders. The rate of heterozygosity of allele (TA) 7 in the control population was 32% and increased to 87.59% among the patients with suspected GS. The rate of genotype TA 7/7 was 81.94% among the patients with hyperbilirubinemia, compared with 11.33% in the control patients. The fasting test showed a 15.79% rate of false negatives and a 5.26% rate of false positives. The high frequency of allele (TA) 7 among the Valencian control population, almost double the 5% reported for European control patients, confirms the high rate of GS reported in the Spanish population, without observing significant differences between the geographical ends of the country. The efficacy and reliability of the fasting test for the diagnosis of GS is questionable. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  13. Identification of a small TAF complex and its role in the assembly of TAF-containing complexes.

    PubMed

    Demény, Màté A; Soutoglou, Evi; Nagy, Zita; Scheer, Elisabeth; Jànoshàzi, Agnes; Richardot, Magalie; Argentini, Manuela; Kessler, Pascal; Tora, Laszlo

    2007-03-21

    TFIID plays a role in nucleating RNA polymerase II preinitiation complex assembly on protein-coding genes. TFIID is a multisubunit complex comprised of the TATA box binding protein (TBP) and 14 TBP-associated factors (TAFs). Another class of multiprotein transcriptional regulatory complexes having histone acetyl transferase (HAT) activity, and containing TAFs, includes TFTC, STAGA and the PCAF/GCN5 complex. Looking for as yet undiscovered subunits by a proteomic approach, we had identified TAF8 and SPT7L in human TFTC preparations. Subsequently, however, we demonstrated that TAF8 was not a stable component of TFTC, but that it is present in a small TAF complex (SMAT), containing TAF8, TAF10 and SPT7L, that co-purified with TFTC. Thus, TAF8 is a subunit of both TFIID and SMAT. The latter has to be involved in a pathway of complex formation distinct from the other known TAF complexes, since these three histone fold (HF)-containing proteins (TAF8, TAF10 and SPT7L) can never be found together either in TFIID or in STAGA/TFTC HAT complexes. Here we show that TAF8 is absolutely necessary for the integration of TAF10 in a higher order TFIID core complex containing seven TAFs. TAF8 forms a heterodimer with TAF10 through its HF and proline rich domains, and also interacts with SPT7L through its C-terminal region, and the three proteins form a complex in vitro and in vivo. Thus, the TAF8-TAF10 and TAF10-SPT7L HF pairs, and also the SMAT complex, seem to be important regulators of the composition of different TFIID and/or STAGA/TFTC complexes in the nucleus and consequently may play a role in gene regulation.

  14. Conserved structure and expression of hsp70 paralogs in teleost fishes.

    PubMed

    Metzger, David C H; Hemmer-Hansen, Jakob; Schulte, Patricia M

    2016-06-01

    The cytosolic 70KDa heat shock proteins (Hsp70s) are widely used as biomarkers of environmental stress in ecological and toxicological studies in fish. Here we analyze teleost genome sequences to show that two genes encoding inducible hsp70s (hsp70-1 and hsp70-2) are likely present in all teleost fish. Phylogenetic and synteny analyses indicate that hsp70-1 and hsp70-2 are distinct paralogs that originated prior to the diversification of the teleosts. The promoters of both genes contain a TATA box and conserved heat shock elements (HSEs), but unlike mammalian HSP70s, both genes contain an intron in the 5' UTR. The hsp70-2 gene has undergone tandem duplication in several species. In addition, many other teleost genome assemblies have multiple copies of hsp70-2 present on separate, small, genomic scaffolds. To verify that these represent poorly assembled tandem duplicates, we cloned the genomic region surrounding hsp70-2 in Fundulus heteroclitus and showed that the hsp70-2 gene copies that are on separate scaffolds in the genome assembly are arranged as tandem duplicates. Real-time quantitative PCR of F. heteroclitus genomic DNA indicates that four copies of the hsp70-2 gene are likely present in the F. heteroclitus genome. Comparison of expression patterns in F. heteroclitus and Gasterosteus aculeatus demonstrates that hsp70-2 has a higher fold increase than hsp70-1 following heat shock in gill but not in muscle tissue, revealing a conserved difference in expression patterns between isoforms and tissues. These data indicate that ecological and toxicological studies using hsp70 as a biomarker in teleosts should take this complexity into account. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Genomic organization of the Neurospora crassa gsn gene: possible involvement of the STRE and HSE elements in the modulation of transcription during heat shock.

    PubMed

    Freitas, F Zanolli; Bertolini, M C

    2004-12-01

    Glycogen synthase, an enzyme involved in glycogen biosynthesis, is regulated by phosphorylation and by the allosteric ligand glucose-6-phosphate (G6P). In addition, enzyme levels can be regulated by changes in gene expression. We recently cloned a cDNA for glycogen synthase ( gsn) from Neurospora crassa, and showed that gsn transcription decreased when cells were exposed to heat shock (shifted from 30 degrees C to 45 degrees C). In order to understand the mechanisms that control gsn expression, we isolated the gene, including its 5' and 3' flanking regions, from the genome of N. crassa. An ORF of approximately 2.4 kb was identified, which is interrupted by four small introns (II-V). Intron I (482 bp) is located in the 5'UTR region. Three putative Transcription Initiation Sites (TISs) were mapped, one of which lies downstream of a canonical TATA-box sequence (5'-TGTATAAA-3'). Analysis of the 5'-flanking region revealed the presence of putative transcription factor-binding sites, including Heat Shock Elements (HSEs) and STress Responsive Elements (STREs). The possible involvement of these motifs in the negative regulation of gsn transcription was investigated using Electrophoretic Mobility Shift Assays (EMSA) with nuclear extracts of N. crassa mycelium obtained before and after heat shock, and DNA fragments encompassing HSE and STRE elements from the 5'-flanking region. While elements within the promoter region are involved in transcription under heat shock, elements in the 5'UTR intron may participate in transcription during vegetative growth. The results thus suggest that N. crassa possesses trans -acting elements that interact with the 5'-flanking region to regulate gsn transcription during heat shock and vegetative growth.

  16. Complex interplay among DNA modification, noncoding RNA expression and protein-coding RNA expression in Salvia miltiorrhiza chloroplast genome.

    PubMed

    Chen, Haimei; Zhang, Jianhui; Yuan, George; Liu, Chang

    2014-01-01

    Salvia miltiorrhiza is one of the most widely used medicinal plants. As a first step to develop a chloroplast-based genetic engineering method for the over-production of active components from S. miltiorrhiza, we have analyzed the genome, transcriptome, and base modifications of the S. miltiorrhiza chloroplast. Total genomic DNA and RNA were extracted from fresh leaves and then subjected to strand-specific RNA-Seq and Single-Molecule Real-Time (SMRT) sequencing analyses. Mapping the RNA-Seq reads to the genome assembly allowed us to determine the relative expression levels of 80 protein-coding genes. In addition, we identified 19 polycistronic transcription units and 136 putative antisense and intergenic noncoding RNA (ncRNA) genes. Comparison of the abundance of protein-coding transcripts (cRNA) with and without overlapping antisense ncRNAs (asRNA) suggest that the presence of asRNA is associated with increased cRNA abundance (p<0.05). Using the SMRT Portal software (v1.3.2), 2687 potential DNA modification sites and two potential DNA modification motifs were predicted. The two motifs include a TATA box-like motif (CPGDMM1, "TATANNNATNA"), and an unknown motif (CPGDMM2 "WNYANTGAW"). Specifically, 35 of the 97 CPGDMM1 motifs (36.1%) and 91 of the 369 CPGDMM2 motifs (24.7%) were found to be significantly modified (p<0.01). Analysis of genes downstream of the CPGDMM1 motif revealed the significantly increased abundance of ncRNA genes that are less than 400 bp away from the significantly modified CPGDMM1motif (p<0.01). Taking together, the present study revealed a complex interplay among DNA modifications, ncRNA and cRNA expression in chloroplast genome.

  17. Dissecting transcription-coupled and global genomic repair in the chromatin of yeast GAL1-10 genes.

    PubMed

    Li, Shisheng; Smerdon, Michael J

    2004-04-02

    Transcription-coupled repair (TCR) and global genomic repair (GGR) of UV-induced cyclobutane pyrimidine dimers were investigated in the yeast GAL1-10 genes. Both Rpb9- and Rad26-mediated TCR are confined to the transcribed strands, initiating at upstream sites approximately 100 nucleotides from the upstream activating sequence shared by the two genes. However, TCR initiation sites do not correlate with either transcription start sites or TATA boxes. Rad16-mediated GGR tightly correlates with nucleosome positioning when the genes are repressed and are slow in the nucleosome core and fast in linker DNA. Induction of transcription enhanced GGR in nucleosome core DNA, especially in the nucleosomes around and upstream of the transcription start sites. Furthermore, when the genes were induced, GGR was slower in the transcribed regions than in the upstream regions. Finally, simultaneous deletion of RAD16, RAD26, and RPB9 resulted in no detectable repair in all sites along the region analyzed. Our results suggest that (a). TCR may be initiated by a transcription activator, presumably through the loading of RNA polymerase II, rather than by transcription initiation or elongation per se; (b). TCR and nucleosome disruption-enhanced GGR are the major causes of rapid repair in regions around and upstream of transcription start sites; (c). transcription machinery may hinder access of NER factors to a DNA lesion in the absence of a transcription-repair coupling factor; and (d). other than GGR mediated by Rad16 and TCR mediated by Rad26 and Rpb9, no other nucleotide excision repair pathway exists in these RNA polymerase II-transcribed genes.

  18. Implementation and verification of global optimization benchmark problems

    NASA Astrophysics Data System (ADS)

    Posypkin, Mikhail; Usov, Alexander

    2017-12-01

    The paper considers the implementation and verification of a test suite containing 150 benchmarks for global deterministic box-constrained optimization. A C++ library for describing standard mathematical expressions was developed for this purpose. The library automate the process of generating the value of a function and its' gradient at a given point and the interval estimates of a function and its' gradient on a given box using a single description. Based on this functionality, we have developed a collection of tests for an automatic verification of the proposed benchmarks. The verification has shown that literary sources contain mistakes in the benchmarks description. The library and the test suite are available for download and can be used freely.

  19. The petunia AGL6 gene has a SEPALLATA-like function in floral patterning.

    PubMed

    Rijpkema, Anneke S; Zethof, Jan; Gerats, Tom; Vandenbussche, Michiel

    2009-10-01

    SEPALLATA (SEP) MADS-box genes are required for the regulation of floral meristem determinacy and the specification of sepals, petals, stamens, carpels and ovules, specifically in angiosperms. The SEP subfamily is closely related to the AGAMOUS LIKE6 (AGL6) and SQUAMOSA (SQUA) subfamilies. So far, of these three groups only AGL6-like genes have been found in extant gymnosperms. AGL6 genes are more similar to SEP than to SQUA genes, both in sequence and in expression pattern. Despite the ancestry and wide distribution of AGL6-like MADS-box genes, not a single loss-of-function mutant exhibiting a clear phenotype has yet been reported; consequently the function of AGL6-like genes has remained elusive. Here, we characterize the Petunia hybrida AGL6 (PhAGL6, formerly called PETUNIA MADS BOX GENE4/pMADS4) gene, and show that it functions redundantly with the SEP genes FLORAL BINDING PROTEIN2 (FBP2) and FBP5 in petal and anther development. Moreover, expression analysis suggests a function for PhAGL6 in ovary and ovule development. The PhAGL6 and FBP2 proteins interact in in vitro experiments overall with the same partners, indicating that the two proteins are biochemically quite similar. It will be interesting to determine the functions of AGL6-like genes of other species, especially those of gymnosperms.

  20. The asparagine residue in the FRNK box of potyviral helper-component protease is critical for its small RNA binding and subcellular localization.

    PubMed

    Sahana, Nandita; Kaur, Harpreet; Jain, R K; Palukaitis, Peter; Canto, Tomas; Praveen, Shelly

    2014-05-01

    The multifunctional potyviral helper-component protease (HcPro) contains variable regions with some functionally conserved domains, such as the FRNK box. Natural variants occur at the FRNK box, a conserved central domain, known for its role in RNA binding and RNAi suppression activities, although no dominant natural variants for the N(182) residue are known to occur. Here, a mutant at HcPro(N182L) was developed to investigate its role in natural populations. Using in vitro studies, we found an increase in the small RNA (sRNA) binding potential of HcPro(N182L) without affecting its protein-protein interaction properties, suggesting that the presence of N(182) is critical to maintain threshold levels of sRNAs, but does not interfere in the self-interaction of HcPro. Furthermore, we found that expression of HcPro(N182L) in Nicotiana benthamiana affected plant growth. Transient expression of HcPro(N182L) induced reporter gene expression in 16c GFP transgenic plants more than HcPro did, suggesting that replacement of asparagine in the FRNK box favours RNA silencing suppression. HcPro was found to be distributed in the nucleus and cytoplasm, whereas HcPro(N182L) was observed only in cytoplasmic inclusion bodies in N. benthamiana leaves, when fused to a GFP tag and expressed by agro-infiltration, suggesting mutation favours oligomerization of HcPro. These findings suggest that amino acid N(182) of the conserved FRNK box may regulate RNA silencing mechanisms, and is required for maintenance of the subcellular localization of the protein for its multi-functionality. Hence, the N(182) residue of the FRNK box seems to be indispensable for potyvirus infection during evolution.

  1. Imperfect Symmetry of Sp1 and Core Promoter Sequences Regulates Early and Late Virus Gene Expression of the Bidirectional BK Polyomavirus Noncoding Control Region.

    PubMed

    Bethge, Tobias; Ajuh, Elvis; Hirsch, Hans H

    2016-11-15

    Rearrangements or point mutations in the noncoding control region (NCCR) of BK polyomavirus (BKPyV) have been associated with higher viral loads and more pronounced organ pathology in immunocompromised patients. The respective alterations affect a multitude of transcription factor binding sites (TFBS) but consistently cause increased expression of the early viral gene region (EVGR) at the expense of late viral gene region (LVGR) expression. By mutating TFBS, we identified three phenotypic groups leading to strong, intermediate, or impaired EVGR expression and corresponding BKPyV replication. Unexpectedly, Sp1 TFBS mutants either activated or inhibited EVGR expression when located proximal to the LVGR (sp1-4) or the EVGR (sp1-2), respectively. We now demonstrate that the bidirectional balance of EVGR and LVGR expression is dependent on affinity, strand orientation, and the number of Sp1 sites. Swapping the LVGR-proximal high-affinity SP1-4 with the EVGR-proximal low-affinity SP1-2 in site strand flipping or inserting an additional SP1-2 site caused a rearranged NCCR phenotype of increased EVGR expression and faster BKPyV replication. The 5' rapid amplification of cDNA ends revealed an imperfect symmetry between the EVGR- and LVGR-proximal parts of the NCCR, consisting of TATA and TATA-like elements, initiator elements, and downstream promoter elements. Mutation or deletion of the archetypal LVGR promoter, which is found in activated NCCR variants, abrogated LVGR expression, which could be restored by providing large T antigen (LTag) in trans Thus, whereas Sp1 sites control the initial EVGR-LVGR expression balance, LTag expression can override inactivation of the LVGR promoter and acts as a key driver of LVGR expression independently of the Sp1 sites and core promoter elements. Polyomaviridae currently comprise more than 70 members, including 13 human polyomaviruses (PyVs), all of which share a bidirectional genome organization mediated by the NCCR, which determines species and host cell specificity, persistence, replication, and virulence. Here, we demonstrate that the BKPyV NCCR is fine-tuned by an imperfect symmetry of core promoter elements centered around TATA and TATA-like sequences close to the EVGR and LVGR, respectively, which are governed by the directionality and affinity of two Sp1 sites. The data indicated that the BKPyV NCCR is poised toward EVGR expression, which can be readily unlatched by a simple switch affecting Sp1 binding. The resulting LTag, which is the major EVGR protein, drives viral genome replication, renders subsequent LVGR expression independently of archetypal promoter elements, and can overcome enhancer/promoter mutations and deletions. The data are pivotal for understanding how human PyV NCCRs mediate secondary host cell specificity, reactivation, and virulence in their natural hosts. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Two distinct promoters drive transcription of the human D1A dopamine receptor gene.

    PubMed

    Lee, S H; Minowa, M T; Mouradian, M M

    1996-10-11

    The human D1A dopamine receptor gene has a GC-rich, TATA-less promoter located upstream of a small, noncoding exon 1, which is separated from the coding exon 2 by a 116-base pair (bp)-long intron. Serial 3'-deletions of the 5'-noncoding region of this gene, including the intron and 5'-end of exon 2, resulted in 80 and 40% decrease in transcriptional activity of the upstream promoter in two D1A-expressing neuroblastoma cell lines, SK-N-MC and NS20Y, respectively. To investigate the function of this region, the intron and 245 bp at the 5'-end of exon 2 were investigated. Transient expression analyses using various chloramphenicol acetyltransferase constructs showed that the transcriptional activity of the intron is higher than that of the upstream promoter by 12-fold in SK-N-MC cells and by 5.5-fold in NS20Y cells in an orientation-dependent manner, indicating that the D1A intron is a strong promoter. Primer extension and ribonuclease protection assays revealed that transcription driven by the intron promoter is initiated at the junction of intron and exon 2 and at a cluster of nucleotides located 50 bp downstream from this junction. The same transcription start sites are utilized by the chloramphenicol acetyltransferase constructs employed in transfections as well as by the D1A gene expressed within the human caudate. The relative abundance of D1A transcripts originating from the upstream promoter compared with those transcribed from the intron promoter is 1.5-2.9 times in SK-N-MC cells and 2 times in the human caudate. Transcript stability studies in SK-N-MC cells revealed that longer D1A mRNA molecules containing exon 1 are degraded 1.8 times faster than shorter transcripts lacking exon 1. Although gel mobility shift assay could not detect DNA-protein interaction at the D1A intron, competitive co-transfection using the intron as competitor confirmed the presence of trans-acting factors at the intron. These data taken together indicate that the human D1A gene has two functional TATA-less promoters, both in D1A expressing cultured neuroblastoma cells and in the human striatum.

  3. Box C/D sRNA stem ends act as stabilizing anchors for box C/D di-sRNPs.

    PubMed

    Yip, W S Vincent; Shigematsu, Hideki; Taylor, David W; Baserga, Susan J

    2016-10-14

    Ribosomal RNA (rRNA) modifications are essential for ribosome function in all cellular organisms. Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze 2'-O-methylation, one rRNA modification type in Eukarya and Archaea. Negatively stained electron microscopy (EM) models of archaeal box C/D sRNPs have demonstrated the dimeric sRNP (di-sRNP) architecture, which has been corroborated by nuclear magnetic resonance (NMR) studies. Due to limitations of the structural techniques, the orientation of the box C/D sRNAs has remained unclear. Here, we have used cryo-EM to elucidate the sRNA orientation in a M. jannaschii box C/D di-sRNP. The cryo-EM reconstruction suggests a parallel orientation of the two sRNAs. Biochemical and structural analyses of sRNPs assembled with mutant sRNAs indicate a potential interaction between the sRNA stem ends. Our results suggest that the parallel arrangement of the sRNAs juxtaposes their stem ends into close proximity to allow for a stabilizing interaction that helps maintain the di-sRNP architecture. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Non-local boxes and their implementation in Minecraft

    NASA Astrophysics Data System (ADS)

    Simnacher, Timo Yannick

    PR-boxes are binary devices connecting two remote parties satisfying x AND y = a + b mod 2, where x and y denote the binary inputs and a and b are the respective outcomes without signaling. These devices are named after their inventors Sandu Popescu and Daniel Rohrlich and saturate the Clauser-Horne-Shimony-Holt (CHSH) inequality. This Bell-like inequality bounds the correlation that can exist between two remote, non-signaling, classical systems described by local hidden variable theories. Experiments have now convincingly shown that quantum entanglement cannot be explained by local hidden variable theories. Furthermore, the CHSH inequality provides a method to distinguish quantum systems from super-quantum correlations. The correlation between the outputs of the PR-box goes beyond any quantum entanglement. Though PR-boxes would have impressive consequences, as far as we know they are not physically realizable. However, by introducing PR-boxes to Minecraft as part of the redstone system, which simulates the electrical components for binary computing, we can experience the consequences of super-quantum correlations. For instance, Wim van Dam proved that two parties can use a sufficient number of PR-boxes to compute any Boolean function f(x,y) with only one bit of communication.

  5. Interaction between the phage HK022 Nun protein and the nut RNA of phage lambda.

    PubMed

    Chattopadhyay, S; Hung, S C; Stuart, A C; Palmer, A G; Garcia-Mena, J; Das, A; Gottesman, M E

    1995-12-19

    The nun gene product of prophage HK022 excludes phage lambda infection by blocking the expression of genes downstream from the lambda nut sequence. The Nun protein functions both by competing with lambda N transcription-antitermination protein and by actively inducing transcription termination on the lambda chromosome. We demonstrate that Nun binds directly to a stem-loop structure within nut RNA, boxB, which is also the target for the N antiterminator. The two proteins show comparable affinities for boxB and they compete with each other. Their interactions with boxB are similar, as shown by RNase protection experiments, NMR spectroscopy, and analysis of boxB mutants. Each protein binds the 5' strand of the boxB stem and the adjacent loop. The stem does not melt upon the binding of Nun or N, as the 3' strand remains sensitive to a double-strand-specific RNase. The binding of RNA partially protects Nun from proteolysis and changes its NMR spectra. Evidently, although Nun and N bind to the same surface of boxB RNA, their respective complexes interact differently with RNA polymerase, inducing transcription termination or antitermination, respectively.

  6. The box C/D sRNP dimeric architecture is conserved across domain Archaea

    PubMed Central

    Bower-Phipps, Kathleen R.; Taylor, David W.; Wang, Hong-Wei; Baserga, Susan J.

    2012-01-01

    Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze RNA-guided 2′-O-ribose methylation in two of the three domains of life. Recent structural studies have led to a controversy over whether box C/D sRNPs functionally assemble as monomeric or dimeric macromolecules. The archaeal box C/D sRNP from Methanococcus jannaschii (Mj) has been shown by glycerol gradient sedimentation, gel filtration chromatography, native gel analysis, and single-particle electron microscopy (EM) to adopt a di-sRNP architecture, containing four copies of each box C/D core protein and two copies of the Mj sR8 sRNA. Subsequently, investigators used a two-stranded artificial guide sRNA, CD45, to assemble a box C/D sRNP from Sulfolobus solfataricus with a short RNA methylation substrate, yielding a crystal structure of a mono-sRNP. To more closely examine box C/D sRNP architecture, we investigate the role of the omnipresent sRNA loop as a structural determinant of sRNP assembly. We show through sRNA mutagenesis, native gel electrophoresis, and single-particle EM that a di-sRNP is the near exclusive architecture obtained when reconstituting box C/D sRNPs with natural or artificial sRNAs containing an internal loop. Our results span three distantly related archaeal species—Sulfolobus solfataricus, Pyrococcus abyssi, and Archaeoglobus fulgidus—indicating that the di-sRNP architecture is broadly conserved across the entire archaeal domain. PMID:22753779

  7. The box C/D sRNP dimeric architecture is conserved across domain Archaea.

    PubMed

    Bower-Phipps, Kathleen R; Taylor, David W; Wang, Hong-Wei; Baserga, Susan J

    2012-08-01

    Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze RNA-guided 2'-O-ribose methylation in two of the three domains of life. Recent structural studies have led to a controversy over whether box C/D sRNPs functionally assemble as monomeric or dimeric macromolecules. The archaeal box C/D sRNP from Methanococcus jannaschii (Mj) has been shown by glycerol gradient sedimentation, gel filtration chromatography, native gel analysis, and single-particle electron microscopy (EM) to adopt a di-sRNP architecture, containing four copies of each box C/D core protein and two copies of the Mj sR8 sRNA. Subsequently, investigators used a two-stranded artificial guide sRNA, CD45, to assemble a box C/D sRNP from Sulfolobus solfataricus with a short RNA methylation substrate, yielding a crystal structure of a mono-sRNP. To more closely examine box C/D sRNP architecture, we investigate the role of the omnipresent sRNA loop as a structural determinant of sRNP assembly. We show through sRNA mutagenesis, native gel electrophoresis, and single-particle EM that a di-sRNP is the near exclusive architecture obtained when reconstituting box C/D sRNPs with natural or artificial sRNAs containing an internal loop. Our results span three distantly related archaeal species--Sulfolobus solfataricus, Pyrococcus abyssi, and Archaeoglobus fulgidus--indicating that the di-sRNP architecture is broadly conserved across the entire archaeal domain.

  8. Cooperative Coevolution with Formula-Based Variable Grouping for Large-Scale Global Optimization.

    PubMed

    Wang, Yuping; Liu, Haiyan; Wei, Fei; Zong, Tingting; Li, Xiaodong

    2017-08-09

    For a large-scale global optimization (LSGO) problem, divide-and-conquer is usually considered an effective strategy to decompose the problem into smaller subproblems, each of which can then be solved individually. Among these decomposition methods, variable grouping is shown to be promising in recent years. Existing variable grouping methods usually assume the problem to be black-box (i.e., assuming that an analytical model of the objective function is unknown), and they attempt to learn appropriate variable grouping that would allow for a better decomposition of the problem. In such cases, these variable grouping methods do not make a direct use of the formula of the objective function. However, it can be argued that many real-world problems are white-box problems, that is, the formulas of objective functions are often known a priori. These formulas of the objective functions provide rich information which can then be used to design an effective variable group method. In this article, a formula-based grouping strategy (FBG) for white-box problems is first proposed. It groups variables directly via the formula of an objective function which usually consists of a finite number of operations (i.e., four arithmetic operations "[Formula: see text]", "[Formula: see text]", "[Formula: see text]", "[Formula: see text]" and composite operations of basic elementary functions). In FBG, the operations are classified into two classes: one resulting in nonseparable variables, and the other resulting in separable variables. In FBG, variables can be automatically grouped into a suitable number of non-interacting subcomponents, with variables in each subcomponent being interdependent. FBG can easily be applied to any white-box problem and can be integrated into a cooperative coevolution framework. Based on FBG, a novel cooperative coevolution algorithm with formula-based variable grouping (so-called CCF) is proposed in this article for decomposing a large-scale white-box problem into several smaller subproblems and optimizing them respectively. To further enhance the efficiency of CCF, a new local search scheme is designed to improve the solution quality. To verify the efficiency of CCF, experiments are conducted on the standard LSGO benchmark suites of CEC'2008, CEC'2010, CEC'2013, and a real-world problem. Our results suggest that the performance of CCF is very competitive when compared with those of the state-of-the-art LSGO algorithms.

  9. Brain networks and their origins. Comment on “Understanding brain networks and brain organization” by Luiz Pessoa

    NASA Astrophysics Data System (ADS)

    Cisek, Paul

    2014-09-01

    Nearly every textbook on psychology or neuroscience contains theories of function described with box and arrow diagrams. Sometimes, the boxes stand for purely theoretical constructs, such as attention or working memory, and sometimes they also correspond to specific brain regions or systems, such as parietal or prefrontal cortex, and the arrows between them to known anatomical pathways. It is common for scientists (present company included) to summarize their theories in this way and to think of the brain as a set of interacting modules with clearly distinguishable functions.

  10. F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana.

    PubMed

    Baute, Joke; Polyn, Stefanie; De Block, Jolien; Blomme, Jonas; Van Lijsebettens, Mieke; Inzé, Dirk

    2017-05-01

    F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  11. Functional Conservation and Divergence among Homoeologs of TaSPL20 and TaSPL21, Two SBP-Box Genes Governing Yield-Related Traits in Hexaploid Wheat1[OPEN

    PubMed Central

    Mao, Xinguo; Li, Ang; Wang, Jingyi; Chang, Xiaoping; Zhang, Xueyong

    2017-01-01

    Maintaining high and stable yields has become an increasing challenge in wheat breeding due to climate change. Although Squamosa-promoter binding protein (SBP)-box genes have important roles in plant development, very little is known about the actual biological functions of wheat SBP-box family members. Here, we dissect the functional conservation, divergence, and exploitation of homoeologs of two paralogous TaSPL wheat loci during domestication and breeding. TaSPL20 and TaSPL21 were highly expressed in the lemma and palea. Ectopic expressions of TaSPL20/21 in rice exhibited similar functions in terms of promoting panicle branching but had different functions during seed development. We characterized all six TaSPL20/21 genes located across the three homoeologous (A, B, and D) genomes. According to the functional analysis of naturally occurring variants in 20 environments, four favorable haplotypes were identified. Together, they reduced plant height by up to 27.5%, and TaSPL21-6D-HapII increased 1000-grain weight by 9.73%. Our study suggests that TaSPL20 and TaSPL21 homoeologs underwent diversification in function with each evolving its own distinctive characteristics. During domestication and breeding of wheat in China, favorable haplotypes of each set were selected and exploited to varying degrees due to their large effects on plant height and 1000-grain weight. PMID:28424214

  12. Determination of baryon-baryon elastic scattering phase shift from finite volume spectra in elongated boxes

    NASA Astrophysics Data System (ADS)

    Li, Ning; Wu, Ya-Jie; Liu, Zhan-Wei

    2018-01-01

    The relations between the baryon-baryon elastic scattering phase shifts and the two-particle energy spectrum in the elongated box are established. We studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. Moreover, we discussed the sensitivity functions σ (q ) that represent the sensitivity of higher scattering phases. Our analytical results will be helpful to extract the baryon-baryon elastic scattering phase shifts in the continuum from lattice QCD data by using elongated boxes.

  13. Identification of functional domains in Arabidopsis thaliana mRNA decapping enzyme (AtDcp2)

    PubMed Central

    Gunawardana, Dilantha; Cheng, Heung-Chin; Gayler, Kenwyn R.

    2008-01-01

    The Arabidopsis thaliana decapping enzyme (AtDcp2) was characterized by bioinformatics analysis and by biochemical studies of the enzyme and mutants produced by recombinant expression. Three functionally significant regions were detected: (i) a highly disordered C-terminal region with a putative PSD-95, Discs-large, ZO-1 (PDZ) domain-binding motif, (ii) a conserved Nudix box constituting the putative active site and (iii) a putative RNA binding domain consisting of the conserved Box B and a preceding loop region. Mutation of the putative PDZ domain-binding motif improved the stability of recombinant AtDcp2 and secondary mutants expressed in Escherichia coli. Such recombinant AtDcp2 specifically hydrolysed capped mRNA to produce 7-methyl GDP and decapped RNA. AtDcp2 activity was Mn2+- or Mg2+-dependent and was inhibited by the product 7-methyl GDP. Mutation of the conserved glutamate-154 and glutamate-158 in the Nudix box reduced AtDcp2 activity up to 400-fold and showed that AtDcp2 employs the catalytic mechanism conserved amongst Nudix hydrolases. Unlike many Nudix hydrolases, AtDcp2 is refractory to inhibition by fluoride ions. Decapping was dependent on binding to the mRNA moiety rather than to the 7-methyl diguanosine triphosphate cap of the substrate. Mutational analysis of the putative RNA-binding domain confirmed the functional significance of an 11-residue loop region and the conserved Box B. PMID:18025047

  14. Illusion-related brain activations: a new virtual reality mirror box system for use during functional magnetic resonance imaging.

    PubMed

    Diers, Martin; Kamping, Sandra; Kirsch, Pinar; Rance, Mariela; Bekrater-Bodmann, Robin; Foell, Jens; Trojan, Joerg; Fuchs, Xaver; Bach, Felix; Maaß, Heiko; Cakmak, Hüseyin; Flor, Herta

    2015-01-12

    Extended viewing of movements of one's intact limb in a mirror as well as motor imagery have been shown to decrease pain in persons with phantom limb pain or complex regional pain syndrome and to increase the movement ability in hemiparesis following stroke. In addition, mirrored movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. However, using a so-called mirror box has technical limitations, some of which can be overcome by virtual reality applications. We developed a virtual reality mirror box application and evaluated its comparability to a classical mirror box setup. We applied both paradigms to 20 healthy controls and analyzed vividness and authenticity of the illusion as well as brain activation patterns. In both conditions, subjects reported similar intensities for the sensation that movements of the virtual left hand felt as if they were executed by their own left hand. We found activation in the primary sensorimotor cortex contralateral to the actual movement, with stronger activation for the virtual reality 'mirror box' compared to the classical mirror box condition, as well as activation in the primary sensorimotor cortex contralateral to the mirrored/virtual movement. We conclude that a virtual reality application of the mirror box is viable and that it might be useful for future research. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A Large Complement of the Predicted Arabidopsis ARM Repeat Proteins Are Members of the U-Box E3 Ubiquitin Ligase Family1[w

    PubMed Central

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L.; Salt, Jennifer N.; Goring, Daphne R.

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis. PMID:14657406

  16. A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family.

    PubMed

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L; Salt, Jennifer N; Goring, Daphne R

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis.

  17. Local box-counting dimensions of discrete quantum eigenvalue spectra: Analytical connection to quantum spectral statistics

    NASA Astrophysics Data System (ADS)

    Sakhr, Jamal; Nieminen, John M.

    2018-03-01

    Two decades ago, Wang and Ong, [Phys. Rev. A 55, 1522 (1997)], 10.1103/PhysRevA.55.1522 hypothesized that the local box-counting dimension of a discrete quantum spectrum should depend exclusively on the nearest-neighbor spacing distribution (NNSD) of the spectrum. In this Rapid Communication, we validate their hypothesis by deriving an explicit formula for the local box-counting dimension of a countably-infinite discrete quantum spectrum. This formula expresses the local box-counting dimension of a spectrum in terms of single and double integrals of the NNSD of the spectrum. As applications, we derive an analytical formula for Poisson spectra and closed-form approximations to the local box-counting dimension for spectra having Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE), and Gaussian symplectic ensemble (GSE) spacing statistics. In the Poisson and GOE cases, we compare our theoretical formulas with the published numerical data of Wang and Ong and observe excellent agreement between their data and our theory. We also study numerically the local box-counting dimensions of the Riemann zeta function zeros and the alternate levels of GOE spectra, which are often used as numerical models of spectra possessing GUE and GSE spacing statistics, respectively. In each case, the corresponding theoretical formula is found to accurately describe the numerically computed local box-counting dimension.

  18. Heart rate response during a simulated Olympic boxing match is predominantly above ventilatory threshold 2: a cross sectional study

    PubMed Central

    de Lira, Claudio Andre Barbosa; Peixinho-Pena, Luiz Fernando; Vancini, Rodrigo Luiz; de Freitas Guina Fachina, Rafael Júlio; de Almeida, Alexandre Aparecido; Andrade, Marília dos Santos; da Silva, Antonio Carlos

    2013-01-01

    The present study aimed to describe heart rate (HR) responses during a simulated Olympic boxing match and examine physiological parameters of boxing athletes. Ten highly trained Olympic boxing athletes (six men and four women) performed a maximal graded exercise test on a motorized treadmill to determine maximal oxygen uptake (52.2 mL · kg−1 · min−1 ± 7.2 mL · kg−1 · min−1) and ventilatory thresholds 1 and 2. Ventilatory thresholds 1 and 2 were used to classify the intensity of exercise based on respective HR during a boxing match. In addition, oxygen uptake (V̇O2) was estimated during the match based on the HR response and the HR-V̇O2 relationship obtained from a maximal graded exercise test for each participant. On a separate day, participants performed a boxing match lasting three rounds, 2 minutes each, with a 1-minute recovery period between each round, during which HR was measured. In this context, HR and V̇O2 were above ventilatory threshold 2 during 219.8 seconds ± 67.4 seconds. There was an increase in HR and V̇O2 as a function of round (round 3 < round 2 < round 1, P < 0.0001). These findings may direct individual training programs for boxing practitioners and other athletes. PMID:24379723

  19. Heart rate response during a simulated Olympic boxing match is predominantly above ventilatory threshold 2: a cross sectional study.

    PubMed

    de Lira, Claudio Andre Barbosa; Peixinho-Pena, Luiz Fernando; Vancini, Rodrigo Luiz; de Freitas Guina Fachina, Rafael Júlio; de Almeida, Alexandre Aparecido; Andrade, Marília Dos Santos; da Silva, Antonio Carlos

    2013-01-01

    The present study aimed to describe heart rate (HR) responses during a simulated Olympic boxing match and examine physiological parameters of boxing athletes. Ten highly trained Olympic boxing athletes (six men and four women) performed a maximal graded exercise test on a motorized treadmill to determine maximal oxygen uptake (52.2 mL · kg(-1) · min(-1) ± 7.2 mL · kg(-1) · min(-1)) and ventilatory thresholds 1 and 2. Ventilatory thresholds 1 and 2 were used to classify the intensity of exercise based on respective HR during a boxing match. In addition, oxygen uptake (V̇O2) was estimated during the match based on the HR response and the HR-V̇O2 relationship obtained from a maximal graded exercise test for each participant. On a separate day, participants performed a boxing match lasting three rounds, 2 minutes each, with a 1-minute recovery period between each round, during which HR was measured. In this context, HR and V̇O2 were above ventilatory threshold 2 during 219.8 seconds ± 67.4 seconds. There was an increase in HR and V̇O2 as a function of round (round 3 < round 2 < round 1, P < 0.0001). These findings may direct individual training programs for boxing practitioners and other athletes.

  20. An Alternative Derivation of the Energy Levels of the "Particle on a Ring" System

    NASA Astrophysics Data System (ADS)

    Vincent, Alan

    1996-10-01

    All acceptable wave functions must be continuous mathematical functions. This criterion limits the acceptable functions for a particle in a linear 1-dimensional box to sine functions. If, however, the linear box is bent round into a ring, acceptable wave functions are those which are continuous at the 'join'. On this model some acceptable linear functions become unacceptable for the ring and some unacceptable cosine functions become acceptable. This approach can be used to produce a straightforward derivation of the energy levels and wave functions of the particle on a ring. These simple wave mechanical systems can be used as models of linear and cyclic delocalised systems such as conjugated hydrocarbons or the benzene ring. The promotion energy of an electron can then be used to calculate the wavelength of absorption of uv light. The simple model gives results of the correct order of magnitude and shows that, as the chain length increases, the uv maximum moves to longer wavelengths, as found experimentally.

  1. Ectromelia virus encodes a novel family of F-box proteins that interact with the SCF complex.

    PubMed

    van Buuren, Nick; Couturier, Brianne; Xiong, Yue; Barry, Michele

    2008-10-01

    Poxviruses are notorious for encoding multiple proteins that regulate cellular signaling pathways, including the ubiquitin-proteasome system. Bioinformatics indicated that ectromelia virus, the causative agent of lethal mousepox, encoded four proteins, EVM002, EVM005, EVM154, and EVM165, containing putative F-box domains. In contrast to cellular F-box proteins, the ectromelia virus proteins contain C-terminal F-box domains in conjunction with N-terminal ankyrin repeats, a combination that has not been previously reported for cellular proteins. These observations suggested that the ectromelia virus F-box proteins interact with SCF (Skp1, cullin-1, and F-box) ubiquitin ligases. We focused our studies on EVM005, since this protein had only one ortholog in cowpox virus. Using mass spectrometry, we identified cullin-1 as a binding partner for EVM005, and this interaction was confirmed by overexpression of hemagglutinin (HA)-cullin-1. During infection, Flag-EVM005 and HA-cullin-1 colocalized to distinct cellular bodies. Significantly, EVM005 coprecipitated with endogenous Skp1, cullin-1, and Roc1 and associated with conjugated ubiquitin, suggesting that EVM005 interacted with the components of a functional ubiquitin ligase. Interaction of EVM005 with cullin-1 and Skp1 was abolished upon deletion of the F-box, indicating that the F-box played a crucial role in interaction with the SCF complex. Additionally, EVM002 and EVM154 interacted with Skp1 and conjugated ubiquitin, suggesting that ectromelia virus encodes multiple F-box-containing proteins that regulate the SCF complex. Our results indicate that ectromelia virus has evolved multiple proteins that interact with the SCF complex.

  2. High-Throughput Genetic Identification of Functionally Important Regions of the Yeast DEAD-Box Protein Mss116p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohr, Georg; Del Campo, Mark; Turner, Kathryn G.

    The Saccharomyces cerevisiae DEAD-box protein Mss116p is a general RNA chaperone that functions in splicing mitochondrial group I and group II introns. Recent X-ray crystal structures of Mss116p in complex with ATP analogs and single-stranded RNA show that the helicase core induces a bend in the bound RNA, as in other DEAD-box proteins, while a C-terminal extension (CTE) induces a second bend, resulting in RNA crimping. Here, we illuminate these structures by using high-throughput genetic selections, unigenic evolution, and analyses of in vivo splicing activity to comprehensively identify functionally important regions and permissible amino acid substitutions throughout Mss116p. The functionallymore » important regions include those containing conserved sequence motifs involved in ATP and RNA binding or interdomain interactions, as well as previously unidentified regions, including surface loops that may function in protein-protein interactions. The genetic selections recapitulate major features of the conserved helicase motifs seen in other DEAD-box proteins but also show surprising variations, including multiple novel variants of motif III (SAT). Patterns of amino acid substitutions indicate that the RNA bend induced by the helicase core depends on ionic and hydrogen-bonding interactions with the bound RNA; identify a subset of critically interacting residues; and indicate that the bend induced by the CTE results primarily from a steric block. Finally, we identified two conserved regions - one the previously noted post II region in the helicase core and the other in the CTE - that may help displace or sequester the opposite RNA strand during RNA unwinding.« less

  3. Graphene: A partially ordered non-periodic solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Dongshan; Wang, Feng, E-mail: fengwang@uark.edu

    2014-10-14

    Molecular dynamics simulations were performed to study the structural features of graphene over a wide range of temperatures from 50 to 4000 K using the PPBE-G potential [D. Wei, Y. Song, and F. Wang, J. Chem. Phys. 134, 184704 (2011)]. This potential was developed by force matching the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional and has been validated previously to provide accurate potential energy surface for graphene at temperatures as high as 3000 K. Simulations with the PPBE‑G potential are the best available approximation to a direct Car-Parrinello Molecular Dynamics study of graphene. One advantage of the PBE-G potential is to allowmore » large simulation boxes to be modeled efficiently so that properties showing strong finite size effects can be studied. Our simulation box contains more than 600 000 C atoms and is one of the largest graphene boxes ever modeled. With the PPBE-G potential, the thermal-expansion coefficient is negative up to 4000 K. With a large box and an accurate potential, the critical exponent for the scaling properties associated with the normal-normal and height-height correlation functions was confirmed to be 0.85. This exponent remains constant up to 4000 K suggesting graphene to be in the deeply cooled regime even close to the experimental melting temperature. The reduced peak heights in the radial distribution function of graphene show an inverse power law dependence to distance, which indicates that a macroscopic graphene sheet will lose long-range crystalline order as predicted by the Mermin-Wagner instability. Although graphene loses long-range translational order, it retains long range orientational order as indicated by its orientational correlation function; graphene is thus partially ordered but not periodic.« less

  4. Effects of gear box vibration and mass imbalance on the dynamics of multi-stage gear transmissions

    NASA Technical Reports Server (NTRS)

    Choy, Fred K.; Tu, Yu K.; Zakrajsek, James J.; Townsend, Dennis P.

    1991-01-01

    The dynamic behavior of multistage gear transmission system, with the effects of gear-box-induced vibrations and rotor mass-imbalances is analyzed. The model method, using undamped frequencies and planar mode shapes, is used to reduce the degree-of-freedom of the system. The various rotor-bearing stages as well as lateral and torsional vibrations of each individual stage are coupled through localized gear-mesh-tooth interactions. Gear-box vibrations are coupled to the gear stage dynamics through bearing support forces. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domain. A typical three-staged geared system is used as an example. Effects of mass-imbalance and gear box vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  5. ARIES: Enabling Visual Exploration and Organization of Art Image Collections.

    PubMed

    Crissaff, Lhaylla; Wood Ruby, Louisa; Deutch, Samantha; DuBois, R Luke; Fekete, Jean-Daniel; Freire, Juliana; Silva, Claudio

    2018-01-01

    Art historians have traditionally used physical light boxes to prepare exhibits or curate collections. On a light box, they can place slides or printed images, move the images around at will, group them as desired, and visual-ly compare them. The transition to digital images has rendered this workflow obsolete. Now, art historians lack well-designed, unified interactive software tools that effectively support the operations they perform with physi-cal light boxes. To address this problem, we designed ARIES (ARt Image Exploration Space), an interactive image manipulation system that enables the exploration and organization of fine digital art. The system allows images to be compared in multiple ways, offering dynamic overlays analogous to a physical light box, and sup-porting advanced image comparisons and feature-matching functions, available through computational image processing. We demonstrate the effectiveness of our system to support art historians tasks through real use cases.

  6. Effects of gear box vibration and mass imbalance on the dynamics of multistage gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, D. P.

    1991-01-01

    The dynamic behavior of multistage gear transmission system, with the effects of gear-box-induced vibrations and rotor mass-imbalances is analyzed. The model method, using undamped frequencies and planar mode shapes, is used to reduce the degree-of-freedom of the system. The various rotor-bearing stages as well as lateral and torsional vibrations of each individual stage are coupled through localized gear-mesh-tooth interactions. Gear-box vibrations are coupled to the gear stage dynamics through bearing support forces. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domain. A typical three-staged geared system is used as an example. Effects of mass-imbalance and gear box vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  7. Optical image acquisition system for colony analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Jin, Wenbiao

    2006-02-01

    For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems since they belong to a new technology product. One of the main problems is image acquisition. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. A digital camera in the top of the box connected to a PC computer with a USB cable, all the camera functions are controlled by the computer.

  8. Conifer reproductive development involves B-type MADS-box genes with distinct and different activities in male organ primordia.

    PubMed

    Sundström, Jens; Engström, Peter

    2002-07-01

    The Norway spruce MADS-box genes DAL11, DAL12 and DAL13 are phylogenetically related to the angiosperm B-function MADS-box genes: genes that act together with A-function genes in specifying petal identity and with C-function genes in specifying stamen identity to floral organs. In this report we present evidence to suggest that the B-gene function in the specification of identity of the pollen-bearing organs has been conserved between conifers and angiosperms. Expression of DAL11 or DAL12 in transgenic Arabidopsis causes phenotypic changes which partly resemble those caused by ectopic expression of the endogenous B-genes. In similar experiments, flowers of Arabidopsis plants expressing DAL13 showed a different homeotic change in that they formed ectopic anthers in whorls one, two or four. We also demonstrate the capacity of the spruce gene products to form homodimers, and that DAL11 and DAL13 may form heterodimers with each other and with the Arabidopsis B-protein AP3, but not with PI, the second B-gene product in Arabidopsis. In situ hybridization experiments show that the conifer B-like genes are expressed specifically in developing pollen cones, but differ in both temporal and spatial distribution patterns. These results suggest that the B-function in conifers is dual and is separated into a meristem identity and an organ identity function, the latter function possibly being independent of an interaction with the C-function. Thus, even though an ancestral B-function may have acted in combination with C to specify micro- and megasporangia, the B-function has evolved differently in conifers and angiosperms.

  9. The glycine-rich motif of Pyrococcus abyssi DNA polymerase D is critical for protein stability.

    PubMed

    Castrec, Benoît; Laurent, Sébastien; Henneke, Ghislaine; Flament, Didier; Raffin, Jean-Paul

    2010-03-05

    A glycine-rich motif described as being involved in human polymerase delta proliferating cell nuclear antigen (PCNA) binding has also been identified in all euryarchaeal DNA polymerase D (Pol D) family members. We redefined the motif as the (G)-PYF box. In the present study, Pol D (G)-PYF box motif mutants from Pyrococcus abyssi were generated to investigate its role in functional interactions with the cognate PCNA. We demonstrated that this motif is not essential for interactions between PabPol D (P. abyssi Pol D) and PCNA, using surface plasmon resonance and primer extension studies. Interestingly, the (G)-PYF box is located in a hydrophobic region close to the active site. The (G)-PYF box mutants exhibited altered DNA binding properties. In addition, the thermal stability of all mutants was reduced compared to that of wild type, and this effect could be attributed to increased exposure of the hydrophobic region. These studies suggest that the (G)-PYF box motif mediates intersubunit interactions and that it may be crucial for the thermostability of PabPol D. (c) 2010 Elsevier Ltd. All rights reserved.

  10. Sparring and neurological function in professional boxers.

    PubMed

    Stiller, John W; Yu, Steven S; Brenner, Lisa A; Langenberg, Patricia; Scrofani, Phillip; Pannella, Patrick; Hsu, Edbert B; Roberts, Darryl W; Monsell, Ray M T; Binks, Sidney W; Guzman, Alvaro; Postolache, Teodor T

    2014-01-01

    Despite increased interest regarding the potentially long-term negative impact of chronic traumatic brain injury, limited research has been conducted regarding such injuries and neurological outcomes in real world settings. To increase understanding regarding the relationship between sparring (e.g., training under the tutelage of an experienced boxing coach for the purpose of improving skills and/or fitness) and neurological functioning, professional boxers (n = 237) who competed in Maryland between 2003 and 2008 completed measures regarding sparring exposure (Cumulative Sparring Index, CSI) and performance on tests of cognition (Symbol Digit Modalities Test, SDMT) and balance (Sharpened Romberg Test, SRT). Measures were completed prior to boxing matches. Higher scores on the CSI (increased sparring exposure) were associated with poorer performance on both tests of cognition (SDMT) and balance (SRT). A threshold effect was noted regarding performance on the SDMT, with those reporting CSI values greater than about 150 experiencing a decline in cognition. A history of frequent and/or intense sparring may pose a significant risk for developing boxing associated neurological sequelae. Implementing administration of clinically meaningful tests before bouts, such as the CSI, SDMT, and/or the SRT, as well as documentation of results into the boxer's physicals or medical profiles may be an important step for improving boxing safety.

  11. Sparring and Neurological Function in Professional Boxers

    PubMed Central

    Stiller, John W.; Yu, Steven S.; Brenner, Lisa A.; Langenberg, Patricia; Scrofani, Phillip; Pannella, Patrick; Hsu, Edbert B.; Roberts, Darryl W.; Monsell, Ray M. T.; Binks, Sidney W.; Guzman, Alvaro; Postolache, Teodor T.

    2014-01-01

    Despite increased interest regarding the potentially long-term negative impact of chronic traumatic brain injury, limited research has been conducted regarding such injuries and neurological outcomes in real world settings. To increase understanding regarding the relationship between sparring (e.g., training under the tutelage of an experienced boxing coach for the purpose of improving skills and/or fitness) and neurological functioning, professional boxers (n = 237) who competed in Maryland between 2003 and 2008 completed measures regarding sparring exposure (Cumulative Sparring Index, CSI) and performance on tests of cognition (Symbol Digit Modalities Test, SDMT) and balance (Sharpened Romberg Test, SRT). Measures were completed prior to boxing matches. Higher scores on the CSI (increased sparring exposure) were associated with poorer performance on both tests of cognition (SDMT) and balance (SRT). A threshold effect was noted regarding performance on the SDMT, with those reporting CSI values greater than about 150 experiencing a decline in cognition. A history of frequent and/or intense sparring may pose a significant risk for developing boxing associated neurological sequelae. Implementing administration of clinically meaningful tests before bouts, such as the CSI, SDMT, and/or the SRT, as well as documentation of results into the boxer’s physicals or medical profiles may be an important step for improving boxing safety. PMID:25101253

  12. Structural basis for corepressor assembly by the orphan nuclear receptor TLX.

    PubMed

    Zhi, Xiaoyong; Zhou, X Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten; Xu, H Eric

    2015-02-15

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX-Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression. © 2015 Zhi et al.; Published by Cold Spring Harbor Laboratory Press.

  13. A chloroplast-targeted cabbage DEAD-box RNA helicase BrRH22 confers abiotic stress tolerance to transgenic Arabidopsis plants by affecting translation of chloroplast transcripts.

    PubMed

    Nawaz, Ghazala; Lee, Kwanuk; Park, Su Jung; Kim, Yeon-Ok; Kang, Hunseung

    2018-06-01

    Although the roles of many DEAD-box RNA helicases (RHs) have been determined in the nucleus as well as in cytoplasm during stress responses, the importance of chloroplast-targeted DEAD-box RHs in stress response remains largely unknown. In this study, we determined the function of BrRH22, a chloroplast-targeted DEAD-box RH in cabbage (Brassica rapa), in abiotic stress responses. The expression of BrRH22 was markedly increased by drought, heat, salt, or cold stress and by ABA treatment, but was largely decreased by UV stress. Expression of BrRH22 in Arabidopsis enhanced germination and plantlet growth under high salinity or drought stress. BrRH22-expressing plants displayed a higher cotyledon greening and better plantlet growth upon ABA treatment due to decreases in the levels of ABI3, ABI4, and ABI5. Further, BrRH22 affected translation of several chloroplast transcripts under stress. Notably, BrRH22 had RNA chaperone function. These results altogether suggest that chloroplast-transported BrRH22 contributes positively to the response of transgenic Arabidopsis to abiotic stress by affecting translation of chloroplast genes via its RNA chaperone activity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Transcriptional Regulation of Fruit Ripening by Tomato FRUITFULL Homologs and Associated MADS Box Proteins[W

    PubMed Central

    Fujisawa, Masaki; Shima, Yoko; Nakagawa, Hiroyuki; Kitagawa, Mamiko; Kimbara, Junji; Nakano, Toshitsugu; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripening-related gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening. PMID:24415769

  15. Characterization of TM8, a MADS-box gene expressed in tomato flowers.

    PubMed

    Daminato, Margherita; Masiero, Simona; Resentini, Francesca; Lovisetto, Alessandro; Casadoro, Giorgio

    2014-11-30

    The identity of flower organs is specified by various MIKC MADS-box transcription factors which act in a combinatorial manner. TM8 is a MADS-box gene that was isolated from the floral meristem of a tomato mutant more than twenty years ago, but is still poorly known from a functional point of view in spite of being present in both Angiosperms and Gymnosperms, with some species harbouring more than one copy of the gene. This study reports a characterization of TM8 that was carried out in transgenic tomato plants with altered expression of the gene. Tomato plants over-expressing either TM8 or a chimeric repressor form of the gene (TM8:SRDX) were prepared. In the TM8 up-regulated plants it was possible to observe anomalous stamens with poorly viable pollen and altered expression of several floral identity genes, among them B-, C- and E-function ones, while no apparent morphological modifications were visible in the other whorls. Oblong ovaries and fruits, that were also parthenocarpic, were obtained in the plants expressing the TM8:SRDX repressor gene. Such ovaries showed modified expression of various carpel-related genes. No apparent modifications could be seen in the other flower whorls. The latter plants had also epinastic leaves and malformed flower abscission zones. By using yeast two hybrid assays it was possible to show that TM8 was able to interact in yeast with MACROCALIX. The impact of the ectopically altered TM8 expression on the reproductive structures suggests that this gene plays some role in the development of the tomato flower. MACROCALYX, a putative A-function MADS-box gene, was expressed in all the four whorls of fully developed flowers, and showed quantitative variations that were opposite to those of TM8 in the anomalous stamens and ovaries. Since the TM8 protein interacted in vitro only with the A-function MADS-box protein MACROCALYX, it seems that for the correct differentiation of the tomato reproductive structures possible interactions between TM8 and MACROCALYX proteins might be important.

  16. Comparative transcriptome analysis reveals the regulatory networks of cytokinin in promoting the floral feminization in the oil plant Sapium sebiferum.

    PubMed

    Ni, Jun; Shah, Faheem Afzal; Liu, Wenbo; Wang, Qiaojian; Wang, Dongdong; Zhao, Weiwei; Lu, Weili; Huang, Shengwei; Fu, Songling; Wu, Lifang

    2018-05-30

    Sapium sebiferum, whose seeds contain high level of fatty acids, has been considered as one of the most important oil plants. However, the high male to female flower ratio limited the seed yield improvement and its industrial potentials. Thus, the study of the sex determination in S. sebiferum is of significant importance in increasing the seed yield. In this study, we demonstrated that in S. sebiferum, cytokinin (CK) had strong feminization effects on the floral development. Exogenous application with 6-benzylaminopurine (6-BA) or thidiazuron (TDZ) significantly induced the development of female flowers and increased the fruit number. Interestingly, the feminization effects of cytokinin were also detected on the androecious genotype of S. sebiferum which only produce male flowers. To further investigate the mechanism underlying the role of cytokinin in the flower development and sex differentiation, we performed the comparative transcriptome analysis of the floral buds of the androecious plants subjected to 6-BA. The results showed that there were separately 129, 352 and 642 genes differentially expressed at 6 h, 12 h and 24 h after 6-BA treatment. Functional analysis of the differentially expressed genes (DEGs) showed that many genes are related to the hormonal biosynthesis and signaling, nutrients translocation and cell cycle. Moreover, there were twenty one flowering-related genes identified to be differentially regulated by 6-BA treatment. Specifically, the gynoecium development-related genes SPATULA (SPT), KANADI 2 (KAN2), JAGGED (JAG) and Cytochrome P450 78A9 (CYP79A9) were significantly up-regulated, whereas the expression of PISTILLATA (PI), TATA Box Associated Factor II 59 (TAFII59) and MYB Domain Protein 108 (MYB108) that were important for male organ development was down-regulated in response to 6-BA treatment, demonstrating that cytokinin could directly target the floral organ identity genes to regulate the flower sex. Our work demonstrated that cytokinin is a potential regulator in female flower development in S. sebiferum. The transcriptome analysis of the floral sex transition from androecious to monoecious in response to cytokinin treatment on the androecious S. sebiferum provided valuable information related to the mechanism of sex determination in the perennial woody plants.

  17. An optimal structure for a 34-meter millimeter-wave center-fed BWG antenna: The Cross-Box concept

    NASA Technical Reports Server (NTRS)

    Chuang, K. L.

    1988-01-01

    An approach to the design of the planned NASA/JPL 34 m elevation-over-azimuth (Az-El) antenna structure at the Venus site (DSS-13) is presented. The antenna structural configuration accommodates a large (2.44 m) beam waveguide (BWG) tube centrally routed through the reflector-alidade structure, an elevation wheel design, and an optimal structural geometry. The design encompasses a cross-box elevation wheel-reflector base substructure that preserves homology while satisfying many constraints, such as structure weight, surface tolerance, stresses, natural frequency, and various functional constraints. The functional requirements are set to ensure that microwave performance at millimeter wavelengths is adequate. The cross-box configuration was modeled, optimized, and found to satisfy all DSN HEF baseline antenna specifications. In addition, the structure design was conceptualized and analyzed with an emphasis on preserving the structure envelope and keeping modifications relative to the HEF antennas to a minimum, thus enabling the transferability of the BWG technology for future retrofitting. Good performance results were obtained.

  18. Community-based group exercise for persons with Parkinson disease: a randomized controlled trial.

    PubMed

    Combs, Stephanie A; Diehl, M Dyer; Chrzastowski, Casey; Didrick, Nora; McCoin, Brittany; Mox, Nicholas; Staples, William H; Wayman, Jessica

    2013-01-01

    The purpose of this study was to compare group boxing training to traditional group exercise on function and quality of life in persons with Parkinson disease (PD). A convenience sample of adults with PD (n = 31) were randomly assigned to boxing training or traditional exercise for 24-36 sessions, each lasting 90 minutes, over 12 weeks. Boxing training included: stretching, boxing (e.g. lateral foot work, punching bags), resistance exercises, and aerobic training. Traditional exercise included: stretching, resistance exercises, aerobic training, and balance activities. Participants were tested before and after completion of training on balance, balance confidence, mobility, gait velocity, gait endurance, and quality of life. The traditional exercise group demonstrated significantly greater gains in balance confidence than the boxing group (p < 0.025). Only the boxing group demonstrated significant improvements in gait velocity and endurance over time with a medium between-group effect size for the gait endurance (d = 0.65). Both groups demonstrated significant improvements with the balance, mobility, and quality of life with large within-group effect sizes (d ≥ 0.80). While groups significantly differed in balance confidence after training, both groups demonstrated improvements in most outcome measures. Supporting options for long-term community-based group exercise for persons with PD will be an important future consideration for rehabilitation professionals.

  19. Expression analysis of genes encoding double B-box zinc finger proteins in maize.

    PubMed

    Li, Wenlan; Wang, Jingchao; Sun, Qi; Li, Wencai; Yu, Yanli; Zhao, Meng; Meng, Zhaodong

    2017-11-01

    The B-box proteins play key roles in plant development. The double B-box (DBB) family is one of the subfamily of the B-box family, with two B-box domains and without a CCT domain. In this study, 12 maize double B-box genes (ZmDBBs) were identified through a genome-wide survey. Phylogenetic analysis of DBB proteins from maize, rice, Sorghum bicolor, Arabidopsis, and poplar classified them into five major clades. Gene duplication analysis indicated that segmental duplications made a large contribution to the expansion of ZmDBBs. Furthermore, a large number of cis-acting regulatory elements related to plant development, response to light and phytohormone were identified in the promoter regions of the ZmDBB genes. The expression patterns of the ZmDBB genes in various tissues and different developmental stages demonstrated that ZmDBBs might play essential roles in plant development, and some ZmDBB genes might have unique function in specific developmental stages. In addition, several ZmDBB genes showed diurnal expression pattern. The expression levels of some ZmDBB genes changed significantly under light/dark treatment conditions and phytohormone treatments, implying that they might participate in light signaling pathway and hormone signaling. Our results will provide new information to better understand the complexity of the DBB gene family in maize.

  20. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.

    PubMed

    An, Jieun; Kwon, Hyeji; Kim, Eunjung; Lee, Young Mi; Ko, Hyeok Jin; Park, Hongjae; Choi, In-Geol; Kim, Sooah; Kim, Kyoung Heon; Kim, Wankee; Choi, Wonja

    2015-03-01

    Screening a library of overexpressing mutant alleles of the TATA-binding gene SPT15 yielded two Saccharomyces cerevisiae strains (MRRC 3252 and 3253) with enhanced tolerance to acetic acid. They were also tolerant to propionic acid and hydrogen peroxide. Transcriptome profile analysis identified 58 upregulated genes and 106 downregulated genes in MRRC 3252. Stress- and protein synthesis-related transcription factors were predominantly enriched in the upregulated and downregulated genes respectively. Eight deletion mutants for some of the highly downregulated genes were acetic acid-tolerant. The level of intracellular reactive oxygen species was considerably lessened in MRRC 3252 and 3253 upon exposure to acetic acid. Metabolome profile analysis revealed that intracellular concentrations of 5 and 102 metabolites were increased and decreased, respectively, in MRRC 3252, featuring a large increase of urea and a significant decrease of amino acids. The dur1/2Δmutant, in which the urea degradation gene DUR1/2 is deleted, displayed enhanced tolerance to acetic acid. Enhanced tolerance to acetic acid was also observed on the medium containing a low concentration of amino acids. Taken together, this study identified two SPT15 alleles, nine gene deletions and low concentration of amino acids in the medium that confer enhanced tolerance to acetic acid. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Ectopic expression of the HAM59 gene causes homeotic transformations of reproductive organs in sunflower (Helianthus annuus L.).

    PubMed

    Shulga, O A; Neskorodov, Ya B; Shchennikova, A V; Gaponenko, A K; Skryabin, K G

    2015-01-01

    The function of the HAM59 MADS-box gene in sunflower (Helianthus annuus L.) was studied to clarify homeotic C activity in the Asteraceae plant family. For the first time, transgenic sunflower plants with a modified pattern of HAM59 expression were obtained. It was shown that the HAM59 MADS-box transcription factor did mediate C activity in sunflower. In particular, it participated in termination of the floral meristem, repression of the cadastral function of A-activity, and together with other C-type sunflower protein HAM45-in the specification of the identity of stamens and pistils.

  2. Two ABREs, two redundant root-specific and one W-box cis-acting elements are functional in the sunflower HAHB4 promoter.

    PubMed

    Manavella, Pablo A; Dezar, Carlos A; Ariel, Federico D; Chan, Raquel L

    2008-10-01

    HAHB4 is a sunflower gene encoding a homeodomain-leucine zipper (HD-Zip) transcription factor. It was previously demonstrated that this gene is regulated at the transcriptional level by several abiotic factors and hormones. A previous analysis in the PLACE database revealed the presence of four putative ABREs. In this work these four elements and also one W-box and two root-specific expression elements were characterized as functional. Site-directed mutagenesis on the promoter, stable transformation of Arabidopis plants as well as transient transformation of sunflower leaves, were performed. The analysis of the transformants was carried out by histochemistry and real time RT-PCR. The results indicate that just one ABRE out of the four is responsible for ABA, NaCl and drought regulation. However, NaCl induction occurs also by an additional ABA-independent way involving another two overlapped ABREs. On the other hand, it was determined that the W-box located 5' upstream is responsive to ethylene and only two root-specific expression elements, among the several detected, are functional but redundant. Conservation of molecular mechanisms between sunflower and Arabidopsis is strongly supported by this experimental work.

  3. Grey-box state-space identification of nonlinear mechanical vibrations

    NASA Astrophysics Data System (ADS)

    Noël, J. P.; Schoukens, J.

    2018-05-01

    The present paper deals with the identification of nonlinear mechanical vibrations. A grey-box, or semi-physical, nonlinear state-space representation is introduced, expressing the nonlinear basis functions using a limited number of measured output variables. This representation assumes that the observed nonlinearities are localised in physical space, which is a generic case in mechanics. A two-step identification procedure is derived for the grey-box model parameters, integrating nonlinear subspace initialisation and weighted least-squares optimisation. The complete procedure is applied to an electrical circuit mimicking the behaviour of a single-input, single-output (SISO) nonlinear mechanical system and to a single-input, multiple-output (SIMO) geometrically nonlinear beam structure.

  4. Black-boxing and cause-effect power

    PubMed Central

    Albantakis, Larissa; Tononi, Giulio

    2018-01-01

    Reductionism assumes that causation in the physical world occurs at the micro level, excluding the emergence of macro-level causation. We challenge this reductionist assumption by employing a principled, well-defined measure of intrinsic cause-effect power–integrated information (Φ), and showing that, according to this measure, it is possible for a macro level to “beat” the micro level. Simple systems were evaluated for Φ across different spatial and temporal scales by systematically considering all possible black boxes. These are macro elements that consist of one or more micro elements over one or more micro updates. Cause-effect power was evaluated based on the inputs and outputs of the black boxes, ignoring the internal micro elements that support their input-output function. We show how black-box elements can have more common inputs and outputs than the corresponding micro elements, revealing the emergence of high-order mechanisms and joint constraints that are not apparent at the micro level. As a consequence, a macro, black-box system can have higher Φ than its micro constituents by having more mechanisms (higher composition) that are more interconnected (higher integration). We also show that, for a given micro system, one can identify local maxima of Φ across several spatiotemporal scales. The framework is demonstrated on a simple biological system, the Boolean network model of the fission-yeast cell-cycle, for which we identify stable local maxima during the course of its simulated biological function. These local maxima correspond to macro levels of organization at which emergent cause-effect properties of physical systems come into focus, and provide a natural vantage point for scientific inquiries. PMID:29684020

  5. HK022 Nun Requires Arginine-Rich Motif Residues Distinct from λ N

    PubMed Central

    Tawk, Caroline S.; Ghattas, Ingrid R.

    2015-01-01

    ABSTRACT Bacteriophage λ N protein binds boxB RNA hairpins in the nut (N utilization) sites of immediate early λ transcripts and interacts with host factors to suppress transcriptional termination at downstream terminators. In opposition to λ N, the Nun protein of HK022 binds the boxBs of coinfecting λ transcripts, interacts with a similar or identical set of host factors, and terminates transcription to suppress λ replication. Comparison of N-boxB and Nun-boxB nuclear magnetic resonance (NMR) structural models suggests similar interactions, though limited mutagenesis of Nun is available. Here, libraries of Nun's arginine-rich motif (ARM) were screened for the ability to exclude λ coinfection, and mutants were assayed for Nun termination with a boxB plasmid reporter system. Several Nun ARM residues appear to be immutable: Asp26, Arg28, Arg29, Arg32, Trp33, and Arg36. Asp26 and Trp33 appear to be unable to contact boxB and are not found at equivalent positions in λ N ARM. To understand if the requirement of Asp26, Trp33, and Arg36 indicated differences between HK022 Nun termination and λ N antitermination complexes, the same Nun libraries were fused to the activation domain of λ N and screened for clones able to complement N-deficient λ. Mutants were assayed for N antitermination. Surprisingly, Asp26 and Trp33 were still essential when Nun ARM was fused to N. Docking suggests that Nun ARM contacts a hydrophobic surface of the NusG carboxy-terminal domain containing residues necessary for Nun function. These findings indicate that Nun ARM relies on distinct contacts in its ternary complex and illustrate how protein-RNA recognition can evolve new regulatory functions. IMPORTANCE λ N protein interacts with host factors to allow λ nut-containing transcripts to elongate past termination signals. A competing bacteriophage, HK022, expresses Nun protein, which causes termination of λ nut transcripts. λ N and HK022 Nun use similar arginine-rich motifs (ARMs) to bind the same boxB RNAs in nut transcripts. Screening libraries of Nun ARM mutants, both in HK022 Nun and in a λ N fusion, revealed amino acids essential to Nun that could bind one or more host factors. Docking suggests that NusG, which is present in both Nun termination and N antitermination, is a plausible partner. These findings could help understand how transcription elongation is regulated and illustrate how subtle differences allow ARMs to evolve new regulatory functions. PMID:26350130

  6. HK022 Nun Requires Arginine-Rich Motif Residues Distinct from λ N.

    PubMed

    Tawk, Caroline S; Ghattas, Ingrid R; Smith, Colin A

    2015-11-01

    Bacteriophage λ N protein binds boxB RNA hairpins in the nut (N utilization) sites of immediate early λ transcripts and interacts with host factors to suppress transcriptional termination at downstream terminators. In opposition to λ N, the Nun protein of HK022 binds the boxBs of coinfecting λ transcripts, interacts with a similar or identical set of host factors, and terminates transcription to suppress λ replication. Comparison of N-boxB and Nun-boxB nuclear magnetic resonance (NMR) structural models suggests similar interactions, though limited mutagenesis of Nun is available. Here, libraries of Nun's arginine-rich motif (ARM) were screened for the ability to exclude λ coinfection, and mutants were assayed for Nun termination with a boxB plasmid reporter system. Several Nun ARM residues appear to be immutable: Asp26, Arg28, Arg29, Arg32, Trp33, and Arg36. Asp26 and Trp33 appear to be unable to contact boxB and are not found at equivalent positions in λ N ARM. To understand if the requirement of Asp26, Trp33, and Arg36 indicated differences between HK022 Nun termination and λ N antitermination complexes, the same Nun libraries were fused to the activation domain of λ N and screened for clones able to complement N-deficient λ. Mutants were assayed for N antitermination. Surprisingly, Asp26 and Trp33 were still essential when Nun ARM was fused to N. Docking suggests that Nun ARM contacts a hydrophobic surface of the NusG carboxy-terminal domain containing residues necessary for Nun function. These findings indicate that Nun ARM relies on distinct contacts in its ternary complex and illustrate how protein-RNA recognition can evolve new regulatory functions. λ N protein interacts with host factors to allow λ nut-containing transcripts to elongate past termination signals. A competing bacteriophage, HK022, expresses Nun protein, which causes termination of λ nut transcripts. λ N and HK022 Nun use similar arginine-rich motifs (ARMs) to bind the same boxB RNAs in nut transcripts. Screening libraries of Nun ARM mutants, both in HK022 Nun and in a λ N fusion, revealed amino acids essential to Nun that could bind one or more host factors. Docking suggests that NusG, which is present in both Nun termination and N antitermination, is a plausible partner. These findings could help understand how transcription elongation is regulated and illustrate how subtle differences allow ARMs to evolve new regulatory functions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Transcription factor ThWRKY4 binds to a novel WLS motif and a RAV1A element in addition to the W-box to regulate gene expression.

    PubMed

    Xu, Hongyun; Shi, Xinxin; Wang, Zhibo; Gao, Caiqiu; Wang, Chao; Wang, Yucheng

    2017-08-01

    WRKY transcription factors play important roles in many biological processes, and mainly bind to the W-box element to regulate gene expression. Previously, we characterized a WRKY gene from Tamarix hispida, ThWRKY4, in response to abiotic stress, and showed that it bound to the W-box motif. However, whether ThWRKY4 could bind to other motifs remains unknown. In this study, we employed a Transcription Factor-Centered Yeast one Hybrid (TF-Centered Y1H) screen to study the motifs recognized by ThWRKY4. In addition to the W-box core cis-element (termed W-box), we identified that ThWRKY4 could bind to two other motifs: the RAV1A element (CAACA) and a novel motif with sequence of GTCTA (W-box like sequence, WLS). The distributions of these motifs were screened in the promoter regions of genes regulated by some WRKYs. The results showed that the W-box, RAV1A, and WLS motifs were all present in high numbers, suggesting that they play key roles in gene expression mediated by WRKYs. Furthermore, five WRKY proteins from different WRKY subfamilies in Arabidopsis thaliana were selected and confirmed to bind to the RAV1A and WLS motifs, indicating that they are recognized commonly by WRKYs. These findings will help to further reveal the functions of WRKY proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Combining native MS approaches to decipher archaeal box H/ACA ribonucleoprotein particle structure and activity.

    PubMed

    Saliou, Jean-Michel; Manival, Xavier; Tillault, Anne-Sophie; Atmanene, Cédric; Bobo, Claude; Branlant, Christiane; Van Dorsselaer, Alain; Charpentier, Bruno; Cianférani, Sarah

    2015-08-01

    Site-specific isomerization of uridines into pseudouridines in RNAs is catalyzed either by stand-alone enzymes or by box H/ACA ribonucleoprotein particles (sno/sRNPs). The archaeal box H/ACA sRNPs are five-component complexes that consist of a guide RNA and the aCBF5, aNOP10, L7Ae, and aGAR1 proteins. In this study, we performed pairwise incubations of individual constituents of archaeal box H/ACA sRNPs and analyzed their interactions by native MS to build a 2D-connectivity map of direct binders. We describe the use of native MS in combination with ion mobility-MS to monitor the in vitro assembly of the active H/ACA sRNP particle. Real-time native MS was used to monitor how box H/ACA particle functions in multiple-turnover conditions. Native MS also unambiguously revealed that a substrate RNA containing 5-fluorouridine (f(5) U) was hydrolyzed into 5-fluoro-6-hydroxy-pseudouridine (f(5) ho(6) Ψ). In terms of enzymatic mechanism, box H/ACA sRNP was shown to catalyze the pseudouridylation of a first RNA substrate, then to release the RNA product (S22 f(5) ho(6) ψ) from the RNP enzyme and reload a new substrate RNA molecule. Altogether, our native MS-based approaches provide relevant new information about the potential assembly process and catalytic mechanism of box H/ACA RNPs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Purification and DNA-binding properties of the cro-type regulatory repressor protein cng encoded by the Lactobacillus plantarum phage phi g1e.

    PubMed

    Kakikawa, M; Ohkubo, S; Sakate, T; Sayama, M; Taketo, A; Kodaira, K

    2000-05-16

    The putative repressor protein Cng (10kDa on an SDS gel) for the lytic pathway of Lactobacillus plantarum phage φg1e was purified using the Escherichia coli Pt7 system, and its DNA-binding ability for the seven operator-like sequences, the GATAC-boxes (Gb1 to Gb7), was investigated in vitro. In gel-shift assays, Cng selectively bound to the DNA fragments containing the GATAC-box(es). In addition, DNase I footprinting analysis with supercoiled DNA demonstrated that Cng can specifically cover about a 25bp region centered around each of the GATAC-boxes, although two boxes, Gb4 and Gb6, were only partially protected. Moreover, protein crosslinking experiments using glutaraldehyde suggested that Cng most likely functions as a dimer. On the other hand, the binding ability of Cpg for the GATAC-boxes in supercoiled DNA was also examined under the same conditions as in Cng; unlike Cng, Cpg covered Gb4 and Gb6 completely sufficiently as well as the other five boxes. Thus, the present and previous [Kakikawa et al., Gene 215 (1998) 371-379; 242 (2000) 155-166] results indicate a possibility that the two proteins Cng and Cpg selectively bind to the GATAC-boxes that act as operators, and can decide between the lytic or lysogenic pathways through repression of the promoter activity of P(R) as well as P(L).

  10. Arabidopsis F-box protein containing a Nictaba-related lectin domain interacts with N-acetyllactosamine structures.

    PubMed

    Stefanowicz, Karolina; Lannoo, Nausicaä; Proost, Paul; Van Damme, Els J M

    2012-01-01

    The Arabidopsis thaliana genome contains a small group of bipartite F-box proteins, consisting of an N-terminal F-box domain and a C-terminal domain sharing sequence similarity with Nictaba, the jasmonate-induced glycan-binding protein (lectin) from tobacco. Based on the high sequence similarity between the C-terminal domain of these proteins and Nictaba, the hypothesis was put forward that the so-called F-box-Nictaba proteins possess carbohydrate-binding activity and accordingly can be considered functional homologs of the mammalian sugar-binding F-box or Fbs proteins which are involved in proteasomal degradation of glycoproteins. To obtain experimental evidence for the carbohydrate-binding activity and specificity of the A. thaliana F-box-Nictaba proteins, both the complete F-box-Nictaba sequence of one selected Arabidopsis F-box protein (in casu At2g02360) as well as the Nictaba-like domain only were expressed in Pichia pastoris and analyzed by affinity chromatography, agglutination assays and glycan micro-array binding assays. These results demonstrated that the C-terminal Nictaba-like domain provides the F-box-protein with a carbohydrate-binding activity that is specifically directed against N- and O-glycans containing N-acetyllactosamine (Galβ1-3GlcNAc and Galβ1-4GlcNAc) and poly-N-acetyllactosamine ([Galβ1-4GlcNAc]n) as well as Lewis A (Galβ1-3(Fucα1-4)GlcNAc), Lewis X (Galβ1-4(Fucα1-3)GlcNAc, Lewis Y (Fucα1-2Galβ1-4(Fucα1-3)GlcNAc) and blood type B (Galα1-3(Fucα1-2)Galβ1-3GlcNAc) motifs. Based on these findings one can reasonably conclude that at least the A. thaliana F-box-Nictaba protein encoded by At2g02360 can act as a carbohydrate-binding protein. The results from the glycan array assays revealed differences in sugar-binding specificity between the F-box protein and Nictaba, indicating that the same carbohydrate-binding motif can accommodate unrelated oligosaccharides.

  11. A study of general instability of box beams with truss-type ribs

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E; Schwartz, Edward B

    1942-01-01

    The design of truss-type ribs for box beams is theoretically treated with regard to the function of the ribs in stabilizing the compression flange. The theory is applied to a design problem, and the results of this application are presented and discussed in relation to the general problem of rib design. The results of some tests made as a part of this general study are presented in an appendix.

  12. Molecular characterization of atrogin-1/F-box protein-32 (FBXO32) and F-box protein 25 (FBXO25) in rainbow trout (Oncorhynchus mykiss); expression across tissues in response to feed deprivation

    USDA-ARS?s Scientific Manuscript database

    The characteristic increase in protein catabolism during muscle atrophy is largely the result of an increase in E3 ubiquitin ligase expression, specifically that of atrogin-1, or FBXO32, which functions to polyubiquitinate proteins. In rainbow trout, the cDNA sequences of two E3 ubiquitin ligase F-...

  13. Genome-Wide Comparative In Silico Analysis of the RNA Helicase Gene Family in Zea mays and Glycine max: A Comparison with Arabidopsis and Oryza sativa

    PubMed Central

    Huang, Jinguang; Zheng, Chengchao

    2013-01-01

    RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of the RNA helicase gene family in crop growth and development. PMID:24265739

  14. When core competence is not enough: functional interplay of the DEAD-box helicase core with ancillary domains and auxiliary factors in RNA binding and unwinding.

    PubMed

    Rudolph, Markus G; Klostermeier, Dagmar

    2015-08-01

    DEAD-box helicases catalyze RNA duplex unwinding in an ATP-dependent reaction. Members of the DEAD-box helicase family consist of a common helicase core formed by two RecA-like domains. According to the current mechanistic model for DEAD-box mediated RNA unwinding, binding of RNA and ATP triggers a conformational change of the helicase core, and leads to formation of a compact, closed state. In the closed conformation, the two parts of the active site for ATP hydrolysis and of the RNA binding site, residing on the two RecA domains, become aligned. Closing of the helicase core is coupled to a deformation of the RNA backbone and destabilization of the RNA duplex, allowing for dissociation of one of the strands. The second strand remains bound to the helicase core until ATP hydrolysis and product release lead to re-opening of the core. The concomitant disruption of the RNA binding site causes dissociation of the second strand. The activity of the helicase core can be modulated by interaction partners, and by flanking N- and C-terminal domains. A number of C-terminal flanking regions have been implicated in RNA binding: RNA recognition motifs (RRM) typically mediate sequence-specific RNA binding, whereas positively charged, unstructured regions provide binding sites for structured RNA, without sequence-specificity. Interaction partners modulate RNA binding to the core, or bind to RNA regions emanating from the core. The functional interplay of the helicase core and ancillary domains or interaction partners in RNA binding and unwinding is not entirely understood. This review summarizes our current knowledge on RNA binding to the DEAD-box helicase core and the roles of ancillary domains and interaction partners in RNA binding and unwinding by DEAD-box proteins.

  15. Working your SOCS off: The role of ASB10 and protein degradation pathways in glaucoma.

    PubMed

    Keller, Kate E; Wirtz, Mary K

    2017-05-01

    Evidence is accumulating to suggest that mutations in the Ankyrin and SOCS Box-containing protein-10 (ASB10) gene are associated with glaucoma. Since its identification in a large Oregon family with primary open-angle glaucoma (POAG), ASB10 variants have been associated with disease in US, German and Pakistani cohorts. ASB10 is a member of the ASB family of proteins, which have a common structure including a unique N-terminus, a variable number of central ankyrin (ANK) repeat domains and a suppressor of cytokine signaling (SOCS) box at the C-terminus. Mutations in ASB10 are distributed throughout the entire length of the gene including the two alternatively spliced variants of exon 1. A homozygous mutation in a Pakistani individual with POAG, which lies in the center of the SOCS box, is associated with a particularly severe form of the disease. Like other SOCS box-containing proteins, ASB10 functions in ubiquitin-mediated degradation pathways. The ANK repeats bind to proteins destined for degradation. The SOCS box recruits ubiquitin ligase proteins to form a complex to transfer ubiquitin to a substrate bound to the ANK repeats. The ubiquitin-tagged protein then enters either the proteasomal degradation pathway or the autophagic-lysosomal pathway. The choice of pathway appears to be dependent on which lysine residues are used to build polyubiquitin chains. However, these reciprocal pathways work in tandem to degrade proteins because inhibition of one pathway increases degradation via the other pathway. In this publication, we will review the literature that supports identification of ASB10 as a glaucoma-associated gene and the current knowledge of the function of the ASB10 protein. In addition, we present new data that indicates ASB10 expression is up-regulated by the inflammatory cytokines tumor necrosis factor-α and interleukin-1α. Finally, we will describe the emerging role of other SOCS box-containing proteins in protein degradation pathways in ocular cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Characterization of exploratory activity and learning ability of healthy and "schizophrenia-like" rats in a square corridor system (AMBITUS).

    PubMed

    Horvath, G; Liszli, P; Kekesi, G; Büki, A; Benedek, G

    2017-02-01

    The rodent tasks with food rewards are useful methods to evaluate memory functions, including hole-board and corridor tests. The AMBITUS system (a square corridor with several food rewards), as a combination of these tests, was developed for the investigation of a variety of parameters associated with exploration and cognitive performance in rodents. Experiments were performed to characterize these behaviors in healthy rats and a new "schizophrenia-like" rat substrain with impaired learning ability to reveal the reliability in tests related to these functions. A square corridor was constructed with equally spaced sites along each wall (4 inside and 4 outside) resulting in 16 side-boxes for food rewards. Photocells at each box recorded the visits into the side-boxes (as exploratory activity), while the eating parameters were obtained from video records. The animals were exposed to two types of tasks repeatedly in two series: all (16) or only the inside (8) boxes (Task 1 or Task 2, respectively) were baited. Most of the rats acquired Task 1, and their performance improved by repetition, but the new substrain showed decreased exploration and learning capacity. The introduction of Task 2 caused prompt preference of the baited inner side-boxes, and gradually improved working and reference memory during the trials. The manual and automated scoring of the visits into the side-boxes showed significant (r=0.97) correlation. The results proved that healthy animals could perform the simple tasks in the square corridor after a few repetitions. The semi-automated AMBITUS system might be appropriate to detect cognitive flexibility after different manipulations, and it provides immediate, online assessment of exploratory behavior of a large number of animals within a short period of time, and it reduces the possibility of experimenter bias. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Genome-wide comparative in silico analysis of the RNA helicase gene family in Zea mays and Glycine max: a comparison with Arabidopsis and Oryza sativa.

    PubMed

    Xu, Ruirui; Zhang, Shizhong; Huang, Jinguang; Zheng, Chengchao

    2013-01-01

    RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of the RNA helicase gene family in crop growth and development.

  18. S locus-linked F-box genes expressed in anthers of Hordeum bulbosum.

    PubMed

    Kakeda, Katsuyuki

    2009-09-01

    Diploid Hordeum bulbosum (a wild relative of cultivated barley) exhibits a two-locus self-incompatibility (SI) system gametophytically controlled by the unlinked multiallelic loci S and Z. This unique SI system is observed in the grasses (Poaceae) including the tribe Triticeae. This paper describes the identification and characterization of two F-box genes cosegregating with the S locus in H. bulbosum, named Hordeum S locus-linked F-box 1 (HSLF1) and HSLF2, which were derived from an S (3) haplotype-specific clone (HAS175) obtained by previous AMF (AFLP-based mRNA fingerprinting) analysis. Sequence analysis showed that both genes encode similar F-box proteins with a C-terminal leucine-rich repeat (LRR) domain, which are distinct from S locus (or S haplotype-specific) F-box protein (SLF/SFB), a class of F-box proteins identified as the pollen S determinant in S-RNase-based gametophytic SI systems. A number of homologous F-box genes with an LRR domain were found in the rice genome, although the functions of the gene family are unknown. One allele of the HSLF1 gene (HSLF1-S (3)) was expressed specifically in mature anthers, whereas no expression was detected from the other two alleles examined. Although the degree of sequence polymorphism among the three HSLF1 alleles was low, a frameshift mutation was found in one of the unexpressed alleles. The HSLF2 gene showed a low level of expression with no tissue specificity as well as little sequence polymorphism among the three alleles. The multiplicity of S locus-linked F-box genes is discussed in comparison with those found in the S-RNase-based SI system.

  19. Max-E47, a Designed Minimalist Protein that Targets the E-Box DNA Site In Vivo and In Vitro

    PubMed Central

    Xu, Jing; Chen, Gang; De Jong, Antonia T.; Shahravan, S. Hesam; Shin, Jumi A.

    2009-01-01

    Max-E47 is a designed hybrid protein comprising the Max DNA-binding basic region and E47 HLH dimerization subdomain. In the yeast one-hybrid system (Y1H), Max-E47 shows strong transcriptional activation from the E-box site, 5'-CACGTG, targeted by the Myc/Max/Mad network of transcription factors; two mutants, Max-E47Y and Max-E47YF, activate more weakly from the E-box in the Y1H. Quantitative fluorescence anisotropy titrations to gain free energies of protein:DNA binding gave low nM Kd values for the native MaxbHLHZ, Max-E47, and the Y and YF mutants binding to the E-box site (14 nM, 15 nM, 9 nM, and 6 nM, respectively), with no detectable binding to a nonspecific control duplex. Because these minimalist, E-box-binding hybrids have no activation domain and no interactions with the c-MycbHLHZ, as shown by the yeast two-hybrid assay, they can potentially serve as dominant-negative inhibitors that suppress activation of E-box-responsive genes targeted by transcription factors including the c-Myc/Max complex. As proof-of-principle, we used our modified Y1H, which allows direct competition between two proteins vying for a DNA target, to show that Max-E47 effectively outcompetes the native MaxbHLHZ for the E-box; weaker competition is observed from the two mutants, consistent with Y1H results. These hybrids provide a minimalist scaffold for further exploration of the relationship between protein structure and DNA-binding function and may have applications as protein therapeutics or biochemical probes capable of targeting the E-box site. PMID:19449889

  20. TAFII-independent activation mediated by human TBP in the presence of the positive cofactor PC4.

    PubMed Central

    Wu, S Y; Kershnar, E; Chiang, C M

    1998-01-01

    TFIID is a multiprotein complex comprised of the TATA-binding protein (TBP) and an array of TBP-associated factors (TAFIIs). Whereas TBP is sufficient for basal transcription in conjunction with other general transcription factors and RNA polymerase II, TAFIIs are additionally required for activator-dependent transcription in mammalian cell-free transcription systems. However, recent in vivo studies carried out in yeast suggest that TAFIIs are not globally required for activator function. The discrepancy between in vivo yeast studies and in vitro mammalian cell-free systems remains to be resolved. In this study, we describe a mammalian cell-free transcription system reconstituted with only recombinant proteins and epitope-tagged multiprotein complexes. Transcriptional activation can be recapitulated in this highly purified in vitro transcription system in the absence of TAFIIs. This TBP-mediated activation is not induced by human mediator, another transcriptional coactivator complex potentially implicated in activator response. In contrast, general transcription factors TFIIH and TFIIA play a significant role in TBP-mediated activation, which can be detected in vitro with Gal4 fusion proteins containing various transcriptional activation domains. Our data, therefore, suggest that TFIIH and TFIIA can mediate activator function in the absence of TAFIIs. PMID:9687514

Top