Sample records for functional theory framework

  1. An information theory framework for dynamic functional domain connectivity.

    PubMed

    Vergara, Victor M; Miller, Robyn; Calhoun, Vince

    2017-06-01

    Dynamic functional network connectivity (dFNC) analyzes time evolution of coherent activity in the brain. In this technique dynamic changes are considered for the whole brain. This paper proposes an information theory framework to measure information flowing among subsets of functional networks call functional domains. Our method aims at estimating bits of information contained and shared among domains. The succession of dynamic functional states is estimated at the domain level. Information quantity is based on the probabilities of observing each dynamic state. Mutual information measurement is then obtained from probabilities across domains. Thus, we named this value the cross domain mutual information (CDMI). Strong CDMIs were observed in relation to the subcortical domain. Domains related to sensorial input, motor control and cerebellum form another CDMI cluster. Information flow among other domains was seldom found. Other methods of dynamic connectivity focus on whole brain dFNC matrices. In the current framework, information theory is applied to states estimated from pairs of multi-network functional domains. In this context, we apply information theory to measure information flow across functional domains. Identified CDMI clusters point to known information pathways in the basal ganglia and also among areas of sensorial input, patterns found in static functional connectivity. In contrast, CDMI across brain areas of higher level cognitive processing follow a different pattern that indicates scarce information sharing. These findings show that employing information theory to formally measured information flow through brain domains reveals additional features of functional connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cognitive Frames of Reference and Strategic Thinking

    DTIC Science & Technology

    1991-04-05

    Elliot Jaques and T. 0. Jacobs, whose Stratified Systems Theory (SST) links leadership requirements to organizational functions. SST emphasizes the...reverse if necessary and identify by block number) Using Stratified Systems Theory and the research on expertise as a conceptual framework, this study...Stratified Systems Theory and the research on expertise as a conceptual framework, this study explored the differences in the structure and content of the

  3. Analyzing Learning in Professional Learning Communities: A Conceptual Framework

    ERIC Educational Resources Information Center

    Van Lare, Michelle D.; Brazer, S. David

    2013-01-01

    The purpose of this article is to build a conceptual framework that informs current understanding of how professional learning communities (PLCs) function in conjunction with organizational learning. The combination of sociocultural learning theories and organizational learning theories presents a more complete picture of PLC processes that has…

  4. Higher-Order Theory for Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    1999-01-01

    This paper presents the full generalization of the Cartesian coordinate-based higher-order theory for functionally graded materials developed by the authors during the past several years. This theory circumvents the problematic use of the standard micromechanical approach, based on the concept of a representative volume element, commonly employed in the analysis of functionally graded composites by explicitly coupling the local (microstructural) and global (macrostructural) responses. The theoretical framework is based on volumetric averaging of the various field quantities, together with imposition of boundary and interfacial conditions in an average sense between the subvolumes used to characterize the composite's functionally graded microstructure. The generalization outlined herein involves extension of the theoretical framework to enable the analysis of materials characterized by spatially variable microstructures in three directions. Specialization of the generalized theoretical framework to previously published versions of the higher-order theory for materials functionally graded in one and two directions is demonstrated. In the applications part of the paper we summarize the major findings obtained with the one-directional and two-directional versions of the higher-order theory. The results illustrate both the fundamental issues related to the influence of microstructure on microscopic and macroscopic quantities governing the response of composites and the technologically important applications. A major issue addressed herein is the applicability of the classical homogenization schemes in the analysis of functionally graded materials. The technologically important applications illustrate the utility of functionally graded microstructures in tailoring the response of structural components in a variety of applications involving uniform and gradient thermomechanical loading.

  5. The functional-cognitive meta-theoretical framework: Reflections, possible clarifications and how to move forward.

    PubMed

    Barnes-Holmes, Dermot; Hussey, Ian

    2016-02-01

    The functional-cognitive meta-theoretical framework has been offered as a conceptual basis for facilitating greater communication and cooperation between the functional/behavioural and cognitive traditions within psychology, thus leading to benefits for both scientific communities. The current article is written from the perspective of two functional researchers, who are also proponents of the functional-cognitive framework, and attended the "Building Bridges between the Functional and Cognitive Traditions" meeting at Ghent University in the summer of 2014. The article commences with a brief summary of the functional approach to theory, followed by our reflections upon the functional-cognitive framework in light of that meeting. In doing so, we offer three ways in which the framework could be clarified: (a) effective communication between the two traditions is likely to be found at the level of behavioural observations rather than effects or theory, (b) not all behavioural observations will be deemed to be of mutual interest to both traditions, and (c) observations of mutual interest will be those that serve to elaborate and extend existing theorising in the functional and/or cognitive traditions. The article concludes with a summary of what we perceive to be the strengths and weaknesses of the framework, and a suggestion that there is a need to determine if the framework is meta-theoretical or is in fact a third theoretical approach to doing psychological science. © 2015 International Union of Psychological Science.

  6. A general framework for numerical simulation of improvised explosive device (IED)-detection scenarios using density functional theory (DFT) and terahertz (THz) spectra.

    PubMed

    Shabaev, Andrew; Lambrakos, Samuel G; Bernstein, Noam; Jacobs, Verne L; Finkenstadt, Daniel

    2011-04-01

    We have developed a general framework for numerical simulation of various types of scenarios that can occur for the detection of improvised explosive devices (IEDs) through the use of excitation using incident electromagnetic waves. A central component model of this framework is an S-matrix representation of a multilayered composite material system. Each layer of the system is characterized by an average thickness and an effective electric permittivity function. The outputs of this component are the reflectivity and the transmissivity as functions of frequency and angle of the incident electromagnetic wave. The input of the component is a parameterized analytic-function representation of the electric permittivity as a function of frequency, which is provided by another component model of the framework. The permittivity function is constructed by fitting response spectra calculated using density functional theory (DFT) and parameter adjustment according to any additional information that may be available, e.g., experimentally measured spectra or theory-based assumptions concerning spectral features. A prototype simulation is described that considers response characteristics for THz excitation of the high explosive β-HMX. This prototype simulation includes a description of a procedure for calculating response spectra using DFT as input to the Smatrix model. For this purpose, the DFT software NRLMOL was adopted. © 2011 Society for Applied Spectroscopy

  7. Utility function under decision theory: A construction arbitration application

    NASA Astrophysics Data System (ADS)

    Alozn, Ahmad E.; Galadari, Abdulla

    2017-08-01

    While a wide range of dispute resolution mechanisms exist, practitioners favor legally binding ones such as litigation and arbitration. Since initiating a litigation or arbitration case against a business partner may dissolve the business relationship between them, predicting the arbitrator's decision becomes valuable to the arbitrating parties. This paper proposes a construction-specific utility framework for the arbitrating party through decision theory, and based on expected utility theory. The proposed framework preserves the industry practicality and most importantly, considers direct short-term factors and indirect long-term factors as well. It is suggested that the arbitrating parties' utility functions could be then used to identify equilibrium points among them when interact via game theory principles, which would serve the purpose of predicting the arbitration outcome.

  8. Functional Path Analysis as a Multivariate Technique in Developing a Theory of Participation in Adult Education.

    ERIC Educational Resources Information Center

    Martin, James L.

    This paper reports on attempts by the author to construct a theoretical framework of adult education participation using a theory development process and the corresponding multivariate statistical techniques. Two problems are identified: the lack of theoretical framework in studying problems, and the limiting of statistical analysis to univariate…

  9. Behavioral and neural Darwinism: selectionist function and mechanism in adaptive behavior dynamics.

    PubMed

    McDowell, J J

    2010-05-01

    An evolutionary theory of behavior dynamics and a theory of neuronal group selection share a common selectionist framework. The theory of behavior dynamics instantiates abstractly the idea that behavior is selected by its consequences. It implements Darwinian principles of selection, reproduction, and mutation to generate adaptive behavior in virtual organisms. The behavior generated by the theory has been shown to be quantitatively indistinguishable from that of live organisms. The theory of neuronal group selection suggests a mechanism whereby the abstract principles of the evolutionary theory may be implemented in the nervous systems of biological organisms. According to this theory, groups of neurons subserving behavior may be selected by synaptic modifications that occur when the consequences of behavior activate value systems in the brain. Together, these theories constitute a framework for a comprehensive account of adaptive behavior that extends from brain function to the behavior of whole organisms in quantitative detail. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  10. Parameterized post-Newtonian cosmology

    NASA Astrophysics Data System (ADS)

    Sanghai, Viraj A. A.; Clifton, Timothy

    2017-03-01

    Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC).

  11. The CRISP theory of hippocampal function in episodic memory

    PubMed Central

    Cheng, Sen

    2013-01-01

    Over the past four decades, a “standard framework” has emerged to explain the neural mechanisms of episodic memory storage. This framework has been instrumental in driving hippocampal research forward and now dominates the design and interpretation of experimental and theoretical studies. It postulates that cortical inputs drive plasticity in the recurrent cornu ammonis 3 (CA3) synapses to rapidly imprint memories as attractor states in CA3. Here we review a range of experimental studies and argue that the evidence against the standard framework is mounting, notwithstanding the considerable evidence in its support. We propose CRISP as an alternative theory to the standard framework. CRISP is based on Context Reset by dentate gyrus (DG), Intrinsic Sequences in CA3, and Pattern completion in cornu ammonis 1 (CA1). Compared to previous models, CRISP uses a radically different mechanism for storing episodic memories in the hippocampus. Neural sequences are intrinsic to CA3, and inputs are mapped onto these intrinsic sequences through synaptic plasticity in the feedforward projections of the hippocampus. Hence, CRISP does not require plasticity in the recurrent CA3 synapses during the storage process. Like in other theories DG and CA1 play supporting roles, however, their function in CRISP have distinct implications. For instance, CA1 performs pattern completion in the absence of CA3 and DG contributes to episodic memory retrieval, increasing the speed, precision, and robustness of retrieval. We propose the conceptual theory, discuss its implications for experimental results and suggest testable predictions. It appears that CRISP not only accounts for those experimental results that are consistent with the standard framework, but also for results that are at odds with the standard framework. We therefore suggest that CRISP is a viable, and perhaps superior, theory for the hippocampal function in episodic memory. PMID:23653597

  12. A practitioner's guide to persuasion: an overview of 15 selected persuasion theories, models and frameworks.

    PubMed

    Cameron, Kenzie A

    2009-03-01

    To provide a brief overview of 15 selected persuasion theories and models, and to present examples of their use in health communication research. The theories are categorized as message effects models, attitude-behavior approaches, cognitive processing theories and models, consistency theories, inoculation theory, and functional approaches. As it is often the intent of a practitioner to shape, reinforce, or change a patient's behavior, familiarity with theories of persuasion may lead to the development of novel communication approaches with existing patients. This article serves as an introductory primer to theories of persuasion with applications to health communication research. Understanding key constructs and general formulations of persuasive theories may allow practitioners to employ useful theoretical frameworks when interacting with patients.

  13. On the origins of anticipation as an evolutionary framework: functional systems perspective

    NASA Astrophysics Data System (ADS)

    Kurismaa, Andres

    2015-08-01

    This paper discusses the problem of anticipation from an evolutionary and systems-theoretical perspective, developed in the context of Russian/Soviet evolutionary biological and neurophysiological schools in the early and mid-twentieth century. On this background, an outline is given of the epigenetic interpretation of anticipatory capacities formulated and substantiated by the eminent Russian neurophysiologist academician Peter K. Anokhin in the framework of functional systems theory. It is considered that several key positions of this theory are well confirmed by recent evidence on anticipation as an evolutionarily basic adaptive capacity, possibly inherent to the organization of life. In the field of neuroscience, the theory of functional systems may potentially facilitate future studies at the intersection of learning, development and evolution by representing an integrative approach to the problem of anticipation.

  14. Therapy for Childhood Sexual Abuse Survivors using Attachment and Family Systems Theory Orientations.

    PubMed

    Karakurt, Gunnur; Silver, Kristin E

    2014-01-01

    The aim of this paper is to understand the effects of childhood sexual abuse on a survivor's later life. For understanding and treating the emotional distress and interpersonal problems resulting from childhood sexual abuse, attachment theory provides a valuable framework. When this framework is combined with family systems theory, it can help therapists understand the family context where sexual abuse occurs and how this affects health and functioning throughout the lifespan. Case examples of female adult sexual abuse survivors are also explored, with insight from the intersection of systems and attachment theories.

  15. Systems theory as a framework for examining a college campus-based support program for the former foster youth.

    PubMed

    Schelbe, Lisa; Randolph, Karen A; Yelick, Anna; Cheatham, Leah P; Groton, Danielle B

    2018-01-01

    Increased attention to former foster youth pursuing post-secondary education has resulted in the creation of college campus based support programs to address their need. However, limited empirical evidence and theoretical knowledge exist about these programs. This study seeks to describe the application of systems theory as a framework for examining a college campus based support program for former foster youth. In-depth semi-structured interviews were conducted with 32 program stakeholders including students, mentors, collaborative members, and independent living program staff. Using qualitative data analysis software, holistic coding techniques were employed to analyze interview transcripts. Then applying principles of extended case method using systems theory, data were analyzed. Findings suggest systems theory serves as a framework for understanding the functioning of a college campus based support program. The theory's concepts help delineate program components and roles of stakeholders; outline boundaries between and interactions among stakeholders; and identify program strengths and weakness. Systems theory plays an important role in identifying intervention components and providing a structure through which to identify and understand program elements as a part of the planning process. This study highlights the utility of systems theory as a framework for program planning and evaluation.

  16. Partial information decomposition as a unified approach to the specification of neural goal functions.

    PubMed

    Wibral, Michael; Priesemann, Viola; Kay, Jim W; Lizier, Joseph T; Phillips, William A

    2017-03-01

    In many neural systems anatomical motifs are present repeatedly, but despite their structural similarity they can serve very different tasks. A prime example for such a motif is the canonical microcircuit of six-layered neo-cortex, which is repeated across cortical areas, and is involved in a number of different tasks (e.g. sensory, cognitive, or motor tasks). This observation has spawned interest in finding a common underlying principle, a 'goal function', of information processing implemented in this structure. By definition such a goal function, if universal, cannot be cast in processing-domain specific language (e.g. 'edge filtering', 'working memory'). Thus, to formulate such a principle, we have to use a domain-independent framework. Information theory offers such a framework. However, while the classical framework of information theory focuses on the relation between one input and one output (Shannon's mutual information), we argue that neural information processing crucially depends on the combination of multiple inputs to create the output of a processor. To account for this, we use a very recent extension of Shannon Information theory, called partial information decomposition (PID). PID allows to quantify the information that several inputs provide individually (unique information), redundantly (shared information) or only jointly (synergistic information) about the output. First, we review the framework of PID. Then we apply it to reevaluate and analyze several earlier proposals of information theoretic neural goal functions (predictive coding, infomax and coherent infomax, efficient coding). We find that PID allows to compare these goal functions in a common framework, and also provides a versatile approach to design new goal functions from first principles. Building on this, we design and analyze a novel goal function, called 'coding with synergy', which builds on combining external input and prior knowledge in a synergistic manner. We suggest that this novel goal function may be highly useful in neural information processing. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Impact of Functionally Graded Cylinders: Theory

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, S. M. (Technical Monitor)

    2001-01-01

    This final report summarizes the work funded under the Grant NAG3-2411 during the 04/05/2000-04/04/2001 period. The objective of this one-year project was to generalize the theoretical framework of the two-dimensional higher-order theory for the analysis of cylindrical functionally graded materials/structural components employed in advanced aircraft engines developed under past NASA Glenn funding. The completed generalization significantly broadens the theory's range of applicability through the incorporation of dynamic impact loading capability into its framework. Thus, it makes possible the assessment of the effect of damage due to fuel impurities, or the presence of submicron-level debris, on the life of functionally graded structural components. Applications involving advanced turbine blades and structural components for the reusable-launch vehicle (RLV) currently under development will benefit from the completed work. The theory's predictive capability is demonstrated through a numerical simulation of a one-dimensional wave propagation set up by an impulse load in a layered half-plane. Full benefit of the completed generalization of the higher-order theory described in this report will be realized upon the development of a related computer code.

  18. Developmental roots of episodic memory.

    PubMed

    Nelson, Katherine

    2018-01-01

    Two arguments imply that Mahr & Csibra's (M&C's) functional theory is insufficient as an explanation of episodic memory: (1) The developmental course supports a different social cultural division of episodic and semantic memory, and (2) the existence of long-term autobiographical memory is not explained in the functional theory but can be seen in a broader cultural framework.

  19. Design of Mobile Augmented Reality in Health Care Education: A Theory-Driven Framework.

    PubMed

    Zhu, Egui; Lilienthal, Anneliese; Shluzas, Lauren Aquino; Masiello, Italo; Zary, Nabil

    2015-09-18

    Augmented reality (AR) is increasingly used across a range of subject areas in health care education as health care settings partner to bridge the gap between knowledge and practice. As the first contact with patients, general practitioners (GPs) are important in the battle against a global health threat, the spread of antibiotic resistance. AR has potential as a practical tool for GPs to combine learning and practice in the rational use of antibiotics. This paper was driven by learning theory to develop a mobile augmented reality education (MARE) design framework. The primary goal of the framework is to guide the development of AR educational apps. This study focuses on (1) identifying suitable learning theories for guiding the design of AR education apps, (2) integrating learning outcomes and learning theories to support health care education through AR, and (3) applying the design framework in the context of improving GPs' rational use of antibiotics. The design framework was first constructed with the conceptual framework analysis method. Data were collected from multidisciplinary publications and reference materials and were analyzed with directed content analysis to identify key concepts and their relationships. Then the design framework was applied to a health care educational challenge. The proposed MARE framework consists of three hierarchical layers: the foundation, function, and outcome layers. Three learning theories-situated, experiential, and transformative learning-provide foundational support based on differing views of the relationships among learning, practice, and the environment. The function layer depends upon the learners' personal paradigms and indicates how health care learning could be achieved with MARE. The outcome layer analyzes different learning abilities, from knowledge to the practice level, to clarify learning objectives and expectations and to avoid teaching pitched at the wrong level. Suggestions for learning activities and the requirements of the learning environment form the foundation for AR to fill the gap between learning outcomes and medical learners' personal paradigms. With the design framework, the expected rational use of antibiotics by GPs is described and is easy to execute and evaluate. The comparison of specific expected abilities with the GP personal paradigm helps solidify the GP practical learning objectives and helps design the learning environment and activities. The learning environment and activities were supported by learning theories. This paper describes a framework for guiding the design, development, and application of mobile AR for medical education in the health care setting. The framework is theory driven with an understanding of the characteristics of AR and specific medical disciplines toward helping medical education improve professional development from knowledge to practice. Future research will use the framework as a guide for developing AR apps in practice to validate and improve the design framework.

  20. Examining Differential Item Functioning: IRT-Based Detection in the Framework of Confirmatory Factor Analysis

    ERIC Educational Resources Information Center

    Dimitrov, Dimiter M.

    2017-01-01

    This article offers an approach to examining differential item functioning (DIF) under its item response theory (IRT) treatment in the framework of confirmatory factor analysis (CFA). The approach is based on integrating IRT- and CFA-based testing of DIF and using bias-corrected bootstrap confidence intervals with a syntax code in Mplus.

  1. Splines and control theory

    NASA Technical Reports Server (NTRS)

    Zhang, Zhimin; Tomlinson, John; Martin, Clyde

    1994-01-01

    In this work, the relationship between splines and the control theory has been analyzed. We show that spline functions can be constructed naturally from the control theory. By establishing a framework based on control theory, we provide a simple and systematic way to construct splines. We have constructed the traditional spline functions including the polynomial splines and the classical exponential spline. We have also discovered some new spline functions such as trigonometric splines and the combination of polynomial, exponential and trigonometric splines. The method proposed in this paper is easy to implement. Some numerical experiments are performed to investigate properties of different spline approximations.

  2. Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework.

    PubMed

    Berger, Daniel; Logsdail, Andrew J; Oberhofer, Harald; Farrow, Matthew R; Catlow, C Richard A; Sherwood, Paul; Sokol, Alexey A; Blum, Volker; Reuter, Karsten

    2014-07-14

    We integrate the all-electron electronic structure code FHI-aims into the general ChemShell package for solid-state embedding quantum and molecular mechanical (QM/MM) calculations. A major undertaking in this integration is the implementation of pseudopotential functionality into FHI-aims to describe cations at the QM/MM boundary through effective core potentials and therewith prevent spurious overpolarization of the electronic density. Based on numeric atomic orbital basis sets, FHI-aims offers particularly efficient access to exact exchange and second order perturbation theory, rendering the established QM/MM setup an ideal tool for hybrid and double-hybrid level density functional theory calculations of solid systems. We illustrate this capability by calculating the reduction potential of Fe in the Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for (photo-)catalytic water oxidation at TiO2(110).

  3. Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Daniel, E-mail: daniel.berger@ch.tum.de; Oberhofer, Harald; Reuter, Karsten

    2014-07-14

    We integrate the all-electron electronic structure code FHI-aims into the general ChemShell package for solid-state embedding quantum and molecular mechanical (QM/MM) calculations. A major undertaking in this integration is the implementation of pseudopotential functionality into FHI-aims to describe cations at the QM/MM boundary through effective core potentials and therewith prevent spurious overpolarization of the electronic density. Based on numeric atomic orbital basis sets, FHI-aims offers particularly efficient access to exact exchange and second order perturbation theory, rendering the established QM/MM setup an ideal tool for hybrid and double-hybrid level density functional theory calculations of solid systems. We illustrate this capabilitymore » by calculating the reduction potential of Fe in the Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for (photo-)catalytic water oxidation at TiO{sub 2}(110)« less

  4. An Impressionistic Framework for Theorizing about Human Resource Development

    ERIC Educational Resources Information Center

    Callahan, Jamie L.; De Davila, Tiffany Dunne

    2004-01-01

    Human resource development (HRD) can be seen as both a professional field and an organizational function; the I-A framework introduced in this article is a heuristic that enables us to understand HRD from both of these perspectives. Although scholars have presented frameworks for understanding the underlying theories, philosophies, and meanings of…

  5. Sexual Objectification of Women: Advances to Theory and Research

    ERIC Educational Resources Information Center

    Szymanski, Dawn M.; Moffitt, Lauren B.; Carr, Erika R.

    2011-01-01

    Objectification theory provides an important framework for understanding, researching, and intervening to improve women's lives in a sociocultural context that sexually objectifies the female body and equates a woman's worth with her body's appearance and sexual functions. The purpose of this Major Contribution is to advance theory, research,…

  6. Complex basis functions for molecular resonances: Methodology and applications

    NASA Astrophysics Data System (ADS)

    White, Alec; McCurdy, C. William; Head-Gordon, Martin

    The computation of positions and widths of metastable electronic states is a challenge for molecular electronic structure theory because, in addition to the difficulty of the many-body problem, such states obey scattering boundary conditions. These resonances cannot be addressed with naïve application of traditional bound state electronic structure theory. Non-Hermitian electronic structure methods employing complex basis functions is one way that we may rigorously treat resonances within the framework of traditional electronic structure theory. In this talk, I will discuss our recent work in this area including the methodological extension from single determinant SCF-based approaches to highly correlated levels of wavefunction-based theory such as equation of motion coupled cluster and many-body perturbation theory. These approaches provide a hierarchy of theoretical methods for the computation of positions and widths of molecular resonances. Within this framework, we may also examine properties of resonances including the dependence of these parameters on molecular geometry. Some applications of these methods to temporary anions and dianions will also be discussed.

  7. A Framework for the Development of Mathematical Thinking with Teacher Trainees: The Case of Continuity of Functions

    ERIC Educational Resources Information Center

    Brijlall, Deonarain; Maharaj, Aneshkumar

    2011-01-01

    Continuity of functions appears throughout the grades in South African high school (FET (further education and training)) topics as prescribed by the final draft of the Curriculum and Assessment Policy Statement. This article reports on the use of a combined framework of APOS (action-process-object-schema) and DCT (dual coding theories) to analyze…

  8. [Development of the theoretical framework and the item pool of the peri-operative recovery scale for integrative medicine].

    PubMed

    Su, Bi-ying; Liu, Shao-nan; Li, Xiao-yan

    2011-11-01

    To study the train of thoughts and procedures for developing the theoretical framework and the item pool of the peri-operative recovery scale for integrative medicine, thus making preparation for the development of this scale and psychometric testing. Under the guidance for Chinese medicine theories and the guidance for developing psychometric scale, the theoretical framework and the item pool of the scale were initially laid out by literature retrieval, and expert consultation, etc. The scale covered the domains of physical function, mental function, activity function, pain, and general assessment. Besides, social function is involved, which is suitable for pre-operative testing and long-term therapeutic efficacy testing after discharge from hospital. Each domain should cover correlated Zang-Fu organs, qi, blood, and the patient-reported outcomes. Totally 122 items were initially covered in the item pool according to theoretical framework of the scale. The peri-operative recovery scale of integrative medicine was the embodiment of the combination of Chinese medicine theories and patient-reported outcome concepts. The scale could reasonably assess the peri-operative recovery outcomes of patients treated by integrative medicine.

  9. Controlled growth and form of precipitating microsculptures

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Noorduin, Wim L.; Li, Ling; Sadza, Roel; Folkertsma, Laura; Aizenberg, Joanna; Mahadevan, L.

    2017-03-01

    Controlled self-assembly of three-dimensional shapes holds great potential for fabrication of functional materials. Their practical realization requires a theoretical framework to quantify and guide the dynamic sculpting of the curved structures that often arise in accretive mineralization. Motivated by a variety of bioinspired coprecipitation patterns of carbonate and silica, we develop a geometrical theory for the kinetics of the growth front that leaves behind thin-walled complex structures. Our theory explains the range of previously observed experimental patterns and, in addition, predicts unexplored assembly pathways. This allows us to design a number of functional base shapes of optical microstructures, which we synthesize to demonstrate their light-guiding capabilities. Overall, our framework provides a way to understand and control the growth and form of functional precipitating microsculptures.

  10. Explicit polarization (X-Pol) potential using ab initio molecular orbital theory and density functional theory.

    PubMed

    Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali

    2009-10-29

    The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.

  11. Possibility of designing catalysts beyond the traditional volcano curve: a theoretical framework for multi-phase surfaces.

    PubMed

    Wang, Ziyun; Wang, Hai-Feng; Hu, P

    2015-10-01

    The current theory of catalyst activity in heterogeneous catalysis is mainly obtained from the study of catalysts with mono-phases, while most catalysts in real systems consist of multi-phases, the understanding of which is far short of chemists' expectation. Density functional theory (DFT) and micro-kinetics simulations are used to investigate the activities of six mono-phase and nine bi-phase catalysts, using CO hydrogenation that is arguably the most typical reaction in heterogeneous catalysis. Excellent activities that are beyond the activity peak of traditional mono-phase volcano curves are found on some bi-phase surfaces. By analyzing these results, a new framework to understand the unexpected activities of bi-phase surfaces is proposed. Based on the framework, several principles for the design of multi-phase catalysts are suggested. The theoretical framework extends the traditional catalysis theory to understand more complex systems.

  12. Design of Mobile Augmented Reality in Health Care Education: A Theory-Driven Framework

    PubMed Central

    Lilienthal, Anneliese; Shluzas, Lauren Aquino; Masiello, Italo; Zary, Nabil

    2015-01-01

    Background Augmented reality (AR) is increasingly used across a range of subject areas in health care education as health care settings partner to bridge the gap between knowledge and practice. As the first contact with patients, general practitioners (GPs) are important in the battle against a global health threat, the spread of antibiotic resistance. AR has potential as a practical tool for GPs to combine learning and practice in the rational use of antibiotics. Objective This paper was driven by learning theory to develop a mobile augmented reality education (MARE) design framework. The primary goal of the framework is to guide the development of AR educational apps. This study focuses on (1) identifying suitable learning theories for guiding the design of AR education apps, (2) integrating learning outcomes and learning theories to support health care education through AR, and (3) applying the design framework in the context of improving GPs’ rational use of antibiotics. Methods The design framework was first constructed with the conceptual framework analysis method. Data were collected from multidisciplinary publications and reference materials and were analyzed with directed content analysis to identify key concepts and their relationships. Then the design framework was applied to a health care educational challenge. Results The proposed MARE framework consists of three hierarchical layers: the foundation, function, and outcome layers. Three learning theories—situated, experiential, and transformative learning—provide foundational support based on differing views of the relationships among learning, practice, and the environment. The function layer depends upon the learners’ personal paradigms and indicates how health care learning could be achieved with MARE. The outcome layer analyzes different learning abilities, from knowledge to the practice level, to clarify learning objectives and expectations and to avoid teaching pitched at the wrong level. Suggestions for learning activities and the requirements of the learning environment form the foundation for AR to fill the gap between learning outcomes and medical learners’ personal paradigms. With the design framework, the expected rational use of antibiotics by GPs is described and is easy to execute and evaluate. The comparison of specific expected abilities with the GP personal paradigm helps solidify the GP practical learning objectives and helps design the learning environment and activities. The learning environment and activities were supported by learning theories. Conclusions This paper describes a framework for guiding the design, development, and application of mobile AR for medical education in the health care setting. The framework is theory driven with an understanding of the characteristics of AR and specific medical disciplines toward helping medical education improve professional development from knowledge to practice. Future research will use the framework as a guide for developing AR apps in practice to validate and improve the design framework. PMID:27731839

  13. Density functional theory meta-GGA + U study of water incorporation in the metal-organic framework material Cu-BTC.

    PubMed

    Cockayne, Eric; Nelson, Eric B

    2015-07-14

    Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at the meta-GGA + U level. The stable arrangements of water molecules show chains of hydrogen-bonded water molecules and a tendency to form closed cages at high concentration. Water clusters are stabilized primarily by a combination of water-water hydrogen bonding and Cu-water oxygen interactions. Stability is further enhanced by van der Waals interactions, electric field enhancement of water-water bonding, and hydrogen bonding of water to framework oxygens. We hypothesize that the tendency to form such stable clusters explains the particularly strong affinity of water to Cu-BTC and related MOFs with exposed metal sites.

  14. Where the item still rules supreme: Time-based selection, enumeration, pre-attentive processing and the target template?

    PubMed

    Watson, Derrick G

    2017-01-01

    I propose that there remains a central role for the item (or its equivalent) in a wider range of search and search-related tasks/functions than might be conveyed by the article. I consider the functional relationship between the framework and some aspects of previous theories, and suggest some challenges that the new framework might encounter.

  15. Thermodynamics of technetium: Reconciling theory and experiment using density functional perturbation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weck, Philippe F.; Kim, Eunja

    The structure, lattice dynamics and thermodynamic properties of bulk technetium were investigated within the framework of density functional theory. The phonon density of states spectrum computed with density functional perturbation theory closely matches inelastic coherent neutron scattering measurements. The thermal properties of technetium were derived from phonon frequencies calculated within the quasi-harmonic approximation (QHA), which introduces a volume dependence of phonon frequencies as a part of the anharmonic effect. As a result, the predicted thermal expansion and isobaric heat capacity of technetium are in excellent agreement with available experimental data for temperatures up to ~1600 K.

  16. Thermodynamics of technetium: Reconciling theory and experiment using density functional perturbation analysis

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja

    2015-06-11

    The structure, lattice dynamics and thermodynamic properties of bulk technetium were investigated within the framework of density functional theory. The phonon density of states spectrum computed with density functional perturbation theory closely matches inelastic coherent neutron scattering measurements. The thermal properties of technetium were derived from phonon frequencies calculated within the quasi-harmonic approximation (QHA), which introduces a volume dependence of phonon frequencies as a part of the anharmonic effect. As a result, the predicted thermal expansion and isobaric heat capacity of technetium are in excellent agreement with available experimental data for temperatures up to ~1600 K.

  17. Cluster perturbation theory for calculation of electronic properties of ensembles of metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhumagulov, Yaroslav V.; Krasavin, Andrey V.; Kashurnikov, Vladimir A.

    2018-05-01

    The method is developed for calculation of electronic properties of an ensemble of metal nanoclusters with the use of cluster perturbation theory. This method is applied to the system of gold nanoclusters. The Greens function of single nanocluster is obtained by ab initio calculations within the framework of the density functional theory, and then is used in Dyson equation to group nanoclusters together and to compute the Greens function as well as the electron density of states of the whole ensemble. The transition from insulator state of a single nanocluster to metallic state of bulk gold is observed.

  18. Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.

    PubMed

    Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon

    2018-04-05

    The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.

  19. Executive Function in Education: From Theory to Practice

    ERIC Educational Resources Information Center

    Meltzer, Lynn, Ed.

    2007-01-01

    This uniquely integrative book brings together leading researchers and practitioners from education, neuroscience, and psychology. It presents a theoretical framework for understanding executive function difficulties together with a range of effective approaches to assessment and instruction. Coverage includes executive function processes in…

  20. Towards a neuro-computational account of prism adaptation.

    PubMed

    Petitet, Pierre; O'Reilly, Jill X; O'Shea, Jacinta

    2017-12-14

    Prism adaptation has a long history as an experimental paradigm used to investigate the functional and neural processes that underlie sensorimotor control. In the neuropsychology literature, prism adaptation behaviour is typically explained by reference to a traditional cognitive psychology framework that distinguishes putative functions, such as 'strategic control' versus 'spatial realignment'. This theoretical framework lacks conceptual clarity, quantitative precision and explanatory power. Here, we advocate for an alternative computational framework that offers several advantages: 1) an algorithmic explanatory account of the computations and operations that drive behaviour; 2) expressed in quantitative mathematical terms; 3) embedded within a principled theoretical framework (Bayesian decision theory, state-space modelling); 4) that offers a means to generate and test quantitative behavioural predictions. This computational framework offers a route towards mechanistic neurocognitive explanations of prism adaptation behaviour. Thus it constitutes a conceptual advance compared to the traditional theoretical framework. In this paper, we illustrate how Bayesian decision theory and state-space models offer principled explanations for a range of behavioural phenomena in the field of prism adaptation (e.g. visual capture, magnitude of visual versus proprioceptive realignment, spontaneous recovery and dynamics of adaptation memory). We argue that this explanatory framework can advance understanding of the functional and neural mechanisms that implement prism adaptation behaviour, by enabling quantitative tests of hypotheses that go beyond merely descriptive mapping claims that 'brain area X is (somehow) involved in psychological process Y'. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Predicting Job Satisfaction.

    ERIC Educational Resources Information Center

    Blai, Boris, Jr.

    Psychological theories about human motivation and accommodation to environment can be used to achieve a better understanding of the human factors that function in the work environment. Maslow's theory of human motivational behavior provided a theoretical framework for an empirically-derived method to predict job satisfaction and explore the…

  2. Interpersonal Functions of EFL Teachers' Evaluative Discourse

    ERIC Educational Resources Information Center

    Lai, Junming

    2010-01-01

    As an important dimension of interpersonal function in SFL, appraisal has attracted a lot of attentions from the linguists home and abroad. This thesis is an attempt to analyze the interpersonal functions of EFL teachers' evaluative discourse with in the framework of Palladian Systemic-functional Grammar (SFG) and Martin's Appraisal theory. The…

  3. Effective ligand functionalization of zirconium-based metal-organic frameworks for the adsorption and separation of benzene and toluene: a multiscale computational study.

    PubMed

    Wu, Ying; Chen, Huiyong; Liu, Defei; Xiao, Jing; Qian, Yu; Xi, Hongxia

    2015-03-18

    The adsorption and separation properties of benzene and toluene on the zirconium-based frameworks UiO-66, -67, -68, and their functional analogues UiO-Phe and UiO-Me2 were studied using grand canonical Monte Carlo simulations, density functional theory, and ideal adsorbed solution theory. Remarkable higher adsorption uptakes of benzene and toluene at low pressures on UiO-Phe and -Me2 were found compared to their parent framework UiO-67. It can be ascribed to the presence of functional groups (aromatic rings and methyl groups) that significantly intensified the adsorption, majorly by reducing the effective pore size and increasing the interaction strength with the adsorbates. At high pressures, the pore volumes and accessible surfaces of the frameworks turned out to be the dominant factors governing the adsorption. In the case of toluene/benzene separation, toluene selectivities of UiOs showed a two-stage separation behavior at the measured pressure range, resulting from the greater interaction affinities of toluene at low pressures and steric hindrance effects at high pressures. Additionally, the counterbalancing factors of enhanced π delocalization and suitable pore size of UiO-Phe gave rise to the highest toluene selectivity, suggesting the ligand functionalization strategy could reach both high adsorption capacity and separation selectivity from aromatic mixtures at low concentrations.

  4. Neonatal physical therapy. Part II: Practice frameworks and evidence-based practice guidelines.

    PubMed

    Sweeney, Jane K; Heriza, Carolyn B; Blanchard, Yvette; Dusing, Stacey C

    2010-01-01

    (1) To outline frameworks for neonatal physical therapy based on 3 theoretical models, (2) to describe emerging literature supporting neonatal physical therapy practice, and (3) to identify evidence-based practice recommendations. Three models are presented as a framework for neonatal practice: (1) dynamic systems theory including synactive theory and the theory of neuronal group selection, (2) the International Classification of Functioning, Disability and Health, and (3) family-centered care. Literature is summarized to support neonatal physical therapists in the areas of examination, developmental care, intervention, and parent education. Practice recommendations are offered with levels of evidence identified. Neonatal physical therapy practice has a theoretical and evidence-based structure, and evidence is emerging for selected clinical procedures. Continued research to expand the science of neonatal physical therapy is critical to elevate the evidence and support practice recommendations.

  5. Combining statistical inference and decisions in ecology

    USGS Publications Warehouse

    Williams, Perry J.; Hooten, Mevin B.

    2016-01-01

    Statistical decision theory (SDT) is a sub-field of decision theory that formally incorporates statistical investigation into a decision-theoretic framework to account for uncertainties in a decision problem. SDT provides a unifying analysis of three types of information: statistical results from a data set, knowledge of the consequences of potential choices (i.e., loss), and prior beliefs about a system. SDT links the theoretical development of a large body of statistical methods including point estimation, hypothesis testing, and confidence interval estimation. The theory and application of SDT have mainly been developed and published in the fields of mathematics, statistics, operations research, and other decision sciences, but have had limited exposure in ecology. Thus, we provide an introduction to SDT for ecologists and describe its utility for linking the conventionally separate tasks of statistical investigation and decision making in a single framework. We describe the basic framework of both Bayesian and frequentist SDT, its traditional use in statistics, and discuss its application to decision problems that occur in ecology. We demonstrate SDT with two types of decisions: Bayesian point estimation, and an applied management problem of selecting a prescribed fire rotation for managing a grassland bird species. Central to SDT, and decision theory in general, are loss functions. Thus, we also provide basic guidance and references for constructing loss functions for an SDT problem.

  6. A statistical mechanical theory of proton transport kinetics in hydrogen-bonded networks based on population correlation functions with applications to acids and bases.

    PubMed

    Tuckerman, Mark E; Chandra, Amalendu; Marx, Dominik

    2010-09-28

    Extraction of relaxation times, lifetimes, and rates associated with the transport of topological charge defects in hydrogen-bonded networks from molecular dynamics simulations is a challenge because proton transfer reactions continually change the identity of the defect core. In this paper, we present a statistical mechanical theory that allows these quantities to be computed in an unbiased manner. The theory employs a set of suitably defined indicator or population functions for locating a defect structure and their associated correlation functions. These functions are then used to develop a chemical master equation framework from which the rates and lifetimes can be determined. Furthermore, we develop an integral equation formalism for connecting various types of population correlation functions and derive an iterative solution to the equation, which is given a graphical interpretation. The chemical master equation framework is applied to the problems of both hydronium and hydroxide transport in bulk water. For each case it is shown that the theory establishes direct links between the defect's dominant solvation structures, the kinetics of charge transfer, and the mechanism of structural diffusion. A detailed analysis is presented for aqueous hydroxide, examining both reorientational time scales and relaxation of the rotational anisotropy, which is correlated with recent experimental results for these quantities. Finally, for OH(-)(aq) it is demonstrated that the "dynamical hypercoordination mechanism" is consistent with available experimental data while other mechanistic proposals are shown to fail. As a means of going beyond the linear rate theory valid from short up to intermediate time scales, a fractional kinetic model is introduced in the Appendix in order to describe the nonexponential long-time behavior of time-correlation functions. Within the mathematical framework of fractional calculus the power law decay ∼t(-σ), where σ is a parameter of the model and depends on the dimensionality of the system, is obtained from Mittag-Leffler functions due to their long-time asymptotics, whereas (stretched) exponential behavior is found for short times.

  7. In the Rearview Mirror: Social Skill Development in Deaf Youth, 1990-2015.

    PubMed

    Cawthon, Stephanie W; Fink, Bentley; Schoffstall, Sarah; Wendel, Erica

    2018-01-01

    Social skills are a vehicle by which individuals negotiate important relationships. The present article presents historical data on how social skills in deaf students were conceptualized and studied empirically during the period 1990-2015. Using a structured literature review approach, the researchers coded 266 articles for theoretical frameworks used and constructs studied. The vast majority of articles did not explicitly align with a specific theoretical framework. Of the 37 that did, most focused on socioemotional and cognitive frameworks, while a minority drew from frameworks focusing on attitudes, developmental theories, or ecological systems theory. In addition, 315 social-skill constructs were coded across the data set; the majority focused on socioemotional functioning. Trends in findings across the past quarter century and implications for research and practice are examined.

  8. Orbital-dependent density functionals: Theory and applications

    NASA Astrophysics Data System (ADS)

    Kümmel, Stephan; Kronik, Leeor

    2008-01-01

    This review provides a perspective on the use of orbital-dependent functionals, which is currently considered one of the most promising avenues in modern density-functional theory. The focus here is on four major themes: the motivation for orbital-dependent functionals in terms of limitations of semilocal functionals; the optimized effective potential as a rigorous approach to incorporating orbital-dependent functionals within the Kohn-Sham framework; the rationale behind and advantages and limitations of four popular classes of orbital-dependent functionals; and the use of orbital-dependent functionals for predicting excited-state properties. For each of these issues, both formal and practical aspects are assessed.

  9. Quantum Theory of Orbital Magnetization and Its Generalization to Interacting Systems

    NASA Astrophysics Data System (ADS)

    Shi, Junren; Vignale, G.; Xiao, Di; Niu, Qian

    2007-11-01

    Based on standard perturbation theory, we present a full quantum derivation of the formula for the orbital magnetization in periodic systems. The derivation is generally valid for insulators with or without a Chern number, for metals at zero or finite temperatures, and at weak as well as strong magnetic fields. The formula is shown to be valid in the presence of electron-electron interaction, provided the one-electron energies and wave functions are calculated self-consistently within the framework of the exact current and spin-density functional theory.

  10. Relating Student Recall to Expert and Novice Teachers' Instructional Communication: An Investigation Using Receiver Selectivity Theory

    ERIC Educational Resources Information Center

    Webster, Collin A.

    2010-01-01

    Background: Research indicates expert and novice teachers communicate differently during instruction. However, these differences have yet to be investigated in relation to student learning. Receiver selectivity theory offers an interpretive framework for understanding how expert-novice communication differences might function to discriminate…

  11. Memory Hazard Functions: A Vehicle for Theory Development and Test

    ERIC Educational Resources Information Center

    Chechile, Richard A.

    2006-01-01

    A framework is developed to rigorously test an entire class of memory retention functions by examining hazard properties. Evidence is provided that the memory hazard function is not monotonically decreasing. Yet most of the proposals for retention functions, which have emerged from the psychological literature, imply that memory hazard is…

  12. Brain and Cognitive Reserve: Translation via Network Control Theory

    PubMed Central

    Medaglia, John Dominic; Pasqualetti, Fabio; Hamilton, Roy H.; Thompson-Schill, Sharon L.; Bassett, Danielle S.

    2017-01-01

    Traditional approaches to understanding the brain’s resilience to neuropathology have identified neurophysiological variables, often described as brain or cognitive “reserve,” associated with better outcomes. However, mechanisms of function and resilience in large-scale brain networks remain poorly understood. Dynamic network theory may provide a basis for substantive advances in understanding functional resilience in the human brain. In this perspective, we describe recent theoretical approaches from network control theory as a framework for investigating network level mechanisms underlying cognitive function and the dynamics of neuroplasticity in the human brain. We describe the theoretical opportunities offered by the application of network control theory at the level of the human connectome to understand cognitive resilience and inform translational intervention. PMID:28104411

  13. Properties of field functionals and characterization of local functionals

    NASA Astrophysics Data System (ADS)

    Brouder, Christian; Dang, Nguyen Viet; Laurent-Gengoux, Camille; Rejzner, Kasia

    2018-02-01

    Functionals (i.e., functions of functions) are widely used in quantum field theory and solid-state physics. In this paper, functionals are given a rigorous mathematical framework and their main properties are described. The choice of the proper space of test functions (smooth functions) and of the relevant concept of differential (Bastiani differential) are discussed. The relation between the multiple derivatives of a functional and the corresponding distributions is described in detail. It is proved that, in a neighborhood of every test function, the support of a smooth functional is uniformly compactly supported and the order of the corresponding distribution is uniformly bounded. Relying on a recent work by Dabrowski, several spaces of functionals are furnished with a complete and nuclear topology. In view of physical applications, it is shown that most formal manipulations can be given a rigorous meaning. A new concept of local functionals is proposed and two characterizations of them are given: the first one uses the additivity (or Hammerstein) property, the second one is a variant of Peetre's theorem. Finally, the first step of a cohomological approach to quantum field theory is carried out by proving a global Poincaré lemma and defining multi-vector fields and graded functionals within our framework.

  14. Achieving Optimal Best: Instructional Efficiency and the Use of Cognitive Load Theory in Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Phan, Huy P.; Ngu, Bing H.; Yeung, Alexander S.

    2017-01-01

    We recently developed the "Framework of Achievement Bests" to explain the importance of effective functioning, personal growth, and enrichment of well-being experiences. This framework postulates a concept known as "optimal achievement best," which stipulates the idea that individuals may, in general, strive to achieve personal…

  15. Neuroanatomical Distribution of Five Semantic Components of Verbs: Evidence from fMRI

    ERIC Educational Resources Information Center

    Kemmerer, David; Castillo, Javier Gonzalez; Talavage, Thomas; Patterson, Stephanie; Wiley, Cynthia

    2008-01-01

    The Simulation Framework, also known as the Embodied Cognition Framework, maintains that conceptual knowledge is grounded in sensorimotor systems. To test several predictions that this theory makes about the neural substrates of verb meanings, we used functional magnetic resonance imaging (fMRI) to scan subjects' brains while they made semantic…

  16. Internal Audit: Does it Enhance Governance in the Australian Public University Sector?

    ERIC Educational Resources Information Center

    Christopher, Joe

    2015-01-01

    This study seeks to confirm if internal audit, a corporate control process, is functioning effectively in Australian public universities. The study draws on agency theory, published literature and best-practice guidelines to develop an internal audit evaluation framework. A survey instrument is thereafter developed from the framework and used as a…

  17. Functional Contextualism: An Ideal Framework for Theory in Instructional Design and Technology

    ERIC Educational Resources Information Center

    Reigeluth, Charles M.; An, Yun-Jo

    2006-01-01

    In this article, the authors comment on Eric Fox's description of functional contextualism which makes several contributions to instructional design and technology (IDT). They agree that functional contextualism does indeed provide some "theoretical clarity and philosophical cohesion," not just for constructivism, but also for understanding…

  18. A modular approach for item response theory modeling with the R package flirt.

    PubMed

    Jeon, Minjeong; Rijmen, Frank

    2016-06-01

    The new R package flirt is introduced for flexible item response theory (IRT) modeling of psychological, educational, and behavior assessment data. flirt integrates a generalized linear and nonlinear mixed modeling framework with graphical model theory. The graphical model framework allows for efficient maximum likelihood estimation. The key feature of flirt is its modular approach to facilitate convenient and flexible model specifications. Researchers can construct customized IRT models by simply selecting various modeling modules, such as parametric forms, number of dimensions, item and person covariates, person groups, link functions, etc. In this paper, we describe major features of flirt and provide examples to illustrate how flirt works in practice.

  19. Framework for scalable adsorbate–adsorbate interaction models

    DOE PAGES

    Hoffmann, Max J.; Medford, Andrew J.; Bligaard, Thomas

    2016-06-02

    Here, we present a framework for physically motivated models of adsorbate–adsorbate interaction between small molecules on transition and coinage metals based on modifications to the substrate electronic structure due to adsorption. We use this framework to develop one model for transition and one for coinage metal surfaces. The models for transition metals are based on the d-band center position, and the models for coinage metals are based on partial charges. The models require no empirical parameters, only two first-principles calculations per adsorbate as input, and therefore scale linearly with the number of reaction intermediates. By theory to theory comparison withmore » explicit density functional theory calculations over a wide range of adsorbates and surfaces, we show that the root-mean-squared error for differential adsorption energies is less than 0.2 eV for up to 1 ML coverage.« less

  20. Beyond Kohn-Sham Approximation: Hybrid Multistate Wave Function and Density Functional Theory.

    PubMed

    Gao, Jiali; Grofe, Adam; Ren, Haisheng; Bao, Peng

    2016-12-15

    A multistate density functional theory (MSDFT) is presented in which the energies and densities for the ground and excited states are treated on the same footing using multiconfigurational approaches. The method can be applied to systems with strong correlation and to correctly describe the dimensionality of the conical intersections between strongly coupled dissociative potential energy surfaces. A dynamic-then-static framework for treating electron correlation is developed to first incorporate dynamic correlation into contracted state functions through block-localized Kohn-Sham density functional theory (KSDFT), followed by diagonalization of the effective Hamiltonian to include static correlation. MSDFT can be regarded as a hybrid of wave function and density functional theory. The method is built on and makes use of the current approximate density functional developed in KSDFT, yet it retains its computational efficiency to treat strongly correlated systems that are problematic for KSDFT but too large for accurate WFT. The results presented in this work show that MSDFT can be applied to photochemical processes involving conical intersections.

  1. A multiscale quasi-continuum theory to determine thermodynamic properties of fluid mixtures in nanochannels

    NASA Astrophysics Data System (ADS)

    Motevaselian, Mohammad Hossein; Mashayak, Sikandar Y.; Aluru, Narayana R.

    2015-11-01

    We present an empirical potential-based quasi-continuum theory (EQT) that seamlessly integrates the interatomic potentials into a continuum framework such as the Nernst-Planck equation. EQT is a simple and fast approach, which provides accurate predictions of potential of mean force (PMF) and density distribution of confined fluids at multiple length-scales, ranging from few Angstroms to macro meters. The EQT potentials can be used to construct the excess free energy functional in the classical density functional theory (cDFT). The combination of EQT and cDFT (EQT-cDFT), allows one to predict the thermodynamic properties of confined fluids. Recently, the EQT-cDFT framework was developed for single component LJ fluids confined in slit-like graphene channels. In this work, we extend the framework to confined LJ fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen molecules inside slit-like graphene channels. We show that the EQT-cDFT predictions for the structure of the confined fluid mixture compare well with the MD simulations. In addition, our results show that graphene nanochannels exhibit a selective adsorption of methane over hydrogen.

  2. Comparing ab initio density-functional and wave function theories: the impact of correlation on the electronic density and the role of the correlation potential.

    PubMed

    Grabowski, Ireneusz; Teale, Andrew M; Śmiga, Szymon; Bartlett, Rodney J

    2011-09-21

    The framework of ab initio density-functional theory (DFT) has been introduced as a way to provide a seamless connection between the Kohn-Sham (KS) formulation of DFT and wave-function based ab initio approaches [R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov, J. Chem. Phys. 122, 034104 (2005)]. Recently, an analysis of the impact of dynamical correlation effects on the density of the neon atom was presented [K. Jankowski, K. Nowakowski, I. Grabowski, and J. Wasilewski, J. Chem. Phys. 130, 164102 (2009)], contrasting the behaviour for a variety of standard density functionals with that of ab initio approaches based on second-order Møller-Plesset (MP2) and coupled cluster theories at the singles-doubles (CCSD) and singles-doubles perturbative triples [CCSD(T)] levels. In the present work, we consider ab initio density functionals based on second-order many-body perturbation theory and coupled cluster perturbation theory in a similar manner, for a range of small atomic and molecular systems. For comparison, we also consider results obtained from MP2, CCSD, and CCSD(T) calculations. In addition to this density based analysis, we determine the KS correlation potentials corresponding to these densities and compare them with those obtained for a range of ab initio density functionals via the optimized effective potential method. The correlation energies, densities, and potentials calculated using ab initio DFT display a similar systematic behaviour to those derived from electronic densities calculated using ab initio wave function theories. In contrast, typical explicit density functionals for the correlation energy, such as VWN5 and LYP, do not show behaviour consistent with this picture of dynamical correlation, although they may provide some degree of correction for already erroneous explicitly density-dependent exchange-only functionals. The results presented here using orbital dependent ab initio density functionals show that they provide a treatment of exchange and correlation contributions within the KS framework that is more consistent with traditional ab initio wave function based methods.

  3. Rule-based graph theory to enable exploration of the space system architecture design space

    NASA Astrophysics Data System (ADS)

    Arney, Dale Curtis

    The primary goal of this research is to improve upon system architecture modeling in order to enable the exploration of design space options. A system architecture is the description of the functional and physical allocation of elements and the relationships, interactions, and interfaces between those elements necessary to satisfy a set of constraints and requirements. The functional allocation defines the functions that each system (element) performs, and the physical allocation defines the systems required to meet those functions. Trading the functionality between systems leads to the architecture-level design space that is available to the system architect. The research presents a methodology that enables the modeling of complex space system architectures using a mathematical framework. To accomplish the goal of improved architecture modeling, the framework meets five goals: technical credibility, adaptability, flexibility, intuitiveness, and exhaustiveness. The framework is technically credible, in that it produces an accurate and complete representation of the system architecture under consideration. The framework is adaptable, in that it provides the ability to create user-specified locations, steady states, and functions. The framework is flexible, in that it allows the user to model system architectures to multiple destinations without changing the underlying framework. The framework is intuitive for user input while still creating a comprehensive mathematical representation that maintains the necessary information to completely model complex system architectures. Finally, the framework is exhaustive, in that it provides the ability to explore the entire system architecture design space. After an extensive search of the literature, graph theory presents a valuable mechanism for representing the flow of information or vehicles within a simple mathematical framework. Graph theory has been used in developing mathematical models of many transportation and network flow problems in the past, where nodes represent physical locations and edges represent the means by which information or vehicles travel between those locations. In space system architecting, expressing the physical locations (low-Earth orbit, low-lunar orbit, etc.) and steady states (interplanetary trajectory) as nodes and the different means of moving between the nodes (propulsive maneuvers, etc.) as edges formulates a mathematical representation of this design space. The selection of a given system architecture using graph theory entails defining the paths that the systems take through the space system architecture graph. A path through the graph is defined as a list of edges that are traversed, which in turn defines functions performed by the system. A structure to compactly represent this information is a matrix, called the system map, in which the column indices are associated with the systems that exist and row indices are associated with the edges, or functions, to which each system has access. Several contributions have been added to the state of the art in space system architecture analysis. The framework adds the capability to rapidly explore the design space without the need to limit trade options or the need for user interaction during the exploration process. The unique mathematical representation of a system architecture, through the use of the adjacency, incidence, and system map matrices, enables automated design space exploration using stochastic optimization processes. The innovative rule-based graph traversal algorithm ensures functional feasibility of each system architecture that is analyzed, and the automatic generation of the system hierarchy eliminates the need for the user to manually determine the relationships between systems during or before the design space exploration process. Finally, the rapid evaluation of system architectures for various mission types enables analysis of the system architecture design space for multiple destinations within an evolutionary exploration program. (Abstract shortened by UMI.).

  4. Tau hadronic spectral function moments: perturbative expansion and αs extractions

    NASA Astrophysics Data System (ADS)

    Boito, D.

    2016-04-01

    In the extraction of αs from hadronic τ decays different moments of the spectral functions have been used. Furthermore, the two mainstream renormalization group improvement (RGI) frameworks, namely Fixed Order Perturbation Theory (FOPT) and Contour Improved Perturbation Theory (CIPT), lead to conflicting values of αs. In order to improve the strategy used in αs determinations, we have performed a systematic study of the perturbative behaviour of these spectral moments in the context of FOPT and CIPT. Higher order coefficients of the perturbative series, yet unknown, were modelled using available knowledge of the renormalon content of the QCD Adler function. We conclude that within these RGI frameworks some of the moments often employed in αs extractions should be avoided due to their poor perturbative behaviour. Finally, under reasonable assumptions about higher orders, we conclude that FOPT is the preferred method to perform the renormalization group improvement of the perturbative series.

  5. Combining statistical inference and decisions in ecology.

    PubMed

    Williams, Perry J; Hooten, Mevin B

    2016-09-01

    Statistical decision theory (SDT) is a sub-field of decision theory that formally incorporates statistical investigation into a decision-theoretic framework to account for uncertainties in a decision problem. SDT provides a unifying analysis of three types of information: statistical results from a data set, knowledge of the consequences of potential choices (i.e., loss), and prior beliefs about a system. SDT links the theoretical development of a large body of statistical methods, including point estimation, hypothesis testing, and confidence interval estimation. The theory and application of SDT have mainly been developed and published in the fields of mathematics, statistics, operations research, and other decision sciences, but have had limited exposure in ecology. Thus, we provide an introduction to SDT for ecologists and describe its utility for linking the conventionally separate tasks of statistical investigation and decision making in a single framework. We describe the basic framework of both Bayesian and frequentist SDT, its traditional use in statistics, and discuss its application to decision problems that occur in ecology. We demonstrate SDT with two types of decisions: Bayesian point estimation and an applied management problem of selecting a prescribed fire rotation for managing a grassland bird species. Central to SDT, and decision theory in general, are loss functions. Thus, we also provide basic guidance and references for constructing loss functions for an SDT problem. © 2016 by the Ecological Society of America.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, J.V.

    The published work on exact penalization is indeed vast. Recently this work has indicated an intimate relationship between exact penalization, Lagrange multipliers, and problem stability or calmness. In the present work we chronicle this development within a simple idealized problem framework, wherein we unify, extend, and refine much of the known theory. In particular, most of the foundations for constrained optimization are developed with the aid of exact penalization techniques. Our approach is highly geometric and is based upon the elementary subdifferential theory for distance functions. It is assumed that the reader is familiar with the theory of convex setsmore » and functions. 54 refs.« less

  7. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme.

    PubMed

    Li, Shaohong L; Truhlar, Donald G

    2015-07-14

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations and atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.

  8. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaohong L.; Truhlar, Donald G.

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations andmore » atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.« less

  9. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme

    DOE PAGES

    Li, Shaohong L.; Truhlar, Donald G.

    2015-05-22

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations andmore » atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.« less

  10. Combining Density Functional Theory and Green's Function Theory: Range-Separated, Nonlocal, Dynamic, and Orbital-Dependent Hybrid Functional.

    PubMed

    Kananenka, Alexei A; Zgid, Dominika

    2017-11-14

    We present a rigorous framework which combines single-particle Green's function theory with density functional theory based on a separation of electron-electron interactions into short- and long-range components. Short-range contribution to the total energy and exchange-correlation potential is provided by a density functional approximation, while the long-range contribution is calculated using an explicit many-body Green's function method. Such a hybrid results in a nonlocal, dynamic, and orbital-dependent exchange-correlation functional of a single-particle Green's function. In particular, we present a range-separated hybrid functional called srSVWN5-lrGF2 which combines the local-density approximation and the second-order Green's function theory. We illustrate that similarly to density functional approximations, the new functional is weakly basis-set dependent. Furthermore, it offers an improved description of the short-range dynamic correlation. The many-body contribution to the functional mitigates the many-electron self-interaction error present in many density functional approximations and provides a better description of molecular properties. Additionally, we illustrate that the new functional can be used to scale down the self-energy and, therefore, introduce an additional sparsity to the self-energy matrix that in the future can be exploited in calculations for large molecules or periodic systems.

  11. Theory of correlation in a network with synaptic depression

    NASA Astrophysics Data System (ADS)

    Igarashi, Yasuhiko; Oizumi, Masafumi; Okada, Masato

    2012-01-01

    Synaptic depression affects not only the mean responses of neurons but also the correlation of response variability in neural populations. Although previous studies have constructed a theory of correlation in a spiking neuron model by using the mean-field theory framework, synaptic depression has not been taken into consideration. We expanded the previous theoretical framework in this study to spiking neuron models with short-term synaptic depression. On the basis of this theory we analytically calculated neural correlations in a ring attractor network with Mexican-hat-type connectivity, which was used as a model of the primary visual cortex. The results revealed that synaptic depression reduces neural correlation, which could be beneficial for sensory coding. Furthermore, our study opens the way for theoretical studies on the effect of interaction change on the linear response function in large stochastic networks.

  12. Computational rationality: linking mechanism and behavior through bounded utility maximization.

    PubMed

    Lewis, Richard L; Howes, Andrew; Singh, Satinder

    2014-04-01

    We propose a framework for including information-processing bounds in rational analyses. It is an application of bounded optimality (Russell & Subramanian, 1995) to the challenges of developing theories of mechanism and behavior. The framework is based on the idea that behaviors are generated by cognitive mechanisms that are adapted to the structure of not only the environment but also the mind and brain itself. We call the framework computational rationality to emphasize the incorporation of computational mechanism into the definition of rational action. Theories are specified as optimal program problems, defined by an adaptation environment, a bounded machine, and a utility function. Such theories yield different classes of explanation, depending on the extent to which they emphasize adaptation to bounds, and adaptation to some ecology that differs from the immediate local environment. We illustrate this variation with examples from three domains: visual attention in a linguistic task, manual response ordering, and reasoning. We explore the relation of this framework to existing "levels" approaches to explanation, and to other optimality-based modeling approaches. Copyright © 2014 Cognitive Science Society, Inc.

  13. Development of intuitive rules: evaluating the application of the dual-system framework to understanding children's intuitive reasoning.

    PubMed

    Osman, Magda; Stavy, Ruth

    2006-12-01

    Theories of adult reasoning propose that reasoning consists of two functionally distinct systems that operate under entirely different mechanisms. This theoretical framework has been used to account for a wide range of phenomena, which now encompasses developmental research on reasoning and problem solving. We begin this review by contrasting three main dual-system theories of adult reasoning (Evans & Over, 1996; Sloman, 1996; Stanovich & West, 2000) with a well-established developmental account that also incorporates a dual-system framework (Brainerd & Reyna, 2001). We use developmental studies of the formation and application of intuitive rules in science and mathematics to evaluate the claims that these theories make. Overall, the evidence reviewed suggests that what is crucial to understanding how children reason is the saliency of the features that are presented within a task. By highlighting the importance of saliency as a way of understanding reasoning, we aim to provide clarity concerning the benefits and limitations of adopting a dual-system framework to account for evidence from developmental studies of intuitive reasoning.

  14. Local control theory using trajectory surface hopping and linear-response time-dependent density functional theory.

    PubMed

    Curchod, Basile F E; Penfold, Thomas J; Rothlisberger, Ursula; Tavernelli, Ivano

    2013-01-01

    The implementation of local control theory using nonadiabatic molecular dynamics within the framework of linear-response time-dependent density functional theory is discussed. The method is applied to study the photoexcitation of lithium fluoride, for which we demonstrate that this approach can efficiently generate a pulse, on-the-fly, able to control the population transfer between two selected electronic states. Analysis of the computed control pulse yields insights into the photophysics of the process identifying the relevant frequencies associated to the curvature of the initial and final state potential energy curves and their energy differences. The limitations inherent to the use of the trajectory surface hopping approach are also discussed.

  15. Connecting Relational Theory and the Systems Theory Framework: Individuals and Their Systems

    ERIC Educational Resources Information Center

    Patton, Wendy

    2007-01-01

    The Systems Theory Framework (STF) facilitates the inclusion of relevant aspects of multiple existing theories within an integrated framework, wherein relevance and meaning is decided upon by each individual. Patton and McMahon emphasise that the application of the Systems Theory Framework in integrating theory and practice is located within the…

  16. A Functional Approach to Televised Political Spots: Acclaiming, Attacking, Defending.

    ERIC Educational Resources Information Center

    Benoit, William L.; Pier, P. M.; Blaney, Joseph R.

    1997-01-01

    Articulates a theoretical framework for understanding the fundamental functions of political advertising (acclaiming, attacking, defending) which occur on the twin grounds of policy considerations and character. Applies this theory of political discourse to presidential general election television spots from 1980-1996, finding that Democrats and…

  17. Postpartum Adjustment in Primiparous Parents.

    ERIC Educational Resources Information Center

    Atkinson, A. Kathleen; Rickel, Annette U.

    Within the framework of the social stress and behavioral theories of depression, this study investigated the hypothesis that postpartum depression is a function of disruption of parents' prepartum functioning by the subsequent demands of infant caretaking. Seventy-eight primiparous married couples (N=156, 78 men and 78 women) volunteered to…

  18. Molecular properties via a subsystem density functional theory formulation: a common framework for electronic embedding.

    PubMed

    Höfener, Sebastian; Gomes, André Severo Pereira; Visscher, Lucas

    2012-01-28

    In this article, we present a consistent derivation of a density functional theory (DFT) based embedding method which encompasses wave-function theory-in-DFT (WFT-in-DFT) and the DFT-based subsystem formulation of response theory (DFT-in-DFT) by Neugebauer [J. Neugebauer, J. Chem. Phys. 131, 084104 (2009)] as special cases. This formulation, which is based on the time-averaged quasi-energy formalism, makes use of the variation Lagrangian techniques to allow the use of non-variational (in particular: coupled cluster) wave-function-based methods. We show how, in the time-independent limit, we naturally obtain expressions for the ground-state DFT-in-DFT and WFT-in-DFT embedding via a local potential. We furthermore provide working equations for the special case in which coupled cluster theory is used to obtain the density and excitation energies of the active subsystem. A sample application is given to demonstrate the method. © 2012 American Institute of Physics

  19. The brain may know more than cognitive theory can tell us: a reply to Ted Parks.

    PubMed

    Dresp, B; Spillmann, L

    2001-01-01

    In reply to Parks' interpretation of Rock's cognitive theory of illusory figures, we maintain our point of view that such a theory has limited heuristic and explanatory power because it fails to predict subjects' responses in psychophysical tasks. As a result, the theoretical framework defended by Parks is not appropriate for suggesting candidate mechanisms of brain-behaviour function that could underly the phenomenal emergence of such figures.

  20. Density-functional theory of spherical electric double layers and zeta potentials of colloidal particles in restricted-primitive-model electrolyte solutions.

    PubMed

    Yu, Yang-Xin; Wu, Jianzhong; Gao, Guang-Hua

    2004-04-15

    A density-functional theory is proposed to describe the density profiles of small ions around an isolated colloidal particle in the framework of the restricted primitive model where the small ions have uniform size and the solvent is represented by a dielectric continuum. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-sphere repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The theoretical predictions are in good agreement with the results from Monte Carlo simulations and from previous investigations using integral-equation theory for the ionic density profiles and the zeta potentials of spherical particles at a variety of solution conditions. Like the integral-equation approaches, the density-functional theory is able to capture the oscillatory density profiles of small ions and the charge inversion (overcharging) phenomena for particles with elevated charge density. In particular, our density-functional theory predicts the formation of a second counterion layer near the surface of highly charged spherical particle. Conversely, the nonlinear Poisson-Boltzmann theory and its variations are unable to represent the oscillatory behavior of small ion distributions and charge inversion. Finally, our density-functional theory predicts charge inversion even in a 1:1 electrolyte solution as long as the salt concentration is sufficiently high. (c) 2004 American Institute of Physics.

  1. Theory and practice in interprofessional ethics: a framework for understanding ethical issues in health care teams.

    PubMed

    Clark, Phillip G; Cott, Cheryl; Drinka, Theresa J K

    2007-12-01

    Interprofessional teamwork is an essential and expanding form of health care practice. While moral issues arising in teamwork relative to the patient have been explored, the analysis of ethical issues regarding the function of the team itself is limited. This paper develops a conceptual framework for organizing and analyzing the different types of ethical issues in interprofessional teamwork. This framework is a matrix that maps the elements of principles, structures, and processes against individual, team, and organizational levels. A case study is presented that illustrates different dimensions of these topics, based on the application of this framework. Finally, a set of conclusions and recommendations is presented to summarize the integration of theory and practice in interprofessional ethics, including: (i) importance of a framework, (ii) interprofessional ethics discourse, and (iii) interprofessional ethics as an emerging field. The goal of this paper is to begin a dialogue and discussion on the ethical issues confronting interprofessional teams and to lay the foundation for an expanding discourse on interprofessional ethics.

  2. Exploring Relationship between Students' Questioning Behaviors and Inquiry Tasks in an Online Forum through Analysis of Ideational Function of Questions

    ERIC Educational Resources Information Center

    Tan, Seng-Chee; Seah, Lay-Hoon

    2011-01-01

    In this study we explored questioning behaviors among elementary students engaging in inquiry science using the "Knowledge Forum", a computer-supported collaborative learning tool. Adapting the theory of systemic functional linguistics, we developed the Ideational Function of Question (IFQ) analytical framework by means of inductive analysis of…

  3. Wigner distribution function and entropy of the damped harmonic oscillator within the theory of the open quantum systems

    NASA Technical Reports Server (NTRS)

    Isar, Aurelian

    1995-01-01

    The harmonic oscillator with dissipation is studied within the framework of the Lindblad theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck equation, obtained from the master equation for the density operator, is solved for the Wigner distribution function, subject to either the Gaussian type or the delta-function type of initial conditions. The obtained Wigner functions are two-dimensional Gaussians with different widths. Then a closed expression for the density operator is extracted. The entropy of the system is subsequently calculated and its temporal behavior shows that this quantity relaxes to its equilibrium value.

  4. Framework based on communicability and flow to analyze complex network dynamics

    NASA Astrophysics Data System (ADS)

    Gilson, M.; Kouvaris, N. E.; Deco, G.; Zamora-López, G.

    2018-05-01

    Graph theory constitutes a widely used and established field providing powerful tools for the characterization of complex networks. The intricate topology of networks can also be investigated by means of the collective dynamics observed in the interactions of self-sustained oscillations (synchronization patterns) or propagationlike processes such as random walks. However, networks are often inferred from real-data-forming dynamic systems, which are different from those employed to reveal their topological characteristics. This stresses the necessity for a theoretical framework dedicated to the mutual relationship between the structure and dynamics in complex networks, as the two sides of the same coin. Here we propose a rigorous framework based on the network response over time (i.e., Green function) to study interactions between nodes across time. For this purpose we define the flow that describes the interplay between the network connectivity and external inputs. This multivariate measure relates to the concepts of graph communicability and the map equation. We illustrate our theory using the multivariate Ornstein-Uhlenbeck process, which describes stable and non-conservative dynamics, but the formalism can be adapted to other local dynamics for which the Green function is known. We provide applications to classical network examples, such as small-world ring and hierarchical networks. Our theory defines a comprehensive framework that is canonically related to directed and weighted networks, thus paving a way to revise the standards for network analysis, from the pairwise interactions between nodes to the global properties of networks including community detection.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vankerschaver, Joris; Liao, Cuicui; Leok, Melvin

    The main goal of this paper is to derive an alternative characterization of the multisymplectic form formula for classical field theories using the geometry of the space of boundary values. We review the concept of Type-I/II generating functionals defined on the space of boundary data of a Lagrangian field theory. On the Lagrangian side, we define an analogue of Jacobi's solution to the Hamilton–Jacobi equation for field theories, and we show that by taking variational derivatives of this functional, we obtain an isotropic submanifold of the space of Cauchy data, described by the so-called multisymplectic form formula. As an examplemore » of the latter, we show that Lorentz's reciprocity principle in electromagnetism is a particular instance of the multisymplectic form formula. We also define a Hamiltonian analogue of Jacobi's solution, and we show that this functional is a Type-II generating functional. We finish the paper by defining a similar framework of generating functions for discrete field theories, and we show that for the linear wave equation, we recover the multisymplectic conservation law of Bridges.« less

  6. Study of the time evolution of correlation functions of the transverse Ising chain with ring frustration by perturbative theory

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen-Yu; Li, Peng

    2018-04-01

    We consider the time evolution of two-point correlation function in the transverse-field Ising chain (TFIC) with ring frustration. The time-evolution procedure we investigated is equivalent to a quench process in which the system is initially prepared in a classical kink state and evolves according to the time-dependent Schrödinger equation. Within a framework of perturbative theory (PT) in the strong kink phase, the evolution of the correlation function is disclosed to demonstrate a qualitatively new behavior in contrast to the traditional case without ring frustration.

  7. The necessity of a theory of biology for tissue engineering: metabolism-repair systems.

    PubMed

    Ganguli, Suman; Hunt, C Anthony

    2004-01-01

    Since there is no widely accepted global theory of biology, tissue engineering and bioengineering lack a theoretical understanding of the systems being engineered. By default, tissue engineering operates with a "reductionist" theoretical approach, inherited from traditional engineering of non-living materials. Long term, that approach is inadequate, since it ignores essential aspects of biology. Metabolism-repair systems are a theoretical framework which explicitly represents two "functional" aspects of living organisms: self-repair and self-replication. Since repair and replication are central to tissue engineering, we advance metabolism-repair systems as a potential theoretical framework for tissue engineering. We present an overview of the framework, and indicate directions to pursue for extending it to the context of tissue engineering. We focus on biological networks, both metabolic and cellular, as one such direction. The construction of these networks, in turn, depends on biological protocols. Together these concepts may help point the way to a global theory of biology appropriate for tissue engineering.

  8. Viscoplastic Model Development with an Eye Toward Characterization

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Walker, Kevin P.

    1995-01-01

    A viscoplastic theory is developed that reduces analytically to creep theory under steady-state conditions. A viscoplastic model is constructed within this theoretical framework by defining material functions that have close ties to the physics of inelasticity. As a consequence, this model is easily characterized-only steady-state creep data, monotonic stress-strain curves, and saturated stress-strain hysteresis loops are required.

  9. Quantum-kinetic theory of photocurrent generation via direct and phonon-mediated optical transitions

    NASA Astrophysics Data System (ADS)

    Aeberhard, U.

    2011-07-01

    A quantum kinetic theory of direct and phonon-mediated indirect optical transitions is developed within the framework of the nonequilibrium Green’s function formalism. After validation against the standard Fermi golden rule approach in the bulk case, it is used in the simulation of photocurrent generation in ultrathin crystalline silicon p-i-n junction devices.

  10. On the pth moment estimates of solutions to stochastic functional differential equations in the G-framework.

    PubMed

    Faizullah, Faiz

    2016-01-01

    The aim of the current paper is to present the path-wise and moment estimates for solutions to stochastic functional differential equations with non-linear growth condition in the framework of G-expectation and G-Brownian motion. Under the nonlinear growth condition, the pth moment estimates for solutions to SFDEs driven by G-Brownian motion are proved. The properties of G-expectations, Hölder's inequality, Bihari's inequality, Gronwall's inequality and Burkholder-Davis-Gundy inequalities are used to develop the above mentioned theory. In addition, the path-wise asymptotic estimates and continuity of pth moment for the solutions to SFDEs in the G-framework, with non-linear growth condition are shown.

  11. General Theory of Carrier-Envelope Phase Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roudnev, V.; Esry, B. D.

    2007-11-30

    We present a general framework for understanding carrier-envelope phase (CEP) effects in a quantum system interacting with an intense, short laser pulse. We establish a simple connection between the CEP and the wave function that can be exploited to obtain the full CEP dependence of an observable given the wave function at a single CEP. Within this framework, all CEP effects are interpreted as interference between different photon amplitudes which, in turn, can be used to put limits on the pulse lengths and intensities required to see significant CEP effects.

  12. An open-source framework for analyzing N-electron dynamics. II. Hybrid density functional theory/configuration interaction methodology.

    PubMed

    Hermann, Gunter; Pohl, Vincent; Tremblay, Jean Christophe

    2017-10-30

    In this contribution, we extend our framework for analyzing and visualizing correlated many-electron dynamics to non-variational, highly scalable electronic structure method. Specifically, an explicitly time-dependent electronic wave packet is written as a linear combination of N-electron wave functions at the configuration interaction singles (CIS) level, which are obtained from a reference time-dependent density functional theory (TDDFT) calculation. The procedure is implemented in the open-source Python program detCI@ORBKIT, which extends the capabilities of our recently published post-processing toolbox (Hermann et al., J. Comput. Chem. 2016, 37, 1511). From the output of standard quantum chemistry packages using atom-centered Gaussian-type basis functions, the framework exploits the multideterminental structure of the hybrid TDDFT/CIS wave packet to compute fundamental one-electron quantities such as difference electronic densities, transient electronic flux densities, and transition dipole moments. The hybrid scheme is benchmarked against wave function data for the laser-driven state selective excitation in LiH. It is shown that all features of the electron dynamics are in good quantitative agreement with the higher-level method provided a judicious choice of functional is made. Broadband excitation of a medium-sized organic chromophore further demonstrates the scalability of the method. In addition, the time-dependent flux densities unravel the mechanistic details of the simulated charge migration process at a glance. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. [Relational Frame Theory--A Theoretical Framework for Contextual Behavioral Science].

    PubMed

    Kensche, M; Schweiger, U

    2015-07-01

    Therapists have to deal with verbal systems and often work with verbal exchange. Therefore, a psychological theory is required, which teaches the therapist how to accomplish this task. The BRT is a theory of human language and cognition that explains how people use their verbal behavior as stimuli in their interrelations and how they act and react, based on the resulting relationships. This behavior is learned very early in the course of language acquisition and functions as a generalized operant. A prerequisite for this is the ability of people to undergo mental simulation. This enables them to construct diverse relational frameworks between individual stimuli. Without relational frameworks, people cannot function. The ability to establish a relational framework is a prerequisite for the formation of rule-governed behavior. Rule-governed behavior economizes complex decision processes, creates interpersonal security and enables dealing with events before they take place. On the other hand, the same properties that enable people to solve problems effectively can also contribute to rigid adherence to rules and experience avoidance. Relational frameworks, once established, outweigh other sources of behavioral regulation. Thus, it can become the basis of psychopathology. Poor contextual control makes it difficult for people to devote flexible, focused and voluntary attention to the present and align their actions with the immediate present. Contextual psychotherapy methods that are based on the BRT start precisely at this point: Targeted establishment of new contingencies in the therapeutic interaction through systematic strengthening of metacognitive mode and through the establishment of new rules that make possible a change in the rule-governed behavior enable undermining of dysfunctional rule-governed behavior and build up desirable behavior. This allows any therapeutic process to be more effective--regardless of the patient's expressed symptoms. © Georg Thieme Verlag KG Stuttgart · New York.

  14. [Relational frame theory - a theoretical framework for contextual behavioral science].

    PubMed

    Kensche, M; Schweiger, U

    2015-05-01

    Therapists have to deal with verbal systems and often work with verbal exchange. Therefore, a psychological theory is required, which teaches the therapist how to accomplish this task. The BRT is a theory of human language and cognition that explains how people use their verbal behavior as stimuli in their interrelations and how they act and react, based on the resulting relationships. This behavior is learned very early in the course of language acquisition and functions as a generalized operant. A prerequisite for this is the ability of people to undergo mental simulation. This enables them to construct diverse relational frameworks between individual stimuli. Without relational frameworks, people cannot function. The ability to establish a relational framework is a prerequisite for the formation of rule-governed behavior. Rule-governed behavior economizes complex decision processes, creates interpersonal security and enables dealing with events before they take place. On the other hand, the same properties that enable people to solve problems effectively can also contribute to rigid adherence to rules and experience avoidance. Relational frameworks, once established, outweigh other sources of behavioral regulation. Thus, it can become the basis of psychopathology. Poor contextual control makes it difficult for people to devote flexible, focused and voluntary attention to the present and align their actions with the immediate present. Contextual psychotherapy methods that are based on the BRT start precisely at this point: Targeted establishment of new contingencies in the therapeutic interaction through systematic strengthening of metacognitive mode and through the establishment of new rules that make possible a change in the rule-governed behavior enable undermining of dysfunctional rule-governed behavior and build up desirable behavior. This allows any therapeutic process to be more effective - regardless of the patient's expressed symptoms. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Winners, Losers, Insiders, and Outsiders: Comparing Hierometer and Sociometer Theories of Self-Regard

    PubMed Central

    Mahadevan, Nikhila; Gregg, Aiden P.; Sedikides, Constantine; de Waal-Andrews, Wendy G.

    2016-01-01

    What evolutionary function does self-regard serve? Hierometer theory, introduced here, provides one answer: it helps individuals navigate status hierarchies, which feature zero-sum contests that can be lost as well as won. In particular, self-regard tracks social status to regulate behavioral assertiveness, augmenting or diminishing it to optimize performance in such contests. Hierometer theory also offers a conceptual counterpoint that helps resolve ambiguities in sociometer theory, which offers a complementary account of self-regard’s evolutionary function. In two large-scale cross-sectional studies, we operationalized theoretically relevant variables at three distinct levels of analysis, namely, social (relations: status, inclusion), psychological (self-regard: self-esteem, narcissism), and behavioral (strategy: assertiveness, affiliativeness). Correlational and mediational analyses consistently supported hierometer theory, but offered only mixed support for sociometer theory, including when controlling for confounding constructs (anxiety, depression). We interpret our results in terms of a broader agency-communion framework. PMID:27065896

  16. Hybrid modeling in biochemical systems theory by means of functional petri nets.

    PubMed

    Wu, Jialiang; Voit, Eberhard

    2009-02-01

    Many biological systems are genuinely hybrids consisting of interacting discrete and continuous components and processes that often operate at different time scales. It is therefore desirable to create modeling frameworks capable of combining differently structured processes and permitting their analysis over multiple time horizons. During the past 40 years, Biochemical Systems Theory (BST) has been a very successful approach to elucidating metabolic, gene regulatory, and signaling systems. However, its foundation in ordinary differential equations has precluded BST from directly addressing problems containing switches, delays, and stochastic effects. In this study, we extend BST to hybrid modeling within the framework of Hybrid Functional Petri Nets (HFPN). First, we show how the canonical GMA and S-system models in BST can be directly implemented in a standard Petri Net framework. In a second step we demonstrate how to account for different types of time delays as well as for discrete, stochastic, and switching effects. Using representative test cases, we validate the hybrid modeling approach through comparative analyses and simulations with other approaches and highlight the feasibility, quality, and efficiency of the hybrid method.

  17. Functional Interdependence Theory: An Evolutionary Account of Social Situations.

    PubMed

    Balliet, Daniel; Tybur, Joshua M; Van Lange, Paul A M

    2017-11-01

    Social interactions are characterized by distinct forms of interdependence, each of which has unique effects on how behavior unfolds within the interaction. Despite this, little is known about the psychological mechanisms that allow people to detect and respond to the nature of interdependence in any given interaction. We propose that interdependence theory provides clues regarding the structure of interdependence in the human ancestral past. In turn, evolutionary psychology offers a framework for understanding the types of information processing mechanisms that could have been shaped under these recurring conditions. We synthesize and extend these two perspectives to introduce a new theory: functional interdependence theory (FIT). FIT can generate testable hypotheses about the function and structure of the psychological mechanisms for inferring interdependence. This new perspective offers insight into how people initiate and maintain cooperative relationships, select social partners and allies, and identify opportunities to signal social motives.

  18. τ hadronic spectral function moments in a nonpower QCD perturbation theory

    NASA Astrophysics Data System (ADS)

    Abbas, Gauhar; Ananthanarayan, B.; Caprini, I.; Fischer, J.

    2016-04-01

    The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling and other QCD parameters from the hadronic decays of the τ lepton. We consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ;reference model;, including moments that are poorly described by the standard expansions.

  19. Cognitive and neural foundations of religious belief.

    PubMed

    Kapogiannis, Dimitrios; Barbey, Aron K; Su, Michael; Zamboni, Giovanna; Krueger, Frank; Grafman, Jordan

    2009-03-24

    We propose an integrative cognitive neuroscience framework for understanding the cognitive and neural foundations of religious belief. Our analysis reveals 3 psychological dimensions of religious belief (God's perceived level of involvement, God's perceived emotion, and doctrinal/experiential religious knowledge), which functional MRI localizes within networks processing Theory of Mind regarding intent and emotion, abstract semantics, and imagery. Our results are unique in demonstrating that specific components of religious belief are mediated by well-known brain networks, and support contemporary psychological theories that ground religious belief within evolutionary adaptive cognitive functions.

  20. A mathematical description of the inclusive fitness theory.

    PubMed

    Wakano, Joe Yuichiro; Ohtsuki, Hisashi; Kobayashi, Yutaka

    2013-03-01

    Recent developments in the inclusive fitness theory have revealed that the direction of evolution can be analytically predicted in a wider class of models than previously thought, such as those models dealing with network structure. This paper aims to provide a mathematical description of the inclusive fitness theory. Specifically, we provide a general framework based on a Markov chain that can implement basic models of inclusive fitness. Our framework is based on the probability distribution of "offspring-to-parent map", from which the key concepts of the theory, such as fitness function, relatedness and inclusive fitness, are derived in a straightforward manner. We prove theorems showing that inclusive fitness always provides a correct prediction on which of two competing genes more frequently appears in the long run in the Markov chain. As an application of the theorems, we prove a general formula of the optimal dispersal rate in the Wright's island model with recurrent mutations. We also show the existence of the critical mutation rate, which does not depend on the number of islands and below which a positive dispersal rate evolves. Our framework can also be applied to lattice or network structured populations. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Extension of many-body theory and approximate density functionals to fractional charges and fractional spins.

    PubMed

    Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J

    2013-09-14

    The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the fractional charge. It should play an important role in developing accurate approximate density functionals and many-body theory.

  2. Building a functional multiple intelligences theory to advance educational neuroscience.

    PubMed

    Cerruti, Carlo

    2013-01-01

    A key goal of educational neuroscience is to conduct constrained experimental research that is theory-driven and yet also clearly related to educators' complex set of questions and concerns. However, the fields of education, cognitive psychology, and neuroscience use different levels of description to characterize human ability. An important advance in research in educational neuroscience would be the identification of a cognitive and neurocognitive framework at a level of description relatively intuitive to educators. I argue that the theory of multiple intelligences (MI; Gardner, 1983), a conception of the mind that motivated a past generation of teachers, may provide such an opportunity. I criticize MI for doing little to clarify for teachers a core misunderstanding, specifically that MI was only an anatomical map of the mind but not a functional theory that detailed how the mind actually processes information. In an attempt to build a "functional MI" theory, I integrate into MI basic principles of cognitive and neural functioning, namely interregional neural facilitation and inhibition. In so doing I hope to forge a path toward constrained experimental research that bears upon teachers' concerns about teaching and learning.

  3. The relativity of biological function.

    PubMed

    Laubichler, Manfred D; Stadler, Peter F; Prohaska, Sonja J; Nowick, Katja

    2015-12-01

    Function is a central concept in biological theories and explanations. Yet discussions about function are often based on a narrow understanding of biological systems and processes, such as idealized molecular systems or simple evolutionary, i.e., selective, dynamics. Conflicting conceptions of function continue to be used in the scientific literature to support certain claims, for instance about the fraction of "functional DNA" in the human genome. Here we argue that all biologically meaningful interpretations of function are necessarily context dependent. This implies that they derive their meaning as well as their range of applicability only within a specific theoretical and measurement context. We use this framework to shed light on the current debate about functional DNA and argue that without considering explicitly the theoretical and measurement contexts all attempts to integrate biological theories are prone to fail.

  4. An advanced kinetic theory for morphing continuum with inner structures

    NASA Astrophysics Data System (ADS)

    Chen, James

    2017-12-01

    Advanced kinetic theory with the Boltzmann-Curtiss equation provides a promising tool for polyatomic gas flows, especially for fluid flows containing inner structures, such as turbulence, polyatomic gas flows and others. Although a Hamiltonian-based distribution function was proposed for diatomic gas flow, a general distribution function for the generalized Boltzmann-Curtiss equations and polyatomic gas flow is still out of reach. With assistance from Boltzmann's entropy principle, a generalized Boltzmann-Curtiss distribution for polyatomic gas flow is introduced. The corresponding governing equations at equilibrium state are derived and compared with Eringen's morphing (micropolar) continuum theory derived under the framework of rational continuum thermomechanics. Although rational continuum thermomechanics has the advantages of mathematical rigor and simplicity, the presented statistical kinetic theory approach provides a clear physical picture for what the governing equations represent.

  5. Computing decay rates for new physics theories with FEYNRULES and MADGRAPH 5_AMC@NLO

    NASA Astrophysics Data System (ADS)

    Alwall, Johan; Duhr, Claude; Fuks, Benjamin; Mattelaer, Olivier; Öztürk, Deniz Gizem; Shen, Chia-Hsien

    2015-12-01

    We present new features of the FEYNRULES and MADGRAPH 5_AMC@NLO programs for the automatic computation of decay widths that consistently include channels of arbitrary final-state multiplicity. The implementations are generic enough so that they can be used in the framework of any quantum field theory, possibly including higher-dimensional operators. We extend at the same time the conventions of the Universal FEYNRULES Output (or UFO) format to include decay tables and information on the total widths. We finally provide a set of representative examples of the usage of the new functions of the different codes in the framework of the Standard Model, the Higgs Effective Field Theory, the Strongly Interacting Light Higgs model and the Minimal Supersymmetric Standard Model and compare the results to available literature and programs for validation purposes.

  6. Phase-field modeling of isothermal quasi-incompressible multicomponent liquids

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.

    2016-09-01

    In this paper general dynamic equations describing the time evolution of isothermal quasi-incompressible multicomponent liquids are derived in the framework of the classical Ginzburg-Landau theory of first order phase transformations. Based on the fundamental equations of continuum mechanics, a general convection-diffusion dynamics is set up first for compressible liquids. The constitutive relations for the diffusion fluxes and the capillary stress are determined in the framework of gradient theories. Next the general definition of incompressibility is given, which is taken into account in the derivation by using the Lagrange multiplier method. To validate the theory, the dynamic equations are solved numerically for the quaternary quasi-incompressible Cahn-Hilliard system. It is demonstrated that variable density (i) has no effect on equilibrium (in case of a suitably constructed free energy functional) and (ii) can influence nonequilibrium pattern formation significantly.

  7. Brain-Mind Operational Architectonics Imaging: Technical and Methodological Aspects

    PubMed Central

    Fingelkurts, Andrew A; Fingelkurts, Alexander A

    2008-01-01

    This review paper deals with methodological and technical foundations of the Operational Architectonics framework of brain and mind functioning. This theory provides a framework for mapping and understanding important aspects of the brain mechanisms that constitute perception, cognition, and eventually consciousness. The methods utilized within Operational Architectonics framework allow analyzing with an incredible detail the operational behavior of local neuronal assemblies and their joint activity in the form of unified and metastable operational modules, which constitute the whole hierarchy of brain operations, operations of cognition and phenomenal consciousness. PMID:19526071

  8. Perturbative Out of Equilibrium Quantum Field Theory beyond the Gradient Approximation and Generalized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Ozaki, H.

    2004-01-01

    Using the closed-time-path formalism, we construct perturbative frameworks, in terms of quasiparticle picture, for studying quasiuniform relativistic quantum field systems near equilibrium and non-equilibrium quasistationary systems. We employ the derivative expansion and take in up to the second-order term, i.e., one-order higher than the gradient approximation. After constructing self-energy resummed propagator, we formulated two kinds of mutually equivalent perturbative frameworks: The first one is formulated on the basis of the ``bare'' number density function, and the second one is formulated on the basis of ``physical'' number density function. In the course of construction of the second framework, the generalized Boltzmann equations directly come out, which describe the evolution of the system.

  9. The mind-body relationship in psychotherapy: grounded cognition as an explanatory framework

    PubMed Central

    Leitan, Nuwan D.; Murray, Greg

    2014-01-01

    As a discipline, psychology is defined by its location in the ambiguous space between mind and body, but theories underpinning the application of psychology in psychotherapy are largely silent on this fundamental metaphysical issue. This is a remarkable state of affairs, given that psychotherapy is typically a real-time meeting between two embodied agents, with the goal of facilitating behavior change in one party. The overarching aim of this paper is to problematize the mind–body relationship in psychotherapy in the service of encouraging advances in theory and practice. The paper briefly explores various psychotherapeutic approaches to help explicate relationships between mind and body from these perspectives. Themes arising from this analysis include a tendency toward dualism (separation of mind and body from the conceptualization of human functioning), exclusivism (elimination of either mind or body from the conceptualization of human functioning), or mind–body monism (conceptualization of mind and body as a single, holistic system). We conclude that the literature, as a whole, does not demonstrate consensus, regarding the relationship between mind and body in psychotherapy. We then introduce a contemporary, holistic, psychological conceptualization of the relationship between mind and body, and argue for its potential utility as an organizing framework for psychotherapeutic theory and practice. The holistic approach we explore, “grounded cognition,” arises from a long philosophical tradition, is influential in current cognitive science, and presents a coherent empirically testable framework integrating subjective and objective perspectives. Finally, we demonstrate how this “grounded cognition” perspective might lead to advances in the theory and practice of psychotherapy. PMID:24904486

  10. The mind-body relationship in psychotherapy: grounded cognition as an explanatory framework.

    PubMed

    Leitan, Nuwan D; Murray, Greg

    2014-01-01

    As a discipline, psychology is defined by its location in the ambiguous space between mind and body, but theories underpinning the application of psychology in psychotherapy are largely silent on this fundamental metaphysical issue. This is a remarkable state of affairs, given that psychotherapy is typically a real-time meeting between two embodied agents, with the goal of facilitating behavior change in one party. The overarching aim of this paper is to problematize the mind-body relationship in psychotherapy in the service of encouraging advances in theory and practice. The paper briefly explores various psychotherapeutic approaches to help explicate relationships between mind and body from these perspectives. Themes arising from this analysis include a tendency toward dualism (separation of mind and body from the conceptualization of human functioning), exclusivism (elimination of either mind or body from the conceptualization of human functioning), or mind-body monism (conceptualization of mind and body as a single, holistic system). We conclude that the literature, as a whole, does not demonstrate consensus, regarding the relationship between mind and body in psychotherapy. We then introduce a contemporary, holistic, psychological conceptualization of the relationship between mind and body, and argue for its potential utility as an organizing framework for psychotherapeutic theory and practice. The holistic approach we explore, "grounded cognition," arises from a long philosophical tradition, is influential in current cognitive science, and presents a coherent empirically testable framework integrating subjective and objective perspectives. Finally, we demonstrate how this "grounded cognition" perspective might lead to advances in the theory and practice of psychotherapy.

  11. Neurotic Anxiety, Pronoun Usage, and Stress

    ERIC Educational Resources Information Center

    Alban, Lewis Sigmund; Groman, William D.

    1976-01-01

    Attempts to clarify the function of a particular aspect of verbal communication, pronoun usage, by (a) using a Gestalt Therapy theory conceptual framework and (b) experimentally focusing on the relationship of pronoun usage to neurotic anxiety and emotional stress. (Author/RK)

  12. A Framework for Developing Vocational Education Theory and Practice.

    ERIC Educational Resources Information Center

    Nelson, Eugene A.; Pautler, Albert J.

    1988-01-01

    Asserts that education lacks a validated theory of learning and teaching. Chief among the causes is the lack of a framework within which diverse theories can be integrated. General systems theory is proposed as a source for a framework. (JOW)

  13. Benchmarking density functional theory predictions of framework structures and properties in a chemically diverse test set of metal-organic frameworks

    DOE PAGES

    Nazarian, Dalar; Ganesh, P.; Sholl, David S.

    2015-09-30

    We compiled a test set of chemically and topologically diverse Metal–Organic Frameworks (MOFs) with high accuracy experimentally derived crystallographic structure data. The test set was used to benchmark the performance of Density Functional Theory (DFT) functionals (M06L, PBE, PW91, PBE-D2, PBE-D3, and vdW-DF2) for predicting lattice parameters, unit cell volume, bonded parameters and pore descriptors. On average PBE-D2, PBE-D3, and vdW-DF2 predict more accurate structures, but all functionals predicted pore diameters within 0.5 Å of the experimental diameter for every MOF in the test set. The test set was also used to assess the variance in performance of DFT functionalsmore » for elastic properties and atomic partial charges. The DFT predicted elastic properties such as minimum shear modulus and Young's modulus can differ by an average of 3 and 9 GPa for rigid MOFs such as those in the test set. Moreover, we calculated the partial charges by vdW-DF2 deviate the most from other functionals while there is no significant difference between the partial charges calculated by M06L, PBE, PW91, PBE-D2 and PBE-D3 for the MOFs in the test set. We find that while there are differences in the magnitude of the properties predicted by the various functionals, these discrepancies are small compared to the accuracy necessary for most practical applications.« less

  14. Relationships among Classical Test Theory and Item Response Theory Frameworks via Factor Analytic Models

    ERIC Educational Resources Information Center

    Kohli, Nidhi; Koran, Jennifer; Henn, Lisa

    2015-01-01

    There are well-defined theoretical differences between the classical test theory (CTT) and item response theory (IRT) frameworks. It is understood that in the CTT framework, person and item statistics are test- and sample-dependent. This is not the perception with IRT. For this reason, the IRT framework is considered to be theoretically superior…

  15. False vacuum decay in quantum mechanics and four dimensional scalar field theory

    NASA Astrophysics Data System (ADS)

    Bezuglov, Maxim

    2018-04-01

    When the Higgs boson was discovered in 2012 it was realized that electroweak vacuum may suffer a possible metastability on the Planck scale and can eventually decay. To understand this problem it is important to have reliable predictions for the vacuum decay rate within the framework of quantum field theory. For now, it can only be done at one loop level, which is apparently is not enough. The aim of this work is to develop a technique for the calculation of two and higher order radiative corrections to the false vacuum decay rate in the framework of four dimensional scalar quantum field theory and then apply it to the case of the Standard Model. To achieve this goal, we first start from the case of d=1 dimensional QFT i.e. quantum mechanics. We show that for some potentials two and three loop corrections can be very important and must be taken into account. Next, we use quantum mechanical example as a template for the general d=4 dimensional theory. In it we are concentrating on the calculations of bounce solution and corresponding Green function in so called thin wall approximation. The obtained Green function is then used as a main ingredient for the calculation of two loop radiative corrections to the false vacuum decay rate.

  16. Intrinsic or Extrinsic? Using Videogames to Motivate Stroke Survivors: A Systematic Review.

    PubMed

    Swanson, LaTasha R; Whittinghill, David M

    2015-06-01

    The main objective of this study was to explore, via a systematic review of available literature, the effectiveness of videogame-based rehabilitation interventions on the motivation and health outcomes of stroke patients. Using a systematic literature review of 18 articles, we sought to address three key research questions: (1) Do videogames improve function or health outcomes among stroke survivors? (2) Do videogames increase stroke patients' motivation to engage in rehabilitation exercise and activities? (3) Which motivational techniques, principles, and theoretical frameworks have been applied in the reviewed studies? A key word search was conducted, and articles were coded for inclusion of motivational theories or principles, intervention effectiveness, and participants' motivation to perform tasks. Three motivational frameworks and principles were used (self-determination theory [SDT], flow theory, and operant conditioning) to investigate intrinsic and extrinsic approaches. Past research suggests videogame-based interventions are effective at improving and increasing a variety of health-related outcomes, including motor functioning, energy expenditure, muscle strength, and recovery times in stroke patients. Past evidence shows videogame-based interventions are a promising tool to motivate stroke patients' engagement in effective rehabilitation activities. This study also identifies an opportunity for future research to apply motivational theories from SDT to studies on stroke rehabilitation and videogames.

  17. The power of exact conditions in electronic structure theory

    NASA Astrophysics Data System (ADS)

    Bartlett, Rodney J.; Ranasinghe, Duminda S.

    2017-02-01

    Once electron correlation is included in an effective one-particle operator, one has a correlated orbital theory (COT). One such theory is Kohn-Sham density functional theory (KS-DFT), but there are others. Such methods have the prospect to redefine traditional Molecular Orbital (MO) theory by building a quantitative component upon its conceptual framework. This paper asks the question what conditions should such a theory satisfy and can this be accomplished? One such condition for a COT is that the orbital eigenvalues should satisfy an ionization theorem that generalizes Koopmans' approximation to the exact principal ionization potentials for every electron in a molecule. Guided by this principle, minimal parameterizations of KS-DFT are made that provide a good approximation to a quantitative MO theory.

  18. Quantum mechanics as classical statistical mechanics with an ontic extension and an epistemic restriction.

    PubMed

    Budiyono, Agung; Rohrlich, Daniel

    2017-11-03

    Where does quantum mechanics part ways with classical mechanics? How does quantum randomness differ fundamentally from classical randomness? We cannot fully explain how the theories differ until we can derive them within a single axiomatic framework, allowing an unambiguous account of how one theory is the limit of the other. Here we derive non-relativistic quantum mechanics and classical statistical mechanics within a common framework. The common axioms include conservation of average energy and conservation of probability current. But two axioms distinguish quantum mechanics from classical statistical mechanics: an "ontic extension" defines a nonseparable (global) random variable that generates physical correlations, and an "epistemic restriction" constrains allowed phase space distributions. The ontic extension and epistemic restriction, with strength on the order of Planck's constant, imply quantum entanglement and uncertainty relations. This framework suggests that the wave function is epistemic, yet it does not provide an ontic dynamics for individual systems.

  19. On the calculation of charge transfer transitions with standard density functionals using constrained variational density functional theory.

    PubMed

    Ziegler, Tom; Krykunov, Mykhaylo

    2010-08-21

    It is well known that time-dependent density functional theory (TD-DFT) based on standard gradient corrected functionals affords both a quantitative and qualitative incorrect picture of charge transfer transitions between two spatially separated regions. It is shown here that the well known failure can be traced back to the use of linear response theory. Further, it is demonstrated that the inclusion of higher order terms readily affords a qualitatively correct picture even for simple functionals based on the local density approximation. The inclusion of these terms is done within the framework of a newly developed variational approach to excitation energies called constrained variational density functional theory (CV-DFT). To second order [CV(2)-DFT] this theory is identical to adiabatic TD-DFT within the Tamm-Dancoff approximation. With inclusion of fourth order corrections [CV(4)-DFT] it affords a qualitative correct description of charge transfer transitions. It is finally demonstrated that the relaxation of the ground state Kohn-Sham orbitals to first order in response to the change in density on excitation together with CV(4)-DFT affords charge transfer excitations in good agreement with experiment. The new relaxed theory is termed R-CV(4)-DFT. The relaxed scheme represents an effective way in which to introduce double replacements into the description of single electron excitations, something that would otherwise require a frequency dependent kernel.

  20. General framework for fluctuating dynamic density functional theory

    NASA Astrophysics Data System (ADS)

    Durán-Olivencia, Miguel A.; Yatsyshin, Peter; Goddard, Benjamin D.; Kalliadasis, Serafim

    2017-12-01

    We introduce a versatile bottom-up derivation of a formal theoretical framework to describe (passive) soft-matter systems out of equilibrium subject to fluctuations. We provide a unique connection between the constituent-particle dynamics of real systems and the time evolution equation of their measurable (coarse-grained) quantities, such as local density and velocity. The starting point is the full Hamiltonian description of a system of colloidal particles immersed in a fluid of identical bath particles. Then, we average out the bath via Zwanzig’s projection-operator techniques and obtain the stochastic Langevin equations governing the colloidal-particle dynamics. Introducing the appropriate definition of the local number and momentum density fields yields a generalisation of the Dean-Kawasaki (DK) model, which resembles the stochastic Navier-Stokes description of a fluid. Nevertheless, the DK equation still contains all the microscopic information and, for that reason, does not represent the dynamical law of observable quantities. We address this controversial feature of the DK description by carrying out a nonequilibrium ensemble average. Adopting a natural decomposition into local-equilibrium and nonequilibrium contribution, where the former is related to a generalised version of the canonical distribution, we finally obtain the fluctuating-hydrodynamic equation governing the time-evolution of the mesoscopic density and momentum fields. Along the way, we outline the connection between the ad hoc energy functional introduced in previous DK derivations and the free-energy functional from classical density-functional theory. The resultant equation has the structure of a dynamical density-functional theory (DDFT) with an additional fluctuating force coming from the random interactions with the bath. We show that our fluctuating DDFT formalism corresponds to a particular version of the fluctuating Navier-Stokes equations, originally derived by Landau and Lifshitz. Our framework thus provides the formal apparatus for ab initio derivations of fluctuating DDFT equations capable of describing the dynamics of soft-matter systems in and out of equilibrium.

  1. Quantifying uncertainty in partially specified biological models: how can optimal control theory help us?

    PubMed

    Adamson, M W; Morozov, A Y; Kuzenkov, O A

    2016-09-01

    Mathematical models in biology are highly simplified representations of a complex underlying reality and there is always a high degree of uncertainty with regards to model function specification. This uncertainty becomes critical for models in which the use of different functions fitting the same dataset can yield substantially different predictions-a property known as structural sensitivity. Thus, even if the model is purely deterministic, then the uncertainty in the model functions carries through into uncertainty in model predictions, and new frameworks are required to tackle this fundamental problem. Here, we consider a framework that uses partially specified models in which some functions are not represented by a specific form. The main idea is to project infinite dimensional function space into a low-dimensional space taking into account biological constraints. The key question of how to carry out this projection has so far remained a serious mathematical challenge and hindered the use of partially specified models. Here, we propose and demonstrate a potentially powerful technique to perform such a projection by using optimal control theory to construct functions with the specified global properties. This approach opens up the prospect of a flexible and easy to use method to fulfil uncertainty analysis of biological models.

  2. Massively parallel GPU-accelerated minimization of classical density functional theory

    NASA Astrophysics Data System (ADS)

    Stopper, Daniel; Roth, Roland

    2017-08-01

    In this paper, we discuss the ability to numerically minimize the grand potential of hard disks in two-dimensional and of hard spheres in three-dimensional space within the framework of classical density functional and fundamental measure theory on modern graphics cards. Our main finding is that a massively parallel minimization leads to an enormous performance gain in comparison to standard sequential minimization schemes. Furthermore, the results indicate that in complex multi-dimensional situations, a heavy parallel minimization of the grand potential seems to be mandatory in order to reach a reasonable balance between accuracy and computational cost.

  3. Nanofilter platform based on functionalized carbon nanotubes for adsorption and elimination of Acrolein, a toxicant in cigarette smoke

    NASA Astrophysics Data System (ADS)

    Yoosefian, Mehdi; Pakpour, Atef; Etminan, Nazanin

    2018-06-01

    This paper discusses the use of carboxylated single-walled carbon nanotube as a general nanofilter platform for the removal of acrolein carcinogen from cigarette smoke. The analyses carried out in the detailed study of the electronic and structural effects of the adsorption of acrolein onto COOH loaded on single-walled carbon nanotube under the density functional theory framework. The results of Bader theory of atoms in molecules, natural bond orbital, molecular potential electron surface and density of state confirm the potential application of the suggested nanofilter platform.

  4. Theories, models and frameworks used in capacity building interventions relevant to public health: a systematic review.

    PubMed

    Bergeron, Kim; Abdi, Samiya; DeCorby, Kara; Mensah, Gloria; Rempel, Benjamin; Manson, Heather

    2017-11-28

    There is limited research on capacity building interventions that include theoretical foundations. The purpose of this systematic review is to identify underlying theories, models and frameworks used to support capacity building interventions relevant to public health practice. The aim is to inform and improve capacity building practices and services offered by public health organizations. Four search strategies were used: 1) electronic database searching; 2) reference lists of included papers; 3) key informant consultation; and 4) grey literature searching. Inclusion and exclusion criteria are outlined with included papers focusing on capacity building, learning plans, professional development plans in combination with tools, resources, processes, procedures, steps, model, framework, guideline, described in a public health or healthcare setting, or non-government, government, or community organizations as they relate to healthcare, and explicitly or implicitly mention a theory, model and/or framework that grounds the type of capacity building approach developed. Quality assessment were performed on all included articles. Data analysis included a process for synthesizing, analyzing and presenting descriptive summaries, categorizing theoretical foundations according to which theory, model and/or framework was used and whether or not the theory, model or framework was implied or explicitly identified. Nineteen articles were included in this review. A total of 28 theories, models and frameworks were identified. Of this number, two theories (Diffusion of Innovations and Transformational Learning), two models (Ecological and Interactive Systems Framework for Dissemination and Implementation) and one framework (Bloom's Taxonomy of Learning) were identified as the most frequently cited. This review identifies specific theories, models and frameworks to support capacity building interventions relevant to public health organizations. It provides public health practitioners with a menu of potentially usable theories, models and frameworks to support capacity building efforts. The findings also support the need for the use of theories, models or frameworks to be intentional, explicitly identified, referenced and for it to be clearly outlined how they were applied to the capacity building intervention.

  5. Analysis of Undergraduate Students’ Mathematical Understanding Ability of the Limit of Function Based on APOS Theory Perspective

    NASA Astrophysics Data System (ADS)

    Afgani, M. W.; Suryadi, D.; Dahlan, J. A.

    2017-09-01

    The aim of this study was to know the level of undergraduate students’ mathematical understanding ability based on APOS theory perspective. The APOS theory provides an evaluation framework to describe the level of students’ understanding and mental structure about their conception to a mathematics concept. The levels of understanding in APOS theory are action, process, object, and schema conception. The subjects were 59 students of mathematics education whom had attended a class of the limit of function at a university in Palembang. The method was qualitative descriptive with 4 test items. The result showed that most of students were still at the level of action conception. They could calculate and use procedure precisely to the mathematics objects that was given, but could not reach the higher conception yet.

  6. Development of an Integrated Theory of Surgical Recovery in Older Adults.

    PubMed

    Ann DiMaria-Ghalili, Rose

    2016-01-01

    Experts argue the health care system is not prepared to meet the unique needs of older surgical patients, including how to provide the best care during the recovery phase. Nutrition plays a critical role in the recovery of surgical patients. Since older adults are at risk for malnutrition, examining the role of nutrition as a mediator for surgical recovery across the care continuum in older adults is critical. Presently there is a paucity of frameworks, models, and guidelines that integrate the role of nutrition on the trajectory of postoperative recovery in older surgical patients. The purpose of this article is to introduce the Integrated Theory of Surgical Recovery in Older Adults, an interdisciplinary middle-range theory, so that scholars, researchers, and clinicians can use this framework to promote recovery from surgery in older adults by considering the contribution of mediators of recovery (nutritional status, functional status, and frailty) unique to the older adults.

  7. Mixed-linker UiO-66: structure-property relationships revealed by a combination of high-resolution powder X-ray diffraction and density functional theory calculations.

    PubMed

    Taddei, Marco; Tiana, Davide; Casati, Nicola; van Bokhoven, Jeroen A; Smit, Berend; Ranocchiari, Marco

    2017-01-04

    The use of mixed-linker metal-organic frameworks (MIXMOFs) is one of the most effective strategies to modulate the physical-chemical properties of MOFs without affecting the overall crystal structure. In many instances, MIXMOFs have been recognized as solid solutions, with random distribution of ligands, in agreement with the empirical rule known as Vegard's law. In this work, we have undertaken a study combining high-resolution powder X-ray diffraction (HR-PXRD) and density functional theory (DFT) calculations with the aim of understanding the reasons why UiO-66-based amino- and bromo-functionalized MIXMOFs (MIXUiO-66) undergo cell expansion obeying Vegard's law and how this behaviour is related to their physical-chemical properties. DFT calculations predict that the unit cell in amino-functionalized UiO-66 experiences only minor expansion as a result of steric effects, whereas major modification to the electronic features of the framework leads to weaker metal-linker interaction and consequently to the loss of stability at higher degrees of functionalization. For bromo-functionalized UiO-66, steric repulsion due to the size of bromine yields a large cell expansion, but the electronic features remain very similar to pristine UiO-66, preserving the stability of the framework upon functionalization. MIXUiO-66 obtained by either direct synthesis or by post-synthetic exchange shows Vegard-like behaviour, suggesting that both preparation methods yield solid solutions, but the thermal stability and the textural properties of the post-synthetic exchanged materials do not display a clear dependence on the chemical composition, as observed for the MOFs obtained by direct synthesis.

  8. Relativistic Brueckner-Hartree-Fock theory for neutron drops

    NASA Astrophysics Data System (ADS)

    Shen, Shihang; Liang, Haozhao; Meng, Jie; Ring, Peter; Zhang, Shuangquan

    2018-05-01

    Neutron drops confined in an external field are studied in the framework of relativistic Brueckner-Hartree-Fock theory using the bare nucleon-nucleon interaction. The ground-state energies and radii of neutron drops with even numbers from N =4 to N =50 are calculated and compared with results obtained from other nonrelativistic ab initio calculations and from relativistic density functional theory. Special attention has been paid to the magic numbers and to the subshell closures. The single-particle energies are investigated and the monopole effect of the tensor force on the evolutions of the spin-orbit and the pseudospin-orbit splittings is discussed. The results provide interesting insights into neutron-rich systems and can form an important guide for future density functionals.

  9. The Systems Theory Framework of Career Development

    ERIC Educational Resources Information Center

    McMahon, Mary

    2011-01-01

    The Systems Theory Framework (STF; McMahon & Patton, 1995; Patton & McMahon, 2006) of career development was proposed as a metatheoretical framework that accommodates the contribution of all theories and offers an integrative and coherent framework of career influences. In this article, the author provides an overview of the STF, outlines its…

  10. Analyzing the substitution effect on the CoMFA results within the framework of density functional theory (DFT).

    PubMed

    Morales-Bayuelo, Alejandro

    2016-07-01

    Though QSAR was originally developed in the context of physical organic chemistry, it has been applied very extensively to chemicals (drugs) which act on biological systems, in this idea one of the most important QSAR methods is the 3D QSAR model. However, due to the complexity of understanding the results it is necessary to postulate new methodologies to highlight their physical-chemical meaning. In this sense, this work postulates new insights to understand the CoMFA results using molecular quantum similarity and chemical reactivity descriptors within the framework of density functional theory. To obtain these insights a simple theoretical scheme involving quantum similarity (overlap, coulomb operators, their euclidean distances) and chemical reactivity descriptors such as chemical potential (μ), hardness (ɳ), softness (S), electrophilicity (ω), and the Fukui functions, was used to understand the substitution effect. In this sense, this methodology can be applied to analyze the biological activity and the stabilization process in the non-covalent interactions on a particular molecular set taking a reference compound.

  11. Parameterised post-Newtonian expansion in screened regions

    NASA Astrophysics Data System (ADS)

    McManus, Ryan; Lombriser, Lucas; Peñarrubia, Jorge

    2017-12-01

    The parameterised post-Newtonian (PPN) formalism has enabled stringent tests of static weak-field gravity in a theory-independent manner. Here we incorporate screening mechanisms of modified gravity theories into the framework by introducing an effective gravitational coupling and defining the PPN parameters as functions of position. To determine these functions we develop a general method for efficiently performing the post-Newtonian expansion in screened regimes. For illustration, we derive all the PPN functions for a cubic galileon and a chameleon model. We also analyse the Shapiro time delay effect for these two models and find no deviations from General Relativity insofar as the signal path and the perturbing mass reside in a screened region of space.

  12. Measuring Emotional Intelligence in Early Adolescence with the MSCEIT-YV: Psychometric Properties and Relationship with Academic Performance and Psychosocial Functioning

    ERIC Educational Resources Information Center

    Rivers, Susan E.; Brackett, Marc A.; Reyes, Maria R.; Mayer, John D.; Caruso, David R.; Salovey, Peter

    2012-01-01

    Emotional intelligence (EI) theory provides a framework to study the role of emotion skills in social, personal, and academic functioning. Reporting data validating the importance of EI among youth have been limited due to a dearth of measurement instruments. In two studies, the authors examined the reliability and validity of the…

  13. Students' Perceptions of Institutional Practices: The Case of Limits of Functions in College Level Calculus Courses

    ERIC Educational Resources Information Center

    Hardy, Nadia

    2009-01-01

    This paper presents a study of instructors' and students' perceptions of the knowledge to be learned about limits of functions in a college level Calculus course, taught in a North American college institution. I modeled these perceptions using a theoretical framework that combines elements of the Anthropological Theory of the Didactic, developed…

  14. Effects of Anchor Item Methods on the Detection of Differential Item Functioning within the Family of Rasch Models

    ERIC Educational Resources Information Center

    Wang, Wen-Chung

    2004-01-01

    Scale indeterminacy in analysis of differential item functioning (DIF) within the framework of item response theory can be resolved by imposing 3 anchor item methods: the equal-mean-difficulty method, the all-other anchor item method, and the constant anchor item method. In this article, applicability and limitations of these 3 methods are…

  15. Building a functional multiple intelligences theory to advance educational neuroscience

    PubMed Central

    Cerruti, Carlo

    2013-01-01

    A key goal of educational neuroscience is to conduct constrained experimental research that is theory-driven and yet also clearly related to educators’ complex set of questions and concerns. However, the fields of education, cognitive psychology, and neuroscience use different levels of description to characterize human ability. An important advance in research in educational neuroscience would be the identification of a cognitive and neurocognitive framework at a level of description relatively intuitive to educators. I argue that the theory of multiple intelligences (MI; Gardner, 1983), a conception of the mind that motivated a past generation of teachers, may provide such an opportunity. I criticize MI for doing little to clarify for teachers a core misunderstanding, specifically that MI was only an anatomical map of the mind but not a functional theory that detailed how the mind actually processes information. In an attempt to build a “functional MI” theory, I integrate into MI basic principles of cognitive and neural functioning, namely interregional neural facilitation and inhibition. In so doing I hope to forge a path toward constrained experimental research that bears upon teachers’ concerns about teaching and learning. PMID:24391613

  16. Density-Functional Theory with Optimized Effective Potential and Self-Interaction Correction for the Double Ionization of He and Be Atoms

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry; Chu, Shih-I.

    2012-06-01

    We present a self-interaction-free (SIC) time-dependent density-functional theory (TDDFT) for the treatment of double ionization processes of many-electron systems. The method is based on the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed 3D calculations of double ionization of He and Be atoms by strong near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. We found that proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the spin particle numbers (SPN) only. The results for the intensity-dependent probabilities of single and double ionization are presented and reproduce the famous ``knee'' structure.

  17. A density functional theory for association of fluid molecules with a functionalized surface: fluid-wall single and double bonding.

    PubMed

    Haghmoradi, Amin; Wang, Le; Chapman, Walter G

    2017-02-01

    In this manuscript we extend Wertheim's two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.

  18. A dynamic framework on travel mode choice focusing on utilitarian walking based on the integration of current knowledge.

    PubMed

    Yang, Yong

    2016-09-01

    Recently, research on utilitarian walking has gained momentum due to its benefits on both health and the environment. However, our overall understanding of how built and social environments affect travel mode choice (walking or not) is still limited, and most existing frameworks on travel mode choice lack dynamic processes. After a review of several mainstream theories and a number of frameworks, we propose an integrated framework. The basic constructs in the travel mode choice function are utilities, constraints, attitudes, and habits. With a hierarchical structure and heuristic rules, the travel mode choice function is modified by individual characteristics and travel characteristics. The framework explicitly presents several dynamic processes, including the perception process on the environment, attitude formation process, habit formation process, interactions among an individual's own behaviors, interactions among travelers, feedback from travel to the built and social environments, and feedback from other behaviors to the built and social environments. For utilitarian walking, the framework may contribute to the study design, data collection, adoption of new research methods, and provide indications for policy interventions.

  19. A dynamic framework on travel mode choice focusing on utilitarian walking based on the integration of current knowledge

    PubMed Central

    Yang, Yong

    2016-01-01

    Recently, research on utilitarian walking has gained momentum due to its benefits on both health and the environment. However, our overall understanding of how built and social environments affect travel mode choice (walking or not) is still limited, and most existing frameworks on travel mode choice lack dynamic processes. After a review of several mainstream theories and a number of frameworks, we propose an integrated framework. The basic constructs in the travel mode choice function are utilities, constraints, attitudes, and habits. With a hierarchical structure and heuristic rules, the travel mode choice function is modified by individual characteristics and travel characteristics. The framework explicitly presents several dynamic processes, including the perception process on the environment, attitude formation process, habit formation process, interactions among an individual’s own behaviors, interactions among travelers, feedback from travel to the built and social environments, and feedback from other behaviors to the built and social environments. For utilitarian walking, the framework may contribute to the study design, data collection, adoption of new research methods, and provide indications for policy interventions. PMID:27747158

  20. A computational framework for automation of point defect calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei

    We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.

  1. A computational framework for automation of point defect calculations

    DOE PAGES

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei; ...

    2017-01-13

    We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.

  2. Angular coherence in ultrasound imaging: Theory and applications

    PubMed Central

    Li, You Leo; Dahl, Jeremy J.

    2017-01-01

    The popularity of plane-wave transmits at multiple transmit angles for synthetic transmit aperture (or coherent compounding) has spawned a number of adaptations and new developments of ultrasonic imaging. However, the coherence properties of backscattered signals with plane-wave transmits at different angles are unknown and may impact a subset of these techniques. To provide a framework for the analysis of the coherence properties of such signals, this article introduces the angular coherence theory in medical ultrasound imaging. The theory indicates that the correlation function of such signals forms a Fourier transform pair with autocorrelation function of the receive aperture function. This conclusion can be considered as an extended form of the van Cittert Zernike theorem. The theory is validated with simulation and experimental results obtained on speckle targets. On the basis of the angular coherence of the backscattered wave, a new short-lag angular coherence beamformer is proposed and compared with an existing spatial-coherence-based beamformer. An application of the theory in phase shift estimation and speed of sound estimation is also presented. PMID:28372139

  3. A Fuzzy Logic Optimal Control Law Solution to the CMMCA Tracking Problem

    DTIC Science & Technology

    1993-03-01

    or from a transfer function. Many times, however, the resulting algorithms are so complex as to be completely or essentially useless. Applications...implemented in a nearly real time computer simulation. Located within the LQ framework are all the performance data for both the ClMCA and the CX...repuired nor desired. 34 - / k more general and less exacting framework was used. In order to concentrate on tho theory and problem solution, it was

  4. Client-controlled case information: a general system theory perspective.

    PubMed

    Fitch, Dale

    2004-07-01

    The author proposes a model for client control of case information via the World Wide Web built on principles of general system theory. It incorporates the client into the design, resulting in an information structure that differs from traditional human services information-sharing practices. Referencing general system theory, the concepts of controller and controlled system, as well as entropy and negentropy, are applied to the information flow and autopoietic behavior as they relate to the boundary-maintaining functions of today's organizations. The author's conclusions synthesize general system theory and human services values to lay the foundation for an information-sharing framework for human services in the 21st century.

  5. Perinatal sadness among Shuar women: support for an evolutionary theory of psychic pain.

    PubMed

    Hagen, Edward H; Barrett, H Clark

    2007-03-01

    Psychiatry faces an internal contradiction in that it regards mild sadness and low mood as normal emotions, yet when these emotions are directed toward a new infant, it regards them as abnormal. We apply parental investment theory, a widely used framework from evolutionary biology, to maternal perinatal emotions, arguing that negative emotions directed toward a new infant could serve an important evolved function. If so, then under some definitions of psychiatric disorder, these emotions are not disorders. We investigate the applicability of parental investment theory to maternal postpartum emotions among Shuar mothers. Shuar mothers' conceptions of perinatal sadness closely match predictions of parental investment theory.

  6. Towards a quantitative description of tunneling conductance of superconductors: Application to LiFeAs

    DOE PAGES

    Kreisel, A.; Nelson, R.; Berlijn, T.; ...

    2016-12-27

    Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results. The spin-fluctuation theory of electronic pairing, based on first-principles electronic structure calculations, makes predictions for the superconducting gap. Within the same framework, the surface wave functions may also be calculated, allowing, e.g., for detailed comparisons between theoretical results and measured scanning tunneling topographs and spectra. We present such a comparison between theory and experiment on the Fe-based superconductor LiFeAs. Our results for the homogeneous surfacemore » as well as impurity states are presented as a benchmark test of the theory. For the homogeneous system, we argue that the maxima of topographic image intensity may be located at positions above either the As or Li atoms, depending on tip height and the setpoint current of the measurement. We further report the experimental observation of transitions between As- and Li-registered lattices as functions of both tip height and setpoint bias, in agreement with this prediction. Next, we give a detailed comparison between the simulated scanning tunneling microscopy images of transition-metal defects with experiment. Finally, we discuss possible extensions of the current framework to obtain a theory with true predictive power for scanning tunneling microscopy in Fe-based systems.« less

  7. Towards a quantitative description of tunneling conductance of superconductors: Application to LiFeAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreisel, A.; Nelson, R.; Berlijn, T.

    Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results. The spin-fluctuation theory of electronic pairing, based on first-principles electronic structure calculations, makes predictions for the superconducting gap. Within the same framework, the surface wave functions may also be calculated, allowing, e.g., for detailed comparisons between theoretical results and measured scanning tunneling topographs and spectra. We present such a comparison between theory and experiment on the Fe-based superconductor LiFeAs. Our results for the homogeneous surfacemore » as well as impurity states are presented as a benchmark test of the theory. For the homogeneous system, we argue that the maxima of topographic image intensity may be located at positions above either the As or Li atoms, depending on tip height and the setpoint current of the measurement. We further report the experimental observation of transitions between As- and Li-registered lattices as functions of both tip height and setpoint bias, in agreement with this prediction. Next, we give a detailed comparison between the simulated scanning tunneling microscopy images of transition-metal defects with experiment. Finally, we discuss possible extensions of the current framework to obtain a theory with true predictive power for scanning tunneling microscopy in Fe-based systems.« less

  8. Along the way to developing a theory of the program: a re-examination of the conceptual framework as an organizing strategy.

    PubMed

    Helitzer, Deborah L; Sussman, Andrew L; Hoffman, Richard M; Getrich, Christina M; Warner, Teddy D; Rhyne, Robert L

    2014-08-01

    Conceptual frameworks (CF) have historically been used to develop program theory. We re-examine the literature about the role of CF in this context, specifically how they can be used to create descriptive and prescriptive theories, as building blocks for a program theory. Using a case example of colorectal cancer screening intervention development, we describe the process of developing our initial CF, the methods used to explore the constructs in the framework and revise the framework for intervention development. We present seven steps that guided the development of our CF: (1) assemble the "right" research team, (2) incorporate existing literature into the emerging CF, (3) construct the conceptual framework, (4) diagram the framework, (5) operationalize the framework: develop the research design and measures, (6) conduct the research, and (7) revise the framework. A revised conceptual framework depicted more complicated inter-relationships of the different predisposing, enabling, reinforcing, and system-based factors. The updated framework led us to generate program theory and serves as the basis for designing future intervention studies and outcome evaluations. A CF can build a foundation for program theory. We provide a set of concrete steps and lessons learned to assist practitioners in developing a CF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Modelling the ecological niche from functional traits

    PubMed Central

    Kearney, Michael; Simpson, Stephen J.; Raubenheimer, David; Helmuth, Brian

    2010-01-01

    The niche concept is central to ecology but is often depicted descriptively through observing associations between organisms and habitats. Here, we argue for the importance of mechanistically modelling niches based on functional traits of organisms and explore the possibilities for achieving this through the integration of three theoretical frameworks: biophysical ecology (BE), the geometric framework for nutrition (GF) and dynamic energy budget (DEB) models. These three frameworks are fundamentally based on the conservation laws of thermodynamics, describing energy and mass balance at the level of the individual and capturing the prodigious predictive power of the concepts of ‘homeostasis’ and ‘evolutionary fitness’. BE and the GF provide mechanistic multi-dimensional depictions of climatic and nutritional niches, respectively, providing a foundation for linking organismal traits (morphology, physiology, behaviour) with habitat characteristics. In turn, they provide driving inputs and cost functions for mass/energy allocation within the individual as determined by DEB models. We show how integration of the three frameworks permits calculation of activity constraints, vital rates (survival, development, growth, reproduction) and ultimately population growth rates and species distributions. When integrated with contemporary niche theory, functional trait niche models hold great promise for tackling major questions in ecology and evolutionary biology. PMID:20921046

  10. Energy decomposition analysis of single bonds within Kohn-Sham density functional theory.

    PubMed

    Levine, Daniel S; Head-Gordon, Martin

    2017-11-28

    An energy decomposition analysis (EDA) for single chemical bonds is presented within the framework of Kohn-Sham density functional theory based on spin projection equations that are exact within wave function theory. Chemical bond energies can then be understood in terms of stabilization caused by spin-coupling augmented by dispersion, polarization, and charge transfer in competition with destabilizing Pauli repulsions. The EDA reveals distinguishing features of chemical bonds ranging across nonpolar, polar, ionic, and charge-shift bonds. The effect of electron correlation is assessed by comparison with Hartree-Fock results. Substituent effects are illustrated by comparing the C-C bond in ethane against that in bis(diamantane), and dispersion stabilization in the latter is quantified. Finally, three metal-metal bonds in experimentally characterized compounds are examined: a [Formula: see text]-[Formula: see text] dimer, the [Formula: see text]-[Formula: see text] bond in dizincocene, and the Mn-Mn bond in dimanganese decacarbonyl.

  11. The pipe model theory half a century on: a review.

    PubMed

    Lehnebach, Romain; Beyer, Robert; Letort, Véronique; Heuret, Patrick

    2018-01-23

    More than a half century ago, Shinozaki et al. (Shinozaki K, Yoda K, Hozumi K, Kira T. 1964b. A quantitative analysis of plant form - the pipe model theory. II. Further evidence of the theory and its application in forest ecology. Japanese Journal of Ecology14: 133-139) proposed an elegant conceptual framework, the pipe model theory (PMT), to interpret the observed linear relationship between the amount of stem tissue and corresponding supported leaves. The PMT brought a satisfactory answer to two vividly debated problems that were unresolved at the moment of its publication: (1) What determines tree form and which rules drive biomass allocation to the foliar versus stem compartments in plants? (2) How can foliar area or mass in an individual plant, in a stand or at even larger scales be estimated? Since its initial formulation, the PMT has been reinterpreted and used in applications, and has undoubtedly become an important milestone in the mathematical interpretation of plant form and functioning. This article aims to review the PMT by going back to its initial formulation, stating its explicit and implicit properties and discussing them in the light of current biological knowledge and experimental evidence in order to identify the validity and range of applicability of the theory. We also discuss the use of the theory in tree biomechanics and hydraulics as well as in functional-structural plant modelling. Scrutinizing the PMT in the light of modern biological knowledge revealed that most of its properties are not valid as a general rule. The hydraulic framework derived from the PMT has attracted much more attention than its mechanical counterpart and implies that only the conductive portion of a stem cross-section should be proportional to the supported foliage amount rather than the whole of it. The facts that this conductive portion is experimentally difficult to measure and varies with environmental conditions and tree ontogeny might cause the commonly reported non-linear relationships between foliage and stem metrics. Nevertheless, the PMT can still be considered as a portfolio of properties providing a unified framework to integrate and analyse functional-structural relationships. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Célérier, Marie-Noëlle; Nottale, Laurent, E-mail: marie-noelle.celerier@obspm.fr, E-mail: laurent.nottale@obspm.fr

    Owing to the non-differentiable nature of the theory of Scale Relativity, the emergence of complex wave functions, then of spinors and bi-spinors occurs naturally in its framework. The wave function is here a manifestation of the velocity field of geodesics of a continuous and non-differentiable (therefore fractal) space-time. In a first paper (Paper I), we have presented the general argument which leads to this result using an elaborate and more detailed derivation than previously displayed. We have therefore been able to show how the complex wave function emerges naturally from the doubling of the velocity field and to revisit themore » derivation of the non-relativistic Schrödinger equation of motion. In the present paper (Paper II), we deal with relativistic motion and detail the natural emergence of the bi-spinors from such first principles of the theory. Moreover, while Lorentz invariance has been up to now inferred from mathematical results obtained in stochastic mechanics, we display here a new and detailed derivation of the way one can obtain a Lorentz invariant expression for the expectation value of the product of two independent fractal fluctuation fields in the sole framework of the theory of Scale Relativity. These new results allow us to enhance the robustness of our derivation of the two main equations of motion of relativistic quantum mechanics (the Klein-Gordon and Dirac equations) which we revisit here at length.« less

  13. Assessing exchange-correlation functionals for elasticity and thermodynamics of α -ZrW2O8 : A density functional perturbation theory study

    NASA Astrophysics Data System (ADS)

    Weck, Philippe F.; Kim, Eunja; Greathouse, Jeffery A.; Gordon, Margaret E.; Bryan, Charles R.

    2018-04-01

    Elastic and thermodynamic properties of negative thermal expansion (NTE) α -ZrW2O8 have been calculated using PBEsol and PBE exchange-correlation functionals within the framework of density functional perturbation theory (DFPT). Measured elastic constants are reproduced within ∼ 2 % with PBEsol and ∼ 6 % with PBE. The thermal evolution of the Grüneisen parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with observation. The standard molar heat capacity is predicted to be CP0 = 192.2 and 193.8 J mol-1K-1 with PBEsol and PBE, respectively. These results suggest superior accuracy of DFPT/PBEsol for studying the lattice dynamics, elasticity and thermodynamics of NTE materials.

  14. Site-occupation embedding theory using Bethe ansatz local density approximations

    NASA Astrophysics Data System (ADS)

    Senjean, Bruno; Nakatani, Naoki; Tsuchiizu, Masahisa; Fromager, Emmanuel

    2018-06-01

    Site-occupation embedding theory (SOET) is an alternative formulation of density functional theory (DFT) for model Hamiltonians where the fully interacting Hubbard problem is mapped, in principle exactly, onto an impurity-interacting (rather than a noninteracting) one. It provides a rigorous framework for combining wave-function (or Green function)-based methods with DFT. In this work, exact expressions for the per-site energy and double occupation of the uniform Hubbard model are derived in the context of SOET. As readily seen from these derivations, the so-called bath contribution to the per-site correlation energy is, in addition to the latter, the key density functional quantity to model in SOET. Various approximations based on Bethe ansatz and perturbative solutions to the Hubbard and single-impurity Anderson models are constructed and tested on a one-dimensional ring. The self-consistent calculation of the embedded impurity wave function has been performed with the density-matrix renormalization group method. It has been shown that promising results are obtained in specific regimes of correlation and density. Possible further developments have been proposed in order to provide reliable embedding functionals and potentials.

  15. Density functional theory for hard uniaxial particles: Complex ordering of pear-shaped and spheroidal particles near a substrate

    NASA Astrophysics Data System (ADS)

    Schönhöfer, Philipp W. A.; Schröder-Turk, Gerd E.; Marechal, Matthieu

    2018-03-01

    We develop a density functional for hard particles with a smooth uniaxial shape (including non-inversion-symmetric particles) within the framework of fundamental measure theory. By applying it to a system of tapered, aspherical liquid-crystal formers, reminiscent of pears, we analyse their behaviour near a hard substrate. The theory predicts a complex orientational ordering close to the substrate, which can be directly related to the particle shape, in good agreement with our simulation results. Furthermore, the lack of particle inversion-symmetry implies the possibility of alternating orientations in subsequent layers as found in a smectic/lamellar phase of such particles. Both theory and Monte Carlo simulations confirm that such ordering occurs in our system. Our results are relevant for adsorption processes of asymmetric colloidal particles and molecules at hard interfaces and show once again that tapering strongly affects the properties of orientationally ordered phases.

  16. Particle-hole symmetry and composite fermions in fractional quantum Hall states

    NASA Astrophysics Data System (ADS)

    Nguyen, Dung Xuan; Golkar, Siavash; Roberts, Matthew M.; Son, Dam Thanh

    2018-05-01

    We study fractional quantum Hall states at filling fractions in the Jain sequences using the framework of composite Dirac fermions. Synthesizing previous work, we write an effective field theory consistent with all symmetry requirements, including Galilean invariance and particle-hole symmetry. Employing a Fermi-liquid description, we demonstrate the appearance of the Girvin-Macdonald-Platzman algebra and compute the dispersion relation of neutral excitations and various response functions. Our results satisfy requirements of particle-hole symmetry. We show that while the dispersion relation obtained from the modified random-phase approximation (MRPA) of the Halperin-Lee-Read (HLR) theory is particle-hole symmetric, correlation functions obtained from this scheme are not. The results of the Dirac theory are shown to be consistent with the Haldane bound on the projected structure factor, while those of the MPRA of the HLR theory violate it.

  17. Calculus Students' Understanding of the Vertex of the Quadratic Function in Relation to the Concept of Derivative

    ERIC Educational Resources Information Center

    Burns-Childers, Annie; Vidakovic, Draga

    2018-01-01

    The purpose of this study was to gain insight into 30, first year calculus students' understanding of the relationship between the concept of vertex of a quadratic function and the concept of the derivative. APOS (action-process-object-schema) theory was applied as a guiding framework of analysis on student written work, think-aloud and follow up…

  18. An Analytical Framework for Soft and Hard Data Fusion: A Dempster-Shafer Belief Theoretic Approach

    DTIC Science & Technology

    2012-08-01

    fusion. Therefore, we provide a detailed discussion on uncertain data types, their origins and three uncertainty pro- cessing formalisms that are popular...suitable membership functions corresponding to the fuzzy sets. 3.2.3 DS Theory The DS belief theory, originally proposed by Dempster, can be thought of as... originated and various imperfections of the source. Uncertainty handling formalisms provide techniques for modeling and working with these uncertain data types

  19. The need for international nursing diagnosis research and a theoretical framework.

    PubMed

    Lunney, Margaret

    2008-01-01

    To describe the need for nursing diagnosis research and a theoretical framework for such research. A linguistics theory served as the foundation for the theoretical framework. Reasons for additional nursing diagnosis research are: (a) file names are needed for implementation of electronic health records, (b) international consensus is needed for an international classification, and (c) continuous changes occur in clinical practice. A theoretical framework used by the author is explained. Theoretical frameworks provide support for nursing diagnosis research. Linguistics theory served as an appropriate exemplar theory to support nursing research. Additional nursing diagnosis studies based upon a theoretical framework are needed and linguistics theory can provide an appropriate structure for this research.

  20. Density functional theory for molecular and periodic systems using density fitting and continuous fast multipole method: Analytical gradients.

    PubMed

    Łazarski, Roman; Burow, Asbjörn Manfred; Grajciar, Lukáš; Sierka, Marek

    2016-10-30

    A full implementation of analytical energy gradients for molecular and periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. Its key component is a combination of density fitting (DF) approximation and continuous fast multipole method (CFMM) that allows for an efficient calculation of the Coulomb energy gradient. For exchange-correlation part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097) is extended to energy gradients. Computational efficiency and asymptotic O(N) scaling behavior of the implementation is demonstrated for various molecular and periodic model systems, with the largest unit cell of hematite containing 640 atoms and 19,072 basis functions. The overall computational effort of energy gradient is comparable to that of the Kohn-Sham matrix formation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Configurational forces in electronic structure calculations using Kohn-Sham density functional theory

    NASA Astrophysics Data System (ADS)

    Motamarri, Phani; Gavini, Vikram

    2018-04-01

    We derive the expressions for configurational forces in Kohn-Sham density functional theory, which correspond to the generalized variational force computed as the derivative of the Kohn-Sham energy functional with respect to the position of a material point x . These configurational forces that result from the inner variations of the Kohn-Sham energy functional provide a unified framework to compute atomic forces as well as stress tensor for geometry optimization. Importantly, owing to the variational nature of the formulation, these configurational forces inherently account for the Pulay corrections. The formulation presented in this work treats both pseudopotential and all-electron calculations in a single framework, and employs a local variational real-space formulation of Kohn-Sham density functional theory (DFT) expressed in terms of the nonorthogonal wave functions that is amenable to reduced-order scaling techniques. We demonstrate the accuracy and performance of the proposed configurational force approach on benchmark all-electron and pseudopotential calculations conducted using higher-order finite-element discretization. To this end, we examine the rates of convergence of the finite-element discretization in the computed forces and stresses for various materials systems, and, further, verify the accuracy from finite differencing the energy. Wherever applicable, we also compare the forces and stresses with those obtained from Kohn-Sham DFT calculations employing plane-wave basis (pseudopotential calculations) and Gaussian basis (all-electron calculations). Finally, we verify the accuracy of the forces on large materials systems involving a metallic aluminum nanocluster containing 666 atoms and an alkane chain containing 902 atoms, where the Kohn-Sham electronic ground state is computed using a reduced-order scaling subspace projection technique [P. Motamarri and V. Gavini, Phys. Rev. B 90, 115127 (2014), 10.1103/PhysRevB.90.115127].

  2. The CABES (Clare Adult Basic Education Service) Framework as a Tool for Teaching and Learning

    ERIC Educational Resources Information Center

    Greene, Moira

    2015-01-01

    This article describes a Framework that can be used to help bridge the gap between theory and practice in adult learning. The Framework promotes practice informed by three strands important to adult literacy work: social theories of literacy, social-constructivist learning theory and principles of adult learning. The Framework shows how five key…

  3. Site specific interaction between ZnO nanoparticles and tyrosine: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Singh, Satvinder; Singh, Janpreet; Singh, Baljinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-05-01

    First Principles Calculations have been performed on ZnO/Tyrosine atomic complex to study site specific interaction of Tyrosine and ZnO nanoparticles. Calculated results shows that -COOH group present in Tyrosine is energetically more favorable than -NH2 group. Interactions show ionic bonding between ZnO and Tyrosine. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/Tyrosine complex have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations.

  4. Strong-field ionization of Li and Be: a time-dependent density functional theory with self-interaction correction

    NASA Astrophysics Data System (ADS)

    Telnov, Dmitry A.; Heslar, John T.; Chu, Shih-I.

    2011-11-01

    In the framework of the time-dependent density functional theory, we have performed 3D calculations of multiphoton ionization of Li and Be atoms by strong near-infrared laser fields. The results for the intensity-dependent probabilities of single and double ionization are presented. We make use of the time-dependent Krieger-Li-Iafrate exchange-correlation potential with self-interaction correction (TD-KLI-SIC). Such a potential possesses an integer discontinuity which improves description of the ionization process. However, we have found that the discontinuity of the TD-KLI-SIC potential is not sufficient to reproduce characteristic feature of double ionization.

  5. Time-dependent spin-density-functional-theory description of He+-He collisions

    NASA Astrophysics Data System (ADS)

    Baxter, Matthew; Kirchner, Tom; Engel, Eberhard

    2017-09-01

    Theoretical total cross-section results for all ionization and capture processes in the He+-He collision system are presented in the approximate impact energy range of 10-1000 keV/amu. Calculations were performed within the framework of time-dependent spin-density functional theory. The Krieger-Li-Iafrate approximation was used to determine an accurate exchange-correlation potential in the exchange-only limit. The results of two models, one where electron translation factors in the orbitals used to calculate the potential are ignored and another where partial electron translation factors are included, are compared with available experimental data as well as a selection of previous theoretical calculations.

  6. Abstraction and Consolidation

    ERIC Educational Resources Information Center

    Monaghan, John; Ozmantar, Mehmet Fatih

    2006-01-01

    The framework for this paper is a recently developed theory of abstraction in context. The paper reports on data collected from one student working on tasks concerned with absolute value functions. It examines the relationship between mathematical constructions and abstractions. It argues that an abstraction is a consolidated construction that can…

  7. The Bologna Process and Integration Theory: Convergence and Autonomy

    ERIC Educational Resources Information Center

    Barkholt, Kasper

    2005-01-01

    This paper focuses on two theoretical frameworks of integration (neo-functionalism and liberal inter-governmentalism), exploring their implications for current trends of integration in European higher education: the marketization of and trade in educational services, the involvement of supranational institutions, and the focus on quality…

  8. Mothers' Economic Hardship and Behavior Problems in Their Early Adolescents

    ERIC Educational Resources Information Center

    Burrell, Ginger Lockhart; Roosa, Mark W.

    2009-01-01

    Concerns about the heightened prevalence of behavior problems among adolescents from low-income families have prompted researchers to understand processes through which economic variables influence functioning within multiple domains. Guided by a stress process framework and social contextual theory, this study examines processes linking perceived…

  9. Massively parallel sparse matrix function calculations with NTPoly

    NASA Astrophysics Data System (ADS)

    Dawson, William; Nakajima, Takahito

    2018-04-01

    We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.

  10. Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Bakhshi Khaniki, Hossein; Rajasekaran, Sundaramoorthy

    2018-05-01

    This study develops a comprehensive investigation on mechanical behavior of non-uniform bi-directional functionally graded beam sensors in the framework of modified couple stress theory. Material variation is modelled through both length and thickness directions using power-law, sigmoid and exponential functions. Moreover, beam is assumed with linear, exponential and parabolic cross-section variation through the length using power-law and sigmoid varying functions. Using these assumptions, a general model for microbeams is presented and formulated by employing Hamilton’s principle. Governing equations are solved using a mixed finite element method with Lagrangian interpolation technique, Gaussian quadrature method and Wilson’s Lagrangian multiplier method. It is shown that by using bi-directional functionally graded materials in nonuniform microbeams, mechanical behavior of such structures could be affected noticeably and scale parameter has a significant effect in changing the rigidity of nonuniform bi-directional functionally graded beams.

  11. An Assessment of Agency Theory as a Framework for the Government-University Relationship

    ERIC Educational Resources Information Center

    Kivisto, Jussi

    2008-01-01

    The aim of this paper is to use agency theory as the theoretical framework for an examination of the government-university relationship and to assess the main strengths and weaknesses of the theory in this context. Because of its logically consistent framework, agency theory is able to manifest many of the complexities and difficulties that…

  12. Systemic Thinking in Career Development Theory: Contributions of the Systems Theory Framework

    ERIC Educational Resources Information Center

    McMahon, Mary; Patton, Wendy

    2018-01-01

    This article considers systemic thinking in relation to the Systems Theory Framework (STF) and to career theory. An overview of systems theory and its applications is followed by a discussion of career theory to provide a context for the subsequent description of STF. The contributions of STF to career theory and to theory integration are…

  13. Confirmatory Factor Analysis of the Patient Reported Outcomes Measurement Information System (PROMIS) Adult Domain Framework Using Item Response Theory Scores.

    PubMed

    Carle, Adam C; Riley, William; Hays, Ron D; Cella, David

    2015-10-01

    To guide measure development, National Institutes of Health-supported Patient reported Outcomes Measurement Information System (PROMIS) investigators developed a hierarchical domain framework. The framework specifies health domains at multiple levels. The initial PROMIS domain framework specified that physical function and symptoms such as Pain and Fatigue indicate Physical Health (PH); Depression, Anxiety, and Anger indicate Mental Health (MH); and Social Role Performance and Social Satisfaction indicate Social Health (SH). We used confirmatory factor analyses to evaluate the fit of the hypothesized framework to data collected from a large sample. We used data (n=14,098) from PROMIS's wave 1 field test and estimated domain scores using the PROMIS item response theory parameters. We then used confirmatory factor analyses to test whether the domains corresponded to the PROMIS domain framework as expected. A model corresponding to the domain framework did not provide ideal fit [root mean square error of approximation (RMSEA)=0.13; comparative fit index (CFI)=0.92; Tucker Lewis Index (TLI)=0.88; standardized root mean square residual (SRMR)=0.09]. On the basis of modification indices and exploratory factor analyses, we allowed Fatigue to load on both PH and MH. This model fit the data acceptably (RMSEA=0.08; CFI=0.97; TLI=0.96; SRMR=0.03). Our findings generally support the PROMIS domain framework. Allowing Fatigue to load on both PH and MH improved fit considerably.

  14. Multicomponent density functional theory embedding formulation.

    PubMed

    Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon

    2016-07-28

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.

  15. Multicomponent density functional theory embedding formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density ismore » separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.« less

  16. Analysis of poetic literature using B. F. Skinner's theoretical framework from verbal behavior

    PubMed Central

    Luke, Nicole M.

    2003-01-01

    This paper examines Skinner's work on verbal behavior in the context of literature as a particular class of written verbal behavior. It looks at contemporary literary theory and analysis and the contributions that Skinner's theoretical framework can make. Two diverse examples of poetic literature are chosen and analyzed following Skinner's framework, examining the dynamic interplay between the writer and reader that take place within the bounds of the work presented. It is concluded that Skinner's hypotheses about verbal behavior and the functional approach to understanding it have much to offer literary theorists in their efforts to understand literary works and should be more carefully examined.

  17. The measurement of consciousness: a framework for the scientific study of consciousness

    PubMed Central

    Gamez, David

    2014-01-01

    Scientists studying consciousness are attempting to identify correlations between measurements of consciousness and the physical world. Consciousness can only be measured through first-person reports, which raises problems about the accuracy of first-person reports, the possibility of non-reportable consciousness and the causal closure of the physical world. Many of these issues could be resolved by assuming that consciousness is entirely physical or functional. However, this would sacrifice the theory-neutrality that is a key attraction of a correlates-based approach to the study of consciousness. This paper puts forward a different solution that uses a framework of definitions and assumptions to explain how consciousness can be measured. This addresses the problems associated with first-person reports and avoids the issues with the causal closure of the physical world. This framework is compatible with most of the current theories of consciousness and it leads to a distinction between two types of correlates of consciousness. PMID:25071677

  18. A new line-of-sight approach to the non-linear Cosmic Microwave Background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidler, Christian; Koyama, Kazuya; Pettinari, Guido W., E-mail: christian.fidler@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: guido.pettinari@gmail.com

    2015-04-01

    We develop the transport operator formalism, a new line-of-sight integration framework to calculate the anisotropies of the Cosmic Microwave Background (CMB) at the linear and non-linear level. This formalism utilises a transformation operator that removes all inhomogeneous propagation effects acting on the photon distribution function, thus achieving a split between perturbative collisional effects at recombination and non-perturbative line-of-sight effects at later times. The former can be computed in the framework of standard cosmological perturbation theory with a second-order Boltzmann code such as SONG, while the latter can be treated within a separate perturbative scheme allowing the use of non-linear Newtonianmore » potentials. We thus provide a consistent framework to compute all physical effects contained in the Boltzmann equation and to combine the standard remapping approach with Boltzmann codes at any order in perturbation theory, without assuming that all sources are localised at recombination.« less

  19. It's time to rework the blueprints: building a science for clinical psychology.

    PubMed

    Millon, Theodore

    2003-11-01

    The aims in this article are to connect the conceptual structure of clinical psychological science to what the author believes to be the omnipresent principles of evolution, use the evolutionary model to create a deductively derived clinical theory and taxonomy, link the theory and taxonomy to comprehensive and integrated approaches to assessment, and outline a framework for an integrative synergistic model of psychotherapy. These foundations also provide a framework for a systematic approach to the subject realms of personology and psychopathology. Exploring nature's deep principles, the model revives the personologic concept christened by Henry Murray some 65 years ago; it also parallels the interface between human social functioning and evolutionary biology proposed by Edward Wilson in his concept of sociobiology. (c) 2003 APA, all rights reserved.

  20. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series

    PubMed Central

    Rodríguez-Albelo, L. Marleny; López-Maya, Elena; Hamad, Said; Ruiz-Salvador, A. Rabdel; Calero, Sofia; Navarro, Jorge A.R.

    2017-01-01

    The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects. PMID:28198376

  1. Theoretical derivation of laser-dressed atomic states by using a fractal space

    NASA Astrophysics Data System (ADS)

    Duchateau, Guillaume

    2018-05-01

    The derivation of approximate wave functions for an electron submitted to both a Coulomb and a time-dependent laser electric fields, the so-called Coulomb-Volkov (CV) state, is addressed. Despite its derivation for continuum states does not exhibit any particular problem within the framework of the standard theory of quantum mechanics (QM), difficulties arise when considering an initially bound atomic state. Indeed the natural way of translating the unperturbed momentum by the laser vector potential is no longer possible since a bound state does not exhibit a plane wave form explicitly including a momentum. The use of a fractal space permits to naturally define a momentum for a bound wave function. Within this framework, it is shown how the derivation of laser-dressed bound states can be performed. Based on a generalized eikonal approach, a new expression for the laser-dressed states is also derived, fully symmetric relative to the continuum or bound nature of the initial unperturbed wave function. It includes an additional crossed term in the Volkov phase which was not obtained within the standard theory of quantum mechanics. The derivations within this fractal framework have highlighted other possible ways to derive approximate laser-dressed states in QM. After comparing the various obtained wave functions, an application to the prediction of the ionization probability of hydrogen targets by attosecond XUV pulses within the sudden approximation is provided. This approach allows to make predictions in various regimes depending on the laser intensity, going from the non-resonant multiphoton absorption to tunneling and barrier-suppression ionization.

  2. Catchment Classification: Connecting Climate, Structure and Function

    NASA Astrophysics Data System (ADS)

    Sawicz, K. A.; Wagener, T.; Sivapalan, M.; Troch, P. A.; Carrillo, G. A.

    2010-12-01

    Hydrology does not yet possess a generally accepted catchment classification framework. Such a classification framework needs to: [1] give names to things, i.e. the main classification step, [2] permit transfer of information, i.e. regionalization of information, [3] permit development of generalizations, i.e. to develop new theory, and [4] provide a first order environmental change impact assessment, i.e., the hydrologic implications of climate, land use and land cover change. One strategy is to create a catchment classification framework based on the notion of catchment functions (partitioning, storage, and release). Results of an empirical study presented here connects climate and structure to catchment function (in the form of select hydrologic signatures), based on analyzing over 300 US catchments. Initial results indicate a wide assortment of signature relationships with properties of climate, geology, and vegetation. The uncertainty in the different regionalized signatures varies widely, and therefore there is variability in the robustness of classifying ungauged basins. This research provides insight into the controls of hydrologic behavior of a catchment, and enables a classification framework applicable to gauged and ungauged across the study domain. This study sheds light on what we can expect to achieve in mapping climate, structure and function in a top-down manner. Results of this study complement work done using a bottom-up physically-based modeling framework to generalize this approach (Carrillo et al., this session).

  3. Resilience and vulnerability to a natural hazard: A mathematical framework based on viability theory

    NASA Astrophysics Data System (ADS)

    Rougé, Charles; Mathias, Jean-Denis; Deffuant, Guillaume

    2013-04-01

    This deals with the response of a coupled human and natural system (CHANS) to a natural hazard by using the concepts of resilience and vulnerability within the mathematical framework of viability theory. This theory applies to time-evolving systems such as CHANS and assumes that their desirable properties can be defined as a subset of their state space. Policies can also apply to influence the dynamics of such systems: viability theory aims at finding the policies which keep the properties of a controlled dynamical system for so long as no disturbance hits it. The states of the system such that the properties are guaranteed constitute what is called the viability kernel. This viability framework has been extended to describe the response to a perturbation such as a natural hazard. Resilience describes the capacity of the CHANS to recover by getting back in the viability kernel, where its properties are guaranteed until the onset of the next major event. Defined for a given controlled trajectory that the system may take after the event ends, resilience is (a) whether the system comes back to the viability kernel within a given budget such as a time constraint, but also (b) a decreasing function of vulnerability. Computed for a given trajectory as well, vulnerability is a measure of the consequence of violating a property. We propose a family of functions from which cost functions and other vulnerability indicators can be derived for a certain trajectory. There can be several vulnerability functions, representing for instance social, economic or ecological vulnerability, and each representing the violation of an associated property, but these functions need to be ultimately aggregated as a single indicator. Computing the resilience and vulnerability of a trajectory enables the viability framework to describe the response of both deterministic and stochastic systems to hazards. In the deterministic case, there is only one response trajectory for a given action policy, and methods exist to find the actions which yield the most resilient trajectory, namely the least vulnerable trajectory for which recovery is complete. In the stochastic case however, there is a range of possible trajectories. Statistics can be derived from the probability distribution of the resilience and vulnerability of the trajectories. Dynamic programming methods can then yield either the policies that maximize the probability of being resilient by achieving recovery within a given time horizon, or these which minimize a given vulnerability statistic. These objectives are different and can be in contradiction, so that trade-offs may have to be considered between them. The approach is illustrated in both the deterministic and stochastic cases through a simple model of lake eutrophication, for which the desirable ecological properties of the lake conflict with the economic interest of neighboring farmers.

  4. Lattice density functional theory for confined Ising fluids: comparison between different functional approximations in slit pore

    NASA Astrophysics Data System (ADS)

    Chen, Xueqian; Feng, Wei; Liu, Honglai; Hu, Ying

    2016-09-01

    In this paper, Lafuente and Cuesta's cluster density functional theory (CDFT) and lattice mean field approximation (LMFA) are formulated and compared within the framework of lattice density functional theory (LDFT). As a comparison, an LDFT based on our previous work on nonrandom correction to LMFA is also developed, where local density approximation is adopted on the correction. The numerical results of density distributions of an Ising fluid confined in a slit pore obtained from Monte Carlo simulation are used to check these functional approximations. Due to rational treatment on the coupling between site-excluding entropic effect and contact-attracting enthalpic effect by CDFT with Bethe-Peierls approximation (named as BPA-CDFT for short), the improvement of BPA-CDFT beyond LMFA is checked as expected. And it is interesting that our LDFT has a comparative accuracy with BPA-CDFT. Apparent differences between the profiles such as solvation force, excess adsorption quantity and interfacial tension from LMFA and non-LMFAs are found in our calculations. We also discuss some possible theoretical extensions of BPA-CDFT.

  5. On the use of Bayesian decision theory for issuing natural hazard warnings

    NASA Astrophysics Data System (ADS)

    Economou, T.; Stephenson, D. B.; Rougier, J. C.; Neal, R. A.; Mylne, K. R.

    2016-10-01

    Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings.

  6. On the use of Bayesian decision theory for issuing natural hazard warnings.

    PubMed

    Economou, T; Stephenson, D B; Rougier, J C; Neal, R A; Mylne, K R

    2016-10-01

    Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings.

  7. On the use of Bayesian decision theory for issuing natural hazard warnings

    PubMed Central

    Stephenson, D. B.; Rougier, J. C.; Neal, R. A.; Mylne, K. R.

    2016-01-01

    Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings. PMID:27843399

  8. Communication Policy and Theory: Current Perspectives on Mass Communication Research.

    ERIC Educational Resources Information Center

    Bybee, Carl R.; Cahn, Dudley D.

    The integration of American and European mass communication research models would provide a broader sociocultural framework for formulating communication policy. Emphasizing a functional approach, the American diffusionist model assumes that society is a system of interrelated parts naturally tending toward a state of dynamic equilibrium. The…

  9. Individual and Class Norms Differentially Predict Proactive and Reactive Aggression: A Functional Analysis

    ERIC Educational Resources Information Center

    Frey, Karin S.; Higheagle Strong, Zoe; Onyewuenyi, Adaurennaya C.

    2017-01-01

    Theory and research using a social-information processing framework indicate that reward-focused (proactive) aggression has different social consequences than defense-focused (reactive) aggression. Students use norms that identify expected and socially approved behaviors as guides to their own actions. Differences in social-cognitive processing…

  10. Simultaneous Optimization of Decisions Using a Linear Utility Function.

    ERIC Educational Resources Information Center

    Vos, Hans J.

    1990-01-01

    An approach is presented to simultaneously optimize decision rules for combinations of elementary decisions through a framework derived from Bayesian decision theory. The developed linear utility model for selection-mastery decisions was applied to a sample of 43 first year medical students to illustrate the procedure. (SLD)

  11. Averaging Models: Parameters Estimation with the R-Average Procedure

    ERIC Educational Resources Information Center

    Vidotto, G.; Massidda, D.; Noventa, S.

    2010-01-01

    The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982), can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto &…

  12. First-Principles Framework to Compute Sum-Frequency Generation Vibrational Spectra of Semiconductors and Insulators.

    PubMed

    Wan, Quan; Galli, Giulia

    2015-12-11

    We present a first-principles framework to compute sum-frequency generation (SFG) vibrational spectra of semiconductors and insulators. The method is based on density functional theory and the use of maximally localized Wannier functions to compute the response to electric fields, and it includes the effect of electric field gradients at surfaces. In addition, it includes quadrupole contributions to SFG spectra, thus enabling the verification of the dipole approximation, whose validity determines the surface specificity of SFG spectroscopy. We compute the SFG spectra of ice I_{h} basal surfaces and identify which spectra components are affected by bulk contributions. Our results are in good agreement with experiments at low temperature.

  13. Theory of fiber-optic, evanescent-wave spectroscopy and sensors

    NASA Astrophysics Data System (ADS)

    Messica, A.; Greenstein, A.; Katzir, A.

    1996-05-01

    A general theory for fiber-optic, evanescent-wave spectroscopy and sensors is presented for straight, uncladded, step-index, multimode fibers. A three-dimensional model is formulated within the framework of geometric optics. The model includes various launching conditions, input and output end-face Fresnel transmission losses, multiple Fresnel reflections, bulk absorption, and evanescent-wave absorption. An evanescent-wave sensor response is analyzed as a function of externally controlled parameters such as coupling angle, f number, fiber length, and diameter. Conclusions are drawn for several experimental apparatuses.

  14. Density functional study on the structural and thermodynamic properties of aqueous DNA-electrolyte solution in the framework of cell model.

    PubMed

    Wang, Ke; Yu, Yang-Xin; Gao, Guang-Hua

    2008-05-14

    A density functional theory (DFT) in the framework of cell model is proposed to calculate the structural and thermodynamic properties of aqueous DNA-electrolyte solution with finite DNA concentrations. The hard-sphere contribution to the excess Helmholtz energy functional is derived from the modified fundamental measure theory, and the electrostatic interaction is evaluated through a quadratic functional Taylor expansion around a uniform fluid. The electroneutrality in the cell leads to a variational equation with a constraint. Since the reference fluid is selected to be a bulk phase, the Lagrange multiplier proves to be the potential drop across the cell boundary (Donnan potential). The ion profiles and electrostatic potential profiles in the cell are calculated from the present DFT-cell model. Our DFT-cell model gives better prediction of ion profiles than the Poisson-Boltzmann (PB)- or modified PB-cell models when compared to the molecular simulation data. The effects of polyelectrolyte concentration, ion size, and added-salt concentration on the electrostatic potential difference between the DNA surface and the cell boundary are investigated. The expression of osmotic coefficient is derived from the general formula of grand potential. The osmotic coefficients predicted by the DFT are lower than the PB results and are closer to the simulation results and experimental data.

  15. The Functional Role of the Periphery in Emotional Language Comprehension

    PubMed Central

    Havas, David A.; Matheson, James

    2013-01-01

    Language can impact emotion, even when it makes no reference to emotion states. For example, reading sentences with positive meanings (“The water park is refreshing on the hot summer day”) induces patterns of facial feedback congruent with the sentence emotionality (smiling), whereas sentences with negative meanings induce a frown. Moreover, blocking facial afference with botox selectively slows comprehension of emotional sentences. Therefore, theories of cognition should account for emotion-language interactions above the level of explicit emotion words, and the role of peripheral feedback in comprehension. For this special issue exploring frontiers in the role of the body and environment in cognition, we propose a theory in which facial feedback provides a context-sensitive constraint on the simulation of actions described in language. Paralleling the role of emotions in real-world behavior, our account proposes that (1) facial expressions accompany sudden shifts in wellbeing as described in language; (2) facial expressions modulate emotional action systems during reading; and (3) emotional action systems prepare the reader for an effective simulation of the ensuing language content. To inform the theory and guide future research, we outline a framework based on internal models for motor control. To support the theory, we assemble evidence from diverse areas of research. Taking a functional view of emotion, we tie the theory to behavioral and neural evidence for a role of facial feedback in cognition. Our theoretical framework provides a detailed account that can guide future research on the role of emotional feedback in language processing, and on interactions of language and emotion. It also highlights the bodily periphery as relevant to theories of embodied cognition. PMID:23750145

  16. Applications of Density Functional Theory in Soft Condensed Matter

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut

    Applications of classical density functional theory (DFT) to soft matter systems like colloids, liquid crystals and polymer solutions are discussed with a focus on the freezing transition and on nonequilibrium Brownian dynamics. First, after a brief reminder of equilibrium density functional theory, DFT is applied to the freezing transition of liquids into crystalline lattices. In particular, spherical particles with radially symmetric pair potentials will be treated (like hard spheres, the classical one-component plasma or Gaussian-core particles). Second, the DFT will be generalized towards Brownian dynamics in order to tackle nonequilibrium problems. After a general introduction to Brownian dynamics using the complementary Smoluchowski and Langevin pictures appropriate for the dynamics of colloidal suspensions, the dynamical density functional theory (DDFT) will be derived from the Smoluchowski equation. This will be done first for spherical particles (e.g. hard spheres or Gaussian-cores) without hydrodynamic interactions. Then we show how to incorporate hydrodynamic interactions between the colloidal particles into the DDFT framework and compare to Brownian dynamics computer simulations. Third orientational degrees of freedom (rod-like particles) will be considered as well. In the latter case, the stability of intermediate liquid crystalline phases (isotropic, nematic, smectic-A, plastic crystals etc) can be predicted. Finally, the corresponding dynamical extension of density functional theory towards orientational degrees of freedom is proposed and the collective behaviour of "active" (self-propelled) Brownian particles is briefly discussed.

  17. Assessing exchange-correlation functionals for elasticity and thermodynamics of α - ZrW 2 O 8 : A density functional perturbation theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weck, Philippe F.; Kim, Eunja; Greathouse, Jeffery A.

    Elastic and thermodynamic properties of negative thermal expansion (NTE) αα-ZrW2O8 have been calculated using PBEsol and PBE exchange-correlation functionals within the framework of density functional perturbation theory (DFPT). Measured elastic constants are reproduced within ~2% with PBEsol and 6% with PBE. The thermal evolution of the Grüneisen parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with observation. The standard molar heat capacity is predicted to be Cmore » $$O\\atop{P}$$=192.2 and 193.8 J mol -1K -1 with PBEsol and PBE, respectively. These results suggest superior accuracy of DFPT/PBEsol for studying the lattice dynamics, elasticity and thermodynamics of NTE materials.« less

  18. Assessing exchange-correlation functionals for elasticity and thermodynamics of α - ZrW 2 O 8 : A density functional perturbation theory study

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja; Greathouse, Jeffery A.; ...

    2018-03-15

    Elastic and thermodynamic properties of negative thermal expansion (NTE) αα-ZrW2O8 have been calculated using PBEsol and PBE exchange-correlation functionals within the framework of density functional perturbation theory (DFPT). Measured elastic constants are reproduced within ~2% with PBEsol and 6% with PBE. The thermal evolution of the Grüneisen parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with observation. The standard molar heat capacity is predicted to be Cmore » $$O\\atop{P}$$=192.2 and 193.8 J mol -1K -1 with PBEsol and PBE, respectively. These results suggest superior accuracy of DFPT/PBEsol for studying the lattice dynamics, elasticity and thermodynamics of NTE materials.« less

  19. Circuit theory and model-based inference for landscape connectivity

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.

    2013-01-01

    Circuit theory has seen extensive recent use in the field of ecology, where it is often applied to study functional connectivity. The landscape is typically represented by a network of nodes and resistors, with the resistance between nodes a function of landscape characteristics. The effective distance between two locations on a landscape is represented by the resistance distance between the nodes in the network. Circuit theory has been applied to many other scientific fields for exploratory analyses, but parametric models for circuits are not common in the scientific literature. To model circuits explicitly, we demonstrate a link between Gaussian Markov random fields and contemporary circuit theory using a covariance structure that induces the necessary resistance distance. This provides a parametric model for second-order observations from such a system. In the landscape ecology setting, the proposed model provides a simple framework where inference can be obtained for effects that landscape features have on functional connectivity. We illustrate the approach through a landscape genetics study linking gene flow in alpine chamois (Rupicapra rupicapra) to the underlying landscape.

  20. Time-dependent density-functional theory with optimized effective potential and self-interaction correction and derivative discontinuity for the treatment of double ionization of He and Be atoms in intense laser fields

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2013-05-01

    We present a self-interaction-free time-dependent density-functional theory (TDDFT) for the treatment of double-ionization processes of many-electron systems. The method is based on the extension of the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed three-dimensional (3D) calculations of double ionization of He and Be atoms by intense near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double-ionization process. We found that a proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the total particle number (TPN). The results for the intensity-dependent rates of double ionization of He and Be atoms are presented.

  1. Assessing Hubbard-corrected AM05+ U and PBEsol+ U density functionals for strongly correlated oxides CeO 2 and Ce 2O 3

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja

    2016-09-12

    The structure–property relationships of bulk CeO 2 and Ce 2O 3 have been investigated using AM05 and PBEsol exchange–correlation functionals within the frameworks of Hubbard-corrected density functional theory (DFT+ U) and density functional perturbation theory (DFPT+ U). Compared with conventional PBE+ U, RPBE+ U, PW91+ U and LDA+ U functionals, AM05+ U and PBEsol+ U describe experimental crystalline parameters and properties of CeO 2 and Ce 2O 3 with superior accuracy, especially when + U is chosen close to its value derived by the linear-response approach. Lastly, the present findings call for a reexamination of some of the problematic oxidemore » materials featuring strong f- and d-electron correlation using AM05+ U and PBEsol+ U.« less

  2. Assessing Hubbard-corrected AM05+ U and PBEsol+ U density functionals for strongly correlated oxides CeO 2 and Ce 2O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weck, Philippe F.; Kim, Eunja

    The structure–property relationships of bulk CeO 2 and Ce 2O 3 have been investigated using AM05 and PBEsol exchange–correlation functionals within the frameworks of Hubbard-corrected density functional theory (DFT+ U) and density functional perturbation theory (DFPT+ U). Compared with conventional PBE+ U, RPBE+ U, PW91+ U and LDA+ U functionals, AM05+ U and PBEsol+ U describe experimental crystalline parameters and properties of CeO 2 and Ce 2O 3 with superior accuracy, especially when + U is chosen close to its value derived by the linear-response approach. Lastly, the present findings call for a reexamination of some of the problematic oxidemore » materials featuring strong f- and d-electron correlation using AM05+ U and PBEsol+ U.« less

  3. The Dependence on Mathematical Theory in TIMSS, PISA and TIMSS Advanced Test Items and Its Relation to Student Achievement

    ERIC Educational Resources Information Center

    Hole, Arne; Grønmo, Liv Sissel; Onstad, Torgeir

    2018-01-01

    Background: This paper discusses a framework for analyzing the dependence on mathematical theory in test items, that is, a framework for discussing to what extent knowledge of mathematical theory is helpful for the student in solving the item. The framework can be applied to any test in which some knowledge of mathematical theory may be useful,…

  4. A Riemannian framework for orientation distribution function computing.

    PubMed

    Cheng, Jian; Ghosh, Aurobrata; Jiang, Tianzi; Deriche, Rachid

    2009-01-01

    Compared with Diffusion Tensor Imaging (DTI), High Angular Resolution Imaging (HARDI) can better explore the complex microstructure of white matter. Orientation Distribution Function (ODF) is used to describe the probability of the fiber direction. Fisher information metric has been constructed for probability density family in Information Geometry theory and it has been successfully applied for tensor computing in DTI. In this paper, we present a state of the art Riemannian framework for ODF computing based on Information Geometry and sparse representation of orthonormal bases. In this Riemannian framework, the exponential map, logarithmic map and geodesic have closed forms. And the weighted Frechet mean exists uniquely on this manifold. We also propose a novel scalar measurement, named Geometric Anisotropy (GA), which is the Riemannian geodesic distance between the ODF and the isotropic ODF. The Renyi entropy H1/2 of the ODF can be computed from the GA. Moreover, we present an Affine-Euclidean framework and a Log-Euclidean framework so that we can work in an Euclidean space. As an application, Lagrange interpolation on ODF field is proposed based on weighted Frechet mean. We validate our methods on synthetic and real data experiments. Compared with existing Riemannian frameworks on ODF, our framework is model-free. The estimation of the parameters, i.e. Riemannian coordinates, is robust and linear. Moreover it should be noted that our theoretical results can be used for any probability density function (PDF) under an orthonormal basis representation.

  5. Rethinking the Introduction of Particle Theory: A Substance-Based Framework

    ERIC Educational Resources Information Center

    Johnson, Philip; Papageorgiou, George

    2010-01-01

    In response to extensive research exposing students' poor understanding of the particle theory of matter, this article argues that the conceptual framework within which the theory is introduced could be a limiting factor. The standard school particle model is characterized as operating within a "solids, liquids, and gases" framework.…

  6. Connecting defects and amorphization in UiO-66 and MIL-140 metal–organic frameworks: a combined experimental and computational study.

    PubMed

    Bennett, Thomas D; Todorova, Tanya K; Baxter, Emma F; Reid, David G; Gervais, Christel; Bueken, Bart; Van de Voorde, B; De Vos, Dirk; Keen, David A; Mellot-Draznieks, Caroline

    2016-01-21

    The mechanism and products of the structural collapse of the metal–organic frameworks (MOFs) UiO-66, MIL-140B and MIL-140C upon ball-milling are investigated through solid state 13C NMR and pair distribution function (PDF) studies, finding amorphization to proceed by the breaking of a fraction of metal–ligand bonding in each case. The amorphous products contain inorganic–organic bonding motifs reminiscent of the crystalline phases. Whilst the inorganic Zr6O4(OH)4 clusters of UiO-66 remain intact upon structural collapse, the ZrO backbone of the MIL-140 frameworks undergoes substantial distortion. Density functional theory calculations have been performed to investigate defective models of MIL-140B and show, through comparison of calculated and experimental 13C NMR spectra, that amorphization and defects in the materials are linked.

  7. A Statistical Framework for the Functional Analysis of Metagenomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharon, Itai; Pati, Amrita; Markowitz, Victor

    2008-10-01

    Metagenomic studies consider the genetic makeup of microbial communities as a whole, rather than their individual member organisms. The functional and metabolic potential of microbial communities can be analyzed by comparing the relative abundance of gene families in their collective genomic sequences (metagenome) under different conditions. Such comparisons require accurate estimation of gene family frequencies. They present a statistical framework for assessing these frequencies based on the Lander-Waterman theory developed originally for Whole Genome Shotgun (WGS) sequencing projects. They also provide a novel method for assessing the reliability of the estimations which can be used for removing seemingly unreliable measurements.more » They tested their method on a wide range of datasets, including simulated genomes and real WGS data from sequencing projects of whole genomes. Results suggest that their framework corrects inherent biases in accepted methods and provides a good approximation to the true statistics of gene families in WGS projects.« less

  8. Molecular Level Characterization of the Structure and Interactions in Peptide-Functionalized Metal-Organic Frameworks.

    PubMed

    Todorova, Tanya K; Rozanska, Xavier; Gervais, Christel; Legrand, Alexandre; Ho, Linh N; Berruyer, Pierrick; Lesage, Anne; Emsley, Lyndon; Farrusseng, David; Canivet, Jérôme; Mellot-Draznieks, Caroline

    2016-11-07

    We use density functional theory, newly parameterized molecular dynamics simulations, and last generation 15 N dynamic nuclear polarization surface enhanced solid-state NMR spectroscopy (DNP SENS) to understand graft-host interactions and effects imposed by the metal-organic framework (MOF) host on peptide conformations in a peptide-functionalized MOF. Focusing on two grafts typified by MIL-68-proline (-Pro) and MIL-68-glycine-proline (-Gly-Pro), we identified the most likely peptide conformations adopted in the functionalized hybrid frameworks. We found that hydrogen bond interactions between the graft and the surface hydroxyl groups of the MOF are essential in determining the peptides conformation(s). DNP SENS methodology shows unprecedented signal enhancements when applied to these peptide-functionalized MOFs. The calculated chemical shifts of selected MIL-68-NH-Pro and MIL-68-NH-Gly-Pro conformations are in a good agreement with the experimentally obtained 15 N NMR signals. The study shows that the conformations of peptides when grafted in a MOF host are unlikely to be freely distributed, and conformational selection is directed by strong host-guest interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Using a systems orientation and foundational theory to enhance theory-driven human service program evaluations.

    PubMed

    Wasserman, Deborah L

    2010-05-01

    This paper offers a framework for using a systems orientation and "foundational theory" to enhance theory-driven evaluations and logic models. The framework guides the process of identifying and explaining operative relationships and perspectives within human service program systems. Self-Determination Theory exemplifies how a foundational theory can be used to support the framework in a wide range of program evaluations. Two examples illustrate how applications of the framework have improved the evaluators' abilities to observe and explain program effect. In both exemplars improvements involved addressing and organizing into a single logic model heretofore seemingly disparate evaluation issues regarding valuing (by whose values); the role of organizational and program context; and evaluation anxiety and utilization. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. An ab-initio study of mechanical, dynamical and electronic properties of MgEu intermetallic

    NASA Astrophysics Data System (ADS)

    Kumar, S. Ramesh; Jaiganesh, G.; Jayalakshmi, V.

    2018-04-01

    The theoretical investigation on the mechanical, dynamical and electronic properties of MgEu in CsCl-type structure has been carried out through the ab-initio calculations within the framework of the density functional theory and the density functional perturbation theory. For the purpose, Vienna Ab initio Simulation Package and Phonopy packages were used. Our calculated ground-state properties of MgEu are in good agreement with other available results. Our computed elastic constants and phonon spectrum results suggest that MgEu is mechanically and dynamically stable up to 5 GPa. The thermodynamic quantities as a function of temperatures are also reported and discussed. The band structure, density of states and charge density also calculated to understand the electronic properties of MgEu.

  11. Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories

    NASA Astrophysics Data System (ADS)

    Dong, Xi

    2016-06-01

    We develop a framework for studying the well-known universal term in the Rényi entropy for an arbitrary entangling region in four-dimensional conformal field theories that are holographically dual to gravitational theories. The shape dependence of the Rényi entropy Sn is described by two coefficients: fb(n ) for traceless extrinsic curvature deformations and fc(n ) for Weyl tensor deformations. We provide the first calculation of the coefficient fb(n ) in interacting theories by relating it to the stress tensor one-point function in a deformed hyperboloid background. The latter is then determined by a straightforward holographic calculation. Our results show that a previous conjecture fb(n )=fc(n ), motivated by surprising evidence from a variety of free field theories and studies of conical defects, fails holographically.

  12. Clinical overview: a framework for analysis.

    PubMed

    Bossen, Claus; Jensen, Lotte G

    2013-01-01

    In this presentation, we investigate concepts and theories for analysing how healthcare professionals achieve overview of patient cases. By 'overview' we mean the situation in which a healthcare professional with sufficient certainty and in concrete situations knows how to proceed based on available information upon a patient. Achieving overview is central for the efficient and safe use of healthcare IT systems, and for the realization of the potential improvements of healthcare that are behind investments in such systems. We focus on the theories of decision-making, sensemaking, narratives, ethnomethodology and distributed cognition. Whereas decision-making theory tend to be sequential and normative, we find the concept of 'functional deployment' in sensemaking theory, 'emplotment' in narrative theory, the focus on 'members' methods' in ethnomethodology and the inclusion of 'computational artifacts' in distributed cognition helpful.

  13. Structural and electronic properties of M-MOF-74 (M = Mg, Co or Mn)

    NASA Astrophysics Data System (ADS)

    de Oliveira, Aline; de Lima, Guilherme Ferreira; De Abreu, Heitor Avelino

    2018-01-01

    The Metal-Organic Frameworks M-MOF-74 (M = Mg, Co or Mn) were investigated through Density Functional Theory calculations. Structural parameters and band gap energies were determined in agreement with experimental data, with errors under 2%. The methods Electron Localization Function and Quantum Theory of Atoms in Molecules were applied to the analyses of the electronic density topology of the three solids. These methodologies indicated that the bonds between the metallic cations and the oxygen atoms are predominantly ionic while the other ones are predominantly covalent. Furthermore, non-conventional hydrogen bonds were identified to Mg-MOF-74 and Co-MOF-74, which were not observed to Mn-MOF-74.

  14. Role tuning between caregiver and care receiver during discharge transition: an illustration of role function mode in Roy's adaptation theory.

    PubMed

    Shyu, Y I

    2000-10-01

    The purpose of this study was to develop a conceptual framework to explain the interaction between the caregiver and the care receiver during the discharge transition. Data from face-to-face interviews with 12 care receivers and 16 caregivers were subjected to constant comparative analysis. Findings revealed that role tuning was the process used by caregivers and care receivers to achieve a harmonious pattern of caregiving and care receiving during the transition from hospital to home. This empirical finding can illustrate the concept of role function mode in the Roy adaptation theory and sensitize healthcare providers to the needs of the families during the discharge transition.

  15. On real-space Density Functional Theory for non-orthogonal crystal systems: Kronecker product formulation of the kinetic energy operator

    NASA Astrophysics Data System (ADS)

    Sharma, Abhiraj; Suryanarayana, Phanish

    2018-05-01

    We present an accurate and efficient real-space Density Functional Theory (DFT) framework for the ab initio study of non-orthogonal crystal systems. Specifically, employing a local reformulation of the electrostatics, we develop a novel Kronecker product formulation of the real-space kinetic energy operator that significantly reduces the number of operations associated with the Laplacian-vector multiplication, the dominant cost in practical computations. In particular, we reduce the scaling with respect to finite-difference order from quadratic to linear, thereby significantly bridging the gap in computational cost between non-orthogonal and orthogonal systems. We verify the accuracy and efficiency of the proposed methodology through selected examples.

  16. A Survey and Analysis of Aircraft Maintenance Metrics: A Balanced Scorecard Approach

    DTIC Science & Technology

    2014-03-27

    Metrics Set Theory /Framework .................................................................................... 16 Balanced Scorecard overview...a useful form Figure 1: Metric Evaluation Criteria (Caplice & Sheffi, 1994, p. 14) Metrics Set Theory /Framework The researcher included an...examination of established theory and frameworks on how metrics sets are constructed in the literature review. The purpose of this examination was to

  17. Processing Speed and Executive Functions in Cognitive Aging: How to Disentangle Their Mutual Relationship?

    ERIC Educational Resources Information Center

    Albinet, Cedric T.; Boucard, Geoffroy; Bouquet, Cedric; Audiffren, Michel

    2012-01-01

    The processing-speedtheory and the prefrontal-executivetheory are competing theories of cognitive aging. Here we used a theoretically and methodologically-driven framework to investigate the relationships among measures classically used to assess these two theoretical constructs. Twenty-eight young adults (18-32 years) and 39 healthy older adults…

  18. Morality, Culture and the Dialogic Self: Taking Cultural Pluralism Seriously

    ERIC Educational Resources Information Center

    Haste, Helen; Abrahams, Salie

    2008-01-01

    This paper explores moral reasoning within the framework of contemporary cultural theory, in which moral functioning is action mediated by tools (such as socially available discourses) within a social and cultural context. This cultural model of a "dialogic moral self" challenges many of the assumptions inherent in the individualistic Kantian…

  19. Triple Helix Systems: An Analytical Framework for Innovation Policy and Practice in the Knowledge Society

    ERIC Educational Resources Information Center

    Ranga, Marina; Etzkowitz, Henry

    2013-01-01

    This paper introduces the concept of Triple Helix systems as an analytical construct that synthesizes the key features of university--industry--government (Triple Helix) interactions into an "innovation system" format, defined according to systems theory as a set of components, relationships and functions. Among the components of Triple…

  20. Management Ethics: Integrity at Work. Sage Series on Business Ethics.

    ERIC Educational Resources Information Center

    Petrick, Joseph A.; Quinn, John F.

    This book tries to redefine what it means for a manager to function with integrity and competence in the private and public sectors domestically and globally. It integrates theoretical work in both descriptive and normative ethics and incorporates legal, communication, quality, and organizational theories into a conceptual framework designed to…

  1. Thriving with Social Purpose: An Integrative Approach to the Development of Optimal Human Functioning

    ERIC Educational Resources Information Center

    Ford, Martin E.; Smith, Peyton R.

    2007-01-01

    This article responds to the need to synthesize theory and research in educational psychology by introducing the Thriving with Social Purpose (TSP) conceptual framework. TSP results when the four components of human motivation--goals, capability beliefs, context beliefs, and emotions--are amplified in dynamic, mutually reinforcing patterns. The…

  2. Some Technical Implications of Distributed Cognition on the Design on Interactive Learning Environments.

    ERIC Educational Resources Information Center

    Dillenbourg, Pierre

    1996-01-01

    Maintains that diagnosis, explanation, and tutoring, the functions of an interactive learning environment, are collaborative processes. Examines how human-computer interaction can be improved using a distributed cognition framework. Discusses situational and distributed knowledge theories and provides a model on how they can be used to redesign…

  3. The neurosciences and the search for a unified psychology: the science and esthetics of a single framework

    PubMed Central

    Stam, Henderikus J.

    2015-01-01

    The search for a so-called unified or integrated theory has long served as a goal for some psychologists, even if the search is often implicit. But if the established sciences do not have an explicitly unified set of theories, then why should psychology? After examining this question again I argue that psychology is in fact reasonably unified around its methods and its commitment to functional explanations, an indeterminate functionalism. The question of the place of the neurosciences in this framework is complex. On the one hand, the neuroscientific project will not likely renew and synthesize the disparate arms of psychology. On the other hand, their reformulation of what it means to be human will exert an influence in multiple ways. One way to capture that influence is to conceptualize the brain in terms of a technology that we interact with in a manner that we do not yet fully understand. In this way we maintain both a distance from neuro-reductionism and refrain from committing to an unfettered subjectivity. PMID:26500571

  4. Adsorptive desulfurization with metal-organic frameworks: A density functional theory investigation

    NASA Astrophysics Data System (ADS)

    Chen, Zhiping; Ling, Lixia; Wang, Baojun; Fan, Huiling; Shangguan, Ju; Mi, Jie

    2016-11-01

    The contribution of each fragment of metal-organic frameworks (MOFs) to the adsorption of sulfur compounds were investigated using density functional theory (DFT). The involved sulfur compounds are dimethyl sulfide (CH3SCH3), ethyl mercaptan (CH3CH2SH) and hydrogen sulfide (H2S). MOFs with different organic ligands (NH2-BDC, BDC and NDC), metal centers structures (M, M-M and M3O) and metal ions (Zn, Cu and Fe) were used to study their effects on sulfur species adsorption. The results revealed that, MOFs with coordinatively unsaturated sites (CUS) have the strongest binding strength with sulfur compounds, MOFs with NH2-BDC substituent group ligand comes second, followed by that with saturated metal center, and the organic ligands without substituent group has the weakest adsorption strength. Moreover, it was also found that, among different metal ions (Fe, Zn and Cu), MOFs with unsaturated Fe has the strongest adsorption strength for sulfur compounds. These results are consistent with our previous experimental observations, and therefore provide insights on the better design of MOFs for desulfurization application.

  5. Graph Theoretical Framework of Brain Networks in Multiple Sclerosis: A Review of Concepts.

    PubMed

    Fleischer, Vinzenz; Radetz, Angela; Ciolac, Dumitru; Muthuraman, Muthuraman; Gonzalez-Escamilla, Gabriel; Zipp, Frauke; Groppa, Sergiu

    2017-11-01

    Network science provides powerful access to essential organizational principles of the human brain. It has been applied in combination with graph theory to characterize brain connectivity patterns. In multiple sclerosis (MS), analysis of the brain networks derived from either structural or functional imaging provides new insights into pathological processes within the gray and white matter. Beyond focal lesions and diffuse tissue damage, network connectivity patterns could be important for closely tracking and predicting the disease course. In this review, we describe concepts of graph theory, highlight novel issues of tissue reorganization in acute and chronic neuroinflammation and address pitfalls with regard to network analysis in MS patients. We further provide an outline of functional and structural connectivity patterns observed in MS, spanning from disconnection and disruption on one hand to adaptation and compensation on the other. Moreover, we link network changes and their relation to clinical disability based on the current literature. Finally, we discuss the perspective of network science in MS for future research and postulate its role in the clinical framework. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Distributed Optimization

    NASA Technical Reports Server (NTRS)

    Macready, William; Wolpert, David

    2005-01-01

    We demonstrate a new framework for analyzing and controlling distributed systems, by solving constrained optimization problems with an algorithm based on that framework. The framework is ar. information-theoretic extension of conventional full-rationality game theory to allow bounded rational agents. The associated optimization algorithm is a game in which agents control the variables of the optimization problem. They do this by jointly minimizing a Lagrangian of (the probability distribution of) their joint state. The updating of the Lagrange parameters in that Lagrangian is a form of automated annealing, one that focuses the multi-agent system on the optimal pure strategy. We present computer experiments for the k-sat constraint satisfaction problem and for unconstrained minimization of NK functions.

  7. Epigenetic game theory and its application in plants. Comment on: ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan-Ming; Zhang, Yinghao; Guo, Mingyue

    2017-03-01

    Wang's et al. article [1] is the first to integrate game theory (especially evolutionary game theory) with epigenetic modification of zygotic genomes. They described and assessed a modeling framework based on evolutionary game theory to quantify, how sperms and oocytes interact through epigenetic processes, to determine embryo development. They also studied the internal mechanisms for normal embryo development: 1) evolutionary interactions between DNA methylation of the paternal and maternal genomes, and 2) the application of game theory to formulate and quantify how different genes compete or cooperate to regulate embryogenesis through methylation. Although it is not very comprehensive and profound regarding game theory modeling, this article bridges the gap between evolutionary game theory and the epigenetic control of embryo development by powerful ordinary differential equations (ODEs). The epiGame framework includes four aspects: 1) characterizing how epigenetic game theory works by the strategy matrix, in which the pattern and relative magnitude of the methylation effects on embryogenesis, are described by the cooperation and competition mechanisms, 2) quantifying the game that the direction and degree of P-M interactions over embryo development can be explained by the sign and magnitude of interaction parameters in model (2), 3) modeling epigenetic interactions within the morula, especially for two coupled nonlinear ODEs, with explicit functions in model (4), which provide a good fit to the observed data for the two sexes (adjusted R2 = 0.956), and 4) revealing multifactorial interactions in embryogenesis from the coupled ODEs in model (2) to triplet ODEs in model (6). Clearly, this article extends game theory from evolutionary game theory to epigenetic game theory.

  8. Tried and True: Self-Regulation Theory as a Guiding Framework for Teaching Parents Diabetes Education Using Human Patient Simulation

    PubMed Central

    Sullivan-Bolyai, Susan; Johnson, Kimberly; Cullen, Karen; Hamm, Terry; Bisordi, Jean; Blaney, Kathleen; Maguire, Laura; Melkus, Gail

    2014-01-01

    Parents become emotionally upset when learning their child has Type 1 Diabetes, yet they are expected to quickly learn functional diabetes management. The purpose of this article is to describe the application of Self-Regulation theory to guide a family-focused education intervention using human patient simulation to enhance the initial education of parents in diabetes management. A brief description is provided of the intervention framed by Self-Regulation theory. Based on the literature, we describe the educational vignettes used based on Self-Regulation in the randomized controlled trial entitled Parent Education Through Simulation-Diabetes. Examples of theory-in-practice will be illustrated by parental learning responses to this alternative educational innovation. PMID:25365286

  9. World Health Organization and the search for accountability: a critical analysis of the new framework of engagement with non-state actors.

    PubMed

    Rached, Danielle Hanna; Ventura, Deisy de Freitas Lima

    2017-07-03

    The article probes the origins and content of the Framework of Engagement with Non-State Actors (FENSA) of the World Health Organization (WHO), approved on May 28, 2016, at the 69th World Health Assembly, which established different rules of collaboration to four categories of actors: nongovernmental organizations (NGOs), private sector entities, philanthropic foundations, and academic institutions. Applying the findings of International Legal Theory and based on extensive documentary research, we sought to determine whether FENSA is an appropriate accountability mechanism according to four functions of accountability: constitutional, democratic, epistemic, and populist. The article concludes that there is a risk of the prevalence of the populist function at the expense of the accountability potential that could result from the better use of the other three accountability functions.

  10. Flexible Force Field Parameterization through Fitting on the Ab Initio-Derived Elastic Tensor

    PubMed Central

    2017-01-01

    Constructing functional forms and their corresponding force field parameters for the metal–linker interface of metal–organic frameworks is challenging. We propose fitting these parameters on the elastic tensor, computed from ab initio density functional theory calculations. The advantage of this top-down approach is that it becomes evident if functional forms are missing when components of the elastic tensor are off. As a proof-of-concept, a new flexible force field for MIL-47(V) is derived. Negative thermal expansion is observed and framework flexibility has a negligible effect on adsorption and transport properties for small guest molecules. We believe that this force field parametrization approach can serve as a useful tool for developing accurate flexible force field models that capture the correct mechanical behavior of the full periodic structure. PMID:28661672

  11. General Theory of Absorption in Porous Materials: Restricted Multilayer Theory.

    PubMed

    Aduenko, Alexander A; Murray, Andy; Mendoza-Cortes, Jose L

    2018-04-18

    In this article, we present an approach for the generalization of adsorption of light gases in porous materials. This new theory goes beyond Langmuir and Brunauer-Emmett-Teller theories, which are the standard approaches that have a limited application to crystalline porous materials by their unphysical assumptions on the amount of possible adsorption layers. The derivation of a more general equation for any crystalline porous framework is presented, restricted multilayer theory. Our approach allows the determination of gas uptake considering only geometrical constraints of the porous framework and the interaction energy of the guest molecule with the framework. On the basis of this theory, we calculated optimal values for the adsorption enthalpy at different temperatures and pressures. We also present the use of this theory to determine the optimal linker length for a topologically equivalent framework series. We validate this theoretical approach by applying it to metal-organic frameworks (MOFs) and show that it reproduces the experimental results for seven different reported materials. We obtained the universal equation for the optimal linker length, given the topology of a porous framework. This work applied the general equation to MOFs and H 2 to create energy-storage materials; however, this theory can be applied to other crystalline porous materials and light gases, which opens the possibility of designing the next generations of energy-storage materials by first considering only the geometrical constraints of the porous materials.

  12. Multiconfiguration Pair-Density Functional Theory.

    PubMed

    Li Manni, Giovanni; Carlson, Rebecca K; Luo, Sijie; Ma, Dongxia; Olsen, Jeppe; Truhlar, Donald G; Gagliardi, Laura

    2014-09-09

    We present a new theoretical framework, called Multiconfiguration Pair-Density Functional Theory (MC-PDFT), which combines multiconfigurational wave functions with a generalization of density functional theory (DFT). A multiconfigurational self-consistent-field (MCSCF) wave function with correct spin and space symmetry is used to compute the total electronic density, its gradient, the on-top pair density, and the kinetic and Coulomb contributions to the total electronic energy. We then use a functional of the total density, its gradient, and the on-top pair density to calculate the remaining part of the energy, which we call the on-top-density-functional energy in contrast to the exchange-correlation energy of Kohn-Sham DFT. Because the on-top pair density is an element of the two-particle density matrix, this goes beyond the Hohenberg-Kohn theorem that refers only to the one-particle density. To illustrate the theory, we obtain first approximations to the required new type of density functionals by translating conventional density functionals of the spin densities using a simple prescription, and we perform post-SCF density functional calculations using the total density, density gradient, and on-top pair density from the MCSCF calculations. Double counting of dynamic correlation or exchange does not occur because the MCSCF energy is not used. The theory is illustrated by applications to the bond energies and potential energy curves of H2, N2, F2, CaO, Cr2, and NiCl and the electronic excitation energies of Be, C, N, N(+), O, O(+), Sc(+), Mn, Co, Mo, Ru, N2, HCHO, C4H6, c-C5H6, and pyrazine. The method presented has a computational cost and scaling similar to MCSCF, but a quantitative accuracy, even with the present first approximations to the new types of density functionals, that is comparable to much more expensive multireference perturbation theory methods.

  13. Modeling L2,3-Edge X-ray Absorption Spectroscopy with Real-Time Exact Two-Component Relativistic Time-Dependent Density Functional Theory.

    PubMed

    Kasper, Joseph M; Lestrange, Patrick J; Stetina, Torin F; Li, Xiaosong

    2018-04-10

    X-ray absorption spectroscopy is a powerful technique to probe local electronic and nuclear structure. There has been extensive theoretical work modeling K-edge spectra from first principles. However, modeling L-edge spectra directly with density functional theory poses a unique challenge requiring further study. Spin-orbit coupling must be included in the model, and a noncollinear density functional theory is required. Using the real-time exact two-component method, we are able to variationally include one-electron spin-orbit coupling terms when calculating the absorption spectrum. The abilities of different basis sets and density functionals to model spectra for both closed- and open-shell systems are investigated using SiCl 4 and three transition metal complexes, TiCl 4 , CrO 2 Cl 2 , and [FeCl 6 ] 3- . Although we are working in the real-time framework, individual molecular orbital transitions can still be recovered by projecting the density onto the ground state molecular orbital space and separating contributions to the time evolving dipole moment.

  14. Ghost-gluon vertex in the presence of the Gribov horizon

    NASA Astrophysics Data System (ADS)

    Mintz, B. W.; Palhares, L. F.; Sorella, S. P.; Pereira, A. D.

    2018-02-01

    We consider Yang-Mills theories quantized in the Landau gauge in the presence of the Gribov horizon via the refined Gribov-Zwanziger (RGZ) framework. As the restriction of the gauge path integral to the Gribov region is taken into account, the resulting gauge field propagators display a nontrivial infrared behavior, being very close to the ones observed in lattice gauge field theory simulations. In this work, we explore a higher correlation function in the refined Gribov-Zwanziger theory: the ghost-gluon interaction vertex, at one-loop level. We show explicit compatibility with kinematical constraints, as required by the Ward identities of the theory, and obtain analytical expressions in the limit of vanishing gluon momentum. We find that the RGZ results are nontrivial in the infrared regime, being compatible with lattice Yang-Mills simulations in both SU(2) and SU(3), as well as with solutions from Schwinger-Dyson equations in different truncation schemes, Functional Renormalization Group analysis, and the renormalization group-improved Curci-Ferrari model.

  15. Calculus students' understanding of the vertex of the quadratic function in relation to the concept of derivative

    NASA Astrophysics Data System (ADS)

    Burns-Childers, Annie; Vidakovic, Draga

    2018-07-01

    The purpose of this study was to gain insight into 30, first year calculus students' understanding of the relationship between the concept of vertex of a quadratic function and the concept of the derivative. APOS (action-process-object-schema) theory was applied as a guiding framework of analysis on student written work, think-aloud and follow up group interviews. Students' personal meanings of the vertex, including misconceptions, were explored, along with students' understanding to solve problems pertaining to the derivative of a quadratic function. Results give evidence of students' weak schema of the vertex, lack of connection between different problem types and the importance of linguistics in relation to levels of APOS theory. A preliminary genetic decomposition was developed based on the results. Future research is suggested as a continuation to improve student understanding of the relationship between the vertex of quadratic functions and the derivative.

  16. An Alienation-Based Framework for Student Experience in Higher Education: New Interpretations of Past Observations in Student Learning Theory

    ERIC Educational Resources Information Center

    Barnhardt, Bradford; Ginns, Paul

    2014-01-01

    This article orients a recently proposed alienation-based framework for student learning theory (SLT) to the empirical basis of the approaches to learning perspective. The proposed framework makes new macro-level interpretations of an established micro-level theory, across three levels of interpretation: (1) a context-free psychological state…

  17. Testing adaptive toolbox models: a Bayesian hierarchical approach.

    PubMed

    Scheibehenne, Benjamin; Rieskamp, Jörg; Wagenmakers, Eric-Jan

    2013-01-01

    Many theories of human cognition postulate that people are equipped with a repertoire of strategies to solve the tasks they face. This theoretical framework of a cognitive toolbox provides a plausible account of intra- and interindividual differences in human behavior. Unfortunately, it is often unclear how to rigorously test the toolbox framework. How can a toolbox model be quantitatively specified? How can the number of toolbox strategies be limited to prevent uncontrolled strategy sprawl? How can a toolbox model be formally tested against alternative theories? The authors show how these challenges can be met by using Bayesian inference techniques. By means of parameter recovery simulations and the analysis of empirical data across a variety of domains (i.e., judgment and decision making, children's cognitive development, function learning, and perceptual categorization), the authors illustrate how Bayesian inference techniques allow toolbox models to be quantitatively specified, strategy sprawl to be contained, and toolbox models to be rigorously tested against competing theories. The authors demonstrate that their approach applies at the individual level but can also be generalized to the group level with hierarchical Bayesian procedures. The suggested Bayesian inference techniques represent a theoretical and methodological advancement for toolbox theories of cognition and behavior.

  18. Incorporating Peplau's Theory of Interpersonal Relations to Promote Holistic Communication Between Older Adults and Nursing Students.

    PubMed

    Deane, William H; Fain, James A

    2016-03-01

    With the increased life expectancy, older adults will interact with multiple health care providers to manage acute and chronic conditions. These interactions include nursing students who use various health care settings to meet the clinical practicum requirements of their programs. Nursing faculty are charged with facilitating students' learning throughout the program from basic human needs, to holistic communication, to advanced medical surgical concepts. Despite educating students on holistic communication, there remains a lack of a reliable framework to undertake the task of teaching holistic communication skills. Nursing students preparing to function as licensed practitioners need to develop appropriate knowledge to holistically care for older adults. The purpose of this article is to examine Hildegard Peplau's interpersonal relations theory as a framework to assist nursing students to understand holistic communication skills during their encounters with older adults. Peplau's theory provides nursing a useful set of three interlocking and oftentimes overlapping working phases for nurses' interaction with patients in the form of the nurse-patient relationship. Nursing education could adopt the three phases of Peplau's interpersonal relations theory to educate students on holistically communicating with older adults. © The Author(s) 2015.

  19. Grounding a new information technology implementation framework in behavioral science: a systematic analysis of the literature on IT use.

    PubMed

    Kukafka, Rita; Johnson, Stephen B; Linfante, Allison; Allegrante, John P

    2003-06-01

    Many interventions to improve the success of information technology (IT) implementations are grounded in behavioral science, using theories, and models to identify conditions and determinants of successful use. However, each model in the IT literature has evolved to address specific theoretical problems of particular disciplinary concerns, and each model has been tested and has evolved using, in most cases, a more or less restricted set of IT implementation procedures. Functionally, this limits the perspective for taking into account the multiple factors at the individual, group, and organizational levels that influence use behavior. While a rich body of literature has emerged, employing prominent models such as the Technology Adoption Model, Social-Cognitive Theory, and Diffusion of Innovation Theory, the complexity of defining a suitable multi-level intervention has largely been overlooked. A gap exists between the implementation of IT and the integration of theories and models that can be utilized to develop multi-level approaches to identify factors that impede usage behavior. We present a novel framework that is intended to guide synthesis of more than one theoretical perspective for the purpose of planning multi-level interventions to enhance IT use. This integrative framework is adapted from PRECEDE/PROCEDE, a conceptual framework used by health planners in hundreds of published studies to direct interventions that account for the multiple determinants of behavior. Since we claim that the literature on IT use behavior does not now include a multi-level approach, we undertook a systematic literature analysis to confirm this assertion. Our framework facilitated organizing this literature synthesis and our analysis was aimed at determining if the IT implementation approaches in the published literature were characterized by an approach that considered at least two levels of IT usage determinants. We found that while 61% of studies mentioned or referred to theory, none considered two or more levels. In other words, although the researchers employ behavioral theory, they omit two fundamental propositions: (1) IT usage is influenced by multiple factors and (2) interventions must be multi-dimensional. Our literature synthesis may provide additional insight into the reason for high failure rates associated with underutilized systems, and underscores the need to move beyond the current dominant approach that employs a single model to guide IT implementation plans that aim to address factors associated with IT acceptance and subsequent positive use behavior.

  20. Statistics of Smoothed Cosmic Fields in Perturbation Theory. I. Formulation and Useful Formulae in Second-Order Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Matsubara, Takahiko

    2003-02-01

    We formulate a general method for perturbative evaluations of statistics of smoothed cosmic fields and provide useful formulae for application of the perturbation theory to various statistics. This formalism is an extensive generalization of the method used by Matsubara, who derived a weakly nonlinear formula of the genus statistic in a three-dimensional density field. After describing the general method, we apply the formalism to a series of statistics, including genus statistics, level-crossing statistics, Minkowski functionals, and a density extrema statistic, regardless of the dimensions in which each statistic is defined. The relation between the Minkowski functionals and other geometrical statistics is clarified. These statistics can be applied to several cosmic fields, including three-dimensional density field, three-dimensional velocity field, two-dimensional projected density field, and so forth. The results are detailed for second-order theory of the formalism. The effect of the bias is discussed. The statistics of smoothed cosmic fields as functions of rescaled threshold by volume fraction are discussed in the framework of second-order perturbation theory. In CDM-like models, their functional deviations from linear predictions plotted against the rescaled threshold are generally much smaller than that plotted against the direct threshold. There is still a slight meatball shift against rescaled threshold, which is characterized by asymmetry in depths of troughs in the genus curve. A theory-motivated asymmetry factor in the genus curve is proposed.

  1. Health systems frameworks in their political context: framing divergent agendas

    PubMed Central

    2012-01-01

    Background Despite the mounting attention for health systems and health systems theories, there is a persisting lack of consensus on their conceptualisation and strengthening. This paper contributes to structuring the debate, presenting landmarks in the development of health systems thinking against the backdrop of the policy context and its dominant actors. We argue that frameworks on health systems are products of their time, emerging from specific discourses. They are purposive, not neutrally descriptive, and are shaped by the agendas of their authors. Discussion The evolution of thinking over time does not reflect a progressive accumulation of insights. Instead, theories and frameworks seem to develop in reaction to one another, partly in line with prevailing paradigms and partly as a response to the very different needs of their developers. The reform perspective considering health systems as projects to be engineered is fundamentally different from the organic view that considers a health system as a mirror of society. The co-existence of health systems and disease-focused approaches indicates that different frameworks are complementary but not synthetic. The contestation of theories and methods for health systems relates almost exclusively to low income countries. At the global level, health system strengthening is largely narrowed down to its instrumental dimension, whereby well-targeted and specific interventions are supposed to strengthen health services and systems or, more selectively, specific core functions essential to programmes. This is in contrast to a broader conceptualization of health systems as social institutions. Summary Health systems theories and frameworks frame health, health systems and policies in particular political and public health paradigms. While there is a clear trend to try to understand the complexity of and dynamic relationships between elements of health systems, there is also a demand to provide frameworks that distinguish between health system interventions, and that allow mapping with a view of analysing their returns. The choice for a particular health system model to guide discussions and work should fit the purpose. The understanding of the underlying rationale of a chosen model facilitates an open dialogue about purpose and strategy. PMID:22971107

  2. An evidence-based framework to measure quality of allied health care.

    PubMed

    Grimmer, Karen; Lizarondo, Lucylynn; Kumar, Saravana; Bell, Erica; Buist, Michael; Weinstein, Philip

    2014-02-26

    There is no standard way of describing the complexities of allied health (AH) care, or its quality. AH is an umbrella term which excludes medicine and nursing, and variably includes disciplines which provide therapy, diagnostic, or scientific services. This paper outlines a framework for a standard approach to evaluate the quality of AH therapy services. A realist synthesis framework describing what AH does, how it does it, and what is achieved, was developed. This was populated by the findings of a systematic review of literature published since 1980 reporting concepts of quality relevant to AH. Articles were included on quality measurement concepts, theories, debates, and/or hypothetical frameworks. Of 139 included articles, 21 reported on descriptions of quality potentially relevant to AH. From these, 24 measures of quality were identified, with 15 potentially relating to what AH does, 17 to how AH delivers care, 8 relating to short term functional outcomes, and 9 relating to longer term functional and health system outcomes. A novel evidence-based quality framework was proposed to address the complexity of AH therapies. This should assist in better evaluation of AH processes and outcomes, costs, and evidence-based engagement of AH providers in healthcare teams.

  3. Anionic silicate organic frameworks constructed from hexacoordinate silicon centres

    NASA Astrophysics Data System (ADS)

    Roeser, Jérôme; Prill, Dragica; Bojdys, Michael J.; Fayon, Pierre; Trewin, Abbie; Fitch, Andrew N.; Schmidt, Martin U.; Thomas, Arne

    2017-10-01

    Crystalline frameworks composed of hexacoordinate silicon species have thus far only been observed in a few high pressure silicate phases. By implementing reversible Si-O chemistry for the crystallization of covalent organic frameworks, we demonstrate the simple one-pot synthesis of silicate organic frameworks based on octahedral dianionic SiO6 building units. Clear evidence of the hexacoordinate environment around the silicon atoms is given by 29Si nuclear magnetic resonance analysis. Characterization by high-resolution powder X-ray diffraction, density functional theory calculation and analysis of the pair-distribution function showed that those anionic frameworks—M2[Si(C16H10O4)1.5], where M = Li, Na, K and C16H10O4 is 9,10-dimethylanthracene-2,3,6,7-tetraolate—crystallize as two-dimensional hexagonal layers stabilized in a fully eclipsed stacking arrangement with pronounced disorder in the stacking direction. Permanent microporosity with high surface area (up to 1,276 m2 g-1) was evidenced by gas-sorption measurements. The negatively charged backbone balanced with extra-framework cations and the permanent microporosity are characteristics that are shared with zeolites.

  4. Estimation and Application of Ecological Memory Functions in Time and Space

    NASA Astrophysics Data System (ADS)

    Itter, M.; Finley, A. O.; Dawson, A.

    2017-12-01

    A common goal in quantitative ecology is the estimation or prediction of ecological processes as a function of explanatory variables (or covariates). Frequently, the ecological process of interest and associated covariates vary in time, space, or both. Theory indicates many ecological processes exhibit memory to local, past conditions. Despite such theoretical understanding, few methods exist to integrate observations from the recent past or within a local neighborhood as drivers of these processes. We build upon recent methodological advances in ecology and spatial statistics to develop a Bayesian hierarchical framework to estimate so-called ecological memory functions; that is, weight-generating functions that specify the relative importance of local, past covariate observations to ecological processes. Memory functions are estimated using a set of basis functions in time and/or space, allowing for flexible ecological memory based on a reduced set of parameters. Ecological memory functions are entirely data driven under the Bayesian hierarchical framework—no a priori assumptions are made regarding functional forms. Memory function uncertainty follows directly from posterior distributions for model parameters allowing for tractable propagation of error to predictions of ecological processes. We apply the model framework to simulated spatio-temporal datasets generated using memory functions of varying complexity. The framework is also applied to estimate the ecological memory of annual boreal forest growth to local, past water availability. Consistent with ecological understanding of boreal forest growth dynamics, memory to past water availability peaks in the year previous to growth and slowly decays to zero in five to eight years. The Bayesian hierarchical framework has applicability to a broad range of ecosystems and processes allowing for increased understanding of ecosystem responses to local and past conditions and improved prediction of ecological processes.

  5. Boundary charges and integral identities for solitons in (d + 1)-dimensional field theories

    NASA Astrophysics Data System (ADS)

    Gudnason, Sven Bjarke; Gao, Zhifeng; Yang, Yisong

    2017-12-01

    We establish a 3-parameter family of integral identities to be used on a class of theories possessing solitons with spherical symmetry in d spatial dimensions. The construction provides five boundary charges that are related to certain integrals of the profile functions of the solitons in question. The framework is quite generic and we give examples of both topological defects (like vortices and monopoles) and topological textures (like Skyrmions) in 2 and 3 dimensions. The class of theories considered here is based on a kinetic term and three functionals often encountered in reduced Lagrangians for solitons. One particularly interesting case provides a generalization of the well-known Pohozaev identity. Our construction, however, is fundamentally different from scaling arguments behind Derrick's theorem and virial relations. For BPS vortices, we find interestingly an infinity of integrals simply related to the topological winding number.

  6. Estimation of the lower and upper bounds on the probability of failure using subset simulation and random set theory

    NASA Astrophysics Data System (ADS)

    Alvarez, Diego A.; Uribe, Felipe; Hurtado, Jorge E.

    2018-02-01

    Random set theory is a general framework which comprises uncertainty in the form of probability boxes, possibility distributions, cumulative distribution functions, Dempster-Shafer structures or intervals; in addition, the dependence between the input variables can be expressed using copulas. In this paper, the lower and upper bounds on the probability of failure are calculated by means of random set theory. In order to accelerate the calculation, a well-known and efficient probability-based reliability method known as subset simulation is employed. This method is especially useful for finding small failure probabilities in both low- and high-dimensional spaces, disjoint failure domains and nonlinear limit state functions. The proposed methodology represents a drastic reduction of the computational labor implied by plain Monte Carlo simulation for problems defined with a mixture of representations for the input variables, while delivering similar results. Numerical examples illustrate the efficiency of the proposed approach.

  7. Canonical Structure and Orthogonality of Forces and Currents in Irreversible Markov Chains

    NASA Astrophysics Data System (ADS)

    Kaiser, Marcus; Jack, Robert L.; Zimmer, Johannes

    2018-03-01

    We discuss a canonical structure that provides a unifying description of dynamical large deviations for irreversible finite state Markov chains (continuous time), Onsager theory, and Macroscopic Fluctuation Theory (MFT). For Markov chains, this theory involves a non-linear relation between probability currents and their conjugate forces. Within this framework, we show how the forces can be split into two components, which are orthogonal to each other, in a generalised sense. This splitting allows a decomposition of the pathwise rate function into three terms, which have physical interpretations in terms of dissipation and convergence to equilibrium. Similar decompositions hold for rate functions at level 2 and level 2.5. These results clarify how bounds on entropy production and fluctuation theorems emerge from the underlying dynamical rules. We discuss how these results for Markov chains are related to similar structures within MFT, which describes hydrodynamic limits of such microscopic models.

  8. A high efficient nanostructured filter based on functionalized carbon nanotube to reduce the tobacco-specific nitrosamines, NNK

    NASA Astrophysics Data System (ADS)

    Yoosefian, Mehdi

    2018-03-01

    Filtration efficiency of Pd and Ni loaded single-walled carbon nanotubes via the applicability of the adsorption process for the removal NNK, the tobacco-specific nitrosamines, from tobacco smoke were investigated using first-principles calculations. The thermal and mechanical stability of designed nanostructured filter could allow them to compete with typical commercially used. It is expected that the removal efficiency of the proposed nanostructured filter could also provide a promising adsorbent candidate in removing the environmental pollutant. The suggested separation mechanism in this study was discussed with frontier molecular orbital theory, natural bond orbital (NBO) analyses and the density of states in the density functional theory framework. Finally, by the Bader theory of atoms in molecules (AIM), the topological properties of the electron density contributions for intermolecular and intramolecular interactions has been analyzed. Calculations show that the transition metal-loaded SWCNT exhibit strong affinity toward the NNK molecules.

  9. Steady-State Density Functional Theory for Finite Bias Conductances.

    PubMed

    Stefanucci, G; Kurth, S

    2015-12-09

    In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.

  10. Wave theory of turbulence in compressible media

    NASA Technical Reports Server (NTRS)

    Kentzer, C. P.

    1975-01-01

    An acoustical theory of turbulence was developed to aid in the study of the generation of sound in turbulent flows. The statistical framework adopted is a quantum-like wave dynamical formulation in terms of complex distribution functions. This formulation results in nonlinear diffusion-type transport equations for the probability densities of the five modes of wave propagation: two vorticity modes, one entropy mode, and two acoustic modes. This system of nonlinear equations is closed and complete. The technique of analysis was chosen such that direct applications to practical problems can be obtained with relative ease.

  11. Nonperturbative calculations in the framework of variational perturbation theory in QCD

    NASA Astrophysics Data System (ADS)

    Solovtsova, O. P.

    2017-07-01

    We discuss applications of the method based on the variational perturbation theory to perform calculations down to the lowest energy scale. The variational series is different from the conventional perturbative expansion and can be used to go beyond the weak-coupling regime. We apply this method to investigate the Borel representation of the light Adler function constructed from the τ data and to determine the residual condensates. It is shown that within the method suggested the optimal values of these lower dimension condensates are close to zero.

  12. Space-Time Error Representation and Estimation in Navier-Stokes Calculations

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2006-01-01

    The mathematical framework for a-posteriori error estimation of functionals elucidated by Eriksson et al. [7] and Becker and Rannacher [3] is revisited in a space-time context. Using these theories, a hierarchy of exact and approximate error representation formulas are presented for use in error estimation and mesh adaptivity. Numerical space-time results for simple model problems as well as compressible Navier-Stokes flow at Re = 300 over a 2D circular cylinder are then presented to demonstrate elements of the error representation theory for time-dependent problems.

  13. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    PubMed

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.

  14. Predicting who will major in a science discipline: Expectancy-value theory as part of an ecological model for studying academic communities

    NASA Astrophysics Data System (ADS)

    Sullins, Ellen S.; Hernandez, Delia; Fuller, Carol; Shiro Tashiro, Jay

    Research on factors that shape recruitment and retention in undergraduate science majors currently is highly fragmented and in need of an integrative research framework. Such a framework should incorporate analyses of the various levels of organization that characterize academic communities (i.e., the broad institutional level, the departmental level, and the student level), and should also provide ways to study the interactions occurring within and between these structural levels. We propose that academic communities are analogous to ecosystems, and that the research paradigms of modern community ecology can provide the necessary framework, as well as new and innovative approaches to a very complex area. This article also presents the results of a pilot study that demonstrates the promise of this approach at the student level. We administered a questionnaire based on expectancy-value theory to undergraduates enrolled in introductory biology courses. Itself an integrative approach, expectancy-value theory views achievement-related behavior as a joint function of the person's expectancy of success in the behavior and the subjective value placed on such success. Our results indicated: (a) significant gender differences in the underlying factor structures of expectations and values related to the discipline of biology, (b) expectancy-value factors significantly distinguished biology majors from nonmajors, and (c) expectancy-value factors significantly predicted students' intent to enroll in future biology courses. We explore the expectancy-value framework as an operationally integrative framework in our ecological model for studying academic communities, especially in the context of assessing the underrepresentation of women and minorities in the sciences. Future research directions as well as practical implications are also discussed.

  15. Optimization of a hybrid exchange-correlation functional for silicon carbides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, Takuji; Zhang, Yanwen; Weber, William J

    2013-01-01

    A hybrid exchange-correlation functional is optimized in order to accurately describe the nature of silicon carbides (SiC) in the framework of ab-initio calculations based on density functional theory (DFT), especially with an aim toward future applications in defect studies. It is shown that the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional with the screening parameter of 0.15 -1 outperforms conventional exchange-correlation functionals and other popular hybrid functionals regarding description of band structures in SiC. High transferability is proven through assessment over various SiC polytypes, silicon and diamond. Excellent performance is also confirmed for other fundamental material properties including elastic constants and phonon frequency.

  16. A micro-macro constitutive model for finite-deformation viscoelasticity of elastomers with nonlinear viscosity

    NASA Astrophysics Data System (ADS)

    Zhou, Jianyou; Jiang, Liying; Khayat, Roger E.

    2018-01-01

    Elastomers are known to exhibit viscoelastic behavior under deformation, which is linked to the diffusion processes of the highly mobile and flexible polymer chains. Inspired by the theories of polymer dynamics, a micro-macro constitutive model is developed to study the viscoelastic behaviors and the relaxation process of elastomeric materials under large deformation, in which the material parameters all have a microscopic foundation or a microstructural justification. The proposed model incorporates the nonlinear material viscosity into the continuum finite-deformation viscoelasticity theories which represent the polymer networks of elastomers with an elastic ground network and a few viscous subnetworks. The developed modeling framework is capable of adopting most of strain energy density functions for hyperelastic materials and thermodynamics evolution laws of viscoelastic solids. The modeling capacity of the framework is outlined by comparing the simulation results with the experimental data of three commonly used elastomeric materials, namely, VHB4910, HNBR50 and carbon black (CB) filled elastomers. The comparison shows that the stress responses and some typical behaviors of filled and unfilled elastomers can be quantitatively predicted by the model with suitable strain energy density functions. Particularly, the strain-softening effect of elastomers could be explained by the deformation-dependent (nonlinear) viscosity of the polymer chains. The presented modeling framework is expected to be useful as a modeling platform for further study on the performance of different type of elastomeric materials.

  17. Quantum thermodynamics: a nonequilibrium Green's function approach.

    PubMed

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.

  18. Derivation of aerodynamic kernel functions

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.; Ventres, C. S.

    1973-01-01

    The method of Fourier transforms is used to determine the kernel function which relates the pressure on a lifting surface to the prescribed downwash within the framework of Dowell's (1971) shear flow model. This model is intended to improve upon the potential flow aerodynamic model by allowing for the aerodynamic boundary layer effects neglected in the potential flow model. For simplicity, incompressible, steady flow is considered. The proposed method is illustrated by deriving known results from potential flow theory.

  19. Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terban, Maxwell W.; Banerjee, Debasis; Ghose, Sanjit

    Given the wide-ranging potential applications of metal organic frameworks (MOFs), an emerging imperative is to understand their formation with atomic scale precision. This will aid in designing syntheses for next-generation MOFs with enhanced properties and functionalities. Major challenges are to characterize the early-stage seeds, and the pathways to framework growth, which require synthesis coupled with in situ structural characterization sensitive to nanoscale structures in solution. Here we report measurements of an in situ synthesis of a prototypical MOF, ZIF-8, utilizing synchrotron X-ray atomic pair distribution function (PDF) analysis optimized for sensitivity to dilute species, complemented by mass spectrometry, electron microscopy,more » and density functional theory calculations. We observe that despite rapid formation of the crystalline product, a high concentration of Zn(2-MeIm) 4(2-MeIm=2-methylimidazolate) initially forms and persists as stable clusters over long times. A secondary, amorphous phase also pervades during the synthesis, which has a structural similarity to the final ZIF-8 and may act as an intermediate to the final product.« less

  20. Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution

    DOE PAGES

    Terban, Maxwell W.; Banerjee, Debasis; Ghose, Sanjit; ...

    2018-02-05

    Given the wide-ranging potential applications of metal organic frameworks (MOFs), an emerging imperative is to understand their formation with atomic scale precision. This will aid in designing syntheses for next-generation MOFs with enhanced properties and functionalities. Major challenges are to characterize the early-stage seeds, and the pathways to framework growth, which require synthesis coupled with in situ structural characterization sensitive to nanoscale structures in solution. Here we report measurements of an in situ synthesis of a prototypical MOF, ZIF-8, utilizing synchrotron X-ray atomic pair distribution function (PDF) analysis optimized for sensitivity to dilute species, complemented by mass spectrometry, electron microscopy,more » and density functional theory calculations. We observe that despite rapid formation of the crystalline product, a high concentration of Zn(2-MeIm) 4(2-MeIm=2-methylimidazolate) initially forms and persists as stable clusters over long times. A secondary, amorphous phase also pervades during the synthesis, which has a structural similarity to the final ZIF-8 and may act as an intermediate to the final product.« less

  1. Extended Theories of Gravitation. Observation Protocols and Experimental Tests

    NASA Astrophysics Data System (ADS)

    Fatibene, Lorenzo; Ferraris, Marco; Francaviglia, Mauro; Magnano, Guido

    2013-09-01

    Within the framework of extended theories of gravitation we shall discuss physical equivalences among different formalisms and classical tests. As suggested by the Ehlers-Pirani-Schild framework, the conformal invariance will be preserved and its effect on observational protocols discussed. Accordingly, we shall review standard tests showing how Palatini f(R)-theories naturally passes solar system tests. Observation protocols will be discussed in this wider framework.

  2. A Model-Driven Co-Design Framework for Fusing Control and Scheduling Viewpoints.

    PubMed

    Sundharam, Sakthivel Manikandan; Navet, Nicolas; Altmeyer, Sebastian; Havet, Lionel

    2018-02-20

    Model-Driven Engineering (MDE) is widely applied in the industry to develop new software functions and integrate them into the existing run-time environment of a Cyber-Physical System (CPS). The design of a software component involves designers from various viewpoints such as control theory, software engineering, safety, etc. In practice, while a designer from one discipline focuses on the core aspects of his field (for instance, a control engineer concentrates on designing a stable controller), he neglects or considers less importantly the other engineering aspects (for instance, real-time software engineering or energy efficiency). This may cause some of the functional and non-functional requirements not to be met satisfactorily. In this work, we present a co-design framework based on timing tolerance contract to address such design gaps between control and real-time software engineering. The framework consists of three steps: controller design, verified by jitter margin analysis along with co-simulation, software design verified by a novel schedulability analysis, and the run-time verification by monitoring the execution of the models on target. This framework builds on CPAL (Cyber-Physical Action Language), an MDE design environment based on model-interpretation, which enforces a timing-realistic behavior in simulation through timing and scheduling annotations. The application of our framework is exemplified in the design of an automotive cruise control system.

  3. A Model-Driven Co-Design Framework for Fusing Control and Scheduling Viewpoints

    PubMed Central

    Navet, Nicolas; Havet, Lionel

    2018-01-01

    Model-Driven Engineering (MDE) is widely applied in the industry to develop new software functions and integrate them into the existing run-time environment of a Cyber-Physical System (CPS). The design of a software component involves designers from various viewpoints such as control theory, software engineering, safety, etc. In practice, while a designer from one discipline focuses on the core aspects of his field (for instance, a control engineer concentrates on designing a stable controller), he neglects or considers less importantly the other engineering aspects (for instance, real-time software engineering or energy efficiency). This may cause some of the functional and non-functional requirements not to be met satisfactorily. In this work, we present a co-design framework based on timing tolerance contract to address such design gaps between control and real-time software engineering. The framework consists of three steps: controller design, verified by jitter margin analysis along with co-simulation, software design verified by a novel schedulability analysis, and the run-time verification by monitoring the execution of the models on target. This framework builds on CPAL (Cyber-Physical Action Language), an MDE design environment based on model-interpretation, which enforces a timing-realistic behavior in simulation through timing and scheduling annotations. The application of our framework is exemplified in the design of an automotive cruise control system. PMID:29461489

  4. Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories.

    PubMed

    Dong, Xi

    2016-06-24

    We develop a framework for studying the well-known universal term in the Rényi entropy for an arbitrary entangling region in four-dimensional conformal field theories that are holographically dual to gravitational theories. The shape dependence of the Rényi entropy S_{n} is described by two coefficients: f_{b}(n) for traceless extrinsic curvature deformations and f_{c}(n) for Weyl tensor deformations. We provide the first calculation of the coefficient f_{b}(n) in interacting theories by relating it to the stress tensor one-point function in a deformed hyperboloid background. The latter is then determined by a straightforward holographic calculation. Our results show that a previous conjecture f_{b}(n)=f_{c}(n), motivated by surprising evidence from a variety of free field theories and studies of conical defects, fails holographically.

  5. DIS off glueballs from string theory: the role of the chiral anomaly and the Chern-Simons term

    NASA Astrophysics Data System (ADS)

    Kovensky, Nicolas; Michalski, Gustavo; Schvellinger, Martin

    2018-04-01

    We calculate the structure function F 3( x, q 2) of the hadronic tensor of deep inelastic scattering (DIS) of charged leptons from glueballs of N=4 SYM theory at strong coupling and at small values of the Bjorken parameter in the gauge/string theory duality framework. This is done in terms of type IIB superstring theory scattering amplitudes. From the AdS5 perspective, the relevant part of the scattering amplitude comes from the five-dimensional non-Abelian Chern-Simons terms in the SU(4) gauged supergravity obtained from dimensional reduction on S 5. From type IIB superstring theory we derive an effective Lagrangian describing the four-point interaction in the local approximation. The exponentially small regime of the Bjorken parameter is investigated using Pomeron techniques.

  6. A Systematic Review Exploring the Social Cognitive Theory of Self-Regulation as a Framework for Chronic Health Condition Interventions

    PubMed Central

    Tougas, Michelle E.; Hayden, Jill A.; McGrath, Patrick J.; Huguet, Anna; Rozario, Sharlene

    2015-01-01

    Background Theory is often recommended as a framework for guiding hypothesized mechanisms of treatment effect. However, there is limited guidance about how to use theory in intervention development. Methods We conducted a systematic review to provide an exemplar review evaluating the extent to which use of theory is identified and incorporated within existing interventions. We searched electronic databases PubMed, PsycINFO, CENTRAL, and EMBASE from inception to May 2014. We searched clinicaltrials.gov for registered protocols, reference lists of relevant systematic reviews and included studies, and conducted a citation search in Web of Science. We included peer-reviewed publications of interventions that referenced the social cognitive theory of self-regulation as a framework for interventions to manage chronic health conditions. Two reviewers independently assessed articles for eligibility. We contacted all authors of included studies for information detailing intervention content. We describe how often theory mechanisms were addressed by interventions, and report intervention characteristics used to address theory. Results Of 202 articles that reported using the social cognitive theory of self-regulation, 52% failed to incorporate self-monitoring, a main theory component, and were therefore excluded. We included 35 interventions that adequately used the theory framework. Intervention characteristics were often poorly reported in peer-reviewed publications, 21 of 35 interventions incorporated characteristics that addressed each of the main theory components. Each intervention addressed, on average, six of eight self-monitoring mechanisms, two of five self-judgement mechanisms, and one of three self-evaluation mechanisms. The self-monitoring mechanisms ‘Feedback’ and ‘Consistency’ were addressed by all interventions, whereas the self-evaluation mechanisms ‘Self-incentives’ and ‘External rewards’ were addressed by six and four interventions, respectively. The present review establishes that systematic review is a feasible method of identifying use of theory as a conceptual framework for existing interventions. We identified the social cognitive theory of self-regulation as a feasible framework to guide intervention development for chronic health conditions. PMID:26252889

  7. Combination of complex momentum representation and Green's function methods in relativistic mean-field theory

    NASA Astrophysics Data System (ADS)

    Shi, Min; Niu, Zhong-Ming; Liang, Haozhao

    2018-06-01

    We have combined the complex momentum representation method with the Green's function method in the relativistic mean-field framework to establish the RMF-CMR-GF approach. This new approach is applied to study the halo structure of 74Ca. All the continuum level density of concerned resonant states are calculated accurately without introducing any unphysical parameters, and they are independent of the choice of integral contour. The important single-particle wave functions and densities for the halo phenomenon in 74Ca are discussed in detail.

  8. Electronic energy level alignment at metal-molecule interfaces with a GW approach

    NASA Astrophysics Data System (ADS)

    Tamblyn, Isaac; Darancet, Pierre; Quek, Su Ying; Bonev, Stanimir A.; Neaton, Jeffrey B.

    2011-11-01

    Using density functional theory and many-body perturbation theory within a GW approximation, we calculate the electronic structure of a metal-molecule interface consisting of benzene diamine (BDA) adsorbed on Au(111). Through direct comparison with photoemission data, we show that a conventional G0W0 approach can underestimate the energy of the adsorbed molecular resonance relative to the Au Fermi level by up to 0.8 eV. The source of this discrepancy is twofold: a 0.7 eV underestimate of the gas phase ionization energy (IE), and a 0.2 eV overestimate of the Au work function. Refinements to self-energy calculations within the GW framework that account for deviations in both the Au work function and BDA gas-phase IE can result in an interfacial electronic level alignment in quantitative agreement with experiment.

  9. Wave theory of turbulence in compressible media (acoustic theory of turbulence)

    NASA Technical Reports Server (NTRS)

    Kentzer, C. P.

    1975-01-01

    The generation and the transmission of sound in turbulent flows are treated as one of the several aspects of wave propagation in turbulence. Fluid fluctuations are decomposed into orthogonal Fourier components, with five interacting modes of wave propagation: two vorticity modes, one entropy mode, and two acoustic modes. Wave interactions, governed by the inhomogeneous and nonlinear terms of the perturbed Navier-Stokes equations, are modeled by random functions which give the rates of change of wave amplitudes equal to the averaged interaction terms. The statistical framework adopted is a quantum-like formulation in terms of complex distribution functions. The spatial probability distributions are given by the squares of the absolute values of the complex characteristic functions. This formulation results in nonlinear diffusion-type transport equations for the probability densities of the five modes of wave propagation.

  10. Pathogen transfer through environment-host contact: an agent-based queueing theoretic framework.

    PubMed

    Chen, Shi; Lenhart, Suzanne; Day, Judy D; Lee, Chihoon; Dulin, Michael; Lanzas, Cristina

    2017-11-02

    Queueing theory studies the properties of waiting queues and has been applied to investigate direct host-to-host transmitted disease dynamics, but its potential in modelling environmentally transmitted pathogens has not been fully explored. In this study, we provide a flexible and customizable queueing theory modelling framework with three major subroutines to study the in-hospital contact processes between environments and hosts and potential nosocomial pathogen transfer, where environments are servers and hosts are customers. Two types of servers with different parameters but the same utilization are investigated. We consider various forms of transfer functions that map contact duration to the amount of pathogen transfer based on existing literature. We propose a case study of simulated in-hospital contact processes and apply stochastic queues to analyse the amount of pathogen transfer under different transfer functions, and assume that pathogen amount decreases during the inter-arrival time. Different host behaviour (feedback and non-feedback) as well as initial pathogen distribution (whether in environment and/or in hosts) are also considered and simulated. We assess pathogen transfer and circulation under these various conditions and highlight the importance of the nonlinear interactions among contact processes, transfer functions and pathogen demography during the contact process. Our modelling framework can be readily extended to more complicated queueing networks to simulate more realistic situations by adjusting parameters such as the number and type of servers and customers, and adding extra subroutines. © The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  11. The artful mind meets art history: toward a psycho-historical framework for the science of art appreciation.

    PubMed

    Bullot, Nicolas J; Reber, Rolf

    2013-04-01

    Research seeking a scientific foundation for the theory of art appreciation has raised controversies at the intersection of the social and cognitive sciences. Though equally relevant to a scientific inquiry into art appreciation, psychological and historical approaches to art developed independently and lack a common core of theoretical principles. Historicists argue that psychological and brain sciences ignore the fact that artworks are artifacts produced and appreciated in the context of unique historical situations and artistic intentions. After revealing flaws in the psychological approach, we introduce a psycho-historical framework for the science of art appreciation. This framework demonstrates that a science of art appreciation must investigate how appreciators process causal and historical information to classify and explain their psychological responses to art. Expanding on research about the cognition of artifacts, we identify three modes of appreciation: basic exposure to an artwork, the artistic design stance, and artistic understanding. The artistic design stance, a requisite for artistic understanding, is an attitude whereby appreciators develop their sensitivity to art-historical contexts by means of inquiries into the making, authorship, and functions of artworks. We defend and illustrate the psycho-historical framework with an analysis of existing studies on art appreciation in empirical aesthetics. Finally, we argue that the fluency theory of aesthetic pleasure can be amended to meet the requirements of the framework. We conclude that scientists can tackle fundamental questions about the nature and appreciation of art within the psycho-historical framework.

  12. Designing a curriculum for communication skills training from a theory and evidence-based perspective.

    PubMed

    Street, Richard L; De Haes, Hanneke C J M

    2013-10-01

    Because quality health care delivery requires effective clinician-patient communication, successful training of health professionals requires communication skill curricula of the highest quality. Two approaches for developing medical communication curricula are a consensus approach and a theory driven approach. We propose a theory-driven, communication function framework for identifying important communication skills, one that is focused on the key goals and outcomes that need to be accomplished in clinical encounters. We discuss 7 communication functions important to medical encounters and the types of skills needed to accomplish each. The functional approach has important pedagogical implications including the importance of distinguishing the performance of a behavior (capacity) from the outcome of that behavior in context (effectiveness) and the recognition that what counts as effective communication depends on perspective (e.g., observer, patient). Consensus and theory-driven approaches to medical communication curricula are not necessarily contradictory and can be integrated to further enhance ongoing development and improvements in medical communication education. A functional approach should resonate with practicing clinicians and continuing education initiatives in that it is embraces the notion that competent communication is situation-specific as clinicians creatively use communicative skills to accomplish the key goals of the encounter. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Higher-order finite-difference formulation of periodic Orbital-free Density Functional Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Swarnava; Suryanarayana, Phanish, E-mail: phanish.suryanarayana@ce.gatech.edu

    2016-02-15

    We present a real-space formulation and higher-order finite-difference implementation of periodic Orbital-free Density Functional Theory (OF-DFT). Specifically, utilizing a local reformulation of the electrostatic and kernel terms, we develop a generalized framework for performing OF-DFT simulations with different variants of the electronic kinetic energy. In particular, we propose a self-consistent field (SCF) type fixed-point method for calculations involving linear-response kinetic energy functionals. In this framework, evaluation of both the electronic ground-state and forces on the nuclei are amenable to computations that scale linearly with the number of atoms. We develop a parallel implementation of this formulation using the finite-difference discretization.more » We demonstrate that higher-order finite-differences can achieve relatively large convergence rates with respect to mesh-size in both the energies and forces. Additionally, we establish that the fixed-point iteration converges rapidly, and that it can be further accelerated using extrapolation techniques like Anderson's mixing. We validate the accuracy of the results by comparing the energies and forces with plane-wave methods for selected examples, including the vacancy formation energy in Aluminum. Overall, the suitability of the proposed formulation for scalable high performance computing makes it an attractive choice for large-scale OF-DFT calculations consisting of thousands of atoms.« less

  14. Density Functional Methods for Shock Physics and High Energy Density Science

    NASA Astrophysics Data System (ADS)

    Desjarlais, Michael

    2017-06-01

    Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Cybersemiotics: a transdisciplinary framework for information studies.

    PubMed

    Brier, S

    1998-04-01

    This paper summarizes recent attempts by this author to create a transdisciplinary, non-Cartesian and non-reductionistic framework for information studies in natural, social, and technological systems. To confront, in a scientific way, the problems of modern information technology where phenomenological man is dealing with socially constructed texts in algorithmically based digital bit-machines we need a theoretical framework spanning from physics over biology and technological design to phenomenological and social production of signification and meaning. I am working with such pragmatic theories as second order cybernetics (coupled with autopolesis theory), Lakoffs biologically oriented cognitive semantics, Peirce's triadic semiotics, and Wittgenstein's pragmatic language game theory. A coherent synthesis of these theories is what the cybersemiotic framework attempts to accomplish.

  16. A Neural Assembly-Based View on Word Production: The Bilingual Test Case

    ERIC Educational Resources Information Center

    Strijkers, Kristof

    2016-01-01

    I will propose a tentative framework of how words in two languages could be organized in the cerebral cortex based on neural assembly theory, according to which neurons that fire synchronously are bound into large-scale distributed functional units (assemblies), which represent a mental event as a whole ("gestalt"). For language this…

  17. The Theory of Human Capital and the Earnings of Women: A Re-examination of the Evidence. Revised.

    ERIC Educational Resources Information Center

    Sandell, Steven H.; Shapiro, David

    This paper discusses specification and interpretation of human capital models of women's earnings when data on actual work experience are available. It uses the segmented earnings function framework developed by Jacob Mincer and Solomon Polachek and considers the effects of data errors, issues involving data interpretation, consequences of model…

  18. The Gain-Loss Model: A Probabilistic Skill Multimap Model for Assessing Learning Processes

    ERIC Educational Resources Information Center

    Robusto, Egidio; Stefanutti, Luca; Anselmi, Pasquale

    2010-01-01

    Within the theoretical framework of knowledge space theory, a probabilistic skill multimap model for assessing learning processes is proposed. The learning process of a student is modeled as a function of the student's knowledge and of an educational intervention on the attainment of specific skills required to solve problems in a knowledge…

  19. Agency Construction and Navigation in Oral Narratives of English Learning by Chinese College English Majors

    ERIC Educational Resources Information Center

    Lin, Qiuming

    2017-01-01

    The current study aims to investigate the discursive construction and navigation of agency in oral narratives of English learning by Chinese college English majors. Based on the theoretical framework integrating Bamberg et. al.'s theory of identity dilemma and Hallidayan systemic functional linguistics, the study has addressed two research…

  20. An fMRI Study of the Social Competition in Healthy Subjects

    ERIC Educational Resources Information Center

    Polosan, M.; Baciu, M.; Cousin, E.; Perrone, M.; Pichat, C.; Bougerol, T.

    2011-01-01

    Social interaction requires the ability to infer another person's mental state (Theory of Mind, ToM) and also executive functions. This fMRI study aimed to identify the cerebral correlates activated by ToM during a specific social interaction, the human-human competition. In this framework, we tested a conflict resolution task (Stroop) adapted to…

  1. A Conceptual Framework Examining the Antecedents of Career Decisiveness Using Motivation Systems Theory

    ERIC Educational Resources Information Center

    Chatterjee, Srabasti

    2013-01-01

    An extensive body of vocational research has been dedicated to the topic of career-decision making behavior. Work is integral to human functioning, and all psychologists need to understand the role of work in people's lives. Understanding factors influencing work choices and helping individuals effectively make career decisions is the focus of…

  2. Lord's Wald Test for Detecting Dif in Multidimensional Irt Models: A Comparison of Two Estimation Approaches

    ERIC Educational Resources Information Center

    Lee, Soo; Suh, Youngsuk

    2018-01-01

    Lord's Wald test for differential item functioning (DIF) has not been studied extensively in the context of the multidimensional item response theory (MIRT) framework. In this article, Lord's Wald test was implemented using two estimation approaches, marginal maximum likelihood estimation and Bayesian Markov chain Monte Carlo estimation, to detect…

  3. Theoretical design of near - infrared organic compounds

    NASA Astrophysics Data System (ADS)

    Brymora, Katarzyna; Ducasse, Laurent; Dautel, Olivier; Lartigau-Dagron, Christine; Castet, FréDéRic

    The world follows the path of digital development faster than ever before. In consequence, the Human Machine Interfaces (HMI) market is growing as well and it requires some innovations. The goal of our work is to achieve an organic Infra-Red (IR) photodetectors hitting the performance requirements for HMI applications. The quantum chemical calculations are used to guide the synthesis and technology development. In this work, in the framework of density functional theory (DFT) and time-dependent density functional theory (TD-DFT), we consider a large variety of materials exploring small donor-acceptor-donor molecules and copolymers alternating donor and acceptor monomers. We provide a structure-property relationship in view of designing new Near-Infrared (NIR) absorbing organic molecules and polymers.

  4. GW electronic Correlations in Quantum Transport : Renormalization and finite lifetime effects on real systems

    NASA Astrophysics Data System (ADS)

    Darancet, Pierre; Ferretti, Andrea; Mayou, Didier; Olevano, Valerio

    2007-03-01

    We present an ab initio approach to electronic transport in nanoscale systems which includes electronic correlations through the GW approximation. With respect to Landauer approaches based on density-functional theory (DFT), we introduce a physical quasiparticle electronic-structure into a non-equilibrium Green's function theory framework. We use an equilibrium non-selfconsistent G^0W^0 self-energy considering both full non-hermiticity and dynamical effects. The method is applied to a real system, a gold mono-atomic chain. With respect to DFT results, the conductance profile is modified and reduced by to the introduction of diffusion and loss-of-coherence effects. The linear response conductance characteristic appear to be in agreement with experimental results.

  5. Solvatochromic shifts from coupled-cluster theory embedded in density functional theory

    NASA Astrophysics Data System (ADS)

    Höfener, Sebastian; Gomes, André Severo Pereira; Visscher, Lucas

    2013-09-01

    Building on the framework recently reported for determining general response properties for frozen-density embedding [S. Höfener, A. S. P. Gomes, and L. Visscher, J. Chem. Phys. 136, 044104 (2012)], 10.1063/1.3675845, in this work we report a first implementation of an embedded coupled-cluster in density-functional theory (CC-in-DFT) scheme for electronic excitations, where only the response of the active subsystem is taken into account. The formalism is applied to the calculation of coupled-cluster excitation energies of water and uracil in aqueous solution. We find that the CC-in-DFT results are in good agreement with reference calculations and experimental results. The accuracy of calculations is mainly sensitive to factors influencing the correlation treatment (basis set quality, truncation of the cluster operator) and to the embedding treatment of the ground-state (choice of density functionals). This allows for efficient approximations at the excited state calculation step without compromising the accuracy. This approximate scheme makes it possible to use a first principles approach to investigate environment effects with specific interactions at coupled-cluster level of theory at a cost comparable to that of calculations of the individual subsystems in vacuum.

  6. A prototype of behavior selection mechanism based on emotion

    NASA Astrophysics Data System (ADS)

    Zhang, Guofeng; Li, Zushu

    2007-12-01

    In bionic methodology rather than in design methodology more familiar with, summarizing the psychological researches of emotion, we propose the biologic mechanism of emotion, emotion selection role in creature evolution and a anima framework including emotion similar to the classical control structure; and consulting Prospect Theory, build an Emotion Characteristic Functions(ECF) that computer emotion; two more emotion theories are added to them that higher emotion is preferred and middle emotion makes brain run more efficiently, emotional behavior mechanism comes into being. A simulation of proposed mechanism are designed and carried out on Alife Swarm software platform. In this simulation, a virtual grassland ecosystem is achieved where there are two kinds of artificial animals: herbivore and preyer. These artificial animals execute four types of behavior: wandering, escaping, finding food, finding sex partner in their lives. According the theories of animal ethnology, escaping from preyer is prior to other behaviors for its existence, finding food is secondly important behavior, rating is third one and wandering is last behavior. In keeping this behavior order, based on our behavior characteristic function theory, the specific functions of emotion computing are built of artificial autonomous animals. The result of simulation confirms the behavior selection mechanism.

  7. Time-sliced perturbation theory for large scale structure I: general formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blas, Diego; Garny, Mathias; Sibiryakov, Sergey

    2016-07-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution ofmore » the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.« less

  8. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    PubMed Central

    Putz, Mihai V.

    2009-01-01

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467

  9. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems.

    PubMed

    Putz, Mihai V

    2009-11-10

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.

  10. Efficient Computation of Info-Gap Robustness for Finite Element Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stull, Christopher J.; Hemez, Francois M.; Williams, Brian J.

    2012-07-05

    A recent research effort at LANL proposed info-gap decision theory as a framework by which to measure the predictive maturity of numerical models. Info-gap theory explores the trade-offs between accuracy, that is, the extent to which predictions reproduce the physical measurements, and robustness, that is, the extent to which predictions are insensitive to modeling assumptions. Both accuracy and robustness are necessary to demonstrate predictive maturity. However, conducting an info-gap analysis can present a formidable challenge, from the standpoint of the required computational resources. This is because a robustness function requires the resolution of multiple optimization problems. This report offers anmore » alternative, adjoint methodology to assess the info-gap robustness of Ax = b-like numerical models solved for a solution x. Two situations that can arise in structural analysis and design are briefly described and contextualized within the info-gap decision theory framework. The treatments of the info-gap problems, using the adjoint methodology are outlined in detail, and the latter problem is solved for four separate finite element models. As compared to statistical sampling, the proposed methodology offers highly accurate approximations of info-gap robustness functions for the finite element models considered in the report, at a small fraction of the computational cost. It is noted that this report considers only linear systems; a natural follow-on study would extend the methodologies described herein to include nonlinear systems.« less

  11. Structure-based control of complex networks with nonlinear dynamics.

    PubMed

    Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka

    2017-07-11

    What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.

  12. Questions on universal constants and four-dimensional symmetry from a broad viewpoint. I

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.

    1983-01-01

    It is demonstrated that there is a flexibility in clock synchronizations and that four-dimensional symmetry framework can be viewed broadly. The true universality of basic constants is discussed, considering a class of measurement processes based on the velocity = distance/time interval, which always yields some number when used by an observer. The four-dimensional symmetry framework based on common time for all observers is formulated, and related processes of measuring light speed are discussed. Invariant 'action functions' for physical laws in the new four-dimensional symmetry framework with the common time are established to discuss universal constants. Truly universal constants are demonstrated, and it is shown that physics in this new framework and in special relativity are equivalent as far as one-particle systems and the S-matrix in field theories are concerned.

  13. A complex-polarization-propagator protocol for magneto-chiral axial dichroism and birefringence dispersion.

    PubMed

    Cukras, Janusz; Kauczor, Joanna; Norman, Patrick; Rizzo, Antonio; Rikken, Geert L J A; Coriani, Sonia

    2016-05-21

    A computational protocol for magneto-chiral dichroism and magneto-chiral birefringence dispersion is presented within the framework of damped response theory, also known as complex polarization propagator theory, at the level of time-dependent Hartree-Fock and time-dependent density functional theory. Magneto-chiral dichroism and magneto-chiral birefringence spectra in the (resonant) frequency region below the first ionization threshold of R-methyloxirane and l-alanine are presented and compared with the corresponding results obtained for both the electronic circular dichroism and the magnetic circular dichroism. The additional information content yielded by the magneto-chiral phenomena, as well as their potential experimental detectability for the selected species, is discussed.

  14. towards a theory-based multi-dimensional framework for assessment in mathematics: The "SEA" framework

    NASA Astrophysics Data System (ADS)

    Anku, Sitsofe E.

    1997-09-01

    Using the reform documents of the National Council of Teachers of Mathematics (NCTM) (NCTM, 1989, 1991, 1995), a theory-based multi-dimensional assessment framework (the "SEA" framework) which should help expand the scope of assessment in mathematics is proposed. This framework uses a context based on mathematical reasoning and has components that comprise mathematical concepts, mathematical procedures, mathematical communication, mathematical problem solving, and mathematical disposition.

  15. The Purpose-Driven Life: Commentary on Kenrick et al. (2010).

    PubMed

    Ackerman, Joshua M; Bargh, John A

    2010-05-01

    The resurgence of motivation in social psychology has been a welcome addition to the cognitive revolution, though a theory-based approach to motivational content has remained conspicuously absent. Kenrick, Griskevicius, Neuberg, and Schaller (2010, this issue) dust off Maslow's hierarchy of needs and find this content in the form of evolutionarily inspired, fundamental motives. Their new framework unites functional, developmental, and proximal levels of analysis by showing how these levels complement rather than compete with each other. We highlight what we see as the especially valuable features of this framework and discuss its relevance for research on goal conflict, multigoal priming, and recent studies of goal scaffolding. We also suggest one main tweak to the theoretical foundation presented here that may bear greater empirical fruit. In sum, Kenrick and colleagues have reinvigorated a classic theory by integrating it with a modern understanding of human behavior's evolutionary roots. © The Author(s) 2010.

  16. Revisiting Symbolic Interactionism as a Theoretical Framework Beyond the Grounded Theory Tradition.

    PubMed

    Handberg, Charlotte; Thorne, Sally; Midtgaard, Julie; Nielsen, Claus Vinther; Lomborg, Kirsten

    2015-08-01

    The tight bond between grounded theory (GT) and symbolic interactionism (SI) is well known within the qualitative health research field. We aimed to disentangle this connection through critical reflection on the conditions under which it might add value as an underpinning to studies outside the GT tradition. Drawing on an examination of the central tenets of SI, we illustrate with a field study using interpretive description as methodology how SI can be applied as a theoretical lens through which layers of socially constructed meaning can help surface the subjective world of patients. We demonstrate how SI can function as a powerful framework for human health behavior research through its capacity to orient questions, inform design options, and refine analytic directions. We conclude that using SI as a lens can serve as a translation mechanism in our quest to interpret the subjective world underlying patients' health and illness behavior. © The Author(s) 2014.

  17. Discrete shearlet transform: faithful digitization concept and its applications

    NASA Astrophysics Data System (ADS)

    Lim, Wang-Q.

    2011-09-01

    Over the past years, various representation systems which sparsely approximate functions governed by anisotropic features such as edges in images have been proposed. Alongside the theoretical development of these systems, algorithmic realizations of the associated transforms were provided. However, one of the most common short-comings of these frameworks is the lack of providing a unified treatment of the continuum and digital world, i.e., allowing a digital theory to be a natural digitization of the continuum theory. Shearlets were introduced as means to sparsely encode anisotropic singularities of multivariate data while providing a unified treatment of the continuous and digital realm. In this paper, we introduce a discrete framework which allows a faithful digitization of the continuum domain shearlet transform based on compactly supported shearlets. Finally, we show numerical experiments demonstrating the potential of the discrete shearlet transform in several image processing applications.

  18. The Missions of National Commissions: Mapping the Forms and Functions of Bioethics Advisory Bodies.

    PubMed

    Schmidt, Harald; Schwartz, Jason L

    The findings, conclusions, and recommendations of national ethics commissions (NECs) have received considerable attention throughout the 40-year history of these groups in the United States and worldwide. However, the procedures or types of argument by which these bodies arrive at their decisions have received far less scrutiny. This paper explores how the diversity of ethical principles, concepts, or theories is featured in publications or decisions of these bodies, with particular emphasis on the need for NECs to be inclusive of pluralist positions that typically exist in contemporary democracies. The discussion is centered on the extent to which NECs may focus on providing focal frameworks, primarily framing the ethical issues at stake, or normative frameworks, additionally providing transparent justifications for any conclusions and recommendations that are made. The structure allows for assessments of the relative merits and drawbacks of different approaches in both theory and practice.

  19. Intervention Mapping to develop a Social Cognitive Theory-based intervention for chronic pain tailored to individuals with HIV.

    PubMed

    Merlin, Jessica S; Young, Sarah R; Johnson, Mallory O; Saag, Michael; Demonte, William; Kerns, Robert; Bair, Matthew J; Kertesz, Stefan; Turan, Janet M; Kilgore, Meredith; Clay, Olivio J; Pekmezi, Dorothy; Davies, Susan

    2018-06-01

    Chronic pain is an important comorbidity among individuals with HIV. Behavioral interventions are widely regarded as evidence-based, efficacious non-pharmacologic interventions for chronic pain in the general population. An accepted principle in behavioral science is that theory-based, systematically-developed behavioral interventions tailored to the unique needs of a target population are most likely to be efficacious. Our aim was to use Intervention Mapping to systematically develop a Social Cognitive Theory (SCT)-based intervention for chronic pain tailored to individuals with HIV that will improve pain intensity and pain-related functional impairment. Our Intervention Mapping process was informed by qualitative inquiry of 24 patients and seven providers in an HIV primary care clinic. The resulting intervention includes group and one-on-one sessions and peer and staff interventionists. We also developed a conceptual framework that integrates our qualitative findings with SCT-based theoretical constructs. Using this conceptual framework as a guide, our future work will investigate the intervention's impact on chronic pain outcomes, as well as our hypothesized proximal mediators of the intervention's effect.

  20. Understanding diversity–stability relationships: towards a unified model of portfolio effects

    PubMed Central

    Thibaut, Loïc M; Connolly, Sean R; He, Fangliang

    2013-01-01

    A major ecosystem effect of biodiversity is to stabilise assemblages that perform particular functions. However, diversity–stability relationships (DSRs) are analysed using a variety of different population and community properties, most of which are adopted from theory that makes several restrictive assumptions that are unlikely to be reflected in nature. Here, we construct a simple synthesis and generalisation of previous theory for the DSR. We show that community stability is a product of two quantities: the synchrony of population fluctuations, and an average species-level population stability that is weighted by relative abundance. Weighted average population stability can be decomposed to consider effects of the mean-variance scaling of abundance, changes in mean abundance with diversity and differences in species' mean abundance in monoculture. Our framework makes explicit how unevenness in the abundances of species in real communities influences the DSR, which occurs both through effects on community synchrony, and effects on weighted average population variability. This theory provides a more robust framework for analysing the results of empirical studies of the DSR, and facilitates the integration of findings from real and model communities. PMID:23095077

  1. The effective χ parameter in polarizable polymeric systems: One-loop perturbation theory and field-theoretic simulations.

    PubMed

    Grzetic, Douglas J; Delaney, Kris T; Fredrickson, Glenn H

    2018-05-28

    We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ̃) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor Sk and the dielectric function ϵ^(k) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters B AA , B AB , and B BB , which then determine χ̃. The one-loop theory not only enables the quantitative prediction of χ̃ but also provides useful insight into the dependence of χ̃ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ϵ^(k) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ̃N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.

  2. The effective χ parameter in polarizable polymeric systems: One-loop perturbation theory and field-theoretic simulations

    NASA Astrophysics Data System (ADS)

    Grzetic, Douglas J.; Delaney, Kris T.; Fredrickson, Glenn H.

    2018-05-01

    We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ ˜ ) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor S (k ) and the dielectric function ɛ ^ (k ) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters BAA, BAB, and BBB, which then determine χ ˜ . The one-loop theory not only enables the quantitative prediction of χ ˜ but also provides useful insight into the dependence of χ ˜ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ɛ ^ (k ) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ ˜ N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.

  3. The Estimation Theory Framework of Data Assimilation

    NASA Technical Reports Server (NTRS)

    Cohn, S.; Atlas, Robert (Technical Monitor)

    2002-01-01

    Lecture 1. The Estimation Theory Framework of Data Assimilation: 1. The basic framework: dynamical and observation models; 2. Assumptions and approximations; 3. The filtering, smoothing, and prediction problems; 4. Discrete Kalman filter and smoother algorithms; and 5. Example: A retrospective data assimilation system

  4. Predicting excitonic gaps of semiconducting single-walled carbon nanotubes from a field theoretic analysis

    DOE PAGES

    Konik, Robert M.; Sfeir, Matthew Y.; Misewich, James A.

    2015-02-17

    We demonstrate that a non-perturbative framework for the treatment of the excitations of single walled carbon nanotubes based upon a field theoretic reduction is able to accurately describe experiment observations of the absolute values of excitonic energies. This theoretical framework yields a simple scaling function from which the excitonic energies can be read off. This scaling function is primarily determined by a single parameter, the charge Luttinger parameter of the tube, which is in turn a function of the tube chirality, dielectric environment, and the tube's dimensions, thus expressing disparate influences on the excitonic energies in a unified fashion. Asmore » a result, we test this theory explicitly on the data reported in [NanoLetters 5, 2314 (2005)] and [Phys. Rev. B 82, 195424 (2010)] and so demonstrate the method works over a wide range of reported excitonic spectra.« less

  5. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways

    NASA Astrophysics Data System (ADS)

    Mathew, Kiran; Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Arias, T. A.; Hennig, Richard G.

    2014-02-01

    Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge to many materials simulation methods. A realistic first-principles computational study of such systems entails the inclusion of solvent effects. In this work, we implement an implicit solvation model that has a firm theoretical foundation into the widely used density-functional code Vienna ab initio Software Package. The implicit solvation model follows the framework of joint density functional theory. We describe the framework, our algorithm and implementation, and benchmarks for small molecular systems. We apply the solvation model to study the surface energies of different facets of semiconducting and metallic nanocrystals and the SN2 reaction pathway. We find that solvation reduces the surface energies of the nanocrystals, especially for the semiconducting ones and increases the energy barrier of the SN2 reaction.

  6. A general framework of automorphic inflation

    NASA Astrophysics Data System (ADS)

    Schimmrigk, Rolf

    2016-05-01

    Automorphic inflation is an application of the framework of automorphic scalar field theory, based on the theory of automorphic forms and representations. In this paper the general framework of automorphic and modular inflation is described in some detail, with emphasis on the resulting stratification of the space of scalar field theories in terms of the group theoretic data associated to the shift symmetry, as well as the automorphic data that specifies the potential. The class of theories based on Eisenstein series provides a natural generalization of the model of j-inflation considered previously.

  7. Emotion and the prefrontal cortex: An integrative review.

    PubMed

    Dixon, Matthew L; Thiruchselvam, Ravi; Todd, Rebecca; Christoff, Kalina

    2017-10-01

    The prefrontal cortex (PFC) plays a critical role in the generation and regulation of emotion. However, we lack an integrative framework for understanding how different emotion-related functions are organized across the entire expanse of the PFC, as prior reviews have generally focused on specific emotional processes (e.g., decision making) or specific anatomical regions (e.g., orbitofrontal cortex). Additionally, psychological theories and neuroscientific investigations have proceeded largely independently because of the lack of a common framework. Here, we provide a comprehensive review of functional neuroimaging, electrophysiological, lesion, and structural connectivity studies on the emotion-related functions of 8 subregions spanning the entire PFC. We introduce the appraisal-by-content model, which provides a new framework for integrating the diverse range of empirical findings. Within this framework, appraisal serves as a unifying principle for understanding the PFC's role in emotion, while relative content-specialization serves as a differentiating principle for understanding the role of each subregion. A synthesis of data from affective, social, and cognitive neuroscience studies suggests that different PFC subregions are preferentially involved in assigning value to specific types of inputs: exteroceptive sensations, episodic memories and imagined future events, viscero-sensory signals, viscero-motor signals, actions, others' mental states (e.g., intentions), self-related information, and ongoing emotions. We discuss the implications of this integrative framework for understanding emotion regulation, value-based decision making, emotional salience, and refining theoretical models of emotion. This framework provides a unified understanding of how emotional processes are organized across PFC subregions and generates new hypotheses about the mechanisms underlying adaptive and maladaptive emotional functioning. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Status in calculating electronic excited states in transition metal oxides from first principles.

    PubMed

    Bendavid, Leah Isseroff; Carter, Emily Ann

    2014-01-01

    Characterization of excitations in transition metal oxides is a crucial step in the development of these materials for photonic and optoelectronic applications. However, many transition metal oxides are considered to be strongly correlated materials, and their complex electronic structure is challenging to model with many established quantum mechanical techniques. We review state-of-the-art first-principles methods to calculate charged and neutral excited states in extended materials, and discuss their application to transition metal oxides. We briefly discuss developments in density functional theory (DFT) to calculate fundamental band gaps, and introduce time-dependent DFT, which can model neutral excitations. Charged excitations can be described within the framework of many-body perturbation theory based on Green's functions techniques, which predominantly employs the GW approximation to the self-energy to facilitate a feasible solution to the quasiparticle equations. We review the various implementations of the GW approximation and evaluate each approach in its calculation of fundamental band gaps of many transition metal oxides. We also briefly review the related Bethe-Salpeter equation (BSE), which introduces an electron-hole interaction between GW-derived quasiparticles to describe accurately neutral excitations. Embedded correlated wavefunction theory is another framework used to model localized neutral or charged excitations in extended materials. Here, the electronic structure of a small cluster is modeled within correlated wavefunction theory, while its coupling to its environment is represented by an embedding potential. We review a number of techniques to represent this background potential, including electrostatic representations and electron density-based methods, and evaluate their application to transition metal oxides.

  9. Integrative mental health care: from theory to practice, Part 2.

    PubMed

    Lake, James

    2008-01-01

    Integrative approaches will lead to more accurate and different understandings of mental illness. Beneficial responses to complementary and alternative therapies provide important clues about the phenomenal nature of the human body in space-time and disparate biological, informational, and energetic factors associated with normal and abnormal psychological functioning. The conceptual framework of contemporary Western psychiatry includes multiple theoretical viewpoints, and there is no single best explanatory model of mental illness. Future theories of mental illness causation will not depend exclusively on empirical verification of strictly biological processes but will take into account both classically described biological processes and non-classical models, including complexity theory, resulting in more complete explanations of the characteristics and causes of symptoms and mechanisms of action that result in beneficial responses to treatments. Part 1 of this article examined the limitations of the theory and contemporary clinical methods employed in Western psychiatry and discussed implications of emerging paradigms in physics and the biological sciences for the future of psychiatry. In part 2, a practical methodology, for planning integrative assessment and treatment strategies in mental health care is proposed. Using this methodology the integrative management of moderate and severe psychiatric symptoms is reviewed in detail. As the conceptual framework of Western medicine evolves toward an increasingly integrative perspective, novel understanding of complex relationships between biological, informational, and energetic processes associated with normal psychological functioning and mental illness will lead to more effective integrative assessment and treatment strategies addressing the causes or meanings of symptoms at multiple hierarchic levels of body-brain-mind.

  10. Integrative mental health care: from theory to practice, part 1.

    PubMed

    Lake, James

    2007-01-01

    Integrative approaches will lead to more accurate and different understandings of mental illness. Beneficial responses to complementary and alternative therapies provide important clues about the phenomenal nature of the human body in space-time and disparate biological, informational, and energetic factors associated with normal and abnormal psychological functioning. The conceptual framework of contemporary Western psychiatry includes multiple theoretical viewpoints, and there is no single best explanatory model of mental illness. Future theories of mental illness causation will not depend exclusively on empirical verification of strictly biological processes but will take into account both classically described biological processes and non-classical models, including complexity theory, resulting in more complete explanations of the characteristics and causes of symptoms and mechanisms of action that result in beneficial responses to treatments. Part 1 of this article examines the limitations of the theory and contemporary clinical methods employed in Western psychiatry and discusses implications of emerging paradigms in physics and the biological sciences for the future of psychiatry. In part 2, a practical methodology for planning integrative assessment and treatment strategies in mental health care is proposed. Using this methodology the integrative management of moderate and severe psychiatric symptoms is reviewed in detail. As the conceptual framework of Western medicine evolves toward an increasingly integrative perspective, novel understandings of complex relationships between biological, informational, and energetic processes associated with normal psychological functioning and mental illness will lead to more effective integrative assessment and treatment strategies addressing the causes or meanings of symptoms at multiple hierarchic levels of body-brain-mind.

  11. Conceptual framework for development of comprehensive e-health evaluation tool.

    PubMed

    Khoja, Shariq; Durrani, Hammad; Scott, Richard E; Sajwani, Afroz; Piryani, Usha

    2013-01-01

    The main objective of this study was to develop an e-health evaluation tool based on a conceptual framework including relevant theories for evaluating use of technology in health programs. This article presents the development of an evaluation framework for e-health programs. The study was divided into three stages: Stage 1 involved a detailed literature search of different theories and concepts on evaluation of e-health, Stage 2 plotted e-health theories to identify relevant themes, and Stage 3 developed a matrix of evaluation themes and stages of e-health programs. The framework identifies and defines different stages of e-health programs and then applies evaluation theories to each of these stages for development of the evaluation tool. This framework builds on existing theories of health and technology evaluation and presents a conceptual framework for developing an e-health evaluation tool to examine and measure different factors that play a definite role in the success of e-health programs. The framework on the horizontal axis divides e-health into different stages of program implementation, while the vertical axis identifies different themes and areas of consideration for e-health evaluation. The framework helps understand various aspects of e-health programs and their impact that require evaluation at different stages of the life cycle. The study led to the development of a new and comprehensive e-health evaluation tool, named the Khoja-Durrani-Scott Framework for e-Health Evaluation.

  12. Predictive coding links perception, action, and learning to emotions in music. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    NASA Astrophysics Data System (ADS)

    Gebauer, L.; Kringelbach, M. L.; Vuust, P.

    2015-06-01

    The review by Koelsch and colleagues [1] offers a timely, comprehensive, and anatomically detailed framework for understanding the neural correlates of human emotions. The authors describe emotion in a framework of four affect systems, which are linked to effector systems, and higher order cognitive functions. This is elegantly demonstrated through the example of music; a realm for exploring emotions in a domain, that can be independent of language but still highly relevant for understanding human emotions [2].

  13. Selective O 2 sorption at ambient temperatures via node distortions in Sc-MIL-100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sava Gallis, Dorina F.; Chapman, Karena W.; Rodriguez, Mark A.

    2016-04-14

    In this study, oxygen selectivity in metal-organic frameworks (MOFs) at exceptionally high temperatures originally predicted by Density Functional Theory (DFT) and Grand Canonical Monte Carlo (GCMC) modeling is now confirmed by synthesis, sorption metal center access, in particular Sc and Fe. Based on DFT M-O 2 binding energies, we chose the large pored MIL-100 framework for metal center access, in particular Sc and Fe. Both resulted in preferential O 2 and N 2 gas uptake at temperatures ranging from 77 K to ambient temperatures (258 K, 298 K and 313 K).

  14. Rise and fall of the two visual systems theory.

    PubMed

    Rossetti, Yves; Pisella, Laure; McIntosh, Robert D

    2017-06-01

    Among the many dissociations describing the visual system, the dual theory of two visual systems, respectively dedicated to perception and action, has yielded a lot of support. There are psychophysical, anatomical and neuropsychological arguments in favor of this theory. Several behavioral studies that used sensory and motor psychophysical parameters observed differences between perceptive and motor responses. The anatomical network of the visual system in the non-human primate was very readily organized according to two major pathways, dorsal and ventral. Neuropsychological studies, exploring optic ataxia and visual agnosia as characteristic deficits of these two pathways, led to the proposal of a functional double dissociation between visuomotor and visual perceptual functions. After a major wave of popularity that promoted great advances, particularly in knowledge of visuomotor functions, the guiding theory is now being reconsidered. Firstly, the idea of a double dissociation between optic ataxia and visual form agnosia, as cleanly separating visuomotor from visual perceptual functions, is no longer tenable; optic ataxia does not support a dissociation between perception and action and might be more accurately viewed as a negative image of action blindsight. Secondly, dissociations between perceptive and motor responses highlighted in the framework of this theory concern a very elementary level of action, even automatically guided action routines. Thirdly, the very rich interconnected network of the visual brain yields few arguments in favor of a strict perception/action dissociation. Overall, the dissociation between motor function and perceptive function explored by these behavioral and neuropsychological studies can help define an automatic level of action organization deficient in optic ataxia and preserved in action blindsight, and underlines the renewed need to consider the perception-action circle as a functional ensemble. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, U. P.; Nayak, V.

    Quantum mechanical first principle calculations have been performed to study the electronic and structural properties of TiN and TiAs in zinc blende (ZB) and rock salt (RS) structures. The full-potential linearized augmented plane wave (FP-LAPW) method has been used within the framework of density functional theory (DFT). The exchange correlation functional has been solved employing generalized gradient approximation (GGA). Our predicted results for lattice constants are in good agreement with the earlier findings. The electronic band structures of TiX are metallic in both the phases.

  16. Ab-initio study of electronic structure and elastic properties of ZrC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mund, H. S., E-mail: hmoond@gmail.com; Ahuja, B. L.

    2016-05-23

    The electronic and elastic properties of ZrC have been investigated using the linear combination of atomic orbitals method within the framework of density functional theory. Different exchange-correlation functionals are taken into account within generalized gradient approximation. We have computed energy bands, density of states, elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, lattice parameters and pressure derivative of the bulk modulus by calculating ground state energy of the rock salt structure type ZrC.

  17. Role theory: a framework to investigate the community nurse role in contemporary health care systems.

    PubMed

    Brookes, Kim; Davidson, Patricia M; Daly, John; Halcomb, Elizabeth J

    2007-01-01

    Nurses' perceptions of their role are influenced by societal attitudes, government policies and trends in professional issues. Dynamic factors in contemporary health environments challenge traditional nursing roles, in particular those of community nurses. Role theory is a conceptual framework that defines how individuals behave in social situations and how these behaviours are perceived by external observers. This paper reviews the role theory literature as a conceptual framework to explore community nurses' perceptions of their role. Three theoretical perspectives of role theory have emerged from the literature review: 1. social structuralism 2. symbolic interactionism and 3. the dramaturgical perspective. These philosophical perspectives provide a useful framework to investigate the role of community nurses in the contemporary health care system.

  18. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties

    NASA Astrophysics Data System (ADS)

    Roderick, Michael L.; Farquhar, Graham D.

    2011-12-01

    We use the Budyko framework to calculate catchment-scale evapotranspiration (E) and runoff (Q) as a function of two climatic factors, precipitation (P) and evaporative demand (Eo = 0.75 times the pan evaporation rate), and a third parameter that encodes the catchment properties (n) and modifies how P is partitioned between E and Q. This simple theory accurately predicted the long-term evapotranspiration (E) and runoff (Q) for the Murray-Darling Basin (MDB) in southeast Australia. We extend the theory by developing a simple and novel analytical expression for the effects on E and Q of small perturbations in P, Eo, and n. The theory predicts that a 10% change in P, with all else constant, would result in a 26% change in Q in the MDB. Future climate scenarios (2070-2099) derived using Intergovernmental Panel on Climate Change AR4 climate model output highlight the diversity of projections for P (±30%) with a correspondingly large range in projections for Q (±80%) in the MDB. We conclude with a qualitative description about the impact of changes in catchment properties on water availability and focus on the interaction between vegetation change, increasing atmospheric [CO2], and fire frequency. We conclude that the modern version of the Budyko framework is a useful tool for making simple and transparent estimates of changes in water availability.

  19. The essential role of social theory in qualitative public health research.

    PubMed

    Willis, Karen; Daly, Jeanne; Kealy, Michelle; Small, Rhonda; Koutroulis, Glenda; Green, Julie; Gibbs, Lisa; Thomas, Samantha

    2007-10-01

    To define the role of social theory and examine how research studies using qualitative methods can use social theory to generalize their results beyond the setting of the study or to other social groups. The assumptions underlying public health research using qualitative methods derive from a range of social theories that include conflict theory, structural functionalism, symbolic interactionism, the sociology of knowledge and feminism. Depending on the research problem, these and other social theories provide conceptual tools and models for constructing a suitable research framework, and for collecting and analysing data. In combination with the substantive health literature, the theoretical literature provides the conceptual bridge that links the conclusions of the study to other social groups and settings. While descriptive studies using qualitative research methods can generate important insights into social experience, the use of social theory in the construction and conduct of research enables researchers to extrapolate their findings to settings and groups broader than the ones in which the research was conducted.

  20. Intercultural Historical Learning: A Conceptual Framework

    ERIC Educational Resources Information Center

    Nordgren, Kenneth; Johansson, Maria

    2015-01-01

    This paper outlines a conceptual framework in order to systematically discuss the meaning of intercultural learning in history education and how it could be advanced. We do so by bringing together theories of historical consciousness, intercultural competence and postcolonial thinking. By combining these theories into one framework, we identify…

  1. A theoretical framework for strain-related trabecular bone maintenance and adaptation.

    PubMed

    Ruimerman, R; Hilbers, P; van Rietbergen, B; Huiskes, R

    2005-04-01

    It is assumed that density and morphology of trabecular bone is partially controlled by mechanical forces. How these effects are expressed in the local metabolic functions of osteoclast resorption and osteoblast formation is not known. In order to investigate possible mechano-biological pathways for these mechanisms we have proposed a mathematical theory (Nature 405 (2000) 704). This theory is based on hypothetical osteocyte stimulation of osteoblast bone formation, as an effect of elevated strain in the bone matrix, and a role for microcracks and disuse in promoting osteoclast resorption. Applied in a 2-D Finite Element Analysis model, the theory explained the formation of trabecular patterns. In this article we present a 3-D FEA model based on the same theory and investigated its potential morphological predictability of metabolic reactions to mechanical loads. The computations simulated the development of trabecular morphological details during growth, relative to measurements in growing pigs, reasonably realistic. They confirmed that the proposed mechanisms also inherently lead to optimal stress transfer. Alternative loading directions produced new trabecular orientations. Reduction of load reduced trabecular thickness, connectivity and mass in the simulation, as is seen in disuse osteoporosis. Simulating the effects of estrogen deficiency through increased osteoclast resorption frequencies produced osteoporotic morphologies as well, as seen in post-menopausal osteoporosis. We conclude that the theory provides a suitable computational framework to investigate hypothetical relationships between bone loading and metabolic expressions.

  2. Implementing Technology for Science Classrooms in Sao Tome and Principe

    NASA Astrophysics Data System (ADS)

    Jardim, Maria Dolores Rodrigues

    This qualitative bounded case study was designed to understand how technology integration in schools could be addressed in a first-wave country. The integration of educational technology in Sao Tome and Principe (STP), a first-wave agricultural civilization, can narrow the divide between STP and third-wave information age societies. The conceptual framework was based on theories of change, learning, and context. Toffler's wave theory described how societies changed while Fullan's change theory examined how the people might change. Roger's diffusion of innovations addressed how processes change. Bandura, Vygotsky, and Siemen provided the framework for the learning within the model of change. Finally, the context theories of Tessmer and Richey's instructional design, Lave and Wenger's situated learning, and Sticht's functional context theory were applied. Twenty five individuals from 5 schools, including teachers, school directors, key educational stakeholders, and the minister of education were involved in a pilot project to integrate technology into the science curriculum. The data were collected via interviews, reflective summaries, and confidential narratives. The resulting data were analyzed to find emerging patterns. The results of this analysis showed that a first-wave civilization can adopt a third-wave civilization's features in terms of technology integration, when there is the support of opinion leaders and most of the necessary contextual requirements are in place. The study contributes to social change by providing access to knowledge through technology integration, which empowers both teachers and students.

  3. Theory of cortical function

    PubMed Central

    Heeger, David J.

    2017-01-01

    Most models of sensory processing in the brain have a feedforward architecture in which each stage comprises simple linear filtering operations and nonlinearities. Models of this form have been used to explain a wide range of neurophysiological and psychophysical data, and many recent successes in artificial intelligence (with deep convolutional neural nets) are based on this architecture. However, neocortex is not a feedforward architecture. This paper proposes a first step toward an alternative computational framework in which neural activity in each brain area depends on a combination of feedforward drive (bottom-up from the previous processing stage), feedback drive (top-down context from the next stage), and prior drive (expectation). The relative contributions of feedforward drive, feedback drive, and prior drive are controlled by a handful of state parameters, which I hypothesize correspond to neuromodulators and oscillatory activity. In some states, neural responses are dominated by the feedforward drive and the theory is identical to a conventional feedforward model, thereby preserving all of the desirable features of those models. In other states, the theory is a generative model that constructs a sensory representation from an abstract representation, like memory recall. In still other states, the theory combines prior expectation with sensory input, explores different possible perceptual interpretations of ambiguous sensory inputs, and predicts forward in time. The theory, therefore, offers an empirically testable framework for understanding how the cortex accomplishes inference, exploration, and prediction. PMID:28167793

  4. Training in virtual environments: putting theory into practice.

    PubMed

    Moskaliuk, Johannes; Bertram, Johanna; Cress, Ulrike

    2013-01-01

    Virtual training environments are used when training in reality is challenging because of the high costs, danger, time or effort involved. In this paper we argue for a theory-driven development of such environments, with the aim of connecting theory to practice and ensuring that the training provided fits the needs of the trained persons and their organisations. As an example, we describe the development of VirtualPolice (ViPOL), a training environment for police officers in a federal state of Germany. We provided the theoretical foundation for ViPOL concerning the feeling of being present, social context, learning motivation and perspective-taking. We developed a framework to put theory into practice. To evaluate our framework we interviewed the stakeholders of ViPOL and surveyed current challenges and limitations of virtual training. The results led to a review of a theory-into-practice framework which is presented in the conclusion. Feeling of presence, social context, learning motivation and perspective-taking are relevant for training in virtual environments. The theory-into-practice framework presented here supports developers and trainers in implementing virtual training tools. The framework was validated with an interview study of stakeholders of a virtual training project. We identified limitations, opportunities and challenges.

  5. A visualization framework for design and evaluation

    NASA Astrophysics Data System (ADS)

    Blundell, Benjamin J.; Ng, Gary; Pettifer, Steve

    2006-01-01

    The creation of compelling visualisation paradigms is a craft often dominated by intuition and issues of aesthetics, with relatively few models to support good design. The majority of problem cases are approached by simply applying a previously evaluated visualisation technique. A large body of work exists covering the individual aspects of visualisation design such as the human cognition aspects visualisation methods for specific problem areas, psychology studies and so forth, yet most frameworks regarding visualisation are applied after-the-fact as an evaluation measure. We present an extensible framework for visualisation aimed at structuring the design process, increasing decision traceability and delineating the notions of function, aesthetics and usability. The framework can be used to derive a set of requirements for good visualisation design and evaluating existing visualisations, presenting possible improvements. Our framework achieves this by being both broad and general, built on top of existing works, with hooks for extensions and customizations. This paper shows how existing theories of information visualisation fit into the scheme, presents our experience in the application of this framework on several designs, and offers our evaluation of the framework and the designs studied.

  6. “UTILIZING” SIGNAL DETECTION THEORY

    PubMed Central

    Lynn, Spencer K.; Barrett, Lisa Feldman

    2014-01-01

    What do inferring what a person is thinking or feeling, deciding to report a symptom to your doctor, judging a defendant’s guilt, and navigating a dimly lit room have in common? They involve perceptual uncertainty (e.g., a scowling face might indicate anger or concentration, which engender different appropriate responses), and behavioral risk (e.g., a cost to making the wrong response). Signal detection theory describes these types of decisions. In this tutorial we show how, by incorporating the economic concept of utility, signal detection theory serves as a model of optimal decision making, beyond its common use as an analytic method. This utility approach to signal detection theory highlights potentially enigmatic influences of perceptual uncertainty on measures of decision-making performance (accuracy and optimality) and on behavior (a functional relationship between bias and sensitivity). A “utilized” signal detection theory offers the possibility of expanding the phenomena that can be understood within a decision-making framework. PMID:25097061

  7. The Adaptive Calibration Model of stress responsivity

    PubMed Central

    Ellis, Bruce J.; Shirtcliff, Elizabeth A.

    2010-01-01

    This paper presents the Adaptive Calibration Model (ACM), an evolutionary-developmental theory of individual differences in the functioning of the stress response system. The stress response system has three main biological functions: (1) to coordinate the organism’s allostatic response to physical and psychosocial challenges; (2) to encode and filter information about the organism’s social and physical environment, mediating the organism’s openness to environmental inputs; and (3) to regulate the organism’s physiology and behavior in a broad range of fitness-relevant areas including defensive behaviors, competitive risk-taking, learning, attachment, affiliation and reproductive functioning. The information encoded by the system during development feeds back on the long-term calibration of the system itself, resulting in adaptive patterns of responsivity and individual differences in behavior. Drawing on evolutionary life history theory, we build a model of the development of stress responsivity across life stages, describe four prototypical responsivity patterns, and discuss the emergence and meaning of sex differences. The ACM extends the theory of biological sensitivity to context (BSC) and provides an integrative framework for future research in the field. PMID:21145350

  8. Dynamical density functional theory for arbitrary-shape colloidal fluids including inertia and hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Duran-Olivencia, Miguel A.; Goddard, Ben; Kalliadasis, Serafim

    2015-11-01

    Over the last few decades the classical density-functional theory (DFT) and its dynamic extensions (DDFTs) have become a remarkably powerful tool in the study of colloidal fluids. Recently there has been extensive research to generalise all previous DDFTs finally yielding a general DDFT equation (for spherical particles) which takes into account both inertia and hydrodynamic interactions (HI) which strongly influence non-equilibrium properties. The present work will be devoted to a further generalisation of such a framework to systems of anisotropic particles. To this end, the kinetic equation for the Brownian particle distribution function is derived starting from the Liouville equation and making use of Zwanzig's projection-operator techniques. By averaging over all but one particle, a DDFT equation is finally obtained with some similarities to that for spherical colloids. However, there is now an inevitable translational-rotational coupling which affects the diffusivity of asymmetric particles. Lastly, in the overdamped (high friction) limit the theory is notably simplified leading to a DDFT equation which agrees with previous derivations. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.

  9. Study of the Inorganic Substitution in a Functionalized UiO-66 Metal-Organic Framework

    NASA Astrophysics Data System (ADS)

    Yasin, Alhassan Salman

    Metal-Organic Frameworks (MOFs) have received considerable attention and fast development in the past few years. These materials have demonstrated a wide range of applications due to their porosity, tailorability of optical properties, and chemical selectivity. This report catalogs common MOF designs based on application and diversity in various fields, as well as conduct an in-depth study of inorganic substitution in a functionalized MOF. This study investigates the band gap modulation in response to inorganic ion substitution within a thermally stable UiO-66 Metal-Organic Framework (MOF). A combination of density functional theory (DFT) predictions in conjunction with experimental predictions were used to map out the complete composition space for three inorganic ions (Zr, Hf, Ti) and three functional groups. The three functional groups include an amino group (NH2), a nitro group (NO2), and a hydrogenated case (H). The smallest determined band gap was for a partially substituted UiO-66(Ti5Zr1)-NH2 resulting in 2.60eV. Theoretical findings sup-port that Ti can be fully substituted within the lattice resulting in a predicted band gap as low as 1.62(2.77)eV. Band gap modulation was reasoned to be a result of a mid gap state introduced through the amino functionalization and HOMO shifting as a result of increased binding of the Ti-O-C bonds.

  10. Learning Theory Foundations of Simulation-Based Mastery Learning.

    PubMed

    McGaghie, William C; Harris, Ilene B

    2018-06-01

    Simulation-based mastery learning (SBML), like all education interventions, has learning theory foundations. Recognition and comprehension of SBML learning theory foundations are essential for thoughtful education program development, research, and scholarship. We begin with a description of SBML followed by a section on the importance of learning theory foundations to shape and direct SBML education and research. We then discuss three principal learning theory conceptual frameworks that are associated with SBML-behavioral, constructivist, social cognitive-and their contributions to SBML thought and practice. We then discuss how the three learning theory frameworks converge in the course of planning, conducting, and evaluating SBML education programs in the health professions. Convergence of these learning theory frameworks is illustrated by a description of an SBML education and research program in advanced cardiac life support. We conclude with a brief coda.

  11. The discipline of hospital development: a conceptual framework incorporating marketing, managerial, consumer behavior, and adult learning theories.

    PubMed

    Shirley, S; Stampfl, R

    1997-12-01

    The purpose of this explanatory and prescriptive article is to identify interdisciplinary theories used by hospital development to direct its practice. The article explores, explains, and applies theories and principles from behavioral, social, and managerial disciplines. Learning, motivational, organizational, marketing, and attitudinal theories are incorporated and transformed into the fundamental components of a conceptual framework that provides an overview of the practice of hospital development. How this discipline incorporates these theories to design, explain, and prescribe the focus of its own practice is demonstrated. This interdisciplinary approach results in a framework for practice that is adaptable to changing social, cultural, economic, political, and technological environments.

  12. A unifying framework for ghost-free Lorentz-invariant Lagrangian field theories

    NASA Astrophysics Data System (ADS)

    Li, Wenliang

    2018-04-01

    We propose a framework for Lorentz-invariant Lagrangian field theories where Ostrogradsky's scalar ghosts could be absent. A key ingredient is the generalized Kronecker delta. The general Lagrangians are reformulated in the language of differential forms. The absence of higher order equations of motion for the scalar modes stems from the basic fact that every exact form is closed. The well-established Lagrangian theories for spin-0, spin-1, p-form, spin-2 fields have natural formulations in this framework. We also propose novel building blocks for Lagrangian field theories. Some of them are novel nonlinear derivative terms for spin-2 fields. It is nontrivial that Ostrogradsky's scalar ghosts are absent in these fully nonlinear theories.

  13. Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load

    NASA Astrophysics Data System (ADS)

    Wang, Yuewu; Wu, Dafang

    2016-10-01

    Dynamic response of an axially functionally graded (AFG) beam under thermal environment subjected to a moving harmonic load is investigated within the frameworks of classical beam theory (CBT) and Timoshenko beam theory (TBT). The Lagrange method is employed to derive the equations of thermal buckling for AFG beam, and then with the critical buckling temperature as a parameter the Newmark-β method is adopted to evaluate the dynamic response of AFG beam under thermal environments. Admissible functions denoting transverse displacement are expressed in simple algebraic polynomial forms. Temperature-dependency of material constituent is considered. The rule of mixture (Voigt model) and Mori-Tanaka (MT) scheme are used to evaluate the beam's effective material properties. A ceramic-metal AFG beam with immovable boundary condition is considered as numerical illustration to show the thermal effects on the dynamic behaviors of the beam subjected to a moving harmonic load.

  14. Participation as a Tool for Interactional Work on Twitter: A Sociolinguistic Approach to Social Media "Engagement"

    ERIC Educational Resources Information Center

    Draucker, Fawn T.

    2013-01-01

    This work approaches the concept of social media engagement through a lens of participation theory. Following the work of Goffman (1981) and others, this dissertation uses the concepts of the participation framework and the participant role to explore engagement as a function of participation in interaction. The purposes of this dissertation are…

  15. Understanding Different Levels of Group Functionality: Activity Systems Analysis of an Intercultural Telecollaborative Multilingual Digital Storytelling Project

    ERIC Educational Resources Information Center

    Priego, Sabrina; Liaw, Meei-Ling

    2017-01-01

    An Activity Theory framework has been increasingly applied for understanding the tension or contradictions in telecollaboration. However, to date, few researchers have applied it to the analysis of digital stories, and none of them, to our knowledge, have used it to analyze the co-creation of multilingual digital stories. In this study, we explore…

  16. Quadratic Optimisation with One Quadratic Equality Constraint

    DTIC Science & Technology

    2010-06-01

    This report presents a theoretical framework for minimising a quadratic objective function subject to a quadratic equality constraint. The first part of the report gives a detailed algorithm which computes the global minimiser without calling special nonlinear optimisation solvers. The second part of the report shows how the developed theory can be applied to solve the time of arrival geolocation problem.

  17. Flexible configuration-interaction shell-model many-body solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Calvin W.; Ormand, W. Erich; McElvain, Kenneth S.

    BIGSTICK Is a flexible configuration-Interaction open-source shell-model code for the many-fermion problem In a shell model (occupation representation) framework. BIGSTICK can generate energy spectra, static and transition one-body densities, and expectation values of scalar operators. Using the built-in Lanczos algorithm one can compute transition probabflity distributions and decompose wave functions into components defined by group theory.

  18. Drug use as consumer behavior.

    PubMed

    Foxall, Gordon Robert; Sigurdsson, Valdimar

    2011-12-01

    Seeking integration of drug consumption research by a theory of memory function and emphasizing drug consumption rather than addiction, Müller & Schumann (M&S) treat drug self-administration as part of a general pattern of consumption. This insight is located within a more comprehensive framework for understanding drug use as consumer behavior that explicates the reinforcement contingencies associated with modes of drug consumption.

  19. Origin of the Strong Interaction between Polar Molecules and Copper(II) Paddle-Wheels in Metal Organic Frameworks

    DOE PAGES

    Ongari, Daniele; Tiana, Davide; Stoneburner, Samuel J.; ...

    2017-06-27

    The copper paddle-wheel is the building unit of many metal organic frameworks. Because of the ability of the copper cations to attract polar molecules, copper paddle-wheels are promising for carbon dioxide adsorption and separation. They have therefore been studied extensively, both experimentally and computationally. In this work we investigate the copper–CO 2 interaction in HKUST-1 and in two different cluster models of HKUST-1: monocopper Cu(formate) 2 and dicopper Cu 2(formate) 4. We show that density functional theory methods severely underestimate the interaction energy between copper paddle-wheels and CO 2, even including corrections for the dispersion forces. In contrast, a multireferencemore » wave function followed by perturbation theory to second order using the CASPT2 method correctly describes this interaction. The restricted open-shell Møller–Plesset 2 method (ROS-MP2, equivalent to (2,2) CASPT2) was also found to be adequate in describing the system and used to develop a novel force field. Our parametrization is able to predict the experimental CO 2 adsorption isotherms in HKUST-1, and it is shown to be transferable to other copper paddle-wheel systems.« less

  20. Efficient iterative method for solving the Dirac-Kohn-Sham density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Lin; Shao, Sihong; E, Weinan

    2012-11-06

    We present for the first time an efficient iterative method to directly solve the four-component Dirac-Kohn-Sham (DKS) density functional theory. Due to the existence of the negative energy continuum in the DKS operator, the existing iterative techniques for solving the Kohn-Sham systems cannot be efficiently applied to solve the DKS systems. The key component of our method is a novel filtering step (F) which acts as a preconditioner in the framework of the locally optimal block preconditioned conjugate gradient (LOBPCG) method. The resulting method, dubbed the LOBPCG-F method, is able to compute the desired eigenvalues and eigenvectors in the positive energy band without computing any state in the negative energy band. The LOBPCG-F method introduces mild extra cost compared to the standard LOBPCG method and can be easily implemented. We demonstrate our method in the pseudopotential framework with a planewave basis set which naturally satisfies the kinetic balance prescription. Numerical results for Ptmore » $$_{2}$$, Au$$_{2}$$, TlF, and Bi$$_{2}$$Se$$_{3}$$ indicate that the LOBPCG-F method is a robust and efficient method for investigating the relativistic effect in systems containing heavy elements.« less

  1. Origin of the Strong Interaction between Polar Molecules and Copper(II) Paddle-Wheels in Metal Organic Frameworks.

    PubMed

    Ongari, Daniele; Tiana, Davide; Stoneburner, Samuel J; Gagliardi, Laura; Smit, Berend

    2017-07-20

    The copper paddle-wheel is the building unit of many metal organic frameworks. Because of the ability of the copper cations to attract polar molecules, copper paddle-wheels are promising for carbon dioxide adsorption and separation. They have therefore been studied extensively, both experimentally and computationally. In this work we investigate the copper-CO 2 interaction in HKUST-1 and in two different cluster models of HKUST-1: monocopper Cu(formate) 2 and dicopper Cu 2 (formate) 4 . We show that density functional theory methods severely underestimate the interaction energy between copper paddle-wheels and CO 2 , even including corrections for the dispersion forces. In contrast, a multireference wave function followed by perturbation theory to second order using the CASPT2 method correctly describes this interaction. The restricted open-shell Møller-Plesset 2 method (ROS-MP2, equivalent to (2,2) CASPT2) was also found to be adequate in describing the system and used to develop a novel force field. Our parametrization is able to predict the experimental CO 2 adsorption isotherms in HKUST-1, and it is shown to be transferable to other copper paddle-wheel systems.

  2. Origin of the Strong Interaction between Polar Molecules and Copper(II) Paddle-Wheels in Metal Organic Frameworks

    PubMed Central

    2017-01-01

    The copper paddle-wheel is the building unit of many metal organic frameworks. Because of the ability of the copper cations to attract polar molecules, copper paddle-wheels are promising for carbon dioxide adsorption and separation. They have therefore been studied extensively, both experimentally and computationally. In this work we investigate the copper–CO2 interaction in HKUST-1 and in two different cluster models of HKUST-1: monocopper Cu(formate)2 and dicopper Cu2(formate)4. We show that density functional theory methods severely underestimate the interaction energy between copper paddle-wheels and CO2, even including corrections for the dispersion forces. In contrast, a multireference wave function followed by perturbation theory to second order using the CASPT2 method correctly describes this interaction. The restricted open-shell Møller–Plesset 2 method (ROS-MP2, equivalent to (2,2) CASPT2) was also found to be adequate in describing the system and used to develop a novel force field. Our parametrization is able to predict the experimental CO2 adsorption isotherms in HKUST-1, and it is shown to be transferable to other copper paddle-wheel systems. PMID:28751926

  3. Origin of the Strong Interaction between Polar Molecules and Copper(II) Paddle-Wheels in Metal Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ongari, Daniele; Tiana, Davide; Stoneburner, Samuel J.

    The copper paddle-wheel is the building unit of many metal organic frameworks. Because of the ability of the copper cations to attract polar molecules, copper paddle-wheels are promising for carbon dioxide adsorption and separation. They have therefore been studied extensively, both experimentally and computationally. In this work we investigate the copper–CO 2 interaction in HKUST-1 and in two different cluster models of HKUST-1: monocopper Cu(formate) 2 and dicopper Cu 2(formate) 4. We show that density functional theory methods severely underestimate the interaction energy between copper paddle-wheels and CO 2, even including corrections for the dispersion forces. In contrast, a multireferencemore » wave function followed by perturbation theory to second order using the CASPT2 method correctly describes this interaction. The restricted open-shell Møller–Plesset 2 method (ROS-MP2, equivalent to (2,2) CASPT2) was also found to be adequate in describing the system and used to develop a novel force field. Our parametrization is able to predict the experimental CO 2 adsorption isotherms in HKUST-1, and it is shown to be transferable to other copper paddle-wheel systems.« less

  4. Magnetic-Field Density-Functional Theory (BDFT): Lessons from the Adiabatic Connection.

    PubMed

    Reimann, Sarah; Borgoo, Alex; Tellgren, Erik I; Teale, Andrew M; Helgaker, Trygve

    2017-09-12

    We study the effects of magnetic fields in the context of magnetic field density-functional theory (BDFT), where the energy is a functional of the electron density ρ and the magnetic field B. We show that this approach is a worthwhile alternative to current-density functional theory (CDFT) and may provide a viable route to the study of many magnetic phenomena using density-functional theory (DFT). The relationship between BDFT and CDFT is developed and clarified within the framework of the four-way correspondence of saddle functions and their convex and concave parents in convex analysis. By decomposing the energy into its Kohn-Sham components, we demonstrate that the magnetizability is mainly determined by those energy components that are related to the density. For existing density functional approximations, this implies that, for the magnetizability, improvements of the density will be more beneficial than introducing a magnetic-field dependence in the correlation functional. However, once a good charge density is achieved, we show that high accuracy is likely only obtainable by including magnetic-field dependence. We demonstrate that adiabatic-connection (AC) curves at different field strengths resemble one another closely provided each curve is calculated at the equilibrium geometry of that field strength. In contrast, if all AC curves are calculated at the equilibrium geometry of the field-free system, then the curves change strongly with increasing field strength due to the increasing importance of static correlation. This holds also for density functional approximations, for which we demonstrate that the main error encountered in the presence of a field is already present at zero field strength, indicating that density-functional approximations may be applied to systems in strong fields, without the need to treat additional static correlation.

  5. Some thoughts about consciousness: from a quantum mechanics perspective.

    PubMed

    Gargiulo, Gerald J

    2013-08-01

    The article explores some of the basic findings of quantum physics and information theory and their possible usefulness in offering new vistas for understanding psychoanalysis and the patient-analyst interchange. Technical terms are explained and placed in context, and examples of applying quantum models to clinical experience are offered. Given the complexity of the findings of quantum mechanics and information theory, the article aims only to introduce some of the major concepts from these disciplines. Within this framework the article also briefly addresses the question of mind as well as the problematic of reducing the experience of consciousness to neurological brain functioning.

  6. Theory of mind in middle childhood and early adolescence: Different from before?

    PubMed

    Im-Bolter, Nancie; Agostino, Alba; Owens-Jaffray, Keely

    2016-09-01

    Studies with preschool children have shown that language and executive function are important for theory of mind, but few studies have examined these associations in older children and in an integrative theory-guided manner. The theory of constructive operators was used as a framework to test a model of relations among mental attentional capacity, attentional inhibition, language, executive processes (shifting and updating), and higher order theory of mind in two groups of school-aged children: one in middle childhood (n=226; mean age=8.08years) and the other in early adolescence (n=216; mean age=12.09years). Results revealed a complex model of interrelations between cognitive resources and language in middle childhood that directly and indirectly predicted theory of mind. The model in early adolescence was less complex, however, and highlighted the importance of semantic language and shifting for theory of mind. Our findings suggest not only that contributors to theory of mind change over time but also that they may depend on the maturity level of the theory of mind system being examined. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Incorporation of Pyrazine and Bipyridine Linkers with High-Spin Fe(II) and Co(II) in a Metal–Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, Airi; Greenwood, Arin R.; Filatov, Alexander S.

    2017-02-27

    A series of isoreticular metal organic frameworks (MOFs) of the formula M(BDC)(L) (M = Fe(II) or Co(II), BDC = 1,4-benzenedicarboxylate, L = pyrazine (pyz) or 4,4'-bipyridine (bipy)) has been synthesized and characterized by N-2 gas uptake Measurements, single crystal and powder X-ray diffraction, magnetometry, X-ray absorption spectroscopy, and Mossbauer spectroscopy. These studies indicate the formation of a permanently porous solid with high-spin Fe(II) and Co(II) centers that are weakly coupled, consistent with first-principles density functional theory calculations. This family of materials represents unusual examples of paramagnetic metal centers coordinated by linkers capable of mediating magnetic or electronic coupling in amore » porous framework. While only weak interactions are observed, the rigid 3D framework of the MOF dramatically impacts the properties of these materials when compared with close structural analogues.« less

  8. Assessment of Evaluation Frameworks for Design of a Sexual Risk Prevention Game for Black Adolescent Girls.

    PubMed

    Sockolow, Paulina; Joppa, Meredith; Zhu, Jichen

    2018-01-01

    Adolescent sexual risk behavior (SRB), a major public health problem affects urban Black adolescent girls increasing their health disparities and risks for sexually transmitted infections. Collaborating with these adolescents, we designed a game for smartphones that incorporates elements of trauma-informed care and social cognitive theory to reduce SRB. Game researchers promote use of a comprehensive, multipurpose framework for development and evaluation of games for health applications. Our first game development step was framework selection and measurable health outcomes identification. Literature search identified two health game frameworks, both incorporating pedagogical theory, learning theory, and gaming requirements. Arnab used the IM + LM-GM framework to develop and implement a game in a school intervention program. Yusoff's framework was developed for use during game design. We investigated concordance and discordance between our SRB game design characteristics and each framework's components. Findings indicated Arnab's framework was sufficiently comprehensive to guide development of our game and outcome measure selection.

  9. TRIQS: A toolbox for research on interacting quantum systems

    NASA Astrophysics Data System (ADS)

    Parcollet, Olivier; Ferrero, Michel; Ayral, Thomas; Hafermann, Hartmut; Krivenko, Igor; Messio, Laura; Seth, Priyanka

    2015-11-01

    We present the TRIQS library, a Toolbox for Research on Interacting Quantum Systems. It is an open-source, computational physics library providing a framework for the quick development of applications in the field of many-body quantum physics, and in particular, strongly-correlated electronic systems. It supplies components to develop codes in a modern, concise and efficient way: e.g. Green's function containers, a generic Monte Carlo class, and simple interfaces to HDF5. TRIQS is a C++/Python library that can be used from either language. It is distributed under the GNU General Public License (GPLv3). State-of-the-art applications based on the library, such as modern quantum many-body solvers and interfaces between density-functional-theory codes and dynamical mean-field theory (DMFT) codes are distributed along with it.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motevaselian, M. H.; Mashayak, S. Y.; Aluru, N. R., E-mail: aluru@illinois.edu

    Empirical potential-based quasi-continuum theory (EQT) provides a route to incorporate atomistic detail into continuum framework such as the Nernst-Planck equation. EQT can also be used to construct a grand potential functional for classical density functional theory (cDFT). The combination of EQT and cDFT provides a simple and fast approach to predict the inhomogeneous density, potential profiles, and thermodynamic properties of confined fluids. We extend the EQT-cDFT approach to confined fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen inside slit-like channels of graphene. We show that the EQT-cDFT predictions for the structure of the confined fluidmore » mixture compare well with the molecular dynamics simulation results. In addition, our results show that graphene slit nanopores exhibit a selective adsorption of methane over hydrogen.« less

  11. A multi-scale study of the adsorption of lanthanum on the (110) surface of tungsten

    NASA Astrophysics Data System (ADS)

    Samin, Adib J.; Zhang, Jinsuo

    2016-07-01

    In this study, we utilize a multi-scale approach to studying lanthanum adsorption on the (110) plane of tungsten. The energy of the system is described from density functional theory calculations within the framework of the cluster expansion method. It is found that including two-body figures up to the sixth nearest neighbor yielded a reasonable agreement with density functional theory calculations as evidenced by the reported cross validation score. The results indicate that the interaction between the adsorbate atoms in the adlayer is important and cannot be ignored. The parameterized cluster expansion expression is used in a lattice gas Monte Carlo simulation in the grand canonical ensemble at 773 K and the adsorption isotherm is recorded. Implications of the obtained results for the pyroprocessing application are discussed.

  12. First Principles Optical Absorption Spectra of Organic Molecules Adsorbed on Titania Nanoparticles

    NASA Astrophysics Data System (ADS)

    Baishya, Kopinjol; Ogut, Serdar; Mete, Ersen; Gulseren, Oguz; Ellialtioglu, Sinasi

    2012-02-01

    We present results from first principles computations on passivated rutile TiO2 nanoparticles in both free-standing and dye-sensitized configurations to investigate the size dependence of their optical absorption spectra. The computations are performed using time-dependent density functional theory (TDDFT) as well as GW-Bethe-Salpeter-Equation (GWBSE) methods and compared with each other. We interpret the first principles spectra for free-standing TiO2 nanoparticles within the framework of the classical Mie-Gans theory using the bulk dielectric function of TiO2. We investigate the effects of the titania support on the absorption spectra of a particular set of perylene-diimide (PDI) derived dye molecules, namely brominated PDI (Br2C24H8N2O4) and its glycine and aspartine derivatives.

  13. Beyond Normativity in Sociocultural Reproduction and Sociocultural Transformation: Curriculum Work--Leadership within an Evolving Context

    ERIC Educational Resources Information Center

    Ylimaki, Rose M.; Fetman, Lisa J.; Matyjasik, Erin; Brunderman, Lynnette; Uljens, Michael

    2017-01-01

    Background: The purpose of this article is to examine the contributions, gaps, and normativity problems in mainstream sociocultural theories, curriculum theory, and educational leadership studies, considering reflective education theories that provide a less normative alternative. Framework: Our framework introduces reflective education for social…

  14. A Case in Clinical Supervision: A Framework for Putting Theory into Practice.

    ERIC Educational Resources Information Center

    Pearson, Quinn M.

    2001-01-01

    Presents a framework for applying supervision theory to clinical practice that integrates developmental and social role theories of supervision. Proposes that by providing the optimal supervision environment, supervisors are in a better position to meet the needs of counselors and the clients they serve. (GCP)

  15. Generalizability Theory as a Unifying Framework of Measurement Reliability in Adolescent Research

    ERIC Educational Resources Information Center

    Fan, Xitao; Sun, Shaojing

    2014-01-01

    In adolescence research, the treatment of measurement reliability is often fragmented, and it is not always clear how different reliability coefficients are related. We show that generalizability theory (G-theory) is a comprehensive framework of measurement reliability, encompassing all other reliability methods (e.g., Pearson "r,"…

  16. Global exponential stability and lag synchronization for delayed memristive fuzzy Cohen-Grossberg BAM neural networks with impulses.

    PubMed

    Yang, Wengui; Yu, Wenwu; Cao, Jinde; Alsaadi, Fuad E; Hayat, Tasawar

    2018-02-01

    This paper investigates the stability and lag synchronization for memristor-based fuzzy Cohen-Grossberg bidirectional associative memory (BAM) neural networks with mixed delays (asynchronous time delays and continuously distributed delays) and impulses. By applying the inequality analysis technique, homeomorphism theory and some suitable Lyapunov-Krasovskii functionals, some new sufficient conditions for the uniqueness and global exponential stability of equilibrium point are established. Furthermore, we obtain several sufficient criteria concerning globally exponential lag synchronization for the proposed system based on the framework of Filippov solution, differential inclusion theory and control theory. In addition, some examples with numerical simulations are given to illustrate the feasibility and validity of obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Kinetic theory of two-temperature polyatomic plasmas

    NASA Astrophysics Data System (ADS)

    Orlac'h, Jean-Maxime; Giovangigli, Vincent; Novikova, Tatiana; Roca i Cabarrocas, Pere

    2018-03-01

    We investigate the kinetic theory of two-temperature plasmas for reactive polyatomic gas mixtures. The Knudsen number is taken proportional to the square root of the mass ratio between electrons and heavy-species, and thermal non-equilibrium between electrons and heavy species is allowed. The kinetic non-equilibrium framework also requires a weak coupling between electrons and internal energy modes of heavy species. The zeroth-order and first-order fluid equations are derived by using a generalized Chapman-Enskog method. Expressions for transport fluxes are obtained in terms of macroscopic variable gradients and the corresponding transport coefficients are expressed as bracket products of species perturbed distribution functions. The theory derived in this paper provides a consistent fluid model for non-thermal multicomponent plasmas.

  18. Carbon dioxide capture using covalent organic frameworks (COFs) type material-a theoretical investigation.

    PubMed

    Dash, Bibek

    2018-04-26

    The present work deals with a density functional theory (DFT) study of porous organic framework materials containing - groups for CO 2 capture. In this study, first principle calculations were performed for CO 2 adsorption using N-containing covalent organic framework (COFs) models. Ab initio and DFT-based methods were used to characterize the N-containing porous model system based on their interaction energies upon complexing with CO 2 and nitrogen gas. Binding energies (BEs) of CO 2 and N 2 molecules with the polymer framework were calculated with DFT methods. Hybrid B3LYP and second order MP2 methods combined with of Pople 6-31G(d,p) and correlation consistent basis sets cc-pVDZ, cc-pVTZ and aug-ccVDZ were used to calculate BEs. The effect of linker groups in the designed covalent organic framework model system on the CO 2 and N 2 interactions was studied using quantum calculations.

  19. Scale covariant gravitation. V - Kinetic theory. VI - Stellar structure and evolution

    NASA Technical Reports Server (NTRS)

    Hsieh, S.-H.; Canuto, V. M.

    1981-01-01

    A scale covariant kinetic theory for particles and photons is developed. The mathematical framework of the theory is given by the tangent bundle of a Weyl manifold. The Liouville equation is derived, and solutions to corresponding equilibrium distributions are presented and shown to yield thermodynamic results identical to the ones obtained previously. The scale covariant theory is then used to derive results of interest to stellar structure and evolution. A radiative transfer equation is derived that can be used to study stellar evolution with a variable gravitational constant. In addition, it is shown that the sun's absolute luminosity scales as L approximately equal to GM/kappa, where kappa is the stellar opacity. Finally, a formula is derived for the age of globular clusters as a function of the gravitational constant using a previously derived expression for the absolute luminosity.

  20. Applying network theory to animal movements to identify properties of landscape space use.

    PubMed

    Bastille-Rousseau, Guillaume; Douglas-Hamilton, Iain; Blake, Stephen; Northrup, Joseph M; Wittemyer, George

    2018-04-01

    Network (graph) theory is a popular analytical framework to characterize the structure and dynamics among discrete objects and is particularly effective at identifying critical hubs and patterns of connectivity. The identification of such attributes is a fundamental objective of animal movement research, yet network theory has rarely been applied directly to animal relocation data. We develop an approach that allows the analysis of movement data using network theory by defining occupied pixels as nodes and connection among these pixels as edges. We first quantify node-level (local) metrics and graph-level (system) metrics on simulated movement trajectories to assess the ability of these metrics to pull out known properties in movement paths. We then apply our framework to empirical data from African elephants (Loxodonta africana), giant Galapagos tortoises (Chelonoidis spp.), and mule deer (Odocoileous hemionus). Our results indicate that certain node-level metrics, namely degree, weight, and betweenness, perform well in capturing local patterns of space use, such as the definition of core areas and paths used for inter-patch movement. These metrics were generally applicable across data sets, indicating their robustness to assumptions structuring analysis or strategies of movement. Other metrics capture local patterns effectively, but were sensitive to specified graph properties, indicating case specific applications. Our analysis indicates that graph-level metrics are unlikely to outperform other approaches for the categorization of general movement strategies (central place foraging, migration, nomadism). By identifying critical nodes, our approach provides a robust quantitative framework to identify local properties of space use that can be used to evaluate the effect of the loss of specific nodes on range wide connectivity. Our network approach is intuitive, and can be implemented across imperfectly sampled or large-scale data sets efficiently, providing a framework for conservationists to analyze movement data. Functions created for the analyses are available within the R package moveNT. © 2018 by the Ecological Society of America.

  1. Developing density functional theory for Bose-Einstein condensates. The case of chemical bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putz, Mihai V., E-mail: mvputz@cbg.uvt.ro

    Since the nowadays growing interest in Bose-Einstein condensates due to the expanded experimental evidence on various atomic systems within optical lattices in weak and strong coupling regimes, the connection with Density Functional Theory is firstly advanced within the mean field framework at three levels of comprehension: the many-body normalization condition, Thomas-Fermi limit, and the chemical hardness closure with the inter-bosonic strength and universal Hohenberg-Kohn functional. As an application the traditional Heitler-London quantum mechanical description of the chemical bonding for homopolar atomic systems is reloaded within the non-linear Schrödinger (Gross-Pitaevsky) Hamiltonian; the results show that a two-fold energetic solution is registeredmore » either for bonding and antibonding states, with the bosonic contribution being driven by the square of the order parameter for the Bose-Einstein condensate density in free (gas) motion, while the associate wave functions remain as in classical molecular orbital model.« less

  2. Sigmund Freud-early network theories of the brain.

    PubMed

    Surbeck, Werner; Killeen, Tim; Vetter, Johannes; Hildebrandt, Gerhard

    2018-06-01

    Since the early days of modern neuroscience, psychological models of brain function have been a key component in the development of new knowledge. These models aim to provide a framework that allows the integration of discoveries derived from the fundamental disciplines of neuroscience, including anatomy and physiology, as well as clinical neurology and psychiatry. During the initial stages of his career, Sigmund Freud (1856-1939), became actively involved in these nascent fields with a burgeoning interest in functional neuroanatomy. In contrast to his contemporaries, Freud was convinced that cognition could not be localised to separate modules and that the brain processes cognition not in a merely serial manner but in a parallel and dynamic fashion-anticipating fundamental aspects of current network theories of brain function. This article aims to shed light on Freud's seminal, yet oft-overlooked, early work on functional neuroanatomy and his reasons for finally abandoning the conventional neuroscientific "brain-based" reference frame in order to conceptualise the mind from a purely psychological perspective.

  3. Perturbative quantum field theory in the framework of the fermionic projector

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    2014-04-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  4. A Function-Behavior-State Approach to Designing Human Machine Interface for Nuclear Power Plant Operators

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Zhang, W. J.

    2005-02-01

    This paper presents an approach to human-machine interface design for control room operators of nuclear power plants. The first step in designing an interface for a particular application is to determine information content that needs to be displayed. The design methodology for this step is called the interface design framework (called framework ). Several frameworks have been proposed for applications at varying levels, including process plants. However, none is based on the design and manufacture of a plant system for which the interface is designed. This paper presents an interface design framework which originates from design theory and methodology for general technical systems. Specifically, the framework is based on a set of core concepts of a function-behavior-state model originally proposed by the artificial intelligence research community and widely applied in the design research community. Benefits of this new framework include the provision of a model-based fault diagnosis facility, and the seamless integration of the design (manufacture, maintenance) of plants and the design of human-machine interfaces. The missing linkage between design and operation of a plant was one of the causes of the Three Mile Island nuclear reactor incident. A simulated plant system is presented to explain how to apply this framework in designing an interface. The resulting human-machine interface is discussed; specifically, several fault diagnosis examples are elaborated to demonstrate how this interface could support operators' fault diagnosis in an unanticipated situation.

  5. Quantum field theory on curved spacetimes: Axiomatic framework and examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredenhagen, Klaus; Rejzner, Kasia

    In this review article, we want to expose a systematic development of quantum field theory on curved spacetimes. The leading principle is the emphasis on local properties. It turns out that this requires a reformulation of the QFT framework which also yields a new perspective for the theories on Minkowski space. The aim of the present work is to provide an almost self-contained introduction into the framework, which should be accessible for both mathematical physicists and mathematicians.

  6. Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mercado, Rocio; Vlaisavljevich, Bess; Lin, Li -Chiang

    We present accurate force fields developed from density functional theory (DFT) calculations with periodic boundary conditions for use in molecular simulations involving M 2(dobdc) (M-MOF-74; dobdc 4– = 2,5-dioxidobenzenedicarboxylate; M = Mg, Mn, Fe, Co, Ni, Zn) and frameworks of similar topology. In these systems, conventional force fields fail to accurately model gas adsorption due to the strongly binding open-metal sites. The DFT-derived force fields predict the adsorption of CO 2, H 2O, and CH 4 inside these frameworks much more accurately than other common force fields. We show that these force fields can also be used for M 2(dobpdc)more » (dobpdc 4– = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), an extended version of MOF-74, and thus are a promising alternative to common force fields for studying materials similar to MOF-74 for carbon capture applications. Furthermore, it is anticipated that the approach can be applied to other metal–organic framework topologies to obtain force fields for different systems. We have used this force field to study the effect of contaminants such as H 2O and N 2 upon these materials’ performance for the separation of CO 2 from the emissions of natural gas reservoirs and coal-fired power plants. Specifically, mixture adsorption isotherms calculated with these DFT-derived force fields showed a significant reduction in the uptake of many gas components in the presence of even trace amounts of H 2O vapor. The extent to which the various gases are affected by the concentration of H 2O in the reservoir is quantitatively different for the different frameworks and is related to their heats of adsorption. Additionally, significant increases in CO 2 selectivities over CH 4 and N 2 are observed as the temperature of the systems is lowered.« less

  7. Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal–Organic Frameworks

    DOE PAGES

    Mercado, Rocio; Vlaisavljevich, Bess; Lin, Li -Chiang; ...

    2016-05-25

    We present accurate force fields developed from density functional theory (DFT) calculations with periodic boundary conditions for use in molecular simulations involving M 2(dobdc) (M-MOF-74; dobdc 4– = 2,5-dioxidobenzenedicarboxylate; M = Mg, Mn, Fe, Co, Ni, Zn) and frameworks of similar topology. In these systems, conventional force fields fail to accurately model gas adsorption due to the strongly binding open-metal sites. The DFT-derived force fields predict the adsorption of CO 2, H 2O, and CH 4 inside these frameworks much more accurately than other common force fields. We show that these force fields can also be used for M 2(dobpdc)more » (dobpdc 4– = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), an extended version of MOF-74, and thus are a promising alternative to common force fields for studying materials similar to MOF-74 for carbon capture applications. Furthermore, it is anticipated that the approach can be applied to other metal–organic framework topologies to obtain force fields for different systems. We have used this force field to study the effect of contaminants such as H 2O and N 2 upon these materials’ performance for the separation of CO 2 from the emissions of natural gas reservoirs and coal-fired power plants. Specifically, mixture adsorption isotherms calculated with these DFT-derived force fields showed a significant reduction in the uptake of many gas components in the presence of even trace amounts of H 2O vapor. The extent to which the various gases are affected by the concentration of H 2O in the reservoir is quantitatively different for the different frameworks and is related to their heats of adsorption. Additionally, significant increases in CO 2 selectivities over CH 4 and N 2 are observed as the temperature of the systems is lowered.« less

  8. School Culture and Teenage Substance Use: A Conceptual and Operational Framework

    ERIC Educational Resources Information Center

    Markham, Wolfgang A.

    2015-01-01

    This paper outlines a conceptual and operational framework for understanding the relationships between school culture and teenage substance use (smoking, drinking and illicit drug use). The framework draws upon Bernstein's theory of cultural transmission, a theory of health promoting schools and a frame for understanding the effects of place on…

  9. Towards a Theory-Based Design Framework for an Effective E-Learning Computer Programming Course

    ERIC Educational Resources Information Center

    McGowan, Ian S.

    2016-01-01

    Built on Dabbagh (2005), this paper presents a four component theory-based design framework for an e-learning session in introductory computer programming. The framework, driven by a body of exemplars component, emphasizes the transformative interaction between the knowledge building community (KBC) pedagogical model, a mixed instructional…

  10. Connecting Practice, Theory and Method: Supporting Professional Doctoral Students in Developing Conceptual Frameworks

    ERIC Educational Resources Information Center

    Kumar, Swapna; Antonenko, Pavlo

    2014-01-01

    From an instrumental view, conceptual frameworks that are carefully assembled from existing literature in Educational Technology and related disciplines can help students structure all aspects of inquiry. In this article we detail how the development of a conceptual framework that connects theory, practice and method is scaffolded and facilitated…

  11. Assessing Higher-Order Cognitive Constructs by Using an Information-Processing Framework

    ERIC Educational Resources Information Center

    Dickison, Philip; Luo, Xiao; Kim, Doyoung; Woo, Ada; Muntean, William; Bergstrom, Betty

    2016-01-01

    Designing a theory-based assessment with sound psychometric qualities to measure a higher-order cognitive construct is a highly desired yet challenging task for many practitioners. This paper proposes a framework for designing a theory-based assessment to measure a higher-order cognitive construct. This framework results in a modularized yet…

  12. Structural Control of Metabolic Flux

    PubMed Central

    Sajitz-Hermstein, Max; Nikoloski, Zoran

    2013-01-01

    Organisms have to continuously adapt to changing environmental conditions or undergo developmental transitions. To meet the accompanying change in metabolic demands, the molecular mechanisms of adaptation involve concerted interactions which ultimately induce a modification of the metabolic state, which is characterized by reaction fluxes and metabolite concentrations. These state transitions are the effect of simultaneously manipulating fluxes through several reactions. While metabolic control analysis has provided a powerful framework for elucidating the principles governing this orchestrated action to understand metabolic control, its applications are restricted by the limited availability of kinetic information. Here, we introduce structural metabolic control as a framework to examine individual reactions' potential to control metabolic functions, such as biomass production, based on structural modeling. The capability to carry out a metabolic function is determined using flux balance analysis (FBA). We examine structural metabolic control on the example of the central carbon metabolism of Escherichia coli by the recently introduced framework of functional centrality (FC). This framework is based on the Shapley value from cooperative game theory and FBA, and we demonstrate its superior ability to assign “share of control” to individual reactions with respect to metabolic functions and environmental conditions. A comparative analysis of various scenarios illustrates the usefulness of FC and its relations to other structural approaches pertaining to metabolic control. We propose a Monte Carlo algorithm to estimate FCs for large networks, based on the enumeration of elementary flux modes. We further give detailed biological interpretation of FCs for production of lactate and ATP under various respiratory conditions. PMID:24367246

  13. Applying psychological frameworks of behaviour change to improve healthcare worker hand hygiene: a systematic review.

    PubMed

    Srigley, J A; Corace, K; Hargadon, D P; Yu, D; MacDonald, T; Fabrigar, L; Garber, G

    2015-11-01

    Despite the importance of hand hygiene in preventing transmission of healthcare-associated infections, compliance rates are suboptimal. Hand hygiene is a complex behaviour and psychological frameworks are promising tools to influence healthcare worker (HCW) behaviour. (i) To review the effectiveness of interventions based on psychological theories of behaviour change to improve HCW hand hygiene compliance; (ii) to determine which frameworks have been used to predict HCW hand hygiene compliance. Multiple databases and reference lists of included studies were searched for studies that applied psychological theories to improve and/or predict HCW hand hygiene. All steps in selection, data extraction, and quality assessment were performed independently by two reviewers. The search yielded 918 citations; seven met eligibility criteria. Four studies evaluated hand hygiene interventions based on psychological frameworks. Interventions were informed by goal setting, control theory, operant learning, positive reinforcement, change theory, the theory of planned behaviour, and the transtheoretical model. Three predictive studies employed the theory of planned behaviour, the transtheoretical model, and the theoretical domains framework. Interventions to improve hand hygiene adherence demonstrated efficacy but studies were at moderate to high risk of bias. For many studies, it was unclear how theories of behaviour change were used to inform the interventions. Predictive studies had mixed results. Behaviour change theory is a promising tool for improving hand hygiene; however, these theories have not been extensively examined. Our review reveals a significant gap in the literature and indicates possible avenues for novel research. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. A Computational Framework for Automation of Point Defect Calculations

    NASA Astrophysics Data System (ADS)

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei; Lany, Stephan; Stevanovic, Vladan; National Renewable Energy Laboratory, Golden, Colorado 80401 Collaboration

    A complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory has been developed. The framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. The package provides the capability to compute widely accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3as test examples, we demonstrate the package capabilities and validate the methodology. We believe that a robust automated tool like this will enable the materials by design community to assess the impact of point defects on materials performance. National Renewable Energy Laboratory, Golden, Colorado 80401.

  15. A unifying framework for quantifying the nature of animal interactions.

    PubMed

    Potts, Jonathan R; Mokross, Karl; Lewis, Mark A

    2014-07-06

    Collective phenomena, whereby agent-agent interactions determine spatial patterns, are ubiquitous in the animal kingdom. On the other hand, movement and space use are also greatly influenced by the interactions between animals and their environment. Despite both types of interaction fundamentally influencing animal behaviour, there has hitherto been no unifying framework for the models proposed in both areas. Here, we construct a general method for inferring population-level spatial patterns from underlying individual movement and interaction processes, a key ingredient in building a statistical mechanics for ecological systems. We show that resource selection functions, as well as several examples of collective motion models, arise as special cases of our framework, thus bringing together resource selection analysis and collective animal behaviour into a single theory. In particular, we focus on combining the various mechanistic models of territorial interactions in the literature with step selection functions, by incorporating interactions into the step selection framework and demonstrating how to derive territorial patterns from the resulting models. We demonstrate the efficacy of our model by application to a population of insectivore birds in the Amazon rainforest. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Theoretical framework to study exercise motivation for breast cancer risk reduction.

    PubMed

    Wood, Maureen E

    2008-01-01

    To identify an appropriate theoretical framework to study exercise motivation for breast cancer risk reduction among high-risk women. An extensive review of the literature was conducted to gather relevant information pertaining to the Health Promotion Model, self-determination theory, social cognitive theory, Health Belief Model, Transtheoretical Model, theory of planned behavior, and protection motivation theory. An iterative approach was used to summarize the literature related to exercise motivation within each theoretical framework. Protection motivation theory could be used to examine the effects of perceived risk and self-efficacy in motivating women to exercise to facilitate health-related behavioral change. Evidence-based research within a chosen theoretical model can aid practitioners when making practical recommendations to reduce breast cancer risk.

  17. Undergraduate healthcare ethics education, moral resilience, and the role of ethical theories.

    PubMed

    Monteverde, Settimio

    2014-06-01

    This article combines foundational and empirical aspects of healthcare education and develops a framework for teaching ethical theories inspired by pragmatist learning theory and recent work on the concept of moral resilience. It describes an exemplary implementation and presents data from student evaluation. After a pilot implementation in a regular ethics module, the feasibility and acceptance of the novel framework by students were evaluated. In addition to the regular online module evaluation, specific questions referring to the teaching of ethical theories were added using simple (yes/no) and Likert rating answer formats. At the Bern University of Applied Sciences, a total of 93 students from 2 parallel sub-cohorts of the bachelor's program in nursing science were sent the online survey link after having been exposed to the same modular contents. A total of 62% of all students participated in the survey. The survey was voluntary and anonymous. Students were free to write their name and additional comments. Students consider ethical theories-as taught within the proposed framework-as practically applicable, useful, and transferable into practice. Teaching ethical theories within the proposed framework overcomes the shortcomings described by current research. Students do not consider the mutually exclusive character of ethical theories as an insurmountable problem. The proposed framework is likely to promote the effectiveness of healthcare ethics education. Inspired by pragmatist learning theory, it enables students to consider ethical theories as educative playgrounds that help them to "frame" and "name" the ethical issues they encounter in daily practice, which is seen as an expression of moral resilience. Since it does not advocate a single ethical theory, but is open to the diversity of traditions that shape ethical thinking, it promotes a culturally sensitive, ethically reflected healthcare practice. © The Author(s) 2013.

  18. Generalized framework for testing gravity with gravitational-wave propagation. II. Constraints on Horndeski theory

    NASA Astrophysics Data System (ADS)

    Arai, Shun; Nishizawa, Atsushi

    2018-05-01

    Gravitational waves (GW) are generally affected by modification of a gravity theory during propagation at cosmological distances. We numerically perform a quantitative analysis on Horndeski theory at the cosmological scale to constrain the Horndeski theory by GW observations in a model-independent way. We formulate a parametrization for a numerical simulation based on the Monte Carlo method and obtain the classification of the models that agrees with cosmic accelerating expansion within observational errors of the Hubble parameter. As a result, we find that a large group of the models in the Horndeski theory that mimic cosmic expansion of the Λ CDM model can be excluded from the simultaneous detection of a GW and its electromagnetic transient counterpart. Based on our result and the latest detection of GW170817 and GRB170817A, we conclude that the subclass of Horndeski theory including arbitrary functions G4 and G5 can hardly explain cosmic accelerating expansion without fine-tuning.

  19. The potential of critical social theory as an educational framework for people with epilepsy.

    PubMed

    Bennett, Louise; Bergin, Michael; Wells, John S G

    2016-01-01

    Effective education can support people with epilepsy to develop the attributes and skills required to function as equal partners with clinical service providers, make informed decisions, and competently self-manage their healthcare. However, despite knowledge deficits, unmet information needs, and a poor sense of empowerment, the study of education for people with epilepsy is often neglected and is a poorly understood component of holistic practice within epilepsy healthcare. Historically, the only debate with regard to education and people with epilepsy has been guided either within a positivist or within a constructivist philosophy. We argue that new pedagogies are warranted, recognizing the views of people with epilepsy regarding their illness. Therefore, this paper explores the potential of an educational framework for people with epilepsy based upon critical social theory (CST). By utilizing a CST approach for education, people with epilepsy are engaged with as active 'participants'. This is a key difference that distinguishes CST from other metatheoretical frameworks. It has the potential to support people with epilepsy to acquire the skills and confidence to manage the biopsychosocial challenges associated with their condition. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Theory of Change: a theory-driven approach to enhance the Medical Research Council's framework for complex interventions

    PubMed Central

    2014-01-01

    Background The Medical Research Councils’ framework for complex interventions has been criticized for not including theory-driven approaches to evaluation. Although the framework does include broad guidance on the use of theory, it contains little practical guidance for implementers and there have been calls to develop a more comprehensive approach. A prospective, theory-driven process of intervention design and evaluation is required to develop complex healthcare interventions which are more likely to be effective, sustainable and scalable. Methods We propose a theory-driven approach to the design and evaluation of complex interventions by adapting and integrating a programmatic design and evaluation tool, Theory of Change (ToC), into the MRC framework for complex interventions. We provide a guide to what ToC is, how to construct one, and how to integrate its use into research projects seeking to design, implement and evaluate complex interventions using the MRC framework. We test this approach by using ToC within two randomized controlled trials and one non-randomized evaluation of complex interventions. Results Our application of ToC in three research projects has shown that ToC can strengthen key stages of the MRC framework. It can aid the development of interventions by providing a framework for enhanced stakeholder engagement and by explicitly designing an intervention that is embedded in the local context. For the feasibility and piloting stage, ToC enables the systematic identification of knowledge gaps to generate research questions that strengthen intervention design. ToC may improve the evaluation of interventions by providing a comprehensive set of indicators to evaluate all stages of the causal pathway through which an intervention achieves impact, combining evaluations of intervention effectiveness with detailed process evaluations into one theoretical framework. Conclusions Incorporating a ToC approach into the MRC framework holds promise for improving the design and evaluation of complex interventions, thereby increasing the likelihood that the intervention will be ultimately effective, sustainable and scalable. We urge researchers developing and evaluating complex interventions to consider using this approach, to evaluate its usefulness and to build an evidence base to further refine the methodology. Trial registration Clinical trials.gov: NCT02160249 PMID:24996765

  1. Theory of Change: a theory-driven approach to enhance the Medical Research Council's framework for complex interventions.

    PubMed

    De Silva, Mary J; Breuer, Erica; Lee, Lucy; Asher, Laura; Chowdhary, Neerja; Lund, Crick; Patel, Vikram

    2014-07-05

    The Medical Research Councils' framework for complex interventions has been criticized for not including theory-driven approaches to evaluation. Although the framework does include broad guidance on the use of theory, it contains little practical guidance for implementers and there have been calls to develop a more comprehensive approach. A prospective, theory-driven process of intervention design and evaluation is required to develop complex healthcare interventions which are more likely to be effective, sustainable and scalable. We propose a theory-driven approach to the design and evaluation of complex interventions by adapting and integrating a programmatic design and evaluation tool, Theory of Change (ToC), into the MRC framework for complex interventions. We provide a guide to what ToC is, how to construct one, and how to integrate its use into research projects seeking to design, implement and evaluate complex interventions using the MRC framework. We test this approach by using ToC within two randomized controlled trials and one non-randomized evaluation of complex interventions. Our application of ToC in three research projects has shown that ToC can strengthen key stages of the MRC framework. It can aid the development of interventions by providing a framework for enhanced stakeholder engagement and by explicitly designing an intervention that is embedded in the local context. For the feasibility and piloting stage, ToC enables the systematic identification of knowledge gaps to generate research questions that strengthen intervention design. ToC may improve the evaluation of interventions by providing a comprehensive set of indicators to evaluate all stages of the causal pathway through which an intervention achieves impact, combining evaluations of intervention effectiveness with detailed process evaluations into one theoretical framework. Incorporating a ToC approach into the MRC framework holds promise for improving the design and evaluation of complex interventions, thereby increasing the likelihood that the intervention will be ultimately effective, sustainable and scalable. We urge researchers developing and evaluating complex interventions to consider using this approach, to evaluate its usefulness and to build an evidence base to further refine the methodology. Clinical trials.gov: NCT02160249.

  2. Numerical Evaluation of the "Dual-Kernel Counter-flow" Matric Convolution Integral that Arises in Discrete/Continuous (D/C) Control Theory

    NASA Technical Reports Server (NTRS)

    Nixon, Douglas D.

    2009-01-01

    Discrete/Continuous (D/C) control theory is a new generalized theory of discrete-time control that expands the concept of conventional (exact) discrete-time control to create a framework for design and implementation of discretetime control systems that include a continuous-time command function generator so that actuator commands need not be constant between control decisions, but can be more generally defined and implemented as functions that vary with time across sample period. Because the plant/control system construct contains two linear subsystems arranged in tandem, a novel dual-kernel counter-flow convolution integral appears in the formulation. As part of the D/C system design and implementation process, numerical evaluation of that integral over the sample period is required. Three fundamentally different evaluation methods and associated algorithms are derived for the constant-coefficient case. Numerical results are matched against three available examples that have closed-form solutions.

  3. Measurement and simulation of the relatively competitive advantages and weaknesses between economies based on bipartite graph theory.

    PubMed

    Guan, Jun; Xu, Xiaoyu; Wu, Shan; Xing, Lizhi

    2018-01-01

    The input-output table is very comprehensive and detailed in describing the national economic systems with abundant economic relationships, which contain supply and demand information among various industrial sectors. The complex network, a theory, and method for measuring the structure of a complex system can depict the structural characteristics of the internal structure of the researched object by measuring the structural indicators of the social and economic systems, revealing the complex relationships between the inner hierarchies and the external economic functions. In this paper, functions of industrial sectors on the global value chain are to be distinguished with bipartite graph theory, and inter-sector competitive relationships are to be extracted through resource allocation process. Furthermore, quantitative analysis indices will be proposed under the perspective of a complex network, which will be used to bring about simulations on the variation tendencies of economies' status in different situations of commercial intercourses. Finally, a new econophysics analytical framework of international trade is to be established.

  4. Self-similar Theory of Wind-driven Sea

    NASA Astrophysics Data System (ADS)

    Zakharov, V. E.

    2015-12-01

    More than two dozens field experiments performed in the ocean and on the lakes show that the fetch-limited growth of dimensionless energy and dimensionless peak frequency is described by powerlike functions of the dimensionless fetch. Moreover, the exponents of these two functions are connected with a proper accuracy by the standard "magic relation", 10q-2p=1. Recent massive numerical experiments as far as experiments in wave tanks also confirm this magic relation. All these experimental facts can be interpreted in a framework of the following simple theory. The wind-driven sea is described by the "conservative" Hasselmann kinetic equation. The source terms, wind input and white-capping dissipation, play a secondary role in comparison with the nonlinear term Snl that is responsible for the four-wave resonant interaction. This equation has four-parameter family of self-similar solutions. The magic relation holds for all numbers of this family. This fact gives strong hope that development of self-consistent analytic theory of wind-driven sea is quite realizable task.

  5. Measurement and simulation of the relatively competitive advantages and weaknesses between economies based on bipartite graph theory

    PubMed Central

    Guan, Jun; Xu, Xiaoyu; Wu, Shan

    2018-01-01

    The input-output table is very comprehensive and detailed in describing the national economic systems with abundant economic relationships, which contain supply and demand information among various industrial sectors. The complex network, a theory, and method for measuring the structure of a complex system can depict the structural characteristics of the internal structure of the researched object by measuring the structural indicators of the social and economic systems, revealing the complex relationships between the inner hierarchies and the external economic functions. In this paper, functions of industrial sectors on the global value chain are to be distinguished with bipartite graph theory, and inter-sector competitive relationships are to be extracted through resource allocation process. Furthermore, quantitative analysis indices will be proposed under the perspective of a complex network, which will be used to bring about simulations on the variation tendencies of economies’ status in different situations of commercial intercourses. Finally, a new econophysics analytical framework of international trade is to be established. PMID:29813083

  6. A Framework to Assist Health Professionals in Recommending High-Quality Apps for Supporting Chronic Disease Self-Management: Illustrative Assessment of Type 2 Diabetes Apps.

    PubMed

    Hale, Kelli; Capra, Sandra; Bauer, Judith

    2015-09-14

    This paper presents an approach to assist health professionals in recommending high quality apps for supporting chronic disease self-management. Most app reviews focus on popularity, aesthetics, functionality, usability, and information quality. There is no doubt these factors are important in selecting trustworthy apps which are appealing to users, but behavioral theory may be also be useful in matching the apps to user needs. The framework developed aims to be methodologically sound, capable of selecting popular apps which include content covered by evidence-based programs, consistent with behavioral theory, as well as a patient-centered approach for matching apps to patients' individual needs. A single disease-type 2 diabetes-was selected to illustrate how the framework can be applied as this was deemed to represent the types of strategies used in many chronic diseases. A systematic approach based on behavioral theory and recommendations from best practice guidelines was developed for matching apps to patients' needs. In March 2014, a series of search strategies was used to identify top-rated iPhone and Android health apps, representing 29 topics from five categories of type 2 diabetes self-management strategies. The topics were chosen from published international guidelines for the management of diabetes. The senior author (KH) assessed the most popular apps found that addressed these topics using the Behavioral Theory Content Survey (BTS), which is based on traditional behavioral theory. A tool to assist decision making when using apps was developed and trialed with health professionals for ease of use and understanding. A total of 14 apps were assessed representing all five topic categories of self-management. Total theoretical scores (BTS scores) were less than 50 on a 100-point scale for all apps. Each app scored less than 50% of the total possible BTS score for all four behavioral theories and for most of the 20 behavioral strategies; however, apps scored higher than 50% of the total possible BTS score for specific strategies related to their primary focus. Our findings suggest that the apps studied would be more effective when used in conjunction with therapy than as stand-alone apps. Apps were categorized according to topic and core intervention strategies. A framework for matching apps to identified patient needs was developed based on app categorization and principles of patient-centered care. The approach was well accepted and understood by a convenience sample of health practitioners. The framework presented can be used by health practitioners to better match apps with client needs. Some apps incorporate highly interactive strategies of behavioral theory, and when used as an adjunct may increase patient participation and the effectiveness of therapy.

  7. Dynamics of entanglement in expanding quantum fields

    NASA Astrophysics Data System (ADS)

    Berges, Jürgen; Floerchinger, Stefan; Venugopalan, Raju

    2018-04-01

    We develop a functional real-time approach to computing the entanglement between spatial regions for Gaussian states in quantum field theory. The entanglement entropy is characterized in terms of local correlation functions on space-like Cauchy hypersurfaces. The framework is applied to explore an expanding light cone geometry in the particular case of the Schwinger model for quantum electrodynamics in 1+1 space-time dimensions. We observe that the entanglement entropy becomes extensive in rapidity at early times and that the corresponding local reduced density matrix is a thermal density matrix for excitations around a coherent field with a time dependent temperature. Since the Schwinger model successfully describes many features of multiparticle production in e + e - collisions, our results provide an attractive explanation in this framework for the apparent thermal nature of multiparticle production even in the absence of significant final state scattering.

  8. Sensorimotor integration for functional recovery and the Bobath approach.

    PubMed

    Levin, Mindy F; Panturin, Elia

    2011-04-01

    Bobath therapy is used to treat patients with neurological disorders. Bobath practitioners use hands-on approaches to elicit and reestablish typical movement patterns through therapist-controlled sensorimotor experiences within the context of task accomplishment. One aspect of Bobath practice, the recovery of sensorimotor function, is reviewed within the framework of current motor control theories. We focus on the role of sensory information in movement production, the relationship between posture and movement and concepts related to motor recovery and compensation with respect to this therapeutic approach. We suggest that a major barrier to the evaluation of the therapeutic effectiveness of the Bobath concept is the lack of a unified framework for both experimental identification and treatment of neurological motor deficits. More conclusive analysis of therapeutic effectiveness requires the development of specific outcomes that measure movement quality.

  9. A world apart? Bridging the gap between theory and applied social gerontology.

    PubMed

    Hendricks, Jon; Applebaum, Robert; Kunkel, Suzanne

    2010-06-01

    This article is based on the premise that there is inadequate attention to the link between theory and applied research in social gerontology. The article contends that applied research studies do not often or effectively employ a theoretical framework and that theory-based articles, including theory-based research, are not often focused on questions related to applied social gerontology. We explore the extent to which theory and applied research could reasonably be expected to overlap, present data from an analysis of 5 years of articles in three leading journals, and posit some possible explanations for the current divide between theory and applied social gerontology research. We argue that the divide weakens research and inhibits the functions that theory can play in helping to organize the accumulation of knowledge, and we offer some suggestions about how the field can address this challenge, including changes to the journal review and submission process to reflect the importance of the link between theory and/or conceptual models and research, and an expansion of professional conference opportunities to link research and practice.

  10. General System Theory: Toward a Conceptual Framework for Science and Technology Education for All.

    ERIC Educational Resources Information Center

    Chen, David; Stroup, Walter

    1993-01-01

    Suggests using general system theory as a unifying theoretical framework for science and technology education for all. Five reasons are articulated: the multidisciplinary nature of systems theory, the ability to engage complexity, the capacity to describe system dynamics, the ability to represent the relationship between microlevel and…

  11. Mind-Sets Matter: A Meta-Analytic Review of Implicit Theories and Self-Regulation

    ERIC Educational Resources Information Center

    Burnette, Jeni L.; O'Boyle, Ernest H.; VanEpps, Eric M.; Pollack, Jeffrey M.; Finkel, Eli J.

    2013-01-01

    This review builds on self-control theory (Carver & Scheier, 1998) to develop a theoretical framework for investigating associations of implicit theories with self-regulation. This framework conceptualizes self-regulation in terms of 3 crucial processes: goal setting, goal operating, and goal monitoring. In this meta-analysis, we included…

  12. A transactional framework for pediatric rehabilitation: shifting the focus to situated contexts, transactional processes, and adaptive developmental outcomes.

    PubMed

    King, Gillian; Imms, Christine; Stewart, Debra; Freeman, Matt; Nguyen, Tram

    2018-07-01

    A paradigm shift is taking place in pediatric rehabilitation research, practice, and policy - a shift towards the real-life contexts of clients rather than requiring clients to navigate the world of pediatric rehabilitation. This article proposes a conceptual framework to bring about a broader awareness of clients' lives and transactional processes of change over the life course. The framework draws attention to transactional processes by which individuals, situated in life contexts, change and adapt over the life course and, in turn, influence their contextual settings and broader environments. This framework is based on (a) basic tenets derived from foundational theories taking a life course perspective to change, and (b) transactional processes identified from relevant pediatric rehabilitation models that bring these foundational theories into the pediatric rehabilitation sphere. The framework identifies three types of transactional processes relevant to pediatric rehabilitation: facilitative, resiliency, and socialization processes. These processes describe how contexts and people mutually influence each other via opportunities and situated experiences, thus facilitating capacity, adaptation to adversity, and socialization to new roles and life transitions. The utility of the framework is considered for research, practice, service organizations, and policy. Implications for Rehabilitation The framework supports practitioners going beyond person and environment as separate entities, to provide services to the "situated person" in real-life contexts The framework shifts the focus from "body structures/functions" and "person in activity" to "person in changing and challenging life contexts" Working from a transactional perspective, practitioner-client conversations will change; practitioners will view client situations through a lens of opportunities and experiences, assess client experiences in real-life contexts, and strive to create context-based therapy opportunities The framework suggests the benefit of greater focus on resiliency processes to support client self-efficacy, self-determination, and autonomy, and socialization processes to enhance ability to enact new life roles at times of transition.

  13. Quantum physics in neuroscience and psychology: A neurophysicalmodel of the mind/brain interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Jeffrey M.; Stapp, Henry P.; Beauregard, Mario

    Neuropsychological research on the neural basis of behavior generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus terms having intrinsic mentalistic and/or experiential content (e.g., ''feeling,'' ''knowing,'' and ''effort'') are not included as primary causal factors. This theoretical restriction is motivated primarily by ideas about the natural world that have been known to be fundamentally incorrectmore » for more than three quarters of a century. Contemporary basic physical theory differs profoundly from classical physics on the important matter of how the consciousness of human agents enters into the structure of empirical phenomena. The new principles contradict the older idea that local mechanical processes alone can account for the structure of all observed empirical data. Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human agents about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with an alternative conceptual framework for describing neural processes. Indeed, due to certain structural features of ion channels critical to synaptic function, contemporary physical theory must in principle be used when analyzing human brain dynamics. The new framework, unlike its classical-physics-based predecessor is erected directly upon, and is compatible with, the prevailing principles of physics, and is able to represent more adequately than classical concepts the neuroplastic mechanisms relevant to the growing number of empirical studies of the capacity of directed attention and mental effort to systematically alter brain function.« less

  14. Quantum physics in neuroscience and psychology: a neurophysical model of mind–brain interaction

    PubMed Central

    Schwartz, Jeffrey M; Stapp, Henry P; Beauregard, Mario

    2005-01-01

    Neuropsychological research on the neural basis of behaviour generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus, terms having intrinsic mentalistic and/or experiential content (e.g. ‘feeling’, ‘knowing’ and ‘effort’) are not included as primary causal factors. This theoretical restriction is motivated primarily by ideas about the natural world that have been known to be fundamentally incorrect for more than three-quarters of a century. Contemporary basic physical theory differs profoundly from classic physics on the important matter of how the consciousness of human agents enters into the structure of empirical phenomena. The new principles contradict the older idea that local mechanical processes alone can account for the structure of all observed empirical data. Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human agents about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with an alternative conceptual framework for describing neural processes. Indeed, owing to certain structural features of ion channels critical to synaptic function, contemporary physical theory must in principle be used when analysing human brain dynamics. The new framework, unlike its classic-physics-based predecessor, is erected directly upon, and is compatible with, the prevailing principles of physics. It is able to represent more adequately than classic concepts the neuroplastic mechanisms relevant to the growing number of empirical studies of the capacity of directed attention and mental effort to systematically alter brain function. PMID:16147524

  15. A force field for dynamic Cu-BTC metal-organic framework.

    PubMed

    Zhao, Lei; Yang, Qingyuan; Ma, Qintian; Zhong, Chongli; Mi, Jianguo; Liu, Dahuan

    2011-02-01

    A new force field that can describe the flexibility of Cu-BTC metal-organic framework (MOF) was developed in this work. Part of the parameters were obtained using density functional theory calculations, and the others were taken from other force fields. The new force field could reproduce well the experimental crystal structure, negative thermal expansion, vibrational properties as well as adsorption behavior in Cu-BTC. In addition, the bulk modulus of Cu-BTC was predicted using the new force field. We believe the new force field is useful in understanding the structure-property relationships for MOFs, and the approach can be extended to other MOFs.

  16. A theoretical framework for antigay aggression: Review of established and hypothesized effects within the context of the general aggression model⋆

    PubMed Central

    Parrott, Dominic J.

    2008-01-01

    Theory and research on antigay aggression has identified different motives that facilitate aggression based on sexual orientation. However, the individual and situational determinants of antigay aggression associated with these motivations have yet to be organized within a single theoretical framework. This limits researchers’ ability to organize existing knowledge, link that knowledge with related aggression theory, and guide the application of new findings. To address these limitations, this article argues for the use of an existing conceptual framework to guide thinking and generate new research in this area of study. Contemporary theories of antigay aggression, and empirical support for these theories, are reviewed and interpreted within the unifying framework of the general aggression model [Anderson, C.A. & Bushman, B.J. (2002). Human aggression. Annual Review of Psychology, 53, 27–51.]. It is concluded that this conceptual framework will facilitate investigation of individual and situational risk factors that may contribute to antigay aggression and guide development of individual-level intervention. PMID:18355952

  17. Fission fragment charge and mass distributions in 239Pu(n ,f ) in the adiabatic nuclear energy density functional theory

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-05-01

    Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms that the adiabatic approximation provides an effective scheme to compute fission fragment yields. It also suggests that, at least in the framework of nuclear DFT, three-dimensional collective spaces may be a prerequisite to reach 10% accuracy in predicting pre-neutron emission fission fragment yields.

  18. Generalized probability theories: what determines the structure of quantum theory?

    NASA Astrophysics Data System (ADS)

    Janotta, Peter; Hinrichsen, Haye

    2014-08-01

    The framework of generalized probabilistic theories is a powerful tool for studying the foundations of quantum physics. It provides the basis for a variety of recent findings that significantly improve our understanding of the rich physical structure of quantum theory. This review paper tries to present the framework and recent results to a broader readership in an accessible manner. To achieve this, we follow a constructive approach. Starting from a few basic physically motivated assumptions we show how a given set of observations can be manifested in an operational theory. Furthermore, we characterize consistency conditions limiting the range of possible extensions. In this framework classical and quantum theory appear as special cases, and the aim is to understand what distinguishes quantum mechanics as the fundamental theory realized in nature. It turns out that non-classical features of single systems can equivalently result from higher-dimensional classical theories that have been restricted. Entanglement and non-locality, however, are shown to be genuine non-classical features.

  19. Ecohydrology frameworks for green infrastructure design and ecosystem service provision

    NASA Astrophysics Data System (ADS)

    Pavao-Zuckerman, M.; Knerl, A.; Barron-Gafford, G.

    2014-12-01

    Urbanization is a dominant form of landscape change that affects the structure and function of ecosystems and alters control points in biogeochemical and hydrologic cycles. Green infrastructure (GI) has been proposed as a solution to many urban environmental challenges and may be a way to manage biogeochemical control points. Despite this promise, there has been relatively limited empirical focus to evaluate the efficacy of GI, relationships between design and function, and the ability of GI to provide ecosystem services in cities. This work has been driven by goals of adapting GI approaches to dryland cities and to harvest rain and storm water for providing ecosystem services related to storm water management and urban heat island mitigation, as well as other co-benefits. We will present a modification of ecohydrologic theory for guiding the design and function of green infrastructure for dryland systems that highlights how GI functions in context of Trigger - Transfer - Reserve - Pulse (TTRP) dynamic framework. Here we also apply this TTRP framework to observations of established street-scape green infrastructure in Tucson, AZ, and an experimental installation of green infrastructure basins on the campus of Biosphere 2 (Oracle, AZ) where we have been measuring plant performance and soil biogeochemical functions. We found variable sensitivity of microbial activity, soil respiration, N-mineralization, photosynthesis and respiration that was mediated both by elements of basin design (soil texture and composition, choice of surface mulches) and antecedent precipitation inputs and soil moisture conditions. The adapted TTRP framework and field studies suggest that there are strong connections between design and function that have implications for stormwater management and ecosystem service provision in dryland cities.

  20. DIF Analysis across Genders for Reading Comprehension Part of English Language Achievement Exam as a Foreign Language

    ERIC Educational Resources Information Center

    Ögretmen, Tuncay

    2015-01-01

    The purpose of this study is to carry out differential item functioning (DIF) analysis for content areas of a reading comprehension subtest using four area indices within Item Response Theory (IRT) framework. The differences in the magnitudes of the area indices were compared based on the subject areas. The DIF analysis was carried out across…

  1. Identifying Cross-Disciplinary Interactions to Assess and Promote Functional Resilience in Flight Crews During Exploration Missions

    NASA Technical Reports Server (NTRS)

    Shelhamer, M.; Mindock, J.; Lumpkins, S.

    2015-01-01

    NASA supports research to mitigate risks to health and performance on extended missions. Typically these risks are investigated independently. In reality, physiological systems are tightly coupled, and related to psychological and inter-individual factors (team cohesion, conflict). We draw on ideas from network theory to assess these interactions and better design a research framework to address them.

  2. Form and Function of Linguistic Elements

    DTIC Science & Technology

    2009-02-20

    Chomsky (1957) and continued into the frameworks from around Chomsky’s Aspects (1965). The main thrust was to move from grammars centered on covering...Miminalist Program Grammars Work by Chomsky , starting around 1995 ( Chomsky 1995) represents a move toward radically simplified systems. A...particular theories can be formulated as choices within such a general scheme or metatheory. 14 We take Richard Montague’s Universal Grammar

  3. The Use of Culture in Operational Planning

    DTIC Science & Technology

    2005-06-17

    comparativism , relativism, functionalism, and structuralism. It will conclude by describing the methodology that will be used for this paper...combination of both approaches. The first two methodologies out of the four discussed in this paper are relativism and comparativism . These theories look...the framework for analysis, there will be evidence of relativism and comparativism . The study will be from the etic viewpoint. The only means to get an

  4. Polynomial Functions Resulting from the Multiplication of Curves in the Framework of the Research and Study Paths

    ERIC Educational Resources Information Center

    Llanos, Viviana Carolina; Otero, Maria Rita; Rojas, Emmanuel Colombo

    2015-01-01

    This paper presents the results of a research, which proposes the introduction of the teaching by Research and Study Paths (RSPs) into Argentinean secondary schools within the frame of the Anthropologic Theory of Didactics (ATD). The paths begin with the study of "Q[subscript 0]: How to operate with any curves knowing only its graphic…

  5. A functional approach to movement analysis and error identification in sports and physical education

    PubMed Central

    Hossner, Ernst-Joachim; Schiebl, Frank; Göhner, Ulrich

    2015-01-01

    In a hypothesis-and-theory paper, a functional approach to movement analysis in sports is introduced. In this approach, contrary to classical concepts, it is not anymore the “ideal” movement of elite athletes that is taken as a template for the movements produced by learners. Instead, movements are understood as the means to solve given tasks that in turn, are defined by to-be-achieved task goals. A functional analysis comprises the steps of (1) recognizing constraints that define the functional structure, (2) identifying sub-actions that subserve the achievement of structure-dependent goals, (3) explicating modalities as specifics of the movement execution, and (4) assigning functions to actions, sub-actions and modalities. Regarding motor-control theory, a functional approach can be linked to a dynamical-system framework of behavioral shaping, to cognitive models of modular effect-related motor control as well as to explicit concepts of goal setting and goal achievement. Finally, it is shown that a functional approach is of particular help for sports practice in the context of structuring part practice, recognizing functionally equivalent task solutions, finding innovative technique alternatives, distinguishing errors from style, and identifying root causes of movement errors. PMID:26441717

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Pozzo, Walter; Nikhef National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam; Veitch, John

    Second-generation interferometric gravitational-wave detectors, such as Advanced LIGO and Advanced Virgo, are expected to begin operation by 2015. Such instruments plan to reach sensitivities that will offer the unique possibility to test general relativity in the dynamical, strong-field regime and investigate departures from its predictions, in particular, using the signal from coalescing binary systems. We introduce a statistical framework based on Bayesian model selection in which the Bayes factor between two competing hypotheses measures which theory is favored by the data. Probability density functions of the model parameters are then used to quantify the inference on individual parameters. We alsomore » develop a method to combine the information coming from multiple independent observations of gravitational waves, and show how much stronger inference could be. As an introduction and illustration of this framework-and a practical numerical implementation through the Monte Carlo integration technique of nested sampling-we apply it to gravitational waves from the inspiral phase of coalescing binary systems as predicted by general relativity and a very simple alternative theory in which the graviton has a nonzero mass. This method can (and should) be extended to more realistic and physically motivated theories.« less

  7. First Renormalized Parton Distribution Functions from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Lin, Huey-Wen; LP3 Collaboration

    2017-09-01

    We present the first lattice-QCD results on the nonperturbatively renormalized parton distribution functions (PDFs). Using X.D. Ji's large-momentum effective theory (LaMET) framework, lattice-QCD hadron structure calculations are able to overcome the longstanding problem of determining the Bjorken- x dependence of PDFs. This has led to numerous additional theoretical works and exciting progress. In this talk, we will address a recent development that implements a step missing from prior lattice-QCD calculations: renormalization, its effects on the nucleon matrix elements, and the resultant changes to the calculated distributions.

  8. Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition

    NASA Astrophysics Data System (ADS)

    Fitch, W. Tecumseh

    2014-09-01

    Progress in understanding cognition requires a quantitative, theoretical framework, grounded in the other natural sciences and able to bridge between implementational, algorithmic and computational levels of explanation. I review recent results in neuroscience and cognitive biology that, when combined, provide key components of such an improved conceptual framework for contemporary cognitive science. Starting at the neuronal level, I first discuss the contemporary realization that single neurons are powerful tree-shaped computers, which implies a reorientation of computational models of learning and plasticity to a lower, cellular, level. I then turn to predictive systems theory (predictive coding and prediction-based learning) which provides a powerful formal framework for understanding brain function at a more global level. Although most formal models concerning predictive coding are framed in associationist terms, I argue that modern data necessitate a reinterpretation of such models in cognitive terms: as model-based predictive systems. Finally, I review the role of the theory of computation and formal language theory in the recent explosion of comparative biological research attempting to isolate and explore how different species differ in their cognitive capacities. Experiments to date strongly suggest that there is an important difference between humans and most other species, best characterized cognitively as a propensity by our species to infer tree structures from sequential data. Computationally, this capacity entails generative capacities above the regular (finite-state) level; implementationally, it requires some neural equivalent of a push-down stack. I dub this unusual human propensity "dendrophilia", and make a number of concrete suggestions about how such a system may be implemented in the human brain, about how and why it evolved, and what this implies for models of language acquisition. I conclude that, although much remains to be done, a neurally-grounded framework for theoretical cognitive science is within reach that can move beyond polarized debates and provide a more adequate theoretical future for cognitive biology.

  9. Toward a computational framework for cognitive biology: unifying approaches from cognitive neuroscience and comparative cognition.

    PubMed

    Fitch, W Tecumseh

    2014-09-01

    Progress in understanding cognition requires a quantitative, theoretical framework, grounded in the other natural sciences and able to bridge between implementational, algorithmic and computational levels of explanation. I review recent results in neuroscience and cognitive biology that, when combined, provide key components of such an improved conceptual framework for contemporary cognitive science. Starting at the neuronal level, I first discuss the contemporary realization that single neurons are powerful tree-shaped computers, which implies a reorientation of computational models of learning and plasticity to a lower, cellular, level. I then turn to predictive systems theory (predictive coding and prediction-based learning) which provides a powerful formal framework for understanding brain function at a more global level. Although most formal models concerning predictive coding are framed in associationist terms, I argue that modern data necessitate a reinterpretation of such models in cognitive terms: as model-based predictive systems. Finally, I review the role of the theory of computation and formal language theory in the recent explosion of comparative biological research attempting to isolate and explore how different species differ in their cognitive capacities. Experiments to date strongly suggest that there is an important difference between humans and most other species, best characterized cognitively as a propensity by our species to infer tree structures from sequential data. Computationally, this capacity entails generative capacities above the regular (finite-state) level; implementationally, it requires some neural equivalent of a push-down stack. I dub this unusual human propensity "dendrophilia", and make a number of concrete suggestions about how such a system may be implemented in the human brain, about how and why it evolved, and what this implies for models of language acquisition. I conclude that, although much remains to be done, a neurally-grounded framework for theoretical cognitive science is within reach that can move beyond polarized debates and provide a more adequate theoretical future for cognitive biology. Copyright © 2014. Published by Elsevier B.V.

  10. Principal-agent theory: a framework for improving health care reform in Tennessee.

    PubMed

    Sekwat, A

    2000-01-01

    Using a framework based on principal-agent theory, this study examines problems faced by managed care organizations (MCOs) and major health care providers under the state of Tennessee's current capitation-based managed care programs called TennCare. Based on agency theory, the study proposes a framework to show how an effective collaborative relationship can be forged between the state of Tennessee and participating MCOs which takes into account the major concerns of third-party health care providers. The proposed framework further enhances realization of the state's key health care reform goals which are to control the rising costs of health care delivery and to expand health care coverage to uninsured and underinsured Tennesseans.

  11. Systematic searching for theory to inform systematic reviews: is it feasible? Is it desirable?

    PubMed

    Booth, Andrew; Carroll, Christopher

    2015-09-01

    In recognising the potential value of theory in understanding how interventions work comes a challenge - how to make identification of theory less haphazard? To explore the feasibility of systematic identification of theory. We searched PubMed for published reviews (1998-2012) that had explicitly sought to identify theory. Systematic searching may be characterised by a structured question, methodological filters and an itemised search procedure. We constructed a template (BeHEMoTh - Behaviour of interest; Health context; Exclusions; Models or Theories) for use when systematically identifying theory. The authors tested the template within two systematic reviews. Of 34 systematic reviews, only 12 reviews (35%) reported a method for identifying theory. Nineteen did not specify how they identified studies containing theory. Data were unavailable for three reviews. Candidate terms include concept(s)/conceptual, framework(s), model(s), and theory/theories/theoretical. Information professionals must overcome inadequate reporting and the use of theory out of context. The review team faces an additional concern in lack of 'theory fidelity'. Based on experience with two systematic reviews, the BeHEMoTh template and procedure offers a feasible and useful approach for identification of theory. Applications include realist synthesis, framework synthesis or review of complex interventions. The procedure requires rigorous evaluation. © 2015 Health Libraries Group.

  12. Culture care theory: a framework for expanding awareness of diversity and racism in nursing education.

    PubMed

    Lancellotti, Katherine

    2008-01-01

    As American society becomes increasingly diverse, and the nursing profession does not, there has been a focus on promoting both cultural competence and diversity within the profession. Although culture and diversity are widely discussed in nursing education, the issue of racism may be avoided or suppressed. Institutionalized racism within nursing education must be acknowledged and discussed before nursing education may be transformed. Madeleine Leininger's Culture Care Theory is an established nursing theory that emphasizes culture and care as essential concepts in nursing. Theoretical frameworks abound in nursing, and Culture Care Theory may be underutilized and misunderstood within nursing education. This article examines the issue of racism in nursing education and recommends Culture Care Theory as a relevant framework for enhancing both cultural competence and diversity.

  13. How mechanisms of perceptual decision-making affect the psychometric function

    PubMed Central

    Gold, Joshua I.; Ding, Long

    2012-01-01

    Psychometric functions are often interpreted in the context of Signal Detection Theory, which emphasizes a distinction between sensory processing and non-sensory decision rules in the brain. This framework has helped to relate perceptual sensitivity to the “neurometric” sensitivity of sensory-driven neural activity. However, perceptual sensitivity, as interpreted via Signal Detection Theory, is based on not just how the brain represents relevant sensory information, but also how that information is read out to form the decision variable to which the decision rule is applied. Here we discuss recent advances in our understanding of this readout process and describe its effects on the psychometric function. In particular, we show that particular aspects of the readout process can have specific, identifiable effects on the threshold, slope, upper asymptote, time dependence, and choice dependence of psychometric functions. To illustrate these points, we emphasize studies of perceptual learning that have identified changes in the readout process that can lead to changes in these aspects of the psychometric function. We also discuss methods that have been used to distinguish contributions of the sensory representation versus its readout to psychophysical performance. PMID:22609483

  14. Implications of attachment theory and research for the assessment and treatment of eating disorders.

    PubMed

    Tasca, Giorgio A; Ritchie, Kerri; Balfour, Louise

    2011-09-01

    In this paper, we review the research literature on attachment and eating disorders and suggest a framework for assessing and treating attachment functioning in patients with an eating disorder. Treatment outcomes for individuals with eating disorders tend to be moderate. Those with attachment-associated insecurities are likely to be the least to benefit from current symptom-focused therapies. We describe the common attachment categories (secure, avoidant, anxious), and then describe domains of attachment functioning within each category: affect regulation, interpersonal style, coherence of mind, and reflective functioning. We also note the impact of disorganized mental states related to loss or trauma. Assessing these domains of attachment functioning can guide focused interventions in the psychotherapy of eating disorders. Case examples are presented to illustrate assessment, case formulation, and group psychotherapy of eating disorders that are informed by attachment theory. Tailoring treatments to improve attachment functioning for patients with an eating disorder will likely result in better outcomes for those suffering from these particularly burdensome disorders. (c) 2011 APA, all rights reserved.

  15. Beyond the Five Conceptual Frameworks: A Decade of Development in Family Theory

    ERIC Educational Resources Information Center

    Broderick, Carlfred B.

    1971-01-01

    The review presents a brief and somewhat personal and impressionistic description of the status of the field in 1960, deals with the fortunes of some of the general broadguage theories and conceptual frameworks which have dominated the family literature over the decade, and offers survey of some of the substantive theories which dealt with more…

  16. Variation Theory: A Theory of Learning and a Useful Theoretical Framework for Chemical Education Research

    ERIC Educational Resources Information Center

    Bussey, Thomas J.; Orgill, MaryKay; Crippen, Kent J.

    2013-01-01

    Instructors are constantly baffled by the fact that two students who are sitting in the same class, who have access to the same materials, can come to understand a particular chemistry concept differently. Variation theory offers a theoretical framework from which to explore possible variations in experience and the resulting differences in…

  17. Two theories/a sharper lens: the staff nurse voice in the workplace.

    PubMed

    DeMarco, Rosanna

    2002-06-01

    This paper (1) introduces the two theoretical frameworks, Silencing the Self and the Framework of Systemic Organization (2) describes the design and findings briefly of a study exploring spillover in nurses utilizing the frameworks, and (3) discusses the process and value of theory triangulation when conducting research in the context of complex nursing systems phenomena where gender, professional work, and gender identity merge. A research study was designed to analyse the actual workplace behaviours of nurses in the context of their lives at work and outside work. An exploration of theoretical frameworks that could direct the measurement of the phenomena in question led to the use of two frameworks, the Framework of Systemic Organization (Friedemann 1995) and the Silencing the Self Theory (Jack 1991), and the creation of a valid and reliable summative rating instrument (the Staff Nurse Workplace Behaviours Scale, SNWBS). A descriptive correlational design was used to measure behaviours between work and home. There were statistically significant relationships found between workplace behaviours, family behaviours, and silencing behaviours as measured by the two separate scales measuring framework concepts. Although both theories had different origins and philosophical tenets, the findings of a research study created an opportunity to integrate the concepts of each and unexpectedly increase and broaden the understanding of spillover for women who are often nurses.

  18. Insider Threat and Information Security Management

    NASA Astrophysics Data System (ADS)

    Coles-Kemp, Lizzie; Theoharidou, Marianthi

    The notion of insider has multiple facets. An organization needs to identify which ones to respond to. The selection, implementetion and maintenance of information security countermeasures requires a complex combination of organisational policies, functions and processes, which form Information Security Management. This chapter examines the role of current information security management practices in addressing the insider threat. Most approaches focus on frameworks for regulating insider behaviour and do not allow for the various cultural responses to the regulatory and compliance framework. Such responses are not only determined by enforcement of policies and awareness programs, but also by various psychological and organisational factors at an individual or group level. Crime theories offer techniques that focus on such cultural responses and can be used to enhance the information security management design. The chapter examines the applicability of several crime theories and concludes that they can contribute in providing additional controls and redesign of information security management processes better suited to responding to the insider threat.

  19. Next Generation Extended Lagrangian Quantum-based Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Negre, Christian

    2017-06-01

    A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.

  20. Cones of localized shear strain in incompressible elasticity with prestress: Green's function and integral representations

    PubMed Central

    Argani, L. P.; Bigoni, D.; Capuani, D.; Movchan, N. V.

    2014-01-01

    The infinite-body three-dimensional Green's function set (for incremental displacement and mean stress) is derived for the incremental deformation of a uniformly strained incompressible, nonlinear elastic body. Particular cases of the developed formulation are the Mooney–Rivlin elasticity and the J2-deformation theory of plasticity. These Green's functions are used to develop a boundary integral equation framework, by introducing an ad hoc potential, which paves the way for a boundary element formulation of three-dimensional problems of incremental elasticity. Results are used to investigate the behaviour of a material deformed near the limit of ellipticity and to reveal patterns of shear failure. In fact, within the investigated three-dimensional framework, localized deformations emanating from a perturbation are shown to be organized in conical geometries rather than in planar bands, so that failure is predicted to develop through curved and thin surfaces of intense shearing, as can for instance be observed in the cup–cone rupture of ductile metal bars. PMID:25197258

  1. Tsallis non-extensive statistics and solar wind plasma complexity

    NASA Astrophysics Data System (ADS)

    Pavlos, G. P.; Iliopoulos, A. C.; Zastenker, G. N.; Zelenyi, L. M.; Karakatsanis, L. P.; Riazantseva, M. O.; Xenakis, M. N.; Pavlos, E. G.

    2015-03-01

    This article presents novel results revealing non-equilibrium phase transition processes in the solar wind plasma during a strong shock event, which took place on 26th September 2011. Solar wind plasma is a typical case of stochastic spatiotemporal distribution of physical state variables such as force fields (B → , E →) and matter fields (particle and current densities or bulk plasma distributions). This study shows clearly the non-extensive and non-Gaussian character of the solar wind plasma and the existence of multi-scale strong correlations from the microscopic to the macroscopic level. It also underlines the inefficiency of classical magneto-hydro-dynamic (MHD) or plasma statistical theories, based on the classical central limit theorem (CLT), to explain the complexity of the solar wind dynamics, since these theories include smooth and differentiable spatial-temporal functions (MHD theory) or Gaussian statistics (Boltzmann-Maxwell statistical mechanics). On the contrary, the results of this study indicate the presence of non-Gaussian non-extensive statistics with heavy tails probability distribution functions, which are related to the q-extension of CLT. Finally, the results of this study can be understood in the framework of modern theoretical concepts such as non-extensive statistical mechanics (Tsallis, 2009), fractal topology (Zelenyi and Milovanov, 2004), turbulence theory (Frisch, 1996), strange dynamics (Zaslavsky, 2002), percolation theory (Milovanov, 1997), anomalous diffusion theory and anomalous transport theory (Milovanov, 2001), fractional dynamics (Tarasov, 2013) and non-equilibrium phase transition theory (Chang, 1992).

  2. Spectral determinants for twist field correlators

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.

    2018-04-01

    Twist fields were introduced a few decades ago as a quantum counterpart to classical kink configurations and disorder variables in low dimensional field theories. In recent years they received a new incarnation within the framework of geometric entropy and strong coupling limit of four-dimensional scattering amplitudes. In this paper, we study their two-point correlation functions in a free massless scalar theory, namely, twist-twist and twist-antitwist correlators. In spite of the simplicity of the model in question, the properties of the latter are far from being trivial. The problem is reduced, within the formalism of the path integral, to the study of spectral determinants on surfaces with conical points, which are then computed exactly making use of the zeta function regularization. We also provide an insight into twist correlators for a massive complex scalar by means of the Lifshitz-Krein trace formula.

  3. A multi-scale study of the adsorption of lanthanum on the (110) surface of tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samin, Adib J.; Zhang, Jinsuo

    In this study, we utilize a multi-scale approach to studying lanthanum adsorption on the (110) plane of tungsten. The energy of the system is described from density functional theory calculations within the framework of the cluster expansion method. It is found that including two-body figures up to the sixth nearest neighbor yielded a reasonable agreement with density functional theory calculations as evidenced by the reported cross validation score. The results indicate that the interaction between the adsorbate atoms in the adlayer is important and cannot be ignored. The parameterized cluster expansion expression is used in a lattice gas Monte Carlomore » simulation in the grand canonical ensemble at 773 K and the adsorption isotherm is recorded. Implications of the obtained results for the pyroprocessing application are discussed.« less

  4. Ab initio relaxation times and time-dependent Hamiltonians within the steepest-entropy-ascent quantum thermodynamic framework

    NASA Astrophysics Data System (ADS)

    Kim, Ilki; von Spakovsky, Michael R.

    2017-08-01

    Quantum systems driven by time-dependent Hamiltonians are considered here within the framework of steepest-entropy-ascent quantum thermodynamics (SEAQT) and used to study the thermodynamic characteristics of such systems. In doing so, a generalization of the SEAQT framework valid for all such systems is provided, leading to the development of an ab initio physically relevant expression for the intrarelaxation time, an important element of this framework and one that had as of yet not been uniquely determined as an integral part of the theory. The resulting expression for the relaxation time is valid as well for time-independent Hamiltonians as a special case and makes the description provided by the SEAQT framework more robust at the fundamental level. In addition, the SEAQT framework is used to help resolve a fundamental issue of thermodynamics in the quantum domain, namely, that concerning the unique definition of process-dependent work and heat functions. The developments presented lead to the conclusion that this framework is not just an alternative approach to thermodynamics in the quantum domain but instead one that uniquely sheds new light on various fundamental but as of yet not completely resolved questions of thermodynamics.

  5. Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives.

    PubMed

    Cammi, R

    2009-10-28

    We present a general formulation of the coupled-cluster (CC) theory for a molecular solute described within the framework of the polarizable continuum model (PCM). The PCM-CC theory is derived in its complete form, called PTDE scheme, in which the correlated electronic density is used to have a self-consistent reaction field, and in an approximate form, called PTE scheme, in which the PCM-CC equations are solved assuming the fixed Hartree-Fock solvent reaction field. Explicit forms for the PCM-CC-PTDE equations are derived at the single and double (CCSD) excitation level of the cluster operator. At the same level, explicit equations for the analytical first derivatives of the PCM basic energy functional are presented, and analytical second derivatives are also discussed. The corresponding PCM-CCSD-PTE equations are given as a special case of the full theory.

  6. Self-Determination Theory and Motivational Interviewing: Complementary Models to Elicit Voluntary Engagement by Partner-Abusive Men

    PubMed Central

    NEIGHBORS, CLAYTON; WALKER, DENISE D.; ROFFMAN, ROGER A.; MBILINYI, LYUNGAI F.; EDLESON, JEFFREY L.

    2012-01-01

    Research examining intimate partner violence (IPV) has lacked a comprehensive theoretical framework for understanding and treating behavior. The authors propose two complementary models, a treatment approach (Motivational Interviewing, MI) informed by a theory (Self-Determination Theory; SDT), as a way of integrating existing knowledge and suggesting new directions in intervening early with IPV perpetrators. MI is a client-centered clinical intervention intended to assist in strengthening motivation to change and has been widely implemented in the substance abuse literature. SDT is a theory that focuses on internal versus external motivation and considers elements that impact optimal functioning and psychological well-being. These elements include psychological needs, integration of behavioral regulations, and contextual influences on motivation. Each of these aspects of SDT is described in detail and in the context of IPV etiology and intervention using motivational interviewing. PMID:22593609

  7. A Conceptual Framework for Educational Design at Modular Level to Promote Transfer of Learning

    ERIC Educational Resources Information Center

    Botma, Yvonne; Van Rensburg, G. H.; Coetzee, I. M.; Heyns, T.

    2015-01-01

    Students bridge the theory-practice gap when they apply in practice what they have learned in class. A conceptual framework was developed that can serve as foundation to design for learning transfer at modular level. The framework is based on an adopted and adapted systemic model of transfer of learning, existing learning theories, constructive…

  8. Conceptual Spaces of the Immune System.

    PubMed

    Fierz, Walter

    2016-01-01

    The immune system can be looked at as a cognitive system. This is often done in analogy to the neuro-psychological system. Here, it is demonstrated that the cognitive functions of the immune system can be properly described within a new theory of cognitive science. Gärdenfors' geometrical framework of conceptual spaces is applied to immune cognition. Basic notions, like quality dimensions, natural properties and concepts, similarities, prototypes, saliences, etc., are related to cognitive phenomena of the immune system. Constraints derived from treating the immune system within a cognitive theory, like Gärdenfors' conceptual spaces, might well prove to be instrumental for the design of vaccines, immunological diagnostic tests, and immunotherapy.

  9. Super-Hubble de Sitter fluctuations and the dynamical RG

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Leblond, L.; Holman, R.; Shandera, S.

    2010-03-01

    Perturbative corrections to correlation functions for interacting theories in de Sitter spacetime often grow secularly with time, due to the properties of fluctuations on super-Hubble scales. This growth can lead to a breakdown of perturbation theory at late times. We argue that Dynamical Renormalization Group (DRG) techniques provide a convenient framework for interpreting and resumming these secularly growing terms. In the case of a massless scalar field in de Sitter with quartic self-interaction, the resummed result is also less singular in the infrared, in precisely the manner expected if a dynamical mass is generated. We compare this improved infrared behavior with large-N expansions when applicable.

  10. Structural, electronic and vibrational properties of lanthanide monophosphide at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panchal, J. M., E-mail: amitjignesh@yahoo.co.in; Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat; Joshi, Mitesh

    2016-05-06

    A first-principles plane wave self-consistent method with the ultra-soft-pseudopotential scheme in the framework of the density functional theory (DFT) is performed to study structural, electronic and vibrational properties of LaP for Rock-salt (NaCl/Bl) and Cesium-chloride (CsCl/B2) phases. The instability of Rock-salt (NaCl/Bl) phases around the transition is discussed. Conclusions based on electronic energy band structure, density of state, phonon dispersion and phonon density of states in both phases are outlined. The calculated results are consistence and confirm the successful applicability of quasi-harmonic phonon theory for structural instability studies for the alloys.

  11. A description of the mechanical behavior of composite solid propellants based on molecular theory

    NASA Technical Reports Server (NTRS)

    Landel, R. F.

    1976-01-01

    Both the investigation and the representation of the stress-strain response (including rupture) of gum and filled elastomers can be based on a simple functional statement. Internally consistent experiments are used to sort out the effects of time, temperature, strain and crosslink density on gum rubbers. All effects are readily correlated and shown to be essentially independent of the elastomer when considered in terms of non-dimensionalized stress, strain and time. A semiquantitative molecular theory is developed to explain this result. The introduction of fillers modifies the response, but, guided by the framework thus provided, their effects can be readily accounted for.

  12. Effective description of higher-order scalar-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langlois, David; Mancarella, Michele; Vernizzi, Filippo

    Most existing theories of dark energy and/or modified gravity, involving a scalar degree of freedom, can be conveniently described within the framework of the Effective Theory of Dark Energy, based on the unitary gauge where the scalar field is uniform. We extend this effective approach by allowing the Lagrangian in unitary gauge to depend on the time derivative of the lapse function. Although this dependence generically signals the presence of an extra scalar degree of freedom, theories that contain only one propagating scalar degree of freedom, in addition to the usual tensor modes, can be constructed by requiring the initialmore » Lagrangian to be degenerate. Starting from a general quadratic action, we derive the dispersion relations for the linear perturbations around Minkowski and a cosmological background. Our analysis directly applies to the recently introduced Degenerate Higher-Order Scalar-Tensor (DHOST) theories. For these theories, we find that one cannot recover a Poisson-like equation in the static linear regime except for the subclass that includes the Horndeski and so-called 'beyond Horndeski' theories. We also discuss Lorentz-breaking models inspired by Horava gravity.« less

  13. 'What women want': Using image theory to develop expectations of maternity care framework.

    PubMed

    Clark, Kim; Beatty, Shelley; Reibel, Tracy

    2015-05-01

    to develop, in consultation with women, a theoretically-grounded framework to guide the assessment of women's maternity-care experiences. qualitative research was undertaken with women to examine the appropriateness of Image Theory as a heuristic for understanding how women plan and evaluate their maternity-care experiences. maternity-care services in metropolitan and regional communities in Western Australia. an Episodes of Maternity Care Framework grounded in Image Theory was established that addressed various domains of women's perceptions and expectations of their maternity-care experience. previously-identified weaknesses of methods used to measure patient satisfaction were addressed and a valid framework for investigating women's perception of their maternity-services experiences was developed. This framework has the potential to contribute to the ongoing development and improvement of maternity-care service. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Philosophy and conceptual framework: collectively structuring nursing care systematization.

    PubMed

    Schmitz, Eudinéia Luz; Gelbcke, Francine Lima; Bruggmann, Mario Sérgio; Luz, Susian Cássia Liz

    2017-03-30

    To build the Nursing Philosophy and Conceptual Framework that will support the Nursing Care Systematization in a hospital in southern Brazil with the active participation of the institution's nurses. Convergent Care Research Data collection took place from July to October 2014, through two workshops and four meetings, with 42 nurses. As a result, the nursing philosophy and conceptual framework were created and the theory was chosen. Data analysis was performed based on Morse and Field. The philosophy involves the following beliefs: team nursing; team work; holistic care; service excellence; leadership/coordination; interdisciplinary team commitment. The conceptual framework brings concepts such as: human being; nursing; nursing care, safe care. The nursing theory defined was that of Wanda de Aguiar Horta. As a contribution, it brought the construction of the institutions' nursing philosophy and conceptual framework, and the definition of a nursing theory.

  15. Frameworks to assess health systems governance: a systematic review.

    PubMed

    Pyone, Thidar; Smith, Helen; van den Broek, Nynke

    2017-06-01

    Governance of the health system is a relatively new concept and there are gaps in understanding what health system governance is and how it could be assessed. We conducted a systematic review of the literature to describe the concept of governance and the theories underpinning as applied to health systems; and to identify which frameworks are available and have been applied to assess health systems governance. Frameworks were reviewed to understand how the principles of governance might be operationalized at different levels of a health system. Electronic databases and web portals of international institutions concerned with governance were searched for publications in English for the period January 1994 to February 2016. Sixteen frameworks developed to assess governance in the health system were identified and are described. Of these, six frameworks were developed based on theories from new institutional economics; three are primarily informed by political science and public management disciplines; three arise from the development literature and four use multidisciplinary approaches. Only five of the identified frameworks have been applied. These used the principal-agent theory, theory of common pool resources, North's institutional analysis and the cybernetics theory. Governance is a practice, dependent on arrangements set at political or national level, but which needs to be operationalized by individuals at lower levels in the health system; multi-level frameworks acknowledge this. Three frameworks were used to assess governance at all levels of the health system. Health system governance is complex and difficult to assess; the concept of governance originates from different disciplines and is multidimensional. There is a need to validate and apply existing frameworks and share lessons learnt regarding which frameworks work well in which settings. A comprehensive assessment of governance could enable policy makers to prioritize solutions for problems identified as well as replicate and scale-up examples of good practice. © The Author 2017. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.

  16. Frameworks to assess health systems governance: a systematic review

    PubMed Central

    Smith, Helen; van den Broek, Nynke

    2017-01-01

    Abstract Governance of the health system is a relatively new concept and there are gaps in understanding what health system governance is and how it could be assessed. We conducted a systematic review of the literature to describe the concept of governance and the theories underpinning as applied to health systems; and to identify which frameworks are available and have been applied to assess health systems governance. Frameworks were reviewed to understand how the principles of governance might be operationalized at different levels of a health system. Electronic databases and web portals of international institutions concerned with governance were searched for publications in English for the period January 1994 to February 2016. Sixteen frameworks developed to assess governance in the health system were identified and are described. Of these, six frameworks were developed based on theories from new institutional economics; three are primarily informed by political science and public management disciplines; three arise from the development literature and four use multidisciplinary approaches. Only five of the identified frameworks have been applied. These used the principal–agent theory, theory of common pool resources, North’s institutional analysis and the cybernetics theory. Governance is a practice, dependent on arrangements set at political or national level, but which needs to be operationalized by individuals at lower levels in the health system; multi-level frameworks acknowledge this. Three frameworks were used to assess governance at all levels of the health system. Health system governance is complex and difficult to assess; the concept of governance originates from different disciplines and is multidimensional. There is a need to validate and apply existing frameworks and share lessons learnt regarding which frameworks work well in which settings. A comprehensive assessment of governance could enable policy makers to prioritize solutions for problems identified as well as replicate and scale-up examples of good practice. PMID:28334991

  17. Electronic Structure Calculations of Hydrogen Storage in Lithium-Decorated Metal-Graphyne Framework.

    PubMed

    Kumar, Sandeep; Dhilip Kumar, Thogluva Janardhanan

    2017-08-30

    Porous metal-graphyne framework (MGF) made up of graphyne linker decorated with lithium has been investigated for hydrogen storage. Applying density functional theory spin-polarized generalized gradient approximation with the Perdew-Burke-Ernzerhof functional containing Grimme's diffusion parameter with double numeric polarization basis set, the structural stability, and physicochemical properties have been analyzed. Each linker binds two Li atoms over the surface of the graphyne linker forming MGF-Li 8 by Dewar coordination. On saturation with hydrogen, each Li atom physisorbs three H 2 molecules resulting in MGF-Li 8 -H 24 . H 2 and Li interact by charge polarization mechanism leading to elongation in average H-H bond length indicating physisorption. Sorption energy decreases gradually from ≈0.4 to 0.20 eV on H 2 loading. Molecular dynamics simulations and computed sorption energy range indicate the high reversibility of H 2 in the MGF-Li 8 framework with the hydrogen storage capacity of 6.4 wt %. The calculated thermodynamic practical hydrogen storage at room temperature makes the Li-decorated MGF system a promising hydrogen storage material.

  18. "Machine" consciousness and "artificial" thought: an operational architectonics model guided approach.

    PubMed

    Fingelkurts, Andrew A; Fingelkurts, Alexander A; Neves, Carlos F H

    2012-01-05

    Instead of using low-level neurophysiology mimicking and exploratory programming methods commonly used in the machine consciousness field, the hierarchical operational architectonics (OA) framework of brain and mind functioning proposes an alternative conceptual-theoretical framework as a new direction in the area of model-driven machine (robot) consciousness engineering. The unified brain-mind theoretical OA model explicitly captures (though in an informal way) the basic essence of brain functional architecture, which indeed constitutes a theory of consciousness. The OA describes the neurophysiological basis of the phenomenal level of brain organization. In this context the problem of producing man-made "machine" consciousness and "artificial" thought is a matter of duplicating all levels of the operational architectonics hierarchy (with its inherent rules and mechanisms) found in the brain electromagnetic field. We hope that the conceptual-theoretical framework described in this paper will stimulate the interest of mathematicians and/or computer scientists to abstract and formalize principles of hierarchy of brain operations which are the building blocks for phenomenal consciousness and thought. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. A Model-based Framework for Risk Assessment in Human-Computer Controlled Systems

    NASA Technical Reports Server (NTRS)

    Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems. This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions. Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  20. Global crop production forecasting data system analysis

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A. (Principal Investigator); Loats, H. L.; Lloyd, D. G.

    1978-01-01

    The author has identified the following significant results. Findings led to the development of a theory of radiometric discrimination employing the mathematical framework of the theory of discrimination between scintillating radar targets. The theory indicated that the functions which drive accuracy of discrimination are the contrast ratio between targets, and the number of samples, or pixels, observed. Theoretical results led to three primary consequences, as regards the data system: (1) agricultural targets must be imaged at correctly chosen times, when the relative evolution of the crop's development is such as to maximize their contrast; (2) under these favorable conditions, the number of observed pixels can be significantly reduced with respect to wall-to-wall measurements; and (3) remotely sensed radiometric data must be suitably mixed with other auxiliary data, derived from external sources.

  1. Scaling Deviations for Neutrino Reactions in Aysmptotically Free Field Theories

    DOE R&D Accomplishments Database

    Wilczek, F. A.; Zee, A.; Treiman, S. B.

    1974-11-01

    Several aspects of deep inelastic neutrino scattering are discussed in the framework of asymptotically free field theories. We first consider the growth behavior of the total cross sections at large energies. Because of the deviations from strict scaling which are characteristic of such theories the growth need not be linear. However, upper and lower bounds are established which rather closely bracket a linear growth. We next consider in more detail the expected pattern of scaling deviation for the structure functions and, correspondingly, for the differential cross sections. The analysis here is based on certain speculative assumptions. The focus is on qualitative effects of scaling breakdown as they may show up in the X and y distributions. The last section of the paper deals with deviations from the Callan-Gross relation.

  2. [Pb(H2O)]2+ and [Pb(OH)]+: four-component density functional theory calculations, correlated scalar relativistic constrained-space orbital variation energy decompositions, and topological analysis.

    PubMed

    Gourlaouen, Christophe; Piquemal, Jean-Philip; Parisel, Olivier

    2006-05-07

    Within the scope of studying the molecular implications of the Pb(2+) cation in environmental and polluting processes, this paper reports Hartree-Fock and density functional theory (B3LYP) four-component relativistic calculations using an all-electron basis set applied to [Pb(H(2)O)](2+) and [Pb(OH)](+), two complexes expected to be found in the terrestrial atmosphere. It is shown that full-relativistic calculations validate the use of scalar relativistic approaches within the framework of density functional theory. [Pb(H(2)O)](2+) is found C(2v) at any level of calculations whereas [Pb(OH)](+) can be found bent or linear depending of the computational methodology used. When C(s) is found the barrier to inversion through the C(infinityv) structure is very low, and can be overcome at high enough temperature, making the molecule floppy. In order to get a better understanding of the bonding occurring between the Pb(2+) cation and the H(2)O and OH(-) ligands, natural bond orbital and atoms-in-molecule calculations have been performed. These approaches are supplemented by a topological analysis of the electron localization function. Finally, the description of these complexes is refined using constrained-space orbital variation complexation energy decompositions.

  3. Electric transition dipole moment in pre-Born-Oppenheimer molecular structure theory.

    PubMed

    Simmen, Benjamin; Mátyus, Edit; Reiher, Markus

    2014-10-21

    This paper presents the calculation of the electric transition dipole moment in a pre-Born-Oppenheimer framework. Electrons and nuclei are treated equally in terms of the parametrization of the non-relativistic total wave function, which is written as a linear combination of basis functions constructed from explicitly correlated Gaussian functions and the global vector representation. The integrals of the electric transition dipole moment are derived corresponding to these basis functions in both the length and the velocity representation. The calculations are performed in laboratory-fixed Cartesian coordinates without relying on coordinates which separate the center of mass from the translationally invariant degrees of freedom. The effect of the overall motion is eliminated through translationally invariant integral expressions. The electric transition dipole moment is calculated between two rovibronic levels of the H2 molecule assignable to the lowest rovibrational states of the X (1)Σ(g)(+) and B (1)Σ(u)(+) electronic states in the clamped-nuclei framework. This is the first evaluation of this quantity in a full quantum mechanical treatment without relying on the Born-Oppenheimer approximation.

  4. A poly(acrylonitrile)-functionalized porous aromatic framework synthesized by atom-transfer radical polymerization for the extraction of uranium from seawater

    DOE PAGES

    Yue, Yanfeng; Zhang, Chenxi; Tang, Qing; ...

    2015-10-30

    In order to ensure a sustainable reserve of fuel for nuclear power generation, tremendous research efforts have been devoted to developing advanced sorbent materials for extracting uranium from seawater. In this work, a porous aromatic framework (PAF) was surface-functionalized with poly(acrylonitrile) through atom-transfer radical polymerization (ATRP). Batches of this adsorbent were conditioned with potassium hydroxide (KOH) at room temperature or 80 °C prior to contact with a uranium-spiked seawater simulant, with minimal differences in uptake observed as a function of conditioning temperature. A maximum capacity of 4.81 g-U/kg-ads was obtained following 42 days contact with uranium-spiked filtered environmental seawater, whichmore » demonstrates a comparable adsorption rate. A kinetic investigation revealed extremely rapid uranyl uptake, with more than 80% saturation reached within 14 days. Furthermore, relying on the semiordered structure of the PAF adsorbent, density functional theory (DFT) calculations reveal cooperative interactions between multiple adsorbent groups yield a strong driving force for uranium binding.« less

  5. Basic functional trade-offs in cognition: An integrative framework.

    PubMed

    Del Giudice, Marco; Crespi, Bernard J

    2018-06-14

    Trade-offs between advantageous but conflicting properties (e.g., speed vs. accuracy) are ubiquitous in cognition, but the relevant literature is conceptually fragmented, scattered across disciplines, and has not been organized in a coherent framework. This paper takes an initial step toward a general theory of cognitive trade-offs by examining four key properties of goal-directed systems: performance, efficiency, robustness, and flexibility. These properties define a number of basic functional trade-offs that can be used to map the abstract "design space" of natural and artificial cognitive systems. Basic functional trade-offs provide a shared vocabulary to describe a variety of specific trade-offs including speed vs. accuracy, generalist vs. specialist, exploration vs. exploitation, and many others. By linking specific features of cognitive functioning to general properties such as robustness and efficiency, it becomes possible to harness some powerful insights from systems engineering and systems biology to suggest useful generalizations, point to under-explored but potentially important trade-offs, and prompt novel hypotheses and connections between disparate areas of research. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Proxy functions for turbulent transport optimization of stellarators

    NASA Astrophysics Data System (ADS)

    Rorvig, Mordechai; Hegna, Chris; Mynick, Harry; Xanthopoulos, Pavlos

    2012-10-01

    The design freedom of toroidal confinement shaping suggests the possibility of optimizing the magnetic geometry for turbulent transport, particularly in stellarators. The framework for implementing such an optimization was recently established [1] using a proxy function as a measure of the ITG induced turbulent transport associated with a given geometry. Working in the framework of local 3-D equilibrium [2], we investigate the theory and implications of such proxy functions by analyzing the linear instability dependence on curvature and local shear, and the associated quasilinear transport estimates. Simple analytic models suggest the beneficial effect of local shear enters through polarization effects, which can be controlled by field torsion in small net current regimes. We test the proxy functions with local, electrostatic gyrokinetics calculations [3] of ITG modes for experimentally motivated local 3-D equilibria.[4pt] [1] H. E. Mynick, N. Pomphrey, and P. Xanthopoulos, Phys. Rev. Lett. 105, 095004 (2010).[0pt] [2] C. C. Hegna, Physics of Plasmas 7, 3921 (2000).[0pt] [3] F. Jenko, W. Dorland, M. Kotschenreuther, and B. N. Rogers, Physical Review Letters 7, 1904 (2000).

  7. Towards a comprehensive understanding of emerging dynamics and function of pancreatic islets: A complex network approach. Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

    NASA Astrophysics Data System (ADS)

    Loppini, Alessandro

    2018-03-01

    Complex network theory represents a comprehensive mathematical framework to investigate biological systems, ranging from sub-cellular and cellular scales up to large-scale networks describing species interactions and ecological systems. In their exhaustive and comprehensive work [1], Gosak et al. discuss several scenarios in which the network approach was able to uncover general properties and underlying mechanisms of cells organization and regulation, tissue functions and cell/tissue failure in pathology, by the study of chemical reaction networks, structural networks and functional connectivities.

  8. Impact of zeolite-Y framework on the geometry and reactivity of Ru (III) benzimidazole complexes - A DFT study

    NASA Astrophysics Data System (ADS)

    Selvaraj, Tamilmani; Rajalingam, Renganathan; Balasubramanian, Viswanathan

    2018-03-01

    A detailed comparative Density Functional Theory (DFT) study is made to understand the structural changes of the guest complex due to steric and electronic interactions with the host framework. In this study, Ru(III) benzimidazole and 2- ethyl Ru(III) benzimidazole complexes encapsulated in a supercage of zeolite Y. The zeolitic framework integrity is not disturbed by the intrusion of the large guest complex. A blue shift in the d-d transition observed in the UV-Visible spectroscopic studies of the zeolite encapsulated complexes and they shows a higher catalytic efficiency. Encapsulation of zeolite matrix makes the metal center more viable to nucleophilic attack and favors the phenol oxidation reaction. Based on the theoretical calculations, transition states and structures of reaction intermediates involved in the catalytic cycles are derived.

  9. Thermochemistry analyses for transformation of C6 glucose compound into C9, C12 and C15 alkanes using density functional theory

    NASA Astrophysics Data System (ADS)

    Verma, Anand Mohan; Kishore, Nanda

    2017-02-01

    The hydrolysis of cellulose fraction of biomass yields C6 glucose which further can be transformed into long-chain hydrocarbons by C-C coupling. In this study, C6 glucose is transformed into three chain alkanes, namely, C9, C12 and C15 using C-C coupling reactions under the gas and aqueous phase milieus. The geometry optimisation and vibrational frequency calculations are carried out at well-known hybrid-GGA functional, B3LYP with the basis set of 6-31+g(d,p) under the density functional theory framework. The single point energetics are calculated at M05-2X/6-311+g(3df,2p) level of theory. All thermochemical properties are calculated over a wide range of temperature between 300 and 900 K at an interval of 100 K. The thermochemistry suggested that the aqueous phase behaviour is suitable for the hydrolysis of sugar into long-chain alkanes compared to gas-phase environment. The hydrodeoxygenation reactions under each reaction pathway are found as most favourable reactions in both phases; however, aqueous phase dominates over gas phase in all discussed thermodynamic parameters.

  10. Finite-Temperature Relativistic Time-Blocking Approximation for Nuclear Strength Functions

    NASA Astrophysics Data System (ADS)

    Wibowo, Herlik; Litvinova, Elena

    2017-09-01

    This work presents an extension of the relativistic nuclear field theory (RNFT) developed throughout the last decade as an approach to the nuclear many-body problem, based on QHD meson-nucleon Lagrangian and relativistic field theory. The unique feature of RNFT is a consistent connection of the high-energy scale of heavy mesons, the medium-energy range of pion, and the low-energy domain of emergent collective vibrations (phonons). RNFT has demonstrated a very good performance in various nuclear structure calculations across the nuclear chart and, in particular, provides a consistent input for description of the two phases of r-process nucleosynthesis: neutron capture and beta decay. Further inclusion of finite temperature effects presented here allows for an extension of the method to highly excited compound nuclei. The covariant response theory in the relativistic time-blocking approximation (RTBA) is generalized for thermal effects, adopting the Matsubara Green's function formalism to the RNFT framework. The finite-temperature RTBA is implemented numerically to calculate multipole strength functions in medium-mass and heavy nuclei. The obtained results will be discussed in comparison to available experimental data and in the context of possible consequences for astrophysics.

  11. Kleene Monads: Handling Iteration in a Framework of Generic Effects

    NASA Astrophysics Data System (ADS)

    Goncharov, Sergey; Schröder, Lutz; Mossakowski, Till

    Monads are a well-established tool for modelling various computational effects. They form the semantic basis of Moggi’s computational metalanguage, the metalanguage of effects for short, which made its way into modern functional programming in the shape of Haskell’s do-notation. Standard computational idioms call for specific classes of monads that support additional control operations. Here, we introduce Kleene monads, which additionally feature nondeterministic choice and Kleene star, i.e. nondeterministic iteration, and we provide a metalanguage and a sound calculus for Kleene monads, the metalanguage of control and effects, which is the natural joint extension of Kleene algebra and the metalanguage of effects. This provides a framework for studying abstract program equality focussing on iteration and effects. These aspects are known to have decidable equational theories when studied in isolation. However, it is well known that decidability breaks easily; e.g. the Horn theory of continuous Kleene algebras fails to be recursively enumerable. Here, we prove several negative results for the metalanguage of control and effects; in particular, already the equational theory of the unrestricted metalanguage of control and effects over continuous Kleene monads fails to be recursively enumerable. We proceed to identify a fragment of this language which still contains both Kleene algebra and the metalanguage of effects and for which the natural axiomatisation is complete, and indeed the equational theory is decidable.

  12. Linearized propulsion theory of flapping airfoils revisited

    NASA Astrophysics Data System (ADS)

    Fernandez-Feria, Ramon

    2016-11-01

    A vortical impulse theory is used to compute the thrust of a plunging and pitching airfoil in forward flight within the framework of linear potential flow theory. The result is significantly different from the classical one of Garrick that considered the leading-edge suction and the projection in the flight direction of the pressure force. By taking into account the complete vorticity distribution on the airfoil and the wake the mean thrust coefficient contains a new term that generalizes the leading-edge suction term and depends on Theodorsen function C (k) and on a new complex function C1 (k) of the reduced frequency k. The main qualitative difference with Garrick's theory is that the propulsive efficiency tends to zero as the reduced frequency increases to infinity (as 1 / k), in contrast to Garrick's efficiency that tends to a constant (1 / 2). Consequently, for pure pitching and combined pitching and plunging motions, the maximum of the propulsive efficiency is not reached as k -> ∞ like in Garrick's theory, but at a finite value of the reduced frequency that depends on the remaining non-dimensional parameters. The present analytical results are in good agreement with experimental data and numerical results for small amplitude oscillations. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.

  13. SupportNet for Frontline Behavioral Health Providers

    DTIC Science & Technology

    2014-06-30

    social -cognitive theory perspective ( Bandura , 1997), the proposed website and integrated treatment would enhance the perceived social environmental...Objective 2: We will evaluate the utility of social cognitive theory as a framework for understanding the stress process for military mental health...healthcare providers. SupportNet, based on the theoretical framework of social cognitive theory , utilizes web-based support system with coaching to

  14. What is Informal Learning and What are its Antecedents? An Integrative and Meta-Analytic Review

    DTIC Science & Technology

    2014-07-01

    formal training. Unfortunately, theory and research surrounding informal learning remains fragmented. Given that there has been little systematic...future-oriented. Applying this framework, the construct domain of informal learning in organizations is articulated. Second, an interactionist theory ...theoretical framework and outline an agenda for future theory development, research, and application of informal learning principles in organizations

  15. About the cumulants of periodic signals

    NASA Astrophysics Data System (ADS)

    Barrau, Axel; El Badaoui, Mohammed

    2018-01-01

    This note studies cumulants of time series. These functions originating from the probability theory being commonly used as features of deterministic signals, their classical properties are examined in this modified framework. We show additivity of cumulants, ensured in the case of independent random variables, requires here a different hypothesis. Practical applications are proposed, in particular an analysis of the failure of the JADE algorithm to separate some specific periodic signals.

  16. Finite temperature grand canonical ensemble study of the minimum electrophilicity principle.

    PubMed

    Miranda-Quintana, Ramón Alain; Chattaraj, Pratim K; Ayers, Paul W

    2017-09-28

    We analyze the minimum electrophilicity principle of conceptual density functional theory using the framework of the finite temperature grand canonical ensemble. We provide support for this principle, both for the cases of systems evolving from a non-equilibrium to an equilibrium state and for the change from one equilibrium state to another. In doing so, we clearly delineate the cases where this principle can, or cannot, be used.

  17. A Mathematical Theory of Command and Control Structures.

    DTIC Science & Technology

    1984-08-30

    minimize the functional J over the space of all linear maps,then (a) 6J ( HKL l 0)n 0 0 6JKi+Li (HK’L K i +Li) =0 .61H (H,K,L, )= 0 13 for all i=l,...N, and...Castanon, G. C. Verghese, A. S. Willsky, "A Scaterring Framework for Decentralized Estimation Problems," MIT/LIDS paper 1075 , March 1981, Submitted to

  18. Implementation of highly parallel and large scale GW calculations within the OpenAtom software

    NASA Astrophysics Data System (ADS)

    Ismail-Beigi, Sohrab

    The need to describe electronic excitations with better accuracy than provided by band structures produced by Density Functional Theory (DFT) has been a long-term enterprise for the computational condensed matter and materials theory communities. In some cases, appropriate theoretical frameworks have existed for some time but have been difficult to apply widely due to computational cost. For example, the GW approximation incorporates a great deal of important non-local and dynamical electronic interaction effects but has been too computationally expensive for routine use in large materials simulations. OpenAtom is an open source massively parallel ab initiodensity functional software package based on plane waves and pseudopotentials (http://charm.cs.uiuc.edu/OpenAtom/) that takes advantage of the Charm + + parallel framework. At present, it is developed via a three-way collaboration, funded by an NSF SI2-SSI grant (ACI-1339804), between Yale (Ismail-Beigi), IBM T. J. Watson (Glenn Martyna) and the University of Illinois at Urbana Champaign (Laxmikant Kale). We will describe the project and our current approach towards implementing large scale GW calculations with OpenAtom. Potential applications of large scale parallel GW software for problems involving electronic excitations in semiconductor and/or metal oxide systems will be also be pointed out.

  19. Plant functional types are more efficient than climate in predicting spectrums of trait variation in evergreen angiosperm trees of tropical Australia and China

    NASA Astrophysics Data System (ADS)

    Togashi, H. F.; Prentice, I. C. C.; Atkin, O. K.; Bloomfield, K. J.; Bradford, M.; Weerasinghe, L. K.; Harrison, S. P.; Evans, B. J.; Liddell, M. J.; Wang, H.; Cao, K. F.; Fan, Z.

    2015-12-01

    The representation of Plant Functional Types (PFTs) in current generation of Dynamic Global Vegetation Models (DGVMs) is excessively simplistically. Key ecophysiological properties, such as photosynthesis biochemistry, are most times merely averaged and trade-off with other plant traits is often neglected. Validation of a PFT framework based in photosynthetic process is crucial to improve reliability of DGVMs. We present 431 leaf-biochemical and wood level measurements in evergreen angiosperm trees of tropical forests in Australia and China that were divided in four spectrums of plant trait variation: metabolic, structural, hydraulic and height dimensions. Plant traits divided in each of these dimensions adopt survival strategies reflected more clearly by trade-off within each spectrum, and in some extent across spectrums. Co-ordination theory (that Rubisco- and electron-transport limited rates of photosynthesis are co-limiting) and least-coast theory (that intercellular to ambient CO2 concentration minimizes the combined costs per unit carbon assimilation, regulating maximum height and wood density) expectations matched PFT (which takes in account canopy position and light access, and life spam) variation. Our findings suggest that climate (air moisture, air temperature, light) has lower power representing these dimensions, in comparison to the PFT framework.

  20. A dual memory theory of the testing effect.

    PubMed

    Rickard, Timothy C; Pan, Steven C

    2017-06-05

    A new theoretical framework for the testing effect-the finding that retrieval practice is usually more effective for learning than are other strategies-is proposed, the empirically supported tenet of which is that separate memories form as a consequence of study and test events. A simplest case quantitative model is derived from that framework for the case of cued recall. With no free parameters, that model predicts both proportion correct in the test condition and the magnitude of the testing effect across 10 experiments conducted in our laboratory, experiments that varied with respect to material type, retention interval, and performance in the restudy condition. The model also provides the first quantitative accounts of (a) the testing effect as a function of performance in the restudy condition, (b) the upper bound magnitude of the testing effect, (c) the effect of correct answer feedback, (d) the testing effect as a function of retention interval for the cases of feedback and no feedback, and (e) the effect of prior learning method on subsequent learning through testing. Candidate accounts of several other core phenomena in the literature, including test-potentiated learning, recognition versus cued recall training effects, cued versus free recall final test effects, and other select transfer effects, are also proposed. Future prospects and relations to other theories are discussed.

  1. CC2 oscillator strengths within the local framework for calculating excitation energies (LoFEx).

    PubMed

    Baudin, Pablo; Kjærgaard, Thomas; Kristensen, Kasper

    2017-04-14

    In a recent work [P. Baudin and K. Kristensen, J. Chem. Phys. 144, 224106 (2016)], we introduced a local framework for calculating excitation energies (LoFEx), based on second-order approximated coupled cluster (CC2) linear-response theory. LoFEx is a black-box method in which a reduced excitation orbital space (XOS) is optimized to provide coupled cluster (CC) excitation energies at a reduced computational cost. In this article, we present an extension of the LoFEx algorithm to the calculation of CC2 oscillator strengths. Two different strategies are suggested, in which the size of the XOS is determined based on the excitation energy or the oscillator strength of the targeted transitions. The two strategies are applied to a set of medium-sized organic molecules in order to assess both the accuracy and the computational cost of the methods. The results show that CC2 excitation energies and oscillator strengths can be calculated at a reduced computational cost, provided that the targeted transitions are local compared to the size of the molecule. To illustrate the potential of LoFEx for large molecules, both strategies have been successfully applied to the lowest transition of the bivalirudin molecule (4255 basis functions) and compared with time-dependent density functional theory.

  2. Combination of uncertainty theories and decision-aiding methods for natural risk management in a context of imperfect information

    NASA Astrophysics Data System (ADS)

    Tacnet, Jean-Marc; Dupouy, Guillaume; Carladous, Simon; Dezert, Jean; Batton-Hubert, Mireille

    2017-04-01

    In mountain areas, natural phenomena such as snow avalanches, debris-flows and rock-falls, put people and objects at risk with sometimes dramatic consequences. Risk is classically considered as a combination of hazard, the combination of the intensity and frequency of the phenomenon, and vulnerability which corresponds to the consequences of the phenomenon on exposed people and material assets. Risk management consists in identifying the risk level as well as choosing the best strategies for risk prevention, i.e. mitigation. In the context of natural phenomena in mountainous areas, technical and scientific knowledge is often lacking. Risk management decisions are therefore based on imperfect information. This information comes from more or less reliable sources ranging from historical data, expert assessments, numerical simulations etc. Finally, risk management decisions are the result of complex knowledge management and reasoning processes. Tracing the information and propagating information quality from data acquisition to decisions are therefore important steps in the decision-making process. One major goal today is therefore to assist decision-making while considering the availability, quality and reliability of information content and sources. A global integrated framework is proposed to improve the risk management process in a context of information imperfection provided by more or less reliable sources: uncertainty as well as imprecision, inconsistency and incompleteness are considered. Several methods are used and associated in an original way: sequential decision context description, development of specific multi-criteria decision-making methods, imperfection propagation in numerical modeling and information fusion. This framework not only assists in decision-making but also traces the process and evaluates the impact of information quality on decision-making. We focus and present two main developments. The first one relates to uncertainty and imprecision propagation in numerical modeling using both classical Monte-Carlo probabilistic approach and also so-called Hybrid approach using possibility theory. Second approach deals with new multi-criteria decision-making methods which consider information imperfection, source reliability, importance and conflict, using fuzzy sets as well as possibility and belief function theories. Implemented methods consider information imperfection propagation and information fusion in total aggregation methods such as AHP (Saaty, 1980) or partial aggregation methods such as the Electre outranking method (see Soft Electre Tri ) or decisions in certain but also risky or uncertain contexts (see new COWA-ER and FOWA-ER- Cautious and Fuzzy Ordered Weighted Averaging-Evidential Reasoning). For example, the ER-MCDA methodology considers expert assessment as a multi-criteria decision process based on imperfect information provided by more or less heterogeneous, reliable and conflicting sources: it mixes AHP, fuzzy sets theory, possibility theory and belief function theory using DSmT (Dezert-Smarandache Theory) framework which provides powerful fusion rules.

  3. Therapeutic Jurisprudence in Health Research: Enlisting Legal Theory as a Methodological Guide in an Interdisciplinary Case Study of Mental Health and Criminal Law.

    PubMed

    Ferrazzi, Priscilla; Krupa, Terry

    2015-09-01

    Studies that seek to understand and improve health care systems benefit from qualitative methods that employ theory to add depth, complexity, and context to analysis. Theories used in health research typically emerge from social science, but these can be inadequate for studying complex health systems. Mental health rehabilitation programs for criminal courts are complicated by their integration within the criminal justice system and by their dual health-and-justice objectives. In a qualitative multiple case study exploring the potential for these mental health court programs in Arctic communities, we assess whether a legal theory, known as therapeutic jurisprudence, functions as a useful methodological theory. Therapeutic jurisprudence, recruited across discipline boundaries, succeeds in guiding our qualitative inquiry at the complex intersection of mental health care and criminal law by providing a framework foundation for directing the study's research questions and the related propositions that focus our analysis. © The Author(s) 2014.

  4. Unraveling dynamics of human physical activity patterns in chronic pain conditions

    NASA Astrophysics Data System (ADS)

    Paraschiv-Ionescu, Anisoara; Buchser, Eric; Aminian, Kamiar

    2013-06-01

    Chronic pain is a complex disabling experience that negatively affects the cognitive, affective and physical functions as well as behavior. Although the interaction between chronic pain and physical functioning is a well-accepted paradigm in clinical research, the understanding of how pain affects individuals' daily life behavior remains a challenging task. Here we develop a methodological framework allowing to objectively document disruptive pain related interferences on real-life physical activity. The results reveal that meaningful information is contained in the temporal dynamics of activity patterns and an analytical model based on the theory of bivariate point processes can be used to describe physical activity behavior. The model parameters capture the dynamic interdependence between periods and events and determine a `signature' of activity pattern. The study is likely to contribute to the clinical understanding of complex pain/disease-related behaviors and establish a unified mathematical framework to quantify the complex dynamics of various human activities.

  5. Dopamine prediction errors in reward learning and addiction: from theory to neural circuitry

    PubMed Central

    Keiflin, Ronald; Janak, Patricia H.

    2015-01-01

    Summary Midbrain dopamine (DA) neurons are proposed to signal reward prediction error (RPE), a fundamental parameter in associative learning models. This RPE hypothesis provides a compelling theoretical framework for understanding DA function in reward learning and addiction. New studies support a causal role for DA-mediated RPE activity in promoting learning about natural reward; however, this question has not been explicitly tested in the context of drug addiction. In this review, we integrate theoretical models with experimental findings on the activity of DA systems, and on the causal role of specific neuronal projections and cell types, to provide a circuit-based framework for probing DA-RPE function in addiction. By examining error-encoding DA neurons in the neural network in which they are embedded, hypotheses regarding circuit-level adaptations that possibly contribute to pathological error-signaling and addiction can be formulated and tested. PMID:26494275

  6. Provider perspectives on essential functions for care management in the collaborative treatment of hypertension: the P.A.R.T.N.E.R. framework.

    PubMed

    Hussain, Tanvir; Allen, Allyssa; Halbert, Jennifer; Anderson, Cheryl A M; Boonyasai, Romsai Tony; Cooper, Lisa A

    2015-04-01

    Care management has become a widespread strategy for improving chronic illness care. However, primary care provider (PCP) participation in programs has been poor. Because the success of care management relies on provider engagement, understanding provider perspectives is necessary. Our goal was to identify care management functions most valuable to PCPs in hypertension treatment. Six focus groups were conducted to discuss current challenges in hypertension care and identify specific functions of care management that would improve care. The study included 39 PCPs (participation rate: 83 %) representing six clinics, two of which care for large African American populations and four that are in underserved locations, in the greater Baltimore metropolitan area. This was a qualitative analysis of focus groups, using grounded theory and iterative coding. Providers desired achieving blood pressure control more rapidly. Collaborating with care managers who obtain ongoing patient data would allow treatment plans to be tailored to the changing life conditions of patients. The P.A.R.T.N.E.R. framework summarizes the care management functions that providers reported were necessary for effective collaboration: Partner with patients, providers, and the community; Arrange follow-up care; Resolve barriers to adherence; Track treatment response and progress; Navigate the health care system with patients; Educate patients & Engage patients in self-management; Relay information between patients and/or provider(s). The P.A.R.T.N.E.R. framework is the first to offer a checklist of care management functions that may promote successful collaboration with PCPs. Future research should examine the validity of this framework in various settings and for diverse patient populations affected by chronic diseases.

  7. Joint density-functional theory and its application to systems in solution

    NASA Astrophysics Data System (ADS)

    Petrosyan, Sahak A.

    The physics of solvation, the interaction of water with solutes, plays a central role in chemistry and biochemistry, and it is essential for the very existence of life. Despite the central importance of water and the advent of the quantum theory early in the twentieth century, the link between the fundamental laws of physics and the observable properties of water remain poorly understood to this day. The central goal of this thesis is to develop a new formalism and framework to make the study of systems (solutes or surfaces) in contact with liquid water as practical and accurate as standard electronic structure calculations without the need for explicit averaging over large ensembles of configurations of water molecules. The thesis introduces a new form of density functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment. This theory rigorously joins an electron density-functional for the electrons of a solute with a classical density-functional theory for the liquid into a single variational principle for the free energy of the combined system. Using the new form of density-functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment, the thesis then presents the first detailed study of the impact of a solvent on the surface chemistry of Cr2O3, the passivating layer of stainless steel alloys. In comparison to a vacuum, we predict that the presence of water has little impact on the adsorption of chloride ions to the oxygen-terminated surface but has a dramatic effect on the binding of hydrogen to that surface. A key ingredient of a successful joint density functional theory is a good approximate functional for describing the solvent. We explore how the simplest examples of the best known class of approximate forms for the classical density functional fail when applied directly to water. The thesis then presents a computationally efficient density-functional theory for water which overcomes this difficulty and gives reasonable agreement with molecular dynamics simulation data for the solvation of hard spheres in water and sufficient agreement with experimental data for hydration of inert gas atoms to justify its use in a joint theory with standard approximate density functionals used in electronic structure calculations. The last study in the thesis combines the previous ideas and presenting an approximate model density functional which includes a description of cavitation effects through a classical density-functional theory; a description of dielectric effects through a non-local polarizability, and a description of the coupling of the solvent to the electrons of the solute through a pseudopotential. Without any empirical fitting of parameters to solvation data, this theory predicts solvation energies at least as well as state-of-the-art quantum-chemical cavity approaches, which do employ such fitting. Although this agreement without adjustable parameters is very encouraging and shows the promise of the joint density-functional approach, the functionals which we develop here are models and do not yet include all of the microscopic physics. The thesis concludes with a description of the directions future work should take to address this weakness.

  8. Theory of Covalent Adsorbate Frontier Orbital Energies on Functionalized Light-Absorbing Semiconductor Surfaces.

    PubMed

    Yu, Min; Doak, Peter; Tamblyn, Isaac; Neaton, Jeffrey B

    2013-05-16

    Functional hybrid interfaces between organic molecules and semiconductors are central to many emerging information and solar energy conversion technologies. Here we demonstrate a general, empirical parameter-free approach for computing and understanding frontier orbital energies - or redox levels - of a broad class of covalently bonded organic-semiconductor surfaces. We develop this framework in the context of specific density functional theory (DFT) and many-body perturbation theory calculations, within the GW approximation, of an exemplar interface, thiophene-functionalized silicon (111). Through detailed calculations taking into account structural and binding energetics of mixed-monolayers consisting of both covalently attached thiophene and hydrogen, chlorine, methyl, and other passivating groups, we quantify the impact of coverage, nonlocal polarization, and interface dipole effects on the alignment of the thiophene frontier orbital energies with the silicon band edges. For thiophene adsorbate frontier orbital energies, we observe significant corrections to standard DFT (∼1 eV), including large nonlocal electrostatic polarization effects (∼1.6 eV). Importantly, both results can be rationalized from knowledge of the electronic structure of the isolated thiophene molecule and silicon substrate systems. Silicon band edge energies are predicted to vary by more than 2.5 eV, while molecular orbital energies stay similar, with the different functional groups studied, suggesting the prospect of tuning energy alignment over a wide range for photoelectrochemistry and other applications.

  9. Piece-wise quadratic approximations of arbitrary error functions for fast and robust machine learning.

    PubMed

    Gorban, A N; Mirkes, E M; Zinovyev, A

    2016-12-01

    Most of machine learning approaches have stemmed from the application of minimizing the mean squared distance principle, based on the computationally efficient quadratic optimization methods. However, when faced with high-dimensional and noisy data, the quadratic error functionals demonstrated many weaknesses including high sensitivity to contaminating factors and dimensionality curse. Therefore, a lot of recent applications in machine learning exploited properties of non-quadratic error functionals based on L 1 norm or even sub-linear potentials corresponding to quasinorms L p (0

  10. Interactions Between Mathematics and Physics: The History of the Concept of Function—Teaching with and About Nature of Mathematics

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Tinne Hoff; Lützen, Jesper

    2015-07-01

    In this paper, we discuss the history of the concept of function and emphasize in particular how problems in physics have led to essential changes in its definition and application in mathematical practices. Euler defined a function as an analytic expression, whereas Dirichlet defined it as a variable that depends in an arbitrary manner on another variable. The change was required when mathematicians discovered that analytic expressions were not sufficient to represent physical phenomena such as the vibration of a string (Euler) and heat conduction (Fourier and Dirichlet). The introduction of generalized functions or distributions is shown to stem partly from the development of new theories of physics such as electrical engineering and quantum mechanics that led to the use of improper functions such as the delta function that demanded a proper foundation. We argue that the development of student understanding of mathematics and its nature is enhanced by embedding mathematical concepts and theories, within an explicit-reflective framework, into a rich historical context emphasizing its interaction with other disciplines such as physics. Students recognize and become engaged with meta-discursive rules governing mathematics. Mathematics teachers can thereby teach inquiry in mathematics as it occurs in the sciences, as mathematical practice aimed at obtaining new mathematical knowledge. We illustrate such a historical teaching and learning of mathematics within an explicit and reflective framework by two examples of student-directed, problem-oriented project work following the Roskilde Model, in which the connection to physics is explicit and provides a learning space where the nature of mathematics and mathematical practices are linked to natural science.

  11. Decision making and coping in healthcare: the Coping in Deliberation (CODE) framework.

    PubMed

    Witt, Jana; Elwyn, Glyn; Wood, Fiona; Brain, Kate

    2012-08-01

    To develop a framework of decision making and coping in healthcare that describes the twin processes of appraisal and coping faced by patients making preference-sensitive healthcare decisions. We briefly review the literature for decision making theories and coping theories applicable to preference-sensitive decisions in healthcare settings. We describe first decision making, then coping and finally attempt to integrate these processes by building on current theory. Deliberation in healthcare may be described as a six step process, comprised of the presentation of a health threat, choice, options, preference construction, the decision itself and consolidation post-decision. Coping can be depicted in three stages, beginning with a threat, followed by primary and secondary appraisal and ultimately resulting in a coping effort. Drawing together concepts from prominent decision making theories and coping theories, we propose a multidimensional, interactive framework which integrates both processes and describes coping in deliberation. The proposed framework offers an insight into the complexity of decision making in preference-sensitive healthcare contexts from a patient perspective and may act as theoretical basis for decision support. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Institutional Theory and Educational Change.

    ERIC Educational Resources Information Center

    Hanson, Mark

    2001-01-01

    Integrates three key segments of research literature (organizational memory, organizational learning, and institutional theory) into an overall conceptual framework. Argues that the framework lends insight into three progressively comprehensive types of educational change: homogenization, evolution, and reform. (Contains 1 figure and 32…

  13. Treating Sibling Incest Using a Family Systems Approach.

    ERIC Educational Resources Information Center

    Haskins, Cora

    2003-01-01

    Discusses family systems theory as a framework for understanding the common family dynamics observed in families where there is sibling abuse. Presents a case example using family systems theory as a framework for conceptualizing and developing treatment. (Contains 45 references.) (GCP)

  14. Digital Media Use in Families: Theories and Strategies for Intervention.

    PubMed

    Dalope, Kristin A; Woods, Leonard J

    2018-04-01

    Family dynamics are increasingly being influenced by digital media. Three frameworks are described to help clinicians to understand and respond to this influence. First, a social-ecological framework shows how media has both a direct and indirect impact on individuals, relationships, communities, and society. Next, family systems theory is introduced to demonstrate digital media-related interactions within families. Finally, a developmental framework explores the role of digital media in shaping parenting. These theories are then integrated into practical strategies that clinicians can use, including recommendations and resources from the American Academy of Pediatrics. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Functional dissociation of stimulus intensity encoding and predictive coding of pain in the insula

    PubMed Central

    Geuter, Stephan; Boll, Sabrina; Eippert, Falk; Büchel, Christian

    2017-01-01

    The computational principles by which the brain creates a painful experience from nociception are still unknown. Classic theories suggest that cortical regions either reflect stimulus intensity or additive effects of intensity and expectations, respectively. By contrast, predictive coding theories provide a unified framework explaining how perception is shaped by the integration of beliefs about the world with mismatches resulting from the comparison of these beliefs against sensory input. Using functional magnetic resonance imaging during a probabilistic heat pain paradigm, we investigated which computations underlie pain perception. Skin conductance, pupil dilation, and anterior insula responses to cued pain stimuli strictly followed the response patterns hypothesized by the predictive coding model, whereas posterior insula encoded stimulus intensity. This novel functional dissociation of pain processing within the insula together with previously observed alterations in chronic pain offer a novel interpretation of aberrant pain processing as disturbed weighting of predictions and prediction errors. DOI: http://dx.doi.org/10.7554/eLife.24770.001 PMID:28524817

  16. Large-deviation theory for diluted Wishart random matrices

    NASA Astrophysics Data System (ADS)

    Castillo, Isaac Pérez; Metz, Fernando L.

    2018-03-01

    Wishart random matrices with a sparse or diluted structure are ubiquitous in the processing of large datasets, with applications in physics, biology, and economy. In this work, we develop a theory for the eigenvalue fluctuations of diluted Wishart random matrices based on the replica approach of disordered systems. We derive an analytical expression for the cumulant generating function of the number of eigenvalues IN(x ) smaller than x ∈R+ , from which all cumulants of IN(x ) and the rate function Ψx(k ) controlling its large-deviation probability Prob[IN(x ) =k N ] ≍e-N Ψx(k ) follow. Explicit results for the mean value and the variance of IN(x ) , its rate function, and its third cumulant are discussed and thoroughly compared to numerical diagonalization, showing very good agreement. The present work establishes the theoretical framework put forward in a recent letter [Phys. Rev. Lett. 117, 104101 (2016), 10.1103/PhysRevLett.117.104101] as an exact and compelling approach to deal with eigenvalue fluctuations of sparse random matrices.

  17. Charge Transport Properties of Durene Crystals from First-Principles.

    PubMed

    Motta, Carlo; Sanvito, Stefano

    2014-10-14

    We establish a rigorous computational scheme for constructing an effective Hamiltonian to be used for the determination of the charge carrier mobility of pure organic crystals at finite temperature, which accounts for van der Waals interactions, and it includes vibrational contributions from the entire phonon spectrum of the crystal. Such an approach is based on the ab initio framework provided by density functional theory and the construction of a tight-binding effective model via Wannier transformation. The final Hamiltonian includes coupling of the electrons to the crystals phonons, which are also calculated from density functional theory. We apply this methodology to the case of durene, a small π-conjugated molecule, which forms a high-mobility herringbone-stacked crystal. We show that accounting correctly for dispersive forces is fundamental for obtaining a high-quality phonon spectrum, in agreement with experiments. Then, the mobility as a function of temperature is calculated along different crystallographic directions and the phonons most responsible for the scattering are identified.

  18. Intrinsic point defects in β-In2S3 studied by means of hybrid density-functional theory

    NASA Astrophysics Data System (ADS)

    Ghorbani, Elaheh; Albe, Karsten

    2018-03-01

    We have employed first principles total energy calculations in the framework of density functional theory, with plane wave basis sets and screened exchange hybrid functionals to study the incorporation of intrinsic defects in bulk β-In2S3. The results are obtained for In-rich and S-rich experimental growth conditions. The charge transition level is discussed for all native defects, including VIn, VS, Ini, Si, SIn, and InS, and a comparison between the theoretically calculated charge transition levels and the available experimental findings is presented. The results imply that β-In2S3 shows n-type conductivity under both In-rich and S-rich growth conditions. The indium antiisite (InS), the indium interstitial (Ini), and the sulfur vacancy ( VS ' ) are found to be the leading sources of sample's n-type conductivity. When going from the In-rich to the S-rich condition, the conductivity of the material decreases; however, the type of conductivity remains unchanged.

  19. From grand-canonical density functional theory towards rational compound design

    NASA Astrophysics Data System (ADS)

    von Lilienfeld, Anatole

    2008-03-01

    The fundamental challenge of rational compound design, ie the reverse engineering of chemical compounds with predefined specific properties, originates in the high-dimensional combinatorial nature of chemical space. Chemical space is the hyper-space of a given set of molecular observables that is spanned by the grand-canonical variables (particle densities of electrons and nuclei) which define chemical composition. A brief but rigorous description of chemical space within the molecular grand-canonical ensemble multi-component density functional theory framework will be given [1]. Numerical results will be presented for intermolecular energies as a continuous function of alchemical variations within a neutral and isoelectronic 10 proton system, including CH4, NH3, H2O, and HF, interacting with formic acid [2]. Furthermore, engineering the Fermi level through alchemical generation of boron-nitrogen doped mutants of benzene shall be discussed [3].[1] von Lilienfeld and Tuckerman JCP 125 154104 (2006)[2] von Lilienfeld and Tuckerman JCTC 3 1083 (2007)[3] Marcon et al. JCP 127 064305 (2007)

  20. Simulation of Near-Edge X-ray Absorption Fine Structure with Time-Dependent Equation-of-Motion Coupled-Cluster Theory.

    PubMed

    Nascimento, Daniel R; DePrince, A Eugene

    2017-07-06

    An explicitly time-dependent (TD) approach to equation-of-motion (EOM) coupled-cluster theory with single and double excitations (CCSD) is implemented for simulating near-edge X-ray absorption fine structure in molecular systems. The TD-EOM-CCSD absorption line shape function is given by the Fourier transform of the CCSD dipole autocorrelation function. We represent this transform by its Padé approximant, which provides converged spectra in much shorter simulation times than are required by the Fourier form. The result is a powerful framework for the blackbox simulation of broadband absorption spectra. K-edge X-ray absorption spectra for carbon, nitrogen, and oxygen in several small molecules are obtained from the real part of the absorption line shape function and are compared with experiment. The computed and experimentally obtained spectra are in good agreement; the mean unsigned error in the predicted peak positions is only 1.2 eV. We also explore the spectral signatures of protonation in these molecules.

  1. A Bayesian Framework for False Belief Reasoning in Children: A Rational Integration of Theory-Theory and Simulation Theory

    PubMed Central

    Asakura, Nobuhiko; Inui, Toshio

    2016-01-01

    Two apparently contrasting theories have been proposed to account for the development of children's theory of mind (ToM): theory-theory and simulation theory. We present a Bayesian framework that rationally integrates both theories for false belief reasoning. This framework exploits two internal models for predicting the belief states of others: one of self and one of others. These internal models are responsible for simulation-based and theory-based reasoning, respectively. The framework further takes into account empirical studies of a developmental ToM scale (e.g., Wellman and Liu, 2004): developmental progressions of various mental state understandings leading up to false belief understanding. By representing the internal models and their interactions as a causal Bayesian network, we formalize the model of children's false belief reasoning as probabilistic computations on the Bayesian network. This model probabilistically weighs and combines the two internal models and predicts children's false belief ability as a multiplicative effect of their early-developed abilities to understand the mental concepts of diverse beliefs and knowledge access. Specifically, the model predicts that children's proportion of correct responses on a false belief task can be closely approximated as the product of their proportions correct on the diverse belief and knowledge access tasks. To validate this prediction, we illustrate that our model provides good fits to a variety of ToM scale data for preschool children. We discuss the implications and extensions of our model for a deeper understanding of developmental progressions of children's ToM abilities. PMID:28082941

  2. A Bayesian Framework for False Belief Reasoning in Children: A Rational Integration of Theory-Theory and Simulation Theory.

    PubMed

    Asakura, Nobuhiko; Inui, Toshio

    2016-01-01

    Two apparently contrasting theories have been proposed to account for the development of children's theory of mind (ToM): theory-theory and simulation theory. We present a Bayesian framework that rationally integrates both theories for false belief reasoning. This framework exploits two internal models for predicting the belief states of others: one of self and one of others. These internal models are responsible for simulation-based and theory-based reasoning, respectively. The framework further takes into account empirical studies of a developmental ToM scale (e.g., Wellman and Liu, 2004): developmental progressions of various mental state understandings leading up to false belief understanding. By representing the internal models and their interactions as a causal Bayesian network, we formalize the model of children's false belief reasoning as probabilistic computations on the Bayesian network. This model probabilistically weighs and combines the two internal models and predicts children's false belief ability as a multiplicative effect of their early-developed abilities to understand the mental concepts of diverse beliefs and knowledge access. Specifically, the model predicts that children's proportion of correct responses on a false belief task can be closely approximated as the product of their proportions correct on the diverse belief and knowledge access tasks. To validate this prediction, we illustrate that our model provides good fits to a variety of ToM scale data for preschool children. We discuss the implications and extensions of our model for a deeper understanding of developmental progressions of children's ToM abilities.

  3. A quasi-likelihood approach to non-negative matrix factorization

    PubMed Central

    Devarajan, Karthik; Cheung, Vincent C.K.

    2017-01-01

    A unified approach to non-negative matrix factorization based on the theory of generalized linear models is proposed. This approach embeds a variety of statistical models, including the exponential family, within a single theoretical framework and provides a unified view of such factorizations from the perspective of quasi-likelihood. Using this framework, a family of algorithms for handling signal-dependent noise is developed and its convergence proven using the Expectation-Maximization algorithm. In addition, a measure to evaluate the goodness-of-fit of the resulting factorization is described. The proposed methods allow modeling of non-linear effects via appropriate link functions and are illustrated using an application in biomedical signal processing. PMID:27348511

  4. Improving Olefin Purification Using Metal Organic Frameworks with Open Metal Sites.

    PubMed

    Luna-Triguero, A; Vicent-Luna, J M; Poursaeidesfahani, A; Vlugt, T J H; Sánchez-de-Armas, R; Gómez-Álvarez, P; Calero, S

    2018-05-16

    The separation and purification of light hydrocarbons is challenging in the industry. Recently, a ZJNU-30 metal-organic framework (MOF) has been found to have the potential for adsorption-based separation of olefins and diolefins with four carbon atoms [H. M. Liu et al. Chem.-Eur. J. 2016, 22, 14988-14997]. Our study corroborates this finding but reveals Fe-MOF-74 as a more efficient candidate for the separation because of the open metal sites. We performed adsorption-based separation, transient breakthrough curves, and density functional theory calculations. This combination of techniques provides an extensive understanding of the studied system. Using this MOF, we propose a separation scheme to obtain a high-purity product.

  5. Uncovering a reconstructive solid-solid phase transition in a metal-organic framework.

    PubMed

    Longley, L; Li, N; Wei, F; Bennett, T D

    2017-11-01

    A nanoporous three-dimensional metal-organic framework (MOF), ZnPurBr undergoes a transition to a previously unreported high-temperature phase, ZnPurBr-ht. The transition, which proceeds without mass loss, is uncovered through the use of differential scanning calorimetry (DSC). The new crystal structure was solved using single-crystal X-ray diffraction, and the mechanical properties of both phases investigated by nanoindentation and density functional theory. The anisotropy of the calculated Young's moduli showed good agreement with the crystallographic alignment of the stiff purinate organic linker. The results provide a prototypical example of the importance of the use of DSC in the MOF field, where its use is not currently standard in characterization.

  6. Lessons from game theory about healthcare system price inflation: evidence from a community-level case study.

    PubMed

    Agee, Mark D; Gates, Zane

    2013-02-01

    Game theory is useful for identifying conditions under which individual stakeholders in a collective action problem interact in ways that are more cooperative and in the best interest of the collective. The literature applying game theory to healthcare markets predicts that when providers set prices for services autonomously and in a noncooperative fashion, the market will be susceptible to ongoing price inflation. We compare the traditional fee-for-service pricing framework with an alternative framework involving modified doctor, hospital and insurer pricing and incentive strategies. While the fee-for-service framework generally allows providers to set prices autonomously, the alternative framework constrains providers to interact more cooperatively. We use community-level provider and insurer data to compare provider and insurer costs and patient wellness under the traditional and modified pricing frameworks. The alternative pricing framework assumes (i) providers agree to manage all outpatient claims; (ii) the insurer agrees to manage all inpatient clams; and (iii) insurance premiums are tied to patients' healthy behaviours. Consistent with game theory predictions, the more cooperative alternative pricing framework benefits all parties by producing substantially lower administrative costs along with higher profit margins for the providers and the insurer. With insurance premiums tied to consumers' risk-reducing behaviours, the cost of insurance likewise decreases for both the consumer and the insurer.

  7. Using Principal-Agent Theory as a Framework for Analysis in Evaluating the Multiple Stakeholders Involved in the Accreditation and Quality Assurance of International Medical Branch Campuses

    ERIC Educational Resources Information Center

    Borgos, Jill E.

    2013-01-01

    This article applies the theoretical framework of principal-agent theory in order to better understand the complex organisational relationships emerging between entities invested in the establishment and monitoring of cross-border international branch campus medical schools. Using the key constructs of principal-agent theory, information asymmetry…

  8. A Rational Reconstruction of the Kinetic Molecular Theory of Gases Based on History and Philosophy of Science and Its Implications for Chemistry Textbooks.

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    2000-01-01

    Describes a study that was designed to develop a framework for examining the way in which chemistry textbooks describe the kinetic theory and related issues. The framework was developed by a rational reconstruction of the kinetic molecular theory of gases based on historians and philosophers of science. (Contains 102 references.)(Author/LRW)

  9. Spin-memory loss due to spin-orbit coupling at ferromagnet/heavy-metal interfaces: Ab initio spin-density matrix approach

    NASA Astrophysics Data System (ADS)

    Dolui, Kapildeb; Nikolić, Branislav K.

    2017-12-01

    Spin-memory loss (SML) of electrons traversing ferromagnetic-metal/heavy-metal (FM/HM), FM/normal-metal (FM/NM), and HM/NM interfaces is a fundamental phenomenon that must be invoked to explain consistently large numbers of spintronic experiments. However, its strength extracted by fitting experimental data to phenomenological semiclassical theory, which replaces each interface by a fictitious bulk diffusive layer, is poorly understood from a microscopic quantum framework and/or materials properties. Here we describe an ensemble of flowing spin quantum states using spin-density matrix, so that SML is measured like any decoherence process by the decay of its off-diagonal elements or, equivalently, by the reduction of the magnitude of polarization vector. By combining this framework with density functional theory, we examine how all three components of the polarization vector change at Co/Ta, Co/Pt, Co/Cu, Pt/Cu, and Pt/Au interfaces embedded within Cu/FM/HM/Cu vertical heterostructures. In addition, we use ab initio Green's functions to compute spectral functions and spin textures over FM, HM, and NM monolayers around these interfaces which quantify interfacial spin-orbit coupling and explain the microscopic origin of SML in long-standing puzzles, such as why it is nonzero at the Co/Cu interface; why it is very large at the Pt/Cu interface; and why it occurs even in the absence of disorder, intermixing and magnons at the interface.

  10. Different singularities in the functions of extended kinetic theory at the origin of the yield stress in granular flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berzi, Diego; Vescovi, Dalila

    2015-01-15

    We use previous results from discrete element simulations of simple shear flows of rigid, identical spheres in the collisional regime to show that the volume fraction-dependence of the stresses is singular at the shear rigidity. Here, we identify the shear rigidity, which is a decreasing function of the interparticle friction, as the maximum volume fraction beyond which a random collisional assembly of grains cannot be sheared without developing force chains that span the entire domain. In the framework of extended kinetic theory, i.e., kinetic theory that accounts for the decreasing in the collisional dissipation due to the breaking of molecularmore » chaos at volume fractions larger than 0.49, we also show that the volume fraction-dependence of the correlation length (measure of the velocity correlation) is singular at random close packing, independent of the interparticle friction. The difference in the singularities ensures that the ratio of the shear stress to the pressure at shear rigidity is different from zero even in the case of frictionless spheres: we identify that with the yield stress ratio of granular materials, and we show that the theoretical predictions, once the different singularities are inserted into the functions of extended kinetic theory, are in excellent agreement with the results of numerical simulations.« less

  11. Understanding the underlying motives and intention among Indian blood donors towards voluntary blood donation: A cross-sectional study.

    PubMed

    Saha, S; Chandra, B

    2018-05-01

    The present study aims to fill the gap in the literature by conducting a comprehensive research on Indian donor's intention towards voluntary blood donation in India. The study attempts to conceptualize and validate an integrative framework incorporating voluntary function inventory (VFI) in the theory of planned behaviour (TPB) model with the purpose tomeasure the voluntary blood donation intention. Structural equation modeling (SEM) has been used to rigorously test the hypothesized interrelationships among the underlying motives influencing voluntary blood donation intention. A self-administered questionnaire was used to collect data from a sample of respondents selected conveniently from selct locations in India. Total 450 completed questionnaires were received out of 1000 distributed. The study develops a final conceptual framework that determines the drivers of blood donor's intention towards voluntary donation. The components of theory of planned behavior (TPB) model which include 'attitude', 'subjective norms' (SN), and 'perceived behavioral control' (PBC) along with modified volunteer functions namely 'value', 'social', 'career' and 'enhancement' were found significantly explaining the donation intention in the model. The model achieves robustness with respect to predicting Indian donor's intention towards the voluntary donation of blood. The proposed model in this study advances the theory and research on thevolunteering motives towards blood donation. The study would provide a comprehensiveunderstanding of donors' intention to the practitioners, policy makers and Non-Government Organization (NGO), helping them to frame a calibrated strategydirected towards facilitating healthy blood donation practices. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frusciante, Noemi; Papadomanolakis, Georgios; Silvestri, Alessandra, E-mail: fruscian@iap.fr, E-mail: papadomanolakis@lorentz.leidenuniv.nl, E-mail: silvestri@lorentz.leidenuniv.nl

    We present a generalization of the effective field theory (EFT) formalism for dark energy and modified gravity models to include operators with higher order spatial derivatives. This allows the extension of the EFT framework to a wider class of gravity theories such as Hořava gravity. We present the corresponding extended action, both in the EFT and the Arnowitt-Deser-Misner (ADM) formalism, and proceed to work out a convenient mapping between the two, providing a self contained and general procedure to translate a given model of gravity into the EFT language at the basis of the Einstein-Boltzmann solver EFTCAMB. Putting this mappingmore » at work, we illustrate, for several interesting models of dark energy and modified gravity, how to express them in the ADM notation and then map them into the EFT formalism. We also provide for the first time, the full mapping of GLPV models into the EFT framework. We next perform a thorough analysis of the physical stability of the generalized EFT action, in absence of matter components. We work out viability conditions that correspond to the absence of ghosts and modes that propagate with a negative speed of sound in the scalar and tensor sector, as well as the absence of tachyonic modes in the scalar sector. Finally, we extend and generalize the phenomenological basis in terms of α-functions introduced to parametrize Horndeski models, to cover all theories with higher order spatial derivatives included in our extended action. We elaborate on the impact of the additional functions on physical quantities, such as the kinetic term and the speeds of propagation for scalar and tensor modes.« less

  13. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework

    DOE PAGES

    Demir, Selvan; Brune, Nicholas K.; Van Humbeck, Jeffrey F.; ...

    2016-04-08

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/ activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr 2+, Fe 3+, Nd 3+, and Am 3+, from aqueous solutionsmore » employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Finally, recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity.« less

  14. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework

    PubMed Central

    2016-01-01

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr2+, Fe3+, Nd3+, and Am3+, from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity. PMID:27163056

  15. Quasiparticle interference in multiband superconductors with strong coupling

    NASA Astrophysics Data System (ADS)

    Dutt, A.; Golubov, A. A.; Dolgov, O. V.; Efremov, D. V.

    2017-08-01

    We develop a theory of the quasiparticle interference (QPI) in multiband superconductors based on the strong-coupling Eliashberg approach within the Born approximation. In the framework of this theory, we study dependencies of the QPI response function in the multiband superconductors with the nodeless s -wave superconductive order parameter. We pay special attention to the difference in the quasiparticle scattering between the bands having the same and opposite signs of the order parameter. We show that at the momentum values close to the momentum transfer between two bands, the energy dependence of the quasiparticle interference response function has three singularities. Two of these correspond to the values of the gap functions and the third one depends on both the gaps and the transfer momentum. We argue that only the singularity near the smallest band gap may be used as a universal tool to distinguish between the s++ and s± order parameters. The robustness of the sign of the response function peak near the smaller gap value, irrespective of the change in parameters, in both the symmetry cases is a promising feature that can be harnessed experimentally.

  16. Comparison of Optimal Design Methods in Inverse Problems

    PubMed Central

    Banks, H. T.; Holm, Kathleen; Kappel, Franz

    2011-01-01

    Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher Information Matrix (FIM). A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criteria with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model [13], the standard harmonic oscillator model [13] and a popular glucose regulation model [16, 19, 29]. PMID:21857762

  17. Principles of Catholic Social Teaching, Critical Pedagogy, and the Theory of Intersectionality: An Integrated Framework to Examine the Roles of Social Status in the Formation of Catholic Teachers

    ERIC Educational Resources Information Center

    Eick, Caroline Marie; Ryan, Patrick A.

    2014-01-01

    This article discusses the relevance of an analytic framework that integrates principles of Catholic social teaching, critical pedagogy, and the theory of intersectionality to explain attitudes toward marginalized youth held by Catholic students preparing to become teachers. The framework emerges from five years of action research data collected…

  18. Intersection of migration and turnover theories-What can we learn?

    PubMed

    Brewer, Carol S; Kovner, Christine T

    2014-01-01

    The international migration of nurses has become a major issue in the international health and workforce policy circles, but analyses are not based on a comprehensive theory. The purpose of this article was to compare the concepts of an integrated nursing turnover theory with the concepts of one international migration framework. An integrated turnover theory is compared with a frequently used migration framework using examples of each. Migration concepts relate well to turnover concepts, but the relative importance and strength of various concepts may differ. For example, identification, development, and measurement of the concept of national commitment, if it exists, is parallel to organizational commitment and may be fruitful in understanding the processes that lead to nurse migration. The turnover theory provides a framework for examining migration concepts and considering how these concepts could relate to each other in a future theory of migration. Ultimately, a better understanding of the relationships and strengths of these concepts could lead to more effective policy. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Regarding the use and misuse of retinal protonated Schiff base photochemistry as a test case for time-dependent density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valsson, Omar; Filippi, Claudia, E-mail: c.filippi@utwente.nl; Casida, Mark E., E-mail: mark.casida@ujf-grenoble.fr

    2015-04-14

    The excited-state relaxation of retinal protonated Schiff bases (PSBs) is an important test case for biological applications of time-dependent (TD) density-functional theory (DFT). While well-known shortcomings of approximate TD-DFT might seem discouraging for application to PSB relaxation, progress continues to be made in the development of new functionals and of criteria allowing problematic excitations to be identified within the framework of TD-DFT itself. Furthermore, experimental and theoretical ab initio advances have recently lead to a revised understanding of retinal PSB photochemistry, calling for a reappraisal of the performance of TD-DFT in describing this prototypical photoactive system. Here, we re-investigate themore » performance of functionals in (TD-)DFT calculations in light of these new benchmark results, which we extend to larger PSB models. We focus on the ability of the functionals to describe primarily the early skeletal relaxation of the chromophore and investigate how far along the out-of-plane pathways these functionals are able to describe the subsequent rotation around formal single and double bonds. Conventional global hybrid and range-separated hybrid functionals are investigated as the presence of Hartree-Fock exchange reduces problems with charge-transfer excitations as determined by the Peach-Benfield-Helgaker-Tozer Λ criterion and by comparison with multi-reference perturbation theory results. While we confirm that most functionals cannot render the complex photobehavior of the retinal PSB, do we also observe that LC-BLYP gives the best description of the initial part of the photoreaction.« less

  20. Stochastic Gravity: Theory and Applications.

    PubMed

    Hu, Bei Lok; Verdaguer, Enric

    2004-01-01

    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operatorvalued) stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole (enclosed in a box). We derive a fluctuation-dissipation relation between the fluctuations in the radiation and the dissipative dynamics of metric fluctuations.

Top